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Abstract

Oracle-Guided Design and Analysis of Learning-Based Cyber-Physical Systems

by

Shromona Ghosh

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Science

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Co-chair

Professor Sanjit A. Seshia, Co-chair

We are in world where autonomous systems, such as self-driving cars, surgical robots, robotic
manipulators are becoming a reality. Such systems are considered safety-critical since they
interact with humans on a regular basis. Hence, before such systems can be integrated into
our day to day life, we need to guarantee their safety. Recent success in machine learning
(ML) and artificial intelligence (AI) has led to an increase in their use in real world robotic
systems. For example, complex perception modules in self-driving cars and deep reinforce-
ment learning controllers in robotic manipulators. Although powerful, they introduce an
additional level of complexity when it comes to the formal analysis of autonomous systems.
In this thesis, such systems are designated as Learning-Based Cyber-Physical Systems (LB-
CPS).

In this thesis, we take inspiration from the Oracle-Guided Inductive Synthesis (OGIS)
paradigm to develop frameworks which can aid in achieving formal guarantees in differ-
ent stages of an autonomous system design and analysis pipeline. Furthermore, we show
that to guarantee the safety of LB-CPS, the design (synthesis) and analysis (verification)
must consider feedback from the other. We consider five important parts of the design
and analysis process and show a strong coupling among them, namely (i) Robust Control
Synthesis from High Level Safety Specifications; (ii) Diagnosis and Repair of Safety Require-
ments for Control Synthesis; (iii) Counter-example Guided Data Augmentation for training
high-accuracy ML models; (iv) Simulation-Guided Falsification and Verification against Ad-
versarial Environments; and (v) Bridging Model and Real-World Gap. Finally, we introduce
a software toolkit VerifAI for the design and analysis of AI based systems, which was de-
veloped to provide a common formal platform to implement design and analysis frameworks
for LB-CPS.
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Chapter 1

Introduction

1.1 Motivation

Today, we are in an era where autonomous systems are becoming a reality. Hence, much
of the recent research in robotics and control theory has focused on developing complex
autonomous systems such as robotic manipulators, autonomous vehicles and surgical robots.
Since such systems are expected to interact and share the world with humans, we consider
them to be safety-critical. Before such systems can be deployed into the real world it is
important to design and analyze systems to satisfy safety objectives or guarantees.

In general, the design pipeline for Cyber-Physical Systems (CPS) has two highly in-
teracting components (i) synthesis or design of the overall system; and (ii) verification or
analysis of the system. Correct-by-construction (Figure 1.1) design has emerged as a new
design paradigm for synthesis. In this framework, the high level system safety requirement is
directly incorporated into the synthesis process, which guarantees that the resulting system
satisfies the safety requirements. To be able to achieve this, the system designer must first
be able to express (or design) the safety specification (requirement); and then develop syn-
thesis algorithms which are capable of incorporating the specification in the design. To be
able to achieve this, we often make many simplifying assumptions; such as simplified system
models and environments. To counteract this, we follow synthesis with verification. The
goal of verification is to mathematically prove that the designed system indeed satisfies the
high level safety specification. The complexity of verification process is highly dependent on
the synthesized module; which limits its usability to simple systems. Falsification/testing
has risen as a more general and scale-able analysis technique, where the one searches for
system behaviors which falsify the safety specification. Independent of the actual algorithms
or frameworks used for the design and analysis, a common consensus in the design of CPS, is
the tight coupling between synthesis and verification. It is important to go through multiple
rounds of the each before we can consider the design a success.

Recent successes in machine learning (ML) and artificial intelligence (AI) have moti-
vated an increased use of such techniques in the design of complex perception modules and
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Figure 1.1. Correct-by-construction design

.

Figure 1.2. System Analysis and Verification

.

controllers for to achieve complex tasks for CPS systems.
In real world robotic systems, ML based techniques have shown to far outperform classical

computer vision techniques for designing high fidelity perception modules. Models produced
by machine learning algorithms, especially deep neural networks (NN), are being deployed
in domains where trustworthiness is a big concern, creating the need for higher accuracy and
assurance [130, 135]. However, learning high-accuracy models using deep learning is limited
by the need for large amounts of data, and, even further, by the need of labor-intensive
labeling. Hence, designing formal frameworks that can analyze and automatically generate
data that can be used for re-training is of vital importance.

To achieve a rich set of maneuvers in complex robotic systems, reinforcement learn-
ing (RL) [149], optimal control (OC) [146] and model predictive control (MPC) [112] tech-
niques have been developed. RL based techniques have shown to achieve a range of com-
plex maneuvers like flying a quadrotor [83] to complex tasks on robots [96]. While these
controllers can handle some degree of uncertainty [115, 125], and have been successful in
synthesizing high fidelity controllers; they fail to provide any formal guarantee of safety and
merely measure performance in expectation. On the other hand, model based control syn-
thesis techniques like reachability [38, 109] and MPC [112, 127, 128] provide strong safety
guarantees but often make simplifying assumptions on the system. Hence, there is a need
to develop formal frameworks to provide similar safety guarantees for RL based controllers.
Moreover, even while using a model for synthesis, it is not clear what safety specifications
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we need to consider during the synthesis process.
With an increased use of learning in the design pipeline, we are presented with new chal-

lenges while designing synthesis and verification frameworks which now need to consider the
added complexity introduced by learning. Today’s systems are composed of complex ML
modules which interact with the controller and the physical system. Monolithic synthesis
algorithms that consider the synthesis of the entire system cannot simultaneously synthe-
size all the components. Even if one could define the correctness of the overall system,
to ensure correctness of each sub-component, we must be able to define the correctness of
each component. Mathematically capturing/defining the correctness or ML components is
hard, for e.g., how can one define the correctness of vision system. In spite of the recent
successes in designing high fidelity vision systems in the ML community, there correctness is
not guaranteed. As a result, there is a large body of work which focuses on the (robustness)
analysis of such systems [46]. During controller design, one must now synthesize controllers
which have to be robust to the errors of the ML modules. In [135], the authors have done
a comprehensive analysis of challenges introduced by ML components in formal verification.
To start, one needs to capture the formal correctness of such systems. Then one must be
able to mathematically define the the environment or the domain of inputs for them. Finally,
one must design computational engines which are are to reason about the correctness of such
system, this generally involves a search over the entire input space.

This has motivated us to study and develop frameworks that can be used to design and
analyze high fidelity robotic systems composed of complex controllers and ML components
interacting with the physical system.

1.2 Thesis Approach

In this thesis, we develop formal design and analysis frameworks that can be used in various
parts of the design and analysis pipeline to improve the safety and hence, design high fidelity
robotic systems with formal safety guarantees. In particular, we recognize five important
parts of the pipeline (detailed in Section 1.3) and propose frameworks that can used to design
them taking inspiration from control theory and formal verification. The proposed frame-
works are inspired by the oracle-guided inductive synthesis (OGIS) framework introduced
in [80]. An instance of OGIS I consists of a learner L and an oracle O (Figure 1.3). The
learner attempts to learn or synthesize a concept (e.g. control policy, deep learning network,
verification proof) by querying an oracle (e.g. verifier, optimization engine, simulation en-
gine). The framework does not know the correct concept a-priori and tries to learn it by
minimizing the number of queries made to the oracle. Hence, it makes it particularly attrac-
tive for design and analysis of robotic systems by modeling or learning the smallest concept
necessary without knowledge of the overall system or its sub-components. Moreover, the
OGIS framework helps us provide strong safety guarantees based on the learner and oracle
we choose. In some chapters we use a specific instance of the OGIS framework, Counter-
Example Guided Inductive Synthesis (CEGIS). In each chapter, we show how an instance of
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Figure 1.3. OGIS framework I = (L,O)

.

the OGIS framework helps us decouple a complex design problem to simpler building blocks
which can be reduced to designing a simple learner (or oracle) and interaction between them,
for e.g., for robust controller synthesis (Figure 3.2).

1.3 Thesis Contribution

In this thesis, we take five parts of the design and analysis of CPS systems pipeline and
reformulate each as an instance of a OGIS framework and detail the learner and oracle
design and the interaction between them.

For correct-by-construction design, we consider the drawbacks of the current framework
(Figure 1.1 and propose an unified framework that introduces feedback between robust con-
troller synthesis (Chapter 3) and specification design (Chapter 4). As outlined in Figure 1.1,
correct-by-construction synthesis requires designing the specification and the synthesis al-
gorithm. In general it is hard for a designer to design a specification for a system which is
synthesizable without understanding the synthesis algorithm. Hence, there is a tight cou-
pling with the specification and synthesis process. While Figure 1.1 shows a one way flow of
information from specification design to synthesis, we propose that the specification design
and the synthesis process are dependent on each other. One can refine (or repair a specifica-
tion) based on the results of synthesis. In return, one has to utilize the updated specification
and environment models for consecutive rounds of synthesis. In this thesis, we propose there
needs to be a strong feedback between these two parts of the pipeline. In Chapter 3, we
study the synthesis of robust control strategies from high level specifications [155]. Today the
requirements for robotic systems rely not only on safety requirements but also aim to fulfill
performance (liveness) requirements. Moreover, to account for modeling error or interaction
with other agents, our synthesis process must be robust to environment disturbances. Rather
than designing controllers and verifying after the fact that they satisfy high level require-
ments, there has been a paradigm shift towards correct-by-construction controller synthesis.
This has been commonly observed in optimal control [109] for safety requirements. Recently,
synthesis tools like TuLiP [159] and LtLMoP [73] have been developed to synthesize con-
trollers from a high level temporal logic specification in non-adversarial settings. In this
thesis, we look into the problem of synthesizing robust controllers in adversarial settings
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from high-level temporal specifications. To achieve this, we draw inspiration from [128] and
formulate the synthesis problem as a game. However, the solutions proposed in literature are
infeasible to implement in practice. In this chapter, we reformulate the game in the OGIS
framework, where the interaction between the two players is captured as an interaction be-
tween the learner and the oracle. We provide approximate but sound implementations for
the oracle and learner, and use that to provide correctness guarantees for the overall syn-
thesis procedure. In Chapter 4, we look at the problem of design (through diagnosis and
repair) of specifications for controller synthesis [64]. To synthesize or verify controllers, one
needs to first mathematically capture the requirements of the system. However, specifica-
tion design is a hard problem even for the more experienced of designers. Recently, several
controller synthesis methods have been proposed for expressive temporal logics and a vari-
ety of system dynamics. However, a major challenge to the adoption of these methods in
practice is the difficulty of writing the requisite formal specifications before hand. Specifica-
tions that are poorly stated, incomplete, or inconsistent can produce synthesis problems that
are unrealizable (no controller exists for the provided specification), intractable (synthesis
is computationally too hard), or lead to solutions that fail to capture the designer’s intent.
In this chapter, we reformulate the diagnosis and repair of specifications into an interaction
between the learner who repairs the specification and the oracle who diagnoses the specifi-
cation. We prove that the proposed frameworks and algorithms minimally modify or repair
specifications for infeasible controller synthesis problems.For the special case of specifications
involving environment assumptions, we show that the oracle relies on synthesis engine which
can compute robust controllers. As we showed in Chapter 3, we can build such a synthesis
engine by instantiating an OGIS instance which solves a game. As a result, we develop a
hierarchical OGIS framework to diagnose and repair environment assumptions by using the
frameworks presented in Chapter 3. This further exemplifies the tight co-relation between
the specification design and the synthesis algorithms.

While designing high fidelity autonomous systems, the overall safety of the system is
highly dependent on interaction between the designed controller and other components in
the system. In most real world autonomous systems, these components are ML or AI based
perception or decision modules. Such modules are used in conjunction to controllers to
percieve or sense the environment around, e.g., perception modules, and rely on rich models
like neural network. Hence, one needs to ensure that we can build these modules to correct
to guarantee the correctness or safety of the overall system. To train deep neural networks
to provide high accuracy results, we need rich training sets with large amounts of data and
labor-intensive labeling. If the dataset is not representative of the environments in which the
model is expected to operate, then the trained model would perform very poorly. A key issue
while choosing the training data set, is being able to decide of the diversity of the input.
One cannot a-priori detect what inputs are not being represented in the training set. So
one has to analyze (or test) the model to detect where the network is failing. In this thesis,
we show that synthesizing rich data sets requires a model analysis (or verification) step in
the loop and propose a framework that uses a tight coupling between model synthesis and
falsification to design data sets for training. Data augmentation overcomes the lack of data
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by inflating training sets with label-preserving transformations, i.e., transformations which
do not alter the label. Traditional data augmentation schemes [51, 138, 29, 28, 91] involve
geometric transformations which alter the geometry of the image (e.g., rotation, scaling,
cropping or flipping); and photometric transformations which vary color channels. However,
these schemes add data without taking into account what kind of features the model has
already learned. To overcome this, in Chapter 5, we propose a counter-example guided
data augmentation [46] that analyzes the network to find images where it performs poorly
and augments the training set. This ensures that we now populate the training set with
images which the network could not capture originally and provide high-level explanations
of network failure. In this chapter, we formulate the overall training and data set design into
an interaction between a learner which is responsible for training the ML module and an
oracle which analyzes the the trained model to find counterexamples which are then added
to the training data set. Hence, the learner here is a synthesizer and the oracle is falsifier.
We show that by going over this loop multiple times, we are able to synthesize high accuracy
image detection models using deep learning.

When one does not consider uncertainty in the controller synthesis process or relies on
RL for synthesizing controllers, we generally have to perform a verification and analysis step
after the synthesis. Even for model based control synthesis techniques, since we make sim-
plifying assumptions during synthesis, we might have to verify that the synthesized control
is robust to errors in the actual system. However, formal verification requires that the sys-
tem, environment and specification be formally defined. For complex dynamical systems and
ML based controllers, this is often hard to do. To this end, simulation guided falsification
has been suggested to find failure cases of such controllers [50, 8, 39, 163, 37]. However,
these techniques are far from providing verification guarantees. In Chapter 6, we look into
simulation-based falsification for systems with learning based components (like controllers)
which have some smoothness properties. In this chapter, we formulate simulation-guided
falsification as in interaction between a learner which attempts to learn the cause of the fail-
ure using Gaussian Processes (GP) and an oracle which uses Bayesian Optimization (BO)
to search for likely counterexamples to simulate on the system. While this scheme has
shown to find counterexamples more quickly, we also study the assumptions and conditions
of the system under which, we can provide probabilistic verification guarantees even when
the underlying system is unknown.

In Chapters 3, 4, 5 and 6, we study design and analysis in a purely model or simulation
world. Most of the work in verification and synthesis rely on simpler models or simulations of
the real system. Even if we are able to formally synthesize or verify that these systems satisfy
our safety requirements, we arefar from proving their correctness on the actual physical
system. This mismatch between the model world and the real world occurs because we
consider simplified models. Even if we have access to a high fidelity simulator of the actual
system, we may still miss out certain environmental effects for e.g., wear and tear, sensor
and actuator noise. Hence it is important to develop a framework which decides under what
circumstances the analysis of the model holds for the real system. In Chapter 7, we study a
specific problem of how we transfer model level verification guarantees to the actual system
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Figure 1.4. Thesis contribution in overall CPS design.

.

for reach-avoid control problems. To this end, we define a specification-centric simulation
metric SPEC by taking inspiration from the simulation metric [5, 66, 9] that captures the
mismatch between the model and the system. Unlike the simulation metric, SPEC considers
the underlying safety specification, and hence, less conservative. Like the simulation metric,
SPEC retains the necessary properties which can be used to synthesize robust controllers
using the model which is guaranteed to be safe for the system. In this chapter, we formulate
the synthesis of safe controllers for actual system as in interaction between a learner which
synthesizes (proposes) controllers for the model using SPEC and an oracle which attempts
to verify the controller on the actual system and computes SPEC. We further propose a
sampling based technique to compute SPEC which can be formulated as an instance of
OGIS. Hence, the overall framework becomes an instance of hierarchical OGIS.

The stages mentioned above are important parts of an autonomous system design pipeline.
While each may tackle a different facet of the design process, to ensure the safety and cor-
rectness of the overall design, we need to be able to provide strong safety guarantees at each
stage. Moreover, we need would like to expose the vulnerability of each process to the other,
so it can be considered which designing the next step. This leads to a tight coupling (and
feedback) among the design and analysis steps. For example, if we could analyze the ML
modules to realize when the models fail; they can be used in the control synthesis process for
designing controllers that are robust to their failure. Figure 1.4 shows how our contributions
are placed in the overall design and analysis framework. The blue boxes represent design-
centric frameworks, while the yellow boxes represent analysis-centric frameworks. There is
a tight couple between the stage, suggesting design is tightly coupled with analysis and vice
versa.

Finally, we wrap this thesis by presenting VerifAI [49] in Chapter 8, a toolkit for the
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design for the analysis of AI based systems. The toolkit incorporates many of the algorithms
and frameworks described in this thesis. The toolkit takes as input an overall system as a
simulator, a description of environment configurations and system level specifications. By
relying on simulators for system descriptions, VerifAI can be used with very general systems
which may not have well defined models. By considering system level specifications, we
overcome the need to define component level mathematical specifications for ML components
which are often hard. Moreover, component level requirements do not capture the interaction
among components, e.g controllers and perception module. By considering system level
requirements, the ML components are analyzed the context in which they are used in the
system, which gives us more realistic analysis data. We have incorporated the analysis
techniques from Chapters 5 and 6. Finally, we have shown results using a range of robotic
simulators like OpenAI [17] and Webots [140]. The toolkit is the first to analyze CPS with
ML components with system level specifications.

1.4 Thesis Outline

This thesis includes and revises content from several of my previously published papers. I
gratefully acknowledge and thank my advisors, Alberto Sangiovanni-Vincentelli and Sanjit
A. Seshia, who have played an important role in shaping the contributions in all these papers.
Chapter 3 is based on our paper [155] which is joint work Marcell Vazquez-Chanlatte I would
also like to thank Vasumathi Raman for help in developing the theory CEGIS loop for robust
control synthesis. Chapter 4 revises the material from [64]. which is joint work with Dorsa
Sadigh. I thank Pierluigi Nuzzo and Vasumathi Raman for help with the proofs in the
chapter. Chapter 5 revises our paper [48, 47] which is joint work with Tommaso Dreossi
and Xiangyu Yue. In Chapter 6 we revise the material from our paper [65]. I thank Ashish
Kapoor, Shaz Qadeer and Gireeja Ranade for their guidance and advise. I thank Felix
Berkenkamp for explaining the theory of Gaussian Process and Bayesian Optimization and
developing the proofs with me. In Chapter 7 we extend the work from out paper [63], which
is joint work with Somil Bansal. I thank Claire Tomlin for her advise and unique insights
into the problem. In Chapter 8 we present a new toolkit VerifAI from our paper [49]
which is joint work with Tommaso Dreossi and Daniel J. Fremont. I would like to thank
Hadi Ravanbaksh, Edward Kim and Marcell Vazquez-Chanlatte for their feedback and help
in developing and integrating additional functionalities into the toolkit.
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Chapter 2

Mathematical Preliminaries

In this chapter we summarize the key mathematical concepts used in this thesis.

2.1 Oracle-Guided Inductive Synthesis

Oracle-Guided Inductive Synthesis (OGIS) was introduced by Jha and Seshia ([80]) as a
framework that captures a family of synthesizers that operate by iteratively querying an
oracle. An instance of the OGIS framework I = (L,O) is defined by the tuple consisting of
a learner (or synthesizer) L and an oracle O. The learner L attempts to infer or synthesize
a ‘’concept” or an ‘’artifact” from a domain of possible artifacts which satisfies a high level
specification ϕ by iteratively querying the oracle O on examples selected from a domain of
examples E or candidate concepts. This domain is problem dependent and will explained
more in detail in the individual chapters. In this chapter we summarize the key notations
and definitions required to setup an instance of OGIS I = (L,O). For more details refer
to [80].

Definition 1 (Artifact Class). An artifact (concept) class C is the domain of artifacts from
which the learner L searches for (synthesizes) an artifact using the queries exchanged with
the oracle O.

The concept class may either be specified in the original synthesis problem or arise as a
result of a structure hypothesis that restricts the space of candidate concepts. Formally, we
can imagine each concept to be a set of examples. Hence, C ⊆ 2E. Depending on the specific
instance, the domain of examples E and the concept class C can be finite or infinite.

We define the specification or the requirement by ϕ. The format of ϕ depends on the
synthesis problem. In this thesis we focus on specifications defined over finite horizon system
trajectories.

OGIS comprises of two key components: an inductive learning engine (also sometimes
referred to as a ‘’Learner”) and an oracle (also referred to as a ‘’Teacher”). The interaction
between the learner and the oracle is in the form of a dialogue comprising queries and
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responses. The oracle is defined by the types of queries that it can answer, and the properties
of its responses. Synthesis is thus an iterative process: at each step, the learner formulates
and sends a query to the oracle, and the oracle sends its response. The oracle may be tasked
with determining whether the learner has found a correct target concept. In this case, the
oracle implicitly or explicitly maintains the specification ϕ and can report to the learner
when it has terminated with a correct concept or artifact.

The oracle O is defined by the type of queries it can accept. Let Q be domain of queries
(input to the O or conversely output of the learner L), and R be corresponding set of
responses (output of the O or conversely the input to the learner L). A valid dialogue d of
the O is a query-response pair (q, r) such that q ∈ Q and r ∈ R.A sequence of valid dialogue
sequence D∗ is sequence of valid dialogue pairs.

Definition 2. An oracle is a (potentially non-deterministic) mapping O : D∗ ×Q→ R. A
learner is (potentially non-deterministic) mapping L : D∗ → Q× C.

The learner observes a valid dialogue sequence δ ∈ D∗ to propose a candidate context
∈ C and a corresponding query q ∈ Q to the oracle. The O observes the dialogue sequence
δ ∈ D∗ and the current query q to produce a response r ∈ R.

An OGIS procedure is defined by properties of the learner and the oracle. Relevant
properties of the learner include (i) its inductive bias that restricts its search to a particular
family of concepts and a search strategy over this space, and (ii) resource constraints, such
as finite or infinite memory. Relevant properties of the oracle include the types of queries
it supports and of the responses it generates. We now discuss some common queries we use
throughout this thesis:

1. Membership query (qmem(x)): The learner selects an example x ∈ E and queries the
oracle if the example satisfies the specification or not.

2. Simulation query (qsim(x)): The learner selects an example x ∈ E and queries the
oracle for a simulation behavior.

3. Counter-example query (qce(c)): The learner proposes a candidate concept c ∈ C and
asks the oracle for counter-examples, i.e., e ∈ c such that e does not specify ϕ. If it
can’t find such an example, it returns ⊥.

4. Verification query (qver(c)): The learner proposes a candidate concept c ∈ C and asks
the oracle if this concept satisfies ϕ.

This set of queries is not exhaustive and we discuss individual queries in the different chapters.
Formally, the learner L has to synthesize or learn the concept c ∈ C such that all the

examples making up c satisfies the specification ϕ by querying the oracle O at different
examples x ∈ E or with candidate concepts c ∈ C. In each iteration, the queries made by
the learner depends on the dialogue sequence D∗ observed so far.
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2.1.1 Counter-example guided Inductive Synthesis

A special case of the OGIS framework is Counter-example guided Inductive Synthesis (CEGIS)
introduced in [141]. An instance of CEGIS is defined similar to OGIS, C = (L,O). In CEGIS,
the O accepts only a subset of queries, counter-example queries and positive witness queries
(where the learner asks the oracle for positive examples). In this thesis, we use CEGIS
frameworks with only counter-example queries. Most of the frameworks presented in the
thesis are instances of CEGIS.

2.2 Hybrid Dynamical Systems

In this work we consider continuous-time hybrid dynamical system,

ẋ = f(x, u, e) (2.1)

where x ∈ X ⊆ (Rnc×{0, 1}nl) represent the hybrid (continuous and logical) states, u ∈ U ⊆
(Rmc × {0, 1}ml) are the hybrid control inputs and e ∈ E ⊆ (Rec × {0, 1}el) are the hybrid
external inputs, including disturbances and other adversarial inputs from the environment.
For the purposes of this work, we assume that the state of the system is fully observable.
Using a sampling period ∆ > 0, the continuous-time system in (2.1) lends itself to the
discrete-time approximation,

xt+1 = fd(xt, ut, et) (2.2)

where xt ∈ X , ut ∈ U and et ∈ E .
Given an initial state x0 ∈ X , finite horizon H control sequence u = (u0, . . . , uH−1)

and environment (disturbance) sequence e = (e0, . . . , eH−1), the finite horizon trajectory
(or behavior) of the system S modeled by the dynamics in (2.2) is uniquely expressed as
ξS(·;x0,u, e) = {(x0, u0, e0), . . . , (xH−1, uH−1, eH−1}. We denote ξS(t;x0,u, e) the trajectory
of the system S at time t. Moreover, let Ξ denote the set of all finite horizon trajectories of
the system.

We make a further simplifying assumption that U = [−1, 1]nu and E = [−1, 1]ne where
nu and ne are the dimensions of U and E respectively. This is not a limiting assumption,
as one could always scale the dynamics to modify the control and environment domain.
Further, since u ∈ U , we have the finite-horizon control sequence u ∈ UH . For ease of
notation, we simply say u ∈ U to imply u0, . . . uH−1 ∈ U . Similarly, we say e ∈ E to imply
e0, . . . , eH−1 ∈ E .

2.3 Safety Specification

We specify the safety specification by ϕ. They are defined on finite-length trajectories
ξS(·;x0,u, e) of the system that can be obtained by rolling out the dynamics in (2.2) over
the horizon. Alternatively, one can imagine ϕ to be set of all finite-horizon trajectories of
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the system that satisfy the system level-safety specification; ϕ ⊆ Ξ. For example, ϕ can be
temporal behaviors of the system properties in, e.g. Signal Temporal Logic (STL) [104].We
say the system behavior satisfies the specification ϕ, i.e., ξS(·;x0,u, e) |= ϕ if and only if
ξS(·;x0,u, e) ∈ ϕ.

We further assume, we have access to the quantitative semantics of ϕ represented by
ρϕ : Ξ→ R, such that:

ξS(·;x0,u, e) |= ϕ↔ ρϕ(ξS(·;x0,u, e)) > 0

ξS(·;x0,u, e) 2 ϕ↔ ρϕ(ξS(·;x0,u, e)) < 0

Since the trajectory ξS(·;x0,u, e) is deterministic given u and e and a fixed x0, we will
use ρϕ(u, e) instead of ρϕ(ξS(·;x0,u, e)) and ϕ(u, e) to represent as ξS(·;x0,u, e) |= ϕ in the
rest of the chapter.

By evaluating ρϕ on the system behavior in a given environment e, ξS(·;x0,u, e), we can
comment on the satisfaction of the system behavior and hence, the safety of the corresponding
environment e. Typically, ρϕ(ξ) = 0 is considered to be an unknown behavior and hence,
we cannot comment on the satisfaction of ξ. One would have to then evaluate the boolean
satisfaction by checking if the ξ ∈ ϕ. In this work, we take a pessimistic approach and
consider ρϕ(ξ) = 0 to imply unsatisfactory behavior. This allows for behaviors that are
atleast ε > 0 robust, which is a valid assumption to make while evaluating the safety of the
system.

We assume that ρϕ is Lipschitz continuous in u, i.e., there exists a constant Lρϕ such
that for all e ∈ E :

∀u,u′ ∈ U |ρϕ(u, e)− ρϕ(u′, e)| ≤ Lρϕ|u− u′| (2.3)

We further require ρϕ to be allow a total ordering in the Ξ, i.e., if ρϕ(ξ1) > ρϕ(ξ2) then
ξ1 is said to be more safe compared to ξ2, and hence is a more desirable behavior. This
allows for an ordering among the control strategies u. If ξ1 (ξ2) was generated in u1 (u2),
then we can say u2 is a more ”robust” compared to u1. Larger values offer a higher degree
of satisfaction while lower values offer a lower degree of satisfaction.

Example 1. Consider the discrete time system with two states x = [y, z]T , fd =
yt + ut + et
zt + ut + et

where ut, et ∈ [−1, 1]. Consider the specification “For the next 30 seconds, y > 2 implies
that z will be less than 4 within two seconds”. Consider the following syntactically- generated
quantitative semantics over the state, following the quantitative semantics for STL defined
in [104].

ρϕ(u, e) = max
t∈{0,...,30}

(
yt − 2, min

t′∈{t,...,t+3}
(4− zt′)

)
Since ut and et are both bounded and ρϕ is smooth, substituting the dynamics equations into
ρϕ to get a function over ut and et yields a quantitative semantics satisfying (2.3) and (2.3)
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2.4 Temporal Logic

Temporal logic has risen as a popular language for capturing and defining mathematical
properties on trajectories. Linear temporal logic (LTL) was first introduced in [123] to
capture behaviors of sequential programs. Since then LTL has been extended with to capture
properties over dense time in Metric Temporal Logic (MITL) in [90]. A more popular
extension of MTL used to define properties over the behaviors of dynamical systems is
Signal Temporal Logic (STL).

2.4.1 Signal Temporal Logic

Signal Temporal Logic (STL) was first introduced as an extension of Metric Temporal Logic
(MTL) to reason about the behavior of real-valued dense-time signals [104]. STL has been
largely applied to specify and monitor real-time properties of hybrid systems [42]. We use
the robust, quantitative interpretation for the satisfaction of a temporal formula [41, 40],
as further detailed below. In this setting our safety specification ϕ is represented as a STL
formula evaluated on the system trajectory ξS at some time t. We say (ξS , t) |= ϕ when
ϕ evaluates to true for ξS at time t. We instead write ξS |= ϕ, if ξS satifies ϕ at time 0.
The atomic predicates of STL are defined by inequalities of the form µ(ξS(t)) > 0, where
µ is some function of the trajectory ξS at time t. Specifically, µ is used to denote both the
function of ξS(t) and the predicate. Any STL formula ϕ consists of Boolean and temporal
operations on such predicates. The syntax of STL formulae is defined recursively as follows:

ϕ ::= µ | ¬µ | ϕ ∧ ψ |G[a,b]ψ | F[a,b]ψ | ϕU[a,b]ψ, (2.4)

where ψ and ϕ are STL formulae, G is the globally operator, F is the finally operator and U
is the until operator. Intuitively, ξS |= G[a,b]ψ specifies that ψ must hold for the trajectory
ξS at all times of the given interval, t ∈ [a, b]. Similarly ξS |= F[a,b]ψ specifies that ψ must
hold at some time t′ of the given interval. Finally, ξS |= ϕU[a,b]ψ specifies that ϕ must hold
starting from time 0 until a specific time t ∈ [a, b] at which ψ becomes true. Formally, the
satisfaction of a formula ϕ for a trajectory ξS at time t is defined as:

(ξS , t) |= µ ⇔ µ(ξS(t)) > 0
(ξS , t) |= ¬µ ⇔ ¬((ξS , t) |= µ)
(ξS , t) |= ϕ ∧ ψ ⇔ (ξS , t) |= ϕ ∧ (ξS , t) |= ψ
(ξS , t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξS , t

′) |= ϕ
(ξS , t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξS , t

′) |= ϕ
(ξS , t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξS , t

′) |= ψ
∧∀t′′ ∈ [t, t′], (ξS , t

′′) |= ϕ.

(2.5)

Similar definitions as the ones in (2.4) and (2.5) can also be provided when the intervals
of the temporal operators are open, such as (a, b], [a, b), or (a, b), or unbounded, such as
[a,+∞). The bound of an STL formula is defined as the maximum over the sums of all
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nested upper bounds on the temporal operators of the STL formula. For instance, given
ψ = G[0,20]F[1,6]ϕ1 ∧F[2,25]ϕ2, the bound can be calculated as max(6 + 20, 25) = 26. An STL
formula ϕ is bounded-time if it contains no unbounded operators.

Robust Satisfaction A quantitative or robust semantics is defined for an STL formula ϕ
by associating it with a real-valued function ρϕ of the trajectory ξS and time t, which provides
a “measure” of the margin by which ϕ is satisfied. Specifically, we require (ξS , t) |= ϕ if and
only if ρϕ(ξS , t) > 0. The magnitude of ρϕ(ξS , t) can then be interpreted as an estimate of
the “distance” of ξS from the set of signals satisfying or violating ϕ.

We define the quantitative semantics as follows:

ρµ(ξS , t) = µ(ξS(t))
ρ¬µ(ξS , t) = −µ(ξS(t))
ρϕ∧ψ(ξS , t) = min(ρϕ(ξS , t), ρψ(ξS , t))
ρG[a,b]ϕ(ξS , t) = mint′∈[t+a,t+b] ρϕ(ξS , t

′)

ρF[a,b]ϕ(ξS , t) = maxt′∈[t+a,t+b] ρϕ(ξS , t
′)

ρϕU[a,b]ψ(ξS , t) = maxt′∈[t+a,t+b](min(ρψ(ξS , t
′),

mint′′∈[t,t′] ρϕ(ξS , t
′′)).

(2.6)

Using the above definitions, the robustness value can be computed recursively for any STL
formula. For brevity, in this chapter we use ρϕ(ξS) = ρϕ(ξS , 0).
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Chapter 3

Synthesizing Robust Control
Strategies

3.1 Introduction

A key step in the design of Cyber-Physical Systems (CPS) or robotic systems, is the syn-
thesis of robust control strategies from high level-safety specifications. One would like to
synthesize controllers for safety-critical systems which can control such systems to satisfy
high-level safety requirements. In this chapter, we address the problem of synthesizing robust
controllers for linear systems from high-level temporal specifications. Specifically, we pro-
pose Correct-by-Construction controller synthesis algorithms based on the Counter-Example
Guided Inductive Synthesis (CEGIS) paradigm.

Correct-by-construction controller synthesis from high-level formal specifications offers
a promising means of raising the level of abstraction for implementation. In particular,
reactive synthesis from temporal logic generates programs or controllers which maintain
an ongoing interaction with their (possibly adversarial) environments. Reactive synthesis
from linear temporal logic using automata-theoretic methods has been demonstrated for
synthesizing high-level controllers for robotics. However, for embedded or robotic systems,
reactive synthesis becomes much more challenging for several reasons. First, the specification
languages go from discrete-time, propositional temporal logics to metric-time temporal logics
over both continuous and discrete signals, so the previous automata-theoretic methods do
not easily extend. Second, even for simple classes of dynamical systems and metric-time
temporal logics, verification is itself undecidable, let alone synthesis. Third, the state of
the art for solving games over infinite state spaces, as required for metric or quantitative
temporal objectives, is far less developed than that for finite games.

To address these challenges, researchers have resorted to various simplifications. One sim-
plification is to consider the control problem over a finite horizon instead of infinite horizons.
This ensures verification is decidable for many interesting and practical systems and spec-
ification languages, like metric temporal logic (MTL) [90] and signal temporal logic (STL)
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[104]. Reachability [109] based techniques offer a suite of well-developed and mature tools for
handling finite horizon games, whose constraints amount to simple safety invariants such as
obstacle avoidance. However, direct extensions to temporal constraints are not straightfor-
ward. Existing approaches model the environment as a bounded, non-deterministic distur-
bance [38], which is often unrealistic, leading to infeasibility in applications like autonomous
driving for even very mundane cases. Instead, one may have a more complicated model of the
environment that leverages either data-driven techniques or known aspects of the behavior
of the other agents, such as their formal specifications.

In this chapter we build a synthesis engine which solves the reactive-synthesis problem by
solving a series of finite-horizon robust control problems. This technique known as Receding
Horizon Control (RHC) was solved using a Counter-Example Guided Inductive Synthesis
(CEGIS) [141] framework in [128]. However, the practical implementation of the CEGIS
framework that was provided was unsound. We first provide empirical results which show
that naively implementing the CEGIS framework lead to scaling issues. To overcome the
scalability issue and ensure soundness of our algorithm, we provide 2 variants of CEGIS
which, (i) hybrid CEGIS-limits problem growth across iterations; and (ii) dominant CEGIS-
builds dominant strategies using Satisfiability Modulo Theory (SMT) [13] as opposed to
optimally robust strategies. Finally, we provide a theoretical analysis of our algorithms
along with a worst-case convergence characterization. The results in this chapter are adapted
from [155].

3.2 Preliminaries

We first introduce the flavor of reactive synthesis we consider in this chapter, Receding
Horizon Control, and describe how the CEGIS framework can be instantiated to solve it
effectively.

3.2.1 Receding Horizon Control and Counter-Example Guided
Inductive Synthesis

A promising and scalable approach to synthesizing reactive strategies is to formulate reactive
synthesis over a finite, receding horizon as a series of zero-sum games between the system and
the environment, where the environment assumptions and system objectives are systemati-
cally encoded into rewards [128]. This form of controller, known as Receding Horizon Control
(RHC), offers a (limited) form of reactivity. Each game is solved using a Counter-Example
Guided Inductive Synthesis (CEGIS) [141, 6] scheme to search for a dominant strategy.

Model Predictive Control (MPC) or Receding Horizon Control (RHC), is a well studied
hybrid system control method [58, 112]. In RHC, at each time step, the state of the system
is observed and a finite horizon optimization problem is solved, given a set of constraints
and cost function J . Given, the system dynamics f , we locally linearize f at each MPC step
to solve the optimization problem, to generate a sequence optimal control u∗. For example,
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at time t=k, the dynamics f are linearized around the current system state and used to
compute the optimal finite horizon control sequence u∗. Only the first component of u∗ is
applied to the system and the new system state is computed at time t = k+1. The dynamics
f are now linearized around the new state at t = k + 1 and a similar optimization problem
is solved. While the global optimum of MPC is not guaranteed, the technique is frequently
used and performs well in practice. This framework has seen success on (hybrid-)linear
dynamical systems and specifications in a large fragment of Signal Temporal Logic, where
the resulting optimization problem reduces to a Mixed Integer Linear Programming (MILP)
Problem [127]. The cost function J , in this case was the robust semantics of STL [104].

In [128], the authors extended the framework in [127] to synthesize reactive controllers
in the presence of disturbance from high level STL specifications. To solve the RHC at each
time step, [128] proposed using a CEGIS like framework to synthesis a robust optimal control
strategy at each step of the MPC. At each iteration of the MPC, they solved a zero-sum
game between the controller (learner) and the environment (oracle). The learner solved the
optimization problem to maximize the robustness to propose a candidate control strategy
to the oracle. The oracle, solved a similar optimization problem to minimize the robustness.
If the robustness is negative, the sequence of environment actions is a counter-example and
is returned to the learner. The learner now proposes a new control strategy that is robust
to all previously seen counter-examples. The process iterates until a dominant strategy is
found.

Practical implementations of CEGIS suffers from two major shortcomings. First, CEGIS
is an iterative paradigm that produces a series of candidate solutions with corresponding
counterexamples. In each iteration of CEGIS, one must simultaneously solve the origi-
nal optimization problem for all previously found counterexamples. The authors in [128]
speculated that in the case of MILPs, CEGIS would scale poorly as the set of counterexam-
ples grew; but this had not been empirically demonstrated. Nevertheless, this scaling issue
was circumvented by considering only the most recent counterexample in each iteration of
CEGIS. This heuristic leads to the second shortcoming, considering only the most recent
counterexample may oscillate indefinitely between the same set of counterexamples.

Example 2. Consider the situation shown in Fig 3.1. Depending on the ego car’s behavior,

Figure 3.1. The ego car is attempting to reach the goal while avoiding collisions with the other cars.

the lead car may move to block the ego car, leading to a crash. If the ego car stops, it may be
rear ended. Reasoning about the infeasibility of reaching the goal safely under an adversarial
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environment requires access to at least three counterexamples. Maintaining only the last
counterexample will cause the CEGIS to loop indefinitely. An ideal synthesis procedure would
quickly reveal that the environment assumptions need to be strengthened (e.g. assume that
given enough time the other cars would avoid the ego car or stop). Such discrete sub-problems
arise naturally within more complicated (continuous space and time) driving scenarios.

To deploy a RHC on a complex CPS, the synthesis procedure associated with each
planning step must be implemented in real time, and making CEGIS practical is an im-
portant first step. However, prior efforts to speed up CEGIS lead to incompleteness or
non-termination. For example, [52] evaluated alternate techniques such as Monte Carlo and
dual formulations for CEGIS to improve tractability. These techniques either provide only
probabilistic completeness, or suffer from similar scaling-related issues.

CEGIS for RHC: Given a cost function over trajectories of system J : Ξ→ R, and safety
specification ϕ (as defined in Section 2.3) the game-theoretic formulation of the controller
synthesis problem can be represented as a minimax optimization problem,

min
u∈U

max
e∈E

J(ξS(·;x0,u, e))

subject to ∀e ∈ EξS(·;x0,u, e) |= ϕ
(3.1)

In this chapter, the cost function is defined to be the negative of the quantitative seman-
tics of the safety specification i.e., J = −ρϕ and we replace the constraints by the quantitative
semantics ρϕ(u, e). Moreover, to avoid the − sign in the objective, we change the control
objective to max and the environment objective to min. An ε-robust control strategy is a u
such that ∀e ∈ E ρϕ(u, e) > ε. Such solutions are often desirable in RHC as they heuristi-
cally offer more resilience to the uncertainty introduced by modeling errors (introduced by
considering (2.2) as an approximation for (2.1)) and other finite horizon approximations.

To solve (3.1), [128] proposed a CEGIS style algorithm. As discussed in Section 2.1, the
oracle in a CEGIS instance only accepts counter-example queries. The learner infers a robust
controller in every iteration of RHC. Hence, the concept class for the learner in this case is
domain of controls U . The oracle here is a mapping from U → E , i.e., given a candidate
control sequence, the oracle provides counter-example environment sequence that falsifies
the proposed control strategy.

The learner LCN solves,

u∗ = argmax
u∈U

ρϕ(u, e)

subject to ∀e ∈ ECE ρϕ(u, e) > 0
(3.2)

where instead of finding the optimal control strategy robust to all possible environment
behaviors, the learner proposes an optimal control strategy u∗ robust to a finite set of
environments, ECE called the counter-example set, to the oracle OCN . This limits the size of
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Figure 3.2. Naive CEGIS: CN = (LCN ,OCN ). The oracle OCN (LCN ) is shown in blue (yellow). The oracle
and learner together play a zero sum game. The size of the counter-example ECE set grows every iteration.
Hence, over time the optimization problem solved by the LCN grows while that solved by OCN remains the
same.

the optimization problem the learner has to solve. The oracle OCN solves,

e∗ = argmin
e∈E

ρϕ(u, e)

subject to ρϕ(u, e) < 0
(3.3)

and searches for an optimal environment strategy e∗ that can break the current proposed
control sequence u∗. Such a control strategy is called a counter-example and is returned
to the learner LCN . The learner than adds it to the set of counter-examples ECE and the
process continues. The game ends when either the learner cannot find the optimal robust
control strategy u∗ or the oracle fails to find a counter-example e∗ to the proposed candidate
control strategy. This tends to scale poorly for the learner as the size of the counter-example
set ECE grows over the iterations. We refer to this implementation of CEGIS as naive
CEGIS CN = (LCN ,OCN ) shown in Fig 3.2. This variant of CEGIS is guaranteed to converge
asymptotically. However, this is not practical since, the optimization problem solved by LCN
grows indefinitely which may not be solvable by any existing optimization engine.

To avoid the scaling issues introduced by the growing counter-example set ECE in MILPs,
the authors in [128] proposed the learner considers only the last counterexample returned by
the oracle. We refer to this variant of CEGIS as CS = (LCS ,OCS) shown in Fig 3.3. While this
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Figure 3.3. Single CE CEGIS: CS = (LCS ,OCS ). The oracle OCS (LCS ) is shown in blue (yellow). The oracle
and learner together play a zero sum game. The oracle OCS is the same as OCN . However, the learner LCS
solves an optimization problem with the most recent counter-example e∗ returned by the oracle OCS . This is
the same optimization problem as in (3.2) where ECE = e∗ is a singleton set, with the most recent counter-
example. This ensures the size of the optimization problem solved by the learner LCS does not grow over
the iterations. Although this circumvents the scalability issue of CN , it suffers from oscillating indefinitely
among the same set of counter-examples as shown in Example 2.

variant of CEGIS, overcomes the scalability issue in CN , it suffers from oscillating indefinitely
among the same set of counter-examples as shown in Example 2. When CS terminates
we either get an optimal robust control strategy u∗ or robust environment strategy e∗.
Unfortunately, CS is not guaranteed to terminate because of the oscillating counter-example
issue. Hence, this implementation of CEGIS is unsound, i.e., it is not guaranteed to find the
robust control strategy if one exists.

The satisfiability version of the minimax optimization problem in (3.1) simply searches
for a dominant control strategy u∗ ∈ U such that ∀e ∈ E ρϕ(u∗, e) > 0. Let us refer to
the CEGIS which solves this as CB = (LCB ,OCB). The learner LCB solves the following
satisfiability problem u∗ ∈ U such that ∀e ∈ ECE ρϕ(u∗, e) > 0 where ECE is a set of counter-
examples returned by the oracle. The oracleOCB searches for e∗ ∈ E such that ρϕ(u∗, e∗) < 0.
This is pictorially shown in Fig 3.4. Here we can replace the learner and oracle by SMT
solvers as opposed to optimization engines. While learner still suffers from scalability issues
since ECE grows in every iteration like in CN , it has been shown that SMT solver scale better
than optimization engines. CB also asymptotically converges to a dominant strategy if one
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Figure 3.4. Satisfiabiality CEGIS: CB = (LCB ,OCB ). The oracle OCB (LCB ) is shown in blue (yellow). The
oracle and learner together play a zero sum game. Here unlike CN and CS , they oracle and learner solve
satisfiability problems as opposed to optimization problem. Hence, the strategy returned by either one of
them is a dominant strategy and not an optimal one.

exists.

3.3 Problem Formulation

We address the problem of generating dominant control strategies u∗ by solving the zero-sum
game proposed in (3.1) using the CEGIS framework. The proposed framework should tackle
both the scalability issue in CN and the oscillatory behavior in CS.

3.4 Solution approach

Before we describe our CEGIS framework, it is fruitful to characterize some requirements
for soundness and completeness of a CEGIS scheme.

Definition 3. A (counter-example) oracle OC is sound if when given a candidate control
strategy u∗, it returns ⊥ when u∗ is a dominant (robust) control strategy; else returns e∗

when e∗ refutes u∗, i.e., ρϕ(u∗, e∗) < 0. The oracle OC is complete if when given a u∗ such
that there exists a counter-example e∗, it returns e∗.
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Definition 4. A (candidate) learner LC is sound if when given a set of counter-examples ECE
returns ⊥ when no dominant strategy u∗ can simultaneously counter all counter-examples in
ECE; else returns a dominant control strategy u∗ such that ∀e ∈ ECE ρϕ(u∗, e) > 0. The
learner LC is complete if it returns u∗ such that ∀e ∈ ECE ρϕ(u∗, e) > 0 for a given counter-
example set ECE when such a u∗ exists.

The soundness of a CEGIS C framework follows immediately from the soundness of the
oracle OC and the learner LC.

Proposition 1 (Soundness of CEGIS). Let u∗ be the result of a CEGIS frameworkC using
a sound oracle OC and sound learner LC for specification ϕ. If u∗ = ⊥ then there is no
dominant control strategy and if u∗ 6= ⊥, then u∗ is a dominant strategy.

Similarly, we observe that if either the oracle OC or the learner LC are not complete, then
the CEGIS framework C is not complete.

From Definition 3, it is clear that OCB ,OCS ,OCN are all sound. From Definition 4, it is
clear that LCB ,LCN are sound but LCS is not sound. This is because the strategy returned
by LCS is guaranteed to refute only the last counter-example returned by OCS and not all
previous seen counter-examples. Hence, from Proposition 1, CB and CN is sound while CS is
not sound. This explains why CS is not guaranteed to find the optimal dominant strategy
and suffers from oscillatory behavior.

The completeness of the oracles OCB ,OCS ,OCN and learners LCB ,LCS ,LCN depends on
the completeness of the underlying optimization and SMT engines. In the remaining of this
chapter, we assume that are complete.

This poses the question: If the learner LC and oracle OC are complete, does that imply
the CEGIS loop C = (LC,OC) is complete?

Example 3. Consider the specification ϕ = u + e ≥ 0 where u, e ∈ [−1, 1]. Clearly, u = 1
is a dominant strategy. Let us see what can happen is we use the CEGIS framework CB =
(LCB ,OCB). We know that LCB ,OCB are both sound and complete (Definition 4, 3). Suppose
in the first iteration the counter-example set is ECE = {0}, LCB proposes u∗ = 0. The OCB
can refute by providing e∗ = −0.1. The counter-example set grows to ECE = {0.0,−0.1}.
LCB can now propose u∗ = 0.1 and the OCB now proposes e∗ = −0.11. Observe that this
sequence of appending 1s can continue indefinitely. Thus CB would never halt despite the
existence of a dominant strategy.

Example 3 proves that although LCB ,OCB is sound and complete, CB is sound but not
complete. However, if we were to use LCN instead of LCB it would maximize ρϕ = u+ e and
would propose u∗ = 1.0 in the first iteration. Alternately using OCN instead of OCB would
minimize ρϕ and propose e∗ = −1.0 and the CEGIS loop would terminate in a couple of
iterations. This suggests forcing either the learner or the oracle to return ”optimal” (max
or min ρϕ)) candidate or counter-example leads to fewer iterations before termination.

However, the optimality of the learner or oracle does not guarantee the overall CEGIS
loop is complete. Consider a situation where ∀u ∈ U , e ∈ Uρϕ(u, e) = 0, then given any u∗
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there are infinite counter-examples. Hence, finding the ”optimal” counter-example does not
help converge to a dominant strategy. At this time, we do not know of any general conditions
on ρϕ that guarantees completeness of the CEGIS loop.

3.4.1 CEGIS for dominant strategies CD
The first variant of CEGIS we propose combines an optimal counterexample oracle OCN
and the satisfiability learner LCB which proposes dominant control strategies as opposed to
optimal control strategies. We refer to this as CD = (LCB ,OCN ) (Fig 3.5).

As a consequence of using OCN (making the counter-example optimal as opposed to the
control strategies) is that we can now obtain an ”anytime” algorithm by maintaining the u
with the best ”worst-case” seen so far. This control strategy is the closest to a dominant
strategy that has been found so far. This is relevant for time bounded computations where
optimal strategies, while preferable, may not be necessary e.g., when ϕ is a soft constraint
as opposed to a hard requirement. Additionally, while we do not get completeness, we do
get a weak termination guarantee. Suppose we are willing to accept a solution u∗ that allows
ρϕ(u∗, ·) ∈ [δ, 0) for some δ < 0, then CD will terminate

Theorem 1 (δ−termination). If U is bounded, and oracle returns optimal counter-examples
and ρϕ(·, ·) satisfies (2.3) and (2.3), then either the CEGIS loop terminates or for any δ < 0
there is an iteration n ∈ N such that for ∀e ∈ E ρϕ(un, e) ≥ δ.

Lemma 1. Let ρϕ(·, ·) satisfy (2.3) and (2.3) with Lipschitz constant Lρϕ. If ρϕ(u, e) = δ 6=
0, then for all u′ in the open ball of radius |δ/Lρϕ| centered at u we have ϕ(u, e) = ϕ(u′, e).

Proof: [Lemma 1] Via Lipschitz continuity (2.3), one must perturb u by atleast |δ/Lρϕ|
to make ρϕ(u′, e) to 0. By (2.3) the sign of ρϕ(u′, e) determines ϕ(u′, e). Thus, for all u′ in
the open ball of radius |δ/Lρϕ | centered at u, ϕ(u, e) = ϕ(u′, e). �

Proof: [Theorem 1] Pick an arbitrary δ < 0. Assume for contradiction that the CEGIS
loop does not terminate, and for each iteration i, ρϕ(ui, ei) < δ. Via Lemma 1, the ball
of radius |δ/Lρϕ| of inputs around ui is refuted by ei. Thus, at each iteration, including ei
in ECE refutes at least this ball around ui. Observe that U is bounded. Thus, there exists
an iteration k ∈ N where the learner must return ⊥ since all of the input space has been
refuted. This terminates the loop, leading to a contradiction. Therefore, either the CEGIS
loops terminates or ∃n ∈ N such that ρϕ(un, e) ≥ δ. Further, since the oracle is optimal,
ρϕ(un, e) ≥ δ =⇒ ∀e ∈ E , ρϕ(un, e) ≥ δ. �

Since, Theorem 1 holds for CEGIS frameworks where we use an oracle which provide
optimal counter-examples, we have δ−termination holds for both CN , CD. The proof of
Theorem 1 suggests a simple worst-case complexity of the CEGIS schemes.

Theorem 2. Consider CEGIS variants where oracle returns optimal counter-examples,
ρϕ(·, ·) satisfies (2.3) and (2.3) with Lipschitz constant Lρϕ and U = [−1, 1]nu , E = [−1, 1]ne.
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Figure 3.5. Dominant strategy, optimal counter-example CEGIS: CD = (LCB ,OCN ). The oracle OCN (LCB )
is shown in blue (yellow). The oracle OCN ) solves an optimization problem to propose optimal counter-
examples. The learner LCB solves a satiafiability problem and proposes dominant control strategies as
opposed to optimal control strategies.

If each iteration of CEGIS takes at most T steps, then the worst case running time for
δ−termination is,

O(T · (Lρϕ/δ)nu)

Proof: [Theorem 2 The result follows directly from the fact that that any two refuted
ballscan share at most half their volume (since they cannot intersect the other’s center) and
refuted balls have volume proportional to (Lρϕ/δ)

nu . � Theorem 1 and 2 hold for both CN
and CD. The oracle in both OCN is a MILP optimization problem. The key difference being
the learner in CD is LCB which solves a satisfiability query (as opposed to solving a growing
MILP problem in LCN ). For LCB we use SMT engine with Real Linear Arithmetic, which
empirically scale better with growing counter-example set ECE compared to MILP solvers.

3.4.2 CEGIS with refuted input square CH
Example 4. Consider a continuous variant of the familiar zero-sum game: Rock, Paper,
Scissors (RPS). Two players, the system (u) and the environment (e) simultaneously choose
either (R)ock, (P )aper or (S)cissors. Let us represent the state of the system by x, the
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Figure 3.6. Continuous RPS.

environment by x′, the system move by u and the environment move by e. The dynamics are
given by x = 60u, x′ = 60e.

Fig 3.6 depicts the embedding of Rock, Paper, and Scissors onto R. If the state of either
player is in (0, 10) ∪ [50, 60), it is considered to be playing R; similarly, [10, 30) is P and
[30, 50) is S. Letting A = (S, P,R), the system’s winning condition is:

ϕ :=
2∧
i=0

(
(x′ ∈ A[i mod 3)]) =⇒ (x /∈ A[(i+ 1) mod 3])

)
(3.4)

which encodes: Rock beats Scissors, Scissors beats Paper, and Paper beats Rock, respec-
tively.

First observe that neither the system or the environment has a dominant strategy, and
that for CEGIS to terminate the system must have a counterexample from each of the R, P
and S regions in order to refute the entire input space.

If one were to use CS to solve Example 4 then the loop would never terminate.
Let N denote the number of constraints required to encode a single counterexample

in (3.2). The original motivation [128] for using CS instead of CN was that the size of (3.2)
grew linearly with a rate at least as large as N . In this section, we explore a slight modi-
fication to (3.2) that grows linearly with a rate near the dimension of U , which in general
is much smaller than N . We denote this learner as LCH and the resulting CEGIS scheme
CH = (LCH ,OCN ).

One can think of the process of simultaneously handling the previously seen counterex-
amples as implicitly removing all parts of the input space that each counterexample refuted.
We can also explicitly compute sets of refuted strategies (⊂ U) and modify the input space,
U to exclude subsets containing the refuted candidates. Notice, however, that such sets are
non-unique and potentially non-convex, so explicitly finding the maximal refuted set is not
straightforward. Instead, inspired by Lemma 1, we choose to find the largest closed ball
centered around u which is refuted by e. More precisely, we seek to find the radius r ∈ R
that solves:

argmaxr∈R {r ∈ R>0 | ∀u ∈ Br(u) . ¬ϕ(u, e)} (3.5)

where Br(u) is the closed ball of radius r around u. Denote the set of refuted balls by the
ith round of CEGIS as Bi. Then the learner LCH solves:

argmaxu∈Ui

{
min
e∈Ek

(ρϕ(u, e))

}
(3.6)

where Ui = U \
⋃
Bi and Ekk is the k most recent counter-examples.
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Remark 1. To approximately solve (3.5), first notice that given a candidate radius, one can
use LCB to query if a candidate control exists within that radius. If there does, one must
decrease the radius size. If not, one may increase the radius size. As the input space is
bounded, one can then simply perform a binary search over the radii, and over approximate
the optimal radius by an arbitrarily small margin. In our experiments, these series of queries
are handled efficiently by an SMT engine.

Encoding a refuted ball needs roughly 2nu constraints (where dim(U) = nu). Further, if
refers to each input at least once, 2nu will be much smaller than N . Thus, this addresses
the primary concern in developing CS. Given a counter-example, we can now choose to allot
either N or 2nu constraints. Let i ∈ N refer to the current iteration. In our implementation,
we simultaneously keep the k ∈ N most recent counter-examples. The remaining i − k
candidate counterexample pairs are encoded as refuted balls. This trades-off encoding size
for potentially more iterations.

Remark 2. Due to the approximate nature of binary search on the real line, one must
either err on the side of over- or under-approximation. We choose to err on the side over-
approximation, potentially throwing out dominant strategies. A simple corollary of Lemma 1
is that if e is an optimal response to u, ρϕ(u, e) = a, and r is radius found by binary search,
then all strategies, u′, between r and the true radius r∗ have ρϕ(u′, e) ≤ a + (r − r∗)/Lρϕ.
Thus, if (r − r∗)/Lρϕ is at most ε, one will only miss strategies that are not ε robust. Thus,
when computing r, if one uses an ε/(2Lρϕ) tolerance and additionally adds ε/(2Lρϕ) to the
result, then one always over approximates r∗ by less than ε. We refer to this approximation
as “bloating by epsilon”.

Observe that this provides a tunable completeness guarantee for CH :

Theorem 3 (ε-Completeness). Given a bounded input space, U , and ρϕ satisfying (2.3)
and (2.3), if there exists an ε-robust solution, then CH with ε-bloating will find a dominant
strategy.

Proof: [Theorem 3]At any iteration, i, of the CEGIS loop, let ui and ei be the candidate
strategy and counter-example returned by LCH and OCN , respectively. Due to ε-bloating,
the explicit refuted ball in each round has non-zero radius. As in the proof for Theoremm 1,
since U is bounded, CH must terminate. Further, by construction, ε-bloating only omits
strategies that are not ε-robust. Therefore, if there exists an ε-robust solution, then the final
input space is non-empty. Thus, by exhaustive search, if there exists an ε-robust solution,
then CH with ε-bloating will find a dominant strategy. �
CH is shown in Fig 3.7. Since the oracle returns optimal counter-examples, Theorems 2

and 1 hold for CH . The learner LCH solves a sequence of SMT queries and a MILP optimiza-
tion to propose an ε−robust strategy.
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Figure 3.7. Dominant strategy, optimal counter-example CEGIS: CD = (LCH ,OCN ). The oracle OCN (LCH )
is shown in blue (yellow). The oracle OCN ) solves an optimization problem to propose optimal counter-
examples. The learner LCH solves a sequence of SMT queries to compute the refuted balls, and then solves
a MILP problem to find an ε−robust control strategy.

3.5 Evaluation

We summarize the CEGIS variants studied in this chapter in Table 3.1. We benchmark the
performance of the CEGIS variants CH , CD, CN and CS across five experiments, each designed
to vary the difficulty in a specific manner.

• In Experiment 1, we extend the RPS game (Example 4) to study the effects of subdi-
viding the input space into more regions (increased N) while keeping the number of
counterexamples fixed.

• Experiment 2 extends Example 4 with additional moves. The number of counterex-
amples grows with the number of moves.

• In Experiment 3 we study the overhead of introducing refuted rectangles.

• In Experiment 4 and 5 we introduce linear dynamics to Example 4.

Our implementations of CN , CS, CH and CD are available as a python toolbox Magnum-
STL [153]. Our tool encodes the system and the specifications as a MILP using the encoding
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Symbol Optimal Memory “Terminates” New

CN Yes ∞ Yes No
CS Yes 1 No No
CH Yes k ∈ N Yes Yes
CD No ∞ Yes Yes

Table 3.1. Summarizes the algorithms studied in
this paper. “Optimal” means maximal with respect
to a reward function capturing satisfaction of the
high-level specification. “Memory” refers to the num-
ber of counterexamples the candidate oracle takes
into account before proposing a candidate strategy.
“Terminates” denotes whether the algorithm termi-
nates.

in [127, 128]. It uses two backend solvers, GLPK [103] for MILP (interfaced through opt-
lang [79]) and Z3 [33] for SMT (interfaced through pysmt [59]).

Further, as CS cannot terminate in all but one experiment, for the purposes of comparison,
we have omitted it. We consider two instances of CH that remember the most recent Ck=1

H

and the two most recent counterexamples Ck=2
H , respectively.

3.5.1 Experiment 1

In this experiment we modify the embedding of R, P and S onto the real line (Fig 3.6) to
that shown in Fig 3.8 where the domain is broken down into repeated R−P −S segments.

Figure 3.8. Generalized continuous rps.

Notice that the required number of counterexamples remains three. However, for the CH ,
the number of iterations required increases as they must explicitly sample more (u, e) pairs.
Our results are shown in Table 3.2.

We see that as predicted in [128], CN scales poorly as the number of regions increase. This
is due to the fact that the encoding size, N , increases as the number of regions increased.
Ck=2
H scales only slightly worse than Ck=1

H since, the MILP has to keep track of at least two
counterexamples and is at least twice as big. CD performs the best, where the time taken
remains more or less invariant to the number of regions.



CHAPTER 3. SYNTHESIZING ROBUST CONTROL STRATEGIES 29

# Regions CD CN Ck=2
H Ck=1

H

4 0.263 1.34 1.04 0.819
7 0.435 6.36 6.34 3.58
10 0.594 31 12.2 6.54

Table 3.2. Experiment 1 run times in seconds.

3.5.2 Experiment 2

In this experiment, we generalize our RPS example to that shown in Fig 3.9: where the

Figure 3.9. Continuous RPS with n counterexamples

domain is broken into n ≥ 1 possible plays, x1, · · · , xn such that x1 beats x2, x2 beats x3,
. . ., xn beats x1.

In every round, the system wins if the following is satisfied:

ϕi = x′t ∈ xj → xt /∈ xi (3.7)

where j = i+ 1 (mod n).
Here, both the number of counterexamples as well as the number of (u, e) pairs generated

by CEGIS iterations increase. Our results are shown in Table 3.3. We observe that the results
follow the same trend as Exp 1.

# Regions CD CN Ck=2
H Ck=1

H

1 0.039 0.061 0.062 0.061
2 0.155 0.394 0.392 0.360
3 0.350 1.68 1.14 0.676
4 0.604 6.01 2.26 1.34
5 0.951 180 3.81 1.98

Table 3.3. Experiment 2 run times in seconds.

3.5.3 Experiment 3

In this experiment, we consider a simple linear system, xi+1 = xi + 5
n
(ui + wi), and a high

level specification, ϕ =
∨H
i=0 x > 5. Additionally, we have, U = E = [−1, 1] and the initial
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state x0 = 0. It is clear that the environment has a dominant strategy wi = −1, and our
conjecture is that we need only a few iterations for CH to converge. Particularly, we study
the overhead of introducing refuted rectangles. Our results are shown in Fig 3.10.

Figure 3.10. The x-axis shows the dimension of the input space, while the y-axis shows the time taken for
the CEGIS loop to converge. milp ce 1 refers to Ck=1

H , milp ce 2 refers to Ck=2
H , milp ce inf refers to CN ,

and smt ce inf refers to CD.

All engines perform fairly well (compare with the times in Experiments 1 and 2 ). As the
original specification has a small encoding which is comparable to encoding the refuted rect-
angles, i.e., N ≈ 2nu, in this particular case, it appears better to encode the counterexample
than the refuted input space.

3.5.4 Experiments 4 and 5

Experiments 4 and 5 are modifications to Experiment 1. In Experiment 4, we introduce
linear dynamics to the RPS,

xi+1 = xi + 30ui/n x′i+1 = x′i + 30wi/n (3.8)

where n is the number of steps taken and the initial state is (state0 = x′0 = 20). The
specifications on the system remain the same. As before, there is no dominant strategy for
the system, and the number of counterexamples remains three. Our results are shown in
Table 3.4. Ck=1

H performs reasonably well initially, but times out eventually (for discretiza-
tion time > 3). CD outperforms all the other methods and remains more or less invariant to
changes to discretization time. The timeouts for CN and Ck=2

H happen after two counterex-
amples are found. The encoding then seems to become too large for GLPK to handle. For
k = 1 the initial increase is due in part to the size of the MILP encoding, but also because
more iterations are required since the counterexample in each iteration refutes less of the
total input space.

In Experiment 5, we introduce a small gap between R and P in Experiment 4. We denote
this to be the ‘Spock ’. We update the specification ϕ with an additional specification,

ϕdom = (x′t ∈ {R,P, S})→ (x ∈ Spock)
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dim(U) CD CN Ck=2
H Ck=1

H

1 0.35 18.01 1.52 0.88
2 0.53 timeout timeout 5.11
3 1.00 timeout timeout 6.38

Table 3.4. Experiment 4 run times in seconds.

Choosing Spock yields a small positive ρϕ against all disturbances and is, thus, a dominant
strategy. Nevertheless, u ∈ Spock has ρϕ so small that OCN does not propose Spock unless
R, P and S are refuted. CN and CD would take at least three iterations to refute them.

dim(U) CD CN Ck=2
H Ck=1

H

1 0.206 1.23 1.25 0.773
2 0.321 3.57 3.61 7.28
3 0.662 28.31 33.40 39.00

Table 3.5. Experiment 5 run times in seconds.

Introducing the Spock region significantly improves performance. CN and Ck=2
H no longer

time out. We suspect that this is due to the dominant strategy aiding in the branch and
bound heuristics the MILP solver uses. In practice, such a region will often exist. For
example, this could correspond to a near miss angle in the example in Fig 3.1. Again, CD
outperforms the others. Not shown are additional experiments increasing the time resolution
by a factor of 12, at which point the optimality of OCN leads to exponential blow up similar
to the other variants.

3.6 Conclusion

In this chapter, we addressed the problem of synthesizing robust control strategies for con-
tinuous two-player games using the CEGIS framework. We studied the shortcomings of the
existing practical implementations of the CEGIS algorithm, and introduced two algorithms
based on SMT which overcome these. Finally, we conclude the chapter with theoretical
analysis and empirical results which shows the scalability of our framework.
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Chapter 4

Specification Synthesis for Controller
Synthesis

4.1 Introduction

In Chapter 3 we studied how we can instantiate the CEGIS framework to synthesize robust
control strategies that satisfy high-level safety specifications. A key challenge that arises
during the design of safety-critical robotic systems, is quantifying or defining what one
means by safety. Often a designer starts with a specification that they build from prior
knowledge, and then refine it during subsequent cycles of the design process.

Techniques for automatic synthesis of controllers for safety-critical robotic systems from
high-level specification languages promise to raise the level of abstraction for the designer
while ensuring correctness of the resulting controller. In particular, several controller syn-
thesis methods have been proposed for expressive temporal logics and a variety of system
dynamics. However, a major challenge to the adoption of these methods in practice is the
difficulty of writing or specifying the requisite formal specifications. Specifications that are
poorly stated, incomplete, or inconsistent can produce synthesis problems that are unre-
alizable (no controller exists for the provided specification), intractable (synthesis is com-
putationally too hard), or lead to solutions that fail to capture the designer’s intent. In
this chapter, we present an algorithmic approach to reduce the specification burden for con-
troller synthesis from temporal logic specifications, focusing on the case where the original
specification is unrealizable.

4.1.1 Diagnosis and Repair for Synthesis from Temporal Logic

Logical specifications can be provided in multiple ways. One approach is to provide mono-
lithic specifications, combining within a single formula constraints on the environment with
desired properties of the system under control. In many cases, a system specification can be
conveniently provided as a contract, to distinguish the responsibilities of the system under
control (guarantees) from the assumptions on the external, possibly adversarial environ-
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ment [118, 116]. In such a scenario, an unrealizable specification can be made realizable by
either “weakening” the guarantees or “tightening” the assumptions. In fact, when a specifica-
tion is unrealizable, it could be either because the environment assumptions are too weak, or
the requirements are too strong, or a combination of both. Finding the “problem” with the
specification manually can be a tedious and time-consuming process, nullifying the benefits
of automatic synthesis. Further, in the reactive setting, when the environment is adversarial,
finding the right assumptions a priori can be difficult. Thus, given an unrealizable logical
specification, there is a need for tools that localize the cause of unrealizability to (hopefully
small) parts of the formula, and provide suggestions for repairing the formula in an “optimal”
manner.

The problem of diagnosing and repairing formal requirements has received its share of
attention in the formal methods community. The authors in [53] perform diagnosis on faulty
executions of systems with specifications expressed in Linear Temporal Logic (LTL) and Met-
ric Temporal Logic (MTL) [53]. They identify the cause of unsatisfiability of these properties
in the form of prime implicants, which are conjunctions of literals, and map the failure of a
specification to the failure of these prime implicants. Similar syntax-tree based definitions
of unsatisfiable cores for LTL were presented in [133]. In the context of synthesis from LTL
specifications, [126] addresses the problem of categorizing the causes of unrealizability, and
how to detect them in high-level robot control specifications. The use of counter-strategies
to debug unrealizable cores in a set of specifications or derive new environment assumptions
for synthesis has also been explored [97, 89, 4, 98]. When a LTL specification in unrealiz-
able, controller synthesis reduces to finding the path through an automaton composed of the
system and the specification, that maximizes some reward function ([152, 93]). For automa-
tons, repair reduces to finding the specification automaton closest to the original automaton
([86], [122]). However, these approaches suffer from computational blow up as the number
of states increase. In [24] the authors use a sampling based technique to find a discrete state
approximation of continuous system and define LTL properties of the system. The authors
allow for controller synthesis for non adversarial environments by maximizing a cost function
which maximizes some reward function. We provide corrections instead of finding the next
best control in an adversarial environment.

In [88] and [81] the authors learn STL specifications from data collected from black box
systems which best describe system. We consider white box systems where the dynamics
and well known and provide corrections for controller synthesis.

Our approach, based on exploiting information already available from off-the-shelf opti-
mization solvers, is similar to the one adopted by in [117] to extract unsatisfiable cores for
Satisfiability Modulo Theories (SMT) solving.

In this chapter, we address the problem of diagnosing and repairing specifications for-
malized in Signal Temporal Logic (STL) [104], a specification language that is well-suited
for hybrid systems. Our work is conducted in the setting of automated synthesis from STL
using optimization methods in a Model Predictive Control (MPC) framework [127, 128].
In this approach to synthesis, both the system dynamics and the STL requirements en-
coded as mixed integer constraints on variables modeling the dynamics of the system and
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its environment. Controller synthesis is then formulated as an optimization problem to be
solved subject to these constraints [127]. In the reactive setting, this approach proceeds by
iteratively solving a combination of optimization problems using a Counterexample-Guided
Inductive Synthesis (CEGIS) scheme [128]. In this context, an unrealizable STL specifica-
tion leads to an infeasible optimization problem. We leverage the ability of existing Mixed
Integer Linear Programming (MILP) solvers to localize the cause of infeasibility to so-called
Irreducibly Inconsistent Systems (IIS). Our algorithms use the IIS to localize the cause of
unrealizability to the relevant parts of the STL specification. Additionally, we give a method
for generating a minimal set of repairs to the STL specification such that, after applying
those repairs, the resulting specification is realizable. The set of repairs is drawn from a
suitably defined space that ensures that we rule out vacuous and other unreasonable adjust-
ments to the specification. Specifically, in this paper, we focus on the numerical parameters
in a formula, since their specification is often the most tedious and error-prone part. Our
algorithms are sound and complete, i.e., they provide a correct diagnosis, and always ter-
minate with a reasonable specification that is realizable using the chosen synthesis method,
when such a repair exists in the space of possible repairs.

The problem of infeasibility in constrained predictive control schemes has also been widely
addressed in the literature, e.g., by adopting robust MPC approaches, soft constraints, and
penalty functions [85, 134, 15]. Rather than tackling general infeasibility issues in MPC,
our focus is on providing tools to help debug the controller specification at design time.
However, the deployment of robust or soft-constrained MPC approaches can also benefit
from our techniques. Our use of MILP does not restrict our method to linear dynamical
systems; indeed, we can handle constrained linear and piecewise affine systems, Mixed Logical
Dynamical (MLD) systems [14], and certain differentially flat systems. The results in this
chapter are adapted from [64].

4.2 Preliminaries

We consider discrete time hybrid dynamical systems defined by (2.2) in Section 2.2. Refer to
Section 2.2 for the definition of system trajectories ξS(t;x0,u, e). In this chapter, we define
the safety specification in STL defined in 2.4.1

4.2.1 Model Predictive Control

We have already covered Model Predictive Control (MPC) and Receding Horizon Con-
trol (RHC) in Section 3.2.1. In this chapter, we use STL to express temporal constraints
on the environment and system runs for MPC. We then translate an STL specification into
a set of mixed integer linear constraints, as further detailed below [127, 128]. Given a STL
formula ϕ to be satisfied over a finite horizon H, the associated optimization problem has
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the form:
maximize

u
ρϕ(ξS(·;x0,u))

subject to ρϕ(ξS(·;x0,u)) > 0
(4.1)

which extracts a finite horizon control strategy u that maximizes the satisfaction of the
specification ϕ, ρϕ(ξS(·;x0,u)) over the finite-horizon trajectory ξS(·;x0,u), while satisfying
the STL formula ϕ at time step 0. In a closed-loop setting, we compute a fresh u at every
time step i ∈ N, replacing x0 with xi in (4.1) [127, 128].

While (4.1) applies to systems without disturbance inputs, a more general formulation
can be provided to account for an uncontrolled disturbance input e that can act, in general,
adversarially. To provide this formulation, we assume that the specification is given in
the form of an STL assume-guarantee (A/G) contract [118, 116] C = (V, ϕe, ϕ ≡ ϕe →
ϕs), where V is the set of variables, ϕe captures the assumptions (admitted behaviors)
over the (uncontrolled) environment inputs e, and ϕs describes the guarantees (promised
behaviors) over all the system variables. A game-theoretic formulation of the controller
synthesis problem [128] can then be represented as a minimax optimization problem:

maximize
u

minimize
e∈Ee

ρϕ(ξS(·;x0,u))

subject to ∀e ∈ Ee ρϕ(ξS(·;x0,u)) > 0,
(4.2)

where we aim to find a strategy u that maximizes the the worst case satisfaction of ρϕ(ξS(·;x0,u))
over the finite horizon trajectory, under the assumption that the disturbance signal e acts ad-
versarially. We use Ee in (4.2) to denote the set of disturbances that satisfy the environment
specification ϕe, i.e., Ee = {e ∈ E|e |= ϕe} ⊆ E .

4.2.2 Mixed Integer Linear Program Formulation

To solve the control problems in (4.1) and (4.2) the STL formula ϕ can be translated into a
set of mixed integer constraints, thus reducing the optimization problem to a Mixed Integer
Program (MIP), as long as the system dynamics can also be translated into mixed integer
constraints. Specifically, in this paper, we consider control problems that can be encoded
as Mixed Integer Linear Programs (MILP). These problems encompass, for instance, Mixed
Logical Dynamic (MLD) systems [14] with STL specifications that only include piecewise
linear or affine predicates.

The MILP constraints are constructed recursively on the structure of the STL specifica-
tion as in [127, 128], and express the robust satisfaction value of the specification. A first
set of variables and constraints capture the robust satisfaction of the atomic predicates of
the formula. To generate the remaining constraints, we traverse the parse tree of ϕ from
the leaves (associated with the atomic predicates) to the root node (corresponding to the
robustness satisfaction value of the overall formula ρϕ), adding variables and constraints that
obey the quantitative semantics in (2.6).
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Figure 4.1. Vehicles crossing an intersection. The red car is the ego vehicle, while the black car is part of
the environment.

Recall from Section 2.4.1 that the robustness value of subformulae with temporal and
Boolean operators is expressed as the min or max of the robustness values of the operands
over time. We discuss here the encoding of the min operator as an example. To encode
p = min(ρϕ1 , . . . , ρϕn), we introduce Boolean variables zϕi for i ∈ {1, . . . , n} and MILP
constraints:

p ≤ ρϕi ,
∑
i=1...n

zϕi ≥ 1

ρϕi − (1− zϕi)M ≤ p ≤ ρϕi + (1− zϕi)M
(4.3)

where M is a constant selected to be much larger than |ρϕi | for all i, and i ∈ {1, . . . , n}. The
above constraints ensure that zϕi = 1 and p = ρϕi only if ρϕi is the minimum over all i. For
max, we replace ≤ by ≥ in the first constraint of (4.3).

We solve the resulting MILP with an off-the-shelf solver. If the receding horizon scheme
is feasible, then the controller synthesis problem is realizable, i.e., the algorithm returns a
controller that satisfies the specification and optimizes the objective. However, if the MILP
is infeasible, the synthesis problem is unrealizable. In this case, the failure to synthesize a
controller may well be attributed to just a portion of the STL specification. In the rest of
the chapter we discuss how infeasibility of the MILP constraints can be used to infer the
“cause” of failure and, consequently, diagnose and repair the original STL specification.

4.3 Running Example

To illustrate our approach, we introduce a running example from the autonomous driving
domain. As shown in Fig. 4.1, we consider a scenario in which two moving vehicles approach
an intersection. The red car, labeled the ego vehicle, is the vehicle under control, while the
black car is part of the external environment and may behave, in general, adversarially. The
state of the system includes the position and velocity of each vehicle, the control input is the
acceleration of the ego vehicle, and the environment input is the acceleration of the other
vehicle, i.e.,

xt = [xego
t , yego

t , vego
t , xadv

t , yadv
t , vadv

t ]

ut = aego
t et = aadv

t .
(4.4)
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We also assume the dynamics of the system is given by a simple double integrator for each
vehicle:  ˙xego

˙yego

˙vego

 =

0 0 0
0 0 1
0 0 0

xego

yego

vego

+

0
0
1

u. (4.5)

The ego vehicle is thus constrained to move along the vertical axis. A similar equation
holds for the adversary vehicle, which is constrained to move along the horizontal axis. The
dynamics can be discretized with an appropriate time step ∆t. We assume the ego vehicle is
initialized at the coordinates (0,−1) and the adversary vehicle is initialized at (−1, 0). We
further assume all the units in this example follow the metric system. We would like to design
a controller for the ego vehicle to satisfy an STL specification under some assumptions on the
external environment, and provide diagnosis and feedback if the specification is infeasible.
We discuss the following three scenarios.

Example 5 (Collision Avoidance). The specification is to avoid a collision between the ego
and the adversary vehicle. We assume the adversary vehicle’s acceleration is fixed at all
times, i.e., et = aadv

t = 2, while the initial velocities are vadv
0 = 0 and vego

0 = 0. We encode
our requirements using the formula ϕ := ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are defined as follows:

ϕ1 = G[0,∞)¬
(
(−0.5 ≤ yego

t ≤ 0.5) ∧ (−0.5 ≤ xadv
t ≤ 0.5)

)
,

ϕ@ = G[0,∞)

(
1.5 ≤ aego

t ≤ 2.5
)
.

(4.6)

We prescribe bounds on the system acceleration, and state that both cars should never be
confined together within a box of width 1 around the intersection (0, 0) to avoid a collision.

Example 6 (Non-adversarial Race). We discuss a race scenario, in which the ego vehicle
must increase its velocity to exceed 0.5 whenever the adversary’s initial velocity exceeds 0.5.
We then formalize our requirement as a contract (ψe, ψe → ψs), where ψe are the assumptions
made on the environment and ψs are the guarantees of the system provided the environment
satisfies the assumptions. Specifically:

ψe = (vadv
0 ≥ 0.5),

ψs = G[0,∞)(−1 ≤ aego
t ≤ 1) ∧G[0.2,∞)(v

ego
t ≥ 0.5).

(4.7)

The initial velocities are vadv
0 = 0.55 and vego

0 = 0, while the environment vehicle’s accel-
eration is et = aadv

t = 1 at all times. We also require the acceleration to be bounded by
1.

Example 7 (Adversarial Race). We discuss another race scenario, in which the environment
vehicle acceleration aadv

t is no longer fixed, but can vary up to a maximum value of 2. Initially,
vadv

0 = 0 and vego
0 = 0 hold. Under these assumptions, we would like to guarantee that the

velocity of the ego vehicle exceeds 0.5 if the speed of the adversary vehicle exceeds 0.5, while
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maintaining an acceleration in the [−1, 1] range. Altogether, we capture the requirements
above via a contract (φw, φw → φs), where:

φw = G[0,∞)

(
0 ≤ aadv

t ≤ 2
)
,

φs = G[0,∞)

(
(vadv
t > 0.5)→ (vego

t > 0.5)
)
∧
(
|aego
t | ≤ 1

)
.

(4.8)

4.4 Problem Formulation

In this section, we define the problems of specification diagnosis and repair in the context
of controller synthesis from STL. We assume that the discrete-time system dynamics fd, the
initial state x0, the STL specification ϕ, and a cost function ρϕ are given. The controller
synthesis problem, denoted P = (fd, x0, ϕ, ρϕ), is to solve (4.1) (when ϕ is a monolithic
specification of the desired system behavior) or (4.2) (when ϕ represents a contract between
the system and the environment).

If synthesis fails, the diagnosis problem is, intuitively, to return an explanation in the
form of a subset of the original problem constraints that are already infeasible when taken
alone. The repair problem is to return a “minimal” set of changes to the specification that
would render the resulting controller synthesis problem feasible. To diagnose and repair an
STL formula, we focus on its sets of atomic predicates and time intervals of the temporal
operators. We then start by providing a definition of the support of its atomic predicates,
i.e., the set of times at which the value of a predicate affects satisfiability of the formula,
and define the set of allowed repairs.

Definition 5 (Support). The support of a predicate µ in an STL formula ϕ is the set of
times t such that µ(ξS(t)) appears in ϕ.

For example, given ϕ = G[6,10](xt > 0.2), the support of predicate µ = (xt > 0.2) is
the time interval [6, 10]. We can compute the support of each predicate in ϕ by traversing
the parse tree of the formula from the root node to the leaves, which are associated with
the atomic predicates. The support of the root of the formula is {0} by definition. While
parsing ϕ, new nodes are created and associated with the Boolean and temporal operators in
the formula. Let κ and δ be the subsets of nodes associated with the Boolean and bounded
temporal operators, respectively, where δ = δG ∪ δF ∪ δU. The support of the predicates
can then be computed by recursively applying the following rule for each node i in the parse
tree:

σi =


σr if r ∈ κ
σr + Ir if r ∈ δG ∪ δF
[σlbr , σ

ub
r + Iubr ] if r ∈ δU,

(4.9)

where r is the parent of i, σr is the support of r, and Ii is the interval associated with i when
i corresponds to a temporal operator. We denote as I1 + I2 the Minkowski sum of the sets
I1 and I2, and as I lb and Iub, respectively, the lower and upped bounds of interval I.
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Definition 6 (Allowed Repairs). Let Φ denote the set of all possible STL formulae. A repair
action is a relation γ : Φ→ Φ consisting of the union of the following:

• A predicate repair returns the original formula after modifying one of its atomic pred-
icates µ to µ∗. We denote this sort of repair by ϕ[µ 7→ µ∗] ∈ γ(ϕ);

• A time interval repair returns the original formula after replacing the interval of a
temporal operator. This is denoted ϕ[∆[a,b] 7→ ∆[a∗,b∗]] ∈ γ(ϕ) where ∆ ∈ {G,F,U}.

=

Repair actions can be composed to get a sequence of repairs Γ = γn(γn−1(. . . (γ1(ϕ)) . . . )).
Given an STL formula ϕ, we denote as REPAIR(ϕ) the set of all possible formulae obtained
through compositions of allowed repair actions on ϕ. Moreover, given a set of atomic pred-
icates D and a set of time intervals T , we use REPAIRT ,D(ϕ) ⊆ REPAIR(ϕ) to denote the
set of repair actions that act only on predicates in D or time intervals in T . We are now
ready to provide the formulation of the problems addressed in the paper, both in terms of
diagnosis and repair of a monolithic specification ϕ (general diagnosis and repair) and an
A/G contract (ϕe, ϕe → ϕs) (contract diagnosis and repair).

Problem 1 (General Diagnosis and Repair). Given a controller synthesis problem P =
(fd, x0, ϕ, ρϕ) such that (4.1) is infeasible, find:

• A set of atomic predicates D = {µ1, . . . , µd} or time intervals T = {τ1, . . . , τd} of the
original formula ϕ,

• ϕ′ ∈ REPAIRT ,D(ϕ),

such that P ′ = (fd, x0, ϕ
′, ρϕ′) is feasible, and the following minimality conditions hold:

• (predicate minimality) if ϕ′ is obtained by predicate repair1, si = µ∗i − µi for i ∈
{1, . . . , d}, sD = (s1, . . . , sd), and || · || is a norm on Rd, then

@ (D′, sD′) s.t. ||sD′|| ≤ ||sD|| (4.10)

and P ′′ = (fd, x0, ϕ
′′, ρϕ′′) is feasible, with ϕ′′ ∈ REPAIRD′(ϕ).

• (time interval minimality) if ϕ′ is obtained by time interval repair, T ∗ = {τ ∗1 , . . . , τ ∗l }
are the non-empty repaired intervals, and ||τ || is the length of interval τ :

@ T ′ = {τ ′1, . . . , τ ′l}, s.t. ∃i ∈ {1, . . . , l}, ||τ ∗i || ≤ ||τ ′i || (4.11)

and P ′′ = (fd, x0, ϕ
′′, ρϕ′′) is feasible, with ϕ′′ ∈ REPAIRT ′(ϕ).

1For technical reasons, our minimality conditions are predicated on a single type of repair being applied
to obtain ϕ′.
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Problem 2 (Contract Diagnosis and Repair). Given a controller synthesis problem P =
(fd, x0, ϕ ≡ ϕe → ϕs, ρϕ) such that (4.2) is infeasible, find:

• Sets of atomic predicates De = {µe1, . . . , µed}, Ds = {µs1, . . . , µsd̄} or sets of time intervals
Te = {τ e1 , . . . , τ el },Ts = {τ s1 , . . . , τ sl̄ }, respectively, of the original formulas ϕe and ϕs,

• ϕ′e ∈ REPAIRTe,De(ϕe), ϕ′s ∈ REPAIRTs,Ds(ϕs),

such that P ′ = (fd, x0, ϕ
′, ρϕ′) is feasible, D = De ∪ Ds, T = Te ∪ Ts, and ϕ′ ≡ ϕ′e → ϕ′s

satisfies the minimality conditions of Problem (1).

In the following sections, we discuss our solution to the above problems.

4.5 Solution Approach

We extend the OGIS ([80]) framework to solve Problem 1 in Section 4.6.
The OGIS loop for Problem 1 is represented as IϕM = (LIϕM ,OIϕM ). In the first iteration

the learner solves (4.1) to synthesize a control sequence u. If the learner is un-successful, the
oracle diagnoses the specification and extracts a Irreducibly Inconsistent System (IIS) which
explains the cause of infeasibility of (4.1). The oracle extracts a set of diagnosed atomic pred-
icates D′ and associated constraints I ′ in the optimization problem from the IIS and returns
it to the learner. The learner then modifies the optimization problem in (4.1) by introducing
‘’slack” variables to the constraints returned by the oracle I ′. If the modified optimization
problem is feasible, then the learner returns a proposed repair ϕ′ ∈ REPAIRT ,D(ϕ) a solution
to Problem 1 and a control strategy u. If not, the learner sends the updated optimization
problem M to the the oracle, which then diagnoses the modified optimization problem to
propose a new IIS. This loop continues until the learner finds a repaired specification and
u. Moreover, the solution returned by the learner is a minimal repair ϕ′ ∈ REPAIRT ,D(ϕ) to
the original specification ϕ.

We next shows that with minor modifications to IϕM , we can solve Problem 2 in non-
adversarial settings.

To solve Problem 2 in adversarial settings, we propose a hierarchical CEGIS ([141])
framework represented as CϕC = (LCϕC ,OCϕC ). We detail this in Section 4.7.

4.6 Monolithic specifications

The overall OGIS framework IϕM = (LIϕM ,OIϕM )) for Problem 1 is shown in Figure 4.2. The
OGIS loop iteratively diagnoses inconsistencies in the specification and provides constructive
feedback to the designer.

The concept class for the learner LIϕM here is the domain of all specifications. The oracle
OIϕM here is deterministic mapping from MILP problems to infeasibility core.
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Figure 4.2. OGIS for Problem 1 IϕM
= (LIϕM

,OIϕM
). The oracle OIϕM

(LIϕM
) is shown in blue (yellow).

The oracle OIϕM
diagnoses the infeasible control synthesis (@u) problem being solved by the learner. It first

extracts the Irreducibly Inconsistent System (IIS) from the optimization problem M (IC = IIS(M)). It
then extracts the set of diagnosed atomic predicates D′ = ExtractPredicates(IC) and associated constraints
I ′ = ExtractConstraints(IC) and returns it to the learner. The learner updates the MILP by introducing
‘’slack” variables to the constraints pertaining to the to the diagnosed predicates I ′. It then solves the
modified the updated optimization problem. If this is feasible, the learner returns the updated specification
ϕ′ and synthesized control strategy u. If not, it sends the updated specification to the oracle and loop
continues. The oracle returns a set of diagnosed predicates D′ to the user at every iteration. By introducing
the slack variables to the atomic predicates, we are guaranteed that the OGIS loop will terminate with a
repaired specification ϕ′.

The overall OGIS is summarized in Algorithm 1. The Diagnosis procedure is implemented
by the oracle OIϕM and the Repair and Solve procedures are implemented by the learner
LIϕM .

Given a problem P , defined as in Section 4.4, GenMILP reformulates (4.1) in terms of
the following MILP:

maximize
u

ρϕ(ξS(·;x0,u))

subject to fdi ≤ 0 i ∈ {1, . . . ,md}
fϕk ≤ 0 k ∈ {1, . . . ,ms},

(4.12)

where fd and fϕ are mixed integer linear constraint functions over the states, outputs, and
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Algorithm 1 OGIS IϕM for Diagnosis and Repair

1: procedure DiagnoseRepair(P)
2: (ρϕ, C)← GenMILP(P), repaired← 0
3: u← Solve(ρϕ, C) . In LIϕM
4: if u = ∅ then
5: D ← ∅, S ← ∅, I ← ∅, M← (0, C)
6: while repaired = 0 do
7: (D′, S ′, I ′)← Diagnosis(M, P) . In OIϕM
8: D ← D ∪D′, S ← S ∪ S ′, I ← I ∪ I ′ . In OIϕM
9: options← UserInput(D′)

10: λ ← ModifyConstraints(I ′, options)
11: (repaired,M, ϕ′)← Repair(M, I ′, λ, S, ϕ) . In LIϕM
12: u← Solve(ρϕ′ , M.C) . In LIϕM
13: return u,D, repaired, ϕ′

Algorithm 2 Diagnosis (Oracle OIϕM )

1: procedure Diagnosis(M, P)
2: IC ← IIS(M)
3: (D, S)← ExtractPredicates(IC ,P)
4: I ′ ← ExtractConstraints(M,D)
5: return D, S, I ′

inputs of the finite horizon trajectory ξS(·;x0,u) associated, respectively, with the system
dynamics and the STL specification ϕ. We let (ρϕ, C) represent the MILP correcponding
to the original specification ϕ, where ρϕ is the robustness objective, and C is the set of
constraints. If problem (4.12) is infeasible, we iterate between diagnosis and repair phases
until the repaired feasible specification ϕ′ is obtained. We let D and I denote, respectively,
the set of predicates returned by the diagnosis procedure, and the constraints corresponding
to those predicates.

Optionally, we support an interactive repair mechanism, where the designer provides
a set of options that prioritize which predicates to modify (UserInput procedure) and get
converted into a set of weights λ (ModifyConstraints routine). The designer can then leverage
this weighted-cost variant of the problem to distinguish between “hard” constraints, i.e.,
constraints that should never be violated in the controller synthesis problem, and “soft”
constraints, i.e., constraints whose violation or perturbation is admitted within a predefined
margin. In the following, we detail the implementation of the Diagnosis and Repair routines.
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4.6.1 Diagnosis

Our diagnosis procedure is implemented as the oracle OIϕM and summarized in Algorithm 2.
Diagnosis receives as inputs the controller synthesis problem P and an associated MILP
formulationM. M can either be the feasibility problem corresponding to the original prob-
lem (4.12), or a relaxation of it. This feasibility problem has the same constraints as (4.12)
(possibly relaxed) but constant cost. Formally, we provide the following definition of relaxed
constraint and relaxed optimization problem.

Definition 7 (Relaxed Problem). We say that a constraint f ′ ≤ 0 is a relaxed version of
f ≤ 0 if f ′ = (f − s) for some slack variable s ∈ R+. In this case, we also say that f ≤ 0
“is relaxed to” f ′ ≤ 0. An optimization problem O′ is a relaxation of another optimization
problem O if it is obtained from O by relaxing at least one of its constraints.

WhenM is infeasible, we rely on the capability of state-of-the-art MILP solvers to provide
an Irreducibly Inconsistent System (IIS) [72, 26] of constraints IC , defined as follows.

Definition 8 (Irreducibly Inconsistent System). Given a feasibility problem M with con-
straint set C, an Irreducibly Inconsistent System IC is a subset of constraints IC ⊆ C such
that: (i) the optimization problem (0, IC) is infeasible; (ii) ∀ c ∈ IC, problem (0, IC \ {c}) is
feasible.

In other words, an IIS is an infeasible subset of constraints that becomes feasible if any
single constraint is removed. For each constraint in IC , ExtractPredicates traces back the
STL predicate(s) originating it, which will be used to construct the set D = {µ1, . . . , µd}
of STL atomic predicates in Problem 1, and the corresponding set of support intervals
S = {σ1, . . . , σd} (adequately truncated to the current horizon H) as obtained from the
STL syntax tree. D will be used to produce a relaxed version of M as further detailed in
Section 4.6.2. For this purpose, the procedure also returns the subset I of all the constraints
in M that are associated with the predicates in D. In our application, we process all the
constraints in the IIS together.

4.6.2 Repair

The diagnosis procedure isolates a set of STL atomic predicates that jointly produce a reason
of infeasibility for the synthesis problem. For repair, we are instead interested in how to mod-
ify the original formula to make the problem feasible. The repair procedure is implemented
as part of the learner LIϕM and summarized in Algorithm 3. We formulate relaxations of
the feasibility problem M associated with problem (4.12) by using slack variables.
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Algorithm 3 Repair (Learner LIϕM )

1: procedure Repair(M, I, λ, S, ϕ)
2: M.ρϕ′ ←M.ρϕ + λ>sI
3: for c in I do
4: if λ(c) > 0 then
5: M.C(c)←M.C(c) + sc

6: (repaired, s∗) ← Solve(M.ρϕ′ , M.C)
7: if repaired = 1 then
8: ϕ′ ← ExtractFeedback(s∗,S,ϕ)

9: return repaired, M, ϕ′

Let fi, i ∈ {1, . . . ,m} denote both of the categories of constraints fdyn and fϕ in the
feasibility problem M. We reformulate M into the following slack feasibility problem:

minimize
s∈R|I|

||s||

subject to fi − si ≤ 0i ∈ {1, . . . , |I|}
fi ≤ 0i ∈ {|I|+ 1, . . . ,m}
si ≥ 0i ∈ {1, . . . , |I|},

(4.13)

where s = s1...s|I| is a vector of slack variables corresponding to the subset of optimization
constraints I, as obtained after the latest call of Diagnosis. Not all the constraints in the
original optimization problem (4.12) can be modified. For instance, the designer will not be
able to arbitrarily modify constraints that can directly affect the dynamics of the system,
i.e., constraints encoded in fdyn. Solving problem (4.13) is equivalent to looking for a set of
slacks that make the original control problem feasible while minimizing a suitable norm || · ||
of the slack vector. In most of our application examples, we choose the l1-norm, which tends
to provide sparser solutions for s, i.e., nonzero slacks for a smaller number of constraints.
However, other norms can also be used, including weighted norms based on the set of weights
λ. If problem (4.13) is feasible, ExtractFeedback uses the solution s∗ to repair the original
infeasible specification ϕ. Otherwise, the infeasible problem is subjected to another round
of diagnosis to retrieve further constraints to relax. In what follows, we provide details on
the implementation of ExtractFeedback.

Based on the encoding discussed in Section 4.2.2, the constraints in M capture, in a
recursive fashion, the robust satisfaction of the STL specification as a function of its sub-
formulae, from ϕ itself to the atomic predicates µi. To guarantee satisfaction of a Boolean
operation in ϕ at time t, we must be able to perturb, in general, all the constraints associated
with its operands, i.e., the children nodes of the corresponding Boolean operator in the parse
tree of ϕ, at time t. Similarly, to guarantee satisfaction of a temporal construct at time t, we
must be able to perturb the constraints associated with the operands of the corresponding
operator at all times in their support. By recursively applying this line of reasoning, we
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can then conclude that, to guarantee satisfaction of ϕ, it is sufficient to introduce slacks to
all the constraints associated with all the diagnosed predicates in D over their entire sup-
port. For each µi ∈ D, i ∈ {1, . . . , d}, let σi = [σlbi , σ

ub
i ] be its support interval. The set

of slack variables {s1, . . . , s|I|} in (4.13) can then be seen as the set of variables sµi,t used
to relax the constraints corresponding to each diagnosed predicate µi ∈ D at time t, for all
t ∈ {max{0, σlbi }, . . . ,min{H − 1, σubi }} and i ∈ {1, . . . , d}.

If a minimum norm solution s∗ is found for (4.13), then the slack variables s∗ can be
mapped to a set of predicate repairs sD, as defined in Problem 1, as follows. The slack vector
s∗ in Algorithm 3 consists of the set of slack variables {s∗µi,t}, where s∗µi,t is the variable
added to the optimization constraint associated with an atomic predicate µi ∈ D at time t,
i ∈ {1, . . . , d}. We set

∀ i ∈ {1, . . . , d} si = µ∗i − µi = max
t∈{σi,l,··· ,σi,u}

s∗µi,t, (4.14)

where H is the time horizon for (4.12), sD = {s1, . . . , sd}, σi,l = max{0, σlbi }, and σi,u =
min{H − 1, σubi }.

To find a set of time-interval repairs, we proceed, instead, as follows:

1. The slack vector s∗ in Algorithm 3 consists of the set of slack variables {s∗µi,t}, where
s∗µi,t is the variable added to the optimization constraint associated with an atomic
predicate µi ∈ D at time t. For each µi ∈ D, with support interval σi, we search for
the largest time interval σ′i ⊆ σi such that the slack variables s∗µi,t for t ∈ σ′i are 0. If
µi /∈ D, then we set σ′i = σi.

2. We convert every temporal operator in ϕ into a combination of G (timed or untimed)
and untimed U by using the following transformations:

F[a,b]ψ = ¬G[a,b]¬ψ,

ψ1U[a,b]ψ2 = G[0,a](ψ1U ψ2) ∧ F[a,b]ψ2,

where U is the untimed (unbounded) until operator. Let ϕ̂ be the new formula obtained
from ϕ after applying these transformations2.

3. The nodes of the parse tree of ϕ̂ can then be partitioned into three subsets, ν, κ, and
δ, respectively associated with the atomic predicates, Boolean operators, and temporal
operators (G,U) in ϕ̂. We traverse this parse tree from the leaves (atomic predicates)
to the root and recursively define for each node i a new support interval σ∗i as follows:

σ∗i =


σ′i if i ∈ ν⋂
j∈C(i)

σ∗j if i ∈ κ ∪ δU

σ∗C(i) if i ∈ δG

(4.15)

2While the second transformation introduces a new interval [0, a], its parameters are directly linked to
the ones of the original interval [a, b] (now inherited by the F operator) and will be accordingly processed
by the repair routine.
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where C(i) denotes the set of children of node i, while δG and δU are, respectively, the
subsets of nodes associated with the G and U operators. We observe that the set of
children for a G operator node is a singleton. Therefore, with some abuse of notation,
we also use C(i) in (4.15) to denote a single node in the parse tree.

4. We define the interval repair τ̂j for each (timed) temporal operator node j in the parse
tree of ϕ̂ as τ̂j = σ∗j . If τ̂j is empty for some j, no time-interval repair is possible.
Otherwise, we map back the set of intervals {τ̂j} into a set of interval repairs T ∗ for
the original formula ϕ according to the transformations in step 2 and return T ∗. We
do not define a interval repair τ̂ for a boolean operators, since these operators are
stateless. An empty support for a temporal operator implies there are no interval
repair for temporal operators. An empty support for boolean operators, propagates an
empty support to its parent and so on.

We provide an example of predicate repair below, while time interval repair is exemplified
in Section 4.7.1.

Example 8 (Collision Avoidance). We diagnose the specifications introduced in Example 5.
To formulate the synthesis problem, we assume a horizon H = 10 and a discretization step
∆t = 0.2. The system is found infeasible at the first MPC run, and Diagnosis detects the
infeasibility of ϕ1 ∧ϕ2 at time t = 6. Intuitively, given the allowed range of accelerations for
the ego vehicle, both cars end up entering the forbidden box at the same time. Algorithm 1
chooses to repair ϕ1 by adding slacks to all of its predicates, such that ϕ′1 = (−0.5 − sl1 ≤
yego
t ≤ 0.5+su1)∧(−0.5−sl2 ≤ xadv

t ≤ 0.5+su2). Table 4.1 shows the optimal slack values at
each t, while su1 and sl2 are set to zero at all t. We can then conclude that the specification
replacing ϕ1 with ϕ′1

ϕ′1 = G[0,∞)¬
(
(−0.24 ≤ yego

t ≤ 0.5) ∧ (−0.5 ≤ xadv
t ≤ 0.43)

)
(4.16)

is feasible, i.e., the cars will not collide, but the original requirement was overly demanding.
Alternatively, the user can choose to run the repair procedure on ϕ2 and change its pred-

icate as (1.5− sl ≤ aego
t ≤ 2.5 + su). In this case, we decide to stick with the original require-

ment on collision avoidance, and tune, instead, the control “effort” to satisfy it. Under the
assumption of constant acceleration (and bounds), the slacks will be the same at all t. We then
obtain [sl, su] = [0.82, 0], which ultimately turns into ϕ′2 = G[0,∞)

(
0.68 ≤ amathrmegot ≤ 2.5

)
.

The ego vehicle should then slow down to prevent entering the forbidden box at the same
time as the other car. This latter solution is, however, suboptimal with respect to the l1-
norm selected in this example when both repairs are allowed.

Our algorithm offers the following guarantees, for which a proof is reported below.

Theorem 4 (Soundness). Given a controller synthesis problem P = (fd, x0, ϕ, ρϕ), such
that (4.1) is infeasible at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula returned
from Algorithm 1 without human intervention, for a given set of predicates D or time interval
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time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
sl1 0 0 0 0 0 -0.26 0 0 0 0
su2 0 0 0 0 0 0 -0.07 0 0 0

Table 4.1. Slack values over a single horizon, for ∆t = 0.2 and H = 10.

T . Then, P ′ = (fd, x0, ϕ
′, ρϕ′) is feasible at time t and (ϕ′, D, T ) satisfy the minimality

conditions in Problem 1.

Proof: [Proof (Theorem 4)] SupposeM is the MILP encoding of P as defined in (4.12), ϕ′

is the repaired formula, and D the set of diagnosed predicates, as returned by Algorithm 1.
We start by discussing the case of predicate repair.

We let M′ be the MILP encoding of P ′ and D∗ ⊆ D be the set of predicates that are
fixed to provide ϕ′, i.e., such that s = (µ∗ − µ) 6= 0, with µ ∈ D. Algorithm 1 modifies M
by introducing a slack variable sµ,t into each constraint associated with an atomic predicate
µ in D at time t. Such a transformation leads to a feasible MILP M′′ and an optimal slack
set {s∗µ,t|µ ∈ D, t ∈ {0, . . . , H − 1}}. We now observe thatM′ andM′′ are both relaxations
of M. In fact, we can view M′ as a version of M in which only the constraints associated
with the atomic predicates in D∗ are relaxed. Therefore, each constraint having a nonzero
slack variable in M′′ is also relaxed in M′. Moreover, by (4.14), the relaxed constraints in
M′ are offset by the largest slack value over the horizon H. Then, because M′′ is feasible,
M′, and subsequently P ′, are feasible.

We now prove that (ϕ′,D) satisfy the predicate minimality condition of Problem 1. Let ϕ̃
be any formula obtained from ϕ after repairing a set of predicates D̃ such that the resulting
problem P̃ is feasible. We recall that, by Definition 8, at least one predicate in D generates
a conflicting constraint and must be repaired for M to become feasible. Then, D̃ ∩ D 6=
∅ holds. Furthermore, since Algorithm 1 iterates by diagnosing and relaxing constraints
until feasibility is achieved, D contains all the predicates that can be responsible for the
infeasibility of ϕ. In other words, Algorithm 1 finds all the IISs in the original optimization
problem and allows relaxing any constraint in the union of the IISs. Therefore, repairing any
predicate outside of D is redundant: a predicate repair set that only relaxes the constraints
associated with predicates in D̄ = D̃ ∩ D, by the same amount as in ϕ̃, and sets to zero the
slack variables associated with predicates in D \ D̄ is also effective and exhibits a smaller
slack norm. Let sD̄ be such a repair set and ϕ̄ the corresponding repaired formula. sD̄ and
sD can then be seen as two repair sets on the same predicate set. However, by the solution
of Problem (4.13), we are guaranteed that sD has minimum norm; then, ||sD|| ≤ ||sD̄|| will
hold for any such formulas ϕ̄, and hence ϕ̃.

We now consider the MILP formulation M′ associated with P ′ and ϕ′ in the case of
time-interval repairs. For each atomic predicate µi ∈ D, for i ∈ {1, . . . , |D|}, M′ includes
only the associated constraints evaluated over time intervals σ′i for which the slack variables
{sµi,t} are zero. Such a subset of constraints is trivially feasible. All the other constraints
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enforcing the satisfaction of Boolean and temporal combinations of the atomic predicates in
ϕ′ cannot cause infeasibility with these atomic predicate constraints, or the associated slack
variables {sµi,t} would be non-zero. So, M′ is feasible.

To show that (ϕ′,T ) satisfy the minimality condition in Problem 1, we observe that, by
the transformations in step 2 of the time-interval repair procedure, ϕ is logically equivalent
to a formula ϕ̂ which only contains untimed U and timed G operators. Moreover, ϕ̂ and ϕ
have the same interval parameters. Therefore, if the proposed repair set is minimal for ϕ̂,
this will also be the case for ϕ. We now observe that Algorithm 1 selects, for each atomic
predicate µi ∈ D the largest interval σ′i such that the associated constraints are feasible, i.e.,
their slack variables are zero after norm minimization3. Because feasible intervals for Boolean
combinations of atomic predicates are obtained by intersecting these maximal intervals, and
then propagated to the temporal operators, the length of the intervals of each G operator
in ϕ̂, hence of the temporal operators in ϕ, will also be maximal. �

Theorem 5 (Completeness). Assume the controller synthesis problem P = (fd, x0, ϕ, ρϕ)
results in (4.1) being infeasible at time t. If there exist a set of predicates D or time-intervals
T such that there exists Φ ⊆ REPAIRD,T (ϕ) for which ∀ φ ∈ Φ, P ′ = (fd, x0, φ, ρφ) is feasible
at time t and (φ, D, T ) are minimal in the sense of Problem 1, then Algorithm 1 returns a
repaired formula ϕ′ in Φ.

Proof: [Proof (Theorem 5)] We first observe that Algorithm 1 always terminates with a
feasible solution ϕ′ since the set of MILP constraints to diagnose and repair is finite. We first
consider the case of predicate repairs. Let D be the set of predicates modified to obtain φ ∈ Φ
and D′ the set of diagnosed predicates returned by Algorithm 1. Then, by Definition 8 and
the iterative approach of Algorithm 1, we are guaranteed that D′ includes all the predicates
responsible for inconsistencies, as also argued in the proof of Theorem 4. Therefore, we
conclude D ⊆ D′. sD and sD′ can then be seen as two repair sets on the same predicate set.
However, by the solution of Problem (4.13), we are guaranteed that sD′ has minimum norm;
then, ||sD′|| ≤ ||sD|| will hold, hence ϕ′ ∈ Φ.

We now consider the case of time-interval repair. If a formula φ ∈ Φ repairs a set
of intervals T = {τ1, . . . , τl}, then there exists a set of constraints associated with atomic
predicates in ϕ which are consistent inM, the MILP encoding associated with φ, and make
the overall problem feasible. Then, the relaxed MILP encoding M′ associated with ϕ after
slack norm minimization will also include a set of predicate constraints admitting zero slacks
over the same set of time intervals as inM, as determined by T . Since these constraints are
enough to make the entire problemM feasible, this will also be the case forM′. Therefore,
our procedure for time-interval repair terminates and produces a set of non-empty intervals
T ′ = {τ ′1, . . . , τ ′l}. Finally, because Algorithm 1 finds the longest intervals for which the
slack variables associated with each atomic predicate are zero, we are also guaranteed that

3Because we are not directly maximizing the sparsity of the slack vector, time-interval minimality is to
be interpreted with respect to slack norm minimization. Directly maximizing the number of zero slacks is
also possible but computationally more intensive.
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||τ ′i || ≥ ||τi|| for all i ∈ {1, . . . , l}, as also argued in the proof of Theorem 4. We can then
conclude that ϕ′ ∈ Φ holds. �

In the worst case, Algorithm 1 solves a number of MILP problem instances equal to the
number of atomic predicates in the STL formula. While the complexity of solving a MILP
is NP-hard, the actual runtime depends on the size of the MILP, which is O(H · |ϕ|), where
H is the length of the horizon and |ϕ| is the number of predicates and operators in the STL
specification.

Remark 3. We depend on the predicate repairs to compute the time interval repair. In
this work, out repairs are such that they are either purely predicate repairs or time interval
repairs. We would like to extend this to compute a pareto front of repairs (repairs which have
both predicate and time interval repairs).

4.7 Contract specifications

In this section, we consider specifications provided in the form of a contract (ϕe, ϕe → ϕs),
where ϕe is an STL formula expressing the assumptions, i.e., the set of behaviors assumed
from the environment, while ϕs captures the guarantees, i.e., the behaviors promised by the
system in the context of the environment. To repair contracts, we can capture tradeoffs
between assumptions and guarantees in terms of minimization of a weighted norm of slacks.
We describe below our results for both non-adversarial and adversarial environments.

We first describe the OGIS framework for the non-adversarial environments and show
that it can be solved with a small modification to IϕM . We then describe the overall CEGIS
framework CϕC = (LCϕC ,OCϕC )) for Problem 2 in adversarial setting.

4.7.1 Non-Adversarial Environment

For a contract, we make a distinction between controlled inputs ut and uncontrolled (envi-
ronment) inputs et of the dynamical system. In this section we assume that the environment
signal e can be predicted over a finite horizon and set to a known value for which the
controller must be synthesized. With ϕ ≡ ϕe → ϕs, (4.2) reduces to:

maximize
u

ξS(·;x0,u, e)

subject to ρϕ(ξS(·;x0,u, e)) > 0.
(4.17)

Because of the similarity of Problem (4.17) and Problem (4.1), we can then diagnose and
repair a contract using the methodology illustrated in Section 4.6. However, to reflect the
different structure of the specification, i.e., its partition into assumption and guarantees, we
adopt a weighted sum of the slack variables in Algorithm 1, allocating different weights to
predicates in the assumption and guarantee formulae. Hence, by modifying the learner LIϕM
to now solve for the weighted sum of the slack variables we can reuse IϕM to solve Problem 2
in non-adversarial settings. We can then provide the same guarantees as in Theorems 4
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time 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
ss 0.31 0.11 0 0 0 0 0 0 0

Table 4.2. Slack variables used in Example 6 and 9.

Figure 4.3. Parse tree of ψ ≡ ψe → ψs used in Example 6 and 9.

and 5, where ϕ ≡ ϕe → ϕs and the minimality conditions are stated with respect to the
weighted norm.

Example 9 (Non-adversarial Race). We consider Example 6 with the same discretization
step ∆t = 0.2 and horizon H = 10 as in Example 5. The MPC scheme results infeasible at
time 1. In fact, we observe that ψe is true as vadv

0 ≥ 0.5. Since vego
1 = 0.2, the predicate

ψs2 = G[0.2,∞)(v
ego
t ≥ 0.5) in ψs is found to be failing. As in Section 4.6.2, we can modify the

conflicting predicates in the specification by using slack variables as follows: vadv
t +se(t) ≥ 0.5

(assumptions) and vego
t + ss(t) ≥ 0.5 (guarantees). However, we also assign a set of weights

to the assumption (λe) and guarantee (λs) predicates, our objective being λe|se| + λs|ss|.
By setting λs > λe, we encourage modifications in the assumption predicate, thus obtaining
se = 0.06 at time 0 and zero otherwise, and ss = 0 at all times. We can then set ψ′e =
(vadv

0 ≥ 0.56), which falsifies ψ′e so that ψ′e → ψs is satisfied. Alternatively, by setting
λs < λe, we obtain the slack values in Table 4.2, which lead to the following predicate repair:
ψ′s2 = G[0.2,∞)(v

ego
t ≥ 0.2).

We can also modify the time interval of the temporal operator associated with ψs2 to repair
the overall specification. To do so, Algorithm 1 uses the parse tree of ψe → ψs in Figure 4.3.
For any of the leaf node predicates µi, i ∈ {1, 2, 3}, we get a support σi = [0, 9], which is
only limited by the finite horizon H. Then, based on the slack values in Table 4.2, we can
conclude σ′1 = σ′2 = [0, 9] (the optimal slack values for these predicates are always zero),
while σ′3 = [3, 9]. For the given syntax tree, we also have σ∗1 = σ′1, σ∗2 = σ′2, and σ∗3 = σ′3
for the temporal operator nodes that are parent nodes of µ1, µ2, and µ3, respectively. Since
none of the above intervals is empty, a time interval repair is indeed possible by modifying
the time interval of the parent node of µ3, thus achieving τ ∗3 = σ∗3. This leads to the following
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Algorithm 4 CEGIS CϕC for Diagnosis and Repair in an adversarial setting

1: procedure DiagnoseRepairAdversarial(P)
2: (ρϕ, C)← GenMILP(P)
3: (u, e, sat)← CheckSAT(ρϕ, C)
4: if sat then
5: E∗CE ← SolveCEGIS(u,P)
6: ECE ← E∗CE
7: while ECE 6= ∅ do
8: Pw ← RepairAdversarial(ECE,P) . In LCϕC
9: ECE ← SolveCEGIS(u,Pw) . In OCϕC

10: ECE ← E∗CE, Pψ ← P
11: while ECE 6= ∅ do
12: Pψ ← DiagnoseRepair(Pψ)
13: ECE ← SolveCEGIS(u,Pψ)

14: P ′ ← FindMin(Pw,Pψ)

15: return u, P ′

proposed sub-formula ψ′s2 = G[0.6,∞)(v
ego
t ≥ 0.5). In this example, repairing the specification

over the first horizon is enough to guarantee controller realizability in the future. We can
then keep the upper bound of the G operator to infinity..

4.7.2 Adversarial Environment

When the environment can behave adversarially, the control synthesis problem assumes the
structure in (4.2). Specifically, in this section, we allow et to lie in an interval [emin, emax] at all
times; this corresponds to the STL formula ϕw = G[0,∞)(emin ≤ et ≤ emax). We decompose
a specification ϕ of the form ϕw ∧ ϕe → ϕs, representing the contract, as ϕ ≡ ϕw → ψ,
where ψ ≡ (ϕe → ϕs). To solve the repair problem for specifications with environment
assumptions ϕw, we propose a CEGIS framework CϕC = (LCϕC ,OCϕC ). The concept class for
the learner LCϕC is the set of all environment assumptions, i.e, ϕw. The oracle accepts as
input a proposed environment assumption ϕw, the oracle returns a counter-example set ECE
such that ∀e ∈ ECE, e |= ϕw and the control synthesis problem cannot find a robust control.
To solve the robust control problem within the oracle, the oracle itself is implements as an
instance of a CEGIs framework similar to Chapter 3. Our diagnosis and repair method is
summarized in Algorithm 4.

We first check the satisfiability of the control synthesis problem by examining whether
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there exists a pair of u and e for which problem (4.2) is feasible (CheckSAT routine):

maximize
u,e

ρϕ(ξS(·;x0,u, e))

subject to ρϕ(ξS(·;x0,u, e)) > 0

e |= ϕw ∧ ϕe.

(4.18)

If problem (4.18) is unsatisfiable, we can use the techniques introduced in Section 4.6
and 4.7.1 to diagnose and repair the infeasibility. Therefore, in the following, we assume
that (4.18) is satisfiable, hence there exist u0 and e0 that solve (4.18) where ui(ei) is the
control (disturbance) sequence in iteration i in the CEGIS.

If problem (4.18) is satisfiable, we use the CEGIS framework CϕC = (LCϕC ,OCϕC ). The
learner LCϕC repairs ϕw and proposes a candidate modification to the oracle. The oracle
OCϕC accepts an input the candidate specification ϕw and checks the realizability of the
synthesis process with the proposed ϕw and either it finds a dominant control strategy u or
proposes a list of counterexamples ECE.

To check realizability, we can use any of the CEGIS loops (CB, CS, CD, CH) presented in
Chapter 3. Hence, the oracle OCϕC (SolveCEGIS routine) is a CEGIS loop. In this chapter,
we build on top of CEGIS loop proposed in [128], with minor modifications. The overall
CEGIS framework CϕC = (LCϕC ,OCϕC ) is, hence, a hierarchical CEGIS framework, where we
have a CEGIS loop within another.

We first describe the design of the oracle OCϕC i.e., inner CEGIS loop. We refer to
this as Ce = (LCe ,OCe). In iteration i, the learner LCe solves for a dominant strategy ui
solving (4.17). The oracle OCe proposes a counter-example to ui, ei by solving (4.18) By
first fixing the control trajectory to u0, we find the worst case disturbance trajectory e1 that
minimizes the robustness value of ϕ by solving the following problem:

minimize
e

ρϕ(ξS(·;x0,u, e))

subject to e |= ϕe ∧ ϕw
(4.19)

with u = u0. If the robustness value pertaining to e1 is greater than zero, then we can
terminate the CEGIS loop and u0 is a dominant control strategy. The optimal e1 from (4.19)
will falsify the specification if the resulting robustness value is below zero4.

If this is the case, we look for a u1 which solves (4.17) with the additional restriction
of e ∈ ECE = {e1}. If this step is feasible, we once again attempt to find a worst-case
disturbance sequence e2 that solves (4.19) with u = u1: this is the counterexample-guided
inductive step. At each iteration i of this CEGIS loop, the set of candidate disturbance
sequences ECE expands to include ei. If the loop terminates at iteration i with a successful
ui (one for which the worst case disturbance ei in (4.19) has positive robustness), we conclude
that the formula ϕ is realizable.

4A tolerance ρmin can be selected to accommodate approximation errors, i.e.,
ρϕ(ξS(·;x0,u, e)) < ρmin.
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The CEGIS loop may not terminate if the set ECE is infinite. We, therefore, run it for a
maximum number of iterations. If SolveCEGIS fails to find a control sequence prior to the
timeout, then (4.17) is infeasible for the current ECE, i.e., there is no control input that can
satisfy ϕ for all disturbances in ECE. We conclude that the specification is not realizable (or,
equivalently, the contract is inconsistent).

While this infeasibility can be repaired by modifying ψ based on the techniques in Sec-
tion 4.6 and 4.7.1, an alternative solution is to repair ϕw by minimally pruning the bounds
on et. The learner LCϕC implements this repair in the RepairAdversarial routine.

To do so, given a small tolerance ε ∈ R+, we find

eu = max
ei∈ECE

t∈{0,...,H−1}

ei,t

el = min
ei∈ECE

t∈{0,...,H−1}

ei,t
(4.20)

and define su = emax − eu and sl = el − emin. We then use su and sl to update the range for
et in ϕw to a maximal interval [e′min, e

′
max] ⊆ [emin, emax] and such that at least one ei ∈ ECE

is excluded. Specifically, if su ≤ sl, we set [e′min, e
′
max] = [emin, eu − ε]; otherwise we set

[e′min, e
′
max] = [el + ε, emax]. The smaller the value of ε, the larger the resulting interval.

Finally, we use the updated formula ϕ′w to run SolveCEGIS again until a realizable control
sequence u is found. For improved efficiency, the linear search proposed above to find the
updated bounds e′min and e′max can be replaced by a binary search. Moreover, in Algorithm 4,
assuming a predicate repair procedure, FindMin provides the solution with minimum slack
norm between the ones repairing ψ and ϕw.

The overall CEGIS framework CϕC is shown in Figure 4.4

Example 10 (Adversarial Race). We consider the specification in Example 7. For the same
horizon as in the previous examples, after solving the satisfiability problem, for the fixed u0,
the CEGIS loop returns aadv

t = 2 for all t ∈ {0, . . . , H − 1} as the single element in ECE
for which no controller sequence can be found. We then choose to tighten the environment
assumptions to make the controller realizable, by shrinking the bounds on aadv

t by using Al-
gorithm 4 with ε = 0.01. After a few iterations, we finally obtain e′min = 0 and e′max = 1.24,
and therefore φ′w = G[0,∞)

(
0 ≤ aadv

t ≤ 1.24
)
.

To account for the error introduced by ε, given ϕ′ ∈ REPAIRD,T (ϕ), we say that (ϕ′, D, T )
are ε-minimal if the magnitudes of the predicate repairs (predicate slacks) or time-interval
repairs differ by at most ε from a minimal repair in the sense of Problem 2. Assuming that
SolveCEGIS terminates before reaching the maximum number of iterations5, the following
theorems state the properties of Algorithm 4.

Theorem 6 (Soundness). Given a controller synthesis problem P = (fd, x0, ϕ, ρϕ), such
that (4.2) is infeasible at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired formula returned from

5Under failing assumptions, Algorithm 4 terminates with UNKNOWN.
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Figure 4.4. Hierarchical CEGIS for Problem 2 CϕC
= (LCϕC

,OCϕC
). The oracle OCϕC

(LCϕC
) is shown in

blue (yellow). The oracle OCϕC
implements a CEGIS framework CE = (LCe ,OCe). The learner LCϕC

repairs
the adversarial environment assumption ϕw. The loop terminates when the ϕw becomes empty (trivially
true) or OCe does not find a counter-example to the candidate control strategy u∗ proposed by LCe .

Algorithm 4 for a given set of predicates D or time interval T . Then, P ′ = (fd, x0, ϕ
′, ρϕ′)

is feasible at time t and (ϕ′, D, T ) is ε-minimal.

Proof: [Proof (Theorem 6)] We recall that ϕ ≡ ϕw → ψ. Moreover, Algorithm 4 provides
the solution with minimum slack norm between the ones repairing ψ and ϕw in the case
of predicate repair. Then, when ψ = ϕe → ϕs is modified using Algorithm 1, soundness
is guaranteed by Theorem 4 and the termination of the CEGIS loop. On the other hand,
assume Algorithm 4 modifies the atomic predicates in ϕw. Then, the RepairArdversarial
routine and (4.20), together with the termination of the CEGIS loop, assure that ϕw is also
repaired in such a way that the controller is realizable, and ε-optimal (i.e., the length of
the bounding box around et differs from the maximal interval length by at most ε), which
concludes our proof. �

Theorem 7 (Completeness). Assume the controller synthesis problem P = (fd, x0, ϕ, ρϕ)
results in (4.2) being infeasible at time t. If there exist a set of predicates D and time-
intervals T such that there exists Φ ⊆ REPAIRD,T (ϕ) for which ∀ φ ∈ Φ, P ′ = (fd, x0φ, ρφ) is
feasible at time t and (φ, D, T ) is ε-minimal, then Algorithm 4 returns a repaired formula
ϕ′ in Φ.
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Proof: [Proof (Theorem 7)] As discussed in the proof of Theorem 6, if Algorithm 4 mod-
ifies ψ = ϕe → ϕs using Algorithm 1, completeness is guaranteed by Theorem 5 and
the termination of the CEGIS loop. On the other hand, let us assume there exists a
minimum norm repair for the atomic predicates of ϕw, which returns a maximal interval
[e′min, e

′
max] ⊆ [emin, emax]. Then, given the termination of the CEGIS loop, by repeatedly

applying (4.20) and RepairAdversarial, we produce a predicate repair such that the corre-
sponding interval [e′′min, e

′′
max] makes the control synthesis realizable and is maximal within an

error bounded by ε (i.e., its length differs by at most ε from the one of the maximal interval
[e′min, e

′
max]). Hence, ϕ′ ∈ Φ holds. �

4.8 Evaluation

We developed the toolbox DiaRY (Diagnosis and Repair for sYnthesis)6 implementing
our algorithms. DiaRY uses Yalmip [102] to formulate the optimization problems and
Gurobi [72] to solve them. It interfaces to different synthesis tools, e.g., BluSTL7 and
CrSPrSTL8. Here, we summarize some of the results of DiaRY for diagnosis and repair.

4.8.1 Autonomous Driving

We consider the problem of synthesizing a controller for an autonomous vehicle in a city
driving scenario. We analyze the following two tasks: (i) changing lanes on a busy road; (ii)
performing an unprotected left turn at a signalized intersection. We use a simple point-mass
model for the vehicles on the road. For each vehicle, we define the state as x = [x y θ v]>,
where x and y denote the coordinates, and θ and v represent the direction and speed,
respectively. Let u = [u1 u2]> be the control input for each vehicle, where u1 is the steering
input and u2 is the acceleration. Then, the vehicle’s state evolves according to the following
dynamics:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v · u1/m

v̇ = u2,

(4.21)

where m is the vehicle mass. To determine the control strategy, we linearize the overall
system dynamics around the initial state at each run of the MPC, which is completed in
less than 2 s on a 2.3-GHz Intel Core i7 processor with 16-GB memory. We further impose
the following constraints on the ego vehicle (i.e., the vehicle under control): (i) a minimum
distance must be established between the ego vehicle and other cars on the road to avoid

6https://github.com/shromonag/DiaRY
7https://github.com/BluSTL/BluSTL
8https://github.com/dsadigh/CrSPrSTL
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collisions; (ii) the ego vehicle must obey the traffic lights; (iii) the ego vehicle must stay
within its road boundaries.

4.8.1.1 Lane Change

We consider a lane change scenario on a busy road as shown in Figure 4.5a. The ego
vehicle is in red. Car 1 is at the back of the left lane, Car 2 is in the front of the left
lane, while Car 3 is on the right lane. The states of the vehicles are initialized as follows:
xCar 1

0 = [−0.2 − 1.5 π
2

0.5]>, xCar 2
0 = [−0.2 1.5 π

2
0.5]>, xCar 3

0 = [0.2 1.5 π
2

0]>, and
xego

0 = [0.2 − 0.7 π
2

0]>. The control inputs for ego and Car 3 are initialized at [0 0]>; the
ones for Car 1 and Car 2 are set to uCar 1

0 = [0 1]> and uCar 2
0 = [0 − 0.25]>. The objective

of ego is to safely change lane, while satisfying the following requirements:

ϕstr = G[0,∞)(|u1| ≤ 2) Steering Bounds

ϕacc = G[0,∞)(|u2| ≤ 1) Acceleration Bounds

ϕvel = G[0,∞)(|v| ≤ 1) Velocity Bounds

(4.22)

The solid blue line in Figure 4.5 is the trajectory of ego as obtained from our MPC scheme,
while the dotted green line is the future trajectory pre-computed for a given horizon at a
given time. MPC becomes infeasible at time t = 1.2 s when the no-collision requirement is
violated, and a possible collision is detected between the ego vehicle and Car 1 before the
lane change is completed (Figure 4.5a). Our solver takes 2 s, out of which 1.4 s are needed to
generate all the IISs, consisting of 39 constraints. To make the system feasible, the proposed
repair increases both the acceleration bounds and the velocity bounds on the ego vehicle as
follows:

ϕnew
acc = G[0,∞)(|u2| ≤ 3.5)

ϕnew
vel = G[0,∞)(|v| ≤ 1.54).

(4.23)

When replacing the initial requirements ϕacc and ϕvel with the modified ones, the revised
MPC scheme allows the vehicle to travel faster and safely complete a lane change maneuver,
without risks of collision, as shown in Figure 4.5b.

4.8.1.2 Unprotected Left Turn

In the second scenario, we would like the ego vehicle to perform an unprotected left turn at
a signalized intersection, where the ego vehicle has a green light and is supposed to yield
to oncoming traffic, represented by the yellow cars crossing the intersection in Figure 4.6.
The environment vehicles are initialized at the states xCar 1

0 = [−0.2 0.7 − π
2

0.5]> and
xCar2

0 = [−0.2 1.5 − π
2

0.5]>, while the ego vehicle is initialized at xego
0 = [0.2 − 0.7 π

2
0]>.

The control input for each vehicle is initialized at [0 0]>. Moreover, we use the same bounds
as in (4.22).

The MPC scheme becomes infeasible at t = 2.1 s. The solver takes 5 s, out of which
2.2 s are used to generate the IISs, including 56 constraints. As shown in Fig. 4.6a, the ego
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(a) (b)

Figure 4.5. Changing lane is infeasible at t = 1.2 s in (a) and is repaired in (b).

(a) (b)

Figure 4.6. Left turn becomes infeasible at time t = 2.1 s in (a) and is repaired in (b).
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vehicle yields in the middle of intersection for the oncoming traffic to pass. However, the
traffic signal turns red in the meanwhile, and there is no feasible control input for the ego
vehicle without breaking the traffic light rules. Since we do not allow modifications to the
traffic light rules, the original specification is repaired again by increasing the bounds on
acceleration and velocity, thus obtaining:

ϕnew
acc = G[0,∞)

(
|u2| ≤ 11.903

)
ϕnew

vel = G[0,∞)

(
|v| ≤ 2.42

)
.

(4.24)

As shown by the trajectory in Figure 4.6b, under the assumptions and initial conditions of
our scenario, higher allowed velocity and acceleration make the ego vehicle turn before the
oncoming cars get close or cross the intersection.

4.8.2 Quadrotor Control

We assume a quadrotor dynamical model including a 12-dimensional state, based on the
model reported in [77]. The state variables express the 6 degrees of freedom for the quadro-
tor, i.e., position, x, y, z, and rotation angles, φ, θ, ψ, together with their first derivatives,
ẋ, ẏ, ż, p, q, r. Variables φ, θ, ψ denote, respectively, the roll, pitch, and yaw angles. The
system has a 4-dimensional input, [u1 u2 u3 u4]>, where u1, u2, and u3 are the roll, pitch,
and yaw control inputs, and u4 is the thrust applied to the quadrotor. To control the system,
we locally linearize the following nonlinear dynamics at every time step:

f1 =
[
ẋ ẏ ż

]>
f2 =

[
0 0 g

]> − (1/m)R1(ẋ, ẏ, ż)
[
0 0 0 u4

]>
f3 = R2(ẋ, ẏ, ż)

[
p q r

]>
f4 = I−1

[
u1 u2 u3

]> −R3(p, q, r)I
[
p q r

]>
(4.25)

where R1, R2, and R3 are rotation matrices relating the body frame and the inertial frame,
and I is the inertial matrix.

Our goal is to synthesize a strategy for the quadrotor to travel from a starting position
[x0, y0, z0] = [0, 0,−0.4] with zero roll, pitch, and yaw angles, i.e., [φ0, θ0, ψ0] = [0, 0, 0], to
a destination [xd, yd, zd] = [1, 1,−0.1], still with zero roll, pitch, and yaw. All the other
elements in the state vector and the control input are initialized at zero. We define the
following constraints on the quadrotor:

ϕh = G[0,∞)(−1.1 ≤ z ≤ 0)Height of Flight Bounds

ϕroll = G[0,∞)(|u1| ≤ 0.3)Roll Bounds

ϕpitch = G[0,∞)(|u2| ≤ 0.3)Pitch Bounds

ϕthr = G[0,∞)(0 ≤ u4 ≤ 6.5)Thrust Bounds.

(4.26)
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Our MPC scheme becomes infeasible at time t = 0.675 s because ϕh and ϕroll are both
violated. Given the bounds on the control inputs, the trajectory is not guaranteed to lie in
the desired region. This is visualized in Fig. 4.7 (a) and (c), respectively showing a two-
dimensional and three-dimensional projection of the quadrotor trajectory. The solid blue line
shows the path computed by the MPC framework and taken by the quadrotor, aiming at
traveling from the origin, marked by a black square, to the target, marked by a red square.
Because of the bounds on the control inputs, the quadrotor touches the boundary of the
allowed region (along the z axis) at t = 0.675 s.

The solver takes less than 0.1 s to generate the IIS, including 32 constraints, out of which
11 constraints are associated with the predicates in ϕh and ϕroll. Our algorithm adds a slack
of 1.58 to the upper bound on z in ϕh. We then modify ϕh to:

ϕnew
h = G[0,∞)(−1.1 ≤ z ≤ 1.58), (4.27)

thus allowing the quadrotor to violate the upper bound on the vertical position during the
maneuver. The new specification makes the problem realizable, and the resulting trajectory
is shown in blue in Figure 4.7 (b) and (d). We can view the above slack as the estimated
margin from the boundary needed for the quadrotor to complete the maneuver based on the
linearized model of the dynamics. As apparent from Figure 4.7b, such a margin is much
larger than the space actually used by the quadrotor to complete its maneuver. A better
estimate can be achieved by using a finer time interval for linearizing the dynamics and
executing the controller. While the solution above provides the minimum slack norm for the
given linearization, it is still possible to notify DiaRY that ϕh must be regarded as a hard
constraint, e.g., used to mark a rigid obstacle. In this case, DiaRY tries to relax the bounds
on the control inputs to achieve feasibility.

4.8.3 Aircraft Electric Power System

Figure 4.8 shows a simplified architecture for the primary power distribution system in a
passenger aircraft [118].

Two power sources, the left and right generators G0 and G1, deliver power to a set
of high-voltage AC and DC buses (B0, B1, DB0, and DB1) and their loads. AC power
from the generators is converted to DC power by rectifier units (R1 and R2). A bus power
control unit (controller) monitors the availability of power sources and configures a set of
electromechanical switches, denoted as contactors (C0, . . . , C4), such that essential buses
remain powered even in the presence of failures, while satisfying a set of safety, reliability,
and real-time performance requirements [118]. Specifically, we assume that only the right
DC bus DB1 is essential, and use our algorithms to check the feasibility of a controller
that accommodates a failure in the right generator G1, by rerouting power from the left
generator to the right DC bus in a time interval which is less than or equal to tmax = 100 ms.
In addition, the controller must satisfy the following set of requirements, all captured by an
STL contract.
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Figure 4.7. Diagnosis and repair of infeasibilities in quadrotor control. The top and bottom figures show,
respectively, a 2D and 3D projection of the trajectory (blue line) of the quadrotor, represented as a green
rectangle. The black square marks the initial position while the red square marks the goal. As shown in
Fig. (a) and (c), the original specification becomes infeasible at time t = 0.675, which is marked by a green
square along the trajectory, when the quadrotor hits the boundary represented by the dotted red line. After
updating the specification, controller synthesis becomes feasible, as shown in Fig. (b) and (d), where the
quadrotor reaches the final position, at the cost of passing through the red dotted line.

Assumptions. When a contactor receives an open (close) signal, it shall become open
(closed) in 80 ms or less. Let ∆t = 20 ms be the time discretization step, c̃i, i ∈ {0, . . . , 4}, be
a set of Boolean variables describing the controller signal (where 1 stands for “closed” and 0
for “open”), ci, i ∈ {0, . . . , 4}, be a set of Boolean variables denoting the state (open/closed)
of the contactors. We can capture the system assumptions via a conjunction of formulae
of the form: G[0,∞)(c̃i → F[0,4]ci), providing a model for the discrete-time binary-valued
contactor states. The actual delay of each contactor can then be modeled using an integer
(environment) variable ki for which we require: G[0,∞)(0 ≤ ki ≤ 4).

Guarantees. If a generator becomes unavailable (fails), the controller shall disconnect
it from the power network in 20 ms or less. Let g0 and g1 be Boolean environment variables
representing the state of the generators, where 1 stands for “available” and 0 for “failure.”
We encode the above guarantees as G[0,∞)(gi → F[0,1]c̃i). A DC bus shall never be discon-
nected from an AC generator for 100 ms or more, i.e., G[0,∞)(¬bi → F[0,5]bi), where bi,
i ∈ {0, . . . , 3}, is a set of Boolean variables denoting the status of a bus, where 1 stands for
“powered” and 0 for “unpowered.” Additional guarantees, which can also be expressed as
STL formulae, include: (i) If both AC generators are available, the left AC generator shall
power the left AC bus, and the right AC generator shall power the right AC bus. C3 and
C4 shall be closed. (ii) If one generator becomes unavailable, all buses shall be connected to
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Figure 4.8. Simplified model of an aircraft electric power system (left) and counterexample trajec-
tory (right). The blue, green and red lines represent environment, state, and controller variables,
respectively, for a 380-ms run.

the other generator. (iii) Two generators must never be directly connected.
We apply the diagnosis and repair procedure in Section 4.7.2 to investigate whether there

exists a control strategy that can satisfy the specification above over all possible values of
contactor delays. As shown in Figure 4.8, the controller is unrealizable; a trace of contactor
delays equal to 4 at all times provides a counterexample, which leaves DB1 unpowered for
160 ms, exceeding the maximum allowed delay of 100 ms. In fact, the controller cannot close
C2 until C1 is tested as being open, to ensure that G1 is safely isolated from G2. To guarantee
realizability, Algorithm 4 suggests to either modify our assumptions to G[0,∞)(0 ≤ ki ≤ 2) for
i ∈ {0, . . . , 4} or relax the guarantee on DB1 to G[0,∞)(¬b3 → F[0,8]b3). The overall execution
time was 326 s, which includes formulating and executing three CEGIS loops, requiring a
total of 6 optimization problems.

4.9 Conclusion

In this chapter, we described how the OGIS framework can be extended to diagnose and
repair high-level temporal specifications for synthesis. We presented an OGIS framework
IϕM which relies on Irreducibly Inconsistent System (IIS) to diagnose (and repair) mono-
lithic specification in the absence of environmental agents. We then present a hierarchical
CEGIS framework CϕC which relies on the CEGIS frameworks introduced in Chapter 3 to
diagnose (and repair) safety specifications in adversarial environments. Finally, we conclude
the chapter with examples from autonomous driving and aircraft electric power system.
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Chapter 5

Counter-Example Guided Data
Augmentation

5.1 Introduction

In Chapter 3 we address the controller design and analysis pipeline for robotic systems. In
this chapter, we study the problem of designing and analyzing perception modules. Percep-
tion modules are becoming increasingly important in robotic systems to perceive or sense
the world around us. Hence, it is important to be able to formally analyze the correctness
of such models. In this chapter, we present a novel CEGIS framework for augmenting data
sets for machine learning systems based on counterexamples (misclassified images).

Models produced by machine learning algorithms, especially deep neural networks, are
being deployed in domains where trustworthiness is a big concern, creating the need for
higher accuracy and assurance [130, 135]. However, learning high-accuracy models using
deep learning is limited by the need for large amounts of data, and, even further, by the
need of labor-intensive labeling.

5.1.1 Data Augmentation

Data augmentation overcomes the lack of data by inflating training sets with label-preserving
transformations, i.e., transformations which do not alter the label. Traditional data aug-
mentation schemes [51, 138, 29, 28, 91] involve geometric transformations which alter the
geometry of the image (e.g., rotation, scaling, cropping or flipping); and photometric transfor-
mations which vary color channels. The efficacy of these techniques have been demonstrated
recently (see, e.g., [162, 158]). Traditional augmentation schemes, like the aforementioned
methods, add data to the training set hoping to improve the model accuracy without taking
into account what kind of features the model has already learned. More recently, a sophis-
ticated data augmentation technique has been proposed [99, 105] which uses Generative
Adversarial Networks [70], a particular kind of neural network able to generate synthetic
data, to inflate training sets. There are also augmentation techniques, such as hard negative
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mining [137], that inflate the training set with targeted negative examples with the aim of
reducing false positives.

In this chapter, we propose a new augmentation scheme, counterexample-guided data
augmentation. The main idea is to augment the training set only with new misclassified
examples rather than modified images coming from the original training set. The proposed
augmentation scheme consists of the following steps: 1) Generate synthetic images that
are misclassified by the model, i.e., the counterexamples; 2) Add the counterexamples to the
training set; 3) Train the model on the augmented dataset. These steps can be repeated until
the desired accuracy is reached. Note that our augmentation scheme depends on the ability
to generate misclassified images. For this reason, we developed an image generator [48] that
cooperates with a sampler to produce images that are given as input to the model. The
images are generated in a manner such that the ground truth labels can be automatically
added. The incorrectly classified images constitute the augmentation set that is added to
the training set. In addition to the pictures, the image generator provides information on
the misclassified images, such as the disposition of the elements, brightness, contrast, etc.
This information can be used to find features that frequently recur in counterexamples. We
collect information about the counterexamples in a data structure we term as the “error
table”. Error tables are extremely useful to provide explanations about counterexamples
and find recurring patterns that can lead an image to be misclassified. The error table
analysis can also be used to generate images which are likely to be counterexamples, and
thus, efficiently build augmentation sets.

In summary, the main contributions of this chapter are:

• A counterexample-guided data augmentation approach where only misclassified exam-
ples are iteratively added to training sets;

• A synthetic image generator that renders realistic counterexamples;

• Error tables that store information about counterexamples and whose analysis provides
explanations and facilitates the generation of counterexample images.

We conducted experiments on Convolutional Neural Networks (CNNs) for object de-
tection by analyzing different counterexample data augmentation sampling schemes and
compared the proposed methods with classic data augmentation. Our experiments show the
benefits of using a counterexample-driven approach against a traditional one. The improve-
ment comes from the fact that a counterexample augmentation set contains information that
the model had not been able to learn from the training set, a fact that was not considered by
classic augmentation schemes. In our experiments, we use synthetic data sets generated by
our image generator. This ensures that all treated data comes from the same distribution.

The results in this chapter are adapted from [48, 47].
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5.2 Preliminaries

This section provides the notation used throughout this chapter.
Let a be a vector, ai be its i-th element with index starting at i = 1, ai:j be the range

of elements of a from i to j; and A be a set. X is a set of training examples, x(i) is the i-th
example from a dataset and y(i) is the associated label. f : A→ B is a model (or function)
f with domain A and range B. ŷ = f(x) is the prediction of the model f for input x. In
the object detection context, ŷ encodes bounding boxes, scores, and categories predicted by
f for the image x. fX is the model f trained on X.

Let B1 and B2 be bounding boxes encoded by ŷ. The Intersection over Union (IoU)
is defined as IoU(AB1 , AB2) = AB1 ∩ AB2/AB1 ∪ AB2 , where ABi is the area of Bi, with
i ∈ {1, 2}. We consider Bŷ to be a detection for By if IoU(Bŷ, By) > 0.5. True positives tp
is the number of correct detections; false positives fp is the number of predicted boxes that
do not match any ground truth box; false negatives fn is the number of ground truth boxes
that are not detected.

Precision and recall are defined as p(ŷ,y) = tp/(tp + fp) and r(ŷ,y) = tp/(tp + fn). In
this work, we consider an input x to be misclassified if p(ŷ,y) or r(ŷ,y) is less than 0.75. Let
T = {(x(1),y(1)), . . . , (x(m),y(m))} be a test set with m examples. The average precision and
recall of f are defined as p̄f (T) = 1

m

∑m
i=1 p(f(x(i)),y(i)) r̄f (T) = 1

m

∑m
i=1 r(f(x(i)),y(i)). We

use average precision and recall to measure the accuracy of a model, succinctly represented
as accf (T) = (p̄f (T), r̄f (T)).

5.3 Solution Approach

Our overall goal is to design a technique for improving model accuracy using data augmen-
tation. We formalize the data augmentation scheme as an instance of the CEGIS framework
Cda = (LCda ,OCda) as shown in Figure 5.1. The concept class for the learner is the set of all
learning models corresponding to a fixed structure. The counter-example queries handled
by oracle provides not only a set of counter-examples (defined as an augmentation set) but
also an error table with detailed information about the counter-examples. The training of
the model f using the learning algorithm A is done by the learner LCda . The learner sends
the model to the oracle OCda . Figure 5.1 summarizes the proposed counterexample-guided
augmentation scheme (CEGDA). The oracle takes as input the model f , the image generator
γ, and a modification space, M, the space of possible configurations of our image generator.
The space M is constructed based on domain knowledge to be a space of “semantic modi-
fications;” i.e., each modification must have a meaning in the application domain in which
the machine learning model is being used. This allows us to perform more meaningful data
augmentation than simply through adversarial data generation performed by perturbing an
input vector (e.g., adversarially selecting and modifying a small number of pixel values in
an image).
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Figure 5.1. Counter-example guided data augmentation (CEGDA): Cda = (LCda ,OCda). The oracle
OCda(LCda) is shown in blue (yellow). The oracle OCda generates an augmentation set A and an error
table E. It then extracts features from the error table E to explain the cause of failure of the trained model
f , which is used to generate A. Moreover, it analyzes the E to provide feedback to the user. The learner
LCda then augments the training data X to generate X̃ which is used to train the model f .

In each loop, the sampler selects a modification, m, from M. The sample is determined
by a sampling method that can be biased by a precomputed error table E, a data structure
that stores information about images that are misclassified by the model. The sampled
modification is rendered into a picture x by the image generator. The image x is given
as input to the model f that returns the prediction ŷ. We then check whether x is a
counterexample, i.e., the prediction ŷ is wrong. If so, we add x to our augmentation set
A and we store x’s information (such as m, ŷ) in the error table that will be used by the
sampler at the next iteration. The loop is repeated until the augmentation set A is large
enough (or M has been sufficiently covered).

This scheme returns an augmentation set, that will be used to retrain the treated model,
along with an error table, whose analysis identifies common features among counterexamples
and aids the sampler to select candidate counterexamples.
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Figure 5.2. The low dimension (3D) modification space M on the right can be projected to the high
dimensional feature (image) space X on the left through the image generator function γ.

5.4 Design of Image Generator γ

In this section, we discuss the design of the image generator (image renderer). At the core of
our counterexample augmentation scheme is an image generator (similar to the one defined
in [44, 48]) that renders realistic synthetic images of road scenarios. Since counterexamples
are generated by the synthetic data generator, we have full knowledge of the ground truth
labels for the generated data. In our case, for instance, when the image generator places
a car in a specific position, we know exactly its location and size, hence the ground truth
bounding box is accordingly determined. In this section, we describe the details of our image
generator.

5.4.1 Modification Space

The image generator implements a generation function γ : M→ X that maps every modifi-
cation m ∈M to a feature γ(m) ∈ X. Intuitively, a modification describes the configuration
of an image.

Example 11 (Visualization of 3D Modification Space). Consider the set of all 1242 × 375
RGB picture (KITTI image resolution [61]). Since we are interested in the automotive con-
text, we consider the subset X of pictures of cars defined by a low-dimensional M. Specifically,
let us consider a 3D modification space which characterizes the car x (lateral) and z (away)
displacement on the road and the image brightness. The generation function γ : [0, 1]3 → X.
For instance, γ(0, 0, 0) places the car on the left close to the observer with high contrast,
γ(1, 0, 0) shifts the car to the right, or γ(1, 1, 1) sees the car on the right, far from the ob-
server, with low contrast. The spectrum of images generated by γ is shown in Figure 5.2.
When moving along the x-axis in the M, the car shifts horizontally; a change on the y-axis
affects the position of the car along the road; the z-axis affects the brightness of the overall
image. To make the images realistic, we need to appropriately re-size the car based on its
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Figure 5.3. Car re-sizing and displacement using vanishing point and lines.

position on the road . In this example, we chose the extreme positions of the car (i.e., max-
imum and minimum x and y position of the car) on the sidelines of the road and the image
vanishing point. Both the sidelines and the vanishing point can be automatically detected ([7,
87]). The vanishing point is useful to determine the vanishing lines necessary to re-size and
place the car when altering its position in the y modification dimension. For instance, the
car is placed and shrunk towards the vanishing point as the y coordinate of its modification
element gets close to 1 (see Figure 5.3).

A generator can be used to abstract and compactly represent a subset of a high-dimensional
image space.

In this chapter, the image generator is based on a 14D modification space whose dimen-
sions determine a road background; number of cars (one, two or three) and their x and z
positions on the road; brightness, sharpness, contrast, and color of the picture. Figure 5.4
depicts some images rendered by our image generator. (More details are available in [48]).

We can define a metric over the modification space to measure the diversity of different
pictures. Intuitively, the distance between two configurations is large if the concretized
images are visually diverse and, conversely, it is small if the concretized images are similar.

Let m(1),m(2) ∈ M be modifications. The metric distance between the modifications is
defined as:

d(m(1),m(2)) =
4∑
i=1

1
m

(1)
i 6=m

(2)
i

+ ‖m(1)
5:14 −m

(2)
5:14‖ (5.1)

where 1condition is 1 if the condition is true, 0 otherwise, and ‖·‖ is the L2 norm. The distance
counts the differences between background and car models and adds the Euclidean distance
of the points corresponding to x and z positions, brightness, sharpness, contrast, and color
of the images.

Figure 5.4 depicts three images with their modifications m(1),m(2), and m(3). For brevity,
captions report only the dimensions that differ among the images, that are background, car
models and x, z positions. The distances between the modifications are d(m(1),m(2)) = 0.48,
d(m(1),m(3)) = 2.0, d(m(2),m(3)) = 2.48. Note how similar images, like Fig. 5.4 (a) and (b)
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(a) m(1) = (53, 25, 2, 0.11, 0.98, . . . , 0.50, 0.41, . . . )

(b) m(2) = (53, 25, 2, 0.11, 0.98, . . . , 0.20, 0.80, . . . )

(c) m(3) = (13, 25, 7, 0.11, 0.98, . . . , 0.50, 0.41, . . . )

Figure 5.4. Distance over modification space used to measure visual diversity of concretized images.
d(m(1),m(2)) = 0.48, d(m(1),m(3)) = 2.0, d(m(2),m(3)) = 2.48.

(same backgrounds and car models, slightly different car positions), have smaller distance
(d(m(1),m(2)) = 0.48) than diverse images, like Fig. (a) and (c); or (b) and (c) (different
backgrounds, car models, and vehicle positions), whose distances are d(m(1),m(3)) = 2.0 and
d(m(2),m(3)) = 2.48.

Later on, we use this metric to generate sets whose elements ensure a certain amount of
diversity (see Section 5.7.1).

5.4.2 Picture Concretization

Once a modification is fixed, our picture generator renders the corresponding image. The
concretization is done by superimposing basic images (such as road background and vehicles)
and adjusting image parameters (such as brightness, color, or contrast) accordingly to the
values specified by the modification. Our image generator comes with a database of back-
grounds and car models used as basic images. Our database consists of 35 road scenarios
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Figure 5.5. Sample basic images. The image at the top shows a road scenario sample, and the images at
the bottom show car model samples.

(e.g., desert, forest, or freeway scenes) and 36 car models (e.g., economy, family, or sports
vehicles, from both front and rear views). These basic images are superimposed in order to
render a realistic images. Examples of basic pictures are shown in Figure 5.5. The database
can be easily extended or replaced by the user.

5.4.3 Annotation Tool

In order to render realistic images, the picture generator must place cars on the road and
scale them accordingly. For instance, a car must appear big when close to the observer but
small when moved towards the vanishing point. To facilitate the conversion of a modification
point describing x and z position into a proper superimposition of the car image on a road,
we equipped the image generator with an annotation tool that can be used to specify the
sampling area on a road and the scaling factor of a vehicle. For a particular road, the
user draws a trapezoid designating the area where the image generator is allowed to place
a car. The user also specifies the scale of the car image on the trapezoid bases, i.e., at the
closest and furthest points from the observer (see Figure 5.6). When sampling a point at an
intermediate position, i.e., inside the trapezoid, the tool interpolates the provided car scales
and determines the scaling at the given point. Moreover, the image generator superimposes
different vehicles respecting the perspective of the image. For instance, a car close to the
observer will partially hide a car on the horizon. The image generator also performs several
checks to ensure that the rendered cars are visible.
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Figure 5.6. Annotation trapezoid. User adjusts the four corners that represent the valid sampling subspace
of x and z. The size of the car scales according to how close it is to the vanishing point.

5.4.4 Image Generators as Simulation Engines

While the images in this section are generated by superimposing one image above another,
the overall image may itself not be realistic. For e.g., when there are multiple cars on the road
it is hard to generate images where they do not overlap since the position of one car depends
on the position of the others. Moreover, it is impossible to define a modification space M
with all potential backgrounds and cars. To overcome this we propose two modifications to
our image generator:

• Using Scenic [56] to define constrained domains. Scenic use a probabilistic program-
ming language to define distribution over scenes. It can handle geometric constraints
or relations between objects (e.g., do not intersect, maintain some minimum distance,
or angle). More details can be found in Chapter 8.

• Defining the modification space M to capture scenes in simulation engines like We-
bots [140], Carla [43] or game engines like GTA-V. This allows for generation of scenes
which are more realistic and can capture a larger variation within the M. More details
can be found in Chapter8

5.5 Sampling Methods

In this section, we discuss the sampler in OCda The goal of the sampler is to provide a
good coverage of the modification space and identify samples whose concretizations lead to
counterexamples.

We now briefly describe some sampling methods (similar to those defined in [48, 44]) that
we integrated into our framework:

5.5.1 Non-active Sampling

These sampling techniques rely only on the modification space M. They sample the space
without using any prior information of the behavior of the previously sampled modifications.
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5.5.1.1 Uniform Random Sampling

Uniform random sampling ensures an equal probability of sampling any possible point from
M, which guarantees a good mix of generated images for both training and testing. Although
a simple and effective technique for both training as well as testing, it may not provide a
good coverage of the modification space; Moreover, during testing it does not guarantee that
the samples lead to misclassifying concretizations reducing the effectiveness of the sampling
procedure. Random sampling can be applied to both discrete and continuous (or a mix)
modification space M. We also consider a variant of random sampling with distance con-
straints in our experiments, i.e., we impose that two samples m(1),m(2) are atleast some
distance apart d(m(1),m(2)) ≥ ε. This is implemented with rejection sampling, i.e., we reject
any sample which is not atleast ε away from all previously sampled points.

5.5.1.2 Low-Discrepancy Sampling

A low-discrepancy (or quasi-random) sequence is a sequence of n-tuples that fills a nD space
more uniformly than uncorrelated random points. Low-discrepancy sequences are useful to
cover boxes by reducing gaps and clustering of points which ensures uniform coverage of the
sample space.

Let U = [0, 1]n be a n-D box, J ⊆ U be a sub-box and X ∈ U be a set of m points. The
discrepancy, D(J,X), of J is the difference between the ratio of points in J compared to U
and the ratio of volume J compared to U :

D(J,X) = |#(J)/m− vol(J)| (5.2)

where #(J) is the number of points of X in J and vol(J) is the volume of J . The star
discrepancy, D∗(X), is the worst case distribution of X:

D∗(X) = max
J

D(J,X) (5.3)

Low-discrepancy sequences generate sets of points that minimize the star-discrepancy. Some
examples of low-discrepancy sequences are the Van der Corput, Halton [74], or Sobol [139]
sequences. In our experiments, we use the Halton [114] sequence. These sampling methods
ensure an optimal coverage of the modification space and allows us to identify clusters
of misclassified pictures as well as isolated corner cases which can be missed by random
sampling. There are two main advantages in having optimal coverage: first, we increase the
chances of quickly discovering counterexamples, and second, the set of counterexamples will
have high diversity; implying the concretized images will look different and thus the model
will learn diverse new features.

The modification space M for Halton sampling is purely continuous (can be captured by
a n-D box).



CHAPTER 5. COUNTER-EXAMPLE GUIDED DATA AUGMENTATION 72

5.5.2 Active Sampling

These sampling techniques utilize the behavior of the previously sampled modifications to
direct the sampling of future samples. This allows for faster convergence to counter-examples
as opposed to searching the space more evenly. The active samplers searching for counter-
examples can be represented by an instance of If described in Chapter 6. Hence, the overall
CEGIS framework Cda is a hieraechical OGIS framework where the sampler is represented
as If .

5.5.3 Cross-Entropy Sampling

The cross-entropy [32] method was developed as a general Monte Carlo approach to combi-
natorial optimization and importance sampling. It is a iterative sampling technique, where
we sample from a a given probability distribution, and update the distribution by minimizing
the cross-entropy.

Intuitively, given a probability distribution P defined over the modification space M, a
set of counter-examples and its associated distribution Q, and a discounting factor α, we
update the distribution P = α ·P + (1−α) ·Q. The effect of the sampled counter-examples
on the distribution P depends on the values of α. For low values of α, the distribution is
affected by the distribution of the counter-examples Q and tends to “forget” P more easily.
In this chapter, we assume that P is a discrete probability distribution. For continuous
spaces, we achieve this by breaking the domains into “buckets” and treat all points in a
given buckets as equivalent. This allows us to treat both discrete and continuous domains
in M in the same framework.

One drawback of this technique is that it does not capture relationships between the
dimensions of M, it treats each of them independently. However,cross-entropy is especially
well suited for discrete domains which are categorical i.e., no ordering in the domain.

The If framework for falsification (finding counter-examples) using cross entropy can be
built similarly as detailed in Chapter 6. The key difference lying in the design of the learner
Lf . The Lf for cross-extropy implements the distribution update.

5.5.4 Bayesian Optimization

For M which are continuous in all dimensions (can be captured by n-D box), we can use
Bayesian Optimization (BO) for sampling. Refer to Section 6.2.3 for details. BO can capture
relations among the different dimensions in M in the co-variance matrix. We do not handle
discrete domain in BO since they mostly appear to categorical in our setting. Hence, there
may not always be a relationship across the domain. We do not results with BO since our
14-D modification space is a mix of continuous and discrete domains.

The If framework for falsification (finding counter-examples) using BO is detailed in
Chapter 6.
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Car model Background ID Environment Brightness x z
Toyota 12 Tunnel 0.9 0.2 0.9
BMW 27 Forest 1.1 0.4 0.7
Toyota 11 Forest 1.2 0.4 0.8

Table 5.1. Example of error table proving information about counterexamples. First rows describes Fig. 5.6.
Implicit unordered features: car model, environment; explicit ordered features: brightness, x, z car coordi-
nates; explicit unordered feature: background ID.

5.6 Error Tables

Every iteration of our augmentation scheme produces a counterexample that contains in-
formation pointing to a limitation of the learned model. It would be desirable to extract
patterns that relate counterexamples, and use this information to efficiently generate new
counterexamples. For this reason, we define error tables that are data structures whose
columns are formed by important features across the generated images. The error table
analysis is useful for:

1. Providing explanations about counterexamples, and

2. Generating feedback to sample new counterexamples.

In the first case, by finding common patterns across counterexamples, we provide feedback
to the user like “The model does not detect white cars driving away from us in forest roads”;
in the second case, we can bias the sampler towards modifications that are more likely to
lead to counterexamples.

5.6.1 Error Table Features

We first provide the details of the kinds of features supported by our error tables. We
categorize features along two dimensions:

• Explicit vs. implicit features: Explicit features are sampled from the modification
space (e.g., x, z position, brightness, contrast, etc.) whereas implicit features are user-
provided aspects of the generated image (e.g., car model, background scene, etc.).

• Ordered vs. unordered features: some features have a domain with a well-defined total
ordering (e.g., sharpness) whereas others do not have a notion of ordering and are
purely categorical (e.g., car model, identifier of background scene, etc.).

The set of implicit and explicit features are mutually exclusive. In general, implicit features
are more descriptive and characterize the generated images. These are useful for providing
feedback to explain the vulnerabilities of the classifier. While implicit features are unordered,
explicit features can be ordered or unordered. Rows of error tables are the realizations of
the features for misclassification.
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Table 5.1 is an illustrative error table E. The table includes car model and environ-
ment scene (implicit unordered features), brightness, x, z car coordinates (explicit ordered
features), and background ID (explicit unordered feature). The first row of Table 5.1 actu-
ally refers to Fig. 5.6. The actual error tables generated by our framework are larger than
Table 5.1. They include, for instance, our 14D modification space (see Section 5.4.1) and
features like number of vehicles, vehicle orientations, dominant color in the background, etc.

The error table E is populated in the oracle OCda in every iteration whenever a counter-
example is generated. Finally, we would like to analyze it to provide feedback and utilize
this feedback to sample new images.

5.6.2 Feature Analysis

The analysis of the error table E is done in the oracle OCda ( in errorAnalysis(E)). A naive
analysis technique is to treat all the features equally, and search for the most commonly
occurring element in each column of the error table. However, this assumes no correlation
between the features, which is often not the case. Instead, we develop separate analysis
techniques for ordered and unordered features. In the following we discuss how we can best
capture correlations between the two sets:

• Ordered features : Since these features are ordered, a meaningful analysis technique
would be to find the direction in the feature space where most of the falsifying sam-
ples occur. This is very similar to model order reduction using Principal Component
Analysis (PCA). Specifically, we are interested in the first principal component, which
is the singular vector corresponding to the largest singular value in the Singular Value
Decomposition (SVD) of the matrix consisting of all the samples of the ordered fea-
tures. We can use the singular vector to find how sensitive the model is with respect
to the ordered features. If the value corresponding to a feature is small in the vector,
it implies that the model is not robust to changes in that feature, i.e., changes in that
feature would affect the misclassification. Or alternatively, features corresponding to
larger values in the singular vector, act as “don’t cares”, i.e., by fixing all other fea-
tures, the model misclassifies the image regardless the value of this feature. Another
meaningful analysis technique is to use clustering such as k-means [78] to find clusters
of counter-examples.;

• Unordered features : Since these features are unordered, their value holds little impor-
tance. The most meaningful information we can gather from them is the subsets of
features which occurs together most often. To correctly capture this, we must explore
all possible subsets, which is a combinatorial problem. This proves to be problematic
when the space of unordered features is large. One way to overcome this is by limiting
the size of the maximum subset to explore.

We conducted an experiment on a set of 500 counterexamples. The ordered features
included x and z positions of each car; along with the brightness, contrast, sharpness, and
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color of the overall image. The explicit features include the ordered features along with the
discrete set of all possible cars and backgrounds. The implicit features include details like
color of the cars, color of the background, orientation of the cars, etc. The PCA on the
explicit ordered features revealed high values corresponding to the x position of the first
car (0.74), brightness (0.45) and contrast (0.44). We can conclude that the model is not
robust to changes in these ordered features. Specifically, if we were to maintain the other
features to values that appear the most in the error table, then by varying these features, we
should be able to get counterexample images with high probability. Now suppose, among the
ordered features, if the value corresponding to brightness is high in the principal component,
then we can conclude that the CNN is not robust to brightness, and we must retrain the
CNN by varying the brightness. For the unordered features, the combination of forest road
with one white car with its rear towards the camera and the other cars facing the camera,
appeared 13 times. This provides an explanation of recurrent elements in counterexamples,
specifically “The model does not detect white cars driving away from us in forest roads””.

5.6.3 Sampling Using Feedback

In the oracle OCda , we can use the error table E to guide what samples can be used for
augmentation (in generateAugSet(A,E, γ)). One could either, sample from the augmentation
set A or regenerate new sample using the image generator γ and analysis of the error table
E. In this section, we discuss how our analysis and feedback from the E can be used to guide
the sampling for subsequent training.

Note that we can only sample from the explicit features:

• Feedback from Ordered Features : The ordered features, which is a subset of the explicit
features, already tell us which features need to vary more during the sampling process.
For example, in the example of Sec. 5.6.2, our sampler must prioritize sampling different
x positions for the first car, then brightness, and finally contrast among the other
ordered features;

• Feedback from Unordered Features : Let Suf = Sef ∪ Sif be the subset of most occur-
ring unordered features returned by the analysis, where Sef and Sif are the mutually
exclusive sets of explicit and implicit features, respectively. The information of Sef can
be directly incorporated into the sampler. The information provided by Sif require
some reasoning since implicit features are not directly sampled. However, they are
associated with particular elements of the image (e.g., background or vehicle). We can
use the image generator library and error table to recognize which elements in the li-
brary the components of Sif correspond to, and set the feature values accordingly. For
instance, in the example of Sec. 5.6.2, the analysis of the unordered explicit features
revealed that the combination of bridge road with a Tesla, Mercedes, and Mazda was
most often misclassified. We used this information to generate more images with this
particular combination by varying brightness and contrast.
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TR TH TC TD TM
fX 0.6169

0.7429
0.6279
0.7556

0.3723
0.4871

0.7430
0.8373

0.6409
0.7632

fXS
0.6912
0.8080

0.6817
0.7987

0.3917
0.5116

0.7824
0.8768

0.6994
0.8138

fXR
0.7634
0.8667

0.7515
0.8673

0.5890
0.7242

0.8484
0.9745

0.7704
0.8818

fXH
0.7918
0.8673

0.7842
0.8727

0.5640
0.6693

0.8654
0.9598

0.7980
0.8828

fXC
0.7778
0.7804

0.7632
0.7722

0.6140
0.7013

0.8673
0.8540

0.7843
0.7874

fXD
0.7516
0.8642

0.7563
0.8724

0.6057
0.7198

0.8678
0.9612

0.7670
0.8815

Table 5.2. Comparison of augmentation techniques. Precisions (top) and recalls (bottom) are reported.
TT set generated with sampling method T ; fXT

model f trained on X augmented with technique T ∈
{S,R,H,C,D,M}; S: standard, R: uniform random, H: low-discrepancy Halton, C: cross-entropy, D:
uniform random with distance constraint, M : mix of all methods.

Sec 5.7.5 shows how this technique leads to a larger fraction of counterexamples that
can be used for retraining. The augmentation set A is then returned to the learner LCda to
re-train the model.

5.7 Evaluation

In this section, we show how the proposed techniques can be used to augment training sets
and improve the accuracy of the considered models. We will experiment with different sam-
pling methods, compare counterexample guided augmentation against classic augmentation,
iterate over several augmentation cycles, and finally show how error tables are useful tools
for analyzing models. The implementation of the proposed framework and the reported
experiments are available at https://github.com/dreossi/analyzeNN.

In all the experiments we analyzed squeezeDet [160], a CNN real-time object detector
for autonomous driving. All models were trained for 65 epochs.

The original training and test sets X and T contain 1500 and 750 pictures, respectively,
randomly generated by our image generator. The initial accuracy accfX(T) = (0.9847, 0.9843)
is relatively high (see Table 5.4). However, we will be able to generate sets of counterexamples
as large as T on which the accuracy of fX drops down. The highlighted entries in the
tables show the best performances. Reported values are the averages across five different
experiments.
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5.7.1 Augmentation Methods Comparison

As the first experiment, we run the counterexample augmentation scheme using different
sampling techniques (see Section 5.5). Specifically, we consider uniform random sampling,
low-discrepancy Halton sequence, cross-entropy sampling, and uniform random sampling
with a diversity constraint on the sampled points. For the latter, we adopt the distance
defined in Section 5.4.1 and we require that the modifications of the counterexamples must
be at least distant by 0.5 from each other.

For every sampling method, we generate 1500 counterexamples, half of which are injected
into the original training set X and half are used as test sets. Let R,H,C,D denote uniform
random, Halton, cross-entropy, and diversity (i.e., random with distance constraint) sampling
methods. Let T ∈ {R,H,C,D} be a sampling technique. XT is the augmentation of X, and
TT is a test set, both generated using T . For completeness, we also defined the test set
TM containing an equal mix of counterexamples generated by all the R,H,C,D sampling
methods.

Table 5.2 reports the accuracy of the models trained with various augmentation sets
evaluated on test sets of counterexamples generated with different sampling techniques.
The first row reports the accuracy of the model fX trained on the original training set
X. Note that, despite the high accuracy of the model on the original test set (accfX(T) =
(0.9847, 0.9843)), we were able to generate several test sets from the same distribution of X
and T on which the model poorly performs.

The first augmentation that we consider is the standard one, i.e., we alter the images
of X using imgaug1, a Python library for images augmentation. We augmented 50% of
the images in X by randomly cropping 10 − 20% on each side, flipping horizontally with
probability 60%, and applying Gaussian blur with σ ∈ [0.0, 3.0]. Standard augmentation
improves the accuracies on every test set. The average precision and recall improvements on
the various test sets are 4.91% and 4.46%, respectively (see Row 1 Table 5.2).

Next, we augment the original training set X with our counterexample-guided schemes
(uniform random, low-discrepancy Halton, cross-entropy, and random with distance con-
straint) and test the retrained models on the various test sets. The average precision and
recall improvements for uniform random are 14.43% and 14.56%, for low-discrepancy Hal-
ton 16.05% and 14.57%, for cross-entropy 16.11% and 6.18%, and for random with distance
constraint 14.95% and 14.26%. First, notice the improvement in the accuracy of the original
model using counterexample-guided augmentation methods is larger compared to the clas-
sic augmentation method. Second, among the proposed techniques, cross-entropy has the
highest improvement in precision but low-discrepancy tends to perform better than the other
methods in average for both precision and recall. This is due to the fact that low-discrepancy
sequences ensure more diversity on the samples than the other techniques, resulting in dif-
ferent pictures from which the model can learn new features or reinforce the weak ones.

The generation of a counterexample for the original model fX takes in average for uniform
random sampling 30s, for Halton 92s, and for uniform random sampling with constraints 55s.

1imgaug: https://github.com/aleju/imgaug
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fX fXr fXd
0.6957
0.7982

0.8392
0.9371

0.8678
0.9612

Table 5.3. Random vs Distance augmentation.

This shows the trade-off between time and gain in model accuracy. The maximization of
the diversity of the augmentation set (and the subsequent accuracy increase) requires more
iterations.

5.7.2 Random vs Low-discrepancy Sampling

In the case study we analyze how a different sampling method affects the augmentation. Let
Mr and MH be sets two sets of 1500 misclassified images generated using uniform random and
Halton low-discrepancy sampling methods, respectively (see Section 5.5). We randomly split
Mr and MH in halves. We use two halves as test set T while the other two to augment the
original training set. Let Xr and XH be X augmented with Mr and MH halves, respectively.

5.7.3 Random vs Diversity Augmentation

In this experiment we study the effects of training sets augmented by images that satisfy
a certain diversity condition. Intuitively, we want to verify whether a set augmented with
diverse images differs from one augmented by pictures randomly generated.

In this experiment we considered the model fX trained on the original data set X. Next,
we defined two new training sets Xr = X ∪Mr and Xd = X ∪Md where Mr is a set of 250
misclassifying images randomly generated and Md is a set of 250 misclassifying images such
that for every x(i),x(j) ∈ Md, dm

(i)m(j) ≥ 0.5, where x(i) = γ(m(i)) and x(j) = γ(m(j)). In
other words, the modification of an image in Md is far at least by 0.5 from every configuration
of images in Md. By doing so, we make sure that the images in Md are visually different.

We trained models trained on Xr and Xd and tested them against the test set M
[0]
T . The

obtained results are shown in Table 5.3. The tables shows the averages of average precision
and recall over five different experiments.

Notice how both the augmentation techniques improve the accuracy of the original model.
However, ensuring diversity over the augmentation set leads to a more accurate model.

5.7.4 Augmentation Loop

For this experiment, we consider only the uniform random sampling method and we incre-
mentally augment the training set over several augmentation loops, i.e., over several iteration
of Cda. In this section, we consider the augmentation set A to be a subset of the augmenta-
tion set returned by the oracle OCda when it used random sampling. Here we do not use any
feedback extracted from the error table to guide the sampling. The goal of this experiments
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is to understand whether the model overfits the counterexamples and see if it is possible to
reach a saturation point, i.e., a model for which we are not able to generate counterexam-
ples. We are also interested in investigating the relationship between the quantity of injected
counterexamples and the accuracy of the model.

Consider the i-th augmentation cycle. For every augmentation round, we generate the
set of counterexamples by considering the model fX[i]

r
with highest average precision and

recall. Given X[i], our analysis tool generates a set C[i] of counterexamples. We split C[i] in
halves C[i]

X and C[i]
T . We use C[i]

X to augment the original training set X[i] and C[i]
T as a test set.

Specifically, the augmented training set X[i+1]
r′ = X[i]

r ∪C[i]
X is obtained by adding misclassified

images of C[i]
X to X[i]. r, r′ are the ratios of misclassified images to original training examples.

For instance, |X0.08| = |X| + 0.08 ∗ |X|, where |X| is the cardinality of X. We consider the
ratios 0.08, 0.17, 0.35, 0.50. We evaluate every model against every test set.

Table 5.4 shows the accuracies for three augmentation cycles. For each model, the table
shows the average precision and recall with respect to the original test set T and the tests
sets of misclassified images. The generation of the first loop took around 6 hours, the second
14 hours, the third 26 hours. We stopped the fourth cycle after more than 50 hours. This
shows how it is increasingly hard to generate counterexamples for models trained over several
augmentations. This growing computational hardness of counterexample generation with the
number of cycles is an informal, empirical measure of increasing assurance in the machine
learning model.

Notice that for every cycle, our augmentation improves the accuracy of the model with
respect to the test set. Even more interesting is the fact that the model accuracy on the
original test set does not decrease, but actually improves over time (at least for the chosen
augmentation ratios).

5.7.5 Error Table-Guided Sampling

In this last experimental evaluation, we use error tables to analyze the counterexamples
generated for fX with uniform random sampling, i.e., we generate new images using γ based
on the feedback from E in the learner LCda (in generateAugSet(A,E, γ)). We analyzed both
the ordered and unordered features (see Section 5.6.2). The PCA analysis of ordered features
revealed the following relevant values: sharpness 0.28, contrast 0.33, brightness 0.44, and x
position 0.77. This tells us that the model is more sensitive to image alterations rather than
to the disposition of its elements. The occurrence counting of unordered features revealed
that the top three most occurring car models in misclassifications are white Porsche, yellow
Corvette, and light green Fiat. It is interesting to note that all these models have uncommon
designs if compared to popular cars. The top three most recurring background scenes are a
narrow bridge in a forest, an indoor parking lot, and a downtown city environment. All these
scenarios are characterized by a high density of details that lead to false positives. Using the
gathered information, we narrowed the sampler space to the subsets of the modification space
identified by the error table analysis. The counterexample generator was able to produce
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T C[1]
T C[2]

T C[3]
T

fX 0.9847
0.9843

0.6957
0.7982

fX[1]
0.08

0.9842
0.9861

0.7630
0.8714

fX[1]
0.17

0.9882
0.9905

0.8197
0.9218

0.5922
0.8405

fX[1]
0.35

0.9843
0.9906

0.8229
0.9110

fX[1]
0.50

0.9872
0.9912

0.7998
0.9149

fX[2]
0.08

0.9947
0.9955

0.7286
0.8691

0.7159
0.8612

fX[2]
0.17

0.9947
0.9954

0.7424
0.8422

0.7288
0.8628

fX[2]
0.35

0.9926
0.9958

0.7732
0.8720

0.7570
0.8762

fX[2]
0.50

0.9900
0.9942

0.8645
0.9339

0.8223
0.9187

0.5308
0.7017

fX[3]
0.08

0.9889
0.9972

0.7105
0.8571

0.7727
0.8987

0.7580
0.8860

fX[3]
0.17

0.9965
0.9970

0.8377
0.9116

0.8098
0.9036

0.8791
0.9473

fX[3]
0.35

0.9829
0.9937

0.7274
0.8060

0.8092
0.8816

0.7701
0.8480

fX[3]
0.50

0.9905
0.9955

0.7513
0.8813

0.7891
0.9573

0.7902
0.9169

Table 5.4. Augmentation loop. For the best (highlighted) model, a test set C[i]
T and augmented training set

X[i+1]
r are generated. r is the ratio of counterexamples to the original training set.
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329 misclassification with 10k iterations, against the 103 of pure uniform random sampling,
287 of Halton, and 96 of uniform random with distance constraint.

Finally, we retrained f on the training set XE that includes 250 images generated using
the error table analysis. The obtained accuracies are,

accfXE (TR) = (0.7490, 0.8664)

accfXE (TH) = (0.7582, 0.8751)

accfXE (TD) = (0.8402, 0.9438)

accfXE (TM) = (0.7659, 0.8811)

Note how error table-guided sampling reaches levels of accuracy comparable to other counter-
example guided augmentation schemes (see Table 5.2) but with a third of augmenting images.

5.8 Conclusion

In this chapter, we proposed a novel CEGIS framework to design data sets for perception
modules. We considered the specific example of a perception module on a self-driving car
which detects cars on the road. We first presented an image generator which could syn-
thesize images by sampling from a low dimensional feature space. We then presented out
CEGDA framework which generates synthetic counter-example images which are populated
and analyzed in an error table. Finally, we showed that augmenting the counter-examples
and retraining, we are able to increase the accuracy of the model.
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Chapter 6

Simulation Guided Falsification and
Verification

6.1 Introduction

In recent years, research in control theory and robotics has focused on developing efficient
controllers for robots that operate in the real world. Controller synthesis techniques such
as reinforcement learning, optimal control, and model predictive control have been used to
synthesize complex policies. However, if there is a large amount of uncertainty about the
real world environment that the system interacts with, the robustness of the synthesized
controller becomes critical. This is particularly true in safety-critical systems, where the
actions of an autonomous agent may affect human lives.

We have addressed techniques for correct-by construction controller synthesis and specifi-
cation repair in Chapters 3 and 4. In this chapter we study the problem of provably verifying
the properties of controllers in simulation against uncertainties that are introduced in the
design process.

Historically, designing robust controllers has been considered in control theory [131, 144].
A common issue with these techniques is that, although they consider uncertainty, they rely
on simple linear models of the underlying system. This means that resulting controllers are
often either overly conservative or violate safety constraints if they fail to capture nonlinear
effects.

For nonlinear models with complex dynamics, reinforcement learning has been successful
for synthesizing high fidelity controllers. Recently, algorithms based on reinforcement learn-
ing that can handle uncertainty have been proposed [83, 115, 125], where the performance
is measured in expectation. A fundamental issue with learned controllers is that it is dif-
ficult to provide formal guarantees for safety in the presence of uncertainty. For example,
a controller for an autonomous vehicle must consider human driver behaviors, pedestrian
behaviors, traffic lights, uncertainty due to sensors, etc. Without formally verifying that
these controllers are indeed safe, deploying them on the road could lead to loss of property
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or human lives.

6.1.1 Verification and Falsification

A verification engine attempts to prove that when a system S composed with an environment
E exhibits behaviors which satisfy a specification (or property) ϕ [30]. Mathematically, we
could like to prove

S‖E |= ϕ

As a result, we either have a formal mathematical proof or we have counterexamples, i.e., e ∈
E where the S behavior does not satisfy ϕ. For systems with complex non-linear dynamics,
reachability algorithms based on level set methods have been used to approximate backward
reachable sets for safety verification [109, 107, 106]. A more detailed review of reachability
analysis can be found in [11]. Recently tools such as C2E2 [50] and Flow∗ [25] have been
developed to verify continuous and hybrid models with non-linear dynamics and discrete
transitions against bounded time invariant properties using approximation. However, these
methods suffer from three major drawbacks: (1) the curse of dimensionality of the state
space, which limits them to low-dimensional systems; (2) the complexity of S and E and
(2) a priori knowledge of the system dynamics.

A dual, and often simpler, problem is falsification, which tests the system within a set of
environment conditions for adversarial examples. A falsification engine over comes the draw-
backs of modeling the system, by relying on black-box simulations of the system. Testing
black-box systems in simulators is a well studied problem in the formal methods commu-
nity [39, 8, 163]. Recently, [48] have focused on testing of closed-loop safety critical systems
with neural networks by finding “meaningful” perturbations. The heart of research in black-
box testing focuses on developing smarter search techniques which efficiently samples the
uncertainty space. Indeed, in recent years, several sequential search algorithms based on
heuristics such as Simulated Annealing [8], Tabu search [37], and CMA-ES [75] have been
suggested. Although these algorithms sample the uncertainty space efficiently, they do not
utilize any of the information gathered during previous simulations.

A recent active learning approach based on Bayesian Optimization (BO) [111] an opti-
mization method that aims to find the global optimum of an a priori unknown function based
on noisy evaluations. Typically, BO algorithms are based on Gaussian Process (GP [129])
models of the underlying function and certain algorithms provably converge close to the
global optimum [142]. In the testing setting, BO has been used to actively find counter
examples by treating the search problem as a minimization problem in [36] over adversar-
ial control signals. However, the authors do not consider the structure of the problem and
thereby violate the smoothness assumptions made by the GP model. As a result, their meth-
ods are slow to converge or may fail to find counterexamples. In [113], the authors generate
test scenarios for a black box autonomous system that demonstrate critical transitions in its
performance modes by employing adaptive sampling over GP regression models.

The results in this chapter are adapted from [65].
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6.2 Preliminaries

6.2.1 Mathematical Preliminaries

Let us represent the physical plant or the system by S and the controller by π. The closed-
loop system Sπ is composed of the physical plant and the associated controller. We assume
that we have access to a simulation of the system that includes the control strategy π, i.e.,
the closed-loop system. For brevity, S represents the closed loop system in the remaining
of this chapter. Since, the simulator simulates the system, we will use S to represent the
simulator (or the system). The system S operates in a given environment e ∈ E . We
assume that the environment E models all sources of uncertainty. For example, they can
represent environment effects such as weather, non-deterministic components such as other
agents interacting with the system, or uncertain parameters of the physical system, e.g.,
friction, un-modeled sub components, initial states. The simulator simulates the the closed-
loop system in a given environment to produce a finite-horizon trajectory. Let us denote by
ξS(t; e) the trajectory of the system S at time t in environment e. Moreover, let Ξ denote the
set of all finite horizon trajectories of the system. Formally, the system (or the simulator)
can be represented as a function S : E → Ξ producing the trajectory ξS(·; e).

We specify the safety specification by ϕ. They are defined on finite-length trajectories
ξS(·; e) of the system that can be obtained by simulating the system for a given set of
environment parameters e ∈ E . Alternatively, one can imagine ϕ to be set of all finite-
horizon trajectories of the system that satisfy the system level-safety specification; ϕ ⊆ Ξ.
For example, ϕ can encode state or input constraints that have to be satisfied over time.
We say the system behavior in a given environment e ∈ E satisfies the specification ϕ, i.e.,
ξS(·; e) |= ϕ if and only if ξS(·; e) ∈ ϕ.

Mathematically, we can represent the specification as a function ϕ : Ξ → B where B is
domain of booleans. ϕ evaluates the system behavior (trajectory) ξS to True (False) if the
trajectory |= (2)ϕ. the The specification is a combination of individual predicates µ > 0
which are functions of trajectories combined using a grammar of logical operations,

ϕ := µ|¬µ|ϕ ∧ ψ|ϕ ∨ ψ

The operation ¬,∧,∨ represent negation, conjunction (and) and disjunction (or) respec-
tively. These basic operations can be combined to define complex boolean formula such as
implication → and if-and-only-if ↔ using the rules,

ϕ→ ψ := ¬ϕ ∨ ψ, and ϕ↔ ψ := (¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ). (6.1)

While, the definition of ϕ closely resembles temporal logic [123, 104], the key difference being
the predicates in our setting are defined over trajectories and are hence path properties as
opposed to state properties in the temporal logic setting.
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We further assume that the predicates allows for quantitative semantics which are con-
tinuous and smooth functions of the trajectories ξ ∈ Ξ, ρµ : Ξ→ R such that,

ξS(·; e) |= µ↔ ρµ(ξS(·; e)) > 0

ξS(·; e) 3 µ↔ ρµ(ξS(·; e)) < 0

The quantitative semantics of the predicates µ can be used to define the quantitative
semantics of the safety spec ϕ by following the rules,

ρµ>0(ξ) := µ(ξ)

ρ¬µ(ξ) := −µ(ξ)

ρϕ∧ψ(ξ) := min(ρϕ(ξ), ρψ(ξ))

ρϕ∨ψ(ξ) := max(ρϕ(ξ), ρψ(ξ))

(6.2)

By evaluating ρϕ on the system behavior in a given environment e, ξS(·; e), we can com-
ment on the satisfaction of the system behavior and hence, the safety of the corresponding
environment e. Typically, ρϕ(ξ) = 0 is considered to be an unknown behavior and hence,
we cannot comment on the satisfaction of ξ. One would have to then evaluate the boolean
satisfaction by checking if the ξ ∈ ϕ. In this work, we take a pessimistic approach and con-
sider ρϕ(ξ) = 0 to imply unsatisfactory behavior. This allows for behaviors that are atleast
ε > 0 robust, which is a valid assumption to make while evaluating the safety of the system
(and the controller π). We further require ρϕ to be allow a total ordering in the Ξ, i.e., if
ρϕ(ξ1) > ρϕ(ξ2) then ξ1 is said to be more safe compared to ξ2, and hence is a more desirable
behavior. This allows for an ordering among the environment E . If ξ1 (ξ2) was generated
in e1 (e2), then we can say e2 is a more ”dangerous” environment compared to e1. We can
further confirm that a logic statement ϕ holds true for all trajectories generated by simulator
in all environment E , by confirming that the ρϕ(ξS(·; e)) takes positive values for all e ∈ E .

For brevity, we show the dependence of ϕ on the environment and use ρϕ(e) instead of
ρϕ(ξS(·; e)).

6.2.2 Gaussian Process

For general black-box systems, the dependence of the specification ρϕ(·) on the parame-
ters e ∈ E is unknown a priori. We use a GP to approximate each predicate ρµ(·) in the
domain E . We detail the modeling of ρϕ(·) in Section 6.5. The following introduction about
GPs is based on [129].

GPs are non-parametric regression method from machine learning, where the goal is to
find an approximation of the nonlinear function ρµ : E → R from an environment e ∈ E to
the function value ρµ. This is done by considering the function values ρµ(e) to be random
variables, such that any finite number of them have a joint Gaussian distribution.

The Bayesian, non-parametric regression is based on a prior mean function and the kernel
function k(e, e′), which defines the covariance between the function values ρµ(e), ρµ(e′) at two
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points e, e′ ∈ E . We set the prior mean to zero, since we do not have any knowledge about
the system. The choice of kernel function is problem-dependent and encodes assumptions
about the unknown function.

We can obtain the posterior distribution of a function value ρµ(e) at an arbitrary state
e ∈ E by conditioning the GP distribution of ρµ on a set of n past measurements,
yn = (ρ̂µ(e1), . . . , ρ̂µ(en)) at environment scenarios Wn = {e1, . . . , en}, where ρ̂µ(e) = ρµ(e)+
ω and ω ∼ N (0, σ2) is Gaussian noise. The posterior over ρµ(e) is a GP distribution again,
with mean mn(e), covariance kn(e, e′), and variance σn(e):

mn(e) = kn(e)(Kn + Inσ
2)−1yn,

kn(e, e′) = k(e, e′)− kn(e)(Kn + Inσ
2)−1kTn (e′),

σ2
n(e) = kn(e, e′),

(6.3)

where the vector kn(e) = [k(e, e1), . . . , k(e, en)] contains the covariances between the new
environment, e, and the environment scenarios in Wn, the kernel matrix Kn ∈ Rn×n has
entries [Kn](i, j) = k(ei, ej), with i, j ∈ {1, . . . , n}, and In ∈ Rn×n is the identity matrix.

6.2.3 Bayesian Optimization

In the following we use BO in order to find the minimum of the unknown function ρϕ, which
we construct using the GP models on ρµ in Section 6.5. BO uses a GP model to query
parameters that are informative about the minimum of the function. In particular, the GP-
LCB algorithm from [142] uses the GP prediction and associated uncertainty in (6.3) to
trade off exploration and exploitation by, at iteration n, selecting an environment according
to

en = argmin
e∈E

mn−1(e)− β1/2
n σn−1(e), (6.4)

where βn determines the confidence interval. We provide an appropriate choice for βn in
Theorem 8.

At each iteration, (6.4) selects parameters for which the lower confidence bound of the GP
is minimal. Repeatedly evaluating the true function ρϕ at samples given by (6.4) improves
the GP model and decreases uncertainty at candidate locations for the minimum, such that
the global minimum is found eventually [142].

6.3 Problem Formulation

We address the problem of testing complex black-box closed-loop systems, which are com-
posed of the physical plant S and the controller π, in simulation.

The goal is to test whether the closed loop-system remains safe for all possible sources
of uncertainty in the environment E .

We would like to test whether there exists an adversarial example e ∈ E for which the
specification is violated, i.e., ρϕ(e) < 0.
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Typically, adversarial examples are found by randomly sampling the environment and
simulating the behaviors. However, this approach does not provide any guarantees and does
not allow us to conclude that no adversarial example exist if none are found in our samples.
Moreover, since high-fidelity simulations can often be very expensive, we want to minimize
the number of simulations that we have to carry out in order to find a counterexample.

We propose an active learning framework for testing, where we utilize the results from
previous simulation runs to make more informed decisions about which environment to simu-
late next. In particular, we pose the search problem for a counterexample as an optimization
problem,

argmin
e∈E

ρϕ(e), (6.5)

where we want to minimize the number of queries e until a counterexample is found or
we can verify that no counterexample exists. The main challenge is that the functional
dependence ρϕ(·) between parameters in E and the specification is unknown a priori, since
we treat the simulator as a black-box. Solving this problem is difficult in general, but we can
exploit regularity properties of ρϕ(e). In particular, in the following we use GP to model the
specification and use the model to pick parameters that are likely to be counterexamples.

6.4 Solution Approach

We would like to test the controller safety under uncertainty that arises from stochastic
environments and errors in modeling. In this chapter, we design a falsification engine for
learned controllers in simulation. We formulate our solution as an instance of Oracle-Guided
Inductive Synthesis (OGIS) [80]. Specifically, we design If = (Lf ,Of ) into the design
of the learner Lf and the oracle Of . We then show that under mild assumptions made
about the system under analysis, our falsification engine can provide probabilistic verification
guarantees. The overall OGIS framework If = (Lf ,Of ) is presented in Fig 6.1 We provide
a short description of the oracle Of and the the learner Lf below.

Learner Design: The learner Lf models the unknown quantitative satisfaction landscape
ρϕ as a parse tree Tϕ whose leaves (the predicates ρµ) are modeled as GPs. The learner Lf
uses the trajectory returned by the oracle Of , ξS(·; e) to update the GP models. It returns
the updated parse tree with the updates models to the oracle. The concept class is the set
of all function realizations of ρϕ(·).

Oracle Design: In this setting, the oracle Of is a composition of two oracles detailed
below. Simulation oracle is a high-fidelity black-box simulator of the closed-loop system
S. It takes as input an environment configuration, and simulates the closed-loop system
S to produce a finite horizon trajectory ξS(·; e) which is sent to the learner. Hence, our
framework is compatible with any software-in-the loop simulators like MATLAB or Simulink,
robotics simulators like OpenAI Gym [17], Webots [140], CARLA [43]. The query made to
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Figure 6.1. OGIS for Falsification If = (Lf ,Of ). The oracle Of (learner Lf ) is shown in blue (yellow).
The oracle Of is a composition of two individual oracles, (i) the first is an active-learning framework to
propose candidate environment e for simulation; and (ii) a black-box simulation engine which generates
finite-horizon trajectories ξS(·; e) of the closed-loop system S in a given environment configuration e. The
learner Lf first builds a parse tree corresponding to the safety specification Tϕ whose leaf nodes are GPs
modeling the predicates. At every iteration, the learner uses the system trajectory returned by the oracle to
update the GP models of the predicates. It then sends the updated tree with the updated GP models Tϕ to
the oracle.

this oracle is similar to the simulation query qsim described in Section 2.1. Optimization
Oracle actively searches for adversarial environments under which the controller could have
to operate that lead failure modes in simulation. It takes as input a parse tree Tϕ and
outputs an environment e ∈ Env for simulation. We optimize the learner to minimize the
number of queries (simulations) it requests the oracle Of . We design our oracle to use a
global optimization BO. At each iteration, it uses the updated parse tree proposed by the
learner to estimate the true minimum of the function ρϕ and proposes it to the simulation
oracle. The details are presented in Sec 6.5. The oracle here is an optimization oracle.
Given a parse tree from the learner, this oracles responds by with an environment which it
conjectures minimizes the optimization problem.

The framework terminates when the optimization oracle learns the unknown function
ρϕ(e) with high confidence to find the true minimum e∗ = argmine∈E ρϕ(e). If ρϕ(e∗) > 0,
then the closed-loop system has been verified, i.e., ∀e ∈ Env ρϕ(e) > 0. Or else, the
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learner Lf returns a set of counter-examples (adversarial examples) E ′ ⊆ E such that ∀e ∈
ECE ρϕ(e) ≤ 0. The counter-example set ECE also contains the ”worst-case” counterexample
e∗ where ρϕ(e∗) = mine∈E ρϕ(e).

6.5 Active-Learning for Falsification

In this section, we show how to model specifications ρϕ in (6.5) using GPs without violating
smoothness assumptions and use this to find adversarial counterexamples.

In order to use BO to optimize (6.5), we need to construct reliable confidence intervals
on ρϕ. However, if we were to model ρϕ as a GP with commonly-used kernels, it would need it
to be a smooth function of e. Even though the predicates, ρµ, are typically smooth functions
of the trajectories, and hence smooth in e, conjunction and disjunction (min and max)
in (6.2) are non-smooth operators that render ρϕ to become non-smooth as well. Instead,
we exploit the structure of the specification ϕ and decompose ϕ into a parse tree, where the
leaf nodes correspond to the quantitative semantics function of the predicates.

Definition 9 (Quantitative Parse Tree Tϕ). Given a specification formula ϕ, the correspond-
ing parse tree, Tϕ, has leaf nodes that correspond to function predicates ρmu, while other nodes
are max (disjunctions) and min (conjunctions).

A parse tree is an equivalent graphical representation of ϕ. Evaluating the parse tree
for a given trajectory ξ gives us quantitative satisfaction ρϕ(ξ). For example, consider the
specification

ϕ := (µ1 ∨ µ2)→ (µ3 ∨ µ4) = (¬µ1 ∧ ¬µ2) ∨ (µ3 ∨ µ4), (6.6)

where the second equality follows from De-Morgan’s law. We can obtain an equivalent
function ϕ(e) with (6.2),

ρϕ(e) = max
(

min(−ρµ1(e), −ρµ2(e)),

max(ρµ3(e), ρµ4(e))
)
.

(6.7)

The parse tree, Tϕ, for ϕ in (6.7) is shown in Fig 6.2. We can use the parse tree to decompose
any complex specification into min and max functions of the individual predicates; that is,
ρϕ(e) = Tϕ(ρµ1(e), . . . , ρµq(e)).

We now model each predicate ρµi(e) in the parse tree Tϕ of ϕ with a GP and combine
them with the parse tree to obtain confidence intervals on the overall specification ρϕ(e) for
BO. This is done in the learner Lf . GP-LCB as expressed in (6.4) can be used to search
for the minimum for a single GP. A key insight to extending (6.4) across multiple GPs, is
that the minimum of (6.5) is, with high probability, lower bounded by the lower-confidence
interval of one of the GPs used to model the predicates of ϕ. This is because, the max and
min operators do not change the value of the predicates, but only make a choice between
them. As a consequence, we can model the smooth parts of ϕ, i.e., the predicates, using
GPs and then consider the non-smoothness through the parse tree.
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Figure 6.2. Equivalent parse tree Tϕ for ρϕ in (6.6) to the function (6.7). We replace the predicates ρµi

with their corresponding pessimistic GP predictions to obtain a lower bound on ρϕ(e).

For each predicate ρµi in the parse tree Tϕ of ϕ, we construct a lower confidence bound li =

mi
n−1(e)− β1/2

n σin−1(e), where mi, σi are the mean and standard deviation of the GP corre-
sponding to ρµi . From this, we can construct a lower-confidence interval on ϕ as
Tϕ(l1(e), . . . , lq(e)), where we replace the ith leaf node µi of the parse tree with the pessimistic
prediction li of the corresponding GP. Similar to (6.4), the corresponding acquisition function
for BO uses this lower bound to select the next evaluation point,

en = argmin
e∈E

Tϕ(l1(e), . . . , lq(e)). (6.8)

Intuitively, the next environment selected to simulate is the one that minimizes the worst-case
predictions on ϕ. Effectively, we propagate the confidence intervals associated with the GP
for each predicates through the parse tree Tϕ in order to obtain predictions about ϕ directly.
Note, that (6.8) does not return an environment sample that minimizes the satisfaction of
all the predicates, it only minimizes the lower bound on ϕ. This is done in the oracle Of .

Algorithm (5) describes our active testing procedure. The algorithm proceeds by first
computing the parse tree Tϕ from the specification, ϕ. At each iteration n of BO, we select
new environment parameters en according to (6.8). We then simulate the system with
parameters en and evaluate each predicate ρµi on the simulated trajectories. Lastly, we
update each GP with the corresponding measurement of ρµi . The algorithm either returns
a counterexample that minimizes (6.5); or when Tϕ(l1(e), . . . , lq(e)) is greater then zero, and
we can conclude that the system has been verified.

6.5.1 Theoretical Results

We can transfer theoretical convergence results for GP-LCB [142] to the setting of Alg 5.
To do this, we need to make structural assumptions about the predicates. In particular, we
assume that they have bounded norm in the Reproducing Kernel Hilbert Space (RKHS, [143])
that corresponds to the GP’s kernel. These are well-behaved functions of the form ρµi(e) =∑

j=0 αjki(e, ej) with representer points ej and weights α that decay sufficiently quickly.
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Algorithm 5 Active Testing with Bayesian Optimization

1: procedure ActiveTesting(ϕ, E , β,GPs)
2: Build parse tree Tϕ based on specification ϕ . In Lf
3: for n = 0, . . . do . Until budget or convergence
4: li(e) = ρµi(e)− β

1/2
n σi(e), i = 1, . . . , q . In Of

5: en = argmine∈E Tϕ(l1(e), . . . , lq(e)) . In Of
6: Update each GP model of the predicates with

measurements (en, ρµi(en)). . In Lf
7: return mini ρϕ(ei), the worst result.

We leverage theoretical results from [27] and [16] that allow us to build reliable confidence
intervals using the GP models. We have the following result.

Theorem 8. Assume that each predicate ρµi has RKHS norm bounded by Bi and that the
measurement noise is σ-sub-Gaussian. Select δ ∈ (0, 1), en according to (6.8), and let

β
1/2
n =

∑
iBi + 4σ

√
1 + ln(1/δ) +

∑
i I(yin−1; ρµi). If Tϕ(l1(en), . . . , lq(en)) > 0, then with

probability at least 1 − δ we have that mine∈E ρϕ(e) > 0 and the system has been verified
against all environments in E.

Here I(yin−1; ρµi) is the mutual information between yin−1, the n− 1 noisy measurements
of ρµi , and the GP prior of ρµi . This function was shown to be sublinear in n for many
commonly-used kernels in [142], see Section 6.8 for more details. Theorem 8 states that
we can verify the system against adversarial examples with high probability, by checking
whether the worst-case lower-confidence bound is greater than zero. We provide additional
theoretical results about the existence of a finite n such that the system can be verified up
to ε accuracy in Section 6.8.

6.6 Evaluation

In this section, we evaluate our method on several challenging test cases. A Python imple-
mentation of our framework and the following experiments can be found at
https://github.com/shromonag/adversarial_testing.git

In order to use Alg 5, we have to solve the optimization problem (6.8). In practice,
different optimization techniques have been proposed to find the global minimum of the
function. One popular algorithm is DIRECT [54], a gradient-free optimization method. An
alternative is to use gradient-based methods together with random-restarts. Particularly,
we sample a large number of potential environment scenarios at random from E , and run
seperate optimization routines to minimize (6.8) from these.

Another challenge is that the dimensionality of the optimization problem can often be
very large. However, methods that allow for more efficient computation do exist. These
methods reduce the effective size of the input space and thereby make the optimization
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(a) True functions. (b) Modeling the non-smooth ρϕ
directly.

(c) Modeling and combining
smooth predicates ρµ.

Figure 6.3. The dashed orange line in Fig 6.3a represents the true, non-smooth optimization function in (6.9)
while the green and blue line represent sin(e) and cos(e) respectively. Modeling this function directly as a GP
leads to model errors Fig Fig. 6.3b, where the 95% confidence interval of the GP (blue shaded) with mean
estimate (in blue line) does not capture the true function ρϕ(e) in orange. In fact, the minimum (red star)
is not contained within the shaded region, causing the optimization to diverge. BO converges to the green
dot, where ρϕ(e) > 0 which is not a counterexample. Instead, modeling the two predicates individually and
combining them with the parse tree, leads to the model in Fig Fig. 6.3c. Here, the true function is completely
captured in the confidence interval. As a consequence, BO converges to the global minimum (the red star
and green dot converge).

problem more tractable. One possibility is to use random embedding to reduce the input
dimension as done in Random Embedding Bayesian Optimization (REMBO [156]). We can
then model the GP in this smaller input dimension and carry out BO in the lower dimension
input space.

6.6.1 Modeling Smooth vs Non-Smooth Functions

In the following, we show the effectiveness of modeling smooth functions by GPs and consid-
ering the non-smooth operations in the BO search as opposed to modeling the non-smooth
function by a single GP.

Consider the following, illustrative optimization problem,

e∗ = argmin
e∈(0,10)

max(sin(e) + 0.65, cos(e) + 0.65) (6.9)

We consider two modeling scenarios, one where we model max(sin(e), cos(e)) as a single
GP, and another where we model sin(w) by one GP and cos(e) by another. We initialize
the GP models for sin(e), cos(e) and max(sin(e), cos(e)) with 5 samples chosen in random.
We then use BO to find e∗. We were able to model smooth functions like sin(e) and cos(e)
with GPs, even with fewer samples. At each iteration of BO, we computed the next sample
by solving for the e ∈ (0, 10) which minimized the maximum across the two GPs. This
quickly stabilizes to the true w∗ Fig (6.3c). When we model max(sin(e), cos(e)) using a
GP, in Fig 6.3b, the initial 5 samples were not able to model it well. In fact, the original
function in orange is not contained within the uncertainty bounds of the GP. Hence, in each
iteration of BO, where we chose e ∈ (0, 10) which minimized this function, we were never
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(a) Modeling as separate GPs take around 5 iter-
ations to stabilize to e∗ (in blue), while modeling
as a single GP takes around 45 iteration to sta-
bilize to e∗ (in orange)
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(b) Modeling as separate GPs take around 5 iter-
ations to stabilize to e∗ (in blue), while modeling
as a single GP does not stabilize to e∗ (in orange)

Figure 6.4. The orange and blue lines in Fig 6.4a and Fig Fig. 6.4b show the evolution of samples returned
over the BO iterations when (6.9) is modeled as a single GP and multiple GPs respectively for two different
initialization. We see the that when modeling as a single GP, it takes longer to stabilize to e∗ and in some
cases (Fig 6.4b) does not stabilize to e∗.

able to converge e∗. It is not surprising to see that, given these models, BO does not always
converge when we model non-smooth functions such as in (6.9).

To support our claim, we repeat this experiment 15 times with different initial samples.
In each experiment we run BO for 50 iterations. When modeling sin(e) and cos(e) as separate
GPs, BO stabilized to e∗ in about 5 iterations in all 15 experiments. However, when modeling
max(sin(e), cos(e)) as a single GP, it takes over 35 iterations to converge and in 5 out of the
15 cases, it did not converge to e∗. We show these two different behaviors in Fig 6.4.

6.6.2 Collision Avoidance with High Dimensional Uncertainty

Consider an autonomous car that travels on a straight road with a obstacle at xobs. We
require that the car can come to a stop before colliding with an obstacle. The car has two
states; location, x, and velocity, v; and one control input acceleration; a. The dynamics of
the car is given by,

ẋ = v, v̇ = a. (6.10)

Our safety specification for collision avoidance is given by, ϕ = min(xobs − x(t)), i.e., the
minimum distance between the position of the car and the obstacle over a horizon of length
100. We assume that the car does not know where the obstacle is a priori, but receives
locations of the obstacle through a sensor at each time instant, xs(t). The controller is a

simple linear state feedback control, K, such that at time t, a(t) = K ·
[
x(t)− xs(t), v(t)

]T
.

We assume that the car initially starts at location xinit = 0, with a velocity vinit = 3 m/s.
Let the obstacle be at xobs = 5, which is not known by the car. Instead, it receives sensor
readings for the location of the obstacle such that xs = [4.5, 5.5]. If ϕ is negative, then
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Figure 6.5. The red, blue and green bars shows the average number of counterexamples found using random
sampling; applying BO on the reduced input space and original input space respectively for the example in
Sec 6.6.2. The black lines show the standard deviation across the experiments.

x(t) > xobs for some t which signifies collision. Moreover, we constrain the acceleration to
lie in a ∈ [−3, 3].

The domain of our uncertainty is E = [4.5, 5.5]100, i.e., the sensor readings xs over the
horizon H = 100. We compare across three experimental setups, first, we model the GP in
the original space of E i.e., with 100 inputs; second, we model the GP in a lower dimension
input space as described in the preamble of this section; and third, we randomly sample
inputs and test them. We run BO for 250 iterations on the GPs, and consider 250 random
samples for the random testing. We repeat this experiment 10 times and show our results in
Fig Fig. 6.5. The green and blue bar in Fig 6.5 show the average number of counterexamples
returned running BO on the GP defined over the original input space and in the low dimen-
sion input space. In general, active testing in the high-dimensional input space gives the
best results, which deteriorates with an increase in compression of the input space. Random
testing, shown in red performs the worst. This is not surprising as, (1) 250 samples is not
sufficient to cover an input space of 100 dimensions uniformly; and (2) the samples are all
independent of each other. Moreover, in the uncompressed input case, the specification eval-
uated at the worst counterexample, ρϕ(e∗), has a mean and standard deviation of −0.0138
and 0.004 as compared to −0.0067 and 0.0011 for random sampling.

6.6.3 OpenAI Gym Environments

We interfaced our tool with environments from OpenAI gym [17] to test controllers from
Open AI baselines [119]. For brevity, we refer the details of the environments to [120]. In
both case studies, we introduce uncertainty around the parameters the controller has been
trained for. The rationale behind this is that the parameters in a simulator are an estimate
of the true values. This ensures that counterexamples found, can indeed occur in the real
system.
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Figure 6.6. The green, blue and red bars show the number of counter examples generated when modeling
ρµ1 , ρµ2 as separate GPs; modeling ρϕ as a single GP and random testing respectively for the reacher
example (Sec 6.6.3.1). Our modeling paradigm, finds more counterexamples compared to the other two
methods.

6.6.3.1 Reacher

In the reacher environment, we have a 2D robot trying to reach a target. For this environment
we have six sources of uncertainty: two for the goal position, (xgoal, ygoal) ∈ [−0.2, 0.2]2, two
for state perturbations (δx, δy) ∈ [−0.1, 0.1]2 and two for velocity perturbations (δvx, δvy) ∈
[−0.005, 0.005]2. The state of the reacher is tuple with the current location, x = (x, y),
velocity v = (vx, vy), and rotation, θ. A trajectory of the system, ξS , is a sequence of
states over time, i.e., ξS = (x(t),v(t), θ(t)), t = 0, 1, 2, . . . . Our uncertainty space is, E =
[−0.2, 0.2]2 × [−0.1, 0.1]2 × [−0.005, 0.005]2. Given an instance of e ∈ E , the trajectory, ξS ,
of the system is uniquely defined.

We trained a controller using the Proximal Policy Optimization (PPO) [132] implemen-
tation available at Open AI baselines. We determine a trajectory to be safe if either the
reacher reaches the goal, or if it does not rotate unnecessarily. This can be captured as
ϕ = µ1 ∨ µ2, where, µ1(w) is the minimum distance between the trajectory and the goal
position, and µ2 is total rotation accumulated over the trajectory; and its continuous variant,
ρϕ = max(ρµ1 , ρµ2).

Using our modeling approach, we model this using two GPs, one for ρµ1 and another for
ρµ2 . We compare this to modeling ρϕ as a single GP and random sampling. We run 200 BO
iterations and consider 200 random samples for random testing. We repeat this experiment
10 times. In Fig Fig. 6.6, we plot the number of counterexamples found by each of the
three methods over 10 runs of the experiment. Modeling the predicates by separate GPs
and applying BO across them (shown in green) consistently performs better than applying
BO on a single GP modeling ρϕ (shown in blue) and random testing (shown in red). We see
the that random testing performs very poorly, in some cases (experiment runs 4, 8, 10) finds
no counterexamples.

By modeling the predicates separately, the specification evaluated at the worst coun-
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terexample, ρϕ(e∗), has a mean and standard deviation of −0.1283 and 0.0006 as compared
to −0.1212 and 0.0042 when considering a single GP. This suggests, that using our mod-
eling paradigm BO converges (since the standard deviation is small) to a more falsifying
counterexample (since the mean is smaller).

6.6.3.2 Mountain Car Environment

The mountain car environment in OpenAI gym, is a car on a one-dimensional track, posi-
tioned between two mountains. The goal is to drive the car up the mountain on the right. The
environment comes with one source of uncertainty, the initial state xinit ∈ [−0.6,−0.4]. We
introduced four other sources of uncertainty, for the initial velocity, vinit ∈ [−0.025, 0.025];
goal location, xgoal ∈ [0.4, 0.6]; maximum speed, vmax ∈ [0.55, 0.75] and maximum power
magnitude, pmax ∈ [0.0005, 0.0025]. The state of the mountain car is a tuple with the
current location, x, and velocity, v. A trajectory of the system, ξS , is a sequence of
states over time, i.e., ξS = (x(t), v(t)), t = 0, 1, 2, . . . . Our uncertainty space is given by,
E = [−0.6,−0.4] × [−0.025, 0.025] × [0.4, 0.6] × [0.55, 0.75] × [0.0005, 0.0025]. Given an in-
stance of e ∈ E , the trajectory, ξS , of the system is uniquely defined.

We trained two controllers one using PPO and another using an actor critic method
(DDPG) for continuous Deep Q-learning [100]. We determine a trajectory to be safe, if
it reaches the goal quickly or if does not deviate too much from its initial location and
always maintains its velocity in some bound. Our safety specification can be written as
ϕ = µ1 ∨ (µ2 ∧ µ3), where, µ1(w) is time taken to reach the goal, µ2 is the deviation from
the initial location and µ3 is the deviation from the velocity bound; and its continuous
variant of ρϕ = max(ρµ1 ,min(ρµ2 , ρµ3)). We model ρϕ, by modeling each predicate, ρµ, by
a GP. We compare this to modeling ρϕ with a single GP and random sampling. We run
200 BO iterations for the GPs and consider 200 random samples for random testing. We
repeat this experiment 10 times. We show our results in Fig 6.7, where we plot the number
of counterexamples found by each of the three methods over 10 runs of the experiment
for each controller. Fig 6.7 demonstrates the strength of our approach. The number of
counterexamples found by our method (in green bar) is much higher compared to random
sampling (in red) and modeling ρϕ as a single GP (in blue). In Fig 6.7a the blue bars
are smaller than even the ones in red, suggesting random sampling performs better than
applying BO on the GP modeling ρϕ. The is because the GP is not able to model ρϕ, and is
so far away from the true model, that the sample returned by the BO is worse than if were
to sample randomly.

This is further highlighted by the value of the specification at worst counterexample,
ρϕ(e∗). The mean and standard deviation for ρϕ(e∗) over the 10 experiment runs is −0.5435
and 0.028 for our method, −0.3902 and 0.0621 when ρϕi is modeled as a single GP; and
−0.04379 and 0.0596 for random sampling. A similar but less drastic result holds in the case
of the controller trained with DDPG.
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(a) Controller trained with PPO

1 2 3 4 5 6 7 8 9 10
Experiment number

0

20

40

60

80

100

N
um

be
ro

fc
ou

nt
er

ex
am

pl
es

(b) Controller trained with DDPG

Figure 6.7. The green, blue and red bars show the number of counter examples generated when modeling
ρµ1

, ρµ2
, ρµ3

as separate GPs, modeling ρϕ as a GP and random testing respectively for the mountain
car example (Sec 6.6.3.2). While our modeling paradigm, finds orders of magnitude more counterexample
compared to the other two methods, we notice that modeling ρϕ as a single GP performs much worse than
random sampling for the controller trained with PPO Fig 6.7a and comparable for the controller trained
with DDPG Fig 6.7b.

6.7 Conclusion

In this chapter we addressed the problem of verifying controllers against uncertainties intro-
duced in the design process. These uncertainties include (but not limited to) parts of the
system or environment not modeled. To achieve this, we developed an active sampling based
simulation based falsification technique based of Gaussian Process and Bayesian Optimiza-
tion which can can provide strong verification guarantees. The effectiveness of our approach
is shown by empirical evaluation of OpenAI gym environments like cartpole and mountain
car with controllers trained using deep reinforcement learning.

6.8 Proofs

In this section, we prove the convergence of our algorithm Alg 5 under specified regularity
assumptions on the underlying predicates. Consider the specification

ρϕ(e) = Tϕ(ρµ1(e), . . . , ρµq(e)), (6.11)

where q represents the number of predicates. Let the domain of the predicate indices be
represented by, I = {1, . . . , q}. The convergence proofs for classical Bayesian optimization
in [142, 27] proceed by building reliable confidence intervals for the underlying function and
then showing, that these confidence intervals concentrate quickly enough at the location of
the optimum under the proposed evaluation strategy. For ease of exposition, we assume that
measurements of each predicate ρµi are corrupted by the same measurement noise.
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To leverage these proofs, we need to account for the fact that our GP model is composed
of several individual predicates and that we obtain one measurement for each predicates at
every iteration of the algorithm.

We start by defining a composite function f : E × I → R, which returns the function
values for the individual predicates indexed by i.

f(e, i) = ρµi(e) (6.12)

The function f(·, ·) is a single output function, which can be modeled with a single GP with
a scalar output over the extended input space, E × I. For example, if we assume that the
predicates are independent of each other, the kernel function for f would look like,

k((e, i), (e′, i′)) =

{
ki(e, e

′) if i = i′

0 otherwise
, (6.13)

where ki is the kernel function corresponding to the GP for the i−th predicate, µi. It is
straightforward to include correlations between functions in this formulation too.

This reformulation allows us to build reliable confidence intervals on the underlying pred-
icates, given regularity assumptions. In particular, we make the assumption that the func-
tion f has bounded norm in the Reproducing Kernel Hilbert Space (RKHS, [143]) corre-
sponding to the same kernel k(·, ·) that is used for the GP on f .

Remark 4. Note, that this model is more general then the case where we assume that each
predicate, ρµi, individually has bounded RKHS norm Bi. In this case, the function, f(e, i)
has RKHS norm with respect to the kernel in (6.13) bounded by B =

∑q
i Bi.

Lemma 2. Assume that f has RKHS norm bounded by B and the measurements are cor-
rupted by σ-sub-Gaussian noise. If β

1/2
n·q = B + 4σ

√
I(yq·(n−1); f) + 1 + ln 1/δ, then the

following holds for all environment scenarios, e ∈ E, predicate indices, i ∈ I, and iterations
n ≥ 1 jointly with probability at least 1− δ,

|f(e, i)−mi
q·(n−1)(e, i)| ≤ β1/2

q·n σ
i
q·(n−1)(e, i) (6.14)

Proof: This follows directly from [16], which extends the results from [27] and Lemma 5.1
from [142] to the case of multiple measurements. �

The scaling factor for the confidence intervals, βn·q, depends on the mutual informa-
tion I(yq·(n−1); f) between the GP model of f and the q measurements of the individual
predicates that we have obtained for each time step so far. It can easily be computed as

I(yq·(n−1); f) = log(1 +
1

σ2
Kq·(n−1)),

=
n−1∑
j=1

q∑
i=1

log(1 + σ2
j·q(ej, i)/σ

2),
(6.15)
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where Kq·(n−1) is the kernel matrix of the single GP over the extended parameter space and
the inner sum in the second equation indicates the fact that we obtain q measurements at
every iteration.

Based on these individual confidence intervals on ρµ, we can construct confidence intervals
on ρϕ. In particular, let

li(e) = mq·(n−1)(e, i)− β1/2
q·n σq·(n−1)(e, i)

ui(e) = mq·(n−1)(e, i) + β1/2
q·n σq·(n−1)(e, i)

(6.16)

be the lower and upper confidence intervals on each predicate. From this, we construct
reliable confidence intervals on ρϕ(e) as follows:

Lemma 3. Under the assumptions of Lemma 2. Let Tϕ be the parse tree corresponding
to ρϕ. Then the following holds for all environment scenarios, e ∈ E and iterations n ≥ 1
jointly with probability at least 1− δ,

Tϕ(l1(e), . . . , lq(e)) ≤ ρϕ(e) ≤ Tϕ(u1(e), . . . , uq(e)) (6.17)

Proof: This is a direct consequence of Lemma 2 and the properties of the min and max
operators. �

We are now able to prove the main theorem as a direct consequence of Lemma 3.

Theorem 9. Assume that each predicate ρµi has RKHS norm bounded by Bi and that the
measurement noise is σ-sub-Gaussian. Select δ ∈ (0, 1), en according to (6.8), and let

β
1/2
n =

∑
iBi + 4σ

√
1 + ln(1/δ) +

∑
i I(yin−1; ρµi). If Tϕ(l1(en), . . . , lq(en)) > 0, then with

probability at least 1 − δ we have that mine∈E ρϕ(e) > 0 and the system has been verified
against all environments in E.

Proof: For independent variables the mutual information decomposes additively and fol-
lowing Note 4 this is a direct consequence of Lemma 3, since Tϕ(l1(e), . . . , lq(e)) ≤ ρϕ(e)
holds for all e ∈ E with probability at least 1− δ. �

6.8.1 Convergence proof

In the following, we prove a stronger result about convergence of our algorithm.
The key quantity in the behavior of the algorithm is the mutual information (6.15).

Importantly, it was shown in [16] that it can be upper bounded by the worst-case mutual
information, the information capacity, which in turn was shown to be sublinear by [142]. In
particular, let fW denote the noisy measurements obtained when evaluating the function f at
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points in W. The mutual information obtained by the algorithm can be bounded according
to

I(fEn×I ; f) ≤ max
Ē⊂E,|Ē|≤n

I(fĒ×I ; f);

≤ max
D⊂E×I,|D|≤n·q

I(fD; f);

= γq·n,

(6.18)

where γn is the worst-case mutual information that we can obtain from n measurements,

γn = max
D⊂E×I,|D|=n

I(fD; f). (6.19)

This quantity was shown to be sublinear in n for many commonly-used kernels in [142].
A key quantity to show convergence of the algorithm is the instantaneous regret,

rn = min
e∈E

ρϕ(e)− ρspec(en), (6.20)

the difference between the unknown true minimizer of ρϕ and the environment parameters en
that Alg 5 selects at iteration n. If the instantaneous regret is equal to zero, the algorithm
has converged.

In the following, we will show that the cumulative regret, Rn =
∑n

i=1 ri is sublinear in n,
which implies convergence of Alg 5.

We start by bounding the regret in terms of the confidence intervals on ρµi .

Lemma 4. Fix n ≥ 1, if |f(e, i)−mq·(n−1)(e, i)| ≤ β
1/2
q·n σq·(n−1)(e, i) for all e, i ∈ E × I, then

the regret is bounded by rn ≤ 2β
1/2
q·n maxi σq·(n−1)(e, i).

Proof: The proof is analogous to [142, Lemma 5.2]. The maximum standard deviation
follows from the properties of the max and min operators in the parse tree Tϕ. In particular,
let a1, b1, a2, b2 ∈ R with a1 − b1 < a2 − b2. Then for all c1 ∈ [−b1, b1] and c2 ∈ [−b2, b2] we
have that

a1 − b1 ≤ min(a1 + c1, a2 + c2) ≤ a1 + b1. (6.21)

The max operator is analogous. Thus, since the parse tree Tϕ is composed only of min and
max nodes, the regret is bounded by the maximum error over all predicates. The result
follows. �

Lemma 5. Pick δ ∈ (0, 1) and βq·n as shown in Lemma 2, then the following holds with
probability at least 1− δ,

n∑
i=1

r2
n ≤ βq·nC1qI(fen×I ; f) ≤ βq·nC1γq·n (6.22)

where rn is the regret between the true minimizing environment scenario, e∗ and the current
sample, en; and C1 = 8/ log 1 + σ−2
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Proof: The first inequality follows similar to [142, Lemma 5.4] and the proofs in [16]. In
particular, as in [16],

r2
n ≤ 4β2

q·n max
i∈I

σ2
q·(n−1)(en, i)

The second inequality follows from (6.18). �

Lemma 6. Under the assumptions of Lemma 3, let δ ∈ (0, 1) and choose en according
to (6.8). Then, the cumulative regret RN over N iterations of Alg 5 is bounded with high
probability,

Pr
{
Rn ≤

√
C1βNNγq·N ∀N ≥ 1

}
≥ 1− δ (6.23)

where C1 = 8
log 1+σ−2 .

Proof: Since, RN =
∑N

i=1 ri, from Cauchy-Schwartz inequality we have, R2
N ≤ N

∑N
i=1 r

2
i .

The rest follows from Lemma 5. �
We introduce some notation, let

ên = argmine∈{e1,...,en}ρϕ(e) (6.24)

be the minimizing environment scenario sampled by BO in n iterations and let

e∗ = argmin
e∈E

ρϕ(e) (6.25)

be the unknown, optimal parameter.

Corollary 1. For any δ ∈ (0, 1) and ε ∈ R+, there exits a n∗,

n∗

βq·n∗γq·n∗
=
C1

ε2
(6.26)

such that ∀n ≥ n∗, ρϕ(e∗)− ρϕ(ên) ≤ ε holds with probability at least 1− δ.

Proof: The cumulative reward over n iterations, Rn =
∑n

i=1 ρϕ(e∗)−ρϕ(ei) where ei is the
i-th BO sample. Defining ên as in (6.24) we have,

Rn =
n∑
i=1

ρϕ(e∗)− ρϕ(ei)

≥
n∑
i=1

ρϕ(e∗)− ρϕ(ên)

= n(ρϕ(ên)− ρϕ(e∗))

(6.27)
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Combining this result with Lemma 6, we have with probability greater than 1− δ that

ρϕ(e∗)− ρϕ(ên) ≤ Rn

n

≤
√
C1βq·nγq·n

n

(6.28)

To find, n∗, we bound the RHS by ε,√
C1βq·n∗γq·n∗

n∗
≤ ε⇒ n∗

βq·n∗γq·n∗
≥ C1

ε2
(6.29)

For n > n∗, the minimum ρϕ(ên) ≤ ρϕ(ên∗) =⇒ ρϕ(ên)− ρϕ(e∗) ≤ ε. �
We are now ready to prove our main convergence theorem.

Theorem 10. Under the assumptions of Lemma 3, choose δ ∈ (0, 1), ε ∈ R+ and define n∗

using Corollary 1. If n ≥ n∗ and ρϕ(ên) > ε, then, with probability greater than 1 − δ, the
following statements hold jointly

• ρϕ(e∗) > 0

• The closed loop system satisfies ϕ, i.e., the control can safely control the system in all
environment scenarios, E

• The system has been verified against all environments, E

Proof: This holds from Lemma 6 and Corollary 1. From Corollary 1, we have ∀n ≥ n∗,
Pr(ρϕ(e∗)− ρϕ(ên) ≤ ε) > 1− δ. If ∃n ≥ n∗, such that ρϕ(ên) > ε, then we have Pr(ρϕ(e∗) >
0)1− δ, i.e., the minimum value ρϕ can achieve on the closed loop system is greater than 0.
ϕ is hence, satisfied by our system in all e ∈ E . �
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Chapter 7

Specification-centric Simulation
Metric

7.1 Introduction

In Chapter 6, we addressed the problem of analyzing and verifying synthesized controllers
against model or environment uncertainties. However, even if one were to verify these con-
trollers in simulation, differences in behavior might occur due to mismatch with the real
world. In this chapter, we consider a subset of real world control problems with reach-avoid
objectives and propose a framework where controllers verified with a model can be adapted
to the real world.

Recent research in robotics and control theory has focused on developing complex au-
tonomous systems, such as robotic manipulators, autonomous vehicles, and surgical robots.
Since many of these systems are safety-critical, it is important to design provably-safe con-
trollers while determining environments in which safety can be guaranteed. In this work, we
focus on reach-avoid objectives, where the goal is to design a controller to reach a target set
of states (referred to as reach set) while avoiding unsafe states (avoid set). Reach-avoid prob-
lems are common for autonomous vehicles in the real world; for example, a drone flying in
an indoor setting. Here the reach set could be a desired goal position and the avoid set could
be the set of the obstacles. In such a setting, it is important to determine the environments
in which the drone can safely navigate, as well as the corresponding safe controllers.

Typically, a mathematical model of the system, such as a physics-based first principles
model, is used for synthesizing a safe controller in different environments (e.g., [150, 147]).
However, when the system dynamics are unknown, synthesizing such a controller becomes
challenging. In such cases, it is a common practice to identify a model for the system.
This model represents an abstraction of the system behavior. Recently, there has been
an increased interest in using machine learning (ML) based tools, such as neural networks
and Gaussian processes, for learning abstractions directly from the data collected on the
system [12, 10, 95]. One of the many verification challenges for ML-based systems [135] is
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Figure 7.1. The avoid set is expanded and the reach set is contracted with the simulation metric dsim. If
the abstraction trajectory (ξM) stays clear of the expanded avoid set and reaches the contracted reach set,
the system trajectory (ξS) also stays clear of the original avoid set and reaches the original reach set.

that such abstractions cannot be directly used for verification, since it is not clear a priori
how representative the abstraction is of the actual system. Hence, to use the abstraction to
provide guarantees for the system, we need to first quantify the differences between it and
the system.

7.1.1 Quantifying system and model mismatches

One approach is to use model identification techniques that provide bounds on the mismatch
between the dynamics of the system and its abstraction both in time and frequency domains
(see [62, 76, 101] and references therein). This bound is then used to design a provably
stabilizing controller for the system. These approaches have largely been limited to linear
abstractions and systems, and the focus has been on designing asymptotically stabilizing
controllers.

Another way to quantify the difference between a general non-linear system and its
abstraction relies on the notion of a (approximate) simulation metric [5, 66, 9]. Such a metric
measures the maximal distance between the system and the abstraction output trajectories
over all finite horizon control sequences. Standard simulation metrics (referred to as SSM
here on) have been used for a variety of purposes such as safety verification [67], abstraction
design for discrete [94], nonlinear [124], switched [68] systems, piecewise deterministic and
labelled Markov processes [35, 145], and stochastic hybrid systems [2, 57, 82, 18], model
checking [9, 84], and model reduction [34, 121]. Once computed, the SSM is used to expand
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the unsafe set (or avoid set) in [2]. For reach-avoid scenarios, we additionally use it to
contract the reach set as shown in Figure 7.1. If we can synthesize a safe controller that
ensures the abstraction trajectory avoids the expanded avoid set and reaches the contracted
reach set, then the system trajectory is guaranteed to avoid and reach the original avoid set
and reach set respectively. This follows from the property that SSM captures the worst case
distance between the trajectories of the system and the abstraction. Consequently, the set
of safe environments for the system can be obtained by finding the set of environments for
which we can design a safe controller for the abstraction with the modified specification.

Even though powerful in its approach, SSM computes the maximal distance between
the system and the abstraction trajectories across all possible controllers. We show in this
paper that this is unnecessary and might lead to a conservative bound on the quality of the
abstraction for the purposes of controller synthesis. In particular, the larger the distance
between the system and the abstraction, the larger the expansion (contraction) of the avoid
(reach) set. In many cases, this results in unrealizability wherein there does not exist a safe
controller for the abstraction for the modified specification.

In this chapter, we propose SPEC, SPEcification-Centric simulation metric, that over-
comes these limitations. SPEC achieves this by computing the distance across

1. only those controllers that can be synthesized by a particular control scheme and that
are safe for the abstraction (in the context of the original reach-avoid specification) —
these are the only potential safe controllers for the system;

2. only those abstraction and system trajectories for which the system violates the reach-
avoid specification, and

3. only between the abstraction trajectory and the reach and the avoid sets.

If the reach-avoid specification is changed using SPEC in a similar fashion as that for SSM,
it is guaranteed that if a controller is safe for the abstract model, it remains safe for the
system. SPEC can be significantly less conservative than SSM, and can be used to design
safe controllers for the system for a broader range of reach-avoid specifications. In fact, we
show that, among all uniform distance bounds (i.e., a single distance bound is used to modify
the specification in all environments), SPEC provides the largest set of environments such
that a safe controller for the abstraction is also safe for the system.

Note that a similar metric has been used earlier [64] to find tight environment assumptions
for temporal logic specifications. However, it applies in much more restricted settings since
it relies on having simple linear representations of the abstraction which can be expressed
as a linear optimization problem.

In general, it is challenging to compute both SSM and SPEC when the dynamics of the
system are not available. Several approaches have been proposed in the literature for com-
puting SSM [1, 66, 82]; however, restrictive assumptions on the dynamics of the systems
are often required to compute it. More recently, a randomized approach has been proposed
to compute SSM [2, 57] for finite-horizon properties that relies on “scenario optimization”,
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which was first introduced for solving robust convex programs via randomization [21] and
then extended to semi-infinite chance-constrained optimization problems [22]. Scenario op-
timization is a sampling-based method to solve semi-infinite optimization problems, and
has been used for system and control design [20, 23]. In this work, we propose a scenario
optimization-based computational method for SPEC that has general applicability and is
not restricted to a specific class of systems. Indeed, the only assumption is that the system
is available as an oracle, with known state and control spaces, which we can simulate to
determine the corresponding output trajectory. Given that the distance metric is obtained
via randomization and, hence, is a random quantity, we provide probabilistic guarantees on
the performance of SPEC. However, this confidence is a design parameter and can be chosen
as close to 1 as desired (within a simulation budget). To summarize, this chapter’s main
contributions are:

• SPEC, a new simulation metric that is less conservative than SSM, and provides the
largest set of environments such that a safe controller for the abstraction is also safe
for the system;

• a method to compute SPEC that is not restricted to a specific class of systems, and

• a demonstration of the proposed approach on numerical examples and simulations of
real-world autonomous systems, such as a quadrotor and an autonomous car.

The results in this chapter are adapted from [63].

7.2 Preliminaries

Let S be an unknown, discrete-time, potentially non-linear, dynamical system with state
space Rnx and control space Rnu . Let M be an abstraction of S with the same state and
control spaces as S, whose dynamics are known. We also assume that the bounds between
the dynamics of M and S are not available beforehand (i.e., we cannot a priori quantify
how different the two are). ξS(t;x0,u) denotes the trajectory of S at time t starting from the
initial state x0 and applying the controller u. ξM is similarly defined. For ease of notation,
we drop u and x0 from the trajectory arguments wherever convenient.

We define by E := X0 × A × R the set of all reach-avoid scenarios (also referred to as
environment scenarios here on), for which we want to synthesize a controller for S. A reach-
avoid scenario e ∈ E is a three-tuple, (x0, A(·), R(·)), where x0 ∈ X0 ⊂ Rnx is the initial
state of S. A(·) ∈ A, A(·) ⊂ Rnx and R(·) ∈ R, R(·) ⊂ Rnx are (potentially time varying)
sequences of avoid and reach sets respectively. We leave A and R abstract except where
necessary. If the sets are not time varying, we can replace R(·) (respectively A(·)) by the
stationary R (respectively A). Similarly, if there is no avoid or reach set at a particular time,
we can represent A(t) = ∅ and R(t) = Rnx .
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For each e ∈ E , we define a reach-avoid specification, ϕ(e)

ϕ(e) := {ξ(·) : ∀t ∈ TH ξ(t) /∈ A(t) ∧ ξ(t) ∈ R(t)}, (7.1)

where TH denote the time-horizon {0, 1, . . . , H}. We say ξ(·) satisfies the specification ϕ(e),
denoted ξ(·) |= ϕ(e), if ξ(·) ∈ ϕ(e).

The reader might observe that our use of R(·) in (7.1) differs somewhat from the intuitive
notion of a reach set (depicted, e.g., in Figure 7.1). Specifically, (7.1) defines the reach-avoid
specification such that the output trajectory must remain within R(t) at all times t, while
the usual notion involves eventually reaching a desired set of states. Note, however, that
for the purposes of defining ϕ(e), these notions are equivalent if R(t) in (7.1) represents
the backwards reachable tube corresponding to the desired reach set: if a state is reachable
eventually, then the trajectory stays within the backwards reachable tube at all time points.
We henceforth use the R(t) in the latter sense since it simplifies the mathematics in the
paper.

Finally, we define UΠ(e) ⊂ U to be the space of all permissible controllers for e, and U
to be the space of all finite horizon control sequences over TH . For example, if we restrict
ourselves to linear feedback controllers, UΠ represents the set of all linear feedback controllers
that are defined over the time horizon TH .

7.3 Running Example

We now introduce a very simple example that we will use to illustrate our approach, a 2
state linear system in which the system and the abstraction differ only in one parameter.
Although simple, this example illustrates several facets of SPEC. We present more realistic
case studies in Section 7.8.

Consider a system S whose dynamics are given as

x(t+ 1) =

[
x1(t+ 1)
x2(t+ 1)

]
=

[
2 0
0 0.1

] [
x1(t)
x2(t)

]
+

[
1
0

]
u(t). (7.2)

We are interested in designing a controller for S to regulate it from the initial state x(0) :=
x0 = [0, 0] to a desired state x∗ = [x∗1, 0] over a time-horizon of 20 steps, i.e, H = 20. In
particular, we have

X0 = {[0, 0]}, A = ∅, R =
⋃

−4≤x∗1≤4

R(·;x∗),

where

R(t;x∗) =R2, t ∈ {0, 1, . . . , H − 1},
R(H;x∗) ={x : ‖x− x∗‖2 < γ}.
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We use γ = 0.5 in our simulations. Thus, each e ∈ E consists of a final state x∗ (equivalently,
a reach set R(H;x∗)) to which we want the system to regulate, starting from the origin.
Consequently, the system trajectory satisfies the reach-avoid specification in this case if
ξS(H;x0,u) ∈ R(H;x∗).

For the purpose of this example, we assume that the system dynamics in (7.2) are un-
known; only the dynamics of its abstraction M are known and given as

x(t+ 1) =

[
x1(t+ 1)
x2(t+ 1)

]
=

[
2 0
0 0.1

] [
x1(t)
x2(t)

]
+

[
1

0.1

]
u(t). (7.3)

In this example, we use the class of linear feedback controllers as UΠ(e), although other
control schemes can very well be used. In particular, for any given environmental scenario
e, the space of controllers UΠ(e) is given by

UΠ(e) = {LQR(q, x∗) : 0.1 ≤ q ≤ 100},

where LQR(q, x∗) is a Linear Quadratic Regulator (LQR) designed for the abstraction dy-
namics in (7.3) to regulate the abstraction trajectory to x∗ 1, with the state penalty matrix
Q = qI and the control penalty coefficient R = 1. Here, I ∈ R2×2 is an identity matrix.
Thus, for different values of q we get different controllers, which affect the various charac-
teristics of the resultant trajectory, such as overshoot, undershoot, and final state. LQR(q)
for any given q can be obtained by solving the discrete-time Riccati equation [92]. Our goal
thus is to use the dynamics in (7.3) to find the set of final states to which S can be regulated
and the corresponding regulator in UΠ(e).

7.4 Problem Formulation

Given the set of reach-avoid scenarios E , the controller scheme UΠ, and the abstraction M,
our goal is two-fold:

1. to find the environment scenarios for which it is possible to design a controller such
that ξS(·) satisfies the corresponding reach-avoid specification ϕ(e),

2. to find a corresponding safe controller for each scenario in (1).

Mathematically, we are interested in computing the set ES

ES = {e ∈ E : ∃u ∈ UΠ(e) , ξS(·;x0,u) |= ϕ(e)}, (7.4)

and the corresponding set of safe controllers US(e) for each e ∈ ES

US(e) = {u ∈ UΠ(e) : ξS(·;x0,u) |= ϕ(e)}. (7.5)

1That is, we penalize the trajectory deviation to the desired state x∗ in the LQR cost function.
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When a dynamics model of S is known, several methods have been studied in literature to
compute the sets ES and US(e) for reach-avoid problems [151, 110, 150]. However, since a
dynamics model of S is unknown, the computation of these sets is challenging in general. To
overcome this problem, one generally relies on the abstraction M. We make the following
assumptions on S and M:

Assumption 1. S is available as an oracle that can be simulated, i.e., we can run an
execution (or experiment) on S and obtain the corresponding system trajectory ξS(·).

Assumption 2. For any e ∈ E, we can determine if there exist a controller such that
ξM |= ϕ(e) and can compute such a controller.

Assumption 1 states that even though we do not know the dynamics of S, we can run an
execution of S. Assumption 2 states that it is possible to verify whetherM satisfies a given
specification ϕ(e) or not. Although it is not a straightforward problem, since the dynamics
ofM are known, several existing methods can be used for obtaining a safe controller forM.

Under these assumptions, we show that we can convert a verification problem on S to a
verification problem on M. In particular, we compute a distance bound, SPEC, between S
and M which along with M allows us to compute a conservative approximation of ES and
US(e).

7.5 Solution Approach

We formulate the controller synthesis process for the system S in the OGIS framework
ISIM = (LSIM ,OSIM). The concept class for the learner is the set of all control policies. The
learner LSIM synthesizes a control policy for the system S by using the modelM as shown in
Figure 7.1. The synthesized controller is sent to the oracle OSIM . The oracle is composed of
two oracles. Verification oracle attempts to verify the synthesized controller can achieve
the reach-avoid task on the system. This oracle handles only verification queries of the
type qver as described in Section 2.1. If the verifier in OSIM can verify that the synthesized
controller is safe for the system, the OGIS framework terminates and outputs the controller.
If not, then we compute the simulation metric SPECwhich quantifies the mismatch between
the model and the system in the computation oracle and return it to the learner. The
computation oracle handles computation queries which computes a high confidence estimate
of SPEC. The learner then uses the SPECto modify the control objective. If the bound is
overly conservative, the model (and hence the system) is safe in smaller set of environment
allowing for a smaller set of safe controllers. Moreover, the bound is independent of the
control synthesis process (and hence LSIM). In the example presented in Section 7.3, the
LSIM synthesizes LQR controllers in UΠ(e) = {LQR(q, x∗) : 0.1 ≤ q ≤ 100}.

In Section 7.6 we show that the computation of SPEC in the oracle OSIM can be
implemented in an OGIS framework ISPEC = (LSPEC ,OSPEC) where the OSPEC is a black-
box simulator of the system S. The design of the learner LSPEC depends the algorithm used
for estimating SPEC.
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7.5.1 Computing approximate safe sets using M and simulation
metric

Computing sets ES and US exactly can be challenging since the dynamics of S are unknown
a priori. Generally, we use the abstraction M as a replacement for S to synthesize and
analyze safe controllers for S. However, to provide guarantees on S usingM, we would need
to quantify how different the two are.

We quantify this difference through a distance bound, d, between S andM. d is used to
modify the specification ϕ(e) to a more stringent specification ϕ(e; d) such that if ξM(·) |=
ϕ(e; d) then ξS(·) |= ϕ(e). Thus, the set of safe controllers for M for ϕ(e; d) can be used as
an approximation for US(e). In particular, if we define the sets Uϕ(e;d) and Eϕ(d) as

Uϕ(e;d) := {u ∈ UΠ(e) : ξM(·;x0,u) |= ϕ(e; d)}
Eϕ(d) := {e ∈ E : Uϕ(e,d) 6= ∅},

(7.6)

then Uϕ(e;d) and Eϕ(d) can be used as an approximation of US(e) and ES respectively. Con-
sequently, a verification problem on S can be converted into a verification problem on M
using the modified specification.

One such distance bound d is given by the simulation metric, SSM, between M and S
defined as

dsim = max
e∈E

max
u∈UΠ(e)

‖ξS(·;x0,u)− ξM(·;x0,u)‖∞ (7.7)

Here, the ∞-norm is the maximum distance between the trajectories across all timesteps.
Typically SSM is computed over the space of all finite horizon controls U instead of UΠ(e) [67].
Since we are interested in a given control scheme, we restrict this computation to UΠ(e).
In general, dsim is difficult to compute, because it requires searching over (the potentially
infinite) space of controllers and environments. An approximate technique to compute dsim

was presented for systems whose dynamics were unknown with probabilistic guarantees in [2].
However, if dsim can be computed then it can be used to modify a specification ϕ(e) to

ϕ(e; dsim) as follows: “expand” the avoid set A(·) to get the augmented avoid set A(·; dsim) =
A(·)⊕ dsim, and “contract” the reach set R(·) to obtain a conservative reach set R(·; dsim) =
R(·) 	 dsim (see Figure 7.1). Here, ⊕ (	) is the Minkowski sum(difference)2. Conse-
quently, ϕ(e; dsim) is the set of trajectories which avoid A(·; dsim) and are always contained
in R(·; dsim),

ϕ(e; dsim) := {ξ(·) : ξ(t) /∈ A(t; dsim), ξ(t) ∈ R(t; dsim)∀t ∈ TH}. (7.8)

Then it can be shown that any controller that satisfies the specification ϕ(e; dsim) for M
also ensures that S satisfies the specification ϕ(e).

Proposition 2. For any e ∈ E and controller u ∈ UΠ(e), we have ξM(·;x0,u) |= ϕ(e; dsim)
implies ξS(·;x0,u) |= ϕ(e).

2The Minkowski sum of a set K and a scalar d is the set of all points that are the sum of any point in
K and B(d), where B(d) is a disc of radius d around the origin.
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Proof. Let us consider for a given environment e ∈ E and control u ∈ UΠ(e), ξM(·;x0,u) |=
ϕ(e; dsim). We would like to prove that ξS(·;x0,u) |= ϕ(e).

From (7.7), we have
‖ξS(t)− ξM(t)‖ ≤ dsim ∀t ∈ TH . (7.9)

From the definition of specification in (7.8), we have ξM(·) |= ϕ(e; dsim) if and only if
ξM(·) ∈ ϕ(e; dsim). Therefore, ξM(t) /∈ A(t) ⊕ dsim and ξM(t) ∈ R(t) 	 dsim ∀t ∈ TH .
Since ξM(t) /∈ A(t)⊕ dsim,

‖ξM(t)− a‖ > dsim ,∀t ∈ TH ,∀a ∈ A(t). (7.10)

Combining (7.9) and (7.10) implies that

‖ξS(t)− a‖ > 0 ,∀t ∈ TH , ∀a ∈ A(t). (7.11)

Equation (7.11) implies that ξS(t) /∈ A(t) for any t ∈ TH . Similarly, it can be shown that

‖ξS(t)− r‖ > 0 , ∀t ∈ TH ,∀r ∈ R(t)c,

where R(t)c denotes the complement of the set R(t). Therefore, ξS(t) ∈ R(t) ∀t ∈ TH .
Since ξS(t) /∈ A(t) and ξS(t) ∈ R(t) for all t ∈ TH , we have ξS(·;x0,u) |= ϕ(e). �

Proposition 2 implies that Eϕ(dsim) and Uϕ(e;dsim) can be used as approximations of ES and
US(e) respectively. However, the distance bound in (7.7) does not take into account the
reach-avoid specification (environment) for which a controller needs to be synthesized. Thus,
dsim can be quite conservative. As a result, the modified specification can be so stringent
that the set of environments Eϕ(dsim) for which we can synthesize a provably safe controller
for the abstraction (and hence for the system) itself will be very small, resulting in a very
conservative approximation of ES .

7.5.2 Specification-Centric Simulation Metric (SPEC)

To overcome these limitations, we propose SPEC,

dSPEC = max
e∈E

max
u∈Uϕ(e)

d(ξS(·), ξM(·)), (7.12)

where

d(ξS(·), ξM(·)) = min
t∈TH

(min{h (ξM(t;x0,u), A(t)) ,

− h (ξM(t;x0,u), R(t))})1(ξS(·) 6|=ϕ(e))

(7.13)

Here Uϕ(e) := {u ∈ UΠ(e) : ξM(·;x0,u) |= ϕ(e)} is the set of all controls such that M
satisfies the specification ϕ(e). 1l represents the indicator function which is 1 if l is true and
0 otherwise, h(x,K) is the signed distance function defined as

h(x,K) :=

{
infk∈K ‖x− k‖, if x 6∈ K
− infk∈KC ‖x− k‖, otherwise.
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If for any e ∈ E , Uϕ(e) is empty, we define the distance function d(ξS(·), ξM(·)) to be zero.
Similarly, if there is no A(·) or R(·) at a particular t, the corresponding signed distance
function is defined to be ∞. There are four major differences between (7.7) and (7.12):

1. To compute the dSPEC we only consider the feasible set of controllers that can be
synthesized by the control policy, Uϕ(e) ⊆ UΠ(e), as all other controllers do not help us
in synthesizing a safe controller for S (as they are not even safe for M).

2. To compute the distance between S andM, we only consider those trajectories where S
violates the specification. This is because a non-zero distance between the trajectories
of S and M, where the ξS |= ϕ(e) does not give us any additional information in
synthesizing a safe controller.

3. Within a falsifying ξS , we compute the minimum distance of the abstraction trajectory
from the avoid and reach sets rather than the system trajectory, as that is sufficient to
obtain a margin to discard behaviors that are safe for the abstraction but unsafe for
the system.

4. Finally, a minimum over time of this distance is sufficient to discard an unsafe trajec-
tory, as the trajectory will be unsafe if it is unsafe at any t.

These considerations ensure that dSPEC is far less conservative compared to dsim and allows
us to synthesize a safe controller for the system for a wider set of environments. We first
prove that dSPEC can be used to compute an approximation of ES .

Proposition 3. If Uϕ(e;dSPEC) ⊆ Uϕ(e), then ξM(·;x0,u) |= ϕ(e; dSPEC) implies ξS(·;x0,u) |=
ϕ(e) ∀e ∈ E ,u ∈ UΠ(e).

Proof. We prove the desired result by contradiction. Suppose there exists an envi-
ronment e ∈ E and a controller u ∈ Uϕ(e,dSPEC) such that ξM(·;x0,u) |= ϕ(e; dSPEC) but
ξS(·;x0,u) 6|= ϕ(e).

Since ξM(·;x0,u) |= ϕ(e; dSPEC), we have that,

∀t ∈ TH ξM(t;x0,u) /∈ A(t; dSPEC) = A(t)⊕ dSPEC (7.14)

∀t ∈ TH ξM(t;x0,u) ∈ R(t; dSPEC) = R(t)	 dSPEC (7.15)

Since dSPEC is the solution to (7.12), and u ∈ Uϕ(e) (as Uϕ(e;dSPEC) ⊆ Uϕ(e)) is such that
ξM(·) 6|= ϕ(e), (7.12) and (7.13) imply that,

min
t∈TH

(min{h (ξM(t), A(t)) ,−h (ξM(t), R(t))}) ≤ dSPEC . (7.16)

Therefore, ∃t′ ∈ TH such that

min{h (ξM(t′), A(t′)) ,−h (ξM(t′), R(t′))} ≤ dSPEC , (7.17)

which implies that either
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1. h (ξM(t′), A(t′)) ≤ dSPEC , or

2. h (ξM(t′), R(t′)) ≥ −dSPEC

If h (ξM(t′), A(t′)) ≤ dSPEC , ∃a ∈ A(t′) such that

‖ξM(t′)− a‖ ≤ dSPEC .

Therefore, ξM(t′) ∈ A(t′)⊕ dSPEC , which contradicts (7.14). Similarly, if h (ξM(t′), R(t′)) ≥
−dSPEC , ∃r ∈ R(t′)c such that

‖ξM(t′)− r‖ ≤ dSPEC ,

which implies that ξM(t′) 6∈ R(t′)	 dSPEC , which contradicts (7.15).
When Uϕ(e,dSPEC) 6⊆ Uϕ(e), for any controller u ∈ Uϕ(e,dSPEC)\Uϕ(e) such that ξM(·;x0,u) |=

ϕ(e; dSPEC), we can no longer comment on the behavior of the corresponding system trajec-
tory. This is because while computing dSPEC , these controllers were not taken into account.
� Thus, if we define Uϕ(e;dSPEC) and Eϕ(dSPEC) as in (7.6) then they can be used as ap-
proximations of US(e) and ES respectively. Proposition 3 requires that the set of controllers
that satisfy the modified specification, Uϕ(e;dSPEC), is a subset of the set of the controllers
that satisfy the actual specification, Uϕ(e). When UΠ(e) = U , this condition is trivially sat-
isfied as the modified specification is more stringent than the actual specification. Other
control schemes, such as the set of linear feedback controllers and feasibility-based optimiza-
tion schemes also satisfy this condition. In fact, in such cases, the proposed metric, dSPEC ,
quantifies the tightest (largest) approximation of ES , i.e., @d < dSPEC , such that Eϕ(d) ⊆ ES .

Theorem 11. Let UΠ be such that Uϕ(e;d1) ⊆ Uϕ(e;d2) whenever d1 > d2. Let d ∈ R+ be any
distance bound such that

∀e ∈ E ,∀u ∈ UΠ(e) , ξM(·) |= ϕ(e; d)→ ξS(·) |= ϕ(e). (7.18)

Then ∀e ∈ E ,Uϕ(e;d) ⊆ Uϕ(e;dSPEC) ⊆ US(e). Moreover, Eϕ(d) ⊆ Eϕ(dSPEC) ⊆ ES . Hence,
Eϕ(dSPEC) and Uϕ(e;dSPEC) quantify the tightest (largest) approximations of ES and US(e)
respectively among all uniform distance bounds d.

The proof of the theorem can be found below after the statement of Corollary 2. Theorem 11
states that dSPEC is the smallest among all (uniform) distance bounds between M and S,
such that a safe controller synthesized onM is also safe for S. Even though this is a stricter
condition than we need for defining ES , where we care about the existence of at least one
safe controller for S, it allows us to use any safe controller for M as a safe controller for S.
Formally, dSPEC ≤ d, for all d ∈ R+ such that ∀e ∈ Eϕ(d) ,∀u ∈ Uϕ(e;d) , ξS(·) |= ϕ(e).

Intuitively, to compute (7.12), we collect all ξM(·), ξS(·) pairs (across all e ∈ E and
u ∈ Uϕ(e)) where ξM(·) |= ϕ(e) and ξS(·) 6|= ϕ(e). We then evaluate (7.13) for each pair
and take the maximum to compute dSPEC . By expanding (contracting) every A(·) ∈ A
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(R(·) ∈ R) uniformly by dSPEC , we ensure that none of the ξM(·) collected above is feasible
once the specification is modified, and hence, ξS(·) will never falsify ϕ(e). To ensure this, we
prove that dSPEC is the minimum distance by which the avoid sets should be augmented (or
the reach sets should be contracted). Thus, dSPEC can also be interpreted as the minimum
d by which the specification should be modified to ensure that Uϕ(e;d) ⊆ US(e) for all e ∈ E .

Corollary 2. Let d ∈ [0, dSPEC ] satisfies (7.18), then ξM(·) |= ϕ(e; d) implies ξM(·) |=
ϕ(e; dSPEC).

Proof of Theorem 11 and Corollary 2. Consider any d > dSPEC . From the
statement of Theorem 11, we have that Uϕ(e;d) ⊆ Uϕ(e;dSPEC). Hence, Eϕ(d) ⊆ Eϕ(dSPEC)
follows from the definition of Eϕ(d) in (7.6). Uϕ(e;dSPEC) ⊆ US(e) and Eϕ(dSPEC) ⊆ ES is
already ensured by Proposition 3, and hence Theorem 1 follows.

We now prove that for all 0 < d < dSPEC , ∃ e ∈ E such that (7.18) does not hold, and
hence the result of Theorem 1 trivially holds. We prove the result by contradiction. Suppose
0 < d < dSPEC be such that (7.18) holds. Let (e∗,u∗) be the environment, controller pair
where d(ξM(·;x∗0,u∗), ξS(·;x∗0,u∗)) = dSPEC . Equation (7.12) and (7.13) thus imply that

min
t∈TH

(min{h (ξM(t;x∗0,u
∗), A∗(t)) ,−h (ξM(t;x∗0,u

∗), R∗(t))}) = dSPEC , (7.19)

and ξS(·;x∗0,u∗) 6|= ϕ(e∗). Equation (7.19) implies that

∀t ∈ TH , h (ξM(t;x∗0,u
∗), A∗(t)) ≥ dSPEC (7.20)

∀t ∈ TH , h (ξM(t;x∗0,u
∗), R∗(t)) ≤ −dSPEC . (7.21)

Equations (7.20) and (7.21) imply that

∀t ∈ TH , ξM(t;x∗0,u
∗) 6∈ A∗(t)⊕ d, ξM(t;x∗0,u

∗) ∈ R∗(t)	 d. (7.22)

Consequently, we have ξM(·;x∗0,u∗) |= ϕ(e∗; d). This contradicts (7.18) since ξS(·;x∗0,u∗) 6|=
ϕ(e∗). Therefore, for all 0 < d < dSPEC , ∃ e ∈ E ,u ∈ UΠ(e) , ξM(·) |= ϕ(e; d) 6→ ξS(·) |=
ϕ(e).

To prove the corollary, we first prove that if d1 > d2, then ξM(·) |= ϕ(e; d1) implies
ξM(·) |= ϕ(e; d2) ,∀e ∈ E . Since ξM(·) |= ϕ(e; d1), we have

∀t ∈ TH , ξM(t) /∈ A(t)⊕ d1, ξM(t) ∈ R(t)	 d1

Since d1 > d2, the above equation implies that

∀t ∈ TH , ξM(t) /∈ A(t)⊕ d2, ξM(t) ∈ R(t)	 d2.

Therefore, ξM(·) |= ϕ(e; d2). The corollary now follows from noting that for all 0 < d <
dSPEC , ∃ e ∈ E ,u ∈ UΠ(e) , ξM(·) |= ϕ(e; d) 6→ ξS(·) |= ϕ(e). � We conclude this section by
discussing the relative advantages and limitations of SPEC and SSM, and a few remarks.
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Comparing SPEC and SSM SSM is specification-independent (and hence environment-
independent); and hence can be reused across different tasks and environments. This is en-
sured by computing the distance between trajectories across all input control sequences; how-
ever, the very same aspect can make SSM overly-conservative. Making SPEC specification-
dependent trades in generalizability for a less conservative measure. Although environment-
dependent, the set of safe environments obtained using SPEC is larger compared to SSM.
This is an important trade-off to make for any distance metric–the utility of a distance metric
could be somewhat limited if it is too conservative.

The computational complexities for computing SPEC and SSM are the same since they
both can be computed using Algorithm 6. To compute SSM we sample from a domain of
all finite horizon controls. To compute SPEC we additionally need to be able to define and
sample from the set of environment scenarios, but we believe that some representation of
the environment scenarios is important for practical applications.

Remark 5. The proposed framework can also be used in the scenarios where there is a deter-
ministic controller for each environment. In such cases, UΠ(e) (and Uϕ(e)) is a singleton set
for every environment e (see Section 7.8.2 for an example). However, from a control theory
perspective, it might be useful to have a set of safe controllers that have different transient
behaviors, that the system designer can choose from without recomputing the distance metric.

7.6 Distance Metric Computation

In this section we describe the construction and design of OSIM to compute a high confi-
dence estimate of dSPEC . Since a dynamics model of S is not available, the computation
of the distance bound dSPEC is generally difficult. Interestingly, this computational issue
can be resolved using a randomized approach, such as scenario optimization [20]. Scenario
optimization has been used for a variety of purposes [23, 22], such as robust control, model
reduction, as well as for the computation of SSM [2].

Computing dSPEC by scenario optimization (in OSIM) is summarized in Algorithm 6.
We start by (randomly) extracting N realizations of the environment ei, i = 1, 2, . . . , N
(Line 2). Each realization ei consists of an initial state xi0, and a sequence of reach and
avoid sets, Ai(t) and Ri(t). For each ei, we extract a controller ui ∈ Uϕ(ei) (Line 5). If
such a controller does not exist, we denote ui to be a null controller uφ. ui (if not = uφ)
is then applied to both the system as well as the abstraction to obtain the corresponding
trajectories ξiS(·;xi0,ui) and ξiM(·;xi0,ui) (Line 6). We next compute the distance between
these two trajectories, di, using (7.13) (Line 7). If ui = uφ, no satisfying controller exists
for M, and hence d(ξS(·;xi0,un), ξM(·;xi0,un)) is trivially 0. The maximum across all these
distances, d̂ε, is then used as an estimate for dSPEC (Line 10). Algorithm 6 can be formalized
in the OGIS framework as well, OSIM := ISPEC = (LSPEC ,OSPEC). The OSPEC is a black-
box physics simulator which takes as input an envi ∈ E and control sequence ui ∈ Uϕ(ei) and
simulates the unknown system S to produce a finite-horizon trajectory ξiS(·;xi,ui). At each
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Figure 7.2. Hierarchical OGIS to extract safe environments and controllers for S with unknown dynamics:
ISIM = (LSIM ,OSIM ). The oracle OSIM (LSIM ) is shown in blue (yellow). The learner LSIM synthesizes
controllers for S using the model M. To do so it modifies the specification for the model ϕ(e; dSPEC). The
oracle OSIM first verifies if the synthesized controller is safe for the system. If yes, it terminates and outputs
the synthesized controller. If not, it computes a high confidence estimate d̂ε of SPECdSPEC . To compute d̂ε,
we use Scenario Optimization which is formalized as a OGIS framework ISPEC = (LSPEC ,OSPEC) where
OSPEC is a black-box physics simulator and LSPEC implements scenario optimization.

iteration, the learner LSPEC randomly samples ei ∈ E and extract a controller ui ∈ Uϕ(ei)

and send it to the oracle. When the oracle returns the system trajectory ξiS(·; ui, ei), the

learner computes di. The OGIS framework terminates after N iterations and returns d̂ε to
the top level learner LSIM . The overall framework is shown in Figure 7.2.

Although simple in its approach, scenario optimization provides provable approximation
guarantees. In Algorithm 6, we have to sample both an e ∈ E and a corresponding controller
u ∈ Uϕ(e). We define a joint sample space

D = {(e× Uϕ(e)) : e ∈ E ,Uϕ(e) 6= ∅} ∪ {(e,uφ) : e ∈ E ,Uϕ(e) = ∅} (7.23)

D contains all feasible (e,u) pairs for M. We create a dummy sample (e,uφ) for all e
where a satisfying controller does not exist for the abstraction. We next define a probability
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distribution on D, p(e,u) = p(e) · p(u | e) where p(e) is probability of sampling e ∈ E and
p(u | e) is the probability of sampling u ∈ Uϕ(e) given e. This distribution is key to capture
the sequential nature of sampling u only after sampling e. For e ∈ E where Uϕ(e) = ∅,
p(uφ | e) = 1 since D has only a single entry for e, i.e, (e,uφ). In Algorithm 6, in Line 2, we
sample ei ∼ p(e). In Line 5, we sample ui ∼ p(u | ei).

Proposition 4. Let D be the joint sample space as defined in (7.23), with the probability dis-
tribution pD = p(e,u). Select a ‘violation parameter’ ε ∈ (0, 1) and a ‘confidence parameter’
β ∈ (0, 1). Pick N such that

N ≥ 2

ε

(
ln

1

β
+ 1

)
, (7.24)

then, with probability at least 1 − β, the solution d̂ε to Algorithm 6 satisfies the following
conditions:

1. P((e,u) ∈ D : d(ξS(·;x0,u), ξM(·;x0,u)) > d̂ε) ≤ ε

2. P
(

(e,u) ∈ D : ξM(·;x0,u) |= ϕ(e; d̂ε)→ ξS(·;x0,u) |= ϕ(e)
)
> 1− ε provided Uϕ(e,d̂ε)

⊆
Uϕ(e).

Proof. Statement (1) of Proposition 4 follows directly from the guarantees provided
by Scenario Optimization (Theorem 1 in [23]). To use the result in [23], we need to prove:
(a) computing dSPEC can be converted into a standard Scenario Optimization problem and
(b) Algorithm 6 samples i.i.d from D with probability pD.

(7.12) can be re-written as dSPEC = max(e,u)∈D d(ξS(·), ξM(·)) which can be formalized
as the following optimization problem,

min g

s.t. ∀(e,u) ∈ D , d(ξS(·), ξM(·)) ≤ g

This is semi-infinite optimization problem where the constraints are convex (in fact, linear)
in the optimization variable g for any given (e,u). Statement (1) now follows from Theorem
1 in [23] by replacing c = 1, γ by g, ∆ by D, and f by d(ξS(·), ξM(·))− g. Theorem 1 in [23],
however, requires that i.i.d samples are chosen from the distribution pD. This can be proved
by noticing that, in Algorithm 6, we first sample ei ∼ p(e) (in Line 2), and then sample
ui ∼ p(u | e) (in Line 4.) Hence, every (ei,ui) is sampled from pD = p(e) · p(u | e). Since
each i = 1, . . . , N is sampled randomly and independent of each other, the (ei,ui) pairs are
indeed sampled i.i.d from pD.

Algorithm 6 returns an estimate d̂ε for dSPEC . We have already established that d̂ε sat-
isfies the probabilistic guarantees provided by scenario optimization (Statement (1)). From
Proposition 3, we have ∀(e,u) ∈ D where d(ξS(·), ξM(·)) ≤ d̂ε, ξM(·;x0,u) |= ϕ(e; d̂ε) →
ξS(·;x0,u) |= ϕ(e), provided Uϕ(e;d̂ε)

⊆ Uϕ(e). Therefore,

P
(

(e,u) ∈ D : ξM(·;x0,u) |= ϕ(e; d̂ε)→ ξS(·;x0,u) |= ϕ(e)
)
> 1− ε.
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�
Intuitively, Proposition 4 states that d̂ε is a high confidence estimate of dSPEC , if a large

enough N is chosen. If we discard the confidence parameter β for a moment, this proposition
states that the size of the violation set (the set of (e,u) ∈ D where the corresponding distance
is greater than d̂ε) is smaller than or equal to the prescribed ε value. As ε tends to zero,
d̂ε approaches the desired optimal solution dSPEC . In turn, the simulation effort grows
unbounded since N is inversely proportional to ε.

As for the confidence parameter β, one should note that d̂ε is a random quantity that
depends on the randomly extracted (e,u) pairs. It may happen that the extracted samples
are not representative enough, in which case the size of the violation set will be larger than
ε. Parameter β controls the probability that this happens; and the final result holds with
probability 1− β. Since N in (7.24) depends logarithmically on 1/β; β can be pushed down
to small values such as 10−16, to make 1− β so close to 1 to lose any practical importance.

Finally, once we have a high confidence estimate of dSPEC , we can use it with Proposi-
tion 3 to provide guarantees on the safety of a controller for the system, provided that it is
safe for the abstraction. (Statement (2) in Proposition 4)

Note that the controller ui is extracted randomly from the set Uϕ(ei) (Line 5). Obtaining
Uϕ(ei) and randomly sampling from it can be challenging in itself depending on the control
scheme, Π, and the specification, ϕ(ei). However, one way to randomly extract ui is using
rejection sampling, i.e., we randomly sample controllers from the set UΠ until we find a
controller that satisfies the specification for the model. Since the controller performance is
evaluated only on the model during this process, it is often cheap and does not put the system
at risk. Nevertheless, choosing a good control scheme makes this process more efficient, as
the number of samples rejected before a feasible controller is found will be fewer (see Section
7.7 for further discussion on this). Rejection sampling, however, poses a problem when
Uϕ(ei) = ∅ and there is no way of knowing that beforehand. In such cases, one can impose a
limit on the number of rejected samples to make sure the algorithm terminates. This problem
can also be overcome easily when there is a single safe controller for each environment, i.e.,
Uϕ(ei) is a singleton set (see Remark 1).

Remark 6. Even though we have presented scenario optimization to estimate dSPEC, al-
ternative derivative free optimization approaches such as Bayesian optimization, simulated
annealing, evolutionary algorithms, and covariance matrix adaptation can be used as well.
However, for many of these algorithms, it might be challenging to provide formal guarantees
on the quality of the resultant estimate of the distance bound.

Algorithm 6 samples N environment scenarios and corresponding controllers prior to
running any executions on M and S. Imagine at iteration i, we have di > 0; and if at
iteration (i + 1), di+1 < di, then the (i + 1)th sample is not informative for approximating
dSPEC . A simple way to overcome this issue would be to consider only Uϕ(ei;di) as the set of
feasible controllers at the (i+1)th iteration; i.e., consider controllers where ξM(·) |= ϕ(ei; di).
This variant of Algorithm 1 would reduce the number of executions of the system; and ensure
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Algorithm 6 Scenario optimization for estimating SPEC (OGIS ISPEC
1: procedure Scenario Optimization(S,M, E ,UΠ, E)
2: set d̂ε = 0
3: extract N realizations of the environment ei, i = 1, 2, . . . , N
4: for i = 0 : N − 1 do
5: if Uϕ(ei) 6= ∅ then
6: extract a realization of a feasible controller ui ∈ Uϕ(ei)

7: run the controller ui on S and M, and obtain ξiS(·) and ξiM(·)
8: compute di = d(ξiS(·), ξiM(·))
9: else

10: ui = uφ and di = 0

11: set d̂ε = maxi∈{1,2,...,N} di

12: return d̂ε

Algorithm 7 Iterative estimating SPEC with modified specification (OGIS ISPEC
1: procedure Iterative Estimation(S,M, E ,UΠ, E)
2: set d̃ε = 0
3: extract N realizations of the environment ei, i = 1, 2, . . . , N
4: for i = 0 : N − 1 do
5: if Uϕ(ei;d̃ε)

6= ∅ then
6: extract a realization of a feasible controller ui ∈ Uϕ(ei;d̃ε)

7: run the controller ui on S and M, and obtain ξiS(·) and ξiM(·)
8: compute di = d(ξiS(·), ξiM(·))
9: else

10: ui = uφ and di = 0

11: set d̃ε = max(d̃ε, di)

12: return d̂ε

that each execution is informative for estimating dSPEC . To implement this scheme, we would
maintain a running max dSPEC(i) which contains the maximum of di seen till now. In iteration

(i+ 1), instead of sampling from Uϕ(e) in Line 5, we sample from Uϕ(e,dSPEC
(i)

). Further, before

the end of loop, in Line 7, we update dSPEC(i+1) = max(dSPEC(i) , di+1). This also ensures that the
sequence d0, d1, . . . , dN is a non-decreasing sequence, which gives us. This modified algorithm
is shown in Algorithm 7.

In Algorithm 7. We initialize d̃ε = 0 (Line 1). We next (randomly) extract N realizations
of the environment ei, i = 1, 2, . . . , N (Line 2). Each realization ei consists of a starting state
xi0, a set of reach and avoid states over time t, Ai(t) and Ri(t), and an environment parameter
pi. For each sampled ei, we randomly sample a controller ui ∈ Uϕ(ei;d̃ε)

if Uϕ(ei;d̃ε)
6= ∅; or else

we set it to uφ (Line 4). If ui 6= uφ, we execute the controller on M and S and record the
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trajectories ξM(·) and ξS(·) (Line 5). We compute the distance di in Line 6 and update d̃ε
in Line 7.

Our OGIS framework ISIM extends easily to compute the dSPEC using Algorithm 7 by
simply replacing LSPEC in OSIM with Algorithm 7.

Our OGIs framework ISIM can also be extended to compute the dsim by replacing the
LSPEC by LSSM which computes the distance in (7.7) instead of (7.12) in Algorithm 6 (or
Algorithm 7).

7.7 Running Example: Distance Computation

We now apply the proposed algorithm to compute dSPEC for the setting described in Section
7.3. Uϕ(e) in this case is given as

Uϕ(e) ={u ∈ UΠ(e) : ‖ξM(H;x0,u)− x∗‖2 < γ},

where UΠ(e) is the set of LQR controllers (see Section 7.3). To illustrate the importance of
the choice of distance metric, we compute two different distance metrics between S andM:
dsim in (7.7) and dSPEC in (7.12). To compute dSPEC , we use Algorithm 6. To compute dsim,
we modify Algorithm 6 to sample a random controller from UΠ(e) in Line 5 and compute di
using (7.7) in Line 7. Here, the LSIM synthesizes LQR controllers in UΠ(e) = {LQR(q, x∗) :
0.1 ≤ q ≤ 100} while OSIM implements scenario optimization in Algorithm 6.

According to the scenario approach with ε = 0.01 and β = 10−6, we extract N =
2964 different reach-avoid scenarios (i.e., N different final states to reach). For each ei, i ∈
{1, 2, . . . , 2964}, we obtain a feasible LQR controller ui ∈ Uϕ(ei) using rejection sampling.
In particular, we randomly sample a penalty parameter q, solve the corresponding Riccati
equation to obtain LQR(q), and apply it on M. If the corresponding ξM(·) satisfies ϕ(ei),
we use ui as our feasible controller sample; otherwise, we sample a new q and repeat the
procedure until a feasible controller is found. This procedure tends to be really fast and
requires simulating only M. A feasible controller was found within 3 samples of q for all ei
in this case. For dsim, we randomly sample a penalty parameter q and use LQR(q) as the
controller.

The obtained distance metrics are dsim = 0.43, dSPEC = 0. Since dsim < γ, it can be
used to synthesize a safe controller for S; however, we can synthesize controller only for
those reach-avoid scenarios whereM satisfies a much stringent specification: ξM must reach
within a ball of radius 0.07 around the target state. Consequently, the set Eϕ(dsim) is likely
to be very small. In contrast, dSPEC = 0; thus, Proposition 4 ensures that any controller
designed on M that satisfies ϕ(e) is guaranteed to satisfy it for S as well. In particular,
the dynamics of S and M are same for the state x1, and state x2 is uncontrollable for
S and remain 0 at all times. Thus, any controller that reaches within a ball of radius γ
around a desired state x∗1 forM, if applied on S, also ensures that the system state reaches
within the same ball. Even though this relationship between S and M is unknown, dSPEC

is able to capture it only through simulations of S. This example also illustrates that dSPEC
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significantly reduces the conservativeness in SSM, and does not unnecessarily contract the
set of safe environments.

7.8 Evaluation

We now demonstrate how SPEC can be used to obtain the safe set of environments and
controllers for an autonomous quadrotor and an autonomous car. In Section 4.8.2, we
demonstrate how SPEC provides much larger safe sets compared to SSM. In Section 7.8.2,
we demonstrate how SPEC not only captures the differences between the dynamics of S and
M, but also other aspects of the system, in particular the sensor error, that might affect the
satisfiability of a specification.

7.8.1 Safe Altitude Control for Quadrotor

Our first example illustrates how the proposed distance metric behaves when the only differ-
ence between the system and the abstraction is the value of one parameter. However, unlike
the running example, the system and the abstraction dynamics are non-linear. Moreover,
we illustrate how SPEC can be used in the cases where all safe controllers for M may not
be safe for S.

We use the reach-avoid setting described in [55], where the authors are interested in
controlling the altitude of a quadrotor in an indoor setting while ensuring that it does not
go too close to the ceiling or the floor, which are obstacles in our experiments.

A dynamic model of quadrotor vertical flight can be written as:

z(t+ 1) =z(t) + ∆vz(t)

vz(t+ 1) =vz(t) + ∆(ku(t) + g),
(7.25)

where z is the vehicle’s altitude, vz is its vertical velocity and u is the commanded average
thrust. The gravitational acceleration is g = −9.8m/s2 and the discretization step ∆ is 0.01.
The control input u(t) is bounded to [0, 1]. We are interested in designing a controller for
S that ensures safety over a horizon of 100 timesteps. In particular, we have X0 = {(z, vz) :
0.5 ≤ z ≤ 2.5 ∧ −3 ≤ vz ≤ 4}, A = {A(·)}, and R = R2. The avoid set at any time t is
given as A(t) = {(z, vz) ∈ R2 : 0.5m ≤ z(t) ≤ 2.5m}. We again assume that the dynamics
in (7.25) are unknown. Consider an abstraction of S with same dynamics as (7.25) except
that the value of parameter k in the abstraction dynamics, kM, is different.

The space of controllers UΠ(e) is given by all possible control sequences over the time
horizon (i.e., UΠ(e) = U .) For computing Uϕ(e), we use the Level Set Toolbox [108, 106]
that gives us both the set of initial states from which there exist a controller that will keep
the ξM(·) outside the avoid set at all times (also called the reachable set), as well as the
corresponding least restrictive controller. In particular, we can apply any control when the
abstraction trajectory is inside the reachable set and the safety-preserving control (given by
the toolbox) when the trajectory is near the boundary of the reachable set. For computation
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of the distance bounds, we sample a random controller sequence according to this safety-
preserving control law. If any initial state lies outside the reachable set, then it is also
guaranteed that Uϕ(e) = ∅ so we do not need to do any rejection sampling in this case.

When kM < k,M has strictly less control authority compared to S. Thus, any controller
that satisfies the specification for M will also satisfy the specification for S, so Eϕ(0) itself
is an under approximation of ES . SPEC is again able to capture this behavior. Indeed, we
computed an estimate for the distance bound using Algorithm 6 and the obtained numbers
are dsim = 0.30 and dSPEC = 0. Note that not only is dsim conservative, it may not be
particularly useful in synthesizing a safe controller for S. dsim computed using Algorithm
6 ensures that a safe controller designed on M for ϕ(e; dsim) is also safe for S with high
probability, only when this controller is randomly selected from the set UΠ. However, a
random controller selected from UΠ is unlikely to satisfy ϕ(e; dsim) for M itself, and thus
nothing can be said about S either. Thus, it is hard to actually compute an approximation
of ES . In contrast, dSPEC samples a controller from the set Uϕ(e) in Algorithm 6. Therefore,
to synthesize a controller, we randomly select a controller from the set Uϕ(e;dSPEC), which is
guaranteed to be safe on bothM and S with high probability. Therefore, it might be better
to compare dSPEC to da, which is defined similar to dsim, except the inner maximum in (7.7)
is computed over Uϕ(e) instead. da in this case turns out to be 0.5.

Note that if we could instead compute the distance metrics exactly, da ≤ dsim, since
Uϕ(e) ⊂ UΠ. However, random sampling based estimate of da can be greater than that of
dsim if the controllers corresponding to a large distance between the ξS(·) and ξM(·) are
sparse in UΠ compared to that in Uϕ(e).

For illustration purposes, we also compute the reachable set Eϕ(dSPEC), by augmenting
the avoid set by dSPEC and recomputing the reachable sets using the Level Set Toolbox. As
shown in Figure 7.3, Eϕ(0) (the area withing the blue contour) is indeed contained within ES
(the area within the red contour). Here, ES has been computed using the system dynamics.
Even though Eϕ(da) (the area within the magenta contour) is also contained in ES , it is
significantly smaller in size compared to Eϕ(dSPEC).

When kM > k, S has strictly less control authority compared to M. Consequently,
there might exist some environments for which it is possible to synthesize a safe controller
for M, but the same controller when deployed on S might lead to an unsafe behavior.
We again compute the distance bounds using Algorithm 6 and the obtained numbers are
dsim = 0.30, da = 0.49, dSPEC = 0.1. The corresponding reachable sets are shown in Figure
7.4. Even though we start with an overly optimistic abstraction, both da and dSPEC are able
to compute an under approximation of ES ; however, the set estimated by da is, once again,
overly conservative. Since the dynamics of S and M are known in this case we were able
to compute the exact value of dsim and dSPEC and recompute the safe reach sets using the
Level Set toolbox. The corresponding reachable sets are shown in Figure 7.5.
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Figure 7.3. Different reachable sets when the quadrotor abstraction is conservative. The distance metric
dSPEC only considers the distance between trajectories that violates the specification on the system and sat-
isfies it on the abstraction, leading to a less conservative estimate of the distance, and a better approximation
of ES .

7.8.2 Webots: Lane Keeping

We now show the application of the proposed metric for designing a safe lane keeping con-
troller for an autonomous car.

In this example, we use the Webots simulator [140]. The car model within the simulator
is our S. For the abstraction M we consider the bicycle model,

ẋ = v · sin θ
ẏ = v · cos θ

v̇ = a

θ̇ =
v

l
tanω

(7.26)

where [x, y, v, θ] is the state, representing perpendicular deviation from the center of the lane,
position along the road, speed, and heading respectively. The maximum speed is limited to
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Figure 7.4. Different reachable sets when the quadrotor abstraction is overly optimistic. The distance
metric dSPEC achieves a far less conservative under-approximation of ES compared to the other distance
metrics.

vmax = 10 km/hr. We have two inputs, (1) a discrete acceleration control a = {−ā, 0, ā};
and (2) a continuous steering control ω ∈ [−π/4, π/4]rad/s. For our experiments, we use
H = 200, which translates to about 6 seconds of simulated trajectory. The dynamics of S
are typically much more complex than M and include the physical effects like friction and
slip on the road.

In this case, X0 = {(x0, θ0) : ‖x‖ ≤ 0.2m ∧ ‖θ‖ ≤ π/4rad}; the initial y0 and v0 is
set to zero. R(t) = {[x(t), y(t), v(t), θ(t)] ∈ R4 : ‖x(t)‖ ≤ 0.5m}∀t ∈ TH . The reach set
corresponds to keeping the car within the 0.5m of the center of the lane. For keeping the
car in the lane, the car is equipped with two sensors, a camera (to capture the lane ahead)
and compass (to measure the heading of the car). There is an on board perception module,
which first captures the image of the road ahead; and processes it to detect the lane edges
and provide an estimate of the deviation of the car from the center of the lane.

There is another car (referred to as the environment car hereon) driving in the front of
S, which might obstruct the lane and cause the perception module to incorrectly detect the
lane center. For each e ∈ E , the set of possible initial states of the environment car is given
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Figure 7.5. Different reachable sets when the quadrotor abstraction is overly optimistic. Here we compute
the exact reach sets corresponding to EM, ES , Eϕ(dSPEC) and Eϕ(dsim). The distance metric dSPEC achieves
a far less conservative under-approximation of ES compared to dsim.

by P = {(xe, ye) : ‖xe − x0‖ ≤ 2.0m ∧ 6.25m ≤ ye − y0 ≤ 8m}. We set the initial speed ve
and heading θe of the environment car to vmax and 0 respectively. We want to make sure
that S remains within the lane despite all possible initial positions of the environment car.
For this purpose, we compute the worst-case dSPEC across all p ∈ P .

If the environment car or its shadow covers the lane edges (see Figure 7.7 for some possible
scenarios), then the lane detection fails. Technically speaking, if such a scenario occurs, then
S should slow down and come to stop until the image processing starts detecting the lane
again. Consequently, our control scheme UΠ, is a hybrid controller shown in Figure 7.6, where
in each mode the controller is given by an LQR controller (with a fixed Q and R matrix)
corresponding to the (linearized) dynamics in that mode. In this example, our controller
is a deterministic controller since the Q and R matrices are fixed, and hence |UΠ| = 1. In
Figure 7.6, in mode (1), the lane is detected and v(t) < vmax. When the v(t) = vmax we
transition to mode (2) given the lane is still detected. When the lane is no longer detected,
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Figure 7.6. Hybrid controller for lane keeping. lane means a lane is detected by the perception system. The
dashed line represents the transitions taken on initialization based on the value of lane. To closely follow
the center of the lane, we synthesize a LQR controller in each mode.

(a) Environment car covers left
lane.

(b) Shadow of environment car
covers left lane.

(c) Lane detected correctly.

Figure 7.7. The lane detection fails for (a) and (b) and S car tries to slow down. When lane is correctly
detected (c), the LQR controller tries to follow the lane

we transition to mode (3) if v(t) > 0, or mode (4) if v(t) = 0. In modes (3) and (4), the car
slows down until the lane is detected again.

By setting ε = 0.01 and β = 1e − 6 we get N ≥ 2964. We used Algorithm 6, to sample
N different initial states of the S, (x0, θ0) ∈ X0; and environment car in the simulator,
p ∈ P . Since the controller is deterministic, the set of feasible controllers is a singleton set,
and hence we do not need to sample a feasible controller (Line 5 in Algorithm 6). Among
these environment scenarios, the controller on M is also able to safely control S for 2519
scenarios. d̂ε is determined entirely by the remaining 445 controller, and computed to be
0.34m. We show the application of the the computed d̂ε for a sample environment scenario
in Figure 7.8. The green lines represent the original reach set. The yellow shaded region
represents the contracted reach set for the model computed using d̂ε. The model’s trajectory
(shown in blue) is contained in the yellow region and hence satisfies the more constrained
specification. As a result, even though the system’s trajectory (shown in dotted red) leaves
the yellow region, it is contained within the original reach set at all times.

We also analyze these 445 environmental scenarios that contribute to d̂ε, and notice that
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Figure 7.8. The green lines represent the boundaries of the original reach set. The yellow region is the
contracted reach set for the model computed using d̂ε. The model’s trajectory shown in blue is entirely
contained within the yellow region. Consequently, the system’s trajectory (shown in dotted red) leaves the
yellow region but is contained within the original reach set at all times.

Figure 7.9. An example of the environment scenario that contributes to the distance between the model
and the system. The environment samples used for computing SPEC can be used to identify the reasons
behind the violation of the safety specification by the system.

the fault lies within the perception module. In Figure 7.9, we show one such scenario. In this
case, θ0 = −π/4. Because of the left rotation of the car, the rightmost lane appears smaller
and farther due to the perspective distortion. Furthermore, the presence of the environment
car completely cover the rightmost lane in the image. The image processing module now
detects the leftmost lane as the center lane and the center lane as the rightmost lane. Con-
sequently, the module returns an inaccurate estimation of the center of the lane, causing S
to go outside the center lane. This example illustrates that the samples in Algorithm 6 that
contributed to d̂ε could also be used to analyze the reasons behind the violation of the safety
specification by S.

7.9 Practicality of SPEC

Computing SPEC with real world experiments lead to two main issues (a) sensor noise while
recording the system trajectory ξS ; and (b) unsafe behaviors rising during the experiments.
We discuss how one can overcome these issues to compute SPEC in the real world.
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Sensor Noise: In the computation of SPEC we only care about the behavior of the
system (ξS 2 ϕ(e)), but the exact trajectory is not required for the computation. Since, we
only need to observe the system behavior instead of being able to record it exactly, sensor
noise would not affect our computation.

Unsafe Behaviors: Based on the definition of SPEC, we need only those behavior of
the system which are unsafe i.e., ξS 2 ϕ(e). This means, we would like to run real world
experiments which are potentially unsafe for the system, which is not practical. To overcome
this, we can either (a) create “fake” obstacles by designating a region as unsafe as opposed
to placing an actual obstacle, (b) using data available from other experiments; and (c) use
a human to take over the system in unsafe situations.

7.10 Conclusion

In this chapter, we proposed a framework to adapt controllers verified on models to the real
world. Specifically, we developed a novel metric SPEC, which is the tightest lower bound
required to adapt controllers to the real world. We conclude the chapter by showing how
SPEC can be used to safely control quadrotor and self-driving car in simulation.
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Chapter 8

VerifAI: A toolkit for Design and
Analysis of Artificial
Intelligence-Based Systems

8.1 Introduction

In this chapter, we present VerifAI, a software toolkit for the formal design and analysis
of systems that include artificial intelligence (AI) and machine learning (ML) components.
VerifAI particularly addresses challenges with applying formal methods to ML components,
such as perception systems or decision maker (or controllers) based on deep neural networks,
as well as systems containing them, and to model and analyze system behavior in the presence
of environment uncertainty. We describe the initial version of VerifAI, which centers
on simulation-based verification and synthesis, guided by formal models and specifications.
VerifAI encompasses the techniques presented in this thesis, and creates an unifying toolkit
where one can easily implement an OGIS or CEGIS framework to implement the different
steps in the design pipeline for robotic systems.

The increasing use of artificial intelligence (AI) and machine learning (ML) in systems,
including safety-critical systems, has brought with it a pressing need for formal methods and
tools for their design and verification. As discussed in Section 6.1.1, for verification we need
to define the system S, environment E and the specification ϕ mathematically. However,
AI/ML-based systems, such as autonomous vehicles, have certain characteristics that make
the application of formal methods very challenging. We mention three key challenges here;
see [135] for an in-depth discussion. First, with an increasing dependence of AI/ML com-
ponents in safety-critical applications have raised the need to formally define safety of such
components in the context of the overall system. For example, one of the key uses of AI/ML
are for perception, the use of computational systems to mimic human perceptual tasks such
as object recognition and classification, conversing in natural language, etc. For such per-
ception components, writing a formal specification is extremely difficult, if not impossible.
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Additionally, the signals processed by such components can be very high-dimensional, such
as streams of images or LiDAR data. Second, machine learning being a dominant paradigm
in AI, formal tools must be compatible with the data-driven design flow for ML and also
be able to handle the complex, high-dimensional structures in ML components such as deep
neural networks. Third, AI/ML-based systems operate can operate in very complex en-
vironments, with considerable uncertainty even about how many (which) agents are in the
environment (both human and robotic), let alone about their intentions and behaviors. As
an example, consider the difficulty in modeling urban traffic environments in which an au-
tonomous car must operate. Indeed, AI/ML is often introduced into these systems precisely
to deal with such complexity and uncertainty! From a formal methods perspective, this
makes it very hard to create realistic environment models with respect to which one can
perform verification or synthesis.

In this chapter, we introduce the VerifAI toolkit, our initial attempt to address the
three core challenges — specification, learning, and environments — that are outlined above.
VerifAI takes the following approach:

• Specification A ML component maps a concrete feature space (e.g. pixels, environment
states) to an output such as a classification, prediction, or state estimate for perception
components; or control decisions for controllers and decision-making. To deal with the
lack of specification for such components, VerifAI analyzes them in the context of a
closed-loop system using a system-level specification. Moreover, to scale to complex
high-dimensional feature spaces, VerifAI operates on an abstract feature space (or
semantic feature space) [45] that describes semantic aspects of the environment being
perceived, not the raw features such as pixels.

• Learning: VerifAI aims to not only analyze the behavior of ML components but
also use formal methods for their (re-)design. To this end, it provides features to (i)
design the data set for training and testing as described in Chapter 5, (ii) analyze
counterexamples using Error tables to gain insight into mistakes by the ML model
as described in Chapter 5, as well as (iii) synthesize parameters, including hyper-
parameters for training algorithms and ML model parameters.

• Environment Modeling: Since it can be difficult, if not impossible, to exhaustively
model the environments of AI-based systems, VerifAI aims to provide ways to capture
a designer’s assumptions about the environment, including distribution assumptions
made by ML components, and to describe the abstract feature space in an intuitive,
declarative manner. To this end, VerifAI provides users with Scenic [56], a proba-
bilistic programming language for modeling environments. Scenic, combined with a
renderer or simulator for generating sensor data, can produce semantically-consistent
input for perception components. Details can be found in [56]. VerifAI also allows
users to define the environment directly using the abstract feature space.

VerifAI is currently focused on AI-based cyber-physical systems (CPS), although its
basic ideas can also be applied to other AI-based systems. As a pragmatic choice, we fo-
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cus on simulation-based verification, where the simulator is treated as a black-box, so as
to be broadly applicable to the range of simulators used in industry. This allows us to
overcome the need to define the system mathematically. Our work is complementary to
the work on industrial-grade simulators for AI/ML-based CPS. In particular, VerifAI en-
hances such simulators by providing formal methods for modeling (via the Scenic language),
analysis (via temporal logic falsification), and parameter synthesis (via property-directed
hyper/model-parameter synthesis). The input to VerifAI is a “closed-loop” CPS model,
comprising a composition of the AI-based CPS system under verification with an environ-
ment model, and a property on the closed-loop model. The AI-based CPS typically comprises
a perception component (not necessarily based on ML), a planner/controller (may or may
not be ML based), and the plant (i.e., the system under control).

Given these, VerifAI offers the following use cases: (1) temporal-logic falsification based
on algorithms in Chapter 6; (2) model-based fuzz testing; (3) counterexample-guided data
augmentation based on algorithms in Chapter 5; (4) counterexample (error table) analy-
sis based on Chapter 5; (5) hyper-parameter synthesis, and (6) model parameter synthe-
sis. VerifAI is that it is the first tool to offer this suite of use cases in an integrated
fashion, unified by a common representation of an abstract feature space, with an accom-
panying modeling language and search algorithms over this feature space, all provided in
a modular implementation. The algorithms and formalisms in VerifAI are presented in
papers published by the authors in other venues (e.g., [44, 46, 47, 45, 136, 56, 65]). While
simulation-based verification or falsification of CPS models is well studied and several tools
exist (e.g. [8, 50, 39]); VerifAI was the first to extend these techniques to CPS models with
ML components [44, 46]. Work on verification of ML components, especially neural networks
(e.g., [157, 60]), is complementary to the system-level analysis performed by VerifAI. Fuzz
testing based on formal models is common in software engineering (e.g. [69]) but VerifAI
extends these techniques to the CPS context. Similarly, property-directed parameter syn-
thesis has also been studied in the formal methods/CPS community, but our work is the first
to apply these ideas to the synthesis of hyper-parameters for ML training and ML model
parameters. Finally, augmenting training/test data sets [47], implemented in VerifAI, is
the first use of formal techniques for this purpose.

We first show the overall structure of VerifAI and then discuss each component. We
then show VerifAI can be used across a series of application of verification and falsification
in AI/ML models.

The results shown in this chapter is adapted from [49].

8.2 VerifAI Structure

Currently, VerifAI is focused on simulation-based design and analysis of AI components
for perception and control (potentially those using ML) in the context of a closed-loop cyber-
physical system. The overall structure of VerifAI is shown in Figure 8.1
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Figure 8.1. VerifAI tool overview.

8.2.1 Inputs and Outputs

Inputs: Using VerifAI requires setting up a simulator for the domain of interest. As
we explain in Section 8.3, we have experimented with multiple robotics simulators and pro-
vide an easy interface to connect a new simulator. Till date VerifAI has been interfaced
with a number of robotics simulator like Webots [140], OpenAI Gym [17], CARLA [43] and
XPlane [161]. The user then constructs the inputs to VerifAI, including (i) a closed-loop
model of the system which can be simulated, including code for one or more controllers and
perception components, and a dynamical model of the system being controlled; (ii) a prob-
abilistic model of the environment, specifying constraints on the workspace, the locations of
agents and objects, and the dynamical behavior of agents, and (iii) a property over the com-
position of the system and its environment. VerifAI can also take as input a model of the
AI/ML component instead of the entire closed-loop system (Refer Section refsec:verifai:cegda
where the system is the perception module under test). VerifAI is implemented in Python
for interoperability with ML/AI libraries and simulators across platforms. The code for
the controller and perception component can be arbitrary executable code, invoked by the
simulator. The environment model typically comprises a definition in the simulator of the
different types of agents, plus a description of their initial conditions and other parameters
using either the Scenic probabilistic programming language [56] or directly defining the
abstract feature space. Finally, the property to be checked can be expressed using Met-
ric Temporal Logic (MTL) [3, 154], objective functions, or arbitrary code monitoring the
property.

Outputs: The output of VerifAI depends on the feature being invoked. For falsification,
VerifAI returns one or more counterexamples, simulation traces violating the property [44,
65]. Error analysis involves collecting counterexamples generated by the falsifier into a table
E, on which we perform analysis to identify features that are correlated with property fail-
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ures (Refer to Section 5.6). Data augmentation uses falsification and error table analysis to
generate additional data for training and testing an ML component [47] (Refer to Chapter 5).
The property-driven synthesis of model parameters or hyper-parameters generates as output
a parameter evaluation that satisfies the specified property. Finally, for fuzz testing, Veri-
fAI produces traces sampled from the distribution of behaviors induced by the probabilistic
environment model [56].

8.2.2 Tool Components

We now discuss the the main modules of VerifAI.

Abstract Feature Space The abstract feature space (referred to as E) is a compact rep-
resentation of the possible configurations of the simulation. Abstract features can represent
parameters of the environment, controllers, or of ML components. For example, when an-
alyzing a visual perception system for an autonomous car, an abstract feature space could
consist of the initial poses and types of all vehicles on the road. Note that this abstract space,
compared to the concrete feature space (of pixels or environment states) used as input to the
controller or perception component, is better suited to the analysis of the overall closed-loop
system (e.g. finding conditions under which the car might crash). The abstract feature space
is similar tot he low dimensional modification space M described in the Chapter 5. In fact,
for the data augmentation case study the abstract feature space corresponds to the 14-D
modification space described in Section 5.4.1 in Chapter 5. VerifAI provides two ways to
construct abstract feature spaces. They can be constructed hierarchically, combining basic
domains such as hyperboxes and finite sets into structures and arrays. For example, we
could define a space for a car as a structure combining a 2D box for position with a 1D box
for heading, and then create an array of these to get a space for several cars. Alternatively,
VerifAI allows a feature space to be defined using a program in the Scenic language [56].
Scenic provides convenient syntax for describing constrained geometric configurations and
agent parameters, and, as a probabilistic programming language, allows placing a distribu-
tion over the feature space which can be conditioned by declarative constraints.

Search: Sampling the Feature Space Once the abstract feature space is defined, the
next step is to search that space to find simulations that violate the property or produce
other interesting behaviors. Currently, VerifAI uses a suite of sampling methods for this
purpose including exhaustive grid search, passive and active search techniques. In the future
we expect to also integrate directed or exhaustive search methods including those from the
adversarial machine learning literature (e.g., see [46, 45]). Passive samplers, which do not use
any feedback from the simulation, include exhaustive grid search, uniform random sampling,
simulated annealing, and Halton sequences [74] (quasi-random deterministic sequences with
low-discrepancy guarantees we found effective for falsification [48, 44]). Distributions defined
using Scenic are also passive in this sense. Active samplers, whose selection of samples is
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informed by feedback from previous simulations, include cross-entropy sampling [32] and
Bayesian optimization [111]. The former selects samples and updates the prior distribution
by minimizing cross-entropy; the latter updates the prior from the posterior over a user-
provided objective function, e.g. the satisfaction level of a specification or the loss of an
analyzed model. Details of the sampling techniques can be found in Chapter 6 and Section 5.5
in Chapter 5.

Specification Monitor: Trajectories generated by the simulator for a specific environ-
ment e ∈ E , ξS)·; e) are evaluated by the monitor, which produces a score for a given
property or objective function. VerifAI supports monitoring MTL properties using the
py-metric-temporal-logic [154] package, including both the Boolean and quantitative
semantics of MTL. As mentioned above, the user can also specify a custom monitor as a
Python function. The result of the monitor is used as feedback by the active search proce-
dures to direct the sampling (search) towards falsifying scenarios. The result is also stored
in the error table E which is used for further analysis and feedback to the user.

Error Table analysis: Counterexamples are stored in a data structure called the error
table E, whose rows are counterexamples and columns are abstract features (Refer to Sec-
tion 5.6 in Chapter 5). The error table can be used offline to debug (explain) the generated
counterexamples or online to drive the sampler towards particular areas of the abstract fea-
ture space. VerifAI provides different techniques for error table analysis depending on
the end use (e.g., counter-example analysis or data set augmentation), including principal
component analysis (PCA) and clustering using k−means for ordered feature domains and
subsets of the most recurrent values for unordered domains (see Section 5.6 in Chapter 5 for
further details).

The communication between VerifAI and the simulator is implemented in a client-
server fashion using IPv4 sockets, where VerifAI sends environment configurations einE to
the simulator which then returns trajectories (traces) ξS(·; e). This architecture allows easy
interfacing to a simulator and even with multiple simulators at the same time.

8.3 Features and Evaluation

This section illustrates the main features of VerifAI through case studies in Figure 8.1
demonstrating its various use cases and simulator interfaces. VerifAI and the following
experiments can be found at https://github.com/BerkeleyLearnVerify/aerifai.git

8.3.1 Falsification

VerifAI offers a convenient way to debug systems through systematic testing. Given a
model and a specification, the tool can use active sampling to automatically search for inputs
driving the model towards a violation of the specification. Specifically, in this experiment,
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Figure 8.2. The red car and green car are the AV car and broken car respectively. The distance d captures
the distance between the AV car and the cones. The AV car has to safely maneuver around the broken or
disabled car.

Figure 8.3. Hybrid controller for Av to safely maneuver around the broken car.

we consider an autonomous car (AV) simulated with the robotics simulator Webots [140].
For the experiments reported here, we used Webots 2018 which is commercial software. We
use the cross-entropy sampler since it can handle both continuous and categorical features
in abstract feature space.

We falsify the controller of an AV which is responsible for safely maneuvering around a
disabled car and traffic cones which are blocking the road shown in Figure 8.2.

Control Design: We implemented a hybrid controller (Figure 8.3) which relies on per-
ception modules for state estimation. Initially, the car is the Lane Detection mode where
the controller relies on standard computer vision (non-ML) techniques to detect the center
of the lane. It then uses a simple feedback controller to follow the lane. At the same time,
a neural network (based on squeezeDet [160]) estimates the distance to the cones d. When
the distance drops below 15 meters, the controller changes mode to Lane Change where it
relies on pre-designed maneuver to change lane. After successfully changing lane, it switches
back to Lane Keeping mode.

Safety Specification: The correctness of the AV is characterized by an MTL formula
requiring the vehicle to maintain a minimum distance from the traffic cones and avoid over-
shoot while changing lanes.
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Figure 8.4. Scenes generated by Scenic. The orange oval marks the placement of the AV car, broken car
and cones.

We first use Scenic to generate initial scene. We provide Scenic a map of the city
and generate scenes similar to that shown in 8.2. Figure 8.4 shows three scenes which were
generated automatically by Scenic in VerifAI.

We picked the third scene generted by Scenic in Figure 8.4 to be the initial scene for the
falsifier. The task of the falsifier is to find small perturbations of the initial scene which cause
the vehicle to violate this specification. We allowed perturbations of the initial positions and
orientations of all objects (AV car, broken car and cones), the color of the broken car, and
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Figure 8.5. A falsifying scene automatically discovered by VerifAI. The neural network misclassifies the
traffic cones because of the orange vehicle in the background, leading to a crash. Left: bird’s-eye view.
Right: dash-cam view, as processed by the neural network.

Figure 8.6. The NN incorrectly detects the orange car as an orange cone. Hence the distance d is incorrectly
estimated to be 14.5m even when the distance is 30m.

the cruising speed and reaction time (delay between switching from Lane Keeping and Lane
Change mode in the hybrid controller in Figure 8.3) of the AV car.The task of the falsifier
is to find small perturbations of the initial scene (generated by Scenic) which cause the
vehicle to violate this specification. Our experiments showed that the cross-entropy sampler
driven by the robustness of the MTL specification can efficiently discover scenes that confuse
the controller and yield faulty behavior. The counter-examples are stored in the error table
E. On analyzing the error table, we observe the main cause of failure was a combination
of low cruising-speed and large reaction time. This implies, lane change at a lower cruising
speed after a larger delay causes the AV car to crash into the cones.

We also observed a particularly interesting failure case shown in Figure 8.5.
Figure 8.6 provides the explanation. The neural network detected the orange car instead

of the traffic cones, causing the lane change to be initiated too early. The pre-designed
lane change maneuver assumes that the speed of the AV car is atleast 15m/s. However,
in every simulation the AV car starts from rest, and the early detection leads the lane
change maneuver to happen at a lower speed. As a result, the controller performed only an
incomplete lane change, leading to a crash.
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Figure 8.7. Accident scenario breakup: 1) initial scene sampled from the program; 2) the red car begins its
turn, unable to see the green car; 3) the resulting collision.

As a result, we were able to go back and update the controller. Moreover, we used the
dash-cam images to re-train the network as proposed in Chapter 5.

8.3.2 Fuzz-Testing

VerifAI can also perform model-based fuzz testing, exploring random variations of a sce-
nario guided by formal constraints. In this experiment, we used VerifAI to simulate vari-
ations on an actual accident involving an AV [19]. The AV, proceeding straight through an
intersection, was hit by a human turning left. Neither car was able to see the other because
of two lanes of stopped traffic. We write a Scenic program to reproduce the accident in
Webots which allows variations in the initial positions of the cars. We then ran simula-
tions from random initial conditions sampled from the program, with the turning car using
a controller trying to follow the ideal left-turn trajectory computed from OpenStreetMap
data using the Intelligent Intersections Toolbox [71]. Figure 8.7 shows a accident scenario
sampled by Scenic. The car going straight used a controller which either maintained a
constant velocity or began emergency breaking in response to a message from a simulated
“smart intersection” warning about the turning car. By sampling variations on the initial
conditions, we could determine how much advance notice is necessary for such a system to
robustly avoid an accident.
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Figure 8.8. This image generated by our renderer was misclassified by the NN. The network reported
detecting only one car when there were two.

8.3.3 Data Augmentation and Error Table analysis

Data augmentation is the process of supplementing training sets with the goal of improving
the performance of ML models. Typically, datasets are augmented with transformed ver-
sions of preexisting training examples. In Chapter 5, we showed that augmentation with
counterexamples is also an effective method for model improvement.

VerifAI implements a counterexample-guided augmentation scheme Cda details in Chap-
ter 5, where a oracle OCda generates misclassified data points that are then used to augment
the original training set. As described in Chapter 5, the user can choose among different
sampling methods, with passive samplers suited to generating diverse sets of data points
while active samplers can efficiently generate similar counterexamples. In addition to the
counterexamples themselves, VerifAI also returns an error table aggregating information
on the misclassifications that can be used to drive the retraining process. Figure 8.8 shows
the rendering of a misclassified sample generated by our falsifier.

For our experiments, we implemented the renderer described in Section 5.4 of Chap-
ter 5 that generates images of road scenarios and tested the quality of our augmentation
scheme on the squeezeDet convolutional neural network [160], trained for classification. We
adopted three techniques to select augmentation images: 1) randomly sampling from the
error table, 2) selecting the top k-closest (similar) samples from the error table, and 3)
using PCA analysis to generate new samples. For details on the renderer and the results
of counterexample-driven augmentation, see Chapter 5. We show that incorporating the
generated counterexamples during re-training improves the accuracy of the network.

8.3.4 Model Robustness and Hyper-parameter Tuning

In this experiment, we demonstrate how VerifAI can be used to tune test parameters and
hyper-parameters of AI systems. For the following case studies, we use OpenAI Gym [17], a
framework for experimenting with reinforcement learning algorithms.

First, we consider the problem of testing the robustness of a learned controller for a



CHAPTER 8. VERIFAI: A TOOLKIT FOR DESIGN AND ANALYSIS OF
ARTIFICIAL INTELLIGENCE-BASED SYSTEMS 140

Figure 8.9. The green dots represent model parameters for which the cart-pole controller behaved correctly,
while the red dots indicate specification violations. Out of 1000 randomly-sampled model parameters, the
controller failed to satisfy the specification 38 times.

cart-pole, i.e., a cart that balances an inverted pendulum. We trained a neural network to
control the cart-pole using Proximal Policy Optimization algorithms [132] with 100k training
episodes. We then used VerifAI to test the robustness of the learned controller against
the model parameters, varying the initial lateral position and rotation of the cart as well as
the mass and length of the pole. Even for apparently robust controllers, VerifAI was able
to discover configurations for which the cart-pole failed to self-balance. Fig. 8.9 shows 1000
iterations of the falsifier, where sampling was guided by the reward function used by OpenAI
to train the controller. This function provides a negative reward if the cart moves more than
2.4 m or if at any time the angle maintained by the pole is greater than 12 degrees. For
testing, we slightly modified these thresholds.

Finally, we used VerifAI to study the effects of hyper-parameters when training a neural
network controller for a mountain car. In this case, the controller must learn to exploit
momentum in order to climb a steep hill. Here, rather than searching for counterexamples,
we look for a set of hyper-parameters under which the network correctly learns to control
the car. Specifically, we explored the effects of using different training algorithms (from a
discrete set of choices) and the size of the training set. We used the VerifAI falsifier to
search the hyper-parameter space, guided again by the reward function provided by OpenAI
Gym (here the distance from the goal position), but negated so that falsification implied
finding a controller which successfully climbs the hill. In this way VerifAI built a table of
effective hyper-parameters. PCA analysis then revealed which hyper-parameters the training
process is most sensitive or robust to.
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8.4 Conclusion

In this chapter we presented VerifAI, a software toolkit for the formal design and analysis
of robotic systems that include AI and ML components. VerifAI is an open source toolkit,
where one can implement and integrate any OGIS based framework for design and analysis
of robotic systems. At the time of this thesis, Chapters 5 and 6 have been integrated into
the toolkit.
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Chapter 9

Conclusion and Future Work

Autonomous systems such as autonomous vehicles, medical robots, robotic manipulators
are becoming a reality. For building such systems, there is an increasing dependence on
artificial intelligence (AI) and machine learning (ML) since they are capable of inducing
richer set of behaviors. However, since such systems are expected to operate near and interact
with humans on a daily basis, guaranteeing their safety is a top priority. While classical
control synthesis and formal verification techniques can provide strong safety guarantees,
their applicability is quite limited for such systems in the presence of complex (potentially
ML) sub-components.

In this thesis, we studied the key issues arising from ML components in the synthesis
and verification pipeline ([135]) and proposed frameworks that can overcome them. We took
inspiration from the oracle-guided inductive synthesis (OGIS) paradigm introduced in [80],
to reformulate each step as an instance of the OGIS framework which consists of a learner
which attempts to learn or synthesize concept by querying an oracle. This decoupling,
allows us to design simpler solution approaches, while enjoying the guarantees provided by
this framework.

A strong message that we want to convey in this thesis is that the stages of the design
pipeline are highly coupled. Synthesis (design) and verification (analysis) have to have a
strong feedback among them to ensure the safety of the overall system.

We utilized this framework to study five parts of the design and analysis pipeline. In
Chapter 3, we developed a sound framework that can synthesize robust control strategies
from high level specifications. In Chapter 4, we used the results of Chapter 3 to diagnose
and repair high level safety specifications. This showed us that specification design is tightly
coupled with the synthesis process. In Chapter 5, we developed a counter-example guided
data-augmentation algorithm which further exemplifies the need of analysis (testing) in data
set design, and hence model synthesis. In Chapter 6, we took a closer look into simulation-
guided falsification. We studied the assumptions under which the proposed framework can
provide us verification certificates. In Chapter 7, we studied how one can transfer model level
verification guarantees to the real system, and bridge the gap. To this end, we developed a
new specification-centric simulation metric to synthesize controllers for the real system based
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on the model, and proved that this was the least conservative of all such metrics. Finally,
in Chapter 8, we presented VerifAI a python toolkit that incorporates much of the work
presented in this thesis to design and analyze AI-based systems.

The work presented in this thesis just scratches the surface of design and analysis pipeline
for autonomous systems. There is still a long way to go truly design a verifiably safe au-
tonomous system. Moving forward, we see the work in this thesis going in multiple directions.

The key challenge in adopting the algorithms proposed in this thesis to real systems is
dealing with larger input or state or environment dimensions. This is because optimization
and sampling based algorithms perform poorly with increasing dimensions. One way of over-
coming this, is to decompose the larger problem to smaller sub problems. Once we design
them independently, we could then compose them together to design the larger system.
Another way of solving this is to design our algorithms to run in a distributed manner. Both
the directions are promising and would be interesting next steps.

We would like to extend VerifAI to handle richer set of specifications [46, 136], interface
to other state of the art robotic simulators; and develop novel search algorithms that can
effectively handle higher dimension environments. We would also like to incorporate more
error analysis techniques to provide richer feedback.

While we have that counter-example guided data augmentation technique works for mod-
els trained on synthetic data, we would like to explore how we can extend these results to
real images. Domain adaptation [31] and domain randomization [148] seem to be possible
solutions to this.

Finally, we have shown that our algorithms work in the model or simulation world. We
would like to try our algorithms on the real world examples as well. We propose to incorpo-
rate the framework presented in Chapter 7 into the frameworks proposed in Chapters 3, 4
and 5 to test their real world applicability.
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