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ABSTRACT OF THE THESIS 

 

 

Unsupervised Classification of Interictal Intracranial Electroencephalography 

Activity as Pathological or Physiological in Epilepsy Patients 

 

by 

 

Soulaimane Bentaleb 

 

Master of Science in Bioengineering 

University of California, Los Angeles, 2024 

Professor Wentai Liu, Chair 

 

With timely and proper treatment, an estimated 70% of the 65 million people with 

epilepsy worldwide could be seizure-free. For the 30-40% of epilepsy patients who do 

not respond to anti-seizure drugs, detection of pathological interictal activity can speed 

up treatment procedures. However, analysis of brain activity is a manual process today, 

which is tedious, time-consuming, and unscalable. An automated approach tackles 

these issues. That said, interictal detection algorithms rely on supervised learning, 

which requires labeled training data and human intervention for patient-specific tuning. 

An unsupervised approach overcomes these limitations with an automated and 
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personalized solution that requires no labels or intervention from medical staff. The 

algorithm presented in this thesis is a fully unsupervised model that classifies 

intracranial electroencephalography (iEEG) interictal activity as pathological or 

physiological. 170 features were extracted from three domains: time (19 features), 

frequency (7 features), and time-frequency (144 features). Four unsupervised 

dimensionality reduction techniques were then combined with four unsupervised 

classification methods. Out of these 16 combinations, Principal Component Analysis 

(PCA) paired with a K-Means model achieved the best performance. Across 15 epilepsy 

patients, it yielded an average 92.6% F-2 score, 93.5% precision, and 93.0% recall with 

standard deviations of 12.0%, 13.8%, and 12.5%, respectively. There was no 

statistically significant difference between the performance of this unsupervised model 

and that of two supervised models, Support Vector Machine and Random Forest. The 

proposed method is a promising approach to enhancing the efficiency of treatment for 

drug-resistant epilepsy. 
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I. Introduction 

 

Epilepsy is a neurological disorder characterized by repeated seizures. A seizure 

is a burst of abnormal electrical activity in the brain. Epilepsy is the fourth most common 

neurological disorder in the United States and the world, with 3.5 and 65 million people 

actively suffering from the condition, respectively.1 If they are properly and timely 

diagnosed and treated, the World Health Organization (WHO) estimates that 70% of 

these epilepsy patients could become seizure-free.2 The first treatment option for 

patients diagnosed with epilepsy is anti-seizure drugs. However, only 60 to 70% of 

patients respond to these medications (Figure 1).3 The most common treatment for 

patients with drug-resistant epilepsy is surgical resection of the Seizure Onset Zone 

(SOZ). The other option for these 30 to 40% of epilepsy patients is implantable 

neurostimulation devices.  
 

 

Figure 1. Pie chart of epilepsy treatment options. 60-70% of epilepsy patients are 

treated with anti-epileptic drugs. Surgical resection of the seizure onset zone and 

implantable devices are the two treatment options for the 30-40% of patients who do not 

respond to anti-seizure medications. 
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Electroencephalography (EEG), which records the brain’s electrical signals, is 

the most common tool to study epilepsy for clinical and research purposes.4 To prepare 

for surgical resection or device placement, patients are implanted with intracranial EEG 

(iEEG) electrodes and spend several days at the hospital for Video-EEG Monitoring 

(VEM). The hospital length of stay is one week on average but can range from 3 to 14 

days.5,6 The clinical gold standard is the visual inspection of the data by trained 

neurologists to manually identify seizures, also called ictal activity.7 It is thus impossible 

to look at all of the recorded data. Instead, a nurse continuously monitors the patient 

with VEM and makes note when they recognize that the patient is having a seizure.8 

Only the iEEG data that the nurse flags are then analyzed by epileptologists to look for 

seizures. Days’ worth of interictal data, between seizure episodes, are thus never 

looked at although the detection of interictal pathological activity can also be used to 

localize the SOZ and identify the brain area to be surgically removed or implanted with a 

neurostimulation device.9,10 One of the biomarkers of interictal pathological activity, 

high-frequency oscillations (HFOs), was proven clinically relevant for epileptic surgery 

by a 2017 study.11 iEEG electrodes with high rates of HFOs defined the HFO area, 

which was fully resected in all 13 patients who achieved seizure freedom post-surgery, 

resulting in 100% specificity. As for the remaining 7 patients, who all had recurrent 

seizures post-surgery, the resection of the HFO area may have improved the outcome 

for 4 of them, as the HFO area was partially resected in 4 patients (100% positive 

predictive value and 57% sensitivity) and fully resected in 3 patients (81% negative 

predictive value). 
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Several pathological electrophysiological biomarkers were proven effective for 

detecting interictal epileptic iEEG activity, including HFOs and interictal epileptiform 

discharges (IEDs).12 Manual detection of this activity is tedious, time-consuming, and 

unscalable.13 Automatic detection methods solve these problems (Table 1). 

Unfortunately, existing interictal detection algorithms rely on supervised learning, which 

requires a large, labeled training dataset and careful human intervention for patient-

specific tuning, as it yields a general model that is the same for all patients.14 An 

unsupervised approach overcomes these limitations as it requires no labels and offers a 

unique and personalized option specific to each new patient by training on each 

patient’s brain data independently.14 

 

Manual 
Detection 

Automatic 
Supervised Detection 

Automatic 
Unsupervised Detection 

● Tedious 
● Time-consuming 
● Unscalable 

● Requires large, labeled 
training dataset 

● Is the same for all patients 

● Does not require labels 
● Is personalized and 

unique to each patient 
 

Table 1. Characteristics of pathological activity detection methods. 
 

The proposed model achieved fully unsupervised classification of iEEG interictal 

activity as pathological or physiological in epilepsy patients. It is a pre-labeling algorithm 

aimed as a complementary aid for neurologists that takes advantage of all of the data 

recorded from a patient during VEM. Rather than never looking at days' worth of 

interictal data, neurologists could now look at the data segments this model pre-labels 

as pathological. This would empower them to make the final decision on the epileptic 
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nature of the data and provide additional valuable information to identify the SOZ faster 

and make the patient’s length of stay shorter. 
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II. Materials and Methods 

A. Dataset 

 

The dataset analyzed in this paper was collected from 25 epilepsy patients at the 

Mayo Clinic (Rochester, Minnesota, USA).15 The iEEG data were collected from each 

patient from 1:00 am to 3:00 am the first night after they were implanted with either grids 

and strips, depth electrodes, or both. The data were acquired at a 32 kHz sampling rate 

using a hardware bandpass filter from DC to 9 kHz. The data were then down-sampled 

to 5 kHz and split into 3-second segments, each containing 15,000 iEEG data points. 

Three reviewers annotated each segment as one of four labels: power line noise, 

muscle and machine artifacts, pathological/epileptic activity, or physiological/healthy 

activity. In this dataset, pathological activity was defined as a signal with epileptiform 

graphoelements, such as HFOs, spikes, or IEDs. The 3-second length was selected 

empirically as muscle artifacts spanned over multiple seconds and 3 seconds provided 

sufficient context to differentiate between the four classes. The dataset contained 

155,182 total segments (Table 2). Only the segments labeled as pathological or 

physiological were kept. Since all segments for 10 patients were power line noise or 

muscle and machine artifacts, the final number of patients and segments was 15 and 

71,957, respectively. 56,730 segments were physiological and 15,227 were 

pathological. 
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Classification category Number of segments 

Physiological activity 56,730 

Pathological activity 15,227 

Artifacts 41,303 

Power line noise (60 Hz) 41,922 

Total 155,182 
 

 

Table 2. Number of 3-second segments for each classification category. 
 

B. Time Analysis 

 

 Three raw physiological segments (Figure 2A) and three raw pathological 

segments (Figure 2B), all randomly selected, were plotted in the time domain for data 

visualization purposes. Focusing on the signals in the first row, the key difference 

between the two segments was the high-amplitude peak at 1.5 seconds reaching a 

maximum voltage of 6 µV in the pathological signal, whereas the physiological signal 

had a consistent voltage ranging from -2 to 2 µV throughout the 3 seconds. This 

distinction was also present in the second and third rows’ signals and was confirmed by 

plotting several other physiological and pathological segments and observing similar 

characteristics. 

 

 The physiological and pathological segments from the first row were used to 

perform the frequency and time-frequency analyses. 
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A. Physiological Signals B. Pathological Signals 

  

  

  
 

Figure 2. Plots of three raw iEEG physiological signals (A) and three pathological 

signals (B) in the time domain. 
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C. Frequency Analysis 

 

 The Power Spectral Densities (PSD) of the physiological and pathological 

segments were plotted in the five major frequency bands: delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz) (Figure 3). The PSD 

represents the power distribution of the frequency components obtained by taking the 

Discrete Fourier Transform (DFT) of a signal using the Fast Fourier Transform (FFT) 

[Equation 1].16 The PSD is computed by dividing the discrete-time signal into successive 

blocks and averaging the mean squared amplitude of the DFT of these blocks  

[Equation 2].17 

 

             [Equation 1] 

 

Where xn is the discrete-time signal at sample n, Xk is the DFT, which includes both 

amplitude and phase, N is the number of samples, n is the current sample, and k is the 

current frequency, which ranges from 0 to N-1, inclusive. 

 

           [Equation 2] 

 

Where                                       , with                             , is the mth signal block and M is 

the number of blocks. 

 

The time-domain distinction manifests itself in the frequency domain as well. 

Figure 3 shows the PSD difference between the physiological and pathological signals, 
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which is more visible on a logarithmic scale in Figures 3C and 3D. The physiological 

signal’s PSD exceeds 0.005 W/Hz in the delta band only, where it reaches 0.075 W/Hz 

(Figure 3A). However, the pathological signal’s PSD reaches 0.6 W/Hz in the delta 

band, 0.28 W/Hz in the theta band, 0.05 W/Hz in the alpha band, and 0.025 W/Hz in the 

beta and gamma bands (Figure 3B). 

 

A. Physiological Signal B. Pathological Signal 

  
C. Physiological Signal (Log Scale) D. Pathological Signal (Log Scale) 

  
 

Figure 3. Plots of the Power Spectral Density (PSD) of the iEEG physiological signal 

(A) and pathological signal (B) in the five major frequency bands: delta (1-4 Hz), theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz). Plots of the PSD on 

a logarithmic scale for the physiological signal (C) and pathological signal (D). 
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D. Time-Frequency Analysis 

 

To calculate a signal’s DFT, it is assumed that the signal is stationary, meaning 

that its statistical properties are time-independent and do not change in time. However, 

an EEG signal is the sum of the electrical activity of 30-500 million neurons.18 The brain 

processes underlying the activity of these neurons have properties that vary over time, 

so EEG signals are non-stationary.19 The DFT was still used in the frequency analysis 

to compute the PSD because the analyzed segment was only 3 seconds long and it is 

possible to assume that a non-stationary signal is quasi-stationary by dividing it into 

short windows. The PSD plots yielded valuable frequency-domain information 

consistent with the time-domain observations. That being said, the physiological and 

pathological segments were also inspected in the time-frequency domain to perform a 

more accurate assessment. Three signal processing methods were compared to select 

the best time-frequency analysis technique. 

 

1. Short-Time Fourier Transform 

 

The Short-Time Fourier Transform (STFT) analyzes a non-stationary signal by 

segmenting it into windows and computing the FFT of each window [Equation 3].20 

Therefore, the STFT provides equally spaced time-frequency localization. 

 

    [Equation 3] 
 

Where x[k] is the discrete-time signal and g[k] is an L-point window function. 
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The STFT was used to create spectrograms representing the signal’s 

frequencies as a function of time for the physiological and pathological segments 

(Figure 4). The STFT was computed using 0.5-second windows with the Hann window 

function and 0.375-second overlap. The plots show the peak present in the pathological 

signal at 1.5 seconds, which has high-frequency components that contrast with the low 

frequencies present in the rest of the pathological segment and present throughout the 

whole physiological segment. In the physiological signal, no frequency components 

above 5 Hz had a magnitude higher than 40 dB whereas in the pathological signal, 

frequency components with a magnitude higher than 40 dB were present from 0 to 15 

Hz throughout the segment and reached 70 Hz between 1.375 and 1.750 seconds due 

to the peak. 

 

A. Physiological Signal B. Pathological Signal 

  
 

Figure 4. Plots of the Short-Time Fourier Transform (STFT) spectrograms of the iEEG 

physiological signal (A) and pathological signal (B). 
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2. Hilbert-Huang Transform 

 

 The Hilbert-Huang Transform (HHT) uses two steps to analyze a non-linear and 

non-stationary signal: Empirical Mode Decomposition (EMD) and Hilbert Transform 

(HT). The EMD was used to decompose the physiological and pathological segments 

into Intrinsic Mode Functions (IMFs), which are simpler components of the raw signal 

that allow the HHT to handle non-stationary signals. The sum of all IMFs reconstructs 

the raw signal [Equation 4].21 Figure 5 shows the 9 IMFs that compose the pathological 

segment. 

𝑥(𝑡) = ∑ 𝑐!(𝑡)"
!#$ + 𝑟"(𝑡)             [Equation 4] 

Where x(t) is the continuous-time signal, ci(t) is the ith IMF, and rn(t) is the residue. 

 

 

Figure 5. Pathological signal and all of its intrinsic mode functions (IMFs). 
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 The HT of each IMF was computed to construct the HHT time-frequency 

spectrograms [Equation 5].22 The plots are mostly white because they are sparse, as 

they indicate the frequency components of each IMF over time (Figure 6). The 

spectrograms display the peak in the pathological signal, as the frequency reaches 60 

Hz with a magnitude of 12 dB, whereas all other frequency components do not exceed 

2 dB in the rest of the pathological segment and in the entire physiological segment. 

 

𝑦!(𝑡) =
%
&∫

'!())
+,)

-.
,. 𝑑𝜏         [Equation 5] 

 

A. Physiological Signal B. Pathological Signal 

  
 

Figure 6. Plots of the Hilbert-Huang Transform (HHT) spectrograms of the iEEG 

physiological signal (A) and pathological signal (B). 

 

3. Wavelet Transform 

 

The Wavelet Transform (WT) decomposes a signal into a set of wavelets by 

convolving it with a mother wavelet function. In contrast to the STFT, the WT is 

characterized by high frequency resolution at low frequencies and high time resolution 
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at high frequencies. Although the iEEG signals are all discrete-time, the Continuous 

Wavelet Transform (CWT) is easier to interpret than the Discrete Wavelet Transform 

(DWT) as there is significant overlap between wavelets at each scale and between 

scales in the CWT [Equation 6].23 This redundancy makes the signal properties easier 

to read. 

 

[Equation 6] 

 

Where Xw(a,b) are the wavelet coefficients, x(t) is the continuous-time signal, 𝜓) is the 

complex conjugate of the mother wavelet, a is the scale parameter, and b is the 

translation parameter. 

 

The CWT using the Analytic Morlet (Gabor) Wavelet function produced the 

spectrograms of the physiological and pathological segments (Figure 7). The 

pathological signal’s plot displays a large contrast between the peak at 1.5 seconds and 

both the rest of the pathological segment and the physiological signal. The peak’s 

frequency reached 100 Hz with a magnitude ranging from 0.5 to 1.5 dB, whereas the 

rest of the pathological signal had no frequency components exceeding a 0.6 dB 

magnitude and the physiological segment had no frequency components exceeding a 

0.35 dB magnitude. 
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A. Physiological Signal B. Pathological Signal 

  
 

Figure 7. Plots of the Continuous Wavelet Transform (CWT) spectrograms of the iEEG 

physiological signal (A) and pathological signal (B). 

 

4. Comparison 

 

 Based on careful observation of the spectrograms yielded by the three time-

frequency analysis methods, the wavelet transform was the best signal processing 

technique to analyze this dataset. It most accurately represented the peak present in 

the pathological signal and showed the greatest contrast with the rest of the 

pathological segment and with the physiological signal. 

 

E. Feature Extraction 

1. Complex Statistical Features in the Time Domain 

 

 The 19 complex statistical features categorized in Table 3 were extracted from 

each raw iEEG segment in the time domain.24,25 
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Categories Features 

Entropy 

Attention entropy 

Bubble entropy 

Conditional weighted permutation entropy 

Multiscale permutation entropy 

Singular value decomposition entropy 

Multifractal detrended fluctuation analysis 

Width of the multifractal singularity 
spectrum 

Peak: the value of the singularity exponent 
corresponding to the peak of the 

singularity dimension 

Mean of the maximum and minimum 
values of the singularity exponent 

Max: the value of the multifractal 
singularity spectrum corresponding to the 

maximum value of the singularity exponent 

Delta: the vertical distance between the 
singularity spectrum where the singularity 

exponents are at their max and min 

Asymmetric ratio corresponding to the 
centrality of the peak of the multifractal 

singularity spectrum 

Fluctuation of the generalized Hurst’s 
exponents 

Increment: cumulative function index of the 
squared increments of the generalized 

Hurst’s exponents 

Line length 
Line length 

Fractal line length 
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Hjorth 

Hjorth’s complexity 

Hjorth’s mobility 

Hjorth’s activity 

Other Nonlinear energy 
 

Table 3. The 19 complex statistical features extracted from each raw iEEG segment in 

the time domain and their corresponding categories. 
 

2. Features in the Frequency Domain 

 

The 7 features categorized in Table 4 were extracted from each iEEG segment in 

the frequency domain. 

 

Categories Features 

Power Spectral Density (PSD) in the 5 
major frequency bands 

PSD in the Delta band (1-4 Hz) 

PSD in the Theta band (4-8 Hz) 

PSD in the Alpha band (8-13 Hz) 

PSD in the Beta band (13-30 Hz) 

PSD in the Gamma band (30-80 Hz) 

Intensity-weighted features 
Intensity-weighted mean frequency 

Intensity-weighted bandwidth 
 

Table 4. The 7 features extracted from each iEEG segment in the frequency domain 

and their corresponding categories. 
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3. Simple Statistical Features from Discrete Wavelet Transform 

Coefficients in the Time-Frequency Domain 

 

Since every iEEG segment in the dataset was a discrete-time signal, it was 

important to use the DWT rather than the CWT for feature extraction. The DWT 

computes two sets of coefficients from the raw signal: approximation coefficients and 

detail coefficients [Equation 7].26 Approximation coefficients are the output of a low-pass 

filter, which serves as an averaging filter, whereas detail coefficients are the output of a 

high-pass filter, which serves as a difference filter. 

 

       [Equation 7] 

 

 

Where x[n] is the discrete-time signal, Wφ[j0,k] are the approximation coefficients, 

Wψ[j,k] are the detail coefficients, n = 0, 1, 2, …, M-1, j = 0, 1, 2, …, J-1, k = 0, 1, 2, …, 

2j-1, and M is the number of samples to be transformed and equals 2J, where J 

indicates the number of transform levels. The basis functions φj,k[n] and ψj,k[n] are the 

scaling function and wavelet function, respectively [Equation 8].26
 

 

                 [Equation 8] 
 

 

The optimal wavelet function to use was determined by applying the DWT as a 

low-pass filter and observing which wavelet function removed high-frequency noise 

while retaining the peak in the pathological signal. Figure 8 shows a snapshot of this 
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process, where the original pathological signal and the DWT-filtered signal were 

superimposed after applying the commonly used first-order Daubechies wavelet 

function (Figure 8A) or the first-order Coiflets wavelet function (Figure 8B). The latter 

yielded a low-pass filtered signal that successfully retained the pathological peak, 

whereas the former removed the high-frequency components of the peak, which 

decreased its amplitude. This distinction was confirmed by using several other wavelet 

functions and making the same observation. The first-order Coiflets wavelet function 

was thus selected for feature extraction. 

 

A. First-Order Daubechies Wavelet B. First-Order Coiflets Wavelet 

  
 

Figure 8. Plots of the original and Discrete Wavelet Transform (DWT) low-pass filtered 

pathological signal using the first-order Daubechies wavelet (A) and the first-order 

Coiflets wavelet (B). 

 

For each iEEG segment, the DWT was applied using the first-order Coiflets 

wavelet function to return 12 arrays of approximation and detail coefficients. The 12 

simple statistical features categorized in Table 5 were extracted from each of the 12 

coefficient arrays to yield 144 features in the time-frequency domain.  
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Categories Features 

Common statistics 

Mean 

Median 

Variance 

Standard deviation 

Percentiles 

5th percentile 

25th percentile 

75th percentile 

95th percentile 

Crossings 

Zero crossings (number of times a signal 
crosses y = 0) 

Mean crossings (number of times a signal 
s crosses y = mean(s)) 

Other 
Entropy 

Root mean square (square root of the 
average of the squared amplitude values) 

 

Table 5. The 12 simple statistical features extracted from each of the 12 DWT arrays of 

coefficients from each iEEG segment in the time-frequency domain and their 

corresponding categories. 
 

The 170 overall features calculated from each segment's time (19 features), 

frequency (7 features), and time-frequency domains (144 features) were concatenated 

into an array. 
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F. Dimensionality Reduction 

 

 Dimensionality reduction methods reduce the dimensionality of a feature set 

while preserving most of its variance. Principal Component Analysis (PCA) is the most 

commonly used statistical technique to accomplish this. It transforms the original 

features into a new set of uncorrelated variables, called principal components, which 

are linear combinations of the original features that result in the maximum variance in 

the feature set. These components are ordered by the amount of variance they contain, 

with the first component containing the most variance and the last one explaining the 

least variance (Figure 9A). 

 

To determine the number of principal components used by the dimensionality 

reduction methods in this thesis, a threshold of 90% was set for the cumulative variance 

contained by principal components using PCA (Figure 9B). This threshold resulted in 39 

principal components, which explained 90.3% of the variance. This analysis was also 

performed with Singular Value Decomposition (SVD), which yielded the same result of 

39 principal components, containing 90.3% of the variance. 
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A. Individual Variance B. Cumulative Variance 

  
 

Figure 9. Plots of the individual variance explained by each principal component (A) 

and the cumulative variance explained by principal components (B). 

 

Four unsupervised dimensionality reduction methods were used to select the 39 

principal components that contained the most variance in the extracted features: 

- Principal Components Analysis (PCA) with 39 principal components 

- Singular Value Decomposition (SVD) with 39 principal components 

- Feature Agglomeration (FA) with 39 clusters 

- T-distributed Stochastic Neighbor Embedding (TSNE) with 3 components, which 

is the maximum number of components for TSNE. 

 

G. Classification 

 

Classification methods divide data by labeling them into classes. In this thesis, 

the classification task was binary to label the data as pathological or physiological. K-

Means clustering is a commonly used unsupervised machine learning model to partition 

a dataset into K distinct clusters. It iteratively assigns data points to the nearest cluster 
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centroid and updates the centroids based on the mean of the points assigned to each 

cluster. This process continues until the centroids no longer change significantly or a 

predetermined number of iterations is reached. The algorithm aims to minimize the 

within-cluster sum of squares, effectively optimizing the cluster assignments. The aim 

here was to classify the data into 2 clusters: pathological and physiological.  

 

K-Means and all unsupervised classification methods randomly assign a label (0 

or 1) to the two clusters they identify. The Power Spectral Density (PSD) in the 5 major 

frequency bands, which are the most commonly used features in EEG analysis, were 

studied in all 71,957 segments to determine how to label the clusters identified by the 

unsupervised classification models. Figure 10 shows that the median PSDs in the Delta, 

Alpha, Beta, and Gamma bands in the pathological segments were greater than in the 

physiological segments. Therefore, after an unsupervised method classified the data 

into 2 clusters, the sum of the median PSDs in the Delta, Alpha, Beta, and Gamma 

bands was calculated in each cluster. The cluster with the larger sum was labeled as 

pathological and the cluster with the smaller sum as physiological. 
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A. Physio and Patho PSD Medians B. Patho as a function of Physio 

  
 

Figure 10. Scatter plot of the physiological and pathological median Power Spectral 

Densities (PSD) for each one of the 5 major frequency bands (A). Scatter plot of the 

physiological median PSD as a function of the pathological median PSD for the 5 major 

frequency bands compared to the y=x line (B). 
 

Four unsupervised classification techniques were combined with the four 

dimensionality reduction methods to classify each segment as pathological or 

physiological based on the reduced feature set: 

- K-Means 

- Gaussian Mixture Model (GMM) 

- Hidden Markov Model (HMM) 

- One-Class Support Vector Machine (OC SVM) 
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H. Experimental Paradigms 

1. Patient-by-Patient 

 

In a clinical setting, the proposed model would be trained from scratch for each 

new patient on all of the iEEG data recorded from them. The model would split the data 

into 3-second segments and classify each of them as pathological or physiological. To 

reflect how the model would be used in a hospital, each of the 16 model combinations 

was evaluated by being trained and tested on each one of the 15 patients 

independently. Before dimensionality reduction and classification, the features were z-

score standardized by removing the mean of each feature and scaling to unit variance 

across each patient’s data independently. 

 

2. Cross-Validation 

 

To validate the performance of the unsupervised model, it was compared with 

two supervised classification methods using a cross-validation paradigm. The 15 

patients were split into 5 folds. Each fold was created such that no patient was present 

in more than one fold and such that the ratio of physiological to pathological segments 

in the overall dataset of 3.73 was preserved in each fold as best as possible. Table 6 

shows, for each fold, the patient assignments by patient ID and, in each fold and in total, 

the number of physiological and pathological segments and the ratio of physiological to 

pathological segments. 
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 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total 

Patient ID 0 3 4 5 7  

Patient ID 1 17 8 14 21  

Patient ID 2 23 16 20   

Patient ID   18    

Physiological 
segments 9,382 8,799 4,093 8,505 25,951 56,730 

Pathological 
segments 2,806 2,747 2,816 3,426 3,432 15,227 

Ratio physio 
over patho 3.34355 3.20313 1.45348 2.48249 7.56148 3.72562 

 

Table 6. 5-fold cross-validation table with the patients assigned to each fold as well as 

the number of physiological and pathological segments and the ratio of physiological to 

pathological segments in each fold and in total. 
 

 Using this cross-validation paradigm, the best-performing unsupervised model 

was compared with two supervised classifiers: Support Vector Machine (SVM) and 

Random Forest. The same dimensionality reduction method from the best-performing 

unsupervised model was used for SVM and Random Forest.  

 

An SVM separates two classes via an optimal boundary by maximizing the 

margin between the boundary and the data points closest to it for each class. These 

points are called support vectors, giving the name Support Vector Machine. An 

elementary SVM can classify linearly separable classes with a linear equation 

describing the boundary. For a case such as this application with multiple features, this 

b 
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boundary was a hyperplane. To address non-linear cases, non-linear kernels can be 

applied to transform the data into a space where a linear boundary can separate the 

classes. A linear kernel was used to minimize training time for this binary classification 

task. 

 

Random Forest is a machine learning algorithm that consists of multiple decision 

trees where each tree is trained on a random subset of the features. The prediction from 

all trees is collected to obtain the final prediction, with a reduced variance and limited 

model overfitting. This algorithm can handle complex data patterns and assess the 

importance of each feature to classify segments as pathological or physiological. 

 

3. Simulated Data 

 

A simulation model was developed to generate synthetic interictal iEEG brain 

data that contain pathological epileptic activity. This model simulated pathological 

activity for various noise levels in the iEEG signal to benchmark test the proposed 

unsupervised interictal iEEG classifier under different signal noise conditions. 

 

i. iEEG Signal Modeling 

 

To simulate the interictal iEEG brain signal with pathological activity, including 

HFOs and IEDs, the signal 𝑦 was modeled as Equation 9. 
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𝑦(𝑡) = ∑ ℎ!/𝑡 − 𝑡/!1
0"#$
!#% + ∑ 𝑠!/𝑡 − 𝑡1!1

0%&'
!#% +∑ 𝑜!/𝑡 − 𝑡2!1

0()*+,-.
!#% + 𝑛(𝑡)    [Equation 9] 

 

Where ℎ!(𝑡) and	𝑠!(𝑡) denote the ith HFO and IED event, respectively, in the signal trace 

at time 𝑡"! and 𝑡#!. 𝑜!(𝑡) denotes the ith overlapped event (HFO-IED) in the trace at 

𝑡$!.		𝑛(𝑡) denotes the noise, and 𝑁%&' , 𝑁()* , and 𝑁$+,-./0 denote the total number of 

individual HFO, individual IED, and overlapped events in signal 𝑦, respectively.  

 

ii. Single Event Modeling 

 

A single HFO event, IED event, or overlapped event were modeled as Equation 

10, Equation 11, or Equation 12, respectively. 
 

ℎ(𝑡) = 𝐴2𝑒
,	 /

0

01(
0cos(2𝜋𝑓2𝑡)    [Equation 10] 

𝑠(𝑡) = (1 − 𝐵𝑡4)𝐴1𝑒
,	 /

0

012
0 	, B = 5

6720
	                  [Equation 11] 

𝑜(𝑡) = ℎ(𝑡) + 𝑠(𝑡 − 𝑡$)                                        [Equation 12] 

 

Where 𝑡$ denotes the time shift between two events. 𝐴$ and 𝐴# control the peak 

amplitude of the HFO and the IED, 𝜎$ and 𝜎# control the duration of the HFO and the 

IED (duration = 6 × 𝜎), and 𝑓$ controls the frequency of the HFO.  

 

As shown in Figure 11, the HFO and IED simulations captured the key 

characteristics of the event. Important features, such as the peak amplitude, duration, 

and frequency, can be tuned by the model parameters. 
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Figure 11. (A) Simulated HFO (Red: 𝐴$=1,	𝜎$=0.05,	𝑓$=80Hz; Blue: 

𝐴$=1,	𝜎$=0.1,	𝑓$=80Hz; Yellow: 𝐴$=0.5,	𝜎$=0.1,	𝑓$=80Hz). (B) Simulated IED (Red: 

𝐴#=1,	𝜎#=0.05; Blue: 𝐴#=1,	𝜎#=0.1; Yellow: 𝐴#=2,	𝜎#=0.05). 

 

iii. Noise Modeling 

 

For neural signals, it is widely believed that the power spectral density (PSD) of 

background brain activity follows the power law.27 The noise 𝑛(𝑡) was modeled as 

brown noise with PSD following the power law as Equation 13. 

 

𝑃𝑆𝐷(𝑓) = 𝑝 ∗ %
80

                [Equation 13] 

 

Where the noise power 𝑝 is another tunable parameter that can mimic different noise 

levels. 

 

iv. Firing Pattern Modeling 

 

To model the firing pattern of HFOs, IEDs, and overlapped events, their inter-

event interval (IEI), ∆𝑡"! , ∆𝑡#! ,	 and ∆𝑡$! were modeled as an exponential distribution 

𝑒𝑥𝑝(𝜆), where 𝜆 denotes the firing rate, since exponential distribution is a widely used 
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approximation of stochastic neuronal firing.28 Figure 12 shows that the real IEI 

distribution and the simulated exponential IEI distribution are similar. 

 

 

Figure 12. The real signal IEI distribution (top) and exponential distribution (bottom) for 

(A) ripple (B) fast ripple, and (C) IED. The three 𝜆 values correspond to the ripple rate, 

fast ripple rate, and IED rate. They are the other tunable parameters of this model, 

which control the density of these events in a simulated signal. 

 

Figure 13 shows examples of four simulated signals with different conditions. 

Figures 13A and 13B showed the effect of event rates on the signal whereas Figures 

13C and 13D showed the effect of noise levels on the signal. As the events rate 

increased from 0.1/sec (Figure 13A) to 0.5/sec (Figure 13B), the number of events 

increased from 9 ripples, 12 fast ripples, and 15 IEDs to 46 ripples, 42 fast ripples, and 

51 IEDs. As the noise level increased from 10-4 W (Figure 13C) to 10-3 W (Figure 13D), 

the noise amplitude in all three event bands increased. 
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Figure 13. Simulated iEEG signal using different parameters, where the 

electrophysiological patterns have been marked by green and red vertical lines. In each 

subfigure, the 1st panel is the raw signal, the 2nd panel is the bandpass filtered signal 

(10-80Hz) with IED label, the 3rd panel is the bandpass filtered signal (80-200Hz) with 

ripple label, and the 4th panel is the bandpass filtered signal (250-500Hz) with fast ripple 

label. The parameters for each subfigure are as follows. Figure A: event rates = 0.1/sec, 

noise power = 10-4 W. Figures B and C: event rates = 0.5/sec, noise power = 10-4 W. 

Figure D: event rates = 0.5/sec, noise power = 10-3 W. 

 

v. Simulated Dataset Generation for Benchmark Test 

 

To benchmark test the proposed unsupervised interictal iEEG classifier under 

different signal noise conditions, a simulated dataset was generated using the synthetic 

interictal iEEG simulation model. The parameters of single HFO and IED events were 
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set randomly using a log-normal distribution within a range, as shown in Table 7, to 

mimic the variations of HFO and IED characteristics in real iEEG recordings.29-36 

 

Parameters Ripple Fast ripple IED 

Amplitude 100 - 500 µV 100 - 500 µV 100 - 500 µV 

Duration 30 - 75 ms 12 - 24 ms 10 - 200 ms 

Frequency 80 - 200 Hz 250 - 500 Hz  
 

Table 7. Amplitude, duration, and frequency parameter ranges for HFOs (ripple and fast 

ripple) and IEDs used to generate the simulated dataset. 

 

The simulated dataset consisted of 40 iEEG conditions: 2 ripple rates x 2 fast 

ripple rates x 2 IED rates x 5 noise levels with the corresponding value of each 

parameter listed in Table 8. For each condition, 100 3-second segments were 

generated with a 2,000 Hz sampling frequency and simulated 10 times, resulting in 10 

groups with 4,000 segments each. Overall, the simulated dataset had 40,000 3-second 

segments, with 8,000 segments for each of the 5 noise levels. 

 

Ripple rate 
(/sec) 

Fast ripple 
rate (/sec) 

IED rate  
(/sec) 

Noise level  
(W) 

Total number 
of conditions 

0.05, 0.25 0.05, 0.25 0.05, 0.25 10-9, 10-8, 10-7, 
10-6, 10-5 40 

 

Table 8. Ripple rate, fast ripple rate, IED rate, and noise level parameters used to 

generate the simulated dataset. 
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 On top of the noise level in watts (W), noise was also quantified using the signal-

to-noise ratio (SNR), which was calculated as the ratio of the power of the synthetically 

generated iEEG signal over the power of the synthetically generated noise and 

converted to decibels (dB). The average and range of the SNRs of the 400 conditions in 

each noise level were calculated and reported in Table 9. 

 

Noise level (W) Average SNR (dB) Range of SNR (dB) 

10-9 26.99 25.94 – 28.41 

10-8 16.97 15.12 – 18.48 

10-7 7.03 6.02 – 8.38 

10-6 -3.03 -4.63 – -1.17 

10-5 -13.02 -14.33 – - 11.66 
 

Table 9. The signal-to-noise ratio’s (SNR) average and range for each noise level. 

 

vi. Noise Level-by-Noise Level Paradigm 

 

The 40,000 segments were labeled as 0 or 1. Segments that contained 

pathological activity, i.e., HFO(s) (ripple or fast ripple) and/or IED(s), were labeled as 1. 

Segments that did not contain pathological activity were physiological signals and were 

labeled as 0. There were 19,238 physiological segments and 20,762 pathological 

segments. Table 10 shows the number of physiological and pathological segments and 

the ratio of physiological to pathological segments in each noise level and in total. The 

simulated dataset was well-balanced with a total ratio of physiological to pathological 



34 

segments of 0.93, which was consistent across the 5 noise levels and their 

corresponding SNRs. 

 

Noise level (W) 10-9 10-8 10-7 10-6 10-5 Total 

Physiological 
segments 3,862 3,839 3,857 3,875 3,805 19,238 

Pathological 
segments 4,138 4,161 4,143 4,125 4,195 20,762 

Ratio physio 
over patho  0.93330 0.92261 0.93097 0.93939 0.90703 0.92660 

 

Table 10. Number of pathological and physiological segments and the ratio of 

physiological to pathological segments in each noise level and in total. 
 

The proposed unsupervised interictal iEEG classifier was evaluated similarly to 

the patient-by-patient paradigm to benchmark test it under various noise levels. It was 

trained and tested on the segments from each one of the 5 noise levels independently. 

Before dimensionality reduction and classification, the features were z-score 

standardized by removing the mean of each feature and scaling to unit variance across 

each noise level’s data independently. To determine the number of principal 

components used by the dimensionality reduction method, a threshold of 90% was set 

for the cumulative variance explained by principal components. This noise level-by-

noise level paradigm aimed to identify the noise level threshold over which and the SNR 

threshold under which the proposed unsupervised model fails to provide classifications 

that perform better than random chance. 
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I. Evaluation Metrics 

 

All models were evaluated using three performance metrics: F-2 score, recall, 

and precision. The F-2 score is a weighted harmonic mean of recall and precision 

where recall is weighted twice as much as precision. Recall is the ratio of the number of 

pathological segments correctly classified as pathological to the total number of 

pathological segments. It quantifies the model's ability to detect pathological segments 

and is a measure of quantity. Precision is the ratio of the number of pathological 

segments correctly classified to the total number of segments classified as pathological 

(either correctly or incorrectly). It quantifies the model's accuracy in classifying a 

segment as pathological and is a measure of quality. 

 

The proposed model was designed to pre-label interictal iEEG data as an aid to 

neurologists. The goal of the model is to identify all of the pathological iEEG segments 

from days’ worth of data and provide them for inspection by the clinician. Quantity 

matters more than quality since the proposed model is not a stand-alone tool and the 

final classification decision is made by the trained neurologist. Therefore, the 

performance metric of choice to select the best-performing model was the F-2 score. 

 

The performance metrics used to evaluate the 16 model combinations with the 

patient-by-patient paradigm were the mean and standard deviation of precision, recall, 

and F-2 score across the 15 patients. The model with the highest F-2 mean and the 

lowest F-2 standard deviation was selected as the best-performing combination model. 
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Similarly, the performance metrics used in the cross-validation paradigm were the mean 

and standard deviation of precision, recall, and F-2 score across the 5 cross-validation 

folds. The performance metric used in the noise level-by-noise level paradigm was the 

F-2 score across the segments in each of the 5 noise levels. 

 

J. Statistical Analysis 

 

After evaluating the best-performing unsupervised model and the two supervised 

models, the one-way analysis of variance (ANOVA) test was used to test whether there 

was a significant difference between the F-2 score means of the three models at the 

0.05 alpha level. The null hypothesis was that the three F-2 score means were equal. 

 

This one-way ANOVA test had three assumptions: the F-2 scores for each model 

were assumed to be independent, the F-2 scores for each model were assumed to have 

a normal distribution, and these three distributions were assumed to have equal 

variance. The Shapiro-Wilk test was used to test for normality in the F-2 scores for each 

model at the 0.05 significance level. The null hypothesis was that the F-2 scores were 

normally distributed. The Bartlett test, which assumed normality, was used to determine 

whether the variances of the three F-2 score distributions were equal at the 0.05 alpha 

level. The null hypothesis was that the three F-2 score distributions’ variances were 

equal. 
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III. Results 

A. Patient-by-Patient Paradigm 

 

Table 11 shows the performance comparison of the 16 model combinations 

across 15 patients by their F-2 score mean and standard deviation, precision mean and 

standard deviation, and recall mean and standard deviation. The combination of PCA 

with K-Means performed best with a 92.6% average F-2 score and a 12.0% F-2 score 

standard deviation. It also achieved an average of 93.5% precision and 93.0% recall 

with a 13.8% precision standard deviation and 12.5% recall standard deviation. PCA + 

K-Means achieved the highest average F-2 score and the lowest F-2 score standard 

deviation as well as the highest average recall score and the lowest recall standard 

deviation out of all 16 model combinations. Although the combinations of TSNE with K-

Means and PCA with GMM performed almost as well, PCA combined with K-Means had 

lower standard deviations for F-2 score and recall and may thus be the most 

generalizable model. On top of that, PCA is less computationally expensive and faster 

than TSNE, which does not scale well with large datasets the proposed model will have 

to deal with when used in clinical settings. A flowchart of the final overall proposed 

model is presented in Figure 14. 
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Model 
Combination 

F-2 score 
mean 

F-2 score 
standard 
deviation 

Precision 
mean 

Precision 
standard 
deviation 

Recall 
mean 

Recall 
standard 
deviation 

PCA +  
K-Means 0.926211 0.119791 0.934989 0.137673 0.929816 0.125025 

TSNE +  
K-Means 0.925209 0.150149 0.954348 0.110529 0.921792 0.160205 

PCA +  
GMM 0.923016 0.145347 0.938190 0.126900 0.922956 0.152048 

FA +  
K-Means 0.915365 0.146197 0.967233 0.068251 0.907236 0.162571 

SVD +  
K-Means 0.915177 0.146877 0.951017 0.116250 0.910862 0.158736 

SVD +  
GMM 0.913556 0.148946 0.967338 0.068533 0.905239 0.165602 

SVD +  
HMM 0.904725 0.140749 0.929200 0.131768 0.902398 0.148991 

TSNE +  
GMM 0.895694 0.171208 0.933219 0.134776 0.890317 0.181003 

FA +  
GMM 0.889879 0.160397 0.94561 0.116116 0.883352 0.177091 

FA +  
HMM 0.886863 0.143524 0.934919 0.121783 0.87958 0.155568 

FA +  
OC SVM 0.872724 0.185131 0.965267 0.078902 0.858832 0.204956 

SVD +  
OC SVM 0.872477 0.185448 0.965360 0.078290 0.858538 0.205333 

PCA +  
HMM 0.871250 0.183383 0.944420 0.121684 0.861650 0.199397 

PCA +  
OC SVM 0.870789 0.188116 0.970390 0.063846 0.855914 0.209177 

TSNE +  
OC SVM 0.835245 0.205759 0.969443 0.056738 0.816177 0.229154 

TSNE +  
HMM 0.834625 0.207534 0.968798 0.064828 0.815473 0.230641 

 

Table 11. Performance metrics for the 16 model combinations ranked by F-2 score 

mean. 
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Figure 14. Flowchart of the proposed unsupervised interictal iEEG activity classification 

model. 

 

B. Cross-Validation Paradigm 

1. Model Performance 

 

PCA combined with K-Means was the best-performing unsupervised model. The 

SVM and Random Forest supervised classifiers were also combined with PCA to 

reduce the dimensionality to 39 principal components. Figure 15 shows a bar graph 

comparison of the F-2 score mean and standard deviation for the three models. Table 

12 shows the detailed performance comparison of the K-Means, SVM, and Random 

Forest models across 5 cross-validation folds by their F-2 score mean and standard 

deviation, precision mean and standard deviation, and recall mean and standard 

deviation. K-Means performed best with a 72.9% average F-2 score and a 6.8% F-2 
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score standard deviation. K-means also achieved the highest average recall with 74.4% 

and the lowest recall standard deviation with 8.7%. That said, SVM achieved a similar 

performance with a 72.4% average F-2 score (12.5% F-2 score standard deviation) and 

a 74.0% average recall (16.7% F-2 score standard deviation) while achieving a higher 

average precision (71.9%) than K-Means (69.3%). Random Forest did not perform as 

well for the F-2 score and recall but achieved the highest average precision of 80.0%. 

K-Means may also be the most generalizable model of the three as it achieved a lower 

standard deviation in all three performance metrics, with half the standard deviation of 

the two supervised models for the F-2 score and recall. 

 

 

Figure 15. Bar graph of the F-2 score mean and standard deviation for the proposed 

unsupervised model and two supervised models. 
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Model F-2 score  
mean 

F-2 score 
standard 
deviation 

Precision 
mean 

Precision 
standard 
deviation 

Recall 
mean 

Recall 
standard 
deviation 

K-Means 0.728642 0.067707 0.692807 0.100147 0.743587 0.086765 

SVM 0.723720 0.124758 0.719189 0.142703 0.740149 0.167377 

Random 
Forest 0.631625 0.122313 0.800173 0.121862 0.608815 0.156734 

 

Table 12. Performance metrics for the proposed unsupervised model and two 

supervised models. 
 

2. Statistical Analysis 

 

The F-2 scores were independent since they were obtained from 5 independent 

groups of independent patients’ data. The Shapiro-Wilk test yielded p-values of 0.7818, 

0.5988, and 0.0707 for the K-Means, SVM, and Random Forest F-2 scores, 

respectively. All three p-values were greater than 0.05. The null hypothesis of normally 

distributed F-2 scores was not rejected for all three models, concluding that the F-2 

scores had a normal distribution for each model at the 0.05 alpha level. The Bartlett test 

yielded a p-value of 0.4811, which was greater than 0.05. The null hypothesis of equal 

variances was not rejected, concluding that the three F-2 score distributions’ variances 

were equal at the 0.05 significance level. All three assumptions to use a one-way 

ANOVA test were satisfied. 
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The one-way ANOVA test yielded a p-value of 0.3145, which was greater than 

0.05. The null hypothesis of equal means was not rejected. This result showed no 

significant difference between the F-2 score means of the three models at the 0.05 

alpha level. 

 

C. Noise Level-by-Noise Level Paradigm with Simulated Dataset 

 

The threshold of 90% for the cumulative variance explained by principal 

components using PCA resulted in 27 principal components, which explained 90.1% of 

the variance. After the features in the time, frequency, and time-frequency domains 

were extracted from the simulated dataset, PCA was used to reduce the dimensionality 

to 27 principal components and combined with K-Means to classify segments as 

pathological or physiological. Figure 16 shows the F-2 score was the highest at 85.8% 

for the lowest level of noise of 10-9 W and the highest SNR of 26.99 dB. The F-2 score 

was lower for 10-8 W/16.97 dB at 71.9% and reached a plateau of 51.2% at noise levels 

of 10-7, 10-6, and 10-5 W and SNRs of 7.03, -3.03, and -13.02 dB. At noise levels greater 

than or equal to the threshold of 10-7 W and SNRs less than or equal to the threshold of 

7.03 dB, the proposed unsupervised model failed to provide classifications that 

performed better than random chance. 
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A. F-2 Score as a function of Noise B. F-2 Score as a function of SNR 

  
 

Figure 16. Plots of the F-2 score for each of the 5 noise levels (A) and each of the 5 

signal-to-noise ratios (SNR) (B) in the iEEG simulated dataset. 
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IV. Discussion 

 

The primary objective of this research was to develop and validate an 

unsupervised model for classifying interictal iEEG activity in epilepsy patients as 

pathological or physiological. This model aims to enhance the efficiency of localizing the 

SOZ for faster treatment and shorter hospital length of stay for patients who do not 

respond to anti-seizure medications. 

 

A. Model Performance and Implications 

 

Based on the metric of choice for evaluation, the F-2 score, PCA for 

dimensionality reduction combined with K-Means for classification was the best-

performing model out of 16 model combinations. This proposed model achieved an 

average F-2 score of 92.6%, with a precision of 93.5% and recall of 93.0%. This 

performance, coupled with the lowest standard deviations across F-2 score and recall, 

suggests that PCA combined with K-Means is highly effective, stable, and more 

generalizable than other unsupervised model combinations. 

 

The superiority of PCA + K-Means is further highlighted when considering 

computational efficiency. PCA is less computationally intensive than techniques like 

TSNE, making it more suitable for clinical settings where quick data processing is 

essential. This speed, along with high performance, positions PCA + K-Means as a 
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viable tool for real-time analysis of iEEG data, potentially reducing the workload on 

neurologists and improving the speed of SOZ localization. 

 

B. Cross-Validation and Statistical Analysis 

 

The cross-validation paradigm further confirmed the robustness of the 

unsupervised PCA + K-Means model by comparing it to two supervised models: SVM 

and Random Forest. Despite the slightly higher precision of the Random Forest model, 

the unsupervised K-Means model demonstrated superior F-2 score and recall and lower 

standard deviations than SVM and Random Forest across all three performance 

metrics, underscoring the reliability and generalizability of PCA + K-Means. The data 

collection and processing and the statistical analysis using the Shapiro-Wilk and Bartlett 

tests confirmed that the assumptions for independence, normality, and equal variances 

were met, justifying the use of one-way ANOVA for comparing the three models’ 

performances. The one-way ANOVA results indicated no statistically significant 

difference between the F-2 score means of the models, reinforcing the competitive 

performance of the unsupervised approach. The proposed model, without relying on 

any labels for training, did not perform significantly differently than the two supervised 

models, which relied on labels to learn patterns in the iEEG data relevant to pathological 

activity. 
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C. Noise Resilience 

 

The model's resilience to noise was evaluated using a simulated dataset of iEEG 

brain activity. The results indicated that the lower the noise level and the higher the 

SNR, the better the PCA + K-Means model performs. It achieved an F-2 score of 85.8% 

at a 10-9 W noise level and 26.99 dB SNR but as the noise level increased and SNR 

decreased, the model's performance degraded, reaching a plateau around 51.2% at 

noise levels of 10-7 W and above and SNRs of 7.03 dB and below. This finding suggests 

that while the model is effective, its performance may be compromised in noisier data 

environments with a noise threshold of 10-7 W and SNR threshold of 7.03 dB, a 

limitation to be addressed in future work. 

 

In a 2009 study, 4 epilepsy patients were subdurally implanted with iEEG grid 

electrodes in motor and pre-frontal cortical regions.37 The average SNR in the motor 

cortical regions across the 4 patients was 19.07 dB and ranged from 13.47 to 26.28 dB. 

The average SNR in the pre-frontal cortical regions across the 4 patients was 2.86 dB 

and ranged from 2.22 to 4.37 dB. Based on these values of the SNRs in iEEG 

recordings, the proposed model may not be effective in all clinical environments. This 

noise limitation was expected as the model was developed for data that included no 

power line noise or muscle and machine artifacts. 
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D. Clinical Implications 

 

The proposed unsupervised model holds significant promise for clinical 

application. It overcomes the tedious, time-consuming, and unscalable limitations of the 

manual detection of pathological activity by automatically performing analysis and 

classification of iEEG data. It can assist neurologists in identifying pathological data 

segments, thereby streamlining the review process and improving the efficiency of SOZ 

localization. This capability is crucial for patients undergoing lengthy Video-EEG 

Monitoring (VEM), where vast amounts of iEEG data are recorded but only a fraction is 

analyzed due to time constraints. 

 

On top of that, the proposed method tackles the shortcomings of supervised 

algorithms since it offers a new and personalized model for every new patient who 

comes into the clinic. It is trained from scratch on their brain data as soon as the data 

are collected, skipping the time-consuming and expensive labeling process by trained 

neurologists. This adaptability is essential for personalized medicine, allowing the model 

to provide tailored insights based on each patient's unique brain activity patterns. 

 

E. Limitations 

 

This thesis has a few limitations. No hyperparameter tuning was performed for 

the unsupervised and supervised classification models. For example, the SVM model 
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was used with a linear kernel but may perform better with different kernels, such as the 

radial basis function.  

 

The patient sample size of 15 was not large, making it necessary to validate the 

proposed model externally on a different clinical dataset. Although a separate dataset 

was used to explore the noise limitations of the proposed model, the simulated data was 

synthetic. This noise limitation was studied and quantified, which led to the finding that 

the model fails to perform better than random chance above the 10-7 W noise level 

threshold and below the 7.03 dB SNR threshold. 

 

F. Future Directions 

 

There are several future directions to further this work. It is important to apply the 

proposed model to external clinical iEEG datasets, such as the publicly available St. 

Anne’s University Hospital dataset, to validate the model’s effectiveness and usability 

across different epilepsy cases recorded in diverse clinical settings.15 

 

To optimize the model's performance, hyperparameter tuning and identifying the 

most clinically relevant evaluation metric are necessary. Seeking epileptologists’ 

feedback for what they look for would help tailor a model that best complements and fits 

into their clinical workflow. Getting their perspective on the F-2 score as the metric of 

choice would be useful to inform which performance metric the model assessment 

should be based on. 



49 

Improving the resilience to noise would also make the proposed model more 

robust. This could be accomplished by adding a filtering step with a notch filter at 60 Hz 

to remove power line noise and additional filters to remove muscle and machine 

artifacts. 

 

Another significant step to improve the proposed model’s performance would be 

compiling a large dataset of all publicly available iEEG data from epilepsy patients. This 

dataset would be composed of both labeled and unlabeled available datasets, although 

labels would be removed. When a new patient goes through VEM in the hospital, the 

patient’s unlabeled iEEG data would be added to the large unlabeled dataset. The 

proposed unsupervised PCA + K-Means model would be trained on this large dataset 

that includes the new patient’s data. This large unsupervised model would then classify 

the patient’s data segments as pathological or physiological. Within a hospital system, 

the unlabeled dataset would be growing continuously as more patients come in. The 

proposed PCA + K-Means model would be trained from scratch after every new 

patient’s data is collected and added to the large dataset before automatically 

classifying their data. Integrating this model into clinical workflows could provide 

neurologists with a powerful tool for managing and treating drug-resistant epilepsy more 

efficiently. 
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V. Conclusion 

 

This thesis presented a fully automated and personalized algorithm leveraging 

unsupervised learning to classify interictal iEEG activity as pathological or physiological 

in epilepsy patients. The development of this unsupervised model for interictal 

pathological activity detection represents a significant advancement in epilepsy 

research. The proposed model extracted features in the time, frequency, and time-

frequency domains. It then performed unsupervised dimensionality reduction using PCA 

and unsupervised classification of each iEEG 3-second segment using K-Means. 

Without labeled data, the model performed similarly to supervised models, which relied 

on labels, and achieved an average F-2 score of 92.6%, an average precision of 93.5%, 

and an average recall of 93.0% across 15 epilepsy patients. The proposed model 

demonstrated high performance with great potential to be used clinically by neurologists 

to make the most of all of the data recorded during video-EEG monitoring, thereby 

offering a promising approach to improving the efficiency of treatment for drug-resistant 

epilepsy. 
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