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Dynamics of Conformist Bias

Brian Skyrms

Abstract: We compare replicator dynamics for some simple games with and without the

addition of conformist bias. The addition of conformist bias can create equilibria, it can

change the stability properties of existing equilibria, it may leave the equilibrium

structure intact but change the relative size of basins of attraction, or it may do nothing at

ali. Examples of each ofthe foregoing are given.

1. Replicator Dynamics. The most thoroughly studied dynamic model for cultural

evolution is the replicator dynamics. [Taylor and Jonker (197S) See Hofbauer and

Sigmund (1998) for a comprehensive treatment.] It was originally proposed as an account

of differential reproduction based on haploid genetics. But it also can be motivated as a

model of cultural evolution based differential imitation [Schlag (1997)] - with the more

successful s rategies being imitated more often. The population is assumed to be large

enough so that a deterministic dynamics can be a useful approximation to the true noisy

behavior. For strategies A;, we write U(A) for the average value to Ai in the population,

P(A) for the proportion of the population using strategy ,A.1 and Lrbar: xiP(AJ U(A) for

the average value in the population. Then the replicator dynamics is given by the system

of differential equations :



dP(A)/dt : P(Ar) [U(A)-Ubar]

Above-average value (fitness, utility) leads to positive growth in population proportion;

below-average value leads to diminishing population proportion.

2. Value. Average value to a strategy may come from average payoffs to that strategy

when played against randomly chosen opponents from the population. We will be

interested in some well-studied two-person games- The Winding Road, Stag Hunt,

Prisoner's Dilemma, Rock-Scissors-Paper. Payoff to one player is determined not only

by his own strategy, but also that of the player with whom he is paired. We assume that

the identities of the players are not important, only the strategies played. Thus payoffs are

specified by a matrix V1, which gives the value of Ai when played against A. In a large

population' rith random encounters, where all value comes from the game interactions,

we can take the average value of a strategy, A1, to be:

Payoff Value = XlP(4) V1

This is the analysis familiar from evolutionary game theory.

But in a society with conformist bias, the value of a strategy - that which leads it

to be differentially imitated - may have two components: the payoffcomponent and the

conformist component. Overall value can be gotten as a weighted average:



U(AJ: (1-c) Payoff Value-f c Conformist Value

where the constant c determines the strength of conformist bias. If the conformism

constant c:l, conformism counts for everything; if c:0 it counts for nothing.

Conformist value of a strategy increases as the strategy becomes more common.

We should have the conformist value of a strategy be some monotonically increasing

function of the population proportion of the strategy. Here we will take the simplest

choice and let the conformist value simply be the population proportion of the strategy at

issue. We can then rewrite overall value as:

U(A) : (l-c) x: P(4) V;i + c P(A)

Overall value then feeds into the replicator dynamics.

For a given type of interaction, we can start with c:0 and then see how the

dynamics changes when we add conformist bias. The most dramatic effects that we might

encounter consist in the creation of new equilibria or the destruction of old ones. Short of

this, we might see changes in the stability of equilibria, with stable equilibria becoming

unstable or unstable ones being stabilized. Even if the equilibrium structure is unaltered,

the size of basins of attraction for existing equilibria might be changed. Or, perhaps,

addition of conformist bias might leave the dynamical system essentially unchanged.



3. Interactions. The effect of conformist bias will be different relative to different kinds

of interactions. Here we suruey the evolutionary dynamics of a number of paradigmatic

interactions with and without conformist bias.

3.1 Winding Road I

Right Left

Rieht 1 0

L e f t 0 1

This is a classic pure coordination game that nicely illustrates the virtues of conformism.

The choice is to drive on the left or on the right. The conventions of everyone driving on

the left or e"eryone on the right are equally good. It is only important that all choose the

same side of the road. Applying the replicator dynamics, we find that the two possible

conventions - 100% left and I00% right - are the only stable equilibria, with and

additional unstable equilibrium at the point where exactly half the population drives on

the left and half on the right. If more than half the population drives on the right, then the

dynamics carries it to the equilibrium when all drive on the right; that is to say that the

basic of attraction of this equilibrium consists of all population proportions Pr(R) > .5.

Likewise, the basin of attraction of 100% left equilibrium consists of populations with

Pr(L) < .5.



When we add conformist bias to any degree, nothing changes. The dynamics is

exactly the same. The overall value of Left is a weighted average of the payoff value of

left [: Pr(L)] and the conformist value of left [:Pr(L)], likewise with right, so the

addition of conformist bias adds nothing. The structure of the interaction by itself

generates conformism, with or without conformist bias.

3.2T\e Stag Hunt.

Stag Hare

Stag 4 0

Hare 3 3

The Stag Hunt is a coordination game, but not a pure coordination game. There are, as

before, three equilibria. The two population monomorphisms, All hunt stag and All hunt

hate, are stable attractors in the replicator dynamics. There is also an unstable

polymorphic equilibrium at Pr(Stag) : .75. The basin of attraction of the Hare hunting

equilibrium [Pr (Stag) < .75] is three times as large as that of the Stag hunting

equilibrium [Pt (Stag) > .75). From the point of view of social welfare this is a shame,

because everyone is better off at the Stag Hunting equilibrium.

If we add in some conformist bias, the basic equilibrium structure remains the

same - the two stable monomo{phisms and the one unstable polymorphism - but the

polymorphic equilibrium moves toward the center and the basin of attraction of Hare



hwrting is diminished. With 100% conformism, the picture would look just like The

Winding Road.

Conformist bias has some socially positive effect by decreasing the riskiness of

Stag Hunting, and - in a sense - making the dynamical picture more favorable to the

socially efficient equilibrium. We can't really gemeralize from this example, even in

coordination games. Consider the following.

3.3 Winding Road II.

Right Left

Right 3 0

L e f t 0 l

This is the winding road for a population who are all blind in the right eye. There must be

a better story, but the point is that although it is still a pure coordination game one

equilibrium is better for everyone than the other. Consequently, the equilibrium where all

drive on the right has a greater basin of attraction. If Pr(R) > .25,the dynamics carries the

population to All rught; if Pr(R) < .25,the dynamics carries the population to Al1Left.

The dynamical picture looks like that for the Stag Hunt, with Right for Hare and Left for

Stag.



If we add conformist bias, the basin of attraction for All Right shrinks and

approaches .5 as overall value approaches pure conformism. But here, unlike in the Stag

Hunt game, conformism works against mutual benefit rather that for it.

3.4 Rock-Scissors-Paper I

R S P

R ' � i , 2 0

s 0 1 2

P 2 0 1

Rock breaks scissors, scissors cuts paper, paper covers rock. [For a more interesting

example of this kind of cyclic structure in a public goods provision game with optional

participation, see Hauert et al.(2002).] The three possible monomorphisms of the

population (All Rock, All Scissors, All Paper) do not correspond to Nash equilibria. They

are, or course, dynamical equilibria under the replicator dynamics[other types are

extinct], but they are dynamically unstable [at each, another type could invade]. Thus, at

the population state All Rock, a few mutants who play Paper could invade.

There is a unique polymorphic equilibrium with 1/3 of the population playing

each of the strategies. The first place to look for information about the stability of this

equilibrium is the Jacobian matrix of partial derivatives for the dynamics. If all

eigenvalues of the Jacobian have negative real part, then the equilibrium is an attractor. If



there there is at least one eigenvalue with positive realpart, it is unstable. [See Hofbauer

and Sigmund (1998)l The dynamics can be written in terms of Pr(R) and Pr(S) since the

population 1:roportions must sum to one. Writing the dynamics this way, and evaluating

the eigenvalues of the Jacobian at Pr(R):Pr(S):1/3, we get I-SQRT(-1l3), SQRT(-113)1.

The imaginary eigenvalues indicate a rotating motion. Since the real parts of eigenvalues

are zero) they do not answer the stability question and other means must be used.

The quantity Pr(R)xPr(S)*(1-Pr(R)-Pr(S) is a constant of motion of the system -

its time derivative is zero. The orbits of the dynamics must keep this value constant. It

assnmes its maximum of Il2l only at the polymorphic equilibrium, P(R) : Pr(S) : ll3.

Off the equiiibrium, constant values of the conserved quantrty correspond to closed

curves around the equilibrium. This is illustrated in the contour plot shown in figure 1.

These closed curyes are the orbits of the dynamics. The equilibrium is dynamically stable

because populations near to it cycle around and stay near to it. However it is not

asymptotically stable. Populations near to it are attracted to it.

(fig. t here)

If we add even the smallest bit of conformist bias to the dynamics, the

polymorphic equilibrium at <ll3,Il3,Il3> is destabilized. The general expression for the

eigenvalues of the Jacobian at this point, when conformist bias is included, is:

{c/3 - SQRT(-ll3 + 2cl3 - c^213), c/3 + SQRT(-ll3 + 2cl3 - cnl3)}



If c>0, then these eigenvalues have positive real part, which indicate that the equilibrium

has become unstable. The time derivative of the product of the proportions of the

strategies is no longer a constant of motion. Now this quantrty decreases along all orbits

in the interior of the space of population proportions. If you start arbitrarily near to the

equilibrium, the orbit will spiral outward and approach the boundary.

The stability characteristics of the monomorphic equilibria, however, are not

changed by a little conformist bias. They remain dynamically unstable saddle points, with

Rock, for example, attracting on the edge connecting it with Scissors but repelling along

the edge connecting it with paper.

Adding considerably more conformist bias, however, produces another qualitative

change (a bifurcation) in the dynamics. The eigenvalues of the Jacobian at each of the

monomorphic equilibria are:

{-c - SQRT(I - 2c + c^2), -c - SQRT(t - 2c + c"2)}

with no conformist bias, c:0, these are { 1,-1} indicating the unstable saddle. At c:.5,

there is a bifurcation, and these values are {-1,0}. With c) .5, both eigenvalues become

negative, indicating that the monomorphisms have changed from (unstable) saddles to

(strongly stable) attractors. At the same time, continuity considerations tell us that three

new unstable equilibria have been created on the edges. The situation with c:0 and with

c:.6 are shown in figures 2 and 3, with filled circles representing stable equilibria and

open circles representing unstable ones.

(f igures2and3here)



What have all these dynamical fireworks done for the efficiency of the

population? If we measure the results in terms of real payofl without adding in the

supposed satisfaction from conformism, the answer must be "Nothing." The average

payoff at the original polymorphic equilibrium <1/3,113,I13> is equal to one. A

population at a stable monomo{phism still gets the same payoff.

3. 5 Rock- S cissors-Pap er II lZeeman ( 1 9 8 0), Hofbauer and Sigmund ( 1 99S)l

R S P

R l - e 2 0

S 0 l - e 2

P 2 0 l - e

The original Rock-Scissors-Paper game (without conformist bias) was not structurally

stable in the replicator dynamics. So the striking results of conformist bias may have been

gotten rather cheaply. In Rock-Scissors-Paper II, with small e, we have a game which is

structurally stable, and in which the <ll3,Il3,ll3> polymorphism ls a stable attractor.

Eigenvalues of the Jacobian have negative real part. Furthermore, the product of the

population proportions increases along all interior orbits and reaches its maximum at

<ll3,Il3,Il3>, so this state is a global attractor for all the interior of the space (where no

type is extinct).. Orbits spiral in to the polymorphic equilibrium. The monomo{phisms,

All Rock, All Scissors, All Paper, are (unstable) saddles.

t0



As we feed in conformist bias, the dynamics changes qualitatively at b: e/(1+e).

The equilibrium at <Il3,ll3,ll3> ceases to be an attractor, but remains stable. The

eigenvalues of the Jacobian now have only imaginary parts. The quantity

Pr(R)xPr(S)*(1-Pr(R)-Pr(S) is again a constant of motion of the system, so that

<I/3,I13,I/3> is surrounded by closed orbits. We are in a situation qualitatively similar

to the original Rock-Scissors-Paper without conformist bias.

As conformist bias increases, the system goes through all the changes noted in the

discussion under Rock-Scissors-Paper I. At the end, the polymorphism has changed from

an attractor to a repellor, the monomorphisms have changed from saddles to attractors,

and three new (unstable) equilibria have been created. As before, conformist bias

confers no collective benefit. A monomorphic population is no better off (in fact, slightly

worse off) tlan a population at the polymorphic equilibrium.

4. Conclusion. In the simple setting considered in this paper, conformist bias can have

dramatic effects on the dynamics of cultural evolution. These effects are sometimes

positive, sometimes negative, and sometimes neutral with respect to the collective

welfare of the group. Conformist bias is, therefore, not the same as group solidarity.

Group solidarity would presumable work for a Pareto-efficient equilibrium - for mutual

benefit, but we have seen (most clearly in 3.3) that conformist bias can work against it.

The story may, of coutse, be different when the matter is examined in different

settings. [Compare Boyd and Richerson (1985) and Henrich and Boyd (1998)].

l 1



lnteraction between multiple groups can quickly introduce additional complexity. Just

moving from one population replicator d;mamics to two population replicator dynamics

makes a radical difference in Rock-Scissors-Paper games without conformist bias [Sato

et a. (2002)1. Evaluation of the effects conformist and other types of bias in more

complicated settings raises questions well worth pursuing.
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