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Abstract

This paper develops the model theory of normal modal logics based on partial “possibilities” instead
of total “worlds,” following Humberstone [1981] instead of Kripke [1963]. Possibility semantics can be
seen as extending to modal logic the semantics for classical logic used in weak forcing in set theory,
or as semanticizing a negative translation of classical modal logic into intuitionistic modal logic. Thus,
possibility frames are based on posets with accessibility relations, like intuitionistic modal frames, but
with the constraint that the interpretation of every formula is a regular open set in the Alexandrov
topology on the poset. The standard world frames for modal logic are the special case of possibility
frames wherein the poset is discrete. The analogues of classical Kripke frames, i.e., full world frames,
are full possibility frames, in which propositional variables may be interpreted as any regular open sets.

We develop the beginnings of duality theory, definability/correspondence theory, and complete-
ness theory for possibility frames. The duality theory, relating possibility frames to Boolean algebras
with operators (BAOs), shows the way in which full possibility frames are a generalization of Kripke
frames. Whereas Thomason [1975a] established a duality between the category of Kripke frames with
p-morphisms and the category of complete (C), atomic (A), and completely additive (V) BAOs with com-
plete BAO-homomorphisms (these categories being dually equivalent), we establish a duality between the
category of full possibility frames with possibility morphisms and the category of CV-BAOs, i.e., allow-
ing non-atomic BAOs, with complete BAO-homomorphisms (the latter category being dually equivalent
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Bezhanishvili, Matthew Harrison-Trainor, and Tadeusz Litak. I also wish to thank Ivano Ciardelli, Josh Dever, David Gabelaia,
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to a reflective subcategory of the former). This parallels the connection between forcing posets and
Boolean-valued models in set theory, but now with accessibility relations and modal operators involved.
Generalizing further, we introduce a class of principal possibility frames that capture the generality of
V-BAOs. If we do not require a full or principal frame, then every BAO has an equivalent possibility
frame, whose possibilities are proper filters in the BAO. With this filter representation, which does not
require the ultrafilter axiom, we are lead to a notion of filter-descriptive possibility frames. Whereas
Goldblatt [1974] showed that the category of BAOs with BAO-homomorphisms is dually equivalent to
the category of descriptive world frames with p-morphisms, we show that the category of BAOs with
BAO-homomorphisms is dually equivalent to the category of filter-descriptive possibility frames with
p-morphisms. Applying our duality theory to definability theory, we prove analogues for possibility
semantics of theorems of Goldblatt [1974] and Goldblatt and Thomason [1975] characterizing modally
definable classes of frames. In addition, we discuss analogues for possibility semantics of first-order cor-
respondence results in the style of Lemmon and Scott [1977], Sahlqvist [1975], and van Benthem [1976a].
Finally, applying our duality theory to completeness theory, we show that there are continuum many
normal modal logics that can be characterized by full possibility frames but not by Kripke frames, that
all Sahlqgvist logics can be characterized by full possibility frames that contain no worlds, and that all

normal modal logics can be characterized by filter-descriptive possibility frames.

Keywords: modal logic, possibility semantics, Boolean algebras with operators,

duality theory, regular open algebras, Kripke-frame incompleteness

MSC: 03B45, 03G05
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The model theory of modal logic has been developed extensively on the basis of possible world semantics, as

presented in its now standard form by Kripke [1963].! In this paper, we develop the beginnings of a more

general theory of possibility semantics for modal logic, building on the work of Humberstone [1981].

As presented in § 2, possibility semantics can be seen as extending to modal logic the semantics for

classical logic used in weak forcing in set theory, or as semanticizing a negative translation of classical

modal logic into intuitionistic modal logic. Thus, possibility frames are based on posets with accessibility

1For a historical overview, see Goldblatt 2006a; for surveys of the theory, see Blackburn and van Benthem 2007, Goldblatt
2006a, and Goranko and Otto 2007; and for textbooks, see, e.g., Blackburn et al. 2001 and Chagrov and Zakharyaschev 1997.



relations, like intuitionistic modal frames, but with the constraint that the interpretation of every formula
is a regular open set in the Alexandrov topology on the poset. Unlike intuitionistic Kripke semantics,
possibility semantics allows a partial possibility to determine that a disjunction is true without determining
which disjunct is true, leaving that to be determined by refinements of the possibility. Worlds are totally
determinate possibilities—endpoints in the poset—which not all possibility frames contain; and the standard
world frames for modal logic are the special case of possibility frames wherein all possibilities are worlds—so
the poset is discrete. The analogues of classical Kripke frames, i.e., full world frames, are full possibility
frames, in which propositional variables may be interpreted as any regular open sets. At the end of § 2, we
give examples of full possibility frames whose logics are not validated by any Kripke frames.

An important motivation for the move from total worlds to partial possibilities is philosophical (Humber-
stone 1981; Edgington 1985, p. 564; Edgington 2010, § 4; Rumfitt 2015, §§ 6.1-6.2), but in this paper we focus
on the logical ramifications. After expanding the précis of possibility semantics above in § 2, we introduce a
number of useful concepts for the study of possibility semantics in § 3 and § 4: in § 3, we introduce notions
of possibility morphisms between possibility frames, which reduce to the standard p-morphisms (bounded
morphisms) when the frames in question are Kripke frames; and in § 4, we provide a catalogue of classes
of frames that are of special importance in possibility semantics. With this toolkit acquired, we proceed to
develop for possibility semantics the beginnings of duality theory, definability/correspondence theory, and
completeness theory, the “three pillars of wisdom” supporting modal logic [van Benthem, 2001, p. 331].

In § 5, we prove our main results concerning dualities between possibility frames on the one hand and
Boolean algebras with operators (BAOs) [Jonsson and Tarski, 1951, 1952] on the other. From an algebraic
perspective, the possibility semantics developed in this paper occupies a special place among generalizations
of Kripke semantics.? Thomason [1975a] showed that Kripke frames correspond to BAOs that are complete
(C), atomic (A), and completely additive (V).? Semantically: any Kripke frame can be turned into a modally
equivalent CAV-BAO, and vice versa. Categorically: the category of Kripke frames with p-morphisms is
dually equivalent to the category of CAV-BAOs with complete BAO-homomorphisms. More general types
of frames have been proposed that correspond to CA-BAOs, viz. normal neighborhood frames as in DoSen
1989, and AV-BAOs, viz. discrete general frames as in ten Cate and Litak 2007.

Possibility frames generalize in a different direction, by dropping atomicity. We show that full possibility
frames correspond to CV-BAOs. Semantically: any full possibility frame can be turned into a modally
equivalent CV-BAO (§ 5.1), and vice versa (§ 5.2). Categorically: the category CV-BAO of CV-BAOs with
complete BAO-homomorphisms is dually equivalent to a reflective subcategory of the category FullPoss of
full possibility frames with what we call “strict possibility morphisms” (§ 5.3). This connection between
CV-BAOs and possibility frames parallels the connection between Boolean-valued models and forcing posets
in set theory (see, e.g., Takeuti and Zaring 1973), but now with modal operators and accessibility relations
involved. (As we briefly note at the end of § 2.3, if we consider normal neighborhood versions of full possibility
frames, then such frames are to C-BAOs as our relational versions of full possibility frames are to CV-BAOs.)

One of our duality results for CV-BAOs can be sketched as follows. On the algebraic side, given any
complete Boolean algebra, we form a CV-BAO by adding an operator 4 on the algebra such that for the
bottom element L of the algebra, 4L = L, and for any set X of elements, ¢ \/ X = \/{#z | z € X}. For
morphisms between CV-BAOs, we consider Boolean algebra homomorphisms that also preserve arbitrary

joins and ¢ (complete BAO-homomorphisms). Then the question naturally arises: can we have an analogue

21t is not known (at least to this author) whether Humberstone’s original frames for possibility semantics are more general
than Kripke frames. We compare our possibility frames with Humberstone’s frames at the end of § 2.3 and in Appendix § B.1.
3The notation ‘C’, “‘A’, ‘V’, and “T” (below) is from Litak 2005a,b, 2008. See § 5 for the definitions of these classes of BAOs.



CV-BAO is dually equivalent to RichPoss which is a reflective subcategory of FullPoss

BAO is dually equivalent to  FiltPoss  which is a reflective subcategory of Poss

Figure 1.1: main categorical relationships.

for the category CV-BAO of Thomason’s theorem for CAV-BAQO? On the frame-theoretic side, instead of
adding a modal operator ¢, we add an accessibility relation R. Given any complete Boolean algebra, we form
what we call a rich possibility frame (§ 4.7) by deleting the bottom element of the algebra and then adding a
binary relation R on the underlying set that interacts with the order relation < from the bottomless algebra
in a nice first-order way (called R<>win and motivated game-theoretically in § 2.3): zRy iff Vy’ <y 3z’ <z
vz <2’ Iy’ <y z”Ry"’.* For morphisms between such frames, we consider maps h that are p-morphisms
with respect to both < and R: x <y implies h(z) <’ h(y); xRy implies h(z)R'h(y); if ' <’ h(zx), then Jy:
y <z and h(y) = y'; and if h(x)R'y’, then Jy: xRy and h(y) = y’. These maps are a special case of the
strict possibility morphisms mentioned above (see § 3). Together rich possibility frames with p-morphisms
form the category RichPoss. In § 5.3, we show that RichPoss is dually equivalent to CV-BAO.

The rich possibility frames just sketched are a special case of the full possibility frames described in § 2,
which have much looser constraints in general, e.g., the order relation on possibilities can be an arbitrary
partial order. Yet we show that for every full possibility frame, there is a strict possibility morphism from
that frame to a rich possibility frame that validates exactly the same modal formulas. In addition to this
semantic fact, we prove a categorical fact: RichPoss is a reflective subcategory of FullPoss.

Going beyond full possibility frames, we show that our principal possibility frames (from § 4.6) correspond
semantically to V-BAOs (§§ 5.1-5.2). We turn any V-BAO into a semantically equivalent principal possibility
frame by deleting the bottom element of the algebra and then defining a binary relation R on the underlying
set by: xRy iff for all 4/ < y such that ¢ # L, we have z A ¢y’ # L. A key fact for proving the semantic
equivalence of the resulting principal frame and the original V-BAO is that complete additivity of a BAO
implies the following condition: if A ¢y # L, then there is a 3’ < y such that ¢y # L and xRy’ for the R
just defined. In fact, as observed in Holliday and Litak Forthcoming, the ostensibly second-order condition
of complete additivity is equivalent to the first-order condition just given. In this way, thinking in terms
of possibility frames has led to a new view of V-BAOs. In addition, thinking in terms of possibility frames
leads to a new characterization (in § 5.8) of the (lower) MacNeille completion of a V-BAO as in Monk 1970.

In addition to this connection with complete additivity, we show that the special case of functional
principal possibility frames correspond semantically to BAOs that admit residuals or 7-BAOs (8§ 5.1-5.2).
On this point, one of the interesting options that becomes available with the move from worlds to possibilities
is a functional semantics for modalities according to which Uy is true at a possibility x iff ¢ is true at the
unique possibility f(z) determined by an accessibility function f (see § 4.4 and Holliday 2014).

If we do not require a full or principal possibility frame, then every BAO has an equivalent possibility
frame, whose possibilities are proper filters in the BAO (§ 5.5). In such a frame, a possibility X refines
a possibility Y iff the proper filter X is a superset of the proper filter Y. An accessibility relation R on
proper filters is given by a standard definition: X RY iff for all elements z in the algebra, Bz € X implies

4In § 2 and following, we use the symbol ‘C’ instead of ‘<’ for the order relation in possibility frames. It is also important
to note that our notation in this paper is flipped relative to most of the literature on intuitionistic Kripke semantics: we take
z C y to mean that x is a refinement/further specification/extension/etc. of y (in agreement with most of the literature on
set-theoretic forcing), whereas the intuitionistic literature would take it to mean that y is an extension of z.



z € Y, where B is the dual of the ¢ operator in the BAO. With this filter representation of BAOs, which
does not require the ultrafilter axiom, we arrive at a notion of descriptive frames in the context of possibility
semantics, which we call filter-descriptive frames. Whereas Goldblatt [1974] showed that the category BAO
of BAOs with BAO-homomorphisms is dually equivalent to the category DFm of descriptive world frames
with p-morphisms, we show that BAO is dually equivalent to the category FiltPoss of filter-descriptive
possibility frames with p-morphisms (§ 5.6). In addition, parallel to Goldblatt’s [2006b] result that DFm
is a reflective subcategory of the category of all general frames with what he calls modal maps, we show
that FiltPoss is a reflective subcategory of the category Poss of all possibility frames with what we call
possibility morphisms (see § 3). Finally, our filter representation of a BAO leads to what can be considered
a choice-free construction of the canonical extension of a BAO (§ 5.8).

Putting together the links between BAOs and frames just described, we arrive at the pictures in Figures
1.1 and 1.2. Finally, in § 5.9 we compare possibility frame constructions that preserve the validity of modal

formulas with algebraic constructions that preserve algebraic equations, in ways we exploit in §§ 6.1-6.2.

BAOs/
descriptive world frames™
filter-descriptive possibility frames*

T

C-BAOs/ V-BAOs/
normal neighborhood version principal
of full possibility frames possibility frames
CA-BAOs/ CV-BAOs/ AV-BAOs/
normal full possibility frames’ discrete
neighborhood general
frames* I frames*
CAV-BAOs/

Kripke frames*

Figure 1.2: classes of BAOs and semantically equivalent frames—any BAO in the class before the / can be
turned into a frame in the class after the / that validates the same formulas, and vice versa. A x indicates
there is also a dual equivalence between associated categories of BAOs and frames as described in the main
text or references. See Thomason [1975a] on C.AV /Kripke, Dosen [1989] on C.A/neighborhood, ten Cate &
Litak [2007] on AV /dicrete, and Goldblatt [1974] on BAO/descriptive world frames. The 1 indicates that
we will prove a dual equivalence involving a reflective subcategory of the category of frames (see § 5.3).

In § 6, we turn to definability and correspondence theory (cf. van Benthem 1983, 2001). In §§ 6.1-6.2, we
treat the question of which classes of possibility frames are definable by modal formulas. Using the duality
theory of § 5, we prove analogues for possibility semantics of Goldblatt’s [1974] characterization of modally
definable classes of world frames and Goldblatt and Thomason’s [1975] characterization of modally definable
classes of full world frames. In § 6.3, we discuss the question of which modal formulas define classes of
possibility frames that are first-order definable. As noted by Goldblatt [2006a, p. 51], “a substantial reason



for the great success” of Kripke semantics is the way in which many natural modal axioms correspond to
first-order properties of the accessibility relations in Kripke frames, such as seriality (O¢ — Oy), reflexivity
(Op — ), transitivity (Op — OOp), symmetry (¢ — OOp), and so on. Similarly, many natural modal
axioms correspond to first-order properties of full possibility frames. As an illustration, we give an analogue
for full possibility frames of one of the most elegant first-order correspondence results for Kripke frames,
namely Lemmon and Scott’s [1977, § 4] result for axioms of the form ¢*0l'p — O™O"p. We also discuss
the extent to which the “minimal valuation” heuristic for first-order correspondence in Kripke semantics
applies in possibility semantics. More generally, using the connection between full possibility frames and
CV-BAOs (§§ 5.1-5.3) and the methods of algebraic modal correspondence [Conradie et al., 2017], Yamamoto
[2017] establishes the possibility-semantic version of Sahlgvist correspondence (Sahlqvist 1975, van Benthem
1976a): every Sahlqvist modal formula corresponds to a first-order formula over full possibility frames.

In § 7, we draw out some consequences of § 5 for completeness theory. The discovery in the 1970s of
Kripke-frame incompleteness, the fact that not all normal modal logics are sound and complete with respect
to a class of Kripke frames, has been considered one of the two forces that gave rise to the “modern era” of
modal logic [Blackburn et al., 2001, p. 44].> By duality, this amounts to the fact that not every variety of
BAOs is HSP-generated by the CAV-BAOs that it contains. For a class X of BAOs or frames, let ML(X) be
the set of modal logics L such that L is the logic of some subclass of X'. Let ALG be the class of all BAOs.
Then ML(ALQG) is the class of all normal modal logics (see § A.3), and we have the following inequalities,
the first three of which are from Litak 2005a and the last of which is from Holliday and Litak Forthcoming:

ML(CAV) € ML(CV) € ML(T) € ML(V) € ML(ALG). (1)

Where K is the class of Kripke frames, FP is the class of full possibility frames, PR is the class of principal
possibility frames, f-PR is the class of functional principal possibility frames, and P is the class of all possibility

frames—or we could take just filter-descriptive frames—it follows from (1) and the duality theory of § 5 that:

ML(CAV) ML(CV) ML(T) ML(V) ML(ALG)
I [ I [ I
ML(K) € ML(FP) C ML(fPR) C ML(PR) < ML(P).

Thus, every normal modal logic is sound and complete with respect to a class of filter-descriptive possibility
frames, but the other types of possibility frames give rise to distinct notions of completeness. We stress
the first and last inequalities above. The first means that there are Kripke-frame incomplete normal modal
logics that are sound and complete with respect to a class of full possibility frames—indeed, we will show
there are uncountably many such logics in § 7.1. The last inequality means that completeness with respect to
principal possibility frames is still an informative notion of completeness. To obtain better understandings of
ML(CV) (= ML(FP)) and ML(V) (= ML(PR)) is a major open problem in the theory of possibility semantics
(see § 8.2). By contrast, ML(T) is relatively well understood. For instance, there is a known syntactic
characterization of ML(T): a logic is in ML(T) iff its minimal tense extension is a conservative extension.
In § 7.2, we review other sufficient syntactic conditions for 7-completeness, as well as V-completeness.
Another topic in completeness theory for possibility semantics, emphasized in Humberstone 1981 and

Holliday 2014, is completeness with respect to atomless possibility frames, in which every possibility can be

5For a brief historical overview of Kripke-frame incompleteness results, see Goldblatt 2006a, § 6.1, and for textbook presenta-
tions, see, e.g., Chagrov and Zakharyaschev 1997, Ch. 6 or Hughes and Cresswell 1996, Ch. 9. Classic papers on Kripke-frame
incompleteness include Thomason 1972, 1974a, Fine 1974b, van Benthem 1978, 1979a, and Boolos and Sambin 1985.



further refined. These are frames with no worlds. In § 7.3, we show that all normal modal logics given by
Sahlquist axioms are sound and complete with respect to an atomless, functional, full possibility frame.

Finally, in § 7.4, we discuss canonical possibility frames for normal modal logics. Unlike in possible world
semantics, where the domain of the canonical frame for a logic is the set of all maximally consistent sets
of formulas (or ultrafilters in the Lindenbaum algebra for the logic), in possibility semantics we can take
the domain of the canonical frame to be the set of all consistent and deductively closed sets of formulas (or
proper filters in the Lindenbaum algebra). As an illustration, we prove that all normal modal logics given
by Lemmon-Scott axioms are sound and complete with respect to their canonical full possibility frames.

In § 8, we conclude with a review of related work (§ 8.1) and a list of open problems (§ 8.2).

The appendices contain a review of Kripke semantics (§ A.1), general frame semantics (§ A.2), and
algebraic semantics (§ A.3), followed by some deferred topics (§ B), including a comparison of our definition
of possibility frames with Humberstone’s [1981] original definition and an intermediate alternative (§ B.1).

Before embarking on the plan above, we fix our languages and logics in § 1.1 and our notation in § 1.2.

1.1 Languages and Logics

Possibility semantics naturally invites one to consider novel languages that cannot be treated by standard
possible world semantics. However, in this study we restrict attention to the basic polymodal language, in

order to see how possibility semantics and world semantics compare on a common playing field.

Definition 1.1 (Modal Language). Given a nonempty set ® of propositional variables and a set I of modal

operator indices, the language £(®, ) is generated by the following grammar:

pu=plop|(@Ap) ] (p—= )| O,

where p € @ and i € I. The language £(®, ) is the non-modal fragment of £(®,T).
As abbreviations, we define (¢ V 9) := (=@ A =), (¢ < ¥) := (¢ = V) A (Y = @), Cip = -0,
L:=(pA-p) for somep e ® and T := L.

When there is no risk of ambiguity, we omit parentheses in formulas in standard fashion. N

As is common in the modal logic literature (e.g., Chagrov and Zakharyaschev 1997, Blackburn et al.
2001), we take a modal logic L for £(®, I) to be a subset of L(®, I) satisfying certain closure conditions. For
familiar notation: if ¢ € L, then F1, ¢; otherwise K, .

Definition 1.2 (Classical Normal Modal Logic). L C L(®,1) is a classical normal modal logic iff for all
o, € L(D,1),i€I:°

1. Uniform Substitution — if i, ¢ and % is a substitution instance of ¢, then g, ¥;
2. Tautologies — if ¢ is a classical propositional tautology, then Fr, ;

3. Modus Ponens — if Fy, ¢ and k1, ¢ — 9, then Fr, ¢;

4. K axiom — br, O;(¢ — ) = (O — 0i9);

5. Necessitation — if Fr, ¢, then kg, ;. N

6The term ‘classical’ has unfortunately also been used to mean that a logic L is congruential: if 1, ¢ < 1, then g, ;¢ <>
O;v [Segerberg, 1971, Chellas, 1980]. We use ‘classical’ to contrast with intuitionistic, not non-congruential.



The smallest classical normal modal logic for a unimodal language, i.e., with |I| = 1, is denoted by ‘K’.
The smallest classical normal modal logic for a polymodal language with |I| = n is usually denoted by ‘K,,’.
Since the logic depends on both ® and I, the definition really defines a logic K¢ 7, but to avoid proliferating
subscripts, we will simply write ‘K’, with ® and I understood, and similarly for extensions of K.

We will also mention intuitionistic normal modal logic, for which we use the following language.

Definition 1.3 (Intuitionistic Modal Language). The language £'(®, I) is generated by the following gram-

mar:

pu=plop (@A) | (= @) (@) | Digp,

where p € ® and 7 € I. N

We think of (/) as the primitive intuitionistic disjunction, to be distinguished from the V in Definition 1.1
that we use to abbreviate =(—¢ A —%)). Also note that the intuitionistic diamond modality is often treated
as a primitive, not definable in terms of — and OJ, but our concern here is the O-only language £'(®, I).

An intuitionistic normal modal logic for £'(®,T) is defined as in Definition 1.2, except with £'(®,T) in
place of L(®,1) and theorem of intuitionistic (Heyting) propositional calculus in place of classical proposi-
tional tautology in part 2. We denote the smallest intuitionistic normal modal logic by ‘HK’ [Bozic and
Dogen, 1984] (called ‘IntKg’ in Wolter and Zakharyaschev 1997).

Whenever we use the term ‘normal modal logic’ without specifying ‘classical’ or ‘intuitionistic’, the
intended meaning is classical normal modal logic.

1.2 Notation
The following notation will be used throughout.
Notation 1.4 (Posets and Relations). For a poset (S,C) and z,y € S:

1. lz={2" €S |2’ Cz};

2. z(Qyiff 32 € S: zC 2z and 2z C y (“o and y are compatible”);

3. zLlyiff not z )y (“x and y are incompatible”).

For a binary relation R on S, X C S, and z € S:

4. R[X] is the image of X under R, i.e.,, R[X|={y €S |3z € X: 2Ry},

5. R71[X] is the preimage of X under R, i.e., R} X]={y€ S |3z € X: yRa};

6. R(z) = R[{z}]. <

Other new pieces of notation will be introduced as we go.

2 From Partial-State Frames to Possibility Frames

2.1 Partial-State Frames and Semantics

We take the following structures as our starting point for the semantics of normal modal logics.



Definition 2.1 (Partial-State Frames and Models). A partial-state frame is a tuple F = (S,C,{R; }icr, P)

where:
1. S is a nonempty set (the set of states);
2. C is a partial order on S (the refinement relation);
3. R; is a binary relation on S (the i-accessibility relation);
4. P is a subset of p(5) (the set of admissible propositions) such that ) € P and for all X, Y € P:
(a) XNY e P;
(b) XDY ={seS|V¥Cs:deX=5¢€Y}ecP
(c) BY ={se S| Ri(s) CY}eP.
A partial-state model M based on F is a tuple M = (F, ) where:
5. m: ® — P (an admissible valuation). <

We may abuse notation and write ‘c € M’ to mean that x € S where S is the set of states of M.

Remark 2.2 (Flipped Notation). For x,y € S, we take ‘x C y’ to mean that the state z is a refinement or
further specification or extension of the state y. This agrees with common practice in set-theoretic forcing,
where ‘z < gy’ usually means that x is at least as strong of a forcing condition as y; but it is flipped relative
to standard practice in intuitionistic semantics, which puts stronger states on the right (an exception being
Dragalin 1988). It will prove convenient for us to go down (left) rather than up (right) for refinements, with
more specific states below less specific ones, to match the standard practice of interpreting conjunction in a

Boolean algebra of propositions as greatest lower bound, so stronger propositions are below weaker ones. <
We relate the formal language £(®, ) (Definition 1.1) to partial-state frames and models as follows.

Definition 2.3 (Partial-State Semantics). Given a partial-state model M = (S,C,{R;};cr,m) with z € S
and ¢ € L(P, ), define M,z IF ¢ (“p is forced at 2 in M”) as follows:

1. M,z Ik piff z € w(p);

2. Mozl —p iff Vo' E a2 M, 2" ¥ ;

3. Mz lF oA iff Mz lF @ and M,z I ;

4. M,z ko — ¢ iff Vo' C x: if M,z Ik ¢ then M, z’ IF 1;
5. Mz IF O iff Vy € Ri(x): M,y - .

The truth set of p in M is the set [p]M = {x € S| M,z I ¢}.
We also have the following derived notions, where F = (S, C, {R; }ics, P) is a partial-state frame:

6. F,x Ik ¢ iff M,z IF ¢ for every model M based on F;
7. Mk @ (¢ is globally true in M) ifft M,z Ik ¢ for all z € S;
8. FIF ¢ (¢ is valid over F) ifft M IF ¢ for every model M based on F

(equivalently, F,x I ¢ for all x € S).
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Given a class M of partial-state models, ¢ € L(®,1), and X C L(P, I):
9. IFm @ (@ is valid over M) iff for every M € M, M I ;
10. X is satisfiable in M iff for some M € M and x € M, M,z I+ ¢ for all o € X.

For a class F of partial-state frames, validity (IFg) and satisfiability with respect to F are defined as
validity and satisfiability with respect to the class of all models based on frames in F.

Given a logic L C L(®,I) and a class C of frames or of models:
11. L is sound with respect to C iff for all ¢ € L(®, 1), if Fr, ¢, then IFc ¢;
12. L is complete with respect to C iff for all ¢ € L(®, ), if IFc ¢, then kg, ¢. <

The forcing clauses 2-4 in Definition 2.3, together with the following derived clause for V, are just the

standard clauses for the connectives used in weak forcing in set theory (see, e.g., Jech 2008, § 5.1.3).7

Fact 2.4 (Forcing V). Given ¢ V¢ := =(mp A ), M,z - oV it Vo' C x 2" C 2: M,2” IF ¢ or
M, 2" 1.

The connection with set-theoretic forcing will reappear below (e.g., in Remark 2.15 and § 5).
Together the closure conditions on the set P of admissible propositions in Definition 2.1.4 and the
semantic clauses for the operators in Definition 2.3 guarantee that the truth set of every formula of £(®, 1)

is an admissible proposition, as in the following fact.

Fact 2.5 (Truth Sets and Substitution). For any partial-state frame F = (S,C,{R;}icr, P) and model
M = (F,r) based on F:

1. Where D and M; are the operations from Definition 2.1.4:
(@) [P =n(p);
(b) [~e]™ = [el™ > 0;
() Te A9I™ = [el™ N [9]™
(d) [ = o] = [el™ > [¥I™
() [Dig]™ = M) ™.
2. for any p € L(®, 1), [¢]M € P;
3. the set of formulas valid over F is closed under Uniform Substitution (Definition 1.2).

Proof. Part 1 is just a matter of checking the semantic clauses in Definition 2.3. Part 2 is immediate from

part 1 and Definition 2.1.4. Part 3 is a straightforward consequence of part 2. O
We will now give several examples of partial-state frames.

Example 2.6 (World Frames). Classical Kripke frames (W, {R;}icr) (reviewed in Appendix § A.1) may be
regarded as partial-state frames (W, C, {R;};cr, P) where:

1. C is the identity relation;

7This notion of forcing differs from Paul Cohen’s original notion, which has come to be called “strong” forcing. For the
historical origins of weak forcing, owing to Solomon Feferman and Dana Scott, see Moore 1988, p. 160.
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2. P=p(W).

For models based on Kripke frames, the forcing relation IF defined in Definition 2.3 is equivalent to the
standard satisfaction relation, i.e., M,z IF = iff M, x W ¢, and M,z lF ¢ = ¢ iff M,z ¥ ¢ or M,z IF 1.

Classical general frames (W,{R;}icr, A) (reviewed in Appendix § A.2) may also be regarded as partial-
state frames (W, C, {R; };er, A) in which C is the identity relation. When C is identity, the closure conditions
on the set P of admissible propositions in a partial-state frame coincide with the closure conditions on the
set A of admissible propositions in a general frame (Definition A.5). As usual, we may view Kripke frames
as full general frames, i.e., general frames in which A = p(W).

Henceforth we will call general frames world frames. Kripke frames are then full world frames. Models
based on world frames will be called world models. Note that we use the term ‘partial state’ frame/model

to cover world frame/models as well, just as ‘partial function’ covers total functions. N

Example 2.7 (Intuitionistic Modal Frames). Full intuitionistic modal frames as in Wolter and Za-
kharyaschev 1997 (full O-IM frames) are partial-state frames F = (S,C, {R;}ic1, P) satisfying the following

conditions:
1. up-R - if 2’ C z and 2'R;y’, then zR;y’ (see Figure 2.1);
2. R-down - if ' C y and zR;y, then xR;y’ (see Figure 2.2);
3. P is the set of all downsets in (S,C).%

The set of all downsets is closed under N and D, as required by Definition 2.1.4; and the up-R condition
guarantees that the set of all downsets is also closed under BM; from Definition 2.1.4. Thus, by Fact 2.5,
the truth set of every formula will be a downset. This is the property of Persistence (or Heredity) that is
necessary and sufficient for a partial-state frame to validate the intuitionistic principle ¢ — (¥ — ¢):

e Persistence: if M,z IF ¢ and 2’ C z, then M, 2’ I .

For the [J; case of the inductive proof of Persistence, if M,z’ ¥ [;p, so there is a vy with z’R;y’ and
M,y ¥ o, then by up-R, ' C z implies zR;y’, so M,z ¥ 0;.

Having established Persistence using up-R, one can then motivate R-down as follows. The intended
interpretation of xR;y’ is that whatever is necessary/known/believed/henceforth true/etc. at z is true at
y. If M,z I+ 0 and zR;y, so M,y I ¢, then 3y C y and Persistence together imply M, 3y’ I+ ¢. Thus,
according to our interpretation of R;, we should be able to have zR;1’.

The condition up-R is not necessary for Persistence. A weaker commutativity condition from BoZic and

Dosen 1984 (cf. Celani and Jansana 1997, Restall 2000, § 11.2) is necessary and sufficient:
e R-com —if 2’ C z and 2’R;y’, then Jy: xR,y and 3/ C y (see Figure 2.3).

Although up-R is not necessary, every partial-state frame F in which P is a set of downsets may be turned
into a semantically equivalent partial-state frame satisfying up-R and R-down (see Proposition 2.37.1).
For the extended language £'(®, I) of Definition 1.3, we extend the forcing relation |- from Definition 2.3

with the clause:

e M.zl @ iff M,z I or M,z Ik 1.

8 As usual, a downset in (S,C) is an X C S such that for all z,2’ € S, if € X and z’ C z, then 2’ € X.
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Since the set of all downsets is closed under unions, the Persistence property still holds for £/(®, 7). If we
go from full intuitionistic modal frames to general intuitionistic modal frames for £'(®, I), then P is any set
of downsets closed under N, O, W;, and U. These frames are clearly also partial-state frames.

(The above treatment of (), as in intuitionistic Kripke semantics [Kripke, 1965], makes the forcing
clauses for intuitionistic and classical disjunction different (recall Fact 2.4). In § 8.1, we discuss a more

unified approach to intuitionistic and classical forcing based on Beth-style semantics from Dragalin 1988.) <
The logic of intuitionistic modal frames is the logic HK introduced in § 1.1.

Theorem 2.8 (Bozic and Dogen 1984). HK is sound with respect to the class of all intuitionistic modal

frames and complete with respect to the class of full intuitionistic modal frames.

xZ T
~
~
~
~
~
~
l l N
A

/ /

x/ —————— >y = 1'/ —————— >y

Figure 2.1: the up-R condition from Example 2.7. Given z'R;3’, we may go up in the first coordinate to
any x above x’ to obtain zR;y’. A solid arrow from s to t indicates that ¢ is a refinement of s (¢ C ), while
a dashed arrow indicates that t is accessible from s (sR;t).

r---=--= > Y = L -=m=-- > Y
l/ \\A l/
Y Y

Figure 2.2: the R-down condition from Example 2.7. Given zR;y, we may go down in the second coordinate
to any y’ below y to obtain xR;y’.

3
T L ------ >y
z ------ >y = z ------ >y

Figure 2.3: the R-com condition from Example 2.7.

Our third example of partial-state frames will be quite important for our purposes. According to a world-
based view of possibilities, a “possibility” is simply a set of worlds; a possibility X “refines” a possibility Y
iff X CY; and however we define “truth at a possibility,” it should turn out that truth at a possibility is
equivalent to truth at every world in that possibility (see Cresswell 2004 for this line of thinking and § 8.1
for other semantics that evaluate formulas at sets of worlds). Thus, where I, is a proposed forcing relation

between possibilities and formulas, and F,, is the usual satisfaction relation between worlds and formulas
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(Definition A.2), it should hold that for all possibilities X and formulas ¢:
M, X |k, piff Vo € X: M, {z} Ik, ¢, where M, {z} I, ¢ iff M,z E, ¢. (2)

Fact 2.10 below records that the forcing relation I from Definition 2.3 is indeed such a I, satisfying (2).

First, let us make official the construction of possibilities out of arbitrary sets of worlds.’

Example 2.9 (Powerset Possibilization). Given a world frame § = (W,{R;}ier, A) and a world model
M = (F,V), the powerset possibilizations of § and M, F° = (S,C,{R;}ics, P) and M® = (F®,m), are
defined by:

1§ =p(W)\ {0}

2. XCYif X CY;

3. XR;Y iff Y C R;[X];

4. P={lX| X €A}

5. m(p)={XeS|XCV(p}

One can check that since A satisfies the closure conditions required by a world frame (Definition A.5), the
P defined in part 4 satisfies the closure conditions required by a partial-state frame.

Note that if § is a full world frame (Kripke frame), then P = {| X | X € p(W)}.

A key fact about this construction is that the logic of the powerset possibilization §* coincides with the

logic of the world frame §, as in Fact 2.10.2. <
Fact 2.10 (Powerset Possibilization). For any world frame § and world model 9t = (F, V):

1. for any X € M® and ¢ € L(P,]), M® X |k p iff Ve € X: M,z F ¢;

2. for any ¥ C L(®, ), ¥ is satisfiable over F¥ iff 3 is satisfiable over §.

Proof. Part 1 is provable by an easy induction on .

For part 2, if ¥ is satisfied at a world w in a world model 9t based on §, then by part 1, ¥ is satisfied
at {w} in M, which is easily seen to be an admissible model based on F¥. In the other direction, for any
partial-state model M = (¥, ) based on §¥, the world model M=% = (§F, %) defined by w € #~%(p) iff
{w} € m(p) is easily seen to be an admissible model based on §. Moreover, (M™%)¥ = M, so if 3 is satisfied
at a state X in M, then part 1 implies that there is an z € X such that X is satisfied at x in M~%. O

From Fact 2.10.2 and the fact that K is the logic of (full) world frames, we have the following.

Corollary 2.11 (Logics of Powerset Possibilizations). K is sound with respect to the class of all powerset
possibilizations of world frames and complete with respect to the class of powerset possibilizations of full
world frames. Moreover, any normal modal logic that is sound and complete with respect to a class F of world
frames, according to standard Kripke semantics (Definition A.1), is also sound and complete with respect to

the class of powerset possibilizations of frames from F, according to partial-state semantics (Definition 2.3).

9Compare the use of powerset (minus empty set) frames as intuitionistic frames for Medvedev’s [1966] “logic of finite problems”
and Skvortsov’s [1979] “logic of infinite problems,” as reviewed in, e.g., Definition 1 of Shatrov 2008.
10Recall from Notation 1.4.1 that | X = {X' € S| X' C X}.
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Whatever examples of partial-state frames we consider, the following properties are evident from the

semantic clauses for — and [J; and the definition of validity in Definition 2.3.

Fact 2.12 (Modus Ponens, K, and Necessitation). For any class F of partial-state frames and o, ¥ € L(®, I):
1. if IFg ¢ and IFg ¢ — 4, then IFg ¥
2. ke Oi(p = o) = (O — Oi);
3. if IFg ¢, then IFg O; .

Classes of partial-state frames may differ with respect to their propositional logics and the extra modal
principles they validate. The logic of all partial-state frames is a subintuitionistic modal logic (cf. Restall
1994, Celani and Jansana 2001), but we will not go into the details. Our interest here is in partial-state

semantics for classical modal logic as in § 2.2.

2.2 Possibility Frames

In this section, we present two ways of thinking about partial-state frames for classical modal logic, in

Remarks 2.13 and 2.15, both of which will converge in our definition of possibility frames below.

Remark 2.13 (Perspective 1 — Persistence and Refinability). Over classical frames, the classical principle
- <> ¢ must be valid, so 7~ must be equivalent to . Let us analyze both directions of this equivalence.
First, since ¢ is to be a consequence of ==, any classical partial-state model is such that if M,z IF ==,

then M, x IF ¢, or equivalently, if M,z I ¢, then M, x ¥ ==, which is equivalent to:
e Refinability — if M,z ¥ ¢, then 32’ C x: M, 2’ IF .

Note that if M,z ¥ —¢, then 32’ C x: M, z’ I ¢, by the semantics of —. So the idea behind Refinability
is this: if ¢ is indeterminate at z, i.e., if M,z ¥ ¢ and M,z ¥ —p, then there is a refinement of z that
decides ¢ negatively and a refinement of x that decides ¢ affirmatively. This gives us the classical view of
possibilities: indeterminacy with respect to ¢ is equivalent to having refinements that determine ¢ each way.

Second, since = is to be a consequence of ¢, any classical partial-state model is such that if M,z IF ¢,

then M, z IF =—¢. Given Refinability, this condition is equivalent to the condition from Example 2.7:
e Persistence: if M,z Ik ¢ and 2’/ C x, then M, 2’ IF .

For if M,z I ¢ but M, 2’ ¥ ¢, then by Refinability there is an 2’/ C 2’ such that M, z” I =, which with
z" € z from the transitivity of C implies M,z ¥ =—¢. So for == to be a consequence of ¢, Persistence is
necessary. It is also easy to see that Persistence is sufficient for =——¢ to be a consequence of .

Thus, in classical partial-state frames, every admissible proposition X € P will satisfy:
e persistence: if x € X and 2’ C z, then 2’ € X
e refinability: if x € X, then 32’ Cx Vo' C 2': 2" € X.

The first condition is just the condition that P be a set of downsets, familiar from Example 2.7. However,

we cannot assume that P contains all downsets, but only those satisfying refinability.'*

I Our use of the term ‘refinability’ comes from Humberstone [1981]. Tt is not to be confused with other uses of ‘refined’ in
modal logic, e.g., refined general frames as in Blackburn et al. 2001, Def. 5.65. Van Benthem [1981] uses ‘cofinality’ for the
same idea, but given our flipped perspective noted in Remark 2.2, we would have to talk of ‘coinitiality’. Our refinability is
equivalent to: if | N X is a coinitial subset of |z, or in the terms of set-theoretic forcing, a dense subset of |z, then = € X.
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The contrapositive form of refinability, if Vo' C x 32" £ 2’: 2/ € X, then z € X, is often convenient to

use. It is also useful to note that X satisfying both persistence and refinability is equivalent to X satisfying:
e xc X iff V2’ Cax 3z’ Ca: 2" eX.

The conditions of persistence and refinability on admissible propositions are not only necessary but also
sufficient for a partial-state frame to be classical. To see this, one can check that over frames satisfying those
conditions, the axioms of some complete Hilbert-style calculus for classical propositional logic are valid.
Instead, we will give a more illuminating proof in the style of Cohen [1966, p. 119] for the case where ® is
countable, as in Lemma 2.14 below. The idea is that every state x belongs to a chain g J 1 J x5 ... that
decides the truth value of every formula eventually, i.e., Vo € L(®,I) Tk € N: M,z IF ¢ or M,z IF -,

and we can read off a classical propositional valuation from such a chain. N

Lemma 2.14 (Persistence and Refinability imply Classicality). Fix a language £(®,I) with ® countable.
If 7 = (S,C,{R; }ics, P) is a partial-state frame such that every X € P satisfies persistence and refinability,
and if ¢ € L(®,()) is a classical propositional tautology, then ¢ is valid over F; so by Fact 2.5.3, every

substitution instance of ¢ in L£(®, I) is valid over F.

Proof. Suppose F is a frame as in the statement of the lemma, so any model based on F satisfies the
properties of Persistence and Refinability from Remark 2.13. First, we observe that over F, ¢ — 1 is
equivalent to =(¢ A =), so in the inductive proof below, we do not need a separate case for —. That ¢ — 9
entails —~(p A ) is obvious. In the other direction, suppose M, x ¥ ¢ — 1), so there is some y C x such that
M,y Ik o but M,y ¥ . Then by Refinability, there is some z C y such that M,z I =1). By Persistence,
M,y Ik ¢ implies M, z IF ¢, and by the transitivity of C, y C = and z C y together imply z C z. Then
zCx, M,z Ik ¢, and M, z Ik =) imply M,z ¥ =(p A =) by the semantic clauses for — and A.

Now suppose that ¢ € L(®,() is not valid over F, so there is a model M based on F and an z € M
such that M,z ¥ . It follows by Refinability that there is an '’ C z such that M,z I —p. By the
semantic clause for —, for any y € M and ¢ € L(®,I) we can choose a y¥ C y with M,y¥ IF ¢ or

M, y¥ |- —p. Enumerating the formulas of £(®,() as 11,2, ..., define a sequence xg, 1, Ts, ... such that
zo =" and z,1 = x%”“. Thus, xg J 21 d zo... is a chain that decides every formula eventually. Define

a propositional valuation v: ® — {0,1} such that v(p) = 1 if for some k € N, M,z Ik p, and v(p) = 0
otherwise. Where v: £(®,0) — {0,1} is the usual classical extension of v, we claim that for all & € L(®, 0):

v(a) =11iff 3k € N: M,z IF a. (3)
For induction on «, the base case of p follows from the definition of v. For the — case, simply observe that

7(-a) =1 < T(a)=0 by definition of T
Vi e N: M,z; ¥ o by the inductive hypothesis
M, xp IF na where a = 1, in the enumeration

Jk e N: M,z IF -«

U

and the last line implies the second by Persistence and the semantic clause for — in Definition 2.3.
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For the A case, simply observe that

v(aNp)=1 () =1and ©(8) =1 by definition of ¥

3j,j' € N: M,z IF o and M,z; |- 8 by the inductive hypothesis
M, Tax( g IF @ and M, 2yaxj) I B by Persistence

M, Trax(jj) IF @A B by Definition 2.3

JdkeN: M,z lFang

L

and the last line implies the second. Thus, we have established (3).
Since M, zg IF =, we have T(—¢) = 1 by (3), so ¢ is not a classical tautology. O

Our second perspective on classical partial-state frames is a topological one, which is well-known in the

literature on forcing in set theory (see, e.g., Jech 2008, § 5.1.3 and Takeuti and Zaring 1973).12

Remark 2.15 (Perspective 2 — Regular Open Truth Sets). Let O(S, C) be the set of all downsets in the poset
(S,C). Then O(S,C) is an open set topology on S, the downset topology or Alexandrov topology (though
the latter term is also often used for the topology of upsets rather than downsets); and by Remark 2.13,
P C O(S,C) for any classical partial-state frame F = (S,C,{R;}ics, P). Since for any downset in (S, C),
its complement is an upset, and vice versa, the closed sets in O(S,C) are just the upsets in (S,C). Thus,
the closure cl(X) of a set X, the smallest upset that includes X, is the set X = {y € S| Iz Cy: z € X}
of all states with refinements in X; and the interior int(X) of X, the largest downset that is included in X,
istheset {y € S| Vza Cy:z € X} (=S\M(S\ X)) of all states all of whose refinements are in X. (Note
that in what follows, we sometimes apply the operations int and cl to sets X C S that are not downsets.)

From this perspective, we can rewrite the = and — clauses of Definition 2.3 equivalently as:
o [~o]™ =int(S\ [¢]™):
o [ — YIM = int((S\ [¢]™) U [¥]™).

Since the interior of the complement is the complement of the closure, int(S \ [¢]™) = S\ cl([¢]™). So
by the = clause, [==@]™ = int(S\ (S\ cl([¢]™)) = int(cl([¢]™)). Thus, the classical requirement that
[e]M = [~—¢]™M is equivalent to the requirement that for all admissible propositions X € P, X = int(cl(X)).

Also note that from this perspective, the clause for V from Fact 2.4 is equivalent to:

o [o vy =int(cl([p]™ U [¥]*).

Open sets X with the property that X = int(cl(X)) are called regular open. What the Refinability
principle of Remark 2.13 adds to Persistence topologically is the idea that the admissible propositions in P
should be not only open sets in O(S, C) but regular open sets in O(S, C).

For any partial-state frame F = (S,C,{R;};c1, P), the condition that P be a set of regular open sets in
O(S,C) (still satisfying the required closure under N, O, and M; from Definition 2.1) is not only necessary but
also sufficient for F to be a classical frame. As observed by Tarski [1937a, 1938, 1956], for any topological
space § = (S,0), the structure (RO(S),A,—, T) where RO(S) is the set of all regular open sets in S,
XAY =XnNY,-X =int(S\ X), and T = S is a complete Boolean algebra, with the meet of an arbitrary
X C RO(S) given by A X = int(() &) and the join by \/ X = int(cl(J X)).!® This is called the regular open

12The history of forcing in Moore 1988 (p. 163) attributes this topological perspective on forcing to Dana Scott.
13Note that where O is the Alexandrov topology O(S,C), we have AX =N X.
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algebra of §. Another way to the same point is that the open sets ordered by inclusion form a complete
Heyting algebra, and the reqular elements of a Heyting algebra, those X for which ——X = X, form a
complete Boolean algebra (cf. Glivenko 1929). Now even if P in F = (S,C,{R;}ic1, P) does not include all
regular open sets in O(S,C), the closure conditions on P from Definition 2.1 ensure that P is closed under
the operations A and — just defined, and S € P. Thus, if F = (S,C,{R;}icr, P) is a partial-state frame
such that all X € P are regular open, then (P,A, —, T) is a subalgebra of the regular open algebra arising
from O(S,C), so (P,A,—, T) is a Boolean algebra (though not necessarily a complete Boolean algebra).

From these observations it is a short step, which we leave to the reader, to Lemma 2.16. N

Lemma 2.16 (Regular Opens and Classicality). If 7 = (S,C, {R;};er, P) is a partial-state frame in which
every X € P is a regular open set in O(S,E), and if ¢ € £L(®,() is a classical propositional tautology, then
¢ is valid over F; so by Fact 2.5.3, every substitution instance of ¢ in L(®, ) is valid over F.

The perspectives of Remarks 2.13 and 2.15 come together easily in part 3 of the following fact. For part
2let X ={yeS|IreX:yCx},so X =X iff X is a downset.

Fact 2.17 (Regular Opens, Persistence, and Refinability). For any poset (S,C) and X C S:
1. int(cl(X))={x € S|V’ CxI" Ca': 2" € X};
2. int(cl(Y X)) is the smallest regular open set that includes X;
3. X satisfies persistence and refinability as in Remark 2.13 iff X is regular open in O(S,C).

Proof. Part 1 is immediate from the first-order definitions of int(X) and cl(X) in Remark 2.15; part 2 follows
straightforwardly from part 1; and part 3 follows from part 1 and the combined formulation of persistence
and refinability in Remark 2.13. O

To get a sense of the constraint that admissible propositions must be regular open sets, it helps to consider

some simple examples, such as the following.

Example 2.18 (Beth Comb). Consider the infinite poset (S, C) depicted three times in Figure 2.4, dubbed
the Beth comb due to its use in Beth semantics for intuitionistic logic [Beth, 1956] (see Humberstone 2011,
p. 898). As usual, arrows implied by reflexivity and transitivity are omitted. Let us call the w,, states worlds
and the s,, states non-worlds. In addition to S and @, there are two kinds of regular open sets in the downset

topology on the Beth comb:
(i) if X contains only worlds, then X is regular open iff Vw, € X 31 > k: w; ¢ X.

(ii) if X contains a non-world, then where n = min{k | sy € X}, X is regular open iff |s, C X and
Wnp—1 ¢ X.

Thus, the infinite downsets indicated by the ellipses in Figure 2.4 are not regular open. The smallest regular

open set including the set in the middle (resp. the right) of Figure 2.4 is S (resp. |s1). <
Since we will refer to sets as in Fact 2.17 so frequently, we use the following notation.

Notation 2.19 (RO). For a poset (S,C), let RO(S,C) be the set of all X C S satisfying persistence and
refinability, or equivalently, the set of all regular open sets in O(S, C).
For a partial-state frame F = (S, C, {R;}icr1, P), let RO(F) = RO(S, C). <
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Figure 2.4: the Beth comb (left) and two examples of non-regular-open sets (middle and right).

Let us summarize the perspectives on classicality from this section with the following proposition.

Proposition 2.20 (Characterizations of Classicality). For any partial-state frame F = (S,C,{R;}icr, P),

the following are equivalent:
1. the set of ¢ € L(®, ) valid over F is a classical normal modal logic as in Definition 1.2;
2. for every p € L(®, ), -~ is equivalent to ¢ over F;
3. P CRO(F).

Proof. Part 1 obviously implies part 2, and we observed in Remarks 2.13 and 2.15 that part 2 is equivalent
to part 3. Thus, to complete the proof, it suffices to show that part 3 implies part 1. By Fact 2.5 and
2.12, for any partial-state frame, the set of formulas valid over F is closed under Uniform Substitution,
Modus Ponens, and Necessitation, and contains the K axiom; and by Lemma 2.16, for a partial-state frame
F satisfying 3, the set of formulas valid over F contains all classical propositional tautologies. Thus, the set

of formulas valid over such a frame is a classical normal modal logic as in Definition 1.2. O
Proposition 2.20 motivates the following central definition of the paper.

Definition 2.21 (Possibility Frames). A possibility frame is a partial-state frame F = (S,C,{R; }icr, P) as
in Definition 2.1 in which P C RO(F). A full possibility frame is a possibility frame in which P = RO(F).«

Full possibility frames are the possibility semantic analogue of Kripke frames, which are full world frames
(recall Example 2.6 or see Appendix § A.2). As previewed in § 1, in § 2.5, § 5.2, and § 7.1 we will show that
full possibility frames provide a more general semantics for normal modal logics than Kripke frames; and in
§ 5.5, we will show that general possibility frames provide a fully general semantics.

Two of our three examples of partial-state frames from § 2.1 are examples of possibility frames.

Example 2.22 (World Frames Cont.). One can check that every world frame, viewed as a partial-state

frame as in Example 2.6, is a possibility frame, and every full world frame is a full possibility frame. N

Example 2.23 (Powerset Possibilization Cont.). One can check that for any world frame §, its powerset
possibilization §¥ as in Example 2.9 is a possibility frame, and if § is a full world frame, then §% is a full
possibility frame (cf. Facts 2.38 and 4.49). <4
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Recall that the operation of powerset possibilization captures the view that the space of possibilities is the
space of nonempty sets of worlds. This view builds in strong assumptions about the nature of possibilities,
e.g., that the space of possibilities ordered by refinement has the structure of a complete and atomic Boolean
lattice (minus the minimum element). Using these properties and one other property concerning the interplay
of accessibility and refinement, we can characterize the class possibility frames that are isomorphic to the
powerset possibilization of some Kripke frame, as in § 4.7. In § 4.7 we will also explain that any full possibility
frame can be transformed into a semantically equivalent possibility frame that shares several of the properties
of powerset possibilizations, with the exception of atomicity. In §§ 5.2-5.3, we will show that it is precisely
this difference with respect to atomicity that makes full possibility frames more general than Kripke frames
and their equivalent powerset possibilizations. In § 4.6 and § 5.2, we will generalize even further away from
powerset possibilizations with our principal possibility frames, which drop lattice-completeness as well.

Using Example 2.22 or Example 2.23, we get an easy completeness proof for K.

Corollary 2.24 (Soundness and Completeness of K). K is sound with respect to the class of all possibility

frames and complete with respect to the class of full possibility frames.

Proof. Soundness is given by Proposition 2.20. Completeness follows from the completeness of K with

respect to the class of full world frames together with Example 2.22; or Example 2.23 and Fact 2.10. O

An important property of a full possibility frame F is that RO(F) is closed under B; from Definition 2.1.
This follows from the requirement of a partial-state frame that P be closed under B; plus the requirement
of a full possibility frame that P = RO(F); and this is not trivial, for there are possibility frames F that
lack the property. By contrast, it is easy to check that for any F, RO(F) is closed under N and D.

The fact that not every possibility frame is such that RO(F) is closed under B; means that not every pos-
sibility frame can be turned into a full possibility frame simply by replacing its set of admissible propositions

P by RO(F). It is helpful to put this point in terms of the following terminology and notation.

Definition 2.25 (Foundations of Frames and Associated Full Frames). A foundation is a tuple F' = (S,C
,{Ri}icr) where (S,C) is a nonempty poset and each R; is a binary relation on S.

Given a possibility frame F = (S, C, {R; }ier, P), the foundation of F is the tuple Fy = (S,C, {R;}icr)-
We say that F is based on Fy.

Given a foundation F = (S,C,{R;}icr), let F* = (S,C,{R;}icr, RO(S,C)). Given a possibility frame
F = (S,C,{Ri}icr, P), if RO(S,C) is closed under M;, then we call (F3)* = (S,C, {R;}icr, RO(S,C)) the
associated full frame of F. N

Many possibility frames may be based on the same foundation. Yet at most one full possibility frame
may be based on a given foundation F. If F = (S,C, {R;}icr) is such that RO(S, E) is closed under B;, then
F* is the unique full possibility frame based on F. If RO(S,C) is not closed under M;, then F'* is not even
a partial-state frame as in Definition 2.1. In § 2.3, we will give first-order conditions on the interplay of C
and R; that are equivalent to RO(S, C) being closed under B;; and in § 2.3 and § 5.5, we will see that every
possibility frame can be turned into a modally equivalent one satisfying even stronger interplay conditions.

The fact that closure of RO(F) under N and D is guaranteed whereas closure under M; is an extra
requirement is reflected in a syntactic fact: to embed classical modal logic into intuitionistic modal logic by an
extension of the Godel-Gentzen negative translation, the translation can simply “pass through” conjunctions

and implications (and negations), but we must double-negate the box formulas, as follows.

Definition 2.26 (Modal Negative Translation). Let G: £(®,I) — £L(®,I) be recursively defined as follows:
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1. p% = ——p;

2. (=) =~

3. (P AY)% = % AYC;
4. (p = )¢ = (¢ = ¢%);
5. (Oip)© = ==0;C. <

Since we defined (¢ V 1)) := =(—¢p A —1b), we can think of (p V 1))¢ = (=% A %),

If we simply translated [J;¢ as [;0%, we would not get the modal extension of the famous result that ¢
is a theorem of classical logic iff ¢ is a theorem of intuitionistic logic [Gddel, 1933, Gentzen, 1933, 1936,
1974]. For example, although Fx ——0;p — O;p, one can check that =—;——p — O0;——p is not valid over
intuitionistic frames and hence ¥y ——0;——p — O;——p by Theorem 2.8. But if we double-negate box

formulas, we obtain the following (cf. Bozic and DoSen 1984, pp. 231-2).
Proposition 2.27 (Full and Faithful Translation). For all ¢ € £(®,1): Fx ¢ iff Fak ¢©.

Proof. From left to right, first, the famous result for propositional logic gives us that the translations of
classical propositional tautologies are theorems of HK. Second, it is easy to check that the translation
of the K axiom is a theorem of HK and that we can match in HK applications of Modus Ponens and
Necessitation in K. Finally, that we can match in HK applications of Uniform Substitution in K follows
from the fact that for any ¢ € £(®, ) and substitution o: ® — L(®, ), we have Fak ((p))¢ c;a(goc),
where 5: L(®,1) — L(®,I) is the usual extension of o to all formulas, and ¢ is the substitution defined
by ¢%(p) = (o(p))¥. (Note: this part of the proof would fail if we had translated [;¢ as (;0%.)

From right to left, if ¥k ¢, then by the completeness of K with respect to the class of world models
according to the standard satisfication relation F of Kripke semantics (Definition A.2), there is a world
model M that falsifies  according to . Thus, It falsifies o according to F, since ¢ and ¢ are equivalent
according to F. Viewing 9 as a partial-state model as in Example 2.6, it is easy to see that it counts as an
intuitionistic modal model as in Example 2.7, and over world models the forcing relation IF reduces to the
relation F. Thus, we have an intuitionistic modal model that falsifies ¢ according to IF, so ¥gk ¢ by the

soundness of HK with respect to intuitionistic modal models according to IF (Theorem 2.8). O

Returning to our semantics, the reason that closure of RO(F) under M; is nontrivial is because such
closure depends on the interplay of the R; and C relations in F, to which we turn in § 2.3.

Before proceeding further, let us consider a simple example of a full possibility frame.

Example 2.28 (A Temporal Flow on the Beth Comb). Returning to the Beth comb of Example 2.18, let
us think of the w,, as instants of time, the s, as unending stretches of time, and s,41 as the whole of the
future relative to w,. Define an accessibility relation on the Beth comb by: xRy iff x is the n-th world or
stretch of time and y = s,,41. The result is shown in Figure 2.5, in which successive instants of time peel off
of the future. First observe that if X € RO(S,C), then B, X € RO(S,C). For if X is a regular open set of
type (i) in Example 2.18, then B_X = {), which is regular open; and if X is a regular open set of type (ii)
in Example 2.18, then where n = min{k | sy, € X}, B X = |s,_1, which is a regular open set of type (ii).
Thus, the structure F = (S,C, R.,RO(S,C)) is a full possibility frame. It is easy to see that this frame
validates exactly the same formulas as the Kripke frame (N, <). Indeed, any possibility frame, like this one,

in which every state is refined by an endpoint (world, instant) is semantically equivalent to a Kripke frame
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based on those endpoints (see § 4.2). Yet this frame is a good example of how assumptions about relations
and modal axioms from Kripke semantics must be reconsidered in possibility semantics. For example, our
R is functional, and yet O .p — O<p is not valid. (Later we will see that for any full possibility frame, there
is a semantically equivalent one in which the relations are partially functional.) Our R. is not transitive,
and yet it validates Op — O-O<p. This raises obvious questions about how modal axioms correspond to
possibility frame properties, which we treat in § 6.3. For now, note in connection with O.p — O.O.p that
the frame in Figure 2.5 is such that fo(f<(z)) C f<(z), where f-(z) is the unique y such that xR.y.
Below we will see a possibility frame without endpoints, based on the infinite complete binary tree

(Example 2.40). We will also see a possibility frame for which there is no equivalent Kripke frame in § 2.5. <«

So -
\\
V. N\

Wy ----- > S1

Figure 2.5: a temporal flow on the Beth comb.

2.3 The Interplay of Accessibility and Refinement

In this section, we will show that two first-order conditions on the interplay of R; and C are necessary and
sufficient for RO(F) to be closed under B; (Proposition 2.30), so every full possibility frame satisfies these
conditions. We will then show that every full possibility frame can be turned into a semantically equivalent
one that satisfies a stronger and simpler condition on the interplay of R; and C (Proposition 2.37).

For RO(F) to be closed under B;, it must be that if Y satisfies persistence and refinability, then so does
M,Y. Let us first consider persistence for B;Y: if 2/ € x and x € B;Y, then 2/ € B;Y. The necessary and
sufficient condition to ensure this, as shown by Proposition 2.30, is that if a state x has “ruled out” a state

z, then z remains ruled out by every refinement =’ of x (recall Notation 1.4):

e R-rule —if 2/ C z, and for all y € R;(x), y L z, then for all ¢y’ € R;(2'), v/ L .
Or equivalently:

e Rrule —if 2/ C x and ' R;y’ () 2, then Jy: xRy § z (see Figure 2.6).

Note that R-rule is implied by the R-com condition and hence the up-R condition from intuitionistic
frames in Example 2.7.1* In increasing strength, the order is: R-rule, R-com, and up-R (see Figure 2.12).
Next, consider refinability for B;Y: if x ¢ MY, then 32’ C 2 V2" C 2/: 2” ¢ B,Y. The condition to

ensure this can be understood by adopting the game perspective of Remark 2.29.

Remark 2.29 (Accessibility Game). Given a partial-state frame F = (S, C,{R; }ics, P), z,y € S, and i € I,
the accessibility game G(F,z,y,4) for players A and E has the following rounds, depicted in Figure 2.7:

M Also note that since C is transitive, R-rule is equivalent to: if 2’ C x, 2’ R;y’, and 2’ C 3/, then Jy: Ry () 2.
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x ------ >y z = /mmmm - - >y

Figure 2.6: the R-rule condition.

1. A chooses a ¢’ C y;
2. E chooses an =’ C x;
3. A chooses an 2" C 2/;
if R;(xz”") =0, then A wins, otherwise play continues;
4. E chooses a 3" € R;(z");
if y” ( v/, then E wins, otherwise A wins.

One can think of A and E as arguing about whether y is accessible to z: if it is, then for any way v’ of
further specifying y, there should be some way z’ of further specifying x that “locks in” access to states
compatible with ¢/, i.e., such that all refinements =" of ' have access to some state 3" compatible with 7/'.
If refinements of x cannot keep up with refinements of y in this way, then y is not accessible to x. Thus,
player A is trying to show that y is not accessible to z, while player E is trying to block A’s argument.

Now consider the following condition on a partial-state frame F:
e R=win — if Ry, then Vo Cy Ja' Cx Vo T o/ Fy” § v/ 2" R;y”.

This condition says that if zR;y, then E has a winning strategy in the accessibility game G(F, z,y, 1), in line

with our way of thinking about the accessibility game above. N
T Y
2. E chooses l l 1. A chooses
x’ Yy’
3. A chooses Q ?
DA >y
4. E chooses

Figure 2.7: the accessibility game G — if ¢ () ¢/, E wins, otherwise A wins.

Now we will show that R-rule and R=>win characterize closure of RO(S,C) under H,.

Proposition 2.30 (First-order Characterization of Closure of RO(S,C) under ;). For any poset (S,C)

and binary relation R; on S, the following are equivalent:
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1. RO(S,C) is closed under B;;
2. R; and C satisfy R-rule and R=>win.

Proof. We begin with the implication from 2 to 1. Assume that X C S satisfies persistence and refinability.

To show that B; X satisfies persistence, suppose ' C z and 2’ ¢ B; X, so there is a ¢’ such that 2/ R;y’
and y' € X. Then since X satisfies refinability, there is a z C ¢’ such that (i) for all 2’ C 2, 2’ ¢ X. Since
z Cy gives us ¢y () z, from z'R;y’ and R-rule we have a y such that xR;y § z. Then from y {§ z, (i), and
persistence for X, it follows that y ¢ X, which with zR;y implies x ¢ B; X. Thus, B, X satisfies persistence.

For refinability, suppose that = ¢ B; X, so there is a y such that zR;y and y € X. Then since X satisfies
refinability, there is a ' C y such that (ii) for all z C ¢/, z ¢ X. Assuming R=-win, from zR;y and ¢’ C y
we have that 32/ C o Va” C o/ Jy": y” § v and 2" R;y”. From y” () ¢/, (ii), and persistence for X, it follows
that ¢y’ ¢ X, which with 2” R;y” implies 2/ ¢ B;X. So we have shown that if x ¢ B, X, then 32’ C z
Vo' C2': 2" ¢ B, X. Thus, B, X satisfies refinability.

Now let us prove the implication from 1 to 2.

First, suppose that R-rule does not hold, so we have ' C z and 2’ R;y’ () z, but for all y with zR;y, we
have y L z. Let V.={v € S|v Lz}, sox € MV. One can check that V satisfies persistence and refinability
(see Fact 6.16), so V € RO(S,C). Since y' () z, ¥ € V, which with 2’R;y’ implies 2’ ¢ B, V. But then
since ' C z, v € BV, and 2’ ¢ B,V B,V does not satisfy persistence, so B;V ¢ RO(S,C). But then since
V € RO(S,E), RO(S,C) is not closed under ;.

Second, suppose that R=win does not hold, so we have zR;y and 3y’ C y V2’ C z 32" C 2/ Vy'': 2" Ry
implies y” Ly'. Let V.={v e S |vLly'}, so Ve RO(S,C) by the same reasoning as above. Since y' C y,
y &€ V, which with xR;y implies z ¢ B;V. But it also follows from our supposition that Vo' C x 3z” C z’:
2" € V. Thus, B,V does not satisfy refinability, so B,V ¢ RO(S,C). But then since V € RO(S,C),
RO(S,C) is not closed under M. O

As an immediate corollary of Proposition 2.30, we have the following (recall Definitions 2.21 and 2.25).
Corollary 2.31 (Interplay of R; and C for Full Possibility Frames).
1. If F is a full possibility frame, then F satisfies R-rule and R=win,;

2. For any foundation F' = (S,C, {R;}ier), F* = (S,C, {R; }ie1, RO(S, C)) is a full possibility frame iff F
satisfies R-rule and R=win.

In addition to identifying conditions so that RO(F) is closed under B;, let us identify conditions so that

for every state x, its set R;(x) of accessible states is in RO(F).

Fact 2.32 (R;(z) and RO(F)). For any partial-state frame F = (S,C, {R; }ic1, P), the following are equiv-

alent:
1. for all x € S, R;(z) € RO(F);
2. F satisfies both

(a) R-down —if xR;y and y’' C y, then zR;y’ (recall Figure 2.2);
(b) R-dense — zR;y if Vy' Ty Jy”’ C ¢': xR;y” (see Figure 2.8).

Proof. R-down corresponds to persistence of R;(x) and R-dense corresponds to refinability of R;(z). O
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Figure 2.8: R-dense

Note how the conditions above relate to the up-R condition from intuitionistic frames (Example 2.7).

Fact 2.33 (Deriving up-R). For any partial-state frame F, if F satisfies R-rule, R-down, and R-dense,
then F satisfies up-R.

Proof. To show that ©’ C z and 2’'R;y together imply zR;y, suppose &’ C x but y € R;(x). Then by
R-dense, there is a 3’ C y such that (i) for all " C ¢/, v € R;(z). We claim that for all z € R;(x), z Ly’
For if z {j 3/, then there is a y” C 2z with y” C ¢/; and then by R-down, z € R;(z) and 3" C z together
imply 4" € R;(z); but by (i), ¥y’ C ¢/ implies ¥/ ¢ R;(z). Let V={v e S|vLy'}, sox € B;V. One can
check that V' € RO(F) (see Fact 6.16), so by the proof of Proposition 2.30, R-rule implies that B,V satisfies
persistence. Thus, from x € B;V and 2’ C x we have ' € B,V which implies y' € R;(2’) by the definition
of V, which with ¢’ C y implies y € R;(2') by R-down. This shows that F satisfies up-R. O

Next, note how the R-down condition from intuitionistic frames simplifies other conditions.

Fact 2.34 (Simplifying with R-down). For any partial-state frame satisfying R-down, the following are

equivalent:
1. R=win - if zR;y, then Vy' Cy 32’ Cax Va” T o’ Iy’ § v': 2" Ryy”;
2. R=win — if zR;y, then Vy Cy 32’ C oz V2" C 2’ Iy Coy': 2" Ryy”;
3. R-refinability — if zR;y, then 32’ E z V2" C 2’ 3y C y: 2" R;y/'.

Corresponding to R=win is a modified accessibility game G(F, z,y, ) that differs from the accessibility
game G(F,z,y,1) of Remark 2.29 by changing the winning condition (see Figure 2.9):

e if y” C 3/, then E wins, otherwise A wins.

As shown by Fact 2.34, in frames satisfying R-down the accessibility games G and G are equivalent, i.e., E
has a winning strategy in the one iff E has a winning strategy in the other.

Having considered the condition that xR;y implies that E was a winning strategy in the accessibility
game G(F,x,y,1), it is natural to consider the stronger condition that zR;y is equivalent to E having a

winning strategy in the accessibility game G(F,z,y,1):
e Rewin — aRyy iff Vo' Ty I/ Ca V" C o’ Fy” Cy': 2’ R;y” (see Figure 2.10).

Remarkably, not only does this one condition imply all of the others, and not only is it equivalent to the
conjunction of the conditions from Propositions 2.30 and 2.32, but also, we may assume R<>win without

loss of generality when working with full possibility frames. We prove these claims in turn.
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2. E chooses l l 1. A chooses

3. A chooses ?

4. E chooses

Figure 2.9: the accessibility game G — if 4" C ¢/, E wins, otherwise A wins.

Proposition 2.35 (Master Condition). The condition R<>win implies all of the conditions above and is
implied by the conjunction of the conditions from Propositions 2.30 and 2.32: R-rule, R=-win, R-down,
and R-dense. Thus, by Propositions 2.30 and 2.32, for any partial-state frame F = (S, C,{R; }ics, P), the

following are equivalent:
1. F satisfies R<&win;
2. forall X C Sand z € S, B, X € RO(F) and R;(z) € RO(F).

Proof. First, we show that R<>win implies all the other conditions. It is easy to see that R<>win implies
up-R and therefore R-rule and that R<>win implies R-down and therefore the conditions in Fact 2.34. To
see that R<>win implies R-dense, suppose it is not the case that xR;y. Then by the right-to-left direction
of R&win, there is a ' C y such that (i) Vo' C o 32" C 2’ Vy”’ C y': not 2”R;y”. Now we claim that
for all y” C ¢/, it is not the case that xR;y”. For if xR;y”, then by the left-to-right direction of R<>win,
Jo' C o Va” C o’ Fy"” Ty’ 2Ry, which with ¢’ C ¢ contradicts (i). Thus, we have shown that if not
xRy, then 3y’ C y Vy” C y': not xR;y”, which is the contrapositive of R-dense.

Next, we show that the stated conditions imply R<>win. The left-to-right direction of R<>win,
R=-win, follows from R=win and R-down by Fact 2.34. For the right-to-left direction, suppose Vy' C y
dz’' C x V2" C 2’ Iy’ C y': 2”R;y”, which implies xR;y” by up-R, which follows from the other stated
conditions by Fact 2.33. Thus, Vy' C y Jy” C ¢': xR;y”, which implies zR;y by R-dense. O

Given the strength and importance of the R<>win condition, we introduce the following terminology.

Definition 2.36 (Strong Possibility Frames). A strong possibility frame is a possibility frame as in Definition
2.21 that satisfies R<>win. N

We will now prove that any full possibility frame can be turned into a semantically equivalent strong and

full possibility frame, simply by modifying the accessibility relations in the frame.

Proposition 2.37 (From Full Possibility Frames to Strong Possibility Frames). For any partial-state frame
F = (S,C,{Ri}icr, P), define F& = (S,C,{RP};c;, P) by xRPy iff for all Z € P, x € B Z implies y € Z,
where B/ is the M, operator for F. Then:

1. if every X € P satisfies persistence, then FU satisfies up-R and R-down;
2. if F is a possibility frame, then F5 is a possibility frame satisfying R-dense;

3. if F is a full possibility frame, then F= is a strong and full possibility frame;
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Figure 2.10: R<win

4. forall m: ® — P,z € S, and p € L(®,]): (F,n),zlF o iff (FZ, 7),x I ¢.

Proof. For 1, we prove up-R and R-down at the same time. Suppose =’ C z, ¥’ C y and x’RiDy. To show
that 2 RPy’, consider any Z € P with z € B/ Z. Then since F is a partial-state frame, B/ Z € P, so B/ Z
satisfies persistence by the assumption of part 1, so from 2’ C z and z € B Z we have 2/ € B/ Z. Then
since 2/ RPy, we have y € Z, which with y' C y and persistence for Z implies y' € Z. Thus, zRPy'.

For part 2, we first show that 7= is a possibility frame, assuming that F is. Since RO(F) = RO(F"),
and the set P of admissible propositions is the same in F and F, we need only show that P is closed under
n’ D, the M; operator for F5. Since P is closed under B by assumption, it suffices to show that for all
ZeP,MZ=W"Z Tosce that B7Z D WS Z, suppose = ¢ MY Z, so there is a y such that xRy but
y & Z. Then since xR;y clearly implies a:R‘i:'y, we have = ¢ IfDZ. To see that B Z C IfD Z, suppose
T ¢ If:D Z, so there is a y such that ;vRiDy but y € Z. Then by the definition of RiD, r¢ B Z.

For R-dense in part 2, assume that Vy' C y 3y’ C y': 2R;y"”. For reductio, suppose not xRy, so there
is some Z € P such that x € B Z but y ¢ Z. Then since Z satisfies refinability, 3y’ Ty Vy' Cy': v"' & Z,
which with x € If Z implies that not xR;y”. But this contradicts our initial assumption.

For part 3, we have already shown that F5 is a possibility frame if F is. Then since RO(F) = RO(F),
and the set P of admissible propositions is the same in F and F5, F5 is a full possibility frame if F is.

To show that FU satisfies R<>win, by Fact 2.35 it suffices to show up-R, R-down, R-dense, and
R-refinability, the first three of which we have already shown. For R-refinability, suppose for reductio
that RMy but Vo' C 2 32" C 2’ such that (i) Vy': if 2"’ RPy’ then ' [Z y. Tt follows that (i) Vy': if " RPy/,
then ' Ly. For otherwise there is a y” C 3 with 4" C y, and by R-down, 2’ RPy’ and y” C ¢/ together
imply =" RHy", which with y” C y contradicts (i). Then since "/ R;y/’ implies 2 RFy/, (ii) implies (iii) Vy':
if 2”R;y’, then 3y’ Ly. Now define V = {v € S | v Ly}. One can check that V satisfies persistence and
refinability (see Fact 6.16), so V' € RO(F). Then because F is a full possibility frame, so P = RO(F), we
have V € P. Since zRPy and y ¢ V, = ¢ BV, but Vo' C o 32" C 2/: 2” € BV by (iii). Thus, BV
does not satisfy refinability, so BV ¢ RO(F) and hence BV ¢ P. But if V € P and BV ¢ P, then by
Definition 2.1, F is not a partial-state frame, which contradicts the assumption that F is a possibility frame.

The proof of part 4 is by induction on ¢. Since F5 differs from F only with respect to the accessibility
relations, the only inductive case to check is the [J; case, which follows from the fact established above that
for all Z € P, M7 Z = 7" Z, together with Fact 2.5. 0

Not only can any full possibility frame be transformed into a semantically equivalent strong possibility
frame, but also in § 5.5 we will show that any possibility frame can be transformed into a semantically

equivalent strong possibility frame. Thus, one may assume without loss of generality that R<>win gets at
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the essence of the interplay between accessibility and refinement in possibility frames.
We have already seen two examples of strong possibility frames. Every world frame, viewed as a possibility
frame as in Example 2.22, is trivially a strong possibility frame. Less trivially, the powerset possibilization

of any world frame as in Example 2.9 is also a strong possibility frame.

Fact 2.38 (Powerset Possibilization Cont.). For any world frame § = (W, {R; }icr, A), its powerset possibi-

lization §¥ is a strong possibility frame.

Proof. By Proposition 2.35, it suffices to show that §¥ satisfies up-R and R-down, which is easy to check,

and:
e R-dense - XRYY if VY'CY JY"CY": XRYY",
e R-refinability — if XRYY, then 3X' C X VX" C X' 3Y'CY: X"R{Y".

For R-dense, given nonempty X,Y C W, assume that for all nonempty Y’/ C Y there is a nonempty
Y” C Y’ with XRYY", ie., Y” C R;[X]. Then for any y € Y, taking Y’ = {y} implies Y" = {y} C R;[X].
Since this holds for every y € Y, we have Y C R;[X], i.e., XR{Y.

For R-refinability, we must check that if § # Y C R;[X], then there is a nonempty X’ C X such that
for all nonempty X” C X', there is a nonempty Yx» C Y with Yx» C R;[X”]. Since § # Y C R;[X],
X NR;MY] # 0, so pick z € X NR;'[Y] and y € Ri(x) NY. Setting X’ = {x}, we have X’ C X, and
there is only one nonempty X” C X’  namely X’ itself. Then setting Yy = {y}, we have Yx, C Y and
Yx C R;[X'], so we are done. O

This proof actually shows that F% satisfies the following stronger condition (see Figure 2.12):
e R-refinability™ — if zR;y, then 3y’ Cy 32’ C x V2" C 2': 2" R;y/'.

We will see this condition satisfied in another frame in § 2.5. (Whether every frame is modally equivalent to
one satisfying R-refinability™ depends on the assumption of the ultrafilter axiom. See Appendix § B.1.)

We are now in a good position to consider Humberstone’s [1981] original frames for possibility semantics.

Remark 2.39 (Humberstone Frames). While we defined full possibility frames as partial-state frames F
in which P = RO(F), Humberstone [1981] built strong conditions on the interplay of R; and T into his
definition of frames. A Humberstone frame is a tuple F = (S,C,{R; }icr, P), where (S,C) is a poset, R; is
a binary relation on S, and P = RO(S, L), such that F satisfies up-R, R-down, and:

e R-refinability™ — if Ry, then 32’ C z V2" C 2': 2" R;y.

A Humberstone model is a tuple M = (F,m) where F is a Humberstone frame and 7: ® — P. (In fact,
Humberstone [1981] took 7 to be a partial function, but that approach is equivalent to the approach of this
paper, as explained in Remark 8.3. Later Humberstone [2011, p. 900] took the total function approach.)
Since up-R and R-refinabilityt together imply the conditions of Proposition 2.30, the set P of ad-
missible propositions in a Humberstone frame is closed under B;, and as previously noted, RO(S,C) is
automatically closed under N and D. Thus, Humberstone frames are partial-state frames as in Definition
2.1, and since they satisfy P = RO(S,C), they are full possibility frames as in Definition 2.21.
Humberstone’s R-refinabilityt condition is not implied by any combination of the other conditions
discussed in this section. In contrast to Fact 2.38, the powerset possibilization of a Kripke frame is not

necessarily a Humberstone frame (see Appendix § B.1). It is an open question whether Humberstone frames
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are as general as the full possibility frames of Definition 2.21, or even whether they are more general than
Kripke frames, for the purposes of characterizing normal modal logics (see Problem 6 in § 8.2).

In § 4.2, we will see that all finite full possibility frames, and hence all finite Humberstone frames, can be
turned into modally equivalent Kripke frames. By contrast, in § 2.5 we will construct infinite full possibility
frames for which there are no modally equivalent Kripke frames. The question of whether every infinite

Humberstone frame is modally equivalent to a Kripke frame is an open question. N
Let us finally consider a concrete example of the interplay of accessibility and refinement.

Example 2.40 (Accessibility Relations on the Infinite Complete Binary Tree). Consider the set 2<% of all
finite binary strings. For z, 2’ € 2<%, let 2’ C x iff 2’ extends z, i.e., z is an initial segment of ’. We can view
(2<% C) as the infinite complete binary tree with C as the reflexive transitive closure of the child relation—a
simple example of a possibility space in which every possibility can be further refined. Observe that for each
x € 2<% |z satisfies refinability and hence [z € RO(2<%,C), so RO(2<¥, L) is an atomless Boolean algebra.
As an exercise, consider various definitions of accessibility relations on (2<¢ C) and then check which, if
any, of the interplay conditions are satisfied. For example, for n € N, define an accessibility relation R, by:
xR,y iff z and y have the same length and differ in no more than n places, i.e., where z = (x1,...,xx)
and y = (y1,...,Yk), we have |{i | 1 <i <k, x; # y;}| < n. See Figure 2.11 for R;. Since x and y must
have the same length, R,, does not satisfy up-R, R-down, or R-refinability™. However, R,, does satisfy
R-com and R=win. For R=win, if R,y and v = (y1,...,y;) is an extension y = (y1,...,Yk), let &’ be
the result of concatenating (yx1,...,y;) on to the end of z. Then clearly for every extension z” of z, there
is an extension y” of y such that ' R,y", since we can use the same move of copying and concatenating.
Thus, the structure F = (2<“ T, {R,}nen, RO(2<%,C)) is a full possibility frame. Alternatively, suppose
we define RS by: xRSy iff y is at least as long as x and 2R,z where z is the initial segment of y of the same
length as 2. Then RS satisfies up-R, R-down, and R-refinability, but still not R-refinability™*. N

000 <z---» 001 » 010 011 100 101 110 111

Figure 2.11: the infinite complete binary tree with outgoing R; arrows as in Example 2.40 shown only for
states along the leftmost branch. Reflexive accessibility loops are omitted.

Although we have seen that we can assume without loss of generality stronger conditions than R-rule
and R=>win, we do not build these conditions into the definition of possibility frames. The greatest payoff
in terms of simplifying our theory seems to come from assuming the R-down property as in intuitionistic

frames and Humberstone frames. We give frames with this property the following honorific title.

Definition 2.41 (Standard Possibility Frames). A standard possibility frame is a possibility frame satisfying
R-down. N

29



The topic of this section has been the interplay of two relations: accessibility and refinement. It is worth
mentioning how the situation changes if we consider the possibility semantic analogue not of Kripke frames

but of neighborhood frames [Montague, 1970, Scott, 1970], which can characterize non-normal modal logics.

Remark 2.42 (Neighborhood Possibility Frames). A full neighborhood possibility frame may be defined as
a tuple F = (S,C, {N, }ier, P) where (S,C) is a poset, N;: S — p(P), P =RO(S,C), and C and N; satisfy

the following interplay conditions:
e if 2/ C x, then N;(z') D N;(x);
o if X & N;(x), then 32/ C z Vo C 2': X & N;(2").

The standard neighborhood semantics clause for [J; now applies:
o M,z IF Oy iff [o]™ € Ni(x).

The two interplay conditions above ensure that [[J;0]™ satisfies persistence and refinability if [¢]™ does.
The logic of any class of neighborhood possibility frames is a congruential modal logic, i.e., such that if
@ <> ¥ € L, then O;p <> ;9 € L. To characterize normal modal logics, we can use normal neighborhood
possibility frames in which for each = € S, N;(x) is a filter in P: X, Y € N;(z) iff X NY € N;(x). We
mention this only to state the following fact: full normal neighborhood possibility frames are to complete
Boolean algebras with operators (C-BAOs) as our full (relational) possibility frames are to complete and
completely additive BAOs (CV-BAOs). (One can also define morphisms between neighborhood possibility
frames to play a role parallel to that of our possibility morphisms in § 3, but we will not go into the details

here.) The previous fact should make sense after the duality theory of §§ 5.1-5.3. N

For easy reference, all of the interplay conditions discussed in this section and elsewhere in the paper are

collected in Figure 2.12.

2.4 Accessibility and Possibility

So far we have said nothing about the semantics of ¢;. Since we use the classical definition ¢;p := —=; -,

the semantics of ; is derived directly from that of — and [J; as follows.
Fact 2.43 (Forcing ¢;). Given a partial-state frame F = (S,C, {R; }ier, P), z € S, and Y C S, define:
1. 2 c Y iff Vo' Co Jy: 2’Ryy and Iy Ty ¢’ €Y.
Then for any possibility model M and ¢ € L(®,1), [O:0]™ = #;[0]M, i.e.:
2. Mz lF Qi iff Vo' C o Jy': 2’ Ry’ and Jy” C y's M, y" IF ¢ (see Figure 2.13, left).
For standard frames satisfying R-down as in § 2.3, these conditions simplify to:
3.z @Y it Vo' Cx Jy: 'Ry and ¢y €Y
4. Mz Ik Qs iff Vo' C o Jy': /Ry’ and M,y I+ ¢ (see Figure 2.13, right).

Although unfamiliar, the clause for ¢; is quite intuitive: for whatever sense of ‘possible’ is at issue, the
clause says that x forces that ¢ is possible iff for every refinement 2’ of z (think of this as the forcing part),
2’ has access to a state that forces ¢, or if we are not assuming R-down, then 2’ has access to state that

can be refined to force ¢ (think of this as the possibility part).
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R-rule if &/ C oz and 'Ry’ () 2, then Jy: 2Ry () 2 §2.3

R-com if ' C o and 2’ R;y/, then Jy: xRy and v’ C gy §2.1,§23
up-R if 2/ C z and 2’ R;y’, then zR;1y/’ §2.1,§23
R-down if y C y and zR;y, then xRy’ §2.1,§23
R=win if xRy, thenVy' Cy 3o’ Cz Vo’ C o’ "' (y': 2" Ry’ §2.3
R=win if tR;y, thenVy/ Cy Jo' Ca Vo’ C o’ Fy' Cy': 2" Ryy”  §2.3
R<win zRy iff Vy Cy ' Ca V" C2' Iy Cy': 2’ Ryy” §2.3
R-refinability if zR;y, then 32’ C x Va” C 2’ 3y’ C y: 2" Ry’ §2.3,8§B.1
R-refinability ™ if zR;y, then 3y’ Cy 32’ C a Va”’ C 2': 2" Ry §2.3,§B.1
R-refinabilityt* if Ry, then 32’ C 2 V2" C 2’: 2" Ry §23,§B.1
R-dense Ry ifVy' Cy ' Cy': xRy §2.3
R-max if R;(z) # 0, then R;(z) has a maximum in (S, C) §4.4
R-maxe R;(x) has a maximum in (S, C) § 4.4
R-princ R;(z) is a principal downset in (S, C) §4.4

Figure 2.12: all of the interplay conditions relating accessibility and refinement mentioned in the paper.
Each block of conditions is ordered from weaker to stronger conditions.

z Ik Qi z - Qi
v v
3 3
! ------ >y x ------ >y ko
!
y' ke

Figure 2.13: the semantic clause for ¢;, without (left) and with (right) the R-down condition.

It is useful to know some shortcuts for thinking about sequences of modal operators involving diamonds.
Since ¢, ... 0, ¢ is equivalent to =0O;, ...0; —p, we have M,z b ;... 05 ¢ iff V&' T o Jyi,...,y.:
'Ry - Y1 Ry, and y Tyl o M,y I- @. Over standard frames satisfying R-down, we can simplify

this further as follows.

Fact 2.44 (Iterated Modalities). For any possibility model M based on a standard possibility frame:
1L Mz kO Qi it Ve T Iy, ... uh: 'Ry .oyl Ry, and M.yl I @;
2. M,z l-0;04, ... Qs iff Vy: if Ry, then Jyi, ..., yn: YR Y1 .. Yn—1Ri, yn and M, y, IF .

Proof. For part 1, in the truth condition for —=0J;, ...0; —¢ given above, together y/,_; R; vy, and 3y C y/,
imply y/,_1 R;, y by the R-down property of standard frames.

For part 2, by part 1 we have that M,z |- 0,0, ... 04, ¢ iff Yy: if 2Ry, then Vy' T y Jyi,...,y.:
YRy, -y, Ri, Y, and M,y Ik ¢. This clearly implies the clause given in part 2, and the converse
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implication also holds due to R-down: for zR;y and y’ C y together imply zR;y’. O

Fact 2.44 shows that for any sequence Mj ... M, of modal operators beginning with a box, we can think
of the semantic clause for M; ... M, p in standard models exactly as in Kripke semantics. If M; is a diamond,
we must add an initial V2’ C z, but then the rest of the clause is as in Kripke semantics.

Note that we cannot conclude from zR;y and M,y IF ¢ that M, x IF $;p. This shows that in possibility
semantics, y being accessible to x, which guarantees that M,z IF ;0 = M,y IF ¢, is not the same as y
being possible relative to x, in the sense that would guarantee M,y IF ¢ = M,z I {;¢0. We can, however,

define a relation of relative possibility that will guarantee the latter implication, as in Remark 2.45.
Remark 2.45 (Relative Possibility). Given a partial-state frame F = (S,C,{R;}icr, P) and z,y € S, define
o xRy iff v € ¢y,
or equivalently,
e zRoy it Vo' T Jy': 'Ry (v,
which for standard frames simplifies to
e zRoy iff Vo' C o Jy': 'Ry Cy.

Let us make three observations concerning the relation R;q.
First, if xR0y, then for any admissible proposition Z € P,y € Z = = € ¢;Z. Thus, for any model M
based on F, if xR;oy, then for any ¢ € L(®, 1), M,y ko = M,z I+ O;p.

Second, using the R;¢ relation, we can rewrite R=win from § 2.3 equivalently as follows:
e R=win — if xR;y, then Vy' C y 32’ C z: 2’ R;oy’.

Thus, R=-win relates the fundamental notions of accessibility and relative possibility: if y is accessible to
x, then for every refinement 3’ of y there is a refinement ' of x such that gy’ is possible relative to x’.
Third, assuming only M,z IF {;¢, we cannot conclude that there is a y such that zR;¢y and M,y IF ¢.
The reason is that a partial state £ might determine that ¢ is possible without yet determining any particular
witness y for the possibility of ¢. More formally: it may be that for every state y that forces ¢, = can still
be refined to an x,, that “rules out” that particular y, in the sense that every state in R;(z,) is incompatible
with y, i.e., Vy € [¢]™ 3z, C x Vz € Ri(v,): z Ly. This is consistent with M,z I O;¢. <

In § 2.5, we will see the semantics for {; in action in a concrete example.

2.5 Full Possibility Frames with No Kripke Equivalents

We will conclude § 2 by constructing a full possibility frame F that validates a modal formula that is not valid
over any Kripke frame. Thus, the logic of F will be a normal modal logic that is Kripke-frame inconsistent—
it is not sound with respect to any class of Kripke frames—and hence Kripke-frame incomplete—it is not
sound and complete with respect to any class of Kripke frames. From F we will generate continuum many
full possibility frames with distinct Kripke-inconsistent logics. This requires a polymodal language, since
every syntactically consistent normal unimodal logic is Kripke-frame consistent [Makinson, 1971]. In § 7.1,

we will generate continuum many full possibility frames with distinct Kripke-incomplete unimodal logics.
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Suppose ¢ and v are modal formulas such that the propositional variable p does not occur in ¥ (or at

least it only occurs in the form T := (p V —p)). Then consider the following formula:

Qi AY) = (Gilp A ) AOi(p A ). (Sprit)

We claim that any Kripke frame § that validates (SPLIT) must also validate —0;1. Suppose =, is not
valid over §, so there is a model 97 based on § and a world w such that 9%, w E {;1. Hence there is some
world v such that wR;v and 9, v E 1. Let 9 be the model based on § that differs from 9 only in that
[p]™
(SPLIT) is true at w in 9V, but clearly the consequent of (SPLIT) is false since [[p]]sm’ is a singleton set.

= {v}. Then since ¢ does not contain p, we still have 9, v E 1. Now observe that the antecedent of

Worlds cannot split, but possibilities can. We will construct a full possibility frame that validates an
instance of (SPLIT) and (;.1> The construction is a possibility frame version of the construction in Litak
2005a of a CV-BAO that generates a variety of BAOs with no atomic members. (We will precisely relate full
possibility frames and CV-BAOs in §§ 5.1-5.3.) The main idea of the following is exactly as in Litak 2005a
(also cf. Venema 2003), but where Litak defines operators on an algebra, we define relations on a frame. One
may compare the two constructions to see the relative benefits of thinking in terms of relations vs. operators.

Consider the standard topology on R generated by the basis of open intervals (a,b). Let RO(R) be the
set of regular open sets. Recall the fact that a subset of R is open iff it is the union of a countable set of
pairwise disjoint open intervals. A subset of R is regular open iff it is the union of a countable set of pairwise
disjoint and non-adjacent open intervals—for if adjacent intervals (a,b) and (b, c) are in the set, then the

interior of the closure of the union will contain b, which is not in the union. For any regular open O, since
0= U{(a,b) | (a,b) C O and =3(d’,b'): (a,b) C (a’,b") C O},

we can canonically “encode” O as the following set of pairs:
oo = {(a,b) | (a,b) C O and —3(a’,¥'): (a,b) < (a’,V') C O}. (4)

This gives us a convenient way of shrinking a given regular open set O, as follows:

O_ = U{(a,b) | 3a’,b") € 00 (a,b+ @) = (a’, V') }. (5)

If we consider (RO(R) \ {0}, C) as a possibility space, then since O_ C O, the possibility O_ is a strict
refinement of the possibility O. As in Remark 2.13, the regular open sets of any topology, ordered by
inclusion, form a complete Boolean lattice. In addition, (RO(R), C) is atomless. Thus, in (RO(R) \ {0}, C),
every possibility can be further refined. This is the key to validating an instance of (SPLIT).

Building a possibility frame on a complete Boolean lattice—minus the bottom element—makes it easy
to deal with the set P of admissible propositions. For if (S, C) is a poset obtained from a complete Boolean
lattice by deleting the bottom element, then the regular open sets in the downset topology on (S, C) are just
() and each principal downset |z = {x' € S| 2’ C x} for x € S (see Fact 4.49). Thus, the regular open sets
in the downset topology on (RO(R) \ {0}, C) are ) and each {O = {0’ € RO(R) \ {0} | O’ C O}.

15Since we saw that this conjunction is Kripke-inconsistent, the example requires multiple modal operators by the point above
about Makinson’s theorem. Another way to see this (thanks here to Lloyd Humberstone) is that no syntactically consistent
normal unimodal logic contains a pair of formulas of the form ¢« and (-« (see French and Humberstone 2015), but any normal
modal logic containing (SpLIT) and ;% contains both O(T /p) and O—¢(T /p) (substitute T for p in (SPLIT)).
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We noted above how a regular open set can be canonically encoded as a nonempty set of pairs of real
numbers. We will take as the possibilities of our frame F not only every nonempty regular open set of reals,

but also every nonempty set of pairs of reals. Thus, let
S = (RO(R) U p(R*)) \ {0}.

We will write ‘O’, ‘O”, etc., for elements of RO(R) \ {0}, and ‘o’, ‘0”’, ‘7", etc., for elements of p(R?)\ {0}.

The refinement relation C in our frame F will be C. So regular open sets can refine regular open sets,
and sets of pairs can refine sets of pairs, but regular open sets cannot refine sets of pairs or vice versa.
Since (p(R?), C) is a complete (and atomic) Boolean lattice, we have taken a disjoint union of two complete
Boolean lattices—minus the bottom elements. Again, this makes it easy to deal with the set P of admissible
propositions in our full possibility frame F. The regular open sets in the downset topology on our (S,C) are
just 0 and for each O € RO(R) \ {0} and o € p(R?)\ {0}, the sets O, o, and O U ]o.

All that remains is to define the accessibility relations in F. Let R; be the universal relation on S. Before
defining the other relations, let us explain the strategy to ensure that F validates a (SPLIT) formula.

Strategy. We will define a formula 1 such that [¢]™ = RO(R) \ {#} for any model M based on F.
Thus, O;(p A ¢) will say that p is true at some regular open set, which with our observation above about
the admissible sets in P implies that there is some regular open O such that [p]* NRO(R) = |O. Then we
will define a formula ¢ such that for any model M based on F, if [p]™ N RO(R) = |O, then [p]™ = |O_
for O_ as in (5). Hence () # [p]™ < [p]™. This implies that there is an = with M,z IF p A ¢, and there is
a y with M,y I p and M,y ¥ ¢, which by Refinability and Persistence implies that there is a 3’ C y with
M,y IF p A —p. Thus, the formula O;(p A1p) = (Oi(p A @) AQi(p A =) will be valid over F.

Our strategy to define ¢ will be to define a polymodal formula o and appropriate accessibility relations
of F for the operators in a such that if [p]™ N RO(R) = |O, then [a]™ = loo_. We will also define an
accessibility relation R, such that [a]™ = |oo_ implies [Opa]™ = |O_. We can then take ¢ := Opa.

In addition to the universal relation R;, we will define four other accessibility relations for . The relation

R, just mentioned only relates regular open sets to sets of pairs:
e OR,o it V(a/,V') € o F(a,b) C O: (a,b) C (d/,V).

For any O € RO(R) \ {0}, OR,00 for 0¢ as in (4); and xRpy only if x € RO(R) \ {0}. So for any model M
based on our frame, we will have [0, T[* = RO(R) \ {#}. Thus, we can take 1 in the Strategy to be OpT.

Since we want our frame F to be a full possibility frame, we will check that each accessibility relation
we define for F satisfies the R-rule and R=-win conditions from § 2.3 (recall Proposition 2.30). In fact,

we will show that each relation R satisfies the following stronger set of conditions from § 2.3:
e up-R - if 2/ C z and 2’Ry’, then xRy';
e R-down - if 3y C y and xRy, then zRy’;
e R-refinability" — if z Ry, then 3y’ C y 32’ C z V2" C 2’: 2" Ry’.

Clearly the relation R, defined above satisfies up-R and R-down. For R-refinability™, given OR,0, let
o' = {{(d’,V/)} for one of the (a/,V’) € 0. Then OR,o implies that there is an O’ = (a,b) C O such that
O’ C (d/,V’). Then for all O"” C O’, O"R,o’. This establishes R-refinability ™.

The following lemma is the motivation for defining R, as above. Informally, it says that ¢, can take us
from the canonical encoding oo of a regular open set O back to O itself. Although we have not yet defined

all of F, the lemma holds no matter what further accessibility relations we define.
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Lemma 2.46. For any formula y and model M based on the frame F, if [x]™ = oo, then [¢sx]™ = |O.

Proof. Suppose [x]™ = loo. First, we show M, O IF Opx, which implies [0,x]™ 2 JO by Persistence.
Recall from § 2.4 that M, O I Qpx if VO' C O Jo’: O'Ryo’ and M, o’ IF x. Given O’ C O, let

o' ={{d V)| (d, V) € 0o and F(a,b) C O": (a,b) C (a’',b')}.

Observe that ¢’ # () and O’ R,0’. Since ¢’ C 0o and [x]™ = loo, we have M, o’ I- x. Thus, M, O IF Opx.

Next, we show that if O’ Z O, then M, O’ I Opx, so [Opx]™ C LO. If O’ € O, then since O and O’ are
each unions of non-adjacent open intervals, it follows that there is an (a,b) C O’ such that (a,b) N O = 0.
We claim that for any o with (a,b)Ryo, M, o ¥ x. Then since (a,b) C O’, we have M,O’ ¥ (. x by the
truth clause for ¢, given R-down (recall § 2.4). To prove the claim, suppose (a, b)Ryo. Since [x]J* = loo,
M, o Ik x ounly if 0 C 0p. Suppose for reductio that o C oo, so there is an (a’,0’) € ¢ such that (a’, ) C O.
Together (a’,b') € o and (a,b)Ryo imply (a,b) N (a’,b’) # O by the definition of R,. But since (a’,b’) C O,
(a,b) N (a',b") # 0 contradicts (a,b) N O = @ from above. Thus, ¢’ € oo, which completes the proof. O

Next, we define a relation that only relates sets of pairs to regular open sets:
e oR,O iff V(a,b) C O Hd, V) € 0: (a,b) C (a,b).

Note that since each O is a union of open intervals, o R4O implies O C |J (a,b).
(a,b)€c
Clearly R, satisfies up-R and R-down. For R-refinability ™, given 0 R,O, let O’ = (a,b) for one of the

(a,b) C O. Then 0 R,O implies that there is an (a/,b’) € o such that O’ C (a/,V’). Let o/ = {(¢/,V’)}. Then
for all nonempty o C ¢/, i.e, 0" = ¢, we have 0"’ R,O’. This establishes R-refinability™.

The following lemma is the motivation for defining Ry as above.

Lemma 2.47. For any model M based on the frame F, if [p]™ NRO(R) = |O, then M, {(a,b)} I Ogp iff
(a,b) CO.

Proof. Suppose M, {{a,b)} ¥ Op, so there is an O’ with {{(a,b)} RO’ and M, O’ ¥ p. Since M, O’ ¥ p and
[p]™ NRO(R) = O, we have O" Z O. Since {{a,b)}R4O’, we have O’ C (a,b), which with O’ Z O implies
(a,b) € O. Conversely, if (a,b) Z O, so M, (a,b) ¥ p, then since {(a,b)}Rq(a,b), M, {{a,b)} ¥ Oqp. O

Finally, we define two relations that only relate sets of pairs to sets of pairs:

e oRcT iff 7 is a singleton {(c,d)} and 3(a,b) € o: (a,b) C (c,d);

e oR, 7 iff T is a singleton {{c,d)} and J(a,b) € o: {(a,b+ @) = {(c,d).
Both relations clearly satisfy up-R and R-down. For R-refinability™, if oRcT, so 7 is a singleton {(c, d)}
and there is an (a,b) € o with (a,b) C (¢,d), let ¢’ = {{a,b)}. Then for all nonempty ¢” C ¢, i.e., 0" =o',
we have 0" Rc7. So Rc satisfies R-refinability ™, and the same form of argument applies to R .'¢

We have now shown that F = (S, C, {R;, Ry, Rq, Rc, Ry },RO(S,E)) is a full possibility frame.

The following lemma is the motivation for defining Rc and R, as above. Informally, it says that we can

write a formula that takes us from a regular open O to the canonical encoding oo_ of the shrunken O_ C O.

Lemma 2.48. Let o := ¢4 T AO (Oqp A ~OcOqp). For any model M based on F, if [p]" NRO(R) = 1O,
then [a]™ = Joo_.

161n fact, this shows that Rc and Ry satisty the stronger R-refinability t* condition from Remark 2.39.
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Proof. Note that M,z I- O, T iff z is a set o of pairs. Now consider M, o IF O (Oap A ~0cOqp). By
definition of R4, this is equivalent to: for all (a’,'), if 3(a,b) € o such that {(a,b + IGQ;bl) = (a’,V'), then
M, {(a’,0")} Ik Oap A =0cOqp. That is in turn equivalent to: for all {(a,b) € o, M,{(a,b+ @}} I+
Oap A =0cOqp. By Lemma 2.47, M, {(a,b + @)} IF Oqp iff (a,b + @) C O. Also observe that
M, {{a,b+ ‘%ébl)} I- =0cOqp iff there is no (c,d) such that (a,b + @) C (¢,d) € O. Putting all of

this together with the definition of oo from (4), we have M, o I- 0, (Oqp A =OcOqp) iff for each (a,b) € o,
(a,b+ 1252 € 00, Tt follows by the definition of O_ in (5) that M, o IF Oy (OupA—~OcOap) iff 0 C oo . O

Together Lemmas 2.46 and 2.48 immediately imply the following final piece of the argument.

Proposition 2.49. For the formula o from Lemma 2.48 and any model M based on F, if [p]* NRO(R) =
10, then [0sa] = ]O_.

Where ¢ := Qpa and ¢ := O, T, based on the Strategy outlined above we have completed the proof that
our full possibility frame F validates O;(p A1) = (Oi(p A @) A Oi(p A —p)).

From this one example of a full possibility frame whose logic is Kripke-frame inconsistent, we can easily
generate continuum many others, as in Proposition 2.50. The proof of Proposition 2.50 uses the fact, proved
in § 5.9, that given any two full possibility frames H and G, there is a full possibility frame HHG, the
disjoint union of H and G, such that a formula is valid over H 4 G iff it is valid over both H and G.

Theorem 2.50 (Polymodal Possibility Frames with No Kripke Equivalents). There are continuum many
full possibility frames for the polymodal language above whose logics are pairwise distinct and Kripke-frame

inconsistent.

Proof. We first prove the weaker claim that there are continuum many full possibility frames whose logics
are pairwise distinct and Kripke-frame incomplete. We then show how to modify the argument to obtain the
stated theorem for Kripke-frame inconsistent logics.

Our frame F above is a frame for the language £(®, {i,>, <, C,+}). Take any continuum-sized set {G;};cs
of Kripke frames for the unimodal language £(®, {+}), viewed as full possibility frames, such that the logics
of the G; are pairwise distinct. That such a set of frames exists is a standard fact. Extend each G; to a
frame G’ for L(®, {i,>,<, ¢, +}) such that the accessibility relations for i, >, <, and C are empty in G}. Then
it is easy to see that each g; is still a full possibility frame, and the polymodal logics of the g;. are still
pairwise distinct. Finally, consider the continuum-sized set {F )G’} ;e; where F G} is the disjoint union
of F and G} as in Definition 5.56. We claim that (i) the logic of each F 4§} is Kripke-frame incomplete
and (ii) the logics of the F 1G] are pairwise distinct. For (i), for our chosen ¢ and v above, we showed
that (SPLIT) is valid over F, and (SPLIT) is valid over G} since the accessibility relation for 7 is empty in G,
so (SPLIT) is valid over F [§ G} by Proposition 5.57. However, =0;¢ is not valid over F, so by Proposition
5.57, it is not valid over F 4/ G}. Then since we observed at the beginning of this section that any Kripke
frame whose logic includes (SPLIT) also includes —{;1), we have established (i). For (ii), by the initial
description of {G;};ecs, for any distinct G; and Gy, there is a x € L(®,{+}) that is valid over one but
not the other. Suppose that G; IF x but G ¥ x. Then since g;. and g,; are obtained from G; and G by
adding empty accessibility relations for > and < (and ¢ and C), it follows that G, IF (O, L A OgqL) — x but
Gr ¥ (O, L AOqL) = x. By our construction of F, every regular open set has an Rj-successor and every
set of pairs has an Rg-successor, so F I =(0O,L A OqLl) and hence F I (O, L AOqLl) — x. Combining
GilF (G L ADoL) = x, G K (Bo LADGL) = x; and F IF (O, L AOqL) — x;, it follows by Proposition
5.57 that FY G} IF (O, L AOqL) — x but FYG, ¥ (Os L ADqL) — x. Thus, we have established (ii).
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Now we prove the claim about Kripke-frame inconsistent logics. For each j € J, let (F 4 g;.)’ be obtained
from F |4 G} by making the accessibility relation for ¢ the universal relation in (7 4 g;)/ and changing nothing
else. First, it is easy to check that (F 11 G})" is still a full possibility frame. Second, from the fact that (SPLIT)
is valid over F | G7, it is easy to check that (SPLIT) is valid over (F | G’)". This uses the fact that no state
from g; has an Rj-successor, so our formula 1, i.e., O, T, that appears in the antecedent of (SPLIT) cannot
be true at a state from Gi. Not only does (F | G})" validate (SPLIT), but unlike 7 H§j, it also clearly
validates O;9, i.e., 0;Qp T. Thus, by the reasoning at the beginning of this section, the logic of (F 4 G})" is
Kripke-frame inconsistent. It only remains to show that for j # &, the logics of (FltG}) and (F |4 G;,)" are
distinct. This follows from the fact above that F [t G} I- (O, LAO4 L) — x and Fli G, W (O, LAOGL) — x,
which implies (F 4 G7)' IF (Op LADGL) — x and (FYGy) W (s LADGL) — x because x € L(®,{+}) does
not contain the [J; modality, and (F ¥ G})" and (FHGy)" differ from F 4G} and F 4§ G, respectively, only

in the accessibility relation for ;. Thus, {(FHG})'} e is our desired continuum-sized set of frames. [

In § 7, we will use Proposition 2.50, our duality theory for full possibility frames in § 5, and known results

about polymodal-to-unimodal reduction to prove the following result for the unimodal case.

Theorem 2.51 (Unimodal Full Possibility Frames with No Kripke Equivalents). There are continuum
many full possibility frames for the unimodal language whose logics are pairwise distinct and Kripke-frame

incomplete.

The syntactic form of (SPLIT) is a direct way of getting at the distinction between worlds and possibilities.
It remains to be seen in what indirect ways the differences between Kripke frames and full possibility frames
may show up syntactically in the basic polymodal language. It also remains to be seen what other kinds of
mathematical structures can produce full possibility frames with no equivalent Kripke frame.

In what follows, we will be interested not only in full possibility frames, but possibility frames generally.
§ 4 contains a catalogue of some of the most important other classes of possibility frames.

With our introduction to possibility semantics now complete, we proceed in § 3 to our first major topic

in the model theory of modal logic based on possibilities: morphisms between possibility frames.

3 Possibility Morphisms

Morphisms between frames and models are of fundamental importance in possible world semantics, as well
as the more general setting of possibility semantics. Recall that given world frames § = (W, {R;}ier, A) and
§ = (W', {R.}icr, A’) (see Appendix § A.2), a p-morphism or bounded morphism [Blackburn et al., 2001, p.
309] from §F to §' is a function f: W — W’ such that for all w,v € W and v’ € W":

(a) if wR;v, then f(w)R]f(v);
(b) if f(w)Riv', then Fv € W: wR;v and f(v) = v';
(c) VX € A": f71X] € A.

Note that (a) is equivalent to f[R;(w)] C R;(f(w)) and (b) is equivalent to f[R;(w)] 2 Ri(f(w)). Also note
that if § and § are full world frames, so A = p(W) and A’ = (W), then (c) is trivially satisfied.

Given world models MM = (W, {R;}ier, V) and M = (W' {R}}ier, V') for £(®@,1), a p-morphism from
M to M is a function f: W — W’ satisfying (a)-(b) above such that for all p € :
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(d) V(p) = f~'[V'(p)].

The key semantic preservation facts about p-morphisms are the following. First, if f is a p-morphism
from 90t to M, then for all w € W and ¢ € L(P, 1), M, w E ¢ iff M, f(w) E ¢. Second, if f is a surjective
p-morphism from § to §', then § F ¢ implies §’' F ¢. Third, say that f is an embedding iff f is an injective
p-morphism such that for all X € A, there is an X’ € A’ such that f[X] = f[W] N X’ [Blackburn et al.,
2001, p. 309]; then if there is an embedding of § into §’, we have that § F ¢ implies § F .

Below we present analogous definitions and preservation facts suitably generalized for possibility seman-

tics. We will define three different grades of possibility morphisms, which requires some explanation.

Remark 3.1 (Three Grades of Possibility Morphisms). While in possible world semantics there is one

central notion of p-morphism, for possibility semantics we will define three different grades of morphisms:

possibility morphisms, strict possibility morphisms, and p-morphisms. They are related as follows:

1.

the concept of a possibility morphism!” is the most general concept, singled out by the fact that if h
is a function from a possibility frame F to a possibility frame G, then h~1[] is a BAO-homomorphism

from G® to F® iff h is a possibility morphism (Theorem 5.9.1);

. over the class of all possibility frames, every p-morphism is a strict possibility morphisms, but not

vice versa, and every strict possibility morphism is a possibility morphisms, but not vice versa;

over the class of full possibility frames satisfying additional conditions of strength (Definition 2.36)
and separativity (Definition 4.5) that can be assumed without loss of generality, every possibility
morphism is a strict possibility morphism (Proposition 4.10), but not every strict possibility

morphism is a p-morphism;

over the classes of rich possibility frames and filter-descriptive possibility frames that will be important
in our duality theory, every possibility morphism is a p-morphism (Propositions 5.26 and 5.42);

over the class of world frames regarded as possibility frames, i.e., in which C is discrete, every strict

possibility morphism is a p-morphism. <

Definition 3.2 (Possibility Morphisms). Given possibility frames F = (S,C, R, P) and 7' = (S’,C', R’, P},
a possibility morphism from F to F' is a function h: S — S’ such that for all z € S:

1.

2.

3.

C-matching — VX' € P": ['h(z)N X' =@ iff lxnh~X'] = @;
R-matching — VX' € P': R'(h(z)) C X' iff R(x) C h~1[X];

pull back ~ VX' € P': h™'[X'] € P.1®

A strict possibility morphism from F to F’ is a function h: S — S’ satisfying pull back such that for all

z,y € Sand y', 2 € 5"

4.

5.

C-forth — if y C x, then h(y) &' h(z);

C-back —if y' T’ h(z), then Jy: y C = and h(y) C' ¢’ (see Figure 3.1);

L7Cf. Goldblatt’s [2006b] concept of a modal map between general frames.

I81f F and F’ are full possibility frames, then pull back says that h: S — S’ is such that the inverse image of each regular
open subset of F’ is a regular open subset of 7. A map between topological spaces such that the inverse image of each regular
open set is regular open is called an R-map [Carnahan, 1973].
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6. R-forth — if xRy, then h(z)R'h(y);
7. R-back —if h(z)R'y’ and 2z’ T’ ¢/, then Jy: xRy and h(y) (' 2’ (see Figure 3.2).

As stated in Facts 3.4-3.5 below, these forth and back conditions jointly imply C-matching and R-matching
above, and they imply pull back whenever F is a full possibility frame.
A p-morphism is defined in the same way as a strict possibility morphism, but with strengthened versions

of the two back conditions:
8. p-C-back —y' C' h(x), then Jy: y C z and h(y) = v/;
9. p-R-back — if h(z)R'y’, then Jy: xRy and h(y) =y'.
We also highlight the following special classes of possibility morphisms:
10. a possibility morphism h is dense iff Vo’ € S 3z € S: h(z) T’ a/;

11. a possibility morphism h is robust iff VX € P: X = h='[h[X]] and 3X’ € P": h[X] = h[S] N X";°

12. a possibility morphism h is a strong embedding iff for all z,y € S: (i) y C z iff h(y) T’ h(z);?° (ii) 2Ry

iff h(z)R'h(y); and (iii)) VX € P 3X’ € P': h[X] = h[S] N X’;
13. a possibility morphism h is a C-strong embedding iff it satisfies (i) and (iii) of part 12;

14. h: S — 8’ is an isomorphism iff it is a bijection satisfying (i) and (ii) of part 12, pull back, and VX € P:
hiX] e P'. q

Given possibility models M = (S,C,{R;}ics, ) and M’ = (S, C' {R}}ier, ') for L(P,I), in the weakest
sense a possibility morphism from M to M’ is an h: S — S’ satisfying clauses 1-2 above with P’ replaced
by {[¢]™ | ¢ € £(®,I)} such that for all p € ®:

15. m(p) = =[x’ (p)].

Strict possibility morphisms/p-morphisms between models are defined using the same forth and back condi-

tions as above. <

Let us make a number of clarificatory comments on Definition 3.2.

First, it can sometimes be useful to think of C-matching and R-matching with the right-hand sides of
the ‘ifl” written as h[lz] N X' = () and h[R;(z)] C X', respectively.

Second, note that if h is a possibility morphism from a frame F = (S,C,{R;}ics, P) to a frame
F' = (8, T, {R.}icr, P'), and we consider admissible models M = (S,C,{R;}icr,7) and M’ = (S’ ,C’
,{R!}ic1, ') such that for all p € ®, w(p) = h~!['(p)], then by Definition 3.2, h is a possibility morphism
from M to M, since {[¢]™ | ¢ € L(®,I)} C P’ by Fact 2.5.2.

Third, the difference between R-back and p-R-back can be understood as follows. Where (S’,C’) is the
poset of the target frame F’ and X C S’) recall the definitions of | X, cl(X), and int(X) from § ??. Also
recall from Fact 2.17.2 that for any X C S5, int(cl(J X)) is the smallest regular open set in the downset
topology on (S’,C’) that includes X. Now consider the following back conditions:

Bl R'(h(z)) C h[R(z)];

198ee Definition 104 of Goranko and Otto 2007 for the notion of a bounded strong morphism between general frames, which
requires that VX € P: X = h~1[h[X]] and h[X] € P’. Note that if h is robust and surjective, then it is strong in this sense.
20Condition (i) implies that h is injective given the antisymmetry of C.
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F F F

Figure 3.1: the C-back condition of strict possibility morphisms. Dotted lines indicate the possibility mor-
phism h, while a solid line from s down to t indicates that t is a refinement of s.

f/

F F F

Figure 3.2: the R-back condition of strict possibility morphisms. Dashed lines indicate the accessibility
relations R; and R;. Note that if R) satisfies R-down from § 2.3, then R-back is equivalent to the following
simpler condition: if h(z)R}y’, then Jy: xR;y and h(y) (' v’
B2 cl(YR'(h(x))) C cl(Yh[R(x)]);
B3 int(cl(VR! (h(x)))) C int(cl(Wh[R(2)))).
B1-B3 clarify the earlier back conditions for R as follows.
Fact 3.3 (Back Conditions for R). For any possibility frames F and F’ and function h: F — F:
1. B1 implies B2, which implies B3;
2. p-R-back is equivalent to BI;
3. R-back is equivalent to {R'(h(z)) C cl(Jh[R(x)]), which is equivalent to B2;
4. B3 implies the right-to-left direction of R-matching;
5. if ' is a full possibility frame, then B3 is equivalent to the right-to-left direction of R-matching.

Proof. Part 1 is immediate from the monotonicity property of the operators |}, cl, and int. Parts 2-3 are
easy to verify by inspection of the conditions.

For part 4, to establish R-matching, suppose that for an X’ € P’, R(z) C h™'[X], i.e., h[R(z)] C X .
We must show that R'(h(z)) € X’'. From h[R(z)] C X', we have int(cl(J{h[R(z)])) C int(cl(}X")), and
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since X’ € P' C RO(S’,C), we have X’ = int(cl({X")), so int(cl(Jh[R(z)])) € X’. Then since R'(h(z)) C
int(cl(YR'(h(x)))), we have R'(h(z)) C X' by B4.

For part 5, we assume that for any X’ € P’, h[R(z)] C X' implies R'(h(z)) C X'. By Fact 2.17.2,
R[R(z)] C int(cl(YRh[R(x)])) € RO(S’,C'), so since F' is full, we have int(cl(Yh[R(x)])) € P’, so we can use
our previous assumption with X’ = int(cl({h[R(z)])) to conclude that R'(h(x)) C int(c (i}h[ (x)])), which
implies that int(cl(YR'(h(x)))) C int(cl(Yh[R(z)])), which is B3. O

Thus, p-morphisms use Bl and strict possibility morphisms use B2. We could also give a special name
to morphisms satisfying B3, but we will not need to in this paper.

An analysis similar to that of the back conditions for R above applies to back conditions for C. Note
that our C-back is equivalent to Lh(z) C cl(h[lx]), which is equivalent to cl(Jh(x)) C cl(h[lz]).

Observe how the other conditions on strict possibility morphisms imply the other matching conditions

on possibility morphisms, with Fact 3.4.4 following from Fact 3.3.
Fact 3.4 (Strict Conditions & Matching Conditions). For any possibility frames F and F’ and h: F — F':
1. C-forth implies the left-to-right direction of C-matching;
2. C-back implies the right-to-left direction of C-matching;
3. R-forth implies the left-to-right direction of R-matching;
4. R-back implies the right-to-left direction of R-matching.

As in the case of p-morphisms mentioned at the beginning of this section, so too in the case of strict

possibility morphisms, the pull back condition comes for free for full frames, as in Fact 3.5.

Fact 3.5 (pull back to Full Frames). If F is a full possibility frame, F' is any possibility frame, and
h: F — F' satisfies C-forth and C-back, then h satisfies pull back.

Proof. Where F = (S,C, R, P) and F' = (§',C', R', P'), suppose X’ € P’ so X' satisfies persistence and
refinability with respect to (S, C’). Then we will show that h~1[X] satisfies persistence and refinability with
respect to (S,C), so h™1[X] € RO(S,C) = P by the assumption that F is full.

For persistence, suppose x € h~1[X'], so h(z) € X', and y C x. Then by C-forth, h(y) T’ h(x), so
h(x) € X’ implies h(y) € X' by persistence for X', so y € h™1[X’'] as desired. For refinability, suppose
x & h™1[X'], so h(xz) € X'. Then by refinability for X', there is a y' T’ h(x) such that (i) for all 2/ T’ ¢/,
2/ & X'. By C-back, y’ C' h(z) implies there is a y C z such that h(y) T’ ¢'. Now we claim that for all
2 Cy, z & hm1[X']. Forif z C y, then h(z) T’ h(y) by C-forth, which with h(y) C’ y' and (i) implies
h(z) € X', s0 2 ¢ h=[X']. Thus, z € h=}[X'] implies Jy C x V2 C y: 2 ¢ h~![X’'] as desired. O

Remark 3.6 (Strong Embeddings). Let us note several aspects of our definition of strong embeddings:
1. all strong embeddings are robust possibility morphisms, as injectivity gives h™1[h[X]] = X;
2. surjective strong embeddings are equivalent to isomorphisms;

3. without surjectivity, strong embeddings are not guaranteed to be strict possibility morphisms, so we
may speak of strict strong embeddings. In § 5.9, we consider the kind of subframes that are images of

strict strong embeddings. N
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Now the following result demonstrates the importance of Definition 3.2.

Proposition 3.7 (Preservation by Possibility Morphisms). For any possibility models M and M’ and
possibility frames F and F':

1. if there is a possibility morphism A from M to M’ then for all z € M and ¢ € L(®,I), M,z |- ¢ iff
M h(z) Ik p;

2. if there is a dense possibility morphism from F to F', then for all ¢ € L(®,T), F IF ¢ implies F' IF ;
3. if there is a robust possibility morphism from F to F’, then for all ¢ € L(®,I), F' IF ¢ implies F I ¢.

Proof. Part 1 is by induction on ¢. The atomic case is by Definition 3.2.15; the A case is routine; and since
© — 1) is equivalent to —(p A —1)) over possibility frames (Proposition 2.14), we do not need a — case.

For the — and [J; cases, the inductive hypothesis gives us h = [[p]M'] = [¢]™. Thus, by C-matching with
P’ replaced by {[@]™ | £(®,1)}, {'h(z) N [p]™M = 0 iff {z N [e]M = 0, so M, h(z) Ik = iff M,z - =p.
Similarly, by R-matching, Ri(h(z)) C [o]™ iff R;(z) C [¢]™, so M', h(z) IF Oz iff M,z IF ;.

For part 2, if 7' ¥ ¢, then there is a possibility model M’ = (F' 7'} and ' € M’ such that M,y’ ¥ ¢,
in which case Refinability implies that there is an 2’ C’ y’ such that M’ 2’ IF —p. Given our morphism
h from F to F’, define a valuation m on F by m(p) = h~![n’(p)]. Then h~'[r'(p)] € P by pull back, so
M = (F,7) is an admissible model based on F, and h is a possibility morphism from M to M’ according to
Definition 3.2.15. Finally, since h is a dense possibility morphism from F to F’, there is an € M such that
h(x) C" &', which with Mz’ IF = implies M’ h(x) ¥ ¢, which with part 1 implies M,z ¥ ¢, so F ¥ .

For part 3, suppose F W ¢, so there is a possibility model M = (F,7) and z € M such that M,z I¥ ¢.
Since our morphism h from F to F’ is robust, we can choose for each p € ® a 7/(p) € P’ such that
hm(p)] = h[S]Nx'(p). Let this define a valuation 7’ on F’, so M’ = (F', 7’} is an admissible model based on
F'. Then for all y € S, from the equation h[r(p)] = h[S]N7’'(p) we have that y € m(p) implies h(y) € 7'(p);
and from the same equation we have that h(y) € 7’(p) implies h(y) € h[r(p)], which with 7(p) = h=L[h[r(p)]]
from the robustness of h implies y € 7(p). Thus, h is a possibility morphism from M to M’ according to
Definition 3.2.15, in which case from M,z ¥ ¢ and part 1 we have M’ h(z) ¥ ¢, so F' I . O

We will use Proposition 3.7 in § 4 and § 5 to show that various frame constructions preserve validity and
non-validity. We have already seen one frame construction that preserves validity and non-validity, namely

the construction of F& from F in Proposition 2.37. The proof of Proposition 2.37.4 gives us the following.

Fact 3.8 (FT Construction). For any possibility frame F = (S,C, {R;}ier, P), the identity map on S is a
surjective robust possibility morphism from F to the F- = (S, C, {RP};cs, P) in Proposition 2.37.

A surjective robust morphism is also a dense and robust morphism, so by Proposition 3.7, F I ¢ iff F5 I ¢.

An important fact about our morphisms is that they compose to form morphisms of the same type.

Fact 3.9 (Composition of Morphisms). For any possibility frames F, G, and H and functions f: F — G
and g: G — H:

1. if f and g are possibility morphisms, then g o f is a possibility morphism;
2. if f and g are strict possibility morphisms, then g o f is a strict possibility morphism;

3. if f and g are p-morphisms, then g o f is a p-morphism.
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Proof. For part 1, the proofs that go f satisfies C-matching and R-matching follow exactly the same pattern,
so we include only the latter. We must show that (a) Vo© € F VX7 € P": RM(g(f(z”))) C X7 iff
R7(27) C (go f)~Y[X™M]. By R-matching for g, we have that V29 € G VX7 € P": R(g(29)) C X"
iff R9(x9) C g '[X™]. Thus, we have (b) Va7 € F VX € P": R*(g(f(x%))) C X™ iff RI(f(2”)) C
g ' X™]. By pull back for g, X" € P™ implies g~ '[X™] € PY, so by R-matching for f, we have (c)
RI(f(2%)) € g [XH] iff B (2%) € g~ [X¥]] = (g0 £)~*[X™]. Together (b) and (c) imply (a).

For part 2, that C-forth (resp. R-forth) for f and g implies C-forth (resp. R-forth) for g o f is obvious.
To show that g o f satisfies C-back, we must show that if y* C* g(f(z)), then there is a y* € F such
that y7 CF z and g(f(y”)) C* 3™. So suppose y™ C™ g(f(z)). Then by C-back for g, there is a y9 € G
such that y9 CY f(x) and g(y9) C™ y*. Given y9 CY f(x) and C-back for f, there is a y* € F such
that v =7 x and f(y”) C9 y9. By C-forth for g, f(y*) CY y9 implies g(f(y”)) C* g(y9), which with
g(y9) £ y* implies g(f(y”)) C* y*, which with y* CF 2 means that y” is our desired witness.

Next, to show that go f satisfies R-back, we must show that if g(f(x))RMy7 and 2" C* ¢y’ then there
is a y7 € F such that xR7y” and g(f(y")) (% 2*. So suppose g(f(z))R™*y* and 27 C* y*. Then by
R-back for g, there is y9 € G such that f(z)R9yY and g(y9) (7 27. Since g(y9) (" 2", there is a u™ € H
such that u* C* g(y9) and u™ C* 2. By C-back for g, u™ C™ g(y9) implies that there is a u9 € G such
that u9 C9 y9 and g(u9) C* w™. Given f(x)R%Y and u9 CY9 y9, R-back for f implies that there is a
y” € F such that zR7y” and f(y”) (9 u¥. Thus, there is a v9 € G such that v9 C9 f(y”) and v9 C9 u9,
which with C-forth for g implies g(v9) C* g(f(y”)) and g(v9) C* g(u9), which with g(u¥) C* u* C* 27
from above gives us g(f(y”)) §7* 2*. This completes the proof of part 2.

Part 3 is well known. O
The importance of Fact 3.9 is that it allows us to think in categorical terms as follows.

Remark 3.10 (Categories). By Fact 3.9, any class F of possibility frames together with all possibility
morphisms (resp. strict possibility morphisms, p-morphisms) between frames in F constitutes a category,
where the objects are the frames, the morphisms are the possibility morphisms, the identity morphism for
each frame is the identity function, and composition of morphisms is functional composition. This is the
categorical perspective we will adopt for the duality theory of § 5. All of the concepts from category theory
that we will use can be found in, e.g., §§3-4 of Adamek et al. 2009.

4 Special Classes of Frames

In this section, we survey classes of possibility frames that are important for understanding the relations
between possibility frames and world frames, and between possibility frames and Boolean algebras with

operators. Here is a brief statement of the importance of each class of frames to be considered:

e separative frames (§ 4.1) — these are important because separativity simplifies reasoning about frames,

without loss of generality, and is related to the tight frames of § 4.5 and the principal frames of § 4.6.

e atomic frames (§ 4.2) — these are important because any atomic (full) possibility frame can be easily

transformed into a semantically equivalent (full) world frame.

e extended frames (§ 4.3) — these frames have a distinguished minimum element L, which can be useful

when working with functional frames as in § 4.4 or principal frames as in § 4.6.
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e functional frames (§ 4.4) — these frames support the functional semantics for [J; mentioned in § 1
(cf. Holliday 2014), where M,z I+ O;p iff M, f;(x) IF ¢, and they are important in the duality theory
relating possibility frames and Boolean algebras with operators that admit residuals (T-BAOs) in § 5.

e tight frames (§ 4.5) — the notion of tightness will be used in characterizing the rich frames of § 4.7
and the filter-descriptive frames of § 5.6, both of which are central to the duality theory of § 5.

e principal frames (§ 4.6) — these will be important in the duality theory relating possibility frames and
completely additive Boolean algebras with operators (V-BAOs) in § 5.2.

e rich frames (§ 4.7) — this subclass of principal frames will be important in providing a categorical

duality with complete and completely additive Boolean algebras with operators (CV-BAOs) in § 5.3.

For most of these frame classes, the powerset possibilization of a Kripke frame (Example 2.9) will provide
an example of a frame in the class, but we wish to abstract away from some properties of such powerset
possibilizations—especially their atomicity in light of § 4.2. A diagram illustrating the relations between
some of the above frame classes will appear in Figure 4.1 at the end of our tour in § 4.7.

Recall that we have already encountered some special classes of possibility frames in § 2.3, namely strong
possibility frames (Definition 2.36) and standard possibility frames (Definition 2.41). These will reappear in

§§ 4.4-4.7 and when we study correspondence theory for possibility semantics in § 6.3.
4.1 Separative Frames

The following relation on states behaves much like the refinement relation C in possibility frames.

Definition 4.1 (C;). Given a partial-state frame F = (S,C, {R;}ier, P,) and x,y € S, define
xCyyiff Vo' Ca: 2’ (v,

e,z C,yiff Vo’ Cxdz" Ca': 2" Cy. Let x ~, y iff x E, y and y C, x. N

If (S, C) is such that every state is refined by a minimal point (see Definition 4.14), then = C; y iff every
minimal point that refines z also refines y. Note that C is a preorder,?! but not necessarily antisymmetric.

We first observe that sets of possibilities satisfying persistence and refinability are closed under Cj.

Fact 4.2 (C,-persistence). Given a poset (S,C), if X € RO(S,C) (recall Notation 2.19), then X satisfies
C,-persistence: if x € X and 2’ T z, then 2’ € X.

Proof. Suppose that ' C; z. If 2/ ¢ X, then by refinability there is a ' C 2’ such that (i) for all y” C ¢/,
y" & X. By Definition 4.1, together 2’ C4 x and y’ C 2’ imply that there is a ¢/ C 3’ such that y” C x. By
(1), y” C ¢/ implies y” ¢ X, which with ¢y C z and persistence implies = ¢ X. O

Next, we observe that taking the Cg-successors of a given possibility is a way of generating a set of

possibilities that satisfies persistence and refinability.

Fact 4.3 (C;-generated Propositions). Given a poset (S,C) and z € S, {z/ € S | 2/ C, 2} € RO(S, D).

21For transitivity, suppose 1 Cs 2 and x2 Cs 3. Toward showing z1 Cs x3, suppose z1 C 1. Then given 1 T4 x2, there
is some z] C z; such that z] C x2. Then given x2 Cs x3, there is some 2z T z] such that 25 C x3. Given 2z, C z] C z1, by the
transitivity of C we have 2 C z1. Thus, for any z1 C z1 there is a 2}, C 2z such that 2, C x3, which implies z1 Cs z3.
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Proof. Since 2’ C x implies 2’ g z, the set {a' € S | 2’ C; x} satisfies persistence.

For refinability, suppose y & {z' € S | 2’ C; 2}, so y s x, so there is a y' C y such that for all y”’ C 3/,
y" L x. Tt follows that for all 4" C ¢’ and "’ C y”, v L x, so y"”" Zs x and hence vy’ & {2’ € S | 2’ C; x}.
Thus, {2’ € S| 2’ C; z} satisfies refinability. O

Finally, we observe that T, behaves like C with respect to the forcing relation in possibility models.
Fact 4.4 (Forcing and C;). For any possibility model M = (S,C, {R; }ier, 7), z, 2" € S, and ¢ € L(P,]):

1. C,-Persistence: if M,z I ¢ and 2’ Ty x, then M, 2’ I+ ¢;

2. C,-Refinability: if M,z ¥ ¢, then 32’ T, z: M,z IF —;

3. Cs-Negation: M,z I- —p iff Vo' &, 22 M, 2" ¥ ;

4. Cs-Duplication: if z ~, 2/, then M,z IF ¢ iff M,z IF .

Proof. By Fact 2.5 and Definition 2.21, the truth set of any formula in a possibility model satisfies persistence
and refinability. Thus, part 1 follows from Fact 4.2.

Part 2 is immediate from refinability and the fact that ' C x implies 2’ C, .

For part 3, the right-to-left direction holds because 2’ C z implies 2’ E, x. For the left-to-right direction,
suppose there is a 2’ T, o with M, 2’ IF ¢. Since 2’ C; x, there is a 2/ C 2’ with 2/ C z. By persistence,
M, 2" Ik ¢ and 2" C x’ together imply M, 2" I+ ¢, which with 2’/ C z implies M,z ¥ —.

Part 4 follows from part 1. O

In light of the similarities between T4 and T observed above, it is natural to consider frames in which

(S,C) is, in the terminology of set-theoretic forcing (e.g., Jech 1986, p. 4), a separative poset.

Definition 4.5 (Separative Frames). A poset (S,C) is separative iff T=Cg, i.e,, x Cy iff Vo' C 2z 32" C 2
z” C y. A partial-state frame F = (S, C, {R; };cr, P) is separative iff (S,C) is separative. N

Note that every world frame and powerset possibilization thereof (Example 2.9) is separative.

Separativity can be characterized in other useful ways.
Fact 4.6 (Separativity). For any poset (S, C):
1. (S,C) is separative iff for all y € S, |y satisfies refinability, so Ly € RO(S,C);

2. if (S,C) is separative, then for any z,y € S, if x [Z y, then = and y are distinguishable by a set in
RO(S,C): ly € RO(S,C) and y € ly but = & |y.

Proof. For part 1, refinability for |y says that if Vo' C x 32 C 2/: 2” € |y, then x € |y. But this is just to
say that if V&’ €z 32" C 2’: 2” C y, then x C gy, which is the non-trivial direction of separativity.

Part 2 is immediate from part 1. [
Recall the notion of differentiation of general frames [Blackburn et al., 2001, Def. 5.6].

Definition 4.7 (Differentiated Frames). A partial-state frame F = (S, C, {R; }ic1, P) is differentiated iff for
allxz,ye S: x=yiffforal Ze P,x e Ziff y € Z.

By Fact 4.6.2, we have the following.
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Fact 4.8 (Separativity and Differentiation). Every separative full possibility frame is differentiated.
Another useful fact concerns possibility morphisms to separative frames.

Fact 4.9 (Separativity and Morphisms). For any possibility frames F = (S,C, {R;};cr, P) and F' = (§', '
,{R}}icr, P) and possibility morphism h: S — S”:

1. if for every x € S, |'h(z) € P’, then h is such that for all 2,y € S, y T, = implies h(y) C’ h(x);
2. if ' is a full separative frame, then h is such that for all z,y € S, y C, « implies h(y) T’ h(x).

Proof. For part 1, we use the pull back property of possibility morphisms: for any X’ € P’, h~[X'] € P.
Suppose that for every = € S, |'h(z) € P, so h=![{'h(x)] € P by pull back, which means that h=1[}'h(z)] €
RO(S,C) since F is a possibility frame. Then by Fact 4.2, together z € h=1[}'h(z)] and y C4 x imply
y € h™1[}'h(x)], which means h(y) € |'h(z), so h(y) T’ h(z). Thus, y C, = implies h(y) C’ h(z).

Part 2 follows from part 1 and Fact 4.6.1. O

A key fact motivating the definition of strict possibility morphisms in Definition 3.2 is that every possi-

bility morphism to a full, separative, and strong (Definition 2.36) possibility frame is strict.

Proposition 4.10 (Separative, Strong, Strict). For any possibility frame F = (S,C, R, P) and full, separ-
ative, and strong possibility frame F' = (S',C', R, P’), if h: S — S’ is a possibility morphism, then h is a

strict possibility morphism.

Proof. The C-forth property follows from the stronger property in Fact 4.9.2.

For C-back, suppose 3’ T’ h(x), so y' € }'h(x). Since F' is separative and full, |'y’ € P’ by Fact 4.6.1.
Then by the C-matching condition of possibility morphisms, }'h(z) N}y # @ implies Jz Nh~1[|'y'] # @, so
there is a y C x such that h(y) C’ ¢/, which establishes C-back.

For R-forth, since F' is strong and full, we have R'(h(z)) € P’ by Proposition 2.35. Then by the pull back
property of possibility morphisms, h=![R/(h(z))] € P, so by the left-to-right direction of the R-matching
property of possibility morphisms, R'(h(z)) C R'(h(x)) implies R(z) C h~[R/(h(x))], which is equivalent
to the R-forth condition that xRy implies h(x)R h(y).

Finally, for R-back, suppose h(z)R'y’ and 2z’ C y'. Since F' is separative and full, |'2’ € P’ by Fact
4.6.1 and hence —|'2’ € P'. From h(x)R'y’ and 2’ C o/, we have R'(h(x)) € —|’'2’, which by the right-to-left
direction of R-matching implies R(z) € h~'[—]'2], so there is a y € S such that Ry and h(y) ¢ -7/,
which implies h(y) §’ 2/, which establishes R-back. O

It will follow from Theorem 5.24 in § 5.3 that for any possibility frame F, there is a separative possibility
frame F’' and a dense and robust possibility morphism from F to F’, so by Proposition 3.7, 7 and F’

validate the same formulas. But we can also prove the following stronger result more directly.

Proposition 4.11 (Separative Quotient). For every possibility frame F, there is a separative possibility
frame F= (such that if F is full, so is F=) and a surjective robust possibility morphism from F to F=.
Thus, by Proposition 3.7, for all ¢ € L(®, ), F I+ ¢ iff 7= Ik ¢.

Proof. See Appendix § B.2. The claim also follows from Proposition 4.35 together with Fact 4.33.1. [

Since the construction of strong possibility frames from full possibility frames for Proposition 2.37 pre-
serves separativity, and the composition of two surjective robust possibility morphisms is also a surjective

robust possibility morphism, from Propositions 4.11 and 2.37 and Fact 3.8 we have the following.
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Corollary 4.12 (Separative Strong Frames). For any full possibility frame F, there is a separative, strong,

and full possibility frame (F~)" and a surjective robust possibility morphism from F to (F~)5.

4.2 Atomic Frames

World frames and their powerset possibilizations (Examples 2.6 and 2.9) are examples of what we will call

atomic possibility frames in Definition 4.14, deviating slightly from the standard definition for posets.

Definition 4.13 (Atomic Poset). Given a poset (S,C), an atomn in (S,C) is an a € S that is not the
minimum of (S,C) (if there is one) such that for all z € S, if x C qa, then either z = a or x is the minimum

of (S,C). A poset is atomic iff for every non-minimum element x € S, there is an atom a such that a C z. <

This it not quite the notion we want for possibility frames (though it would be fine for the extended

frames of § 4.3), so we define atomic possibility frames a bit differently.

Definition 4.14 (Minimal Points and Atomic Frames). A minimal point in a poset (S,C) is an a € S such
that for all x € S, if  C a, then & = a. Let min{S, C) be the set of minimal points in (S, C). A partial-state
frame F = (S,C,{R;}ic1, P) is atomic iff for every x € S, there is an a € min(S,C) such that a C x. N

This notion of atomic is the flipped version of what is called the McKinsey condition [Chagrov and
Zakharyaschev, 1997, p. 82], the condition that for all « € S, there is a y € max(S, C) such that z C y.

Note that the condition of atomicity concerns only the poset (S, C), not the set P of admissible propo-
sitions. Following standard terminology [Blackburn et al., 2001, Def. 5.65], we could say that an atomic
possibility frame is discrete iff for each of its minimal points a, {a} € P.

Using the following construction (cf. Venema 1998), we will show in Proposition 4.16 that atomic possi-
bility frames are semantically equivalent to world frames, and atomic full possibility frames are semantically

equivalent to full world frames (Kripke frames).

Definition 4.15 (Atom Structure). Given an atomic possibility frame F = (S, C, {R; };c1, P) and possibility
model M = (F, ), define WF = (S, ' {R.}ier, P') and M = (AtF, 7') by:

1. 8" = min(S,C) and C' is the identity relation on S’;

2. for all a,b € S, aR;b iff 3z € S: aR;x and b C x;

3. PP={min(S,C)NX | X € P};

4. foralla € §', a € 7'(p) iff a € 7(p). N

Note that if F satisfies R-down (§ 2.3), then the definition of R] is equivalent to: aR.b iff aR;b.
Proposition 4.16 (From Atomic Possibility Frames to World Frames). For any atomic possibility frame F:

1. AtF is a world frame as in Example 2.6;

2. if F is a full possibility frame, then 2(tF is a full world frame (Kripke frame) as in Example 2.6;

3. the identity map on AtF is a dense strong embedding of AtF into F. Thus, by Proposition 3.7, for all
w € L(DP,I), WF IF ¢ iff FIF .
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Proof. For part 1, the only fact to check is that P’ satisfies the closure conditions of a (general) world frame
as in Definition A.5, i.e., that it is closed under intersection, complement, and W;. Since P is closed under
intersection, P’ is clearly closed under intersection as well. For the other two closure conditions, suppose
X' € P/, so there is an X € P such that X’ = min(S,C) N X. Since X € P, it follows by Definition 2.1 and
Remark 2.15 that int(S\X) = {z € S | {lzNX = 0} € P. Now we claim that S"\ X’ = min(S, C)Nint(S\ X).
For the right-to-left inclusion, if @ € min(S, C) Nint(S\ X), then from a € min(S,C) we have a € S” and from
a € int(S\ X) we have a € X, so a ¢ X'. From left to right, if a € '\ X', then a € min(S,C) but a ¢ X,
which together imply a € int(S \ X), so a € min(S,C) Nint(S \ X). Thus, S’ \ X’ = min(S,C) Nint(S \ X),
so P’ is closed under complement because P is closed under taking the interior of the complement.

Finally, we claim that B, X’ = min(S,C) N W, X. For the right-to-left inclusion, if a ¢ W, X’, then there
isabe€ S = min(S,C) such that aR.b and b &€ X'. From b € min(S,C) and b ¢ X’ = min(S,C) N X, it
follows that b ¢ X. Since aR;b, there is an x € S such that aR;z and b C z. By persistence for X, together
b¢ X and b C x imply « ¢ X, which with aR;x implies ¢ ¢ B; X. For the left-to-right inclusion, suppose
x g min(S,C) NIX. If x ¢ min(S,C), then x ¢ S, so = ¢ W, X'. So suppose x € min(S,C) but z ¢ W, X,
so there is a y such that zR;y and y ¢ X. Then by refinability for X, there is a minimal point b C y such
that b ¢ X and hence b ¢ X'. From zR;y and b C y, we have xR;b, which with b ¢ X’ implies = ¢ W, X".
Thus, we have shown that B, X’ = min(S,C) "M, X, so P’ is closed under W because P is closed under W;.

For part 2, every set of minimal points in F satisfies persistence and refinability, so if F is full, then every
set of minimal points in F belongs to P and therefore to P’ by Definition 4.15.3, so (tF is full.

For part 3, since C’" and R} are the restrictions of C and R; to S’, the identity map h on S’ satisfies the
requirements of a strong embedding that a C' b iff h(a) C h(b), and aR.b iff h(a)R;h(b). Moreover, since C’
is the identity relation, h satisfies C-back and hence C-matching. It only remains to show:

e R-matching —Va € S'VX € P: R;(h(a)) C X iff Ri(a) C h71[X];
o pull back — VX € P: h~\[X] € P';

e embedding — VX' € P 3X € P: h[X'] = h|S'| N X;

o dense —Vr € S 3Jae S hia) Cx.

For pull back, for any X € P, h™'[X] = min(S,C) N X € P'. For R-matching, since h(a) = a and
h=1[X] = min{S,C) N X, we must show that R;(a) C X iff Ri(a) C min(S,C) N X. This follows from the
fact, established in the proof of part 1, that min(S,C) NI, X = W,(min(S,C) N X).

Finally, from the facts that h is the identity map and S’ = min{S, C), the embedding condition is just that
for all X’ € P’ there is an X € P such that X’ = min(S,C) N X, which is immediate from the definition of
P’ in Definition 4.15.3. From the same facts, the dense condition is just the condition that F is atomic. [

Although atomic possibility frames and their atom structures are semantically equivalent by Proposition
4.16.3, many non-isomorphic atomic possibility frames can have the same atom structure, so we do lose
information when going from an atomic possibility frame to its atom structure, in a way that we do not
lose information when going from a world frame to its powerset possibilization. The following proposition

records the relationship between atom structures and powerset possibilizations.

Proposition 4.17 (Atom Structures and Powerset Possibilizations). For any world frame § (regarded as a

possibility frame as in Examples 2.6 and 2.22) and atomic possibility frame F:

1. At(F*®) is isomorphic to F;
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2. the function h: F — (AtF)® defined by h(x) = {a € AtF | a C7 z} is a dense and robust possibility
morphism from F to (AtF)¥, so by Proposition 3.7, for all ¢ € L(®,I), F IF ¢ iff (AtF)® IF ¢;

3. if F is separative, then the h from part 2 is a C-strong embedding of F into (2AtF)®.

Proof. Part 1 is easy to check using the definitions.
For part 2, let F = (S,C,{Ri}ticr,P), WMF = (S, C' {R}ic1,P’), and (AMF)¥ = (S'® C'®
AR }icr, P'®). First, we show that h satisfies:

e pull back — VX € P'®: h™1[X] € P;
e robust — VX € P: X = h71[h[X]] and 3X € P'®: h[X] = h[S] N X.

For pull back, by definition of (tF)¥, P’ = {]X | X € P'}, where [ X ={Y € §'¢ | Y C'®? X} = {Y C
min(S,C) | § #Y C X}, and by definition of 2AtF, P’ = {min(S,C) N X | X € P}. So for X € P'®, there is
an X € P such that (i) X = [(min{(S,C)NX) ={Y Cmin(S,C) |0 #Y C X}. We claim that h~1[X] = X.
For the left-to-right inclusion, if z € h=![X], so h(z) € X, then by (i), h(z) C X. By refinability for X,
if € X, then there is a minimal point a C z such that a € X, so h(z) € X, contradicting what we just
showed. Thus, x € X. For the right-to-left inclusion, by persistence for X, if z € X, then for every minimal
point a C &, a € X, so h(z) C X, which implies h(z) € X and hence z € h=![X]. Thus, h~}[X] = X € P.

For robust, to show X = h~![h[X]], we show that if h(x) € h[X], then x € X. If h(xz) € h[X], then
there is an 2’ € X such that h(z) = h(z’). From h(z) = h(z’) we have that  C, 2/, which with 2’ € X
implies © € X by Fact 4.2. Next, we must show that there is an X € P’® such that h[X] = h[S]NX. Taking
X ={Y Cmin(S,C) |0 #Y C X}, we have X € P'® by the unpacking of definitions above. For any z € X,
h(z) € X by persistence for X, so h(z) € X. Thus, h[X] C X. Now suppose Y € h[S]NX. Since Y € X,
Y C X, and since Y € h[S], there is a y € S such that h(y) =Y. If y ¢ X, then by refinability for X there
is a minimal point a C y such that a € X, so h(y) € X, contradicting the fact from the previous sentence
that h(y) =Y C X. Thus, y € X, so Y = h(y) € h[X]. This shows that h[S]N X C h[X].

Next, we show that h satisfies:

e C-forth — if y C x, then h(y) C'¢ h(z);

e C-back —if Y C'? h(x), then Jy: y C z and h(y) ¢ Y;

e R-matching — VX € P'®: R(h(z)) C X iff Ri(x) C h™[X];
o dense —VX € 8’ dx € S: h(z) C'% X.

For C-forth, if y C z, then h(y) C h(z), so h(y) C'® h(z) by the definition of (AtF)*.

For C-back, suppose Y C'® h(z), so Y C h(z). Since every state in (AtF)¥ is a nonempty set of minimal
points from F, there is a minimal point y € Y. Then Y C h(z) implies y C z, and h(y) = {y}, soy € Y
implies h(y) C Y and hence h(y) C'¢ Y.

For R-matching, suppose R;(z) € h=1[X], so x ¢ B;h~1[X]. By pull back, h=1[X] € P, so B;h~1[X] € P.
Then by refinability for B;h~[X] and the fact that F is atomic, z ¢ B;h~1[X] implies that there is a minimal
point a C x such that a ¢ B;h~1[X], so there is a y such that aR;y and y ¢ h™![X], so h(y) € X. Since
a C 2, a € h(z). Now we claim that h(z)R;°h(y), which by the definition of (2tF)® is equivalent to
h(y) C Rl[h(x)], where R/ is the accessibility relation in 2tF. To prove the claim, take a b € h(y), so b C y.
Then since aR;y, it follows by the definition of R] that aR}b, which with a € h(z) implies b € R}[h(z)].
Hence h(y) C Ri[h(z)], so h(z)R;®h(y), which with h(y) ¢ X implies R, (h(x)) € X.
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Conversely, suppose R.”(h(z)) € X, so there is a Y such that h(z)RY, i.e., Y C Ri[h(x)], and Y ¢ X.
Then by refinability for X and the fact that (2tF)® is atomic, Y ¢ X implies that there is a minimal point
B in (AtF)% such that BC'®* Y, ie., BCY, and B ¢ X. That B is a minimal point in (2tF)® means that
B = {b} for a b in AtF. Now given Y C R.[h(z)], we have b € R}[h(x)], so there is a minimal point a € h(z),
i.e., a C z, such that aR}b. Since h(b) = B and B € X, b &€ h~'[X], which with aR.b implies a ¢ B;h~1[X],
which with a C z and persistence for B;h~1[X] implies = ¢ B;h~1[X], so R;(z) € h~1[X].

Finally, to show that h is dense, since every X € S'® is a nonempty set of minimal points from F, simply
take a minimal point z € X, so h(z) = {#} C X, which means h(z) T’ X.

For part 3, if F is atomic and separative, then as noted after Definition 4.1,  C y iff every minimal point
that refines = also refines y, i.e., h(x) C h(y), which is equivalent to h(xz) C'® h(y). This implies, together
with the fact from above that h is a robust possibility morphism, that h is a C-strong embedding. O

This proof provides an example of how our C-back clause may apply when the standard back clause for
a p-morphism does not, i.e., Y C'® h(z) does not imply there is a y C x such that h(y) =Y, as required by
a p-morphism. For if all we assume is that F is atomic, there is no guarantee that for each set Y of minimal
points in F, there is a y in F such that the set of minimal points refining y, our h(y) above, is exactly Y.
In § 4.7, we will identify the possibility frames F for which ([tF)® is isomorphic to F.

4.3 Extended Frames

When we defined the powerset possibilization of a world frame (Example 2.9), we chopped off the bottom
element () of the poset (p(W),C). However, it would sometimes be convenient—especially when dealing
with the functional frames of § 4.4 or the principal frames of § 4.6—to allow in our frames a distinguished
minimum element |, which may be thought of as the “impossible state.”

To be clear: a possibility frame as in Definition 2.21 is already allowed to have a minimum in its poset

(S,C), but such frames are somewhat uninteresting for the following reason.

Fact 4.18 (Collapse). If a possibility model M = (S,C,{R;};cr,7) is such that (S,C) has a minimum
element, then for every formula ¢ € £(®,I), either [p]™ = S or [¢]™ = 0.

Proof. By Persistence, if ¢ is true anywhere in M, then it is true at the minimum. But then ¢ must be true
everywhere, for if M,z ¥ o, then by Refinability, there is an ' C z with M, 2’ IF =, which contradicts the
fact that ¢ is true at the minimum. (From the topological perspective of Remark 2.15, the point is that in

a poset (S,C) with a minimum element, the only regular open sets in O(S,C) are S and §.) O
What we want to allow is a distinguished minimum | that does not lead to Fact 4.18.

Definition 4.19 (Extended Possibility Frames and Models). An extended possibility frame is a tuple & =
(S,C, L, {R;}ic1, P) where: (S,C) is a poset with minimum 1; R; is a binary relation on S such that
Ri(L) = {1} and zR; L for all x € S; P is a subset of p(S) such that L € (| P; and the structure
E_=(S_,C_,{R;_}icr, P_) defined as follows is a possibility frame as in Definition 2.21:

1. S_ =8\ {1}
2. C_ and R;_ are the restrictions of C and R; to S_;

3. P.={X\{Ll}| X e P}.
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An extended possibility model M based on & is a tuple M = (F, ) where 7: & — P. For Proposition
4.24 below, we define 7_: ® — P_ by n_(p) = w(p) \ {L}. <

The semantics for extended models essentially ignores the impossible state 1 as follows.

Definition 4.20 (Forcing for Extended Models). Given an extended possibility model M, x € M, and
p € L(D,I), we define M,z IF ¢ as in Definition 2.3 except with a modified clause for —:

1. M,z lF —p iff Vo' C z: if 2’ # L, then M, 2z’ ¥ . <

Now an easy induction shows that all formulas are true at the impossible state L, using the fact that in

an extended model, every p € ® is true at L given the requirement that L € (| P.
Fact 4.21 (Incoherence). For any extended possibility model M and ¢ € L(®, 1), M, L IF .

It is also easy to see that Fact 4.18 does not hold for extended possibility models.

As a natural example of an extended possibility frame, we have the following.

Example 4.22 (Extended Powerset Possibilization). Given a world frame § = (W, {R; }icr, A) and a world
model M = (F, V), the extended powerset possibilizations of § and M, F§ = (S,C, L, {R;}ier, P) and MY =
(§°,7), are defined by: S=p(W); XCY T XCY; L=0; XRY il Y CR[X]; P={]X| X € A}; and
w(p) ={X € S| X CV(p)}. Note that if § is a Kripke frame, then P = {} X | X € S}. N

We can switch back and forth between extended and non-extended frames whenever convenient, by

restriction as in Definition 4.19 and extension as in Definition 4.23.

Definition 4.23 (Extending Frames). Given a partial-state frame F = (S, C,{R; }ier, P) and L ¢ S, define
FiL=(S1,C0,L,{R;i }ier,P1) asfollows: S| = SU{L}; 2 C, yiff e Cyorax=_1;aR; yiff Ry or
y=Ll;and P ={XU{Ll}| X € P}.

Given a valuation 7: ® — P, define 7, : ® — P, by 7. (p) = 7(p) U {L}. N

The following fact records that restriction and extension work as desired.

Fact 4.24 (Equivalence of Extended and Restricted Frames). For any possibility frame F and extended
possibility frame &:

1. F, is an extended possibility frame such that (F,)_ = F, and for any possibility model (F,n), z € F,
and ¢ € L(D,I), (F,m), x|k o iff (Fi,7m1),zlF¢;

2. £_ is a possibility frame such that (£-), is isomorphic to &, and for any possibility model (£, 7),
zeé_,and p € L(D,I), (E,m),z Ik iff (E_,m_),xlF .

4.4 Functional Frames

For the powerset possibilization §% of a world frame § = (W,{R;}icr, A) (Example 2.9), we defined its
accessibility relations by XRYY iff Y C R;[X]. As a result, for any possibility X € §%, the set RY(X) =
{Y € ¢ | XRPY} has a mazimum in (S®,C¥), i.e., a single possibility f;(X) of which all possibilities
accessible from X are refinements, namely f;(X) = R;[X]. This makes possible a functional semantics for

the modality [J;, which we may retain even as we generalize away from powerset possibilizations.

Definition 4.25 (Quasi-Functional and Functional Possibility Frames). A quasi-functional possibility frame

is a possibility frame F = (S, C, {R; };c1, P) satisfying:
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1. R-max —if R;(z) # 0, then R;(z) has a maximum in (S, C).

An extended quasi-functional possibility frame is an extended possibility frame F = (S,C, L, {R;}ier, P)
(Definition 4.19) satisfying:

2. R-maxe — R;(z) has a maximum in (S, C).

A functional possibility frame is a possibility frame in which each R; is partially functional, i.e., xR;y and
xRy’ together imply y = y'. An extended functional possibility frame is an extended possibility frame in
which each R; is functional, i.e., partially functional and such that Vz € S 3y € S: xR;y.

For each i € I, let f;: S + S be the partial function such that for all x € S, if R;(z) # 0, then f;(z) is
the maximum of R;(z). We write ¢ f;(x)]’ to indicate that f; is defined at z. In an extended quasi-functional
possibility frame, f; is a total function.

A (quasi-)functional possibility model is a possibility model based on a (quasi-)functional possibility

frame, and similarly for extended models. 5
Note that every functional frame is a quasi-functional frame. Also note the following.

Fact 4.26 (R-princ). If a frame is quasi-functional and satisfies R-down, then it satisfies the following

condition, and vice versa: R-princ — if R;(x) # 0, then R;(x) is a principal downset in (S, C).?2
Over quasi-functional models, we obtain the following simple semantic clause for [J;.

Fact 4.27 (Functional Semantics). For any extended quasi-functional possibility model M, z € M, and
peL(DPI):
M,z - O it M, fi(x) IF .

For quasi-functional models that are not extended, M, z IF O, iff M, f;(x) IF ¢ or f; is undefined at x.
As suggested by Fact 4.27, we can always go from a quasi-functional to an equivalent functional frame.

Proposition 4.28 (From Quasi-Functional to Funtional Frames). For any quasi-functional possibility frame
F = (S,C,{Ri}ier, P), define its functionalization Fy = (S,C,{fi}icr, P) where f; is the partial function

(partially functional relation) given in Definition 4.25. Then:
1. F; is a functional possibility frame;

2. if F is a full possibility frame, then F; is a full possibility frame satisfying the following conditions (cf.
R-rule and R=>win from § 2.3):

(a) f-rule —if 2/ C x and fi(2') { 2, then fi(x) { 2;%*
(b) f=win - Vy C fi(z) 32’ Cx V2" Ca': y () fi(z");*

3. if F is separative and satisfies R-rule, then F satisfies:
(a) f-monotonicity — if 2’ C x and f;(2'){, then f;(x)] and f;(z) C f;(x);*°

4. forallm: & - P,z € S, and ¢ € L(D,I): (F,m),x - piff (Ff,m),zF

22 As usual, a principal downset in (S,C) is an X C S such that X = |z for some x € S.

23We intend this to mean: if 2’ C z, fi(z')], and f;(z') ( z, then f;(x){ and f;(x) { 2z, but we leave the definedness implicit.
24In Holliday 2014, this condition was called f-refinability.

25In Holliday 2014, this condition was called f-persistence.
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5. if a logic L is sound and complete with respect to a class F of quasi-functional possibility frames, then

L is sound and complete with respect to the class of functionalizations of frames from F.

Proof. For part 1, we must first verify that F; is indeed a possibility frame. Since we have only modified
the accessibility relations, it suffices to check that P is still closed under Ii}-f for each i € I, as required
of a partial-state frame (Definition 2.1). Since F is quasi-functional, for any € S and Y € P, we have
r € B7Y iff either fi(x) €Y or f;(z) is undefined (the same point as in Fact 4.27), which is then equivalent
tox € M ’Y. Thus, B7Y = W'Y, so P is closed under B’ by virtue of being closed under W7

For part 2, if F is full, then by Proposition 2.30, F satisfies R-rule and R=win. It is then easy to
check that Fy satisfies f-rule and f=-win.

For part 3, as just noted, R-rule for F implies f-rule for F, which gives us that if 2’ C = and f;(z’)],
then f;(z)!. Now if f;(z') £ fi(z), then by separativity there is a z T f;(a'), so fi(z') § z, such that not
fi(x) ( z, which implies 2’ Z « by f-rule. This establishes f-monotonicity.

Part 4 has an obvious proof by induction using Fact 4.27 in the 0J; case.

Part 5 is immediate from part 4. O

From Example 2.23 we know that the powerset possibilization §¥ of a world frame § is a possibility

frame, and §¥ is full if § is full, so the observation at the beginning of this section give us the following.

Example 4.29 (Powerset Possibilization Cont.). The powerset possibilization §¥ of any world frame (resp.

full world frame) § is a quasi-functional possibility frame (resp. full possibility frame).

Putting together Example 4.29 and Proposition 4.28, we can define the functional powerset possibilization
of a world frame § = (W, {R;}ics1, A) as the functionalization (F¥)s of the powerset possibilization §* of §.
More directly, each accessibility function f; in (F%); is defined by f;(X) = R;[X]. For an application of this
functional powerset possibilization construction, see van Benthem et al. 2017.

Together Fact 2.10, Example 4.29, and Proposition 4.28 show that the functional powerset possibilization
of a world frame validates exactly the same formulas as the original world frame. Thus, (full) functional

possibility frames are as general as (full) world frames in the following sense.

Corollary 4.30 (Completeness for Functional Frames). If a logic L is sound and complete with respect to a
class F of world frames, then L is sound and complete with respect to a class of functional possibility frames,
viz., the class of functional powerset possibilizations of frames from F. Moreover, this statement holds for

full world /possibility frames.

Not only can every full world frame be transformed into a semantically equivalent functional full pos-
sibility frame, but more remarkably, so can every full possibility frame. Thus, we could assume without

modal-logical loss of generality that our full possibility frames are always functional.

Proposition 4.31 (From Relations to Functions). For any full possibility frame F, there is a functional full
possibility frame F’ and a dense and robust possibility morphism h: F — F’. Thus, by Proposition 3.7, for
all p € L(D, 1), Flk o iff F'IF .

Proposition 4.31 will follow from Proposition 5.22.3 and Theorem 5.23.1 in § 5.3.

4.5 Tight Frames

Kripke frames and their powerset possibilizations are examples of tight possibility frames in the following

standard sense [Chagrov and Zakharyaschev, 1997, p. 251], which will be important in § 5.
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Definition 4.32 (Tight Frames). Let F be a partial-state frame F = (S, C, {R; }ier, P).
1. Fis R-tight iff forallt € I and z,y € S,ifVZ € P:x € M;Z = y € Z, then zR;y;
2. Fis C-tight iff for all z,y € S, ifVZ € P:x € Z = y € Z, then y C x;
3. F is tight iff it is R-tight and C-tight. q

Note that for any partial-state frame, xR;y implies VZ € P: x € B;Z = y € Z; and for any possibility
frame, y C z impliesVZ € P:x € Z = y € Z.

The notion of E-tightness is related to the notions of separativity and differentiation from § 4.1 as follows.
Fact 4.33 (C-tightness, Separativity, and Differentiation).
1. Every C-tight possibility frame is separative;
2. Every separative full possibility frame is C-tight;

3. Every C-tight possibility frame is differentiated.

Proof. For part 1, if y C; x, then by Fact 4.2, VZ € P: v € Z = y € Z, so y C x by C-tightness.
Parts 2 and 3 follow from Fact 4.6 and Definition 4.7, respectively. [

The notion of R-tightness is related to the interplay conditions discussed in § 2.3 as follows.

Lemma 4.34 (R-tightness and Interplay Conditions). For any possibility frame F:
1. if F is R-tight, then F satisfies up-R, R-down, and R-dense;
2. if F is R-tight and satisfies R-refinability, then F is strong, i.e., satisfies R<>win;
3. if Fis full, then F is R-tight iff F is strong.

Proof. The proof of part 1 is the same as the proof for Proposition 2.37 that F satisfies up-R, R-down,
and R-dense. Part 2 follows from part 1, Proposition 2.35, and Fact 2.34.

For part 3 from left to right, if F is full, then it satisfies R=>win by Proposition 2.31, which combines
with up-R, R-down, and R-dense from part 1 to give us that F is strong by Proposition 2.35. From right
to left, if F = (S,C,{R;}icr, P) satisfies R-down and R-dense, then by Fact 2.32, for all z € S, R;(x)
satisfies persistence and refinability, so if F is also full, then R;(z) € P. Now suppose that VZ € P: R;(z) C
Z =y € Z. Then since R;(x) € P, we have y € R;(x), so R;y. Thus, F is R-tight. O

Recall that for Proposition 2.37, we took a possibility frame F = (S,C,{R;}icr, P) and constructed a
new possibility frame F = (S,C, {RY};cs, P) by setting 2RYy iff VZ € P: + ¢ W' Z = y € Z. Since we
showed in the proof of Proposition 2.37.2 that for all Z € P, B/ Z = IfDZ7 it follows that z Ry iff VZ € P:
T € IfDZ = y € Z. Thus, FU is R-tight. By applying the same idea to C in addition to R;, i.e., defining
2 Ctaiff VZ € P: x € Z = 2’ € Z, it is straightforward to prove the following.

Proposition 4.35 (Tightening). For any possibility frame JF, there is a tight possibility frame F* (differing
from F only in the relations C and R;) and a surjective robust possibility morphism from F to F*. Thus,
by Proposition 3.7, for all p € L(®, 1), F I ¢ iff F! I .

That every possibility frame F is semantically equivalent to a tight possibility frame will also follow from
Corollary 5.46 in § 5.6.
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4.6 Principal Frames

A special feature of the powerset possibilization §* of a Kripke frame § from Example 2.9 is that the set P
of admissible propositions in §¥ is the set of all principal downsets in the poset (S, C) underlying §¥, plus
the empty set. If we consider the extended powerset possibilization § as in Example 4.22, then we can
simply say that P is the set of all principal downsets. Thus, every possibility x € S gives rise to a proposition
lx € P, expressing that the possibility x obtains; and for every proposition X € P, there is a least specific
possibility € S where that proposition is true, which could be thought of as the possibility that X.

We can detach this feature of §¥ from its other features, e.g., that its poset is a complete and atomic
Boolean lattice (minus the minimum), or that it is a quasi-functional possibility frame. Let us consider

possibility frames in which P is the set of all principal downsets in (S, C) plus 0.

Definition 4.36 (Principal Possibility Frame). A principal possibility frame is a possibility frame F = (S, C
,{R;i}icr, P) in which P is the set of all principal downsets in (S, C) plus 0.

An extended principal possibility frame is an extended possibility frame F = (S,C, L, {R;}icr, P) as in
§ 4.3 in which P is the set of all principal downsets in (S, C). <

In order for P to be the set of all principal downsets (plus () and satisfy the closure conditions on P
required of a partial-state frame in Definition 2.1, (S, C) must have a particular form, which we will describe.

Recall that a poset (A, <) is a lower semilattice iff for all z,y € S, {z,y} has a greatest lower bound z Ay
in (4, <). A lower semilattice (A4, <) with a minimum L is a p-semilattice (for pseudocomplemented) iff for
all z € A, there is an 2* € A such that for all z € A, z A2z = L iff 2 C z*. A lower semilattice (4, <) is an
implicative semilattice [Nemitz, 1965] (or a Brouwerian semilattice in Birkhoff 1967 and Kohler 1981, or a
relatively pseudocomplemented semilattice) iff for all x,y € A, there is an z *x y € A such that for all z € A,
zANx Cyiff z C x*xy. A bounded implicative semilattice is an implicative semilattice with a minimum
L. Any bounded implicative semilattice is a p-semilattice, with 2* = x * 1.2 Finally, note that a Heyting
algebra may be defined as a bounded implicative lattice. Every finite bounded implicative semilattice is a
Heyting algebra, but not every infinite bounded implicative semilattice is a Heyting algebra.

When we add an accessibility relation R; to (A, <), we need one more definition.

Definition 4.37 (@; Operation). Given a poset (A, <) with minimum | and a binary relation R; on A,
define a partial operation [1; on A as follows: for y € A, if the set B;ly, i.e., {x € A| R;(x) C ly} (Definition
2.1), is nonempty and contains a mazimum element, then £;y = max(M;ly). If B; |y is empty, then &,y = L.

If W, ]y is nonempty but does not contain a maximum element, then [;y is undefined. N
The following fact is a straightforward consequence of the definitions just given.

Fact 4.38 (Principal Partial-State Frames). Let F = (S,C, {R;}ier, P) be such that (S,C) is a poset, R;
is a binary relation on S, and P is the set of all principal downsets in (S, C) plus 0.

Then the following are equivalent:
1. F is a partial-state frame;
2. P is closed under the operations N, D, and M; from Definition 2.1;

3. the extension (S;,C ) of (S,C) (Definition 4.23) is a bounded implicative semilattice on which the

operation [; defined from R;, (Definition 4.23) is a total operation.

260Of course, we are treating all of these as classes of posets, rather than algebraic structures of particular similarity types.
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In addition to the closure requirements on P in partial-state frames, there is the requirement in possibility
frames that P C RO(S,C) (Definition 2.21). The following is immediate from Facts 4.6 and 4.33.1.

Fact 4.39 (Principal Possibility Frames, Separativity, and C-tightness). If P is the set of all principal
downsets in (S, C) plus ), then the following are equivalent:

1. P CRO(S,C);

2. (S,C) is separative;

3. (S,C) is C-tight with respect to P.
The requirements on principal possibility frames from Facts 4.38 and 4.39 are related as follows.

Fact 4.40 (Boolean Lattices). The following are equivalent:
1. (4, <) is a p-semilattice such that the restriction of < to A\ {L} is a separative partial order;

2. (A, <) is a Boolean lattice.

Proof. Frink [1962] showed that (A, <) is a Boolean lattice iff (A4, <) is a p-semilattice such that for all
x € A, ™ = z. Thus, we need only show that a p-semilattice (4, <) obeys z** = x iff the restriction of <
to A\ {L} is separative. Let C be the restriction.

For any p-semilattice (A, <) and z € A, x < 2**, so we need only show that a** < z. If 2** = L, then
x** <z, so suppose z** # L. Then we claim that 2** C, x (Definition 4.1). For suppose z C z**, so z < z**
and z # 1. Then z Az # L, for otherwise z < z*, contradicting z < z** and z # L. Thus, zAx C x. So
we have shown that for every z C z** there is a 2’ C z, namely 2’ = z A x, such that 2z’ C x, which means
x** C4 2. Then by Definition 4.5, if C is separative, £** T, x implies z** C = and hence z** < z.

In the other direction, to show that C is separative, for some z,y € A\ {L}, assume that « £ y. It follows
that x Ay* # L, for otherwise x < y**, which with y** < y and the transitivity of < implies z < y and hence
x C y, contradicting our assumption. Thus, z A y* C . Moreover, for any z/ C x A y*, so 2’/ # L, we have
2" Z y. So from the assumption that z [Z y, we have shown that there is an ' C z, namely 2’ = z A y*,

such that for all 2" E 2/, 2” [Z y. Hence C is separative. O

Combining the previous three facts, we can characterize principal possibility frames as follows.
Fact 4.41 (Characterization of Principal Possibility Frames). Let 7 = (S, C, {R;};cr, P) be such that (S, C)
is a poset, R; is a binary relation on S, and P C p(S). Then the following are equivalent:
1. F is a principal possibility frame;
2. P is the set of all principal downsets in (S, C) plus @, and (S, ,C,) is a Boolean lattice on which the

[; defined from R;, is a total operation.

Now let us consider the interplay conditions on R; and C that hold for any principal possibility frame.
Recall that in Proposition 2.30 we showed the following conditions to be necessary and sufficient for a poset
(S, C) with accessibility relation R; to be such that RO(S, C) is closed under M;:

e R-rule —if 2/ C z and 2'R;y/ () z, then Jy: xRy () z;
e R=win — if xRy, then Vy' Cy 2’ C oz V" C a2’ Fy” § v': 2" Ry

Thus, every full possibility frame satisfies R-rule and R=>win. Also recall that in Lemma 4.34.3, we
observed that if F is full, then F is R-tight iff F is strong, i.e., iff it satisfies R<>win (Definition 2.36).
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Proposition 4.42 (Interplay of Accessibility and Refinement in Principal Frames). For any principal pos-

sibility frame F:
1. F satisfies R-rule and R=-win,
2. F is R-tight iff F is strong.

Proof. Let F = (S,C,{R;}icr, P) be a principal possibility frame.

For part 1, suppose F does not satisfy R-rule, so we have 2’ C x and 2'R;y’ {§ z, but for all y, if zR;y,
then y 1 z, so y C z*. Hence z € I, [2*, but 2/ ¢ B, 2*, so B, 2* does not satisfy persistence. Then since
F is a possibility frame, B;|2* & P. Yet |z* is a principal downset and hence in P, since F is a principal
possibility frame. Thus, P is not closed under B;, so F is not a partial-state frame, a contradiction.

Next, suppose F does not satisfy R=>win, so we have xR;y and 3y C y V2’ C z J2” C 2’ Vy": if
2" R;y”, then 3" 1Ly, so ¢y’ C y'*. Hence Vo' C z 32" C 2': 2" € B ly’*. But since zR;y and 3’ C y,
x & By, Tt follows that B;]y"* does not satisfy refinability, so B; |y’ & P. Yet |y* is a principal downset
and hence in P. Thus, P is not closed under B;, so F is not a partial-state frame, a contradiction.

For part 2, the proof of the left-to-right direction is the same as the proof of the left-to-right direction of
Fact 4.34.3, but using the fact just shown that any principal frame satisfies R=win. From right to left, to
show that F is R-tight, suppose that not xR;y. Then we must find a Z € P such that R;(x) C Zbuty & Z.
Since not xR;y, by the R-dense property that follows from R<>win (Proposition 2.35) there is a ¢’ C y
such that (i) Vy” C y': not xR;y”. Now we claim that for all z € R;(z), z Ly/. For if zR;z and z () ¢/, so
there is a 2’ C z such that 2’ C ¢/, then by the R-down property that follows from R<>win (Proposition
2.35), R,z implies xR;z’, which with 2z’ C ¢’ contradicts (i). Thus, for all z € R;(z), z L %', which implies
Ri(z) C ly™*. But since y' C y, y € Ly'*. Finally, since F is principal, Jy'* € P, so our desired Z is Jy™*. O

For quasi-functional frames as in § 4.4, we can say more about the interplay of accessibility and refinement.

By the same reasoning as in the proof of Proposition 4.28.3, we have the following.

Fact 4.43 (Quasi-Functional Principal Frames). If F is a quasi-functional principal possibility frame, then
F satisfies f-monotonicity: if 2/ C x and f;(2)}, then f;(x)} and fi(2') C fi(x).%"

From the assumption that F is a partial-state frame in which P is the set of all principal downsets in
(S, C) plus @, we can deduce facts not only about the structure of (S, C) (Proposition 4.41) and the interplay
of R; and C (Proposition 4.42 and Fact 4.43), but also about the nature of possibility morphisms to F.

Fact 4.44 (Possibility Morphisms to Principal Frames). For any possibility frame F and principal possibility
frame F', if h: F — F' is a possibility morphism, then h satisfies:

1. C-forth —if y C x, then h(y) C’ h(z);
2. C-back —if y/ T’ h(zx), then Iy C z: h(y) &' y'.

Proof. For part 1, since all principal downsets in F’ are admissible propositions in F’, Fact 4.9.1 implies that
h satisfies C-forth. For part 2, by the left-to-right direction of C-matching, we have that Vo € F VX' € P’
if J'h(z) N X' =0, then |z N h~1[X'] = (). Since F’ is a principal frame, for any y' € F', |'y’ € P’, so by
C-matching, if ['h(x) N ]'y’ =0, then Ja N h~1[|'y’] = 0. Then since y’' T’ h(x) implies |'h(z) Ny =0, it
implies o N h~1[]'y'] = 0, which means there is a y C z such that h(y) T’ 3. O

27This also holds for extended quasi-functional principal frames (see Definitions 4.19, 4.25, and 4.36), for which f;(L) = L.
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Now that we have an idea of the structure of principal possibility frames, let us return to the point made
at the beginning of this section: in an (extended) principal possibility frame, for every proposition X € P,
there is a least specific possibility # € X. Then since the truth set [¢]* of a formula ¢ in a partial-state
model M always belongs to P (Fact 2.5), we have the following.

Fact 4.45 (Principal Truth Sets). If F is an extended principal possibility frame, then for any possibility
model M based on F and ¢ € L(®,I), there is an element ||| € S such that [o]™ = ||/¢|™. For any
@, € L(D,1): [[=ll = llell™, lle Aol = llell Alleoll, and [|Digll = Ballel]-

Fact 4.45 shows that principal possibility frames will easily transform into modal algebras (see § 5).

In § 5.2, we will identify a vast source of principal possibility frames. In particular, we will show that
any V-BAO can be turned into a semantically equivalent principal possibility frame, and any 7-BAO can be
turned into a semantically equivalent quasi-functional principal possibility frame (and hence into a seman-

ticaly equivalent functional principal possibility frame by Proposition 4.28).

4.6.1 Lattice-Complete Principal Frames
Since principal frames are always based on Boolean lattices, an important special case is the following.

Definition 4.46 (Lattice-Complete Principal Frames). A principal possibility frame F = (S,C,{R; }icr, P)

is lattice-complete iff (S, ,C ) is a complete Boolean lattice. N

When (S,,C ) is a complete Boolean lattice, the property characterizing principal frames in Fact 4.41
that [; is a total operation on (S,C ) not only implies the interplay conditions R-rule and R=-win as
in Fact 4.42, but it is also implied by these interplay conditions, as shown by the following.

Fact 4.47 (Characterization of Lattice-Complete Principal Frames). Let F = (S,C,{R;}iecr, P) be such
that (S,C) is a poset, R; is a binary relation on S, and P C p(.5). Then the following are equivalent:

1. F is a lattice-complete principal possibility frame;

2. P is the set of all principal downsets in (S,C) plus @, (S, ,C,) is a complete Boolean lattice, and R;
satisfies R-rule and R=-win.

Proof. The implication from part 1 to part 2 follows from Definitions 4.36 and 4.46 and Fact 4.42.

From part 2 to part 1, given the characterization of principal frames in terms of [; being a total operation
in Fact 4.41, it suffices to show that if R; satisfies R-rule and R=-win, then [, is such a total operation,
which is to say that for any y € S, if {x € S, | R;, () C ly} is nonempty (where ly = {y/ € S1 |y C1 y})

then it has a mazimum in (S, ,C, ). Since F is lattice-complete, this is equivalent to the claim that
\/{z € S| Ri, () C ly} € {w e S. | Ri, (a) € dy} (6)

Recall from the definition of R; in Definition 4.23 that R; (L) = {L} and forz € S, R;, (z) = R;(x)U{L}.
If \/{z € S. | R;, (z) C ly} = L, then (6) holds, so suppose it is not L. Then to establish (6), suppose for
reductio that \/[{z € S, | R;, (z) C ly}R; zbut 2 Z, y. Then z # 1, s0 \/{z € S, | R;, (x) C ly}R;z, and
Z2Ay* # L, so zAy* C z. Let 2/ = 2 Ay*. Then by R=win for R;, there is an 2’ C \/{z € S| R;(z) C ly}
such that (i) V&” C o’ 32" () 2": 2" R;2”. Given o/ C \/{x € S1 | R;, () C ly}, thereis an z € {x € S |
R; (z) C ly} such that 2’ Az # L (cf. Fact 5.12), so 2’ Az C 2/. Let 2 = 2’ Ax. Then by (i), there is a
2" () 2’ such that " R;z"”. Given 2" R;2" () 2/ and 2" C z, it follows by R-rule that there is a u such that

xR;u () 2'. Then since 2/ = z A y*, we have xR;u () y*, which contradicts the fact that R; (z) C Jy. O
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Recall from Fact 4.42.2 that a principal frame is R-tight iff it is strong. For lattice-complete principal

frames, we can add the following observation concerning R-tightness.

Fact 4.48 (R-tight and R-princ). If F is a lattice-complete principal possibility frame, then F satisfies the
R-tight condition iff F satisfies the R-princ condition from § 4.4: R;(x) is a principal downset if R;(x) # 0

Proof. From left to right, assuming F satisfies R-tight and R;(z) # 0, we show that R;(z) = |\ Ri(z),
where \/ is the join operation in the complete Boolean lattice minus L that underlies . By Fact 4.34.1,
R-tight implies R-down, so R;(z) is a downset. Thus, to show that R;(x) = LV R;(z), it suffices to show
that \/ R;(x) € R;(z). Consider any Z € P such that + € B;Z, so R;(z) C Z. If \| R;(z) ¢ Z, then by
refinability for Z, there is a z © \/ R;(z) such that for all 2/ C z, 2/ € Z. Since z C \/ R;(z), there is some
y € R;(x) such that z Ay # L (cf. Fact 5.12), s0 2z Ay C y, but z Ay & Z by the previous sentence. Then
by persistence for Z, y ¢ Z, which contradicts the fact that y € R;(x) C Z. Thus, \/ R;(z) € Z. Since this
holds for any Z € P such that x € B, Z, R-tight implies \/ R;(z) € R;(x).

From right to left, assume F satisfies R-princ and that for all Z € P, z € B;Z implies y € Z. It follows
that R;(z) # 0, for R;(z) = 0 implies x € W), which with our assumption implies the contradiction y € 0.
Thus, by R-princ, R;(x) = |f;(x) for some f;(z). Now suppose not xR;y, so y L f;(x). Then since F is
separative by Fact 4.40, there is a z C y such that not z {§ f;(x). Then since R;(z) = | f;(z), it follows that
x € M )z* and [z* € P since F is a principal frame, so our initial assumption implies that y € |z*, which
contradicts z C y. Thus, xR;y, which shows that F satisfies R-tight. O

Finally, it is important to note that lattice-complete principal possibility frames are a special case of full

possibility frames, as shown by the following.

Fact 4.49 (Completeness and Fullness). The following are equivalent:
1. F is a lattice-complete principal possibility frame;

2. F is a full possibility frame in which (S, ) is a complete Boolean lattice.

Proof. Tt suffices to show that if (S, ,C ) is a complete Boolean lattice, then the set of principal downsets
in (S, C) plus (), which is P in a principal frame, is exactly the set of all X C S satisfying persistence and
refinability in (S, C), which is P in a full frame. If (S, C ) is a Boolean lattice, then (S, C) is separative by
Fact 4.40, so every principal downset satisfies not only persistence but also refinability by Fact 4.6.1; and of
course () satisfies persistence and refinability. In the other direction, suppose X C S satisfies persistence and
refinability. If X = (), we are done, so suppose X # (). Since (S|, C ) is complete, \/ X exists in (S, ,C, ),
and since X C S, 1 ¢ X, so \/ X exists in (S,C). Now we claim that X = | \/ X, so X is a principal
downset. Since X C |/ X is immediate, we need only show that | \/ X C X. By persistence, it suffices
to show that \/ X € X. If \V X & X, then refinability in (S,C) implies that there is an « € S such that
xC\/ X and for all 2/ C z, 2’ ¢ X. It follows by persistence that for ally € X, z Ay = L, soy C z*. Hence
\/ X C z*, which contradicts the fact that z C \/ X. Thus, \/ X € X, as desired. O

4.7 Rich Frames

If we combine the idea of lattice-complete principal possibility frames from § 4.6.1 with the idea of strong
possibility frames from § 2.3, we arrive at a special class of full possibility frames that will be of great
importance in the duality theory of § 5. We will begin with a very direct definition of this class of frames,
which does not refer back to further definitions from previous sections. As in § 4.3, if (S, C) is a poset, then

(S1,C ) is the result of extending (S, C) with a new minimum element L.
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Definition 4.50 (Rich Frames). A rich frame is a tuple F = (S, C, {R; }ser, P) where (S,C) is a poset such
that (S| ,C ) is a complete Boolean lattice, P is the set of all principal downsets in (S, C) plus ), and each

R; is a binary relation on S satisfying:

e Rewin — Ry iff Vy Cy 32’ C o V" Ca’ Fy” Cy': 2" R;y” (see Figure 2.10). <

Recall from § 2.3 that possibility frames satisfying R<>win are the strong possibility frames.
The first thing to prove about rich frames is that they are in fact possibility frames in the sense of
Definition 2.21 and therefore strong possibility frames. The following fact characterizes rich frames as a

special kind of principal possibility frames or equivalently as a special kind of full possibility frames.

Fact 4.51 (Characterizations of Rich Frames). For any F = (S, C, { R; }ic1, P), the following are equivalent:
1. F is a rich frame;
2. F is a principal possibility frame that is lattice-complete and satisfies R-tight;
3. F is a principal possibility frame that is lattice-complete and satisfies R-princ;
4. F is a full possibility frame in which (S| ,C ) is a complete Boolean lattice, satisfying R-tight;

5. F is a full possibility frame in which (S, ,C ) is a complete Boolean lattice, satisfying R-princ.

Proof. First observe that if F is rich and therefore satisfies R<>win, then F satisfies the weaker R-rule and
R=>win from § 2.3, so Definition 4.50 and Fact 4.47 together imply that F is a principal possibility frame,
and then F is lattice-complete by Definition 4.50. Thus, F being rich implies that F is a lattice-complete
principal possibility frame satisfying R<>win. The converse implication is clear, so F being rich is equivalent
to F being a lattice-complete principal possibility frame satisfying R<>win.

Then to see that parts 1, 2, and 3 are equivalent, it suffices to recall from Proposition 4.42.2 that if F is
a principal possibility frame, then F satisfies R<>win iff it satisfies R-tight, and from Fact 4.48 that if F is
a lattice-complete principal possibility frame, then F satisfies R-tight iff it satisfies R-princ.

To complete the proof, it suffices to observe that parts 2 and 4 are equivalent, and that parts 3 and 5
are equivalent. This follows from Fact 4.49, which showed that F is a lattice-complete principal possibility

frame iff F is a full possibility frame in which (S, ,C ) is a complete Boolean lattice. O

Figure 4.1 shows how the class of rich frames sits inside other frame classes we have discussed in § 4.
The next significant fact about rich frames is that atomic (§ 4.2) rich frames are exactly the possibility
frames that are isomorphic to the powerset possibilization of some Kripke frame (Example 2.9), as shown by

the following proposition. For part 2, recall the notion of the atom structure 2AtF from Definition 4.15.
Proposition 4.52 (Characterization of Powerset Possibilizations).

1. If § is a Kripke frame, then §¥ is an atomic rich frame.

2. If F is an atomic rich frame, then F is isomorphic to (AtF)¥.

Proof. Part 1 is straightforward (see Fact 2.38). For part 2, we showed in Proposition 4.17.3 that for any
atomic and separative possibility frame F, which includes any atomic rich frame, the function h: F — (AtF)¥
defined by h(z) = {a € AtF | a 7 x} is a C-strong embedding of F into (AtF)¥. We will now prove that it
is a possibility isomorphism as in Definition 3.2 when F = (S,C, {R; };c1, P) is an atomic rich frame. First,

since we are assuming that (S, ,C ) is a complete Boolean lattice, every A C min{S,C) has a least upper
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separative

principal

complete

(all full)

R-tight
(equivalent to R<>win
for full or principal F)
(equivalent to R-princ
for lattice-complete F)

Figure 4.1: rich frames (dotted region) shown inside other frame classes from § 4. Each label applies to
everything inside the smallest circle (or rectangle) that contains the label. The dashed circle reflects the fact
that the distinction between separative and C-tight disappears for full possibility frames (Fact 4.33).

bound z 4 in {S,C), and h(x4) = A. Thus, h is surjective. Then since h is a surjective C-strong embedding,
we have that for all X € P7, h[X] € P)" | as required for an isomorphism.

It only remains to show that xR; y iff h(x)REmf)ph(y). By the definition of powerset possibilization,
h(x)Rgth)@h(y) iff h(y) C R [h(x)]. Since F satisfies R<win, it satisfies R-down. Thus, as noted
after Definition 4.15, the relation R*'Y in AtF is such that for all a,b € AtF, aR?b iff aRSb. Thus,
h(y) € R*7[h(x)] iff h(y) € R} [h(x)]. Putting all of this together with the definition of h, we have

h(@) R h(y) iff {b € WF | b7 y} € RF [{a € WF | a °7 2}, (7)

so we must show that the right side is equivalent to xR y. If 2Ry, then by the left-to-right direction of
R<&win, for any minimal point b = 3y’ C y, there is a minimal a = 2" C z and a y” C b such that aR y".
Then since b is minimal, y” = b, so aR{ b. Hence the right side of (7) holds. In the other direction, suppose
not xR y. If RY (z) = (), then for any minimal point @ C x, we have R (a) = () by up-R, which follows
from R<>win, but there is at least one minimal point b C y, so the right side of (7) does not hold. On the
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other hand if R} () # (), then since F satisfies R-princ by Fact 4.51, where R/ (z) = |fi(z), not zR]y
implies not y C f;(x), which with separativity implies there is a minimal point b C y such that b Z f;(x),
which implies not R b. Then there can be no minimal point a C x such that aR{ b, for that would imply
rR} b by up-R. Thus, b shows that the right side of (7) does not hold. O

That rich frames are not required to be atomic is the key to their importance in possibility semantics.
The following theorem demonstrates the special relation of rich frames to full possibility frames in general.
We prove part 1 in § 5.3 as Proposition 5.22.1 and Theorem 5.23.1, and part 2 in § 5.3 as Theorem 5.27.

Theorem 4.53 (From Full Frames to Rich Frames).

1. For any full possibility frame F, there is a rich possibility frame F’ and a strict, dense, and robust
possibility morphism h: F — F’. Thus, by Proposition 3.7, for all o € L(®, ), F IF ¢ iff F' I .
2. The category of rich possibility frames with (strict) possibility morphisms is a reflective subcategory of

the category of full possibility frames with (strict) possibility morphisms.

For a reminder of the definition of reflective subcategory, see the discussion preceding Theorem 5.27 below.
In § 5.3, we will also show that the category of rich possibility frames with (strict) possibility morphisms

is dually equivalent to the category of CV-BAOs with complete BAO-homomorphisms (Theorem 5.25).

5 Beginnings of Duality Theory

The duality theory relating possible world frames and Boolean algebras with operators (BAOs) has been one
of the most fruitful areas of mathematical modal logic (see, e.g., Goldblatt 2006a and Blackburn et al. 2001,
Ch. 5). As noted in § 1, two of the fundamental results of this theory are:

e Thomason 1974a: the category of CAV-BAOs (see Definition 5.1) with complete BAO-homomorphisms

is dually equivalent to the category of full world frames (Kripke frames) with p-morphisms.

e Goldblatt 1974: the category BAO of all BAOs with BAO-homomorphisms is dually equivalent to the
category of descriptive world frames with p-morphisms. (For a topological version of this duality, see
Esakia 1974.)

We will prove analogues for possibility semantics of both of these results in § 5.3 and § 5.6, respectively:

e Theorems 5.25 and 5.27: the category CV-BAO of CV-BAOs (see Definition 5.1) with complete BAO-
homomorphisms is dually equivalent to a reflective subcategory of the category FullPoss of full possi-

bility frames with strict possibility morphisms.

e Theorem 5.41: BAO is dually equivalent to the category FiltPoss of filter-descriptive possibility frames
(Definition 5.38) with p-morphisms.

In addition, we will prove results relating classes of BAOs (in particular, V-BAOs and 7-BAOs as in Definition
5.1) to possibility frames that have no obvious analogues on the side of world semantics.

Figure 5.1 presents our main categories, functors, and categorical relationships. The functors ()®, (-)p,
and (-)g will be defined in § 5.1, § 5.2, and § 5.5, respectively.

The duality we develop in §§ 5.1-5.3 between full possibility frames and complete and completely additive
BAOs parallels the connection between forcing posets and Boolean valued models in set theory. As Takeuti

and Zaring [1973, p. 1] nicely explain the connection:

28For a detailed study of the following two dualities, as well as a third “hybrid” duality, see Givant 2014.
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functor functor
— —

category: FullPoss ()P CV-BAO ()p RichPoss
objects: full CV-BAOs rich

possibility frames possibility frames
morphisms: strict complete p-morphisms

possibility morphisms BAO-homomorphisms
category: Poss ()b BAO (e FiltPoss
objects: possibility frames BAOs filter-descriptive
possibility frames

morphisms: | possibility morphisms BAO-homomorphisms p-morphisms

CV-BAO is dually equivalent to RichPoss which is a reflective subcategory of FullPoss

BAO is dually equivalent to  FiltPoss  which is a reflective subcategory of Poss

Figure 5.1: main categories, functors, and categorical relationships.

One feature [of the theory developed in this book| is that it establishes a relationship between
Cohen’s method of forcing and Scott-Solovay’s method of Boolean valued models. The key to this
theory is found in a rather simple correspondence between partial order structures and complete
Boolean algebras.... With each partial order structure P, we associate the complete Boolean
algebra of regular open sets determined by the order topology on P. With each Boolean algebra
B, we associate the partial order structure whose universe is that of B minus the zero element

and whose order is the natural order on B.

This is exactly how we proceed in §§ 5.1-5.3, except the key additional step now is to connect the accessibility
relations on our partial order structures with the modal operators on our Boolean algebras.

The duality we develop in §§ 5.5-5.6 between arbitrary BAOs and filter-descriptive possibility frames is
very similar to the theory of descriptive frames developed by Goldblatt [1974, §1.9] (published in Goldblatt
1976a,b, 1993), except where the theory of descriptive frames relies on assumptions about ultrafilters, we
will make do with reasoning about proper filters. As a result, unlike the theory of descriptive frames, the
theory of filter-descriptive frames does not require going beyond ZF set theory.

For a review of BAOs and the semantics for normal modal logics using BAOs, see Appendix § A.3. We
will proceed in this section assuming familiarity with that material. For the purposes of possibility semantics,
it is more convenient to take the multiplicative operators B; as the primitive operators of the BAO, rather
than the additive operators ¢;, which we define by ¢;x := —l;—z.

ForaBAO A = (A, A, —, T,{l,; };cr), let (A, <) be the associated Boolean lattice, with z < y iff zAy = .
We will focus on the following classes of BAOs, with labels from Litak 2005a.

Definition 5.1 (Classes of BAOs). Let A = (A, A, —, T, {l;},cr) be a non-trivial BAO.
1. Ais a C-BAO iff (A, <) is a complete lattice;
2. Ais an A-BAO iff (A4, <) is an atomic lattice as in Definition 4.13;
3. Ais a V-BAO iff each B, operator is completely multiplicative, i.e., for every i € I and X C A, if A «
exists in (A, <), then A Wz exists in (4,<) and A\ Bz =0, A\ z; e

rzeX zeX zeX
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4. A is a T-BAO iff each B; operator admits an adjoint or residual, i.e., there is a function f;: A — A
such that for all z,y € A, z < Wy iff f;(z) <y. <

Since A is a BAO, parts 3-4 could be equivalently stated in terms of \/ and #; instead of A and M;. For

part 3, the equivalent condition is that each #; is completely additive: if \/ x exists in (A, <), then \/ #;z
zeX zeX
exists in (A4,<) and \/ #;2 = ¢; \/ . For part 4, the equivalent condition is that there is a function
rzeX rzeX
gi: A — A such that for all z;y € A, #;2 < y iff x < g;(y). The ‘T’ in “T-BAQO’ suggests tense algebras,

which are usually taken to be BAOs with two operators, one of which is the conjugate of the other (see, e.g.,
Jonsson and Tarski 1951, Def. 1.11, Jonnson 1993, §4.7, Venema 2007, Prop. 8.5), i.e., such that ¢;2Ay = L
iff A ¢2y = L, in which case B, and ¢, form a residuated pair as above: z < By iff #22 < y. We use ‘f;’
instead of some kind of diamond notation as a reminder that this f; need not be definable by a term from
the signature of the BAO, as well as to suggest a connection between T-BAOs and the (quasi-)functional
possibility frames of § 4.4, which will be made explicit in Theorems 5.6.4 and 5.17.2 below.

The following is a well-known and useful fact.

Fact 5.2 (T and V). Any T-BAO is a V-BAO, and any CV-BAO is a CT-BAO. Thus, CV =CT.

Proof. For the first part, if A X exists, then l; A X is a lower bound of {M;x | x € X}. In a T-BAO it is also
the greatest: if z < Bz for all x € X, then f;(z) <z for all z € X, so f;(2) < A X and hence z < l; A\ X.
For the second part, in a CV-BAO A the residual f; of B; is given by f;(z) = A{y € A | z <My} O

Recall from § 1 that where X is a class of BAOs, ML(X') is the set of modal logics L such that L is the
logic of some subclass of X', and ALG is the class of all BAOs, we have:

ML(CAV) € ML(CV) € ML(T) € ML(V) € ML(ALG).

Finally, we fix our terminology for discussing homomorphisms between BAOs.

Definition 5.3 (Homomorphisms). Given BAOs A = (A A, — T,{B},cr) and A" =
(A" N, =", T {W}4c1), a function h: A — A’ is a Boolean algebra homomorphism iff for every x,y € A:
h(z ANy) = h(z) N h(y); h(—x) = —"h(x); and h(T) = T'. For a BAO-homomorphism, we additionally
require that h(M;z) = Wh(z). For a complete BAO-homomorphism, we require that if A z; exists in A,

jed
then A\'h(x;) exists in A’ and h( A z;) = A h(z;). A (complete) BAO-embedding is an injective (complete)
JjeJ jeJ jeJ
BAO-homomorphism. A BAO-isomorphism is a bijective BAO-homomorphism (and hence complete). N

5.1 From Possibility Frames to BAOs

We begin our duality theory with the simpler direction, going from frames to BAOs. As motivation for the

following definition, recall the discussion of regular open algebras and subalgebras thereof in Remark 2.15.
Definition 5.4 (Underlying BAO). Given a possibility frame F = (S,C,{R;};c1, P), its underlying BAO
is the structure F° = (A, A, —, T, {l;};c;) where:

1. A=P;

2. XANY =XnY,;
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3. —X =int(S\ X);*
4. T=S5;
5. BY ={zeS|Ri(z) CY}. q

In what follows, several notions and results for possibility frames will specialize to well-known notions

and results when the possibility frames in question are Kripke frames. Definition 5.4 is already an example.

Remark 5.5 (Full Complex Algebra). If F is a Kripke frame, regarded as a possibility frame as in Examples
2.6 and 2.22, then its underlying BAO as in Definition 5.4 is its full complez algebra (see Appendix § A.1).

Let us now verify that the “underlying BAO” of a possibility frame is indeed a BAO and moreover that a
formula ¢ is satisfiable over a possibility frame according to possibility semantics iff ¢ is satisfiable over its
underlying BAO according to algebraic semantics, so the two are semantically equivalent. As explained in
§ A.3, we say that ¢ is satisfiable over a BAO A iff there is an algebraic model M = (A, #) based on A such
that 6(p) # L, where  is the meaning function extending 6, and L is the bottom of A; and ¢ is valid over
A iff for all algebraic models M = (A, ) based on A, 6(¢) = T, where T is the top of A. Thus, as usual,
o is valid iff = is not satisfiable, so if the same formulas are satisfiable over a possibility frame and over a

BAO, then the same formulas are valid over each, so they have the same logic.

Theorem 5.6 (From Possibility Frames to BAOs). For any possibility frame F and model M = (F, 7):
. F®is a BAO;
. if F is a full possibility frame, then F® is a CV-BAO;
. if F is a principal possibility frame, then F? is a V-BAO;

1

2

3

4. if F is a quasi-functional principal possibility frame, then F° is a 7-BAO;

5. where 7 is the meaning function on F® extending 7, for all p € L(®,1), [¢]™ = 7(p);
6

. for all p € L(®,I), p is satisfiable over F iff ¢ is satisfiable over FP.

Proof. For part 1, we already explained in Remark 2.15 that if (A, A, —, T) is defined as in Definition 5.4,
then it is a Boolean algebra, and it is easy to check that B;T = T and B;(X AY) = X ARY | so
FP is a BAO. For part 2, we already explained in Remark 2.15 that if all regular open sets in O(S,C)
are admissible propositions, as in a full possibility frame, then (4, A, —, T) is a complete Boolean algebra,

and since arbitrary meets are given by intersection in this regular open algebra of the Alexandrov topology

O(S,C), clearly for any X C A we have / B, X =M, )\ X. Thus, F° is a CV-BAO.
Xex Xex
For parts 3 and 4, suppose F = (S,C,{R;}ic1, P) is a principal possibility frame. Let (S’,C’) be the

Boolean lattice associated with F, so S = S U {L’}, where 1’ is the minimum of (S’,C’). Let R’ be the
extension of R; to (S, C’) defined by xR}y iff xR,y or y = L’ (recall Definition 4.23). Where (S’, A", =/, T")
is the Boolean algebra obtained from (S’,C'), consider the structure F' = (S', A, ', T',{&}}icr) where
o is the operation on S’ from Definition 4.37, so &y = max{x € S’ | Rj(z) C ly}. We claim that
F' = (S N, ~" T {@,}icr) is a BAO that is BAO-isomorphic to F® = (P, A, —, T, {M, };c;) from Definition
5.4. It is easy to check that @, T' = T’ and @i(x A y) = @}z A’ @}y. Since F is a principal frame, P is the
set of all principal downsets in (S,C) plus (). Define a function h: S’ — P by h(z) = {2/ € S| 2/ C z},
noting that h(L") = 0. It is straightforward to check that h is a BAO-isomorphism, using the fact that
hMeiz)={yeS|lyCat={yeS|Ry) C{z' eS|/’ Cz}}=R{z' € S|z Cz}=Mh(z).

29Recall from Remark 2.15 that int(X) ={y € S |V Cy: 2z € X}.
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For part 3, it suffices to show that F’ is a V-BAO. To reduce clutter, we will drop some of the primes.
For reductio, suppose that for an X C S/, A X exists in F’, but [&; A X is not the greatest lower bound of
{8iz | x € X}. Since F’ is a BAO, for any y € X, A X C y implies ; A X C &y, so ; A X is a lower
bound of {E;z | * € X}. Hence if (J; A X is not the greatest, then there is a v € S’ such that v C [z
forallz € X, but v Z @; AX = max{y € S’ | Ri(y) C JAX}. Thus, u & {y € S’ | Ri(y) C LA\ X},
so there is a z € Rj(u) with z Z A X, so for some z € X, z £ = and hence z A —x # L. Given uR.z,
zN—z # 1, and u C [z, by R-rule from Proposition 4.42 there is a v € S’ with ;2 Rv and v A —x # L.
But @;x = max{y € S’ | R;(y) C Jz}, so @;zR;v implies v C x, contradicting v A —z # L.

For part 4, it suffices to show that F' is a T-BAO. Since F is quasi-functional, | is an extended
quasi-functional frame (recall Definition 4.25), so for every z € S’, there is an f/(z) € S’ such that f/(z) =
max(R;(z)). We must show that y C &}z iff f/(y) C x. The left hand side says that y C max{z € S’ | R}(z) C
lz}. If f/(y) C z, then since f/(y) = max(R}(y)), Ri(y) C lx, so y C max{z € S’ | Rj(2) C Jz}. In the
other direction, if y C max{z € S" | R/(z) C |z}, then by Fact 4.43, f/(y) C fl/(max{z € S | R/(z) C |z}),
and given f/(z) = max(R;(z)), we have f/(max{z € §' | R(z) C lz}) C z, so f!(y) C z.

Part 5 is by an easy induction on ¢ using Fact 2.5.1, which is left to the reader.

For part 6, we already have from part 5 that if ¢ is satisfiable over F, then ¢ is satisfiable over FP°.
For the other direction, suppose ¢ is satisfied in some algebraic model (F®,0). Since §: ® — P, 6 is an
admissible valuation for F, and then by part 5, since ¢ is satisfied in (F®,0),  is satisfied in (F,6). O

As an aside concerning Theorem 5.6.2, recall from Fact 5.2 that every CV-BAO is a CT-BAO, which
leads to the following observation.

Observation 5.7 (Residuals from Full Possibility Frames). When F = (S, C, { R; }sc1, P) is a full possibility
frame, the residual of B; in F® is the f;: P — P defined by f;(X) = int(cl({. R;[X])) as in Fact 2.17.2.

By Theorem 5.6, we can transfer completeness results from possibility semantics to algebraic semantics

as follows.

Corollary 5.8 (From Frame Completeness to BAO Completeness). For any normal modal logic L, if L is
sound and complete with respect to a class of full possibility frames (resp. principal possibility frames, quasi-
functional principal possibility frames), then L is sound and complete with respect to a class of CV-BAOs

(resp. V-BAOs, T-BAOs).

Not only are possibility frames semantically equivalent to their underlying BAOs, but also morphisms
between possibility frames transform into morphisms between their underlying BAOs in the other direction.
Compare this with the analogous standard results for world frames and their underlying BAOs in, e.g.,
Goldblatt 1974, Thm. 1.5.9 or Blackburn et al. 2001, Props. 5.51, 5.79.

Theorem 5.9 (From Possibility Morphisms to BAO-Homomorphisms). For any possibility frames F and
F’ and function h: F — F':

1. h is a possibility morphism iff the function h? defined for X’ € F® by hP(X’) = h='[X'] is a BAO-
homomorphism hP: F’® — FPb;

2. if h is a possibility morphism and F and F’ are full possibility frames, then h° is a complete BAO-

homomorphism;

3. if h is dense as in Definition 3.2.10, then hP® is injective;
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4. if h is robust as in Definition 3.2.11, then hP is surjective;
5. if f: F — F is the identity map on F, then f® is the identity map on FP®;
6. for any possibility morphisms f: F — G and g: G — H, (go f)° = g° o fP.
Proof. For part 1, first observe that the pull back condition on possibility morphisms (Definition 3.2.3) is

equivalent to the condition that h® is a well-defined function to the domain of F®, i.e., P in F. Second,
clearly we have h®(X’ AY') = h®(X’) A h®(Y"). Next, by our definitions:

hP(—X') = —hP(X")
& RP(int(S"\ X)) = int(S \ h°(X"))
< R int(S"\ X')] = int(S\ A1 [X])
e VeeS: hz)nX' =giff lanh X' = 2,

and the ‘iff” is exactly the C-matching condition on possibility morphisms. Finally, by our definitions:

h° (MR X') = MRhP (X))
& Wy eS|R@Y)CX'})={yeS|R(y) <h(X)}
& bB'{y eSS |R()CS XY ={yeS|Ry) ch'[X'}
& VyeS: R(h(y) C X"iff R(y) C h'[X],

and the ‘iff’ is exactly the R-matching condition on possibility morphisms.

For part 2, if 7 and F’ are full possibility frames, then arbitrary meets coincide with intersections, so
WA\ X)) = N\ R°(X]).

jed jeJ

For part 3, assume h is dense and that h®(X’) = h?(Y”), so h=}[X’] = h~}[Y"]. To show that X’ =Y,
consider an 2’ € X’. We claim that for all 4/ ' 2’ there is a 2/ C’ ¢ such that 2’ € Y, so by refinability for
Y’ we have 2’ € Y'. Suppose ¢y’ T’ 2’. Since h is dense, there is a z € F such that h(z) C’' 3. Since 2/ € X’
and h(z) T’y C' 2/, we have h(z) € X’ by persistence for X’. Then since h™1[X’] = h=1[Y], h(z) € X’
implies h(z) € Y'. So where z’ = h(z), we have proven the claim needed to apply refinability and conclude
2/ € Y'. Hence X’ C Y’  and the other direction is the same, so h° is injective.

For part 4, suppose X € F° so X € P7. Then assuming h is robust, there is an X’ € PF'" such
that h[X] = h[ST] N X’. We claim that h~1[X'] = X. Since h[X] = h[ST] N X', we have h~1[h[X]] =
R=YR[ST)IN X' = R [R[ST) Nh~HX'] = ST Nh~X'] = h~1[X']. Then since h is robust, h~'[h[X]] = X,
which with the previous sentence gives us h~'[X’] = X, so h°[X’] = X. This shows that h® is surjective.

Parts 5-6 are easy to check. O

Thus, we arrive at the first part of the categorical picture that we prepared for in Remark 3.10.

Corollary 5.10 (The (-)® Functor). The (-)® operation given in Definition 5.4 and Theorem 5.9 is a con-
travariant functor from Poss to BAO (resp. FullPoss to CV-BAO).

5.2 From V-BAOs to Possibility Frames

To go from BAOs to possibility frames, we will consider two different routes, one in this section and § 5.3,
and the other in §§ 5.5-5.6. In this section, we show how V-BAOs can be turned into semantically equivalent

principal possibility frames and CV-BAOs can be turned into semantically equivalent full possibility frames.
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In addition, in the case of CV-BAQOs, we will establish a categorical connection with full possibility
frames. We will show that there is a contravariant functor (-), from the category CV-BAO of CV-BAOs
with complete BAO-homomorphisms to the category RichPoss of rich possibility frames with p-morphisms.
Thus, (+), and (+)® from Corollary 5.10 will form a pair of contravariant functors between these categories.

We begin by introducing the following definition of a class of BAOs, inspired by possibility frames, which

can be easily transformed into semantically equivalent possibility frames.
Definition 5.11 (R-BAOs). Given a BAO A = (A, A, —, T,{M;};c1), for each i € I, define a relation
R; C Ax A by:

1. zRyy iff for ally € A, if L #y <y, then z A $;9/ # L.
Then A is an R-BAO iff for every i € I and z,y € A:

2. if z A 4;y # L, then there is a y’ € A such that | # ¢y’ <y and zR;y’ . <

It turns out that the class of R-BAOs is exactly the class of V-BAOs, a result which Holliday and Litak

[Forthcoming| use to show that not all normal modal logics are sound and complete with respect to a class
of V-BAOs.?% Here we use it to show that any V-BAO can be transformed into a semantically equivalent

principal possibility frame. To establish the result in Lemma 5.13 below, the following straightforward fact

is useful.

Fact 5.12 (Least Upper Bounds). For any BAO A = (A, A, —, T, {M; }icr), x € A, and Y C A, the following

are equivalent:
1. z=\Y;

2. x is an upper bound of Y, and for any z € A, if z Ax # L, then for some y € Y, z Ay # L.

Lemma 5.13 (Holliday and Litak Forthcoming).
1. Every V-BAO is an R-BAO;
2. Every R-BAO is a V-BAO.

Proof. For part 1, suppose A is not an R-BAO, so for some xz,y € A, x A 4;y # L but
Vy' € Aif L#y <ythen Iy € A: L #9y" <y andax Ay = L. (8)

Let Y’ be the set of all ' € A such that 1 = 3’ <y, and let Y be the set of all 4"’ € A such that L # " <y
and z A ¢;y” = L. Then from (8), we have

Vy' cvy’ Ely// cvy”: y// < y/. (9)

Now we claim that
y=\/Y". (10)

First, by definition of Y, y is an upper bound of Y. Second, observe that for all z € A, if z Ay # L, then
z Ay €Y', which with (9) implies that for some y” € Y, 1 #y"” < 2 Ay and hence z A y” # L. Thus, we

30 Around the same time that Litak and I proved that complete additivity of an operator in a BAO is requivalent to the V3V
first-order condition R, in January 2015, Hajnal Andréka, Zalan Gyenis, and Istvan Németi independently proved that complete
additivity of an operator on a poset is preserved under ultraproducts. After they learned of our result on the first-orderness of
complete additivity in BAOs from Steven Givant, Andréka et al. [2016] extended it from BAOs to arbitrary posets.
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have (10) by Fact 5.12. Now if
by =\/{®" |y €Y}, (11)

then since = A 4;y # L, by Fact 5.12 there is a 3y € Y such that = A ¢;4” # L. But by the definition of
YY" there is no such y”. Thus, although (10) holds, (11) does not, so A is not a V-BAO.

For part 2, suppose A is not a V-BAO, so there is some X C A such that \/ X exists in (4, <), but ¢; \/ X
is not the least upper bound of {#;z | x € X}. For every x € X, since x < \/ X, we have ¢, < ¢;\/ X, so
¢.\/ X is an upper bound of {#;x | z € X}. Then by the assumption that it is not a least upper bound,
Fact 5.12 implies that there is a z € A such that (i) z A ;\V X # L, but (ii) for all z € X, z A ;2 = L.
Now if A is an R-BAO, then (i) implies that there is a v € A such that (iii) L # v < \/ X and (iv) zR;u,
i.e., for all v’ € A such that L # v’ <wu, 2 A #;u' # L. Given (iii), by Fact 5.12 there is an € X such that
uAxz # L. Then where v’ = u A x, we have L # v/ < u and hence z A #;u’ # L by (iv). But then since
¢;u < &;z, we have z A ;2 # L, which contradicts (ii). Thus, A is not an R-BAO. O

Thomason [1975a] observed that any CAV-BAO can be turned into an equivalent Kripke frame whose
domain is the set of atoms in the BAO and whose accessibility relations R; are defined by: aR;biff an®;b # L.
Note how this definition relates to part 3 of the following definition for turning V-BAQs into possibility frames.

Definition 5.14 (Full Frame and Principal Frame of a V-BAO). Given a V-BAO A = (A, A, —, T, {M; }icr)
and algebraic model M = (A, 8), we define the full frame A, = (S,C,{R;}icr, Pu) of A, the principal frame
A, = (S,C,{Ri}icr, Py) of A, and M, = (S,C,{R;}icr, m) as follows:

1. §=A\{l};
. L is the restriction of < to S;

. xRy iff for all y/ € A: if L #4y Cy, then = A ¢;y # L;

. Po={lz |z e StuU{0}, where lz ={2' € S|’ Ca};
(p) = 10(p) = {r € § | 2 C ()}, .

The following property of A, /A, when A is a T-BAO will be useful later.

2
3
4. P, = RO(S,C) (recall Notation 2.19);
5
6

Lemma 5.15 (Full/Principal Frame of a 7-BAO). For any 7-BAO A, A, /A, is such that for all z,y € S,
xRy iff y C fi(x), where f; is the residual of B; (recall Definition 5.1.4).

Proof. If we do not have xR;y, then there is a y’ such that 1. # 3’ Cyand z A ;9 = L, s0o x C l;,—y/ .
Hence f;(z) C —y’, which with L # ¢/ implies v’ Z f;(x), which with ¢’ C y implies y Z f;(z).

If y Z fi(z), then ¥ = y A —f;(x) # L. Since f; is the residual of B;, we have z C B, f;(z) from
fi(x) C fi(x), so x A #;—fi(xz) = L, which implies = A 4;3' = L. Thus, we do not have xR;y. O

Another important fact is that for a CV-BAQ, its full frame and principal frame are the same.
Lemma 5.16 (Full = Principal Frame of a CV-BAO). For any CV-BAO A, A, = A,,.

Proof. As shown in the proof of Fact 4.49, if (A, <) is a complete Boolean lattice and (S, C) is the result of
deleting the bottom element as in Definition 5.14, then the set RO(S, E) of regular open sets in the downset
topology on (S, C) is exactly the set of principal downsets in (S, C) plus 0, so P, = P,. O
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Theorem 5.17 records the crucial properties of the (-), and (-), transformations. For part 7 of the theorem,
we generalize the notion of satisfiability over a BAO from a single formula to a set of formulas: ¥ C £(®, )
is satisfiable over a BAO A iff there is an algebraic model M = (A, #) and an x € A, = # L, such that for all
o € %, 0(c) = z. This is not the only generalization that makes sense, but it fits here.

Theorem 5.17 (From V-BAOs to Possibility Frames). For any V-BAO A and algebraic model M = (A, 0):
1. A, is a tight principal possibility frame, and A, is a tight full possibility frame;

if A is a T-BAO, then A, and A, are quasi-functional;

if A is a CV-BAO, then A, = A, is a rich possibility frame;

M, is a possibility model based on A, and Ag;

for all p € L(®, 1), [¢]" = 10(¢);

for all ¥ C L(®,I), if ¥ is satisfiable over A, then X is satisfiable over Ay;

for all ¥ C L(®,I), 3 is satisfiable over A iff ¥ is satisfiable over A,.

NS et W

Proof. For part 1, we first show that A, = (S,C, {R; }icr, P) is a principal possibility frame. By Fact 4.41, it
suffices to show: that P is the set of all downsets in (S, C) plus (), which is immediate from Definition 5.14;
that (S1,C ) is a Boolean lattice, which is also immediate, since (S, ,C ) is isomorphic to the underlying
lattice (A, <) of A, which we will now identify with (S, ,C,); and that the operation [; defined on (A4, <)
using R; as in Definition 4.37 is a total operation. For the last property, we claim that for all y € A,
By = 0,y = max{z € A | R;(z) C |y}, so [; is total since W is total. (To reduce clutter, we will drop
the superscript for A, but remember that B; is the operator in A, not the defined operation If" on P in the
frame A,.) Suppose z £ By, so x A ¢;—y # L. Then since A is a V-BAO and hence an R-BAO by Lemma
5.13, it follows that there is a z < —y such that z # L and zR;z, which implies R;(x) € Jy. This shows that
B,y is an upper bound of the set {z € A | R;(x) C Jy}. To show that it is the maximum, we show that B,y
belongs to the set. Suppose B;yR;z, so by the definition of R; in A,, for all 2’ < z with 2’ # L, we have
WyANez # L Nowif z £y, then L # 2 A —y < z, so by the previous step, B,y A\ #;(z A —y) # L, which
is a contradiction given the properties of B; (Definition A.8). Thus, R;(M;y) C ly, as desired.

To show that Ap is R-tight, let X; be the modal operator on P in A,, in order to distinguish it from
B, /5;. We need to show that if VZ € P: z € K;Z = y € Z, then xR;y. Suppose that we do not have xRy,
so there is a ¢y’ € A with L # ¢y’ <y and = A 4,4/ = L. Then we claim that x € K,;|—y/, i.e.,, R;(z) C |-y’
If zR;v, then for all v/ € A such that L # v’ < v, we have z A $;0" # L, which with z A ¢;3' = L implies
v’ £ y'. Since this holds for all v # 1 with v < v, we have v < —y/'. Thus, z € X;|—y’. But since
1L #y <y, wehave y £ —y/, so y € |—y’. Thus, we have a Z for which z € X;Z but y & Z. Hence A, is
R-tight. Finally, since A, is a principal possibility frame, it is C-tight by Fact 4.39.

Next we show that A, is a full possibility frame that is tight. Since A, is R-tight, it is strong by
Proposition 4.42.2, i.e., C and R; satisfy R<>win. Then since A, = ((Ap);)* (Definition 2.25), it follows by
Corollary 2.31.2 that A, is indeed a full possibility frame. Then since A, is also strong, it is R-tight by Fact
4.34.3. Finally, since A, is a full frame and is separative by Fact 4.40, it is C-tight by Fact 4.33.2.

For part 2, by Lemma 5.15, if A is a T-BAO, then A, and A, satisfy R-princ as in Fact 4.26 with
R;(z) = | fi(z), so they are quasi-functional by Definition 4.25.

For part 3, any CV-BAO A is a T-BAO by Fact 5.2, so A, satisfies R-princ as above. By Fact 4.51,
being a rich frame is equivalent to being a full frame that satisfies R-princ and for which (S, ,C,) is a
complete Boolean lattice. It follows that if A is a CV-BAO, then A, = A, is a rich frame.
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For part 4, that w(p) € P, is immediate from Definition 5.14.5-6, so M, is based on A,, and P, C P, so
M, is based on A, as well.

For part 5, [¢]" = [8(p) can be rewritten as: for all € S, M,z IF ¢ iff # C 6(¢). The proof is
by induction on ¢. The atomic case is by definition of Mp, and the A case is routine. For the — case,
0(—¢) = —0(p), so we show that My, z IF =g iff 2 C —0(p). Now = T —0(p) iff for all 2/ C z (so 2’ # 1),
' Z é(gp) Then since z’ Z é(gp) is equivalent to M, 2’ I ¢ by the inductive hypothesis, the right side of the
previous ‘iff” is equivalent to M, z I —¢. For the [J; case, é(Digp) = Iié(gp), so we show that M,z I- O,
iff 2 = M,;0(p). From left to right, suppose = Z B;6(¢), so = A #;—0(¢) # L. Then since A is a V-BAO and
hence an R-BAO by Lemma 5.13, there is a y € A such that 1 # y C —9~(g0) and xR;y. Hence y [Z 0~(<p),
which with the inductive hypothesis implies M, y ¥ ¢, which with xR;y implies M, z ¥ U;p. In the other
direction, suppose My, z ¥ O;p, so there is a y € A such that xR;y and M,y ¥ ¢. Then y Z é(go) by the
inductive hypothesis, so y A —0() # L. Tt follows by the definition of R; in M, that = A 4;(y A —0(p)) # L,
which by the properties of M; (Definition A.8) implies 2 A #;—8(¢) # L and hence z Z B;6(¢).

Part 6 is immediate from parts 4 and 5.

For part 7, the left-to-right direction is immediate from part 5. For the right-to-left direction, given a
possibility model (Ap, 7), define 7_,: ® — A (where A is the domain of A) such that 7_,(p) = L if n(p) = 0,
and otherwise m_,(p) = x for the x such that w(p) = |z, which is guaranteed to exist since A, is a principal
possibility frame for which 7 is an admissible valuation. Then (A, m_,) is an algebraic model such that
(Ap, (m_p)p) = (Ap, ), so if 3 is satisfied at a point = in (A, 7) and hence in (Ap, (7_p)p), then by part 5,
Y is satisfied at « in (A, 7_p) as well. O

Note the contrast between parts 6 and 7 of Theorem 5.17: we cannot always turn a possibility model
based on A, into a semantically equivalent algebraic model based on A. We will return to this point in § 5.8.

While Theorem 5.17 applies to all V-BAOs, if we focus in on CV-BAOs we can go further: not only are
CV-BAOs semantically equivalent to full possibility frames, but also morphisms between CV-BAOs transform
into morphisms between their associated possibility frames in the other direction. Thomason [1975a] observed
that given CAV-BAOs A and A’ and a complete BAO-homomorphism h: A’ — A, for every atom a in A,
there is a unique atom o’ in A’ such that a < h(d’), and the function that sends each atom a in A to
its @’ with @ < h(a’) is a p-morphism from the atom structure of A to that of A’. Since Thomason’s
construction depends on atoms, we cannot use it for CV-BAOs in general. The construction of h, we use for
Theorem 5.18 has been used by Bezhanishvili [1999, Thm. 30] to establish a duality between, on the one
hand, certain frames for intuitionistic modal logic together with p-morphism-like maps, and on the other
hand, complete and completely join-prime generated Heyting algebras with operators (HAOs) together with
complete HAO-homomorphisms. Although this construction does not depend on atoms, it does depend on

lattice-completeness for the arbitrary meets in the definition of h,, so we cannot use it for V-BAOs in general.

Theorem 5.18 (From BAO-Homomorphisms to Possibility Morphisms). For any CV-BAOs A and A’ and
complete BAO-homomorphism h: A" — A, define hy: A, — Al by hy(z) = N{z' € A’ | z < h(z')}. Then:

. hp is a p-morphism;

. if h is surjective, then h; is a strong embedding;

1

2

3. if h is injective, then hj is surjective;

4. if f: A — A is the identity map on A, then f, is the identity map on Ap;
5

. for any CV-BAOs A, B, and C and complete BAO-homomorphisms f: A -+ B and g: B — C, (go f), =
fp O Gp-
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Proof. We begin by verifying that h, is indeed a function to the domain of A}, which is that of A" minus 1.
This requires that for = € A,, so 2 # L, we have hy(z) # L’. Indeed, if hy(z) = AN'{2' | © < h(a')} = L,
then since h is complete, A{h(2’) | z < h(2’)} = L, which implies < L, contradicting  # L. Since L is
not in the domain of h, and L’ is not in its range, we may write h,(z) = \'{z’ € Al |z € h(a2)}. Here C
and C' are the refinement relations in A, and A;, respectively, as in Definition 5.14.

Now we make several observations about hp:

(a) y C x implies hy(y) T’ hp(z). For if y C z, then 2 T h(z") implies y C h(2'), so {z' | x C h(2')} C {7’ |
y T h(z")}, so {2 |y Ch(z)} C N'{#' | 2 C h(2)}, which means hy(y) C’ hy(x).

(b) hy(h(y") E" y'. By definition of hp, hp(h(y')) = A'{2" | h(y') © h(z)}, and ¢’ € {2/ | h(y') T h(z")}.

(c) @ C h(hy(z)). By definition of hy, h(hy(z)) = h(A'{z' | z C h(2")}); since h is a complete homomor-
phism, h(A'{2" | 2 € h(2)}) = AM{A(') | = C h(z')}; and @ © A{h(2) | = € h(2')}.

(d) hp(z) C' o iff x C h(y'). Since hy(z) = N'{2' | © C h(2')}, clearly x C h(y’) implies hy(x) T’ y'. In the
other direction, hy(z) T’ v implies h(hy(x)) C h(y’), which with (c) implies x C h(y').

(e) hp(fi(z)) = f/(hp(z)), where f; and f/ are the residuals of M; and W, respectively, which exist since
A and A’ are CV-BAOs and hence CT-BAOs (Fact 5.2). By (d), hp(fi(z)) T ¢ iff fi(z) T h(y').
Since f; is the residual of M;, the right side of the ‘iff” is equivalent to z T M;h(y’) = h(M,y’), which
by (d) is equivalent to hy(z) T’ Wy, which by the fact that f] is the residual of W, is equivalent to
fi(hp(x)) E"y'. Thus, for any y" € Ay, hp(fi(z)) E"y" iff fi(hp(z)) E" v/, s0 hp(fi(z)) = fi(hp(2)).

Observation (a) shows that h, satisfies C-forth. Next, we show:

o if y' T/ hy(z), then Jy: y C = and hy(y) = ' (p-C-back);

e if xRy, then hy(x)R'hy(y) (R-forth);

o if hy(x)R'y', then Jy: xRy and hy(y) =y’ (p-R-back).

Since A}, is a full possibility frame by Theorem 5.17.3, the pull back property of h, follows from C-forth and
C-back by Fact 3.5.

For p-C-back, suppose 3y’ T’ hy(x). First, we claim that h(y’) Az # L. If not, then x T —h(y') = h(—y/'),
which by (a) and (b) implies hy(z) T hy(h(—y')) T —y’. But then ¢ T’ hy(x) C' —y/, so ¢y = L/,
contradicting y" € Aj. Second, we claim that h,(h(y') Ax) T' y'. By (a), hp(h(y') Az) E hy(h(y')), and by
(b), hp(h(y')) T' ¥/, so hy(h(y') Ax) " y'. Third, we claim that y' T’ hy(h(y’) A z). By definition of hy, it
suffices to show that y' C 2’ for all 2’ € A} such that h(y') Az C h(2"). From h(y’) Az E h(z’), we have
x € —h(y")Vh(z') and hence x C h(—y’'Vz'), which by (a) and (b) implies hy(x) T hy(h(—y' V') T —y'va'.
Then since y' T’ hy(z), it follows that y' T’ 2, as desired. Thus, we have shown that hy(h(y') A z) = ¢/, so
setting y = h(y') A = completes the proof of p-C-back.

For R-forth, if R;y, then y C f;(z) by Lemma 5.15, so hy(y) T’ hy(fi(z)) by (a), so hp(y) T fi(hp(z))
by (e), so hy(x)R;hp(y) by Lemma 5.15.

For p-R-back, suppose hy(z)R;y’. First we claim that f;(z) A h(y') # L. If not, then f;(z) T —h(y’),
which by residuation implies  C B;—h(y’) and hence x T h(W;—y’), which by (a) and (b) implies hy(z) C
hp(h(W,—y')) C W,—y’, which contradicts hy(z)R}y’. Second, we claim that y' T h,(f;(xz) A h(y')). Since
he(z)R}y', we have ¢y T' fl(hy(z)) by Lemma 5.15, so ' T’ hy(fi(x)) by (e). Then since hy(fi(z)) C
he(fi(z) ANR(y')) by (a), we have y' T hy(fi(x) AR(y')). Third, we have hy(fi(z) Ah(y')) C y' by (d). Thus,
we have shown that hy(fi(z) A h(y')) =y, so setting y = fi(x) A h(y’) completes the proof of p-R-back.
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For part 2, assuming h is surjective, we must show that (i) hp(y) T’ hp(z) implies y C z (so h is injective),
(ii) hp(x)R;ph(y) implies 2Ry, and (iii) for all X € P there is an X’ € P’ such that hy[X] = hp[S] N X/,
where S is the domain of A,. For (i), if hp(y) T’ hp(z), then

AN{y e A |y <hy)} < N{z' € A | 2 < h(z))} by definition of h, and C’
= hA{Y €A |y<h)}) <hN{2z' € A |z <h(z')}) since h is a homomorphism
= A{©) |y <h)} <A@ |z < h(z)} since h is complete
= y<z since h is surjective,

so y C z since y € A,. For (ii), if hy(x)R;hp(y), then by Lemma 5.15, hy(y) T f/(hp(x)), which with (e)
implies hy(y) &' hp(fi(x)), which with (i) implies y C f;(z), which with Lemma 5.15 implies R;y. Finally,
for (iii), suppose X € P, so by Definition 5.14.5, either X = () or X = |z for some non-minimum element z
of A. If X = (), we can take X’ = ). So suppose X = |z. Let X’ = |'hy(z). Then X’ € P’ by Definition
5.14.5. It only remains to show that hp[lz] = hp[S] N hy(z). Suppose y' € hp[lz], so there is a y C =
such that hy(y) = y'. Then by T-forth, y' = hy(y) T’ hy(z), so y' € hp[S] N 'hy(z). In the other direction,
suppose y' € hy[S] N | hy(x), so there is a y € S such that y' = hy(y) T’ hp(z). Then by (i) above we have
y C x, which with y’ = hy(y) implies ¥’ € hy[lx]. This completes the proof of part 2.

For part 3, assuming h is injective and y' € A, we claim that h,(h(y')) = y'. As in (b) above, by
definition of hy, hy(h(y')) = N'{2' | h(y') C h(z')}, and v’ € {2’ | h(y') C h(2')}. Now we claim that v’ is
the minimum of {2’ | h(y’) C h(2’)}, which implies h,(h(y")) = y'. For suppose 2z’ is a member of the set, so
h(y") C h(z'), and 2’ C ¢'. Then since h is a homomorphism, h(z") C h(y’), which with h(y") C h(z’) and
the injectivity of h implies ¢y’ = 2’. Hence hy(h(y')) = ', which shows that h, is surjective.

Parts 4-5 are easy to check. O

From Theorems 5.17.3 and 5.18, we obtain the second piece of our categorical picture.

Corollary 5.19 (The (-), Functor). The (), operation given by Definition 5.14 and Theorem 5.18 is a
contravariant functor from CV-BAO to RichPoss.

5.3 (-), and (-)°, and Dual Equivalence with Rich Frames

Let us now consider the relation between (), from § 5.2 and (+)® from § 5.1. We begin by relating an arbitrary
V-BAO A to the underlying BAO (Ap)b of its principal frame Ap. In § 5.8, we will relate an arbitrary V-BAO
to the underlying BAO (A,)° of its full frame A,. Recall that for a CV-BAO A, A, = A,,.

Theorem 5.20 (From BAOs to Frames and Back). Given a V-BAO A whose associated Boolean lattice is
(A, <) with minimum L, define ¢4 A — (A,)° by Ca(z) = {2/ € A\ {L} | 2’ <z}. Then:

1. If A is a V-BAO, then (, is a complete BAO-isomorphism.

2. If A and B are CV-BAOs, and h: A — B is a complete BAO-homomorphism, then (h,)® o (s = (g o h,

so the following diagram commutes:



Proof. For part 1, it is straightforward to check that (4 is a complete Boolean algebra isomorphism, so we
only show that it respects the operators. Let A = (A, A, —, T, {M;};c;). Forx € A, ¢y (Wi2) = {y € A\{L}]
y < WAz} by the definition of (4, and B™) ¢, (z) = {y € A\ {L} | R*(y) C ¢u(2)} by Definition 5.4 and
the fact from Definition 5.14 that A, = A\ {L}. So we must show that for all y € A\ {1}, y < Bz iff
Rf"(y) C (a(z). Suppose y < B2z and consider a z such that ny”@ which means that for all 2’ such that
1L #2 <z yAz # L Tt follows that 2 < =, for if z £ 2, then z A —x # L, so by the previous step,
y A #2(z A —x) # L, which implies y A #*—x # L, which contradicts y < B*z. In the other direction, if
y £ Wiz, then y A —B2z # 1, soy A4~z # L. Then since A is a V-BAO and hence an R-BAO by Lemma
5.13, by Definition 5.11 there is a z such that 1 # z < —x and ny”z. Then z £ z, so Rf"(y) Z Ca(x).
For part 2, let 1, and 1p be the minimums of A and B, respectively. For a € A, we have

(hp)b(CA(a)) = (hp)b({al € A\{Lla}|d <a}) by definition of (a
= hy'[{a' € A\ {14} |d <a}] by definition of (-)°
= {be B\ {Llg}|hy(b) <a} by definition of (-)~!

{be B\ {le} | AN{zr € A|b<h(z)} <a} Dby definition of (-),
— {be B\ {Ls}|b< h(a)} 1)
= (g(h(a)) by definition of (.

For (1), if b < h(a), then a € {x € A | b < h(z)}, so A{x € A | b < h(z)} < a. In the other direction, since
h is a complete BAO-homomorphism, we have

/\{xeA|b§h(m)}§a
= h(A\{zeAlb<h(@)}) < ha)
= /\{h(m) | z € A and b < h(z)} < h(a)
= b < h(a),

which completes the proof. O

In the other direction, going from a possibility frame F to (F' b)p, this transformation is only well-defined
if 7° is a V-BAO (recall Definition 5.14), which is guaranteed if F is a full or principal possibility frame
(Theorem 5.6.2-3). If F = (S,C,{R;}icr, P) is full or principal, then by Definitions 5.4 and 5.14, (FP?),
is such that S = P\ {0}, X CF)» Y iff X C Y, and PP ) is the set of all principal downsets in
<S(fb)9, Q(}-b)9> plus (). In contrast to Theorem 5.20, clearly (FP), is not guaranteed to be isomorphic to
F, since (F b)p is always a principal possibility frame, with its poset a Boolean lattice minus L. Even if
F is a principal frame, it might not be isomorphic to (F b)p, because the relation RE}-b)" may relate more
possibilities than R; does. To get an isomorphism we need to start with principal frames that are tight as in

§ 4.5. (Since all principal frames are C-tight by Fact 4.39, the requirement we have in mind here is R-tight.)

Proposition 5.21 (Tight Principal Frames and BAOs). A possibility frame F is possibility-isomorphic to
(F b)p iff F is a tight principal possibility frame.

Proof. For the left-to-right direction, by Theorem 5.6.3, for any principal possibility frame F, F® is a V-
BAO, and by Theorem 5.17.1, for any V-BAO A, A, is a tight principal possibility frame. Thus, (F?), is a
tight principal possibility frame, so any isomorphic frame is too.

The right-to-left direction follows from Theorem 5.24.1 below. O
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Recall from § 4.7 that rich possibility frames are equivalent to tight principal possibility frames that are

lattice-complete (Fact 4.51). Rich frames arise now thanks to Proposition 5.22.1.

Proposition 5.22 (From Full Frames to Rich Frames and Functional Frames). If F = (S,C,{R;}ics, P) is
a full possibility frame, then:

1. (F®), is a rich possibility frame;

2. the relation B in (F?), is given by XR Y iff Y C int(cl(JRi[X])):

3. (FP), can be functionalized (Proposition 4.28) by fi(X) = int(cl(}R;[X])).

Proof. Part 1 is immediate from Theorems 5.6.2 and 5.17.3. Part 2 is immediate from Observation 5.7 and

Lemma 5.15. Part 3 is immediate from part 2 and Proposition 4.28. [

Before proving the right-to-left direction of Proposition 5.21, we will show that if F is an arbitrary full
or principal frame, then although we are not guaranteed that F is isomorphic to (FP),, we are guaranteed

a rather close connection. For the following, recall the terminology for morphisms from Definition 3.2.

Theorem 5.23 (From Frames to BAOs and Almost Back). Given a full or principal possibility frame F
whose associated poset is (S, C), define (x: F — (FP), by (#(x) = {2’ € S | 2’ T x} (recall Definition 4.1).
Then:

1. (F is a strict, dense, and robust possibility morphism from F to (.Fb)p;

2. if F is separative, then (r is a C-strong embedding;

3. if F is separative and strong, then (r is a strong embedding.

Note that if F is full, then Fact 4.3 implies that (#(z) € P7; and if F is principal, then Lemma 4.40
implies that C; =C, so (r(z) = {2’ € S |2/ C a2} € P7. Thus, (#() is indeed in the domain of (FP),.

Proof. Let F = (S,C, {Ri}icr, P) and (F°), = (SF, T (R "), PF")). We begin with the
observation (%) that if X € S and z € X, then by Fact 4.2, Cr(z) C X, s0 (r(x) CF X. Since each
X e S¥ is nonempty, it follows that there is an x € S such that (z(x) CF% X, so (F is dense in the
sense of Definition 3.2.10. For the special features of robust morphisms, we must show that for all X € P,
CFIX] = ¢FHCF[X]) and there is an X' € PU)» such that ¢x[X] = (£[S] N &X’. Since Cx[X] C (7L ¢F[X]]
is immediate, we begin with (#[X] D (='[¢#[X]]. If (#(y) € (#[X], then for some = € X, (#(y) = {y' € S |
Y Csyt =Cr(x) ={2’ € S| 2’ Cs z}. Hence y C; x, which with z € X and Fact 4.2 implies y € X, so
Cr(y) € CFIX]. Thus, C#[X] D ¢(2[¢F[X]]. For the required X", take X’ = {Y € (F°), | Y CF) X}, so
by (%), (#[X] C &’ and hence (+[X]| C (#[S]NA’. In the other direction, if Y € (x[S]N A", then there is a
y € S such that Y = Cx(y) € X, so (x(y) TP X and hence ((y) € X. Then y € X, so (x(y) € ([ X]
and hence Y € (#[X]. Thus, (#[X] 2 ¢£[S]NX".
For the rest of part 1, we show that (# satisfies:

o if y C 2, then (r(y) TV Cx(x) (C-forth);

o if Y T Cr(x), then Jy: y C z and (#(y) CEF%y (C-back);

o if 2Ry, then Cr(a) R Cr(y) (R-forth);

o if C]:(a:)RZ(-]:b)"Y and Z "% Y, then Jy: 2R,y and Cr(y) Q(]:b)P Z (R-back).
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Since F is a rich and hence full possibility frame, the pull back property of ( follows from C-forth and
C-back by Fact 3.5. For C-forth, if y C z, then (#(y) C (r(x), so (#(y) CEe ¢r(z). For C-back, if
Y E(}-b)*’ Cr(x),so0Y C{z' € S|z C; a}, then there is a ¢y’ € Y such that y' T, x, which implies that
there is a y C 3 such that y C x. Since Y satisfies persistence and refinability, from 3/ € Y and y C ¢y’ we
have that {2/ € S| 2’ T, y} C Y by Fact 4.2, so (#(y) CF ) Y.

To show that (r satisfies R-forth, we use the fact from Corollary 2.31 and Proposition 4.42 that any full
or principal possibility frame satisfies R=win from § 2.3, plus the definition of ¢;Y" from Fact 2.43:

xRy
= VW CyI CaVa” Ca' Iy 2"Riy” and v () y” by R=win
= VY eP:if0#Y C(x(y), then since every Y € P
Cr()N{z’ € S| Va" Ca’'Jy": 2" Riy” and Iy Cy”: ¢y € Y} £ is a downset
& VYeFhif 1P £y < Cr(y), then (r(x) N @Y £ 1P by definition of (-)® and ¢,
=3 Cy:(x)Rgfb)”C]:(y) by definition of ().

For R-back, suppose that (;(x)REfb)"Y and Z TP e Y. By definition of (-), (Definition 5.14), it follows
that (r(z) A €, Z # L, ie,

{2’ €S2 Ciazyn{s’ € S|Va" Ca'3z: 2" Rz and 32’ C 2: 2" € Z} # 0.

So there is an 2’ T, z such that for all 2”7 T 2’ there is a z such that 2”R;z and a 2z’ C z such that
Z € Z; since ' T4 x, there is an z” C z’ such that z” C z; and since z” C z/, there is a z such that
2" R;z and a 2z’ C z such that z’ € Z. Then since 2’ € Z, it follows by (x) above that (#(2’) CF% Z. By
R-rule (Corollary 2.31, Proposition 4.42), together 2"/ C z, 2" R;z and z’ C z imply there is a y such that
zR;y and y () 2/, so there is a 2" with 2’ C y and 2” C 2’. Thus, by R-forth, (#(z") CEe ¢r(y) and
Cr(2") TF (#(2'), which with (') TP Z implies C#(y) (%) Z. This establishes R-back.

For part 2, if F is separative, then (r(x) = Jo = {2/ € S| 2/ C z}. Then since C is a partial order, we
have y Cx iff {y € S|y Cy} C{a’ € S |2 C z} iff (x(y) CF ¢F(z), which also shows that (r is
injective. Since we already showed that (r is robust, it follows that (x is a C-strong embedding.

For part 3, all we need to add to part 2 is that zR;y iff C;(a:)RZ(.fb)”Cf(y). If F is not only separative
but also strong, i.e., satisfies R<>win from § 2.3, then using the definition of ¢;Y assuming R-down from
Fact 2.43, we have:

TRy

& VY Cydr' Cave’" Ca' ' Cy': 2" Ryy” by R&win

& VY eP:if #£Y Cly, then since every Y € P is a downset
lzn{z' € S|Va"Ca' " €Y :a"Ry"} #0 and Vy' C y: |y’ € P by Fact 4.6.1

& VY eFbiif 17" £V <% |y, then lz AT #;Y # L7 by definition of () and #;

= LxRE}—b)"iy by definition of (-),

& C;(QC)R,(;}—b)“C;(y) by definition of (F,

which completes the proof. O

We are now ready to prove the analogue of Theorem 5.20 going from F to (F b)p.
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Theorem 5.24 (From Frames to BAOs and Back).
1. If F is a tight principal possibility frame, then (# is an isomorphism.
2. If F and G are rich possibility frames, and h: F — G is a possibility morphism, then (hb)p o(r = {(goh,
so the following diagram commutes:

h

F—"—>g

(F*)p ———> (@")

(h*), "

Proof. Since we are dealing with principal frames, we have (r(x) = lz = {2’ € S| 2/ C z}.

For part 1, by Fact 4.39 and Proposition 4.42.2, every tight principal frame is separative and strong, so
by Theorem 5.23.3 we have that (r is a strong embedding. Moreover, since the domain of (F b)p is the set
of principal downsets in F, and (x(z) = | = {2’ € S | 2’ C z} since F is principal, we have that (r is
surjective. Then since a surjective strong embedding is equivalent to an isomorphism, (r is an isomorphism.

For part 2, assuming F and G are rich possibility frames, F° and G° are CV-BAOs by Theorem 5.6.2.
Thus, for any possibility morphism h: F — G, which gives us the complete BAO-homomorphism h®: F® —
G® as in Theorem 5.9, we can form the possibility morphism (h°),: (F?), — (G®), as in Theorem 5.18. Now

for x € S7, we have:

(hP)poCr(z) = (hP),({a' € S |2/ CF 2}) by definition of (#
= NMX € (@GP, ]|{a’ €SP |a' Tz} CF% hP(X)} by definition of ()p
= MXe€(G®, | {2/ eSF |2/ CF 2} T h=1[X]} by definition of (-)°
= ANX €@, | {2/ €SP |2 2} ChX]} by definition of (F®),
= NX € (G, |Va'CTF z: h(2)) € X} by definition of h~!
= {yes9 |y hx)} (%)

= (g(h(z)) by definition of (g.

For (1), since G is a rich and hence principal frame, Definitions 5.14 and 5.4 imply that the domain of (G),
is the set of all principal downsets in G, so |9h(z) = {y € S9 | y CY h(x)} is in (GP),. Moreover, Fact 4.44
implies that for all 2/ CF x, h(z’) CY h(x), so h(z') € [9h(x), which implies |9h(z) € {X € (GP), | V2’ CF
x: h(z') € X}. Now consider any X € (G°), such that Va’ C7 2: h(2’) € X, so in particular, h(z) € X.
Then since X is a downset in G, igh(m) C X, so igh(w) E(gb)f’ X. Putting it all together, we have shown
that |“h(z) is the greatest lower bound of {X € (G®), | V2’ TF z: h(z') € X} in (G®),, as (1) claims. [

Putting together Theorems 5.20 and 5.24 and Corollaries 5.10 and 5.19, we have the following ana-
logue of Thomason’s [1975a] dual equivalence result for the categories of CAV-BAOs with complete BAO-

homomorphism and of Kripke frames with p-morphisms.

Theorem 5.25 (Dual Equivalence). CV-BAO is dually equivalent to RichPoss.

5.4 Reflection with Rich Frames

Next we observe that RichPoss, whose morphisms are p-morphism, is a full subcategory of FullPoss, who

morphisms are strict possibility morphisms.
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Proposition 5.26 (Full Subcategory). Every possibility morphism between rich possibility frames is a

p-morphism.
Proof. Immediate from Theorems 5.18.1 and 5.24. O

In fact, we will show that RichPoss is a reflective subcategory of FullPoss. Recall that this means it
is a full subcategory such that for any full frame F, there is a rich frame R(F) and a FullPoss-morphism
r: F — R(F) such that for any rich frame G and FullPoss-morphism g: F — G, there is a unique RichPoss-
morphism g: R(F) — G such that g = gor.3" The pair (R(F),r) is called the reflection of F in RichPoss.
We will take as the reflection of F the pair ((F?),,(#) with (# from Theorem 5.23. We already showed in
Theorem 5.23.1 that (r is a strict possibility morphism and hence a morphism in FullPoss.

Theorem 5.27 (Rich Reflections). For any full possibility frame JF, rich possibility frame G, and possibility
morphism g: F — G, define g: (F?), — G such that for X € (F?),, g(X) = V g[X], where \/ is the join
operation in the complete Boolean lattice underlying the rich frame G. Then:

1. g is a p-morphism;

2. g is the unique possibility morphism from (F®), to G such that g = go (r, so the following diagram

commutes:

Q|

Proof. For part 1, we use the fact that since G is rich, the map (g: G — (G®), is an isomorphism by Theorem
5.24.1, and the map (g®), : (F®), — (G®), is a p-morphism by Theorem 5.18.1. Thus, to show that g is a
p-morphism, it suffices to prove that g = Cg_l o (g°)p, or equivalently, (g o g = (g°),. On one hand, for each
X € (g°), we have:

GE(X) = {2'€G|2’C9g(X)} by definition of (g
{2’ € G |2’ CY9G(X)}  since G is rich and hence separative
{2/ € G| 2" CY9\/g[X]} by definition of g.

On the other hand, for each X € (¢°), we have:

(0®)p(X) = A{Y €(G®),| X <9 ¢°(Y)} by definition of (-),
= ANY €(G®,| X Cgl[Y]} by definition of (-)°
= MY €(G®,| X Cg[Y]} because G is full

(G°)

= MY € (G, |glX]CY}

If Y € (G®),, then since G is rich and hence principal, Y = {y’ € G | ¥’ CY9 y} for some y € G, so g[X] C YV
implies \/ g[X] CY y, which in turn implies (g(g(X)) C Y. Thus, (g(g(X)) C (g°)p(X). Conversely,
9[X] € Co(9(X)) € (G°)p. 50 (g(T(X)) € {Y € (G°)p | 9[X] € Y} and hence (g(g(X)) 2 (9°)p(X).

31Sometimes this is not taken to be the definition of being a reflective subcategory, but rather a condition that is proved
equivalent to being a reflective subcategory (e.g., Balbes and Dwinger 1974, §1.18).
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For part 2, by Theorem 5.24.2 we have (¢°), o (x = (g o g. Since G is rich, by Theorem 5.18.1, (g is
an isomorphism. Hence (¢g°), o (x = (g o g implies Cg_l 0 (g°)p o (r = g. Then since we showed above that
g=¢"

Finally, we prove that g is the unique possibility morphism from (FP), to G such that g = g o (r.

o (g°)p, we conclude that go (x = g, as desired.

Suppose h is a possibility morphism from (]—'b)p to G such that ¢ = h o (r. First, we claim that for all
X € (F?)p, V g[X] CY h(X). If not, then there is an = € X such that g(z) Z9 h(X). Then since g = ho (r,
we have h((x(z)) Z9 h(X). Since X € (F®),, X is closed under C7 by Fact 4.2, so z € X implies
(r(z)={2' €S |2 Cf 2} C X, so (x(x) CF% X. By Fact 4.44, h satisfies C-forth, so Cr(x) CO X
implies h((r(x)) CY h(X), contradicting what we obtained above. Thus, \/ g[X] C9 h(X). Second, we
claim that A(X) 9 \/ g[X]. If not, then there is a Y’ £9 h(X) such that in the Boolean algebra associated
with G’s poset, Y/ A\/ g[X] = L. By Fact 4.44, h satisfies C-back, so Y’ C9 h(X) implies that there is a
Y € (F*), such that Y T X and h(Y) C9 Y. Thus, Y’ A\ g[X] = L implies h(Y) A\ g[X] = L, which
implies that for all z € X, h(Y)Ag(x) = L. Since Y CEe X,YNX #@,sotake an x € YN X. As above,
since Y € (FP),, z € Y implies (r(z) = {2/ € S |2’ CT 2} C Y, so (#(x) CF% Y, which with C-forth
for h gives us h(Cr(x)) CY h(Y) and hence g(x) CY h(Y'), which contradicts h(Y) A g(z) = L above. Thus,
h(X) C9 \/ g[X]. We have shown that h(X) =\/g[X], so h = g by the definition of g. O

From Theorems 5.23.1, 5.26, and 5.27 and the definition of reflective subcategories, we obtain our desired

result.

Theorem 5.28 (Reflective Subcategories). RichPoss is a reflective subcategory of FullPoss.

5.5 From Arbitrary BAOs to Possibility Frames

Going beyond V-BAOs, any BAO can be transformed into a semantically equivalent world frame and hence
possibility frame, namely its general ultrafilter frame (see Appendix § A.3). Below we give another way
of transforming any BAO into a semantically equivalent possibility frame, namely its general filter frame.
While worlds must come from ultrafilters, possibilities can come from any proper filters.

Recall that a proper filter in a BAO A = (A, A, —, T,{l;};cs) is a nonempty F' C A such that for all
x,y € A: x,y € F implies x Ay € F (F is downward directed); if z < y and = € F, then y € F (F is an
upset); and L ¢ F, which with the previous condition is equivalent to F C A (F is proper).

Definition 5.29 (Filter Frames and General Filter Frames). Given a BAO A = (A,A,—, T, {l; }icr) and
algebraic model M = (A, 0), we define the filter frame A¢ = (S,C,{R;}icr, P¥), the general filter frame
Ag = (S,C,{Ri}ier, Pg), and Mg = (S,C,{R; }ics, ) as follows:

1. S is the set of proper filters in A;
XCYif X2DV;
XR)Y iff for all x € A, if Bz € X then z € Y

where 7 ={X €S|z e X}, Fp={2 |z € A};

2.

3.

4. P =RO(S,C) (recall Notation 2.19);

5.

6. m(p) ={X € S|0(p) € X}. 4

As observed by Stone [1936] and Tarski [1937b], the set of ideals of a Boolean algebra ordered by inclusion
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(I < I'iff I CI') forms a complete Heyting algebra.? The same holds for the set of filters of a Boolean
algebra ordered by inclusion, which is isomorphic as a lattice to the set of ideals ordered by inclusion. But
note that in Definition 5.29.2 we order the (proper) filters by reverse inclusion. The set of filters of a Boolean
algebra ordered by reverse inclusion is therefore what is known as a complete co-Heyting algebra. Thus, the
(general) filter frame of a BAO is always based on a complete co-Heyting algebra minus its bottom element.

The following notation and fact about filters will be useful in what follows.

Fact 5.30 (Filter Generated by a Subset). Given a BAO A = (A, A, —, T,{l;};icr) and X C A, let [X) be
the smallest filter in A that contains X, which must exist because the intersection of filters is a filter. Then
[X)={z€A|3m,....2neX|z1AN... Nz, <z}. Foryec A [{y}) =ty={xr e Ay <z}

While the claim made above about the relationship between a BAO and its general ultrafilter frame
requires going beyond ZF set theory, since it requires the use of the ultrafilter axiom, our claim about the
relationship between a BAO and its general filter frame does not go beyond ZF. For the following result,
recall the notions of strong frames from Definition 2.36 and of tight frames from Definition 4.32. Also recall
that we say ¢ is satisfiable over a BAO A iff there is some algebraic model (A, 6) with é(ap) # 1.
Theorem 5.31 (From BAOs to Possibility Frames). For any BAO A and algebraic model M = (A, 6):

1. Ag is a strong and tight possibility frame, and A¢ is a strong, tight, and full possibility frame;
2. M is a possibility model based on A, and Ags;
3. for all p € £L(®,]) and X € Ag: Mg, X I ¢ iff 0(p) € X;
4. for all p € L(®,1) and = € A: x C 0(y) iff My, 1 IF ¢;
5. for all p € L(D,1), if ¢ is satisfiable over A, then ¢ is satisfiable over A and Ays.
Proof. For part 1, we first show that P, is closed under N, D, and I?g as in Definition 2.1, so Ag is a

partial-state frame. (Note the distinction between I?g and M;, the latter being the operator in A.) Since
I1=0,0€ P,. Now consider X,) € P, so there are x,y € A such that X =7 and Y = 3. We claim that:

(i) 2ng = Ay;
() 207={Z2€e€S|VZCZ:Z ci=2cfjl=-aVy;

(iii) M2 ={Z € S| Ri(Z) C 7} = Mz

For part (i), for any Z € S, we have: Z e TNy iff z,y € Ziff x Ay € Z (since Z is a filter) iff Z € T A y.
Part (ii) is also easy to check. For part (iii), we have Z € W if Mo e Z iff (by the definition of R;) for
every Z' € Ri(Z), z € Z', i.e., Z' € Z, which is equivalent to R;(Z) C Z.

Second, we show that P, C RO(S,C), i.e., every X' € P, satisfies persistence and refinability, so Ag is a
possibility frame. By definition of Py, X = 7 for some = € A. For persistence, if X' C X, so X’ D X, and
X €Z,s0x € X, then x € X’ and hence X’ € Z. For refinability, if X € T, so x ¢ X, then X' = [X U{—z})
is a proper filter, and X’ O X, so X’ C X. Moreover, for every proper filter X" C X', ie.,, X" D X', we
have z & X", so X" ¢ T. Thus, 7 satisfies refinability.

Third, to see that Ag is R-tight, suppose that not X R;Y, so by Definition 5.29.3 there is some z € A
such that M,z € X but z ¢ Y. Then X € Wz but Y ¢ Z. It follows by (iii) above that X € B.*Z but
Y ¢ Z, and by definition of Py, ¥ € Py. Thus, if for all Z € B, X € B%: Z implies Y € Z, then XR;Y. So

32Since the lattice of open sets of any topological space is a complete Heyting algebra, also known as a locale, the observation
also follows from the fact that the lattice of ideals of a Boolean algebra is isomorphic to the lattice of open sets in the dual
Stone space [Stone, 1937]. The lattice of ideals of a Boolean algebra is therefore a compact and zero-dimensional locale.
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Ag is R-tight. For C-tight, if Y £ X, so Y 2 X, then taking an « € X such that « € Y, we have X € T but
Y €%, and Z € Py. Thus, if for all Z € P, X € Z implies Y € Z, then Y T X. Hence A, is C-tight.

Finally, since A, is tight, to show that A; is strong it suffices by Fact 4.34.2 to show that it satisfies
R-refinability. To that end, consider proper filters X and Y such that X R;Y. Where

X'=XU{#ylyeY} (12)

suppose for reductio that [X') is not a proper filter, i.e., L € [X’). Then by (12) and Fact 5.30, there are
T1,...,Tm € X and y1,...,yr € Y such that

TAIN . NT, AOYL A A Wy < L

which implies
YN ANy < Bi—(y1 AL A k) (13)

by the properties of ¢; and B; (see Definition A.8). Since X is a filter, x1,...,x,, € X implies z1 A... Az, €
X, which with (13) implies B;—(y1 A ... Ayx) € X, which with XR;Y implies —(y1 A ... Ayg) € Y, which
contradicts the facts that y1,...,yx € Y and Y is a proper filter. Thus, X’ = [X') is a proper filter.

Now consider any proper filter X" C X', i.e., X" D X’. Where

Y =Y U{z|Mze X"}, (14)

suppose for reductio that [Y’) is not a proper filter, i.e., L € [Y’). Then by (14) and Fact 5.30, there are
Y1, Ym €Y and Bz, ..., Br, € X" such that

YA AY AT A AT < L

which implies

by the properties of W;. Since Y is a filter, y1,...,ym € Y implies y1 A.. . Ay, € Y, which with X’ = [X') and
(12) implies ¢;(y1 A...Aym) € X'. Then since X" D X', we have ¢;(y1 A...Aym) € X”. On the other hand,
since X" is a filter, Mz, ..., Mz, € X” and (15) together imply B;—(y1 A ... Aym) € X”. The previous two
points contradict the fact that X" is a proper filter. Thus, Y’ = [Y’) is a proper filter. Moreover, by (14),
X"R;Y'. So we have shown that 3X' C X VX" C X' 3Y' C Y: X”R;Y’, which establishes R-refinability.

For the claim about A¢ in part 1: since Ag is strong, As is also strong, since they have the same = and
R; relations; then by Proposition 2.30, RO(S,C) is closed in the ways required for a partial-state frame,
which with P = RO(S,C) means that A¢ is a full possibility frame; and then since As is full and strong, it
is R-tight by Fact 4.34.3; and since Ay is full and clearly separative, it is C-tight by Fact 4.33.2.

For part 2, that 7(p) € Py is immediate from Definition 5.29.5-6, so M is based on A4, and P, C P, so
M is based on Af as well.

For part 3, the proof is by induction on ¢. The base case is immediate from the definition of 7 in
Definition 5.29.6. The — and A cases are also straightforward. For the [J; case, if M, X ¥ [J;¢, then there is
aY € S such that XR;Y and M,Y W ¢, which with the inductive hypothesis implies é(g@) 'Y, which with
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XR;Y implies Iié(go) ¢ X and hence é(ljigo) ¢ X. In the other direction, suppose é(ljigo) g X. Where
Y ={y|MyecX}u{-0(p)}, (16)

suppose for reductio that [Y) is not a proper filter, i.e., L € [Y). Then by (16) and Fact 5.30, there are
my,... Ly, cX such that

YA AN Y A —0(p) < L,
which implies

Wy A ARy, <B6(p) (17)
by the properties of B;. Then since X is a filter, B;yq, ..., By, € X implies B;y; A ... ARy, € X, which
with (17) implies M;0(¢) € X and hence A(C;p) € X, contradicting our initial supposition. Hence Y = [Y)
is a proper filter, which with (16) implies é(cp) ¢ Y and hence Mg, Y ¥ ¢ by the inductive hypothesis. Also
by (16), we have X R;Y, which with Mg, Y I¥ ¢ implies Mg, X ¥ O, .

Part 4 is immediate from part 3: Mg, 7z I ¢ iff 0(p) € 1z iff 2 C 0(y).

Part 5 is immediate from parts 2 and 3. O

While Theorem 5.31 shows that satisfiability of formulas is preserved in moving from a BAO to its filter
frame or general filter frame, adding to Theorem 5.31 the following obvious lemma shows that unsatisfiability
of formulas is also preserved in moving from a BAO to its general filter frame. Note, by contrast, that we

cannot always turn a possibility model based on Af into an equivalent algebraic model based on A.

Lemma 5.32. Given a BAO A = (A, A, —, T,{M, },cr) and a possibility model M = (A4, 7) based on A,
define M_; = (A, m_4) with m_g: ® — A given by m_g(p) = x for the x € A such that n(p) = {X € Ag |
x € X}, which must exist by Definition 5.29.4 and the fact that M is based on A;. Then (M_g)g = M.

Thus, we arrive at our desired result on the modal equivalence of a BAO and its general filter frame.

Theorem 5.33 (Semantic Equivalence of BAOs and General Filter Frames). For any BAO A and ¢ €
L(®,1I), ¢ is satisfiable over A iff ¢ is satisfiable over A,.

Proof. The left-to-right direction is given by Theorem 5.31.5. From right to left, if ¢ is satisfied in a possibility
model M based on Ag, then by Lemma 5.32, it is satisfied in the possibility model (M_g)g, in which case
by Theorem 5.31.3 it is satisfied in the algebraic model M _; based on A. O

Not only is every BAO semantically equivalent to its general filter frame, but also homomorphisms

between BAQOs transform into possibility morphisms between their general filter frames as follows.
Theorem 5.34 (From BAO-homomorphisms to Possibility Morphisms II). For any BAOs A and A’ and
BAO-homomorphism h: A’ — A, define hg: Ag — Al by hg(X) = h~'[X]. Then:

1. hg is a p-morphism;

2. if h is surjective, then hg is a strong embedding;

3. if h is injective, then hg is surjective;

4. as a function from A¢ to Af, h, still satisfies parts 1-3;

5

. if f: A = A is the identity map on A, then f; is the identity map on Ag;
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6. for any BAO-homomorphisms f: A -+ B and g: B = C, (go f)g = fg 0 ge-

Proof. For part 1, that hg is a function from A, to A’g, i.e., sending proper filters from A to proper filters from
A’ follows from the definition of hy and the fact that h is a homomorphism. Where A, = (S, T, {R; }icr, Py)
and A = (S",C', {R}}ic1, Py), we will show that for all proper filters X,Y from A and Y’ from A’:

o if Y C X, then hg(Y) T’ he(X) (C-forth);

o if Y/ T’ hg(X), then 3Y: Y C X and hg(Y) =Y’ (p-C-back);
o if XRY, then hy(X)R'hg(Y) (R-forth);

o if he(X)R'Y’, then 3Y: XRY and he(Y) =Y’ (p-R-back);

o VX' € Pj: h'[X'] € Py (pull back).

For C-forth, if Y C X,s0Y 2 X, then hg(Y) = h7 Y] 2 h ™ [X] = he(X), so hg(Y) T he(X).

For C-back, suppose Y' C" hg(X), so Y D he(X). We claim that [A[Y'] U X) is a proper filter. If not,
so L € [h[Y'] U X), then by Fact 5.30 and the facts that h[Y”] is closed under finite meets and X is a filter,
there are y € h[Y'] and z € X such that y Az < 1, so x < —y and hence —y € X. Since y € h[Y"],
there is a y' € Y’ with h(y") = y, so —h(y’) € X. Then since h is a homomorphism, h(—y’) € X, so
—y' € h'[X] = hg(X), which with Y/ D he(X) gives us —y’ € Y, which contradicts the fact that y' € Y’
and Y is a proper filter. Thus, [h[Y']UX) is indeed a proper filter. Let Y = [A[Y']UX). Then since Y D X,
we have Y C X. In addition, clearly hg(Y) = h~'[[h[Y'] U X)] 2 Y. Finally, we claim that hg(Y) C Y’.?3
For if 2/ € hg(Y), so h(2") € [h[Y'] U X), then there is a y’ € Y’ and = € X such that h(y") Az < h(2),
which implies < —h(y’) V h(2’') and hence © < h(—y’ V 2’). Then since = € X, we have h(—y' V 2') € X,
so —y' V2 € h1[X] = hg(X). Since Y’ D hg(X), it follows that —y’ V 2’ € Y, which with ¢’ € Y implies
z' €Y', which completes the proof that hg(Y) C Y. Thus, he(Y) =Y, so hg satisfies p-C-back.

For R-forth, suppose XR;Y. For any 2/ € A/, if Wz’ € hy(X) = h7'[X], then h(W;z') € X, so
W;(z") € X, which implies h(z') €Y by XR;Y, so 2/ € h™1[Y] = hg(Y). Thus, he(X)R;hg(Y).

For p-R-back, suppose hg(X)RY’. Since X is a filter, so is Z = {« | B,z € X }. We claim that [h[Y']UZ)
is also a proper filter. If not, then there is a y’ € Y’ and B,z € X such that h(y')Az < L, soz < —h(y’) and
hence B,z < W,—h(y') = h(M;—y’), using the fact that h is a BAO-homomorphism. Then since Bz € X,
we have h(l;—y’) € X and hence B;—y’ € hg(X). Then since hg(X)R,Y’, we have —y’ € Y, contradicting
the fact that ¥’ € Y’ and Y” is a proper filter. Thus, [h[Y']UZ) is a proper filter. Let Y = [h[Y']U Z). Then
clearly XR;Y and hg(Y) 2 Y. Finally, we claim that hg(Y) C Y’. For if 2’ € hg(Y), so h(z') € [h[Y'|UZ),
then there is a ' € Y’ and Bz € X such that h(y') A z < h(z’), which implies z < —h(y’) V h(z') and
hence W,z < W;(—h(y') V h(z")) = h(M;(—y V 2)). Then since B,z € X, we have h(M;(—y' vV 2')) € X, so
W;(—y' V2') € hg(X). Since hg(X)RY', it follows that —y’ V 2’ € Y’, which with ¢ € Y’ implies 2’ € Y,
which completes the proof that hg(Y) C Y. Thus, he(Y) =YY", so hy satisfies p-R-back.

For pull back, recall that Py = {7 | € A} and Py = {#' | 2/ € A'}. Now suppose &' € Py, s0 2’ € A

— —

Then h(z’) € A, so h(z') € P;. We claim that hgl[xA’] = h(z’), so h;l[;’} € Fg, as desired. For hg’l[f’] is
the set of proper filters X in A such that he(X) = h™'[X] € 2/, which means 2/ € h~![X], which means

h(z") € X, and h(a') is the set of proper filters X in A such that h(z') € X.

For part 2, we must show that if & is surjective, then (i) hg(Y) T’ hg(X) implies Y T X (so hyg is injective),
(ii) hg(X)R;hg(Y') implies XR;Y, and (iii) for every Z € P, there is a z € Py such that he[2] = hg[S]N z.
For (i), assume hg(Y) T’ hg(X), so A~ [Y] D A~ X]. Since h is surjective, for any € X there is an 2’ € A’

33Thanks to David Gabelaia and Mamuka Jibladze for pointing out this strengthening of my original proof.
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such that h(z') = z, so 2’ € h™1[X] and hence 2’ € h~![Y] by our assumption, so h(z') = z € Y. Thus,
Y D X,s0Y C X. For (ii), to show XR;Y, we must show that for all M,z € X, x € Y. Given Bz € X
since h is surjective, there is an 2’ € A’ such that h(z’) = z, and then since h is a BAO-homomorphism,
N,z = Bh(2') = h(W2'). Hence h(Wz') € X, so W2’ € h™'[X] = hg(X), which with hg(X)Rihg(Y)
implies 2’ € hg(Y) = h7'[Y], so h(z') = 2 € Y. Thus, XR;Y. For (iii), since h is surjective, given
Z € P, there is an 2’ € A4', so z e Py, such that h(z') = x, so hg[z] = hg[h/(-a?)]. Now we claim that
he [i@] = hg[S]N #'. For the left-to-right inclusion, suppose X’ € heg [h/(a:\’)], so there is an X € S such that
X e f@, so h(z') € X, and hg[X] = h™[X] = X'. Tt follows that 2/ € X', so X’ € 2. For the right-to-left
inclusion, suppose that X’ € 2/, so X’ € §' and 2’ € X', and that X’ € hglS], so there is an X € S such
that hg(X) = h~'[X] = X’. Hence h(z') € X, so X € h(x'), which with hg(X) = X’ implies X’ € hg[h(z")].

For part 3, assuming h is injective, for any X’ € Af, hg(h[X']) = h™'[h[X"]] = X', so hg is surjective.

For part 4, to show that hg is a p-morphism from Af to Af, we need only add to the proof of part
1 above that hg satisfies pull back with respect to A¢ and Af: for all X' € P/ = RO(S’,C'), we have
hg'[X'] € Pr =RO(S, ). Toshow that h '[X’] satisfies persistence with respect to C, suppose X € h'[X'],
50 hg[X] € X', and Y T X. Then hy(Y) T’ he(X) by C-forth, which with hg[X] € X’ and the persistence
of X" with respect to C’ implies hg(Y) € X, so Y € hg'[X’]. To show that h'[X’] satisfies refinability
with respect to C, observe that if X ¢ hg’l[X’], so hg(X) & X', then by refinability for X" with respect to
C', there is a Y’ T’ hg(X) such that (a) for al Y ' Y, Y ¢ X', Given Y' T’ hy(X) and C-back, there
is a Y C X such that hg(Y) C’ Y’. Then for any Z T Y, we have hy(Z) T’ hg(Y) C' Y’ by C-forth, so
he(Z) & X' by (a), so Z & hg'[X]. Thus, we have shown that if X ¢ h_'[X’], then there is a Y C X such
that forall ZC Y, Z & hg’l[X’], S0 hg’l[)c"] satisfies refinability with respect to C.

Next, to show that if h is surjective, then hg is a strong embedding from As to Af, we need only add
to the proof of part 2 above that for all X € P = RO(S,C), there is an X’ € P/ = RO(S’,C’) such that
hg[X] = hg[S] N X’ Where Jhe[X] ={Y' € " | IX' € hg[X]: Y' T' X'}, let X' = int(cl({hg[X])), recalling
that int(V) = {Y' € §' |VZ' ' Y': Z/ € '} and (') = {Y' € §' | 32/ ' Y': Z' € ¥'}. Then by Fact
2.17.2, X’ € P/ and hg[X] C hg[S] N X’. To show hg[S] N X" C hg|X], suppose X' € hg[S] but X' & hg[X].
Since X' € hg[S], there is an X € S such that he(X) = X', which with X’ & hg[X] implies X & X. Then by
refinability for X with respect to C, thereis a Y C X such that (b) foral ZC Y, Z ¢ X. By C-forth, Y C X
implies hg(Y) T’ he(X) = X’. Now for any Z’ T’ hg(Y'), by C-back there is a Z C Y with hg(Z) C' Z'.
Then by (b), Z ¢ X. If Z' € |hg[X], so there is a V € X such that Z’' T hg(V), then from he(Z) T’ Z’
above we have hg(Z) T’ hg(V'), which with (i) above implies Z C V, which with V' € X" and persistence for
X implies Z € X, contradicting what we just deduced from (b). Thus, Z' ¢ |hg[X]. Then since Z’' was an
arbitrary refinement of hg(Y), we have hg(Y) & cl({hg[X]), which with hg(Y) C' Z' T’ he(Y) T’ X’ from
above implies X’ ¢ int(cl({hg[X])) = X’. This shows that hg[S] N X’ C he[X].

Finally, since the domains of A'g and Af{ are the same, part 3 implies that hg is onto Af if h is injective.

Parts 5-6 are easy to check. O

From Theorems 5.31.1 and 5.34, we obtain the next piece of our categorical picture.

Corollary 5.35 (The (-)g Functor). The (-); operation given in Definition 5.29 and Theorem 5.34 is a
contravariant functor from BAO to the category of possibility frames with p-morphisms. Thus, together

(*)g and (-)® from Corollary 5.10 form a pair of contravariant functors between these categories.

We will be more specific about the type of possibility frames in the image of (-)g in the next section.
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5.6 (-)g and (-)°, and Dual Equivalence with Filter-Descriptive Frames

Let us now consider the relation between the functor (-) from § 5.5 and the functor (-)° from § 5.1.

Proposition 5.36 (From BAOs to Frames and Back II). Given a BAO A, define na: A — (Ag)P by
na(z) = Z, where T is the set of proper filters in A that contain z, as in Definition 5.29. Then:

1. 1y is a BAO-isomorphism;

2. if g: A — B is a BAO-homomorphism, then (gg)® o 74 = 73 © g, so the following diagram commutes:

(Ag)® T’ (Bg)®

Proof. For part 1, to see that 7, is order-reflecting and hence injective, observe that if z £* y, then x € 1x
but y & tz, so T Z . To see that 7, is surjective, recall that by Definition 5.29, the set P, of admissible
propositions in Ay is {Z | € A}, and by Definition 5.4, P, is the domain of (Ag)?. Then since z <* y
implies & C 7, it follows that 74 is an order-isomorphism and hence a Boolean isomorphism. Finally, for the

modal operations, we have:

na(Wiz) = W
= {YeA | WzecY}
= {Y eAg|Rj*(Y) C 7} (18)
b b
= m" s =m" ().

The proof of (18) is essentially the same as the 0J; case of the proof of Theorem 5.31.3.
For part 2, given g: A — B, gg: By — Ag, (92)%: (Ag)® = (Bg)®, ma: A — (Ag)®, and np: B — (B,)®, we

have:

(gg)b(m(iv)) = (Qg)b@A) by definition of 7,
= (gg) '[T*] = {X € By | go(X) € 7%} by definition of (-)°
= {XeBy|gl[X]ez?} by definition of (-)g

— B
= g(z) Ay
= ne(g(z)) by definition of ng.

—B
For (A), if X € g(z) , then X is a proper filter in B, so X € B, and g(z) € X, so # € g~ '[X]. Then since
g is a homomorphism from A to B, that X is a proper filter in B implies that g~'[X] is a proper filter in A,
so x € g '[X] implies g7'[X] € Z*. In the other direction, if g~'[X] € 2%, then x € g~'[X], so g(z) € X,

—

and since X € By, X is a proper filter in B, so g(z) € X implies X € g(z) . O
Let us now go in the other direction, from a frame F to (F?)g. Later we will also consider (F®)s.

Definition 5.37 (Filter Extension and General Filter Extension). For a possibility frame F, its filter

extension is the possibility frame (FP), and its general filter extension is the possibility frame (FP?),. N
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In contrast to Proposition 5.36, it is clear that many possibility frames F will not be isomorphic to (F b)g.
The same point applies in the case of taking the general ultrafilter frame of the underlying BAO of a world
frame (see § A.3), which is isomorphic to the original world frame iff the original frame is descriptive (see
Blackburn et al. 2001, Thm 5.76). Goldblatt [1974, p. 33f] originally defined a descriptive frame to be a
world frame F that is differentiated (Axiom I), tight (Axiom II), and such that for every ultrafilter u in the
underlying BAO of F, there is a world w in F such that u is the set of admissible propositions from F that
contain w (Axiom IIT). Descriptive world frames are a special case of possibility frames (Example 2.22). But

we would like a notion analogous to descriptive so that the general filter frame of a BAO will qualify.

Definition 5.38 (Filter-Descriptive). A possibility frame F = (S, T, {R; }icr, P) is filter-descriptive iff it is
tight and for every proper filter F in F®, there is an x € S such that F = P(x) = {X € P |z € X}. q

Recall that tight implies C-tight (Definition 4.32), which implies differentiated (Fact 4.33.3).

The following two propositions show that filter-descriptive is indeed the notion we want.

Proposition 5.39 (Filter-Descriptive Frames and BAOs). For any BAO A and possibility frame F:
1. A is filter-descriptive;

2. F is possibility-isomorphic to (FP)g iff F is filter-descriptive.

Proof. For part 1, we have already shown for Theorem 5.31.1 that Ag is tight. Let us show that A, satisfies
the condition about filters. Consider a proper filter F' in (Ag)P. Since the domain of (Ag)P is the set Py, of
admissible proposition in A,, we have F' C P, = {Z | € A}. Recall that Z is the set of all proper filters in
A that contain 2. Now let Z = {z € A | T € F}. First, we claim that Z is a proper filter in A, so Z € A,.
Suppose x € Z, s0Z € F, and x <, y. Since T and ¥ are the sets of proper filters in A containing x and
y, respectively, x <, y implies that any proper filter that contains x also contains y, so T C ¥ and hence
T <(s,» ¥ Then since ¥ € F' and F is a filter in (Ag)P, we have J € F and hence y € Z. Thus, Z is an upset
in A. Next, if z,y € Z, then 7,5 € F, so ZNY € F because F is a filter in (A4)®, so Ay € F by the fact
that ZN7J = & Ay (recall the proof of Theorem 5.31), so # Ay € Z. Thus, Z is also downward directed. So
Z is a filter. Moreover, if 1. € Z, then IT=0¢ F, in which case F would not be a proper filter in (A4)P.
Thus, Z is a proper filter in A. Finally, by our definitions, Py(Z) ={z | Z €z} ={z |z € Z} = F.

For part 2, the left-to-right direction follows from part 1. The right-to-left direction follows from the
following Proposition 5.40. O

Note that since every normal modal logic is sound and complete with respect to a BAO (Theorem A.11),
it follows from Theorem 5.33 together with Proposition 5.39.1 that every normal modal logic is sound and

complete with respect to a filter-descriptive possibility frame. We will return to this point in § 7.4.
Proposition 5.40 (From Frames to BAOs and Back II). For any possibility frame F = (S, C, {R; }icr1, P),
define nz: F — (FP)g by nr(x) = P(z), where P(z) = {X € P |z € X}. Then:

1. nr is a possibility morphism;

2. if F is filter-descriptive, then nx is a possibility isomorphism;

3. if H is a possibility frame and g: F — H is a possibility morphism, then (gb)g onF = ny og, so the

following diagram commutes:
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Proof. Recall that the set of proper filters in F? is the domain of (F?),, and P, = {)? | X € FP} is the set
of admissible sets in (FP?)g, where X is the set of proper filters in F° that contain X. Let T’ and R’ be the
refinement and accessibility relations in (FP?),.

For part 1, for every x € S, P(x) is a proper filter in 7, so  is indeed a map from F to (fb)g.

For C-matching, we must show that for all x € S and all X e Py, V'nx(x) N X=0if Jz N n;-l [)/(\’] =g.
From left-to-right, suppose there is a y € lx N 77;1 [)A(], which means y C x and P(y) € X. Since y C z, we
have P(y) 2 P(x) by persistence. Thus, nr(y) € {'nr(z) N X. Conversely, suppose there is a proper filter
Fel'nz(z)n X, which means F D P(z) and X € F. Then =X ¢ P(x), so x ¢ =X, which implies that
there is a y C x such that y € X, so X € P(y) and hence P(y) € X. Therefore, y € lxn 77]__-1[)?}

For R-matching, we must show that for all z € § and X € P,, R'(nr(x)) C X iff R(z) C ny' [X]. From
left-to-right, suppose there is a y € S such that xRy and y ¢ 77;1 [)A( ]. From xRy, it follows by the definition
of R' in (FP), that P(x)R' P(y). From y ¢ 77}1[)/(:]7 we have P(y) ¢ X. Thus, R (nr(z)) € X. Conversely,
suppose there is a proper filter F' in F® such that P(z)R'F but F ¢ )A(, so X ¢ F. Then by the definition
of R, we have OX ¢ P(x), so x ¢ OX, which implies that there is a y € S such that xRy and y ¢ X, so
X ¢ P(y) and hence P(y) ¢ X. Thus, R(x) € 17;-1 [)/(:]

Finally, for pull back, we must show that for any Xe F,, we have 77}1 [)/(\'] € P. Since X € P, it suffices
to show that nz' X]=X. Ifz e ny' [X], then P(z) € X, so X € P(z) and hence z € X. Conversely, if
z € X, s0 X € P(z), then since P(z) is a filter in F°, we have P(z) € X and hence z € ny' [X).

For part 2, since F is filter-descriptive, every proper filter in F° is P(z) = nz(x) for some z € S, so nr is
a surjective map from F onto (F b)g. That nx is injective follows from the assumption that F is C-tight and
hence differentiated (Fact 4.33.3). The equivalence of 2Ry and P(x)R'P(y) follows from the assumption that
F is R-tight. Next, by definition of (F?),, P(z) T’ P(y) iff P(z) 2 P(y), and the equivalence of z C y and
P(z) O P(y) follows from the assumption that F is C-tight. The final part of establishing an isomorphism
is to show that for all X € P, nr[X]| € P,. It suffices to show that for all X € P, nr[X] = X. Since
nr[X] = {P(z) | x € X}, if F € nz[X], then F = P(x) for some z € X, so X € P(z) = F and hence
F e )?; in the other direction, if F' € )?, so F is a proper filter in F® such that X € F, then since F is
filter-descriptive, there is some = € S such that F' = P(x), and then X € F implies © € X, so F € nz[X].

For part 3, given g: F — H, ¢°: H®> — FP, and (¢°)g: (FP)g — (H®)g, nr: F — (FP)g, and ny: H —
(HP)g, we have:

(")g(nr(z)) = (°)g(P7(2)) by definition of 77
= (¢°)7PT(2)] ={X € H* | g°(X) € P7(2)} Dy definition of (-)g
= {XeH|g[X] e PF(x)} by definition of (-)°
= P7(g(x)) (+)
= mu(9(2)) by definition of 7.

For (%), if X € P™(g(x)), then X € P so X € H’, and by pull back for g, g7'[X] € P”. From
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X € P"(g(x)) we also have g(z) € X, so z € g~[X], which with ¢g~!'[X] € P7 implies g7 '[X] € P7(x).
In the other direction, if g~*[X] € P7(z), then x € g~![X], so g(x) € X. Then since X € H®, X € P, so
g(z) € X implies X € P*(g(z)). This completes the proof of (x). O

Putting together Propositions 5.36 and 5.40 and Corollaries 5.10 and 5.35, we have the following analogue
of Goldblatt’s [1974] dual equivalence result for the categories of BAOs with BAO-homomorphism and of
descriptive frames with p-morphisms. FiltPoss is the category of filter-descriptive possibility frames with

p-morphisms.

Theorem 5.41 (Dual Equivalence II). BAO is dually equivalent to FiltPoss.

5.7 Reflection with Filter-Descriptive Frames

Next we observe that FiltPoss is a full subcategory of the category Poss of possibility frames with possibility

morphisms.

Proposition 5.42 (Full Subcategory II). Every possibility morphism between filter-descriptive possibility

frames is a p-morphism.
Proof. Immediate from Theorems 5.34.1 and 5.40. O

In fact, we will show that FiltPoss is a reflective subcategory of Poss. This is analogous to Goldblatt’s
[2006b| result that the category of descriptive frames with p-morphisms is a reflective subcategory of the
category of general world frames with what he calls modal maps.

Before proving the reflective subcategory claim, let us prove a preliminary lemma.

Lemma 5.43 (Filter Transfer). For any possibility frame F, filter-descriptive possibility frame G, possibility
morphism g: F — G, and proper filter F in F®, the set {X € G° | g7[X] € F'} is a proper filter in G°.

Proof. First, we show that {X € G® | g7'[X] € F'} is closed under taking supersets in G®. Suppose X € G°
and g~1[X] € F. For any Y € GP such that X C Y, we have ¢g'[X] C g ![V]. Then since F is a filter
in 7® and g~![Y] € F® by the pull back property of possibility morphisms, we conclude that g~'[Y] € F.
For closure under intersection, if X, X’ € G, g7'[X] € F, and g~ '[X’] € F, then since F is a filter in F®,
g X NXT =g X]Ng ' [X] € F. Thus, {X € G° | g7'[X] € F} is a filter in G°. To see that it is a
proper filter, since F is proper and ¢~1[@] = @, we have g71[@] &€ F,s0 @ € {X € G® | g7 }[X] € F}. O

We now prove an analogue of Theorem 5.27 for filter-descriptive frames.

Theorem 5.44 (Filter-Descriptive Reflections). For any possibility frame F, filter-descriptive possibility
frame G, and possibility morphism g: F — G, define g: (F®); — G such that for F € (F?),, g(F) is the
unique x € G such that P(z) = {X € G | g7 ![X] € F}, which exists by Lemma 5.43 and the fact that G is
filter-descriptive. Then:

1. g is a p-morphism;

2. g is the unique possibility morphism from (F®)g to G such that g = gonz, so the following diagram

commutes:
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F———g

nr

Q|

(F°)e

Proof. For part 1, we use the fact that since G is filter-descriptive, the map ng: G — (Qb)g is an isomorphism
by Theorem 5.40.2, and the map (g°)g : (F°)g — (G®)g is a p-morphism by Theorem 5.34.1. Thus, to show
that g is a p-morphism, it suffices to prove that g = 7751 0(gP)g, or equivalently, g og = (g°)g. On one hand,
for each F € (GP)g we have:

ng(g(F)) = {Xeg°|g(F)e X} by definition of ng
{X eGP | X e P(g(F))} by definition of P(-)
= {X€G|gl[X]€F} by definition of g.

On the other hand, for each F € (GP), we have:

(®)e(F) = (¢°)7HF]={X €G®|¢°(X) € F} by definition of (-)g
= {Xeg’|gl[X]eF} by definition of (-)®.

For part 2, by Theorem 5.40.3 we have (gb)g onr = ng og. Since G is filter-descriptive, by Theorem
5.40.2, ng is an isomorphism. Hence (¢g°)g o nz = ng o g implies 7]51 0 (g°)g onF = g. Then since we showed
above that g = 7751 o (g°)g, we conclude that gonzr = g, as desired.

Finally, we prove that g is the unique possibility morphism from (F b)g to G such that g = gonr. Suppose
h is a possibility morphism from (Fb)g to G such that g = honz. By the definition of g, to show that h = g,
it suffices to show that for each F' € (FP)g, we have P(h(F)) = {X € G® | g7[X] € F}. Recall that
P(h(F)) ={X € P9 | h(F) € X} ={X € G* | h(F) € X}. For any X € G°, ie., X € PY, it follows by
pull back for h that Eil[X] € P(F")s which by definition of (-)g implies that Eil[X] — Y for some Y € FP.
Since g = honz, we have g~![X] = n;' [Eil[X]] and hence g~ [X] = n#[Y]. Then since nz[Y] =Y, we have
g Y X] =Y. Thus, h(F) e X if Feh '[X] =Y iff Y € F iff g~![X] € F, which completes the proof. [J

From Theorems 5.40.1, 5.42, and 5.44 and the definition of reflective subcategories, we obtain our desired

result.
Theorem 5.45 (Reflective Subcategories IT). FiltPoss is a reflective subcategory of Poss.

However, we do not obtain the analogous result with Poss replaced by the category of possibility frames
with strict possibility morphisms. For unlike the case of the (r: F — (]—"b)p in Theorem 5.23, the nr: F —
(FP)g in Theorem 5.40 is not guaranteed to be a strict possibility morphism. Consider the C-back condition:
ify E(Fb)g nr(z), then Jy: y CF x and nx(y) E(fb)g Y. To see why this is not guaranteed, suppose Y
is an ultrafilter in F®, so it is a minimal point in (F®)g. Then 7x(y) CF% v iff nr(y) =Y. But it is
not guaranteed that there is a y in the possibility frame F such that the set nz(y) = P(y) of admissible
propositions containing y is an ultrafilter, let alone the particular ultrafilter Y.

Compare this to the relation between a (general) world frame § and the general ultrafilter frame of its
underlying BAO, (F*), (see Appendix § A.3): if § is an arbitrary world frame, not necessarily descriptive

in Goldblatt’s sense, then it is not guaranteed that the function f that sends each world z to the principal
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ultrafilter of admissible propositions containing = (see, e.g., Blackburn et al. 2001, Thm. 5.76(iii)) is a
p-morphism from F to (F*),. The back clause of a p-morphism requires that if f(z)R” )Y, so Y is an
ultrafilter in the underlying BAO F* of F, then there is a y € F such that xR”y and f(y) = Y, so the set of
admissible propositions containing y is exactly the ultrafilter Y. But if F is an arbitrary world frame, then
it is not guaranteed that there is such a y € F (cf. Blackburn et al. 2001, p. 94-95).

Although n# is not guaranteed to be a strict possibility morphism from F to (F' b)g, we have the following
corollary of Theorems 5.6 and 5.36.1.

Corollary 5.46 (From Arbitrary Frames to Filter-Descriptive Frames). For any possibility frame F:
1. F® is isomorphic to ((F®)g)®;
2. for all p € L(®,1), F I ¢ iff (FP)g IF .

If we instead consider the filter extension (F®)¢, then we cannot expect an isomorphism of BAOs and
validity preservation in both directions as in Corollary 5.46. However, by the proof of Theorem 5.36.1, the
map 7, sending each x € A to na(z) = T € (Af)® is a BAO-embedding of A into (Af)®, so we may take
A = FP® to obtain part 1 of the following result. Part 2 also follows directly from Theorems 5.6.6 and 5.31.5.

Corollary 5.47 (From Arbitrary Frames to Filter Extensions). For any possibility frame F:
1. there is a BAO-embedding of F® into ((F?)f)®;
2. for all ¢ € L(®, 1), if (F°)¢ IF ¢, then F IF ¢.

5.8 MacNeille Completions and Canonical Extensions of BAOs

We saw in § 5.3 that any V-BAO A is isomorphic to (A,)P, the underlying BAO of the principal frame of A,
and in § 5.6 that any BAO A is isomorphic to (A4)®, the underlying BAO of the general filter frame of A.
Next we consider the relation of a V-BAO A to (A,)®, the underlying BAO of the full frame of A (Definition
5.14), and the relation of a BAO A to (Af)®, the underlying BAO of the filter frame of A (Definition 5.29).
To characterize the relation between A and (A,)P, recall the result (due to MacNeille 1937, Tarski 1937a)
that for any Boolean algebra 2, there is a unique—up to isomorphism—-complete Boolean algebra 2I' such
that 2 embeds densely into U, i.e., there is an injective homomorphism £: 2 — A’ such that for every
non-minimum a’ € ', there is a non-minimum a € 2A such that £(a) <’ a’.3* This A’ can be characterized
and constructed in several ways. For one, it can be constructed by an application of the general MacNeille
completion of a poset. (For the moment let us blur the distinction between Boolean algebras and Boolean
lattices.) Given a poset (P, <) and X C P, consider the sets of lower bounds X! = {y € P |Vo € X:y < 2}
and upper bounds X" = {y € P | Vx € X: x < y} of X. The MacNeille completion of (P, <) is the poset
M(P, <) = (P',<') where P/ = {X C P | X" = X} (the set of “normal” ideals) and X <' Y iff X C Y.
For any poset (P, <), M(P, <) is a complete lattice with AX =X and \/ X = (J&X)* for X C P’, and
(P, <) embeds densely into M(P, <) by « — |x. For an arbitrary poset (P, <), there is no guarantee that
M(P, <) is a Boolean lattice. But if (P, <) is a Boolean lattice to begin with, then so is M(P, <).
Compare the above with the construction of the full reqular open algebra based on (P, <) as in Remark
2.15, which for any poset (P, <) produces a complete Boolean lattice, which we will call R(P, <). Recall from
§ 4.3 that if (P, <) has a minimum element |, then R(P, <) contains only P and (); so the better comparison
is between M(P, <) and R(P_,<_) where P_ = P\ { L} and <_ is the restriction of < to P_. If (P_,<_)

34This 2 is sometimes called the completion of A (Givant and Halmos 2000, p. 214; Jech 2002, p. 82); but in lattice theory,
a “completion” of a poset is given by any order-embedding of it into a complete lattice (Davey and Priestley 2002, p. 165).
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is separative as in § 4.1, then (P, <) embeds densely into R(P_,<_) by z — |_z ={y € P_ | y < z}.
(R(P-,<_) is often called the completion by reqular cuts of (P,<).) Then since (P, <) being Boolean
implies that (P_,<_) is separative (Fact 4.40), (P, <) being Boolean implies that (P, <) densely embeds
into R(P-,<_). These points show that although for an arbitrary poset (P, <), there is no guarantee
that M(P, <) and R(P_,<_) are isomorphic, if (P, <) is Boolean, then M(P, <) and R(P_,<_) are both
complete Boolean lattices into which our Boolean (P, <) densely embeds, so they are isomorphic.3?

Let us apply the foregoing points to the relation between A and (A,)°. Recall that the poset in A, is the
Boolean lattice of A minus its bottom element, and the Boolean algebra reduct of (A,)® is the full regular
open algebra based on the poset in A,. Thus, by the previous paragraph, the Boolean reduct of the BAO
(A,)® is isomorphic to the MacNeille completion of the Boolean reduct of the BAO A.

To relate A and (A,)? as BAOs, recall that the Monk completion or lower MacNeille completion of a BAO
A [Monk, 1970] is obtained by extending the operators 4; of A to operators 4 on the MacNeille completion

of the Boolean reduct of A as follows, where ¢ is the embedding into the completion with order <:
#Y = \/{¢®) |2 € Aand {(z) <V} (19)

If #; is completely additive, then so is 49 [Monk, 1970, Thm. 1.2]; otherwise the Monk completion of a BAO

is not even guaranteed to be a BAO. For the dual box operator, we have:
Y = A{{(Miz) [z €Aand Y < ¢(a)}. (20)

Properties of the Monk completion have been investigated in Monk 1970, Givant and Venema 1999, Gehrke
et al. 2005, Harding and Bezhanishvili 2007 and Theunissen and Venema 2007. With Theorem 5.48 below,
we obtain a new characterization of the Monk completion of a V-BAO. The key point is that instead of
thinking of extending the operators from A to A° in terms of (19)/(20), we can equivalently think in terms of
first defining an accessibility relation R; on A (minus its bottom L) as in Definition 5.14.3, and then defining
the extended MY using the relation R; as usual, so MY is the set of x for which R;(z) C Y.

Theorem 5.48 (Monk Completion). The Monk completion of a V-BAO A is isomorphic to (A,)®.

Proof. Since we already saw above that the MacNeille completion of the Boolean reduct of A is isomorphic to
the Boolean reduct of (A,)°, we need only show that extending the operator I? to MY as in (20) is equivalent
to extending W% to IEA”)b, where IEA”)bY = {z € A, | R™(x) C Y}. Recall that the poset (S,C) in A, is
the poset of A minus its bottom L, and the poset of (A,)® is the set of all regular open sets in the downset
topology on (S, C), ordered by inclusion. For z € A, let Wz = {z/ € A, | # C z}. As above, the Boolean
reduct of A embeds into that of (A,)® by &£(z) = |**2. Then we first observe that for any ¥ € (A,)®:

[ D%

N\{EmEy) |y ehandY < E(y)}

({ Wy |yechandy C |y}

{x e A, |VycA:if Y C My, then z C Wiy}

{z €Ay |VyeA: if Y C %y, then z € MM |2y
> m™y,

35Yet another way to get an isomorphic copy of this completion is by taking the regular open algebra of the Stone space
[Stone, 1937| of the original Boolean algebra.
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where the equivalence of z C I?y and z € IEA”)biA”y was proven for Theorem 5.17.5, and the O inclusion
holds because Y C iA”y implies I,EA“)bY - IEA”)biA”y.

In the other direction, suppose = ¢ Iz(-A“)bY, so Jz: xR?“z and z € Y. Since z ¢ Y, it follows by
refinability for Y that 32’ C z V2’ C 2': 2’ € Y. Then by persistence for Y, it follows that for all y € Y,
yAZ €Y, s0yAz = 1,50y C —2z. Thus, Y C |*—2'. Finally, by definition of the relation R in A,
(Definition 5.14.3), :L'R;&”Z and 2’ C z together imply that x A 422’ # L, so x Z B4 —2'. Thus, we have found
ay € A, namely y = —2/, such that Y C iA“y but = Z By, so z ¢ MY by the equations above. O

K2

Using Proposition 5.48, we can transfer results about Monk completions to results about (4A,)® and vice
versa. We will see an example of the utility of this connection in § 7.3.

Let us now turn to the relation between A and (Af)®. Following Jonsson and Tarski 1951, a BAO B is a
perfect extension of a BAO A iff: (i) B is a CAV-BAO, and there is a BAO-embedding e of A into B; (ii) if a
and b are distinct atoms in B, then there is an = € A such that a <P e(z) and e(z) <B —b; and (iii) if X is a
set of elements from A such that \/* e[X] = T, then there is a finite X’ C X such that \/ X’ = T. Jénsson
and Tarski showed that every BAO has a perfect extension, assuming the ultrafilter axiom or an equivalent
axiom, and any two perfect extensions are isomorphic, so we may speak of the perfect extension of a BAO.
The perfect extension of A can be constructed as the full complex algebra of the ultrafilter frame of A (see
§ A.3). If we think of the ultrafilter frame as a full world frame or full possibility frame (recall Example 2.6)
instead of a Kripke frame, then we can say that the perfect extension of A arises as the underlying BAO of
the ultrafilter frame of A. By contrast, our (A¢)® is the underlying BAO of the filter frame of A.

Assuming the ultrafilter axiom, the filter frame A¢ of A is an atomic full possibility frame as in § 4.2, and
the atom structure At(A¢) of A¢ (Definition 4.15) is the witrafilter frame of A considered as a full possibility
frame. Thus, the underlying BAO (2t(Af))® of 2At(Af) is isomorphic to the perfect extension of A. By
Proposition 4.16.3, there is a dense possibility embedding of 2At(A¢) into A, so by Theorem 5.9, (2At(Af))® is
isomorphic to (A¢)P. Therefore, assuming the ultrafilter axiom, (Af)® is a perfect extension of A.

The perfect extension of a BAO has come to be called the canonical extension of the BAO. However,
there is a different definition of the canonical extension, due to Gehrke and Harding [2001, Def. 2.5] (in the
more general setting of lattices with additional operations), that does not require the canonical extension
to be atomic, as required for a perfect extension; with this definition, one can prove in ZF set theory that
the canonical extension exists and is unique up to isomorphism (op. cit., Props. 2.6-2.7), and then one can
prove in ZF plus the ultrafilter axiom that the canonical extension is a perfect extension (cf. op. cit., Lem.
3.4). In addition to the construction of this canonical extension given in Gehrke and Harding 2001, there is
another way of constructing it as the MacNeille completion of a certain intermediate structure (see Ghilardi
and Meloni 1997, Dunn et al. 2005, Gehrke and Priestley 2008). According to the Gehrke-Harding definition
applied to BAOs, a BAO B is a canonical extension of a BAO A iff: (i) B is a CV-BAO, and there is a
BAO-embedding e of A into B; (ii’) every element of B is a join of meets of e-images of elements of A—or
equivalently in this Boolean case, every element of B is a meet of joins of e-images of elements of A; and
(iii’) for any sets X,Y of elements of A, if /\B e[X] <B \/]E e[Y], then there are finite X’ C X and Y/ C Y
such that A X’ < VY. Following the terminology of Conradie and Palmigiano 2016, let us call such a B a

constructive canonical extension of A. Then the following is provable without use of the ultrafilter axiom.
Theorem 5.49 (Canonical Extension). For any BAO A, (Af)? is a constructive canonical extension of A.

Proof. For condition (i’), by Theorem 5.31.1, A¢ is a full possibility frame, so by Theorem 5.6.2, (Af)® is

9.6.
a CV-BAO. By the proof of Proposition 5.36, the map 7, sending each x € A to na(z) = 7 € (Af)® is a
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BAO-embedding. Recall that T is the set of all proper filters in A that contain x.

For condition (ii’), each X € (Af)® is a regular open downset of filters in A¢, so we have

X = int(cl(X)) = int(cl( | J 1F) =int(cl(|J 2D =V A

FeXx FeX zeF FeX zeF

where \/ and )\ are the join and meet in the regular open algebra (Af)P.
For condition (iii'), suppose that for sets X,Y of elements of A, A{Z | z € X} <®)" \/{§ |y € Y}, so

(& |z e X} Cimt(cl( J7lyeY)), (21)

which means that for any proper filter ' in A such that X C F, we have that for all proper filters F' D F,
there is a proper filter F”/ O F’ such that y € F"” for some y € Y. In particular, this holds for F = [X).
Now suppose for reductio that for every finite X’ C X and Y/ C Y, A X' £ VY’. It follows by Fact 5.30
that F/ = [X U{—y |y € Y}) is a proper filter. Given F’ D [X), by the unpacking of (21) above there is a
proper filter F”/ D F' such that y € F” for some y € Y, which is impossible given our choice of F’. O

We will return to this connection between (A¢)® and the constructive canonical extension of A in § 7.4.

5.9 Frame Constructions and Algebraic Constructions

The next step in developing the duality theory for possibility frames and BAOs is to relate frame constructions
that preserve the validity of modal formulas with algebraic constructions that preserve the validity of modal
formulas, or in more algebraic terms, that preserve universally quantified algebraic equations. The story
here parallels the story for world frames and BAOs [Goldblatt, 1974, §§ 1.4-1.6] but with some twists.

Let us recall the standard algebraic notions of homomorphic images, subalgebras, and direct products.
A BAO A is a homomorphic image of a BAO B iff there is a surjective BAO-homomorphism as in Definition
5.3 from B to A. Where A and B are the domains of A and B, respectively, A is a subalgebra of B iff A C B,
A is closed under the operations of B, and the operations of A are the restrictions to A of the operations
of B. Finally, given a family {A;};c; of BAOs A; = (A;,Aj, —;, T;,{M; ;}acr), their direct product is the
BAO [TA; = (A A, —, T,{M;},cr) where A is the Cartesian product [] A; and the operations of [] A; are

jedJ jeJ jeJ
defined coordinatewise from those of the A;, i.e., for functions =,y € [[ 4;, Ay is the function in [ 4;
jeJ jeJ

such that for all j € J, (x Ay); = z; A; y;j, where f; is the value of function f at j, and similarly for the
other operations. One can easily check that [] A; is indeed a BAO.
jeJ
Taking homomorphic images, subalgebras, and direct products of algebras are ways of preserving univer-
sally quantified algebraic equations. Let us now compare these with ways of preserving the validity of modal

formulas over possibility frames. We recall the following from Proposition 3.7.2.

Proposition 5.50 (Preservation Under Dense Possibility Morphisms). For any possibility frames F and
F', if there is a dense possibility morphism from F to F’, then for all ¢ € L(®,I), F I+ ¢ implies F' I ¢.

A special case of dense possibility morphisms are surjective possibility morphisms, but surjectivity is not
required to preserve validity.
We have already done the work with Theorems 5.34 and 5.9 to relate possibility morphisms and subal-

gebras as follows.
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Proposition 5.51 (Possibility Morphisms and Subalgebras). For any BAOs A and B:
1. if A is isomorphic to a subalgebra of B, then there is a surjective p-morphism from Bg to Ag;
2. if A is isomorphic to a subalgebra of B, then there is a surjective p-morphism from Bf to Ags.
Conversely, for any possibility frames F and G:

3. if there is a dense possibility morphism from F to G, then G is isomorphic to a subalgebra of FP.

Proof. For part 1, if A is isomorphic to a subalgebra of B, then the isomorphism is an injective homomorphism
from A to B, so by parts 1 and 3 of Theorem 5.34, there is a surjective p-morphism from B, to A;. The
proof of part 2 is the same but using part 4 of Theorem 5.34 instead of parts 1 and 3.

For part 3, if there is a dense possibility morphism from F to G, then by Theorem 5.9, there is an injective

homomorphism from G® to FP?, so G® is isomorphic to a subalgebra of FP. O

Another validity preserving construction for possibility frames is given by the notion of generated sub-
frames, which parallels the standard definition for world frames [Goldblatt, 1974, §1.4]. In fact, for possibility
frames there is also a more liberal notion of selective subframe. (Compare this to the definition of cofinal
subframes in Chagrov and Zakharyaschev 1997, p. 295 and Bezhanishvili 2006, p. 61.)

Definition 5.52 (Subframes). Given a possibility frame F = (S,C, {R; }ic1, P), a subframe of F is a tuple
F' =(S8",C' {R}}icr, P’) such that:
1. 8/CS;C=CN(S x9S, and R, = R;N (5" x 5');
2. PP={XnNnS|XeP}
A generated subframe of F is a subframe F’ of F such that S’ is closed under C and R; from F:
3. ifxe S and y C x, then y € §’; if z € S’ and zR;y, then y € S’.
A selective subframe of F is a subframe F’ of F such that:
4. if x € 8’ and y C z, then there is a z € S’ such that z C y.
5. if x € S, xR;y, and u C y, then there is a z € S” such that z { v and zR;z. <
Note the following facts about Definition 5.52. First, a subframe of F is not guaranteed to be a possibility

frame. Second, every generated subframe of F is a selective subframe of F. Third, if F is a world frame, so

C is identity, then every selective subframe of F is a generated subframe of F.
Proposition 5.53 (Preservation Under Selective Subframes). If F is a selective subframe of a possibility
frame F, then:

1. F' is a possibility frame;

2. if F is full, then F' is full;

3. for all p € L(®,I), F Ik ¢ implies F' IF .
Proof. For part 1, we must first show that P’ is closed under the operations N, D', and W, as in Definition
2.1, and ) € P’. Since ) € P, we have ) = ) NS’ € P’ by Definition 5.52.2. For the closure conditions,
suppose X', Y’ € P’ so by Definition 5.52.2 there are X,Y € P such that X' = X NS and Y =Y NS

Where D and B; are the operation in F, we claim that:

(a) X'NY'=(XNnY)NnS
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(b) X' 'Y =(X>Y)NS;
(c) WX = (WX)NS.

From (a)-(c), X,Y € P, the fact that P is closed under N, D, and M;, and Definition 5.52.2, it follows that
X'NY' eP, X' DY €P,and M, X' € P, as desired. Hence F' is a partial-state frame.

Equation (a) is immediate from X' = X NS  and Y/ = Y NS’". For (b), the right-to-left inclusion is
straightforward. For the left-to-right inclusion, suppose © ¢ (X DY)NS". If x ¢ 5/, then 2/ ¢ X' D' Y, so
suppose z € S’. From z € X DY, there is a z C z such that z € X but z € Y. Then by refinability for Y,
there is a 2’ C z such that for all 2’/ C 2/, 2” ¢ Y. By Definition 5.52.4, since x € S’ and 2’ C x, there is a
z"" € 8" such that z”” C 2’. Then by the refinability step, 2’ € Y, s0 2"’ € Y/ =Y NS’, but by persistence
for X, 2" C z € X implies z” € X, which with 2”7 € S" implies z”” € X' = X NS’. Finally, from z” € S’ and
2" E 2 E 2z C z, we have 2” C' . Hence we have a 2’/ T’/ x such that 2’ € X" and 2" €Y', sox & X' D' Y’.

For (c), the right-to-left inclusion is again straightforward. For the left-to-right inclusion, suppose x € S’
but x ¢ B, X, so there is a y such that xRy and y € X. Then by refinability for X, there is a u C y such
that for all v’ C u, v’ € X. By Definition 5.52.5, since x € S’, xRy, and u C y, there is a z € S’ such
that z () v and xRz, so xR’z. Since for all v’ C u, v € X, and z () u, persistence for X implies z & X, so
z¢€ X' =X NS’ which with 2R’z implies = ¢ W.X'.

To show that F’ is a possibility frame, it only remains to show that P’ C RO(S’,C’). Suppose X' € P/,
so there is an X € P such that X’ = X N.S’. To show that X’ satisfies persistence with respect to (S’,C’),
suppose z € X' = X NS" and y T’ z. Then y C z, which with x € X and persistence for X implies y € X,
which with y € S’ implies y € X’ = X N S’. To show that X’ satisfies refinability with respect to (S’,C),
suppose © € S' but x ¢ X’ = X N S’. Then z ¢ X, so by refinability for X, there is a y C = such that for
all z C y, 2 € X. By Definition 5.52.4, since x € S’ and y C z, there is a z € S’ such that z C y and hence
2z £ z. Now for any u =’ z, we have u C y and hence u € X by the refinability step, so u € X’. Thus, we
have shown that if z ¢ X', then there is a z T’ x such that for all u &’ 2z, u & X', as desired.

For part 2, assuming F is full, so P = RO(S,C), we will show that RO(S’,C") C P’, which with the
previous paragraph shows that F” is full. Suppose X’ € RO(S’,C’). By Definition 5.52.2, to show X' € P’,
it suffices to show that there is an X € P = RO(S,C) such that X’ = X N S’. Where JX' = {z € S |
Jy € X':z C y}, let X = int(cl(YX")), so X’ C X € RO(S,C) by Fact 2.17.2. It remains to show that
X NS C X'. Suppose z € S’. Then if z &€ X', refinability for X' with respect to C’ gives us a y C’ = such
that (i) for all z C' y, z ¢ X'. Now suppose for reductio that y € cl(}X’), so thereisau C y and a ¢y’ € X’
such that u C y'. Then by Definition 5.52.4, there is a z € S’ such that z C u. Since z CuC y, 2 Cu C ¢/,
z€ S and y,y € ', we have z C' y and z ' ¢'. By (i), 2 C’ y implies z ¢ X', which with z T’ ¢/ and
persistence for X' with respect to C’ implies 3’ € X', contradicting ¢’ € X’ from above. Hence y & cl({ X’),
which with y C’ = implies = ¢ int(cl(}X")), so € X, which completes the proof of part 2.

For part 3, the observations made in the proof of part 1 imply that the identity map on S’ is a strong
embedding from F’ to F (Definition 3.2.12), so by Proposition 3.7.3, F I ¢ implies F’ I . O

The following proposition shows that being a selective subframe is equivalent to being the image of a

strict strong embedding as in Definition 3.2.

Proposition 5.54 (Embeddings and Subframes). For any possibility frames F and G, the following are

equivalent:

1. there is a strict strong embedding from F into G;
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2. F is isomorphic to a selective subframe of G.
In addition, for any possibility frames F and G, the following are equivalent:
3. there is a p-morphism that is a strong embedding from F to G;

4. F is isomorphic to a generated subframe of G.

Proof. From 1 to 2, where h is the strict strong embedding of F into G, we first claim that the subframe G’
of G with domain h[S”] is a selective subframe of G. Suppose 29 € h[S7] and y9 CY 9. Thus, 29 = h(z”)
for some 27 € F. Then since y9 CY h(z”) and h is a strict possibility morphism, by C-back there is a
y” € F such that h(y”) CY y9. Then taking 29 = h(y”), we have 29 € h[S7] and 29 CY 49, so G’ satisfies
part 4 of Definition 5.52. Next, suppose 29 = h(:v}-)Rigyg. Then by taut R-back, there is a y* € F such
27 Rfy" and 49 CY9 h(y”). By R-forth, 7 R y" implies h(:z:}-)Righ(y}-). Then taking 29 = h(y”), we
have 29 € h[S7], y9 CY 29, and achigzg, so G’ satisfies part 5 of Definition 5.52.

Since h is an injection from F to G, it is a bijection between F and our subframe G’ = (h[S7],C’
ARi}ier, P'). We claim that h is an isomorphism between F and G’. Since h is a strong embedding, we
already have that y C x iff h(y) T’ h(z), and xR;y iff h(x)R,h(y). Next, we must show that h: F — G
satisfies pull back, so for all X' € P, h='[X'] € P7. If X' € P, then since G’ is a subframe of G,
and the domain of G’ is h[S7], by Definition 5.52.2 there is an X € PY such that X’ = X N h[S7].
Since h is a possibility morphism from F to G, X € P9 implies h~![X] € P*. Since F is a possibility
frame, we also have S¥ € P. Then since P7 is closed under N, we have h=1[X] N S¥ € P7, which with
R=HX' = h X NA[ST)] = A7 X] N R HA[ST]] = LX) N ST gives us h~1[X'] € PT.

Finally, we must show that for all X € P, h[X] € P’. Since h is a strong embedding from F to G, for all
X € P7, there is an X9 € PY such that h[X] = X9 Nh[S7]. Then since G’ is a subframe of G with domain
h[S7], we have h[X] € P’. This completes the proof that h is an isomorphism.

We leave the proof from 2 to 1 to the reader. Note how Definition 5.52.4-5 is used to show that the
isomorphism from F to the selective subframe of G satisfies C-back and taut R-back with respect to G.

The proof that 3 and 4 are equivalent is an easy adaptation of the arguments for 1 and 2. O

Now we can relate selective subframes and homomorphic images as follows.

Proposition 5.55 (Selective Subframes and Homomorphic Images). For any BAOs A and B:

1. if A is a homomorphic image of B, then A is isomorphic to a generated subframe of Bg;

2. if A is a homomorphic image of B, then A¢ is isomorphic to a generated subframe of Bs.
Conversely, for any possibility frames F and G:

3. if F is isomorphic to a selective subframe of G, then FP® is a homomorphic image of G°.
Proof. For part 1, if there is a surjective homomorphism from B to A, then by Theorem 5.34, there is a
p-morphism that is a strong embedding from A, into Bg, so by Proposition 5.54, Ag is isomorphic to a
generated subframe of Bg. The proof of part 2 is the same but using part 4 of Theorem 5.34 instead of parts
1 and 3.

For part 3, if F is isomorphic to a selective subframe of G, then by Proposition 5.54, there is a strong

embedding from F into G, so by Theorem 5.9, there is a surjective homomorphism from G® to FP®. O

A third validity preserving construction for possibility frames is given by the notion of disjoint unions of
possibility frames, which parallels the standard definition for world frames [Goldblatt, 1974, §1.6].
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Definition 5.56 (Disjoint Union). Given a nonempty indexed family {F;};c; of possibility frames F; =

(Sj, Sy {RijYier, Py), let Fi = (S}, T, {R] ;}ier, Pj) be the isomorphic copy of F; with domain S} =
Sj x {j}, so that {Fl}jecs is a family of pairwise disjoint possibility frames. Then the disjoint union of

{Fj}jes is the tuple | F; = (S,C,{R;}icr, P) defined by:

jed
LS=US;C=U & Ri= UR,;
JjeJ JjeJ jeJ

2. P={XCS|VjeJ: XNS,e P}

f

Proposition 5.57 (Preservation Under Disjoint Unions). For any nonempty indexed family {F;};cs

o

possibility frames:

1. | F; is a possibility frame;

jeJ
2. if each Fj is full, then W4 F; is full;
jeJ
3. forall p € L(®,1), i F;IFiffforall j € J, F;l-e.
jeJ

Proof. For part 1, we must first show that the set P of admissible propositions in [ F; contains (), which is
jeJ
immediate from Definition 5.56.2 and () € ij , and is closed under the operations N, O, and M; from Definition

2.1. By the disjointness of the S}, for all X,Y € P we have:
i) XnY = U XnYns));

je€J
(i) XDV = ‘LEJJ((X NS5 % (Y NS
J
(i) WX = (J W, (X NS)).
JjeJ

If X,Y € P, then by definition of P, for all j € J, X NS} € Pj and Y NS} € P/. Since P/ is closed under N,

DY, and W ;, it follows that X NY NS} € P;, (X NS}) D} (Y NS;) € P, and W, (X NS%) € Pj. Since S

: : ! ! / \ / / / 7\ / /

is the whole domain of 7}, (X N.S}) D% (Y NSY) = (X D) Y)NS; and W (X NST) = (M ;X)NS]. The

previous two sentences, equations (i)-(iii), and the definition of P jointly imply that XNY, X DY, X € P.
Next, we must show that each X € P satisfies persistence and refinability with respect to C. For

persistence, suppose x € X and y C x. Then since X = |J (X N S}), we have z € X N S} for some j € J.
jeJ ’ ’
By definition of P, X NS} € P}, so X NS} satisfies persistence with respect to L. Since T= |J T}, y C =,
jeJ

and x € S;, it follows by the disjointness of the E; relations that y E; x, which with the previous sentence

implies that y € X N S;-, so y € X. Thus, we have shown that X satisfies persistence with respect to C.
For refinability, assume that for all y C x there is a z C y such that z € X. Consider such a z. As above,

z € X NS} for some j € J, which with z T x implies that for all y C z, y T} z and y € S}. Thus, from our

initial assumption, it follows that for all y T’ x there is a 2 C; y such that z € X N S}. Since X N S} € P,

XN S;- satisfies refinability with respect to E;, so the previous sentence implies x € X N S;, so xz € X. Thus,

we have shown that X satisfies refinability with respect to C.

For part 2, assume that each F; is full, which implies that each ]-'J’- is full. Then the fact that 4 F;

JjE€J
is full is a consequence of the following, which is easy to check: if X € RO( 4 F;), then for all j € J,
JjeJ
X NS; e RO(F}), so X NS} € P/ since Fj is full. Then by the definition of P in ¥ F;, X € P.
J€J

97



For part 3, the obvious embedding of F; into 4 F; gives us that [ F; IF ¢ implies F; |- ¢ by Proposition
jeJ jeJ
3.7.3. In the other direction, suppose ¢ is falsified at an « in |4} F; with an admissible valuation 7. Then
jeJ
x € F; for some j € J; the restriction 7; of m to F is an admissible valuation for F} by Definition 5.56.2;

and the identity map on J} is a possibility morphism from (F}, ;) to < Lﬂ Fj,m) as in Definition 3.2.15, so

(Y Fj,m), I @ implies (F},m;), x ¥ ¢ by Proposition 3.7.1, so F; I ¢ since F; and F; are isomorphic. []
JET

As usual, we can relate disjoint unions and direct products as follows.

Proposition 5.58 (Disjoint Unions and Direct Products). For any nonempty indexed family {F;};es of

possibility frames, ( 4 7;)® is BAO-isomorphic to [] ]:]b.
JjeJ s

Proof. As in Definition 5.56, {F} e is the family of pairwise disjoint frames such that for each j € J, F} is
isomorphic to F;, which is used to construct 4 F;. Since [] f]‘b is obviously BAO-isomorphic to [] ]-'J’?7 it
j€J = jed
suffices to show that ( |4 F;)P is BAO-isomorphic to ] ]—']’.b. Where P is the set of admissible propositions in
jeJ jed

) F;, and P is the set of admissible propositions in F}, we define a map h: P — [] P} so that for X € P,
jed jeJ

h(X) is the element of [] P; whose value at j is X NS}, so h is clearly a bijection by Definition 5.56.2. That

JjeJ

h is a BAO-homomorphism follows from equations (i)-(iii) in the proof of Proposition 5.57.1. For example,
for W;, where fj is the value of function f at k, A = (4 F;)P, and B = [] .7:]/»1’:

jeJ jeJ
h(MPX), = B'XNS, by definition of i
= [JW,(XNnS)Nns; by (i)

JjeJ
= W, (XNS;) by the pairwise disjointness of the S

= W h(X), by definition of h
= (WPn(X))r by definition of the direct product,

so h(E2X) = M2h(X). The other cases are similar. O

We will see in §§ 6.1-6.2 how the above connections between frame constructions and algebraic construc-

tions can be applied to the study of modally definable classes of frames.

6 Beginnings of Definability & Correspondence Theory

In this section, we turn to modal definability theory, including correspondence theory, in the context of
possibility semantics (cf. van Benthem 1983, 2001 on definability theory for possible world semantics).

Three classic questions concerning modal definability are the following from van Benthem 1983 (p. 13):
1. When does a given modal formula define a first-order property of the relations in frames?
2. When can a given first-order property of frames be defined by means of modal formulas?
3. Which classes of frames are definable at all by means of modal formulas?

We will take these questions in reverse order: we discuss question 3 for possibility frames in § 6.1, question

2 for full possibility frames in § 6.2, and question 1 for full possibility frames in § 6.3.
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To make these questions precise, we need to fix the relevant notions of definability and of first-orderness.

We begin with definability, for which the general notion is that of relative definability.

Definition 6.1 (Relative Modal Frame Definability). Let F and G be classes of possibility frames.

A set ¥ C L(®,]) of modal formulas defines F relative to G iff for all F € G: F € F iff every p € ¥ is
valid over F. F is modally definable (or modal aziomatic) relative to G iff there is some ¥ C L(®P, ) that
defines F relative to G. <

For question 3 above, in § 6.1 we give a characterization of the classes of possibility frames that are
modally definable relative to the class of all possibility frames. Theorem 6.4 in § 6.1 is the analogue for
possibility semantics of Goldblatt’s [1974, Thm. 1.12.11] characterization of modally definable classes of
world frames.

Turning to the notion of first-orderness, let £!(I) be the first-order language with equality that contains
binary relation symbols C and R; for each i € I. We interpret L1(I) in possibility frames F = (S,C
{Ri}ic1, P) in the obvious way, interpreting C as the refinement relation C and R; as the accessibility
relation R;. The set P of admissible propositions plays no role in interpreting £!(I), so instead of talking of
frames we can talk of foundations F = (S,C,{R;}icr) as in Definition 2.25.

Foundations serve as standard first-order structures for £1(I), so we can apply to foundations standard
notions of £!(I)-definability, £!(I)-elementary equivalence, etc. From Corollary 2.31.2, we have the following
definability result.

Corollary 6.2 (First-Order Definability of Foundations of Full Frames). The class of foundations F =
(S,C,{R;}ier) for which F* = (S, C,{R;}icr,RO(S,C)) is a full possibility frame is definable by an £(I)-
sentence relative to the class of all £(I)-structures, viz., by the £1(I)-sentence expressing that C is a partial

order and that C and R; satisfy the interplay conditions R-rule and R=>win from § 2.3. N

Using the notion of foundations, we can also talk about £!(I)-definability and £!(I)-elementary equiva-

lence for frames as follows.

Definition 6.3 (£!(I)-Definability and Equivalence of Frames). Let F and G be classes of possibility frames.
A set ¥ of L£L1(I)-sentences defines F relative to G iff for all F € G: F € F iff every ¢ € ¥ is true in Fy.
Possibility frames F and G are £'(I)-elementarily equivalent iff Fy; and Gy are £'(I)-elementarily equiv-

alent. F is closed under L' (I)-elementary equivalence relative to G iff whenever F € F, G € G, and F is

LY(I)-elementarily equivalent to G, then G € F. q

For succinctness, we will adopt the following convention: when we say that a class of full possibility
frames is simply ‘definable’, in the modal or £!(I) sense, or that it is simply ‘closed under £!(I)-elementary
equivalence’, we mean relative to the class of full possibility frames.

In § 6.2, we answer question 2 above for full possibility frames. We give a characterization of when a class
of full possibility frames that is closed under £!(I)-elementary equivalence is modally definable. Theorem 6.7
in § 6.2 is the analogue for possibility semantics of the well-known Goldblatt-Thomason Theorem (Goldblatt
and Thomason 1975, Thm. 8, Blackburn et al. 2001, Thm. 3.19) about when a class of full world frames
closed under elementary equivalence is modally definable (relative to the class of full world frames). Stating
the result for classes closed under elementary equivalence is of course stronger than what question 2 asks for,
because while first-order definability by a set of sentences implies closure under elementary equivalence, the
converse implication does not hold. (Recall that closure under elementary equivalence is equivalent to the
weaker condition of being the union of classes each of which is first-order definable by a set of sentences.)

We will postpone discussion of question 1 and our relevant results until § 6.3.
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6.1 Modally Definable Classes of Possibility Frames

In this section, we use the results of § 5.9 to prove an analogue for possibility frames of Goldblatt’s [1974,
Thm. 1.12.11] characterization of modally definable classes of world frames.

Goldblatt’s [1974, Thm. 1.12.11] theorem states that a class K of world frames is modally definably if
and only if it is closed under surjective p-morphisms, generated subframes, and disjoint unions, while both
K and its complement are closed under general ultrafilter extensions (i.e., taking the general ultrafilter frame
of the underlying BAO of a frame, as in § A.3). The left-to-right direction simply uses the fact that the
validity of modal formulas is preserved by surjective p-morphisms, generated subframes, and disjoint unions,
while a frame validates exactly the same formulas as its general ultrafilter extension. For the right-to-left
direction, Goldblatt’s strategy for showing that the modal logic of K defines K involves switching from the
universe of frames to the universe of BAOs, where we can then apply Birkhoft’s [1935] HSP theorem: the
smallest equationally definable class of algebras containing a given class C of algebras is HSP(C), the class
of all homomorphic images of subalgebras of direct products of algebras from C. Given suitable connections
between algebraic constructions and frame constructions (recall § 5.9), one can then use the HSP theorem
to show that any frame validating the modal logic of K in fact belongs to K. This now standard strategy
is exactly the strategy we will follow below. Compare the proof of Theorem 6.4 below to van Benthem’s
[1983, Thm. 16.1] proof of Goldblatt’s {1974, Thm. 1.12.11] characterization of modally definable classes of
world frames. Also note that the HSP theorem is a theorem of ZF set theory [Andréka and Németi, 1981],

so Theorem 6.4 does not require the axiom of choice or even the ultrafilter axiom.

Theorem 6.4 (Modal Definability of Possibility Frames).

1. If a class F of possibility frames is definable by modal formulas, then F is closed under dense possibility
morphisms, selective subframes, and disjoint unions, while both F and its complement are closed under

general filter extensions (see § 5.6).

2. If a class F of possibility frames is closed under surjective p-morphisms, generated subframes, and
disjoint unions, while both F and its complement are closed under general filter extensions, then F is

modally definable.

Proof. For part 1, if F is defined by a set ¥ of modal formulas, then since the validity of modal formulas is
preserved by dense possibility morphisms (Proposition 5.50), selective subframes (Proposition 5.53), disjoint
unions (Proposition 5.57), and general filter extensions (Theorem 5.46), F is closed under these constructions.
Since validity is also anti-preserved by general filter extensions, i.e., if ¢ is valid over the general filter
extension of a frame, then ¢ is valid over the frame (Theorem 5.46), it follows that the complement of F is
closed under general filter extensions. For if F ¢ F, so it does not validate some formula from X, then (F b)g
does not validate that formula from %, so (F®)g ¢ F.

For part 2, let ¥ be the modal logic of F, i.e., the set of all ¢ € L(®,T) that are valid over every frame
in F. We will show that ¥ defines F: a frame F is in F iff F validates ¥. The left-to-right direction is
immediate. For the left-to-right direction, as usual, we can turn the set ¥ of modal formulas into a set %°
of algebraic equations, and then since ¥ is the modal logic of F, ¥° is the algebraic equational theory of
Fb = {F® | F € F} by Theorem 5.6.6. Then the class of all BAOs in which the equations of ¥ hold is the
smallest equationally definable class of BAOs containing F®, which by Birkhoff’s theorem is HSP(FP), the
class of all homomorphic images of subalgebras of direct products of algebras from FP.

Now suppose F is a possibility frame validating ¥, so by the previous paragraph, the equations of %P
hold in F® and hence F° € HSP(FP). Thus, there is a family {F;};c; of possibility frames from F such
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that F® is a homomorphic image of a subalgebra S of [] ]—'Jt»’. Since FP® is a homomorphic image of S, by

Proposition 5.55.1, (J’-'b)g is isomorphic to a generated sdkffiame of Sg. Next, from Proposition 5.58, H Fjis
isomorphic to (bj F;)P. Thus, the subalgebra S of H F; is isomorphic to a subalgebra of (Lﬂ fj)b,];;lence
by Proposition 356.;1.1, there is a surjective p—morp}fii;]rl from (( E—J F;)P)g to Sg. <
Now we argue that 7 € F. Since each F; is in F, E—J]]:j jéJF by closure under disjoint unions; then
JE.

(W F;)P)g € F by closure under general filter extensions; then since there is a surjective p-morphism from
jeJ

(Y F;)P)g to S, Sg € F by closure under surjective p-morphisms; then since (F®)g is isomorphic to a
jeJ

generated subframe of S, (F b)g € F by closure under generated subframes and isomorphisms; and then

finally F € F by the closure of the complement of F under general filter extensions. O

6.2 Modally Definable Classes of Full Possibility Frames

Next we will prove an analogue for full possibility frames of the Goldblatt-Thomason Theorem for full world
frames. Goldblatt and Thomason’s [1975] result concerns classes K of full world frames that are closed under
elementary equivalence in the sense that if (W,{R;}icr) € K, and (W, {R;}ier) and (W', {R}}icr) satisfy
the same sentences of the first-order language with equality and a binary predicate R; for each i € T , then
(W' {R.}icr) € K. The theorem states that any class K of full world frames that is closed under elementary
equivalence is modally definable relative to the class of full world frames iff K is closed under surjective p-
morphisms, generated subframes, and disjoint unions, while the complement of K is closed under ultrafilter
extensions (i.e., taking the ultrafilter frame of the underlying BAO of the frame, as in § A.3). Note the
differences between this result and Goldblatt’s result on modally definable classes of (general) world frames.
There is no closure under general ultrafilter extensions, because such extensions are not full frames (except
in the trivial case of the general ultrafilter extension of a finite full frame, which is always isomorphic to the
initial frame). Thus, we consider ultrafilter extensions instead of general ultrafilter extensions. Recall that
if ¢ is valid over the ultrafilter extension of a frame, then ¢ is valid over the frame, but the converse is not
guaranteed, as it was in the case of general ultrafilter extensions. However, if K is closed under elementary
equivalence as well as surjective p-morphisms, then K is closed under ultrafilter extensions [van Benthem,
1979b, Lem. 3.8|. This fact allows the same form of argument as used in the proof of Goldblatt’s theorem
for world frames to be used in a proof of the Goldblatt-Thomason Theorem for full world frames.

Our analogue of Goldblatt-Thomason concerns classes of full possibility frames that are closed under
L1(I)-elementary equivalence as in Definition 6.3 (relative to the class of full possibility frames). The
restriction to classes closed under elementary equivalence helps in a way analogous to the way it helps in the
case of full world frames: any class of full possibility frames closed under £!(I)-elementary equivalence and
dense (and strict) possibility morphisms is also closed under filter extensions, as in Lemma 6.5. This fact
will allow us to easily adapt the proof of Theorem 6.4 above to give a proof of Theorem 6.7 below.

To prove the key Lemma 6.6, we need some help from first-order model theory. Given a first-order
structure 2 for a language £ and an element a in 2, let (£, a) be the expansion of £ with a new constant
symbol a, and let (2, a) be the (£, @)-expansion of 2 that interprets @ as a. A structure 2 for £ is 2-saturated
iff for any element a in 2 and any set X(x) of formulas of (£, a) containing at most the variable x free, if
every finite subset of X(x) is satisfied by some object or other in (2, a), then X(x) is satisfied by an object

in (2A,a). It is a standard result in first-order model theory that every model has a 2-saturated (indeed,
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w-saturated) elementary extension [Chang and Keisler, 1990, §5.1]. Here we assume the axiom of choice.3

Lemma 6.5 (2-Saturated Elementary Extensions). For every full possibility frame F = (S, C, {R;}ier1, P),
viewed as a structure for the first-order language £!(I, P) with identity, binary predicate symbols C and R;
for each i € I, and a unary predicate symbol X for each X € P, there is a LY(I, P)-structure F° = (5% C°
A R:}ier, P®) such that:

1. F®is a 2-saturated L£!(I, P)-elementary extension of F;
2. (S%,C5, {RS}icr) is an L1 (I)-elementary extension of (S,C, {R;}ier);

3. F' = (S5, C° {R5}icr, RO(S®,C%)) is a full possibility frame.

Proof. We have already noted that part 1 follows from standard results in first-order model theory. Part 2
is immediate from part 1. For part 3, by Proposition 2.30, F’ is a full possibility frame iff it satisfies the
sentence p of £L1(I) expressing R-rule, R=-win, and that the refinement relation is a partial order. Since

F is a full possibility frame, F satisfies p by Proposition 2.30, so by part 2, ' also satisfies p. O

We can now prove the key lemma that will take us from Theorem 6.4 to Theorem 6.7. It is based on
LEMMA 3.8 of van Benthem 1979b, which is in turn based on LEMMA 9 of Fine 1975b.

Lemma 6.6 (From Frames to Filter Extensions). For every full possibility frame F = (S,C,{R;}icr, P),
there is a full possibility frame 7/ = (S',C', {R.}ic1, P') such that (S',C', {R!};c;) is an £1(I)-elementary
extension of (S, C, {R; };cs) and there is a dense and strict possibility morphism from F” to the filter extension
(FP)s of F.

Proof. Given F, let F* and F' be as in Lemma 6.5. Define a function g with domain S’ by g(z) = {X C
Slxe X]:S}, where X7~ is the interpretation of the predicate symbol X in the LY(I, P)-structure F5. We
claim that ¢ is a dense and strict possibility morphism from F’ to (F®);.

First, we check that g(z) is in the domain of (F®);, i.e., that g(z) is a proper filter in F°. For every
X,Y € P, where (X NY) and (—X) are the predicate symbols of £!(I, P) corresponding to the sets XNY and
—X = X D in P, the £1(I, P) sentences Vz((X(z) A Y (2)) <+ (X NY)(z)) and Vz((—X)(z) — —X(z)) are
true in the possibility frame F, regarded as an £!(I, P)-structure, and hence true in its £!(I, P)-elementary
extension F* that is used to define g. It follows that X,Y € g(z) iff X NY € g(z), so g(z) is a filter in F>,
and that —X € g(z) implies X & g(x), so g(z) is a proper filter.

Next, we show that g satisfies the dense condition, i.e., that for every y’' € (FP)¢, there is a y € F’ such
that g(y) CF o/, Consider any element of (FP), i.e., any filter F in F°. Let ¥ = {X(x) | X € F}. For
any finite Xy C %, let Fy = {X | X(x) € %o}, so Fp is a finite subset of F. Hence () Fy € F by the fact that
F is a filter, so then () Fy # 0 by the fact that F' is a proper filter. Thus, there is an = € (] Fy, which means
that z satisfies ¥ in F. Hence 3x(A o) is true in F and therefore in its £(I, P)-elementary extension JF*.
Thus, we have shown that every finite subset of 3 is satisfied by some object or other in F*. Then since F*
is 2-saturated, it follows that X is satisfied in F* by an object y, so y € F’ as well. Then by the definition
of g, g(y) 2 F, so g(y) CE) F by definition of (F?)¢. Hence g satisfies the dense condition.

Finally, we show that g is a strict possibility morphism:

o if y T’ z, then g(y) CF) g(x) (T-forth);

36In fact, the result that every model has an w-saturated elementary extension does not require full choice. It suffices for this
result to assume the ultrafilter axiom and the axiom of dependent choice (thanks to Dan Appel and Nick Ramsey for discussion
of this point). Pincus [1977] showed that ZF plus the ultrafilter axiom and dependent choice is strictly weaker than ZFC.
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o if FCF ) g(z), then Jy: y C’ z and ¢(y) CHF)r F (C-back);
e if xR}y, then g(z)RE}-b)fg(y) (R-forth);
o if g(x)Rz(»]:b)fF and G TP F| then 3y: Ry and 9(y) 0 G (R-back).

Since F' is a full possibility frame, the pull back property of g follows from C-forth and C-back by Fact 3.5.
For C-forth, since F is a possibility frame, we have that for all X € P, F satisfies the £ (I, P) sentence
Vxy((y ExAX(x)) = X(y)), so its £L1(I, P)-elementary extension F* does as well. Now if y T’ z, so y C° z,
the since F* satisfies the given sentence, it follows by the definition of g that g(y) 2 g(x), so g(y) C(F)r g(x).
The proof of R-forth is analogous, using for every X € P the sentence VxVy((xR;y A (B, X)(x)) = X(y)),
where (I7X) is the predicate symbol corresponding to B; X in P, and then the definition of Rgfb)f.

For C-back, suppose that F E(}—b)f g(z), so F is a filter in FP such that F O g(x). Expand the language
LY(®, P) with a new constant symbol . Let ¥ = {X(y) | X € F} U {yC}. For any finite £y C %, let
Fo={X | X(y) € %o} as above, so (| Fy € F as above. Let Q = () Fy, so Q € F. Then since F is a proper
filter and F' D g(x), it follows that —Q ¢ g(x). Hence z is not in the interpretation of the predicate symbol
(—=Q) in F*. Now since the £!(I, P) sentence ¥x(—(—Q)(x) — Jy(y Cx A Q(y))) is true in the possibility
frame F, it is true in its £!(I, P)-elementary extension F*. Combining the previous two steps, we have that
there is a y € F° such that y C° z, so y C’ , and y € Q = (| Fy. Hence y satisfies the set Xg U {y 4} in
the expansion of F* that interprets the new constant & as x. Since ¥y was an arbitrary finite subset of X,
we can apply the fact that F® is 2-saturated to conclude that there is an object y that satisfies the whole set
¥ in the expansion of F*. Then by the definition of ¥ and g, we have g(y) 2 F, so g(y) CFx . Finally,
since y C 4 € 3, we have that y C° , so y C’ 2. This completes the proof of C-back.

For R-back, suppose g(x)REfb)fF and G CF"s F, so for every X € P, B, X € g(z) implies X € G by
the definitions of Rgfb)f and C(F . As above, expand the language with a new constant &, but this time
let ¥ = {X(z) | X € GYU{Jy(¢Riy AzLy)}. For any finite Xy C %, let Gy = {X | X(2) € 3¢}, so as
above, where @ =[G, Q € G. Then since G is a proper filter, the first sentence of this paragraph implies
that M;—Q ¢ g(z), so x is not in the interpretation of the predicate symbol (M;—Q) in F°. Now since
the £L1(I, P) sentence Vx(—(M;-Q)(x) — JyTa(xRiy AzLy A Q(z))) is true in F, it is true F°. As above,
we then deduce that there is an object z in F*® that satisfies the whole of ¥ in the expansion of F*® that
interprets & as x. Thus, there are y, z € F® such that xRy and z C° y, so xR,y and z C’ y, and ¢g(z) D G, so
g(2) CF"r G. Since z T/ y, we have g(z) C(F)r 9(y) by C-forth, which with g(z) CF G implies 9(y) § G.
This completes the proof of R-back. O

We now obtain our possibility-semantic analogue of the Goldblatt-Thomason Theorem.

Theorem 6.7 (Modal Definability of Full Possibility Frames).

1. If a class F of full possibility frames is definable by modal formulas, then F is closed under dense
possibility morphisms, selective subframes, and disjoint unions, while its complement is closed under

filter extensions.

2. If a class F of full possibility frames is closed under L£!(I)-elementary equivalence, dense and strict
possibility morphisms, generated subframes, and disjoint unions, while its complement is closed under

filter extensions, then F is modally definable.

Proof. For part 1, all we need to add to the proof of Theorem 6.4.1 is the fact, given in Corollary 5.47, that

if ¢ is valid over the filter extension of a frame, then ¢ is valid over the frame. By the same reasoning as
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before, that fact and the assumption that F is modally definable together imply that the complement of F is
closed under filter extensions.

For part 2, since F is closed under elementary equivalence and dense and strict possibility morphisms, it
is closed under filter extensions by Lemma 6.6. Thus, we have a setup analogous to that of Theorem 6.4.2:
F is closed under surjective p-morphisms, generated subframes, and disjoint unions, while both F and its
complement are closed under filter extensions. Now reproduce the proof of Theorem 6.4.2 but with (F®)¢

in place of (FP)g, (( 1§ F;)P)f in place of (( 4 F;)P)g, Lemma 5.55.2 in place of Lemma 5.55.1, and Lemma
jeJ =
5.51.2 in place of Lemma 5.51.1. The resulting argument is a proof of part 2 of the current theorem. O

6.3 Modal Formulas with First-Order Correspondents

In this section, we address question 1 from the beginning of § 6, going in the opposite direction relative
to 6.2: given a modal formula ¢, is the class of full possibility frames that ¢ defines also definable by a
first-order sentence of £!(I)? Let us phrase this in the standard terms of first-order correspondence.

Definition 6.8 (Relative Frame Correspondence). A formula ¢ € L(®,I) globally corresponds to a sentence
€ LY(I) relative to a class F of possibility frames iff for any F € F: ¢ is valid over F as a possibility frame
iff ¢ is true in Fy (recall Definition 2.25) as a structure for £(1).

A formula ¢ € L(®,1) locally corresponds to a formula 1(x) € £(I) with exactly one free variable x,
relative to F, iff for any F € F and s € F: F, s I ¢ (recall Definition 2.3) iff ¢)(x) is satisfied by s in Fy. <

Note that ¢ € L(®, ) globally corresponds to ¢ € L(I) relative to F iff ¢ and ¢ define the same class
of possibility frames relative to F, as in Definitions 6.1 and 6.3.

In § 1, we quoted Goldblatt’s [2006a, p. 51] remark that a “substantial reason for the great success” of
Kripke semantics is the way in which many natural modal axioms correspond to first-order properties of the
accessibility relations in Kripke frames (full world frames), e.g., seriality (p — O¢), reflexivity (e — ),
transitivity (O¢ — O0¢), symmetry (¢ — OO¢), etc. When moving to a more general semantics, we may
lose such nice correspondences. For example, although for any full world frame §, § validates the 4 axiom,
i — O0;0;¢, iff R; is transitive, it is not the case that for any (general) world frame g (see § A.2), g
validates the 4 axiom iff R; is transitive. The reason is that even if R; is not transitive, g may validate the 4
axiom because of the limitations on admissible valuations over g.>” Analogous points apply to other axioms.

Given a modal formula ¢, we will ask whether it has a first-order correspondent over full possibility
frames. One can seek an answer in terms of semantic or syntactic features of ¢. Over full world frames, a
semantic feature that is necessary and sufficient for ¢ to have a global first-order correspondent is that the
validity of ¢ be preserved under taking ultrapowers of full world frames, and a related feature characterizes
local first-order correspondence (see van Benthem 1976b, 1983, §VIII). A syntactic feature that is sufficient
for local and global correspondence over full world frames is that ¢ be a Sahlquist formula (see Blackburn
et al. 2001, §3.6, Sahlqvist 1975, van Benthem 1976a, §1.4, van Benthem 1983, §IX).

For full possibility frames, on the semantic side an analogous result with ultrapowers holds, as shown in
Yamamoto 2017. Given a full possibility frame F, consider its foundation Fy (Definition 2.25) as a first-order
structure for £!(I), and then take an ultrapower [[,; F; of F; in the standard sense. By Corollary 6.2 and the
preservation of first-order sentences under taking ultrapowers, [ [, 4 is the foundation of a full possibility
frame. Thus, there is a full possibility frame ([],; Fy)* based on [],; F;. We say that ([[, F)* is an

37As Kracht [1993] discusses, familiar correspondences may be restored relative to certain classes of general world frames
defined by conditions on the set of admissible propositions.
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ultrapower of F. Then the analogue of van Benthem’s result is that ¢ has a global first-order correspondent
over full possibility frames iff the validity of ¢ is preserved under taking ultrapowers of full possibility frames.

On the syntactic side, Yamamoto [2017] shows that the possibility-semantic version of the Sahlgvist
correspondence theorem also holds: every Sahlqvist formula has a local (resp. global) first-order correspon-
dent over full possibility frames. Yamamoto’s proof uses the connection between full possibility frames and
CV-BAOs (88§ 5.1-5.3) and the methods of algebraic modal correspondence [Conradie et al., 2017], further
supporting the theme of the present paper of the importance of duality theory.

Below we will give some simpler methods for calculating first-order correspondents for restricted classes
of Sahlqvist formulas. First, we discuss the extent to which the “minimal valuation” heuristic for first-order
correspondence in Kripke semantics can be applied to possibility semantics. Second, we give an analogue
for full possibility frames of one of the most elegant first-order correspondence results for full world frames,
namely Lemmon and Scott’s [1977, §4] result (also covered in Chellas 1980, §3.3, §5.5, Popkorn 1994, §6, and
Garson 2014, §9) for formulas of the form ¢,0gp — OsO~p, where O, is a sequence of diamond operators,
O is a sequence of box operators, etc., which covers many familiar modal axioms.

As in the case of possible world semantics, so too in the case of possibility semantics, the problem of
establishing first-order correspondence can be viewed as the problem of showing that certain second-order
formulas have first-order equivalents. For every modal formula has a second-order correspondent over full
frames. To get to this second-order perspective, we begin with a first-order language £'(®, I) that extends
LY(I) with a predicate Q for each ¢ € ®. While we interpreted LY(I) in possibility frames, we interpret
LY (®,I) in possibility models M = (S,C,{R;}ier, ), interpreting Q as m(q). We relate the modal £(®, I)
to the first-order £!(®,I) over possibility models using the following definition and proposition.
Definition 6.9 (Standard Translation). For each first-order variable x, define the standard translation
STy: L(®,1) — LD, ) as follows:

1. ST(q) = Qx for ¢ € ®;
2. ST (—p) = Vy(y Cx — STy (¢)), where y is a fresh variable;
3. ST((p A1) = (ST(p) A ST(¥));
4. ST ((p = ¥)) =Yy ((y Cx A STy () — STy (v))), where y is a fresh variable;
5. ST (Oip) = Vy(xRiy — ST, (p)), where y is a fresh variable.
Let ST (p) = VxSTx(p). <
Proposition 6.10 (Correspondence on Models). For any possibility model M, s € M, and ¢ € L(®,):
1. M, s I ¢ iff the formula STy () is satisfied by s in M regarded as a first-order structure for £(®,I);
2. M I ¢ iff the sentence ST'(¢) is true in M regarded as a first-order structure for £(®, I).

To have this kind of result at the level of frame validity, we move to the monadic second-order language
L2(®, 1) obtained from L£'(I) by adding a predicate variable Q for each ¢ € ®. We interpret £2(®, )
in possibility frames—or rather, foundations Fy = (S,C,{R;}icr) of possibility frames—with p(S) as the
domain for the monadic second-order quantifiers. We then relate the modal language £(®, ) to the second-
order language £2(®, ) over full possibility frames using the following definition and proposition.
Definition 6.11 (Second-Order Translation). For each first-order variable x, define the second-order trans-
lation SOTy: L(®,1) — L2(®, ) as follows, where Q is a second-order variable:

1. RO(Q) = W(Qv < W (v Ev — W'(v' Cv AQV")));
2. SOTx(p) = le . in(( A RO(QZ)) — STx(¢)),

1<i<n
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where Qh RN Qn are the unary predicates occurring in STy ().

Let SOT(p) = VxSOTx(y). <

From now on we will usually drop the dots over symbols, trusting that no confusion will arise, and we

will use abbreviations of the form ‘Vy C x’ for restricted quantification.

Proposition 6.12 (Correspondence on Frames). For any full possibility frame F, s € S, and ¢ € L(D,):
1. F,z |k ¢ iff the formula SOTy(y) is satisfied by s in Fy;
2. FIF ¢ iff the sentence SOT(y) is true in Fy.

Thus, a modal formula ¢ having a first-order local/global correspondent ¢ over full possibility frames is
the same as the second-order SOT(y)/SOT(p) being logically equivalent to the first-order .

The first-order correspondence problem for full possibility frames is related to the first-order correspon-
dence problem for full world frames by the following fact, which is an immediate consequence of the fact

that full world frames are a special case of full possibility frames.

Fact 6.13 (Possibility Correspondence Implies World Correspondence). Any modal formula that has a
local/global first-order correspondent over all full possibility frames also has a local/global first-order corre-

spondent over full world frames, viz., the same first-order formula, in which C may be replaced by =.

Thus, the modal formulas that lack first-order correspondents over full world frames, e.g., [;0;p — O;00;p
[van Benthem, 1975, Goldblatt, 1975], also lack first-order correspondents over full possibility frames. This
does not show, however, that such formulas lack a first-order correspondent over some restricted class of full
possibility frames that does not include all full world frames, e.g., functional full frames (§ 4.4).

The converse question of whether every modal formula with a local/global first-order correspondent over
full world frames also has one over full possibility frames is an open question (see § 8.2).

We will consider both local and global correspondence as in Definition 6.8. By part 1 of the following

obvious fact, having a local correspondent implies having a global one (part 2 will be useful later).
Fact 6.14 (From Local to Global). For any o,v € L(®, 1), 1 (x) € L1(I) with x free, and class F of possibility
frames:
1. if ¢ locally corresponds to 1 (x) relative to F, then ¢ globally corresponds to Vx ¢ (x) relative to F;
2. if ¢ — 9 locally corresponds to Vx C xq t(x) relative to F, then ¢ — 4 globally corresponds to Vxt(x)
relative to F.
As in possible world semantics, so too in possibility semantics, having a global correspondent does not
imply having a local correspondent. The following example comes from van Benthem 1983, Theorem 7.1.

Fact 6.15 (Global without Local). 0;0;0,0;p — ¢;0;0;0;p globally corresponds to Vx Jy xR;y over all

possibility frames, but does not locally correspond to any £!(I) formula even over full possibility frames.

Proof. First, for the claim of global correspondence, observe that for any possibility model M and =,y € M,
if there is no y such that xR;y, then every [;p is true at = and every ;v is false at . Thus, if a possibility
frame F does not satisfy Vx 3y xR;y, so there is an x with no y such that zR;y, then (0;0;0;0;p — 0;0:0;0p
is false at  in any model based on F. In the other direction, observe that if F satisfies Vx Jy xR;y, then for
any M based on F and x € M, M,z IF ;¢ implies M,z IF O;¢. For if M, x IF O;p, then by Persistence,
for all ' C x we have M, z’ IF O;p, which with Vx 3y xR;y implies that there is a ¢’ such that ' R;y’ and
M,y I+ o, which implies M,z IF O;. Then since M,z I+ O, implies M,z I O;¢, it clearly follows that
M,z IF0;0;0;0;p implies M, z IF $;0,0;0;p. Thus, 0;0;0,;0,p — ¢;0:;0;0;p is valid over F.
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The claim of no local correspondent follows from the fact that [0;0;0;0;p — ¢;0;0;0;p has no local
correspondent over full world frames (van Benthem 1983, Theorem 7.1) plus Fact 6.13. O

The proof of Fact 6.15 also shows that (;p — O;p globally corresponds to Vx Jy xR;y. In contrast to Fact
6.15, however, it is easy to see that [;p — ;p locally corresponds to Vx C xgdy xR;y. This is an atypical
case of correspondence, insofar as we can show that if F,z¢ does not satisfy Vx C xg dy xR;y, then for every
model M based on F, M, xq ¥ O;p — O;p. Typically we have to carefully choose a falsifying model.

Indeed, the tricky part of establishing correspondence is usually that of showing that if F,x I ¢, then
F,x satisfies the putative local first-order correspondent ¥ (x) of ¢, and similarly in the global case. The
direct strategy for local correspondence is to show that we can find minimal valuations m in such a way that
from the fact that ¢ is true at x in the models (F,7) (by the assumption that F,z I ¢), it follows that
¥(x) is satisfied by x in F as a first-order structure. (See van Benthem 2010, §9.4 for an introduction to
this strategy as applied to full world frames.) The contrapositive strategy for local or global correspondence
is to show that if F,x (resp. F) does not satisfy the putative first-order correspondent, then we can add
a valuation to obtain a model on F witnessing F,x W ¢ (resp. F ¥ ¢). For both strategies, the trick is
to pick the right valuations. In the context of possibility semantics, we have the additional constraint that
an admissible valuation 7 on a frame must be such that 7(p) satisfies persistence and refinability. In this
respect, correspondence theory for possibility semantics is similar to intuitionistic correspondence theory, as
developed in Rodenburg 1986, which shares the persistence constraint on valuations.

Thus, we need methods of constructing admissible valuations on full possibility frames. From Fact 4.3,
we know that if for each p € ®, we set w(p) = {2’ € S | 2’ T, z} for some x € S, then 7 is admissible. More

generally, from Fact 2.17.2, we know that if for each p € ® we set
m(p) = int(cl(YX))={z e S|V’ CaxI" Ca': 2" € | X}

for some X C 5, then 7 is admissible. The following gives another way of ensuring that 7 is admissible.

Fact 6.16 (L -Generated Propositions). For any poset (S,C) and Y C S, {x € S |Vy € YV:2 Ly} isin
RO(S, ).

Proof. Since ' C z and x L y together imply o’ Ly, {x € S|Vy € Y: x Ly} satisfies persistence.

For refinability, suppose x & {x € S |Vy € Y: & L y}, so thereis ay € Y such that x () y. Then there is an
z’ € z such that 2’ C y, which implies that for all z”” C 2/, ” (| y and hence 2/ ¢ {r € S |Vy € Y: z L y}.
Thus, {x € S |Vy € Y: x Ly} satisfies refinability. O

In the rest of this section, we will state our results for correspondence relative to the class of full standard
possibility frames (Definition 2.41), i.e., full possibility frames satisfying the R-down condition that if zR;y
and y’' C y, then zR;y’ (recall Example 2.7 and § 2.3). The R-down condition significantly simplifies the
first-order correspondents of modal formulas (recall Fact 2.44). The first-order correspondents are further
simplified by assuming the conditions of strong possibility frames, especially R-dense: if Vi’ C y 33" C y
zRyy”, then zR;y. Recall from Fact 2.32 that R-down and R-dense are jointly equivalent to the condition
that for each x € F, R;(x) € RO(F). Also recall from Proposition 2.37 that any full possibility frame can be
transformed into a modally equivalent full, strong and hence standard possibility frame. Our correspondence

results for standard full frames will imply correspondence results for all full frames, by the following reasoning.

Lemma 6.17 (Transferring Correspondence). Given ¢ € £(I), let 1, be the result of replacing each subfor-
mula of ¢ of the form xR;y with Jy’ (xRiy’ Ay Cy'). If ¢ is a local (resp. global) first-order correspondent
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of ¢ over standard full possibility frames, then ¢, is a local (resp. global) first-order correspondent of ¢ over

all full possibility frames.

Proof. Given a full possibility frame F = (S,C,{R;}icr, P), define F| = (S,C,{R; }icr, P) by xRy iff
Jy': xRy’ and y C 3. Then it is easy to check that F| is a full possibility frame, and F| satisfies R-down
by construction, so it is a standard possibility frame. Moreover, the identity map on .S is a surjective robust
possibility morphism from F to F|, so these frames validate exactly the same formulas by Proposition 3.7.
Since F satisfies Jy’(xR;y’ Ay C y') with some variable assignment iff F| satisfies xR;y with the same
variable assignment, F satisfies ¢ iff 7| satisfies 1. Then assuming that F|,z (resp. F)) satisfies ¢ iff 7,z
(resp. F,) validates ¢, it follows that F,z (resp. F) satisfies ¢, iff F,z (resp. F) validates . O

By the same kind of argument, we can show that if ¢ is a first-order correspondent of ¢ over strong
full possibility frames, then a related formula 1)’ is a first-order correspondent of ¢ over all full possibility
frames. Note, however, that none of our arguments show, e.g., that if ¢ has a first-order correspondent over
functional full possibility frames (§ 4.4), then it has a first-order correspondent over all full frames. For we
cannot always turn a full possibility frame into a modally equivalent functional one simply by modifying the
accessibility relations of the frame, let alone in a first-order definable way. It is an open question whether
more modal formulas have first-order correspondents over functional full possibility frames.

Let us first consider the direct strategy for establishing correspondence with minimal valuations. As an

example, we compute a first-order correspondent for ;¢ — 0;[0;¢ (again cf. van Benthem 2010, §9.4).

Example 6.18 (Correspondence by Minimal Valuations). Given a frame F, what is the minimal way of
making the antecedent of [;q — [J;[J;q true at a state x? If F were a full world frame, the minimal way of
making ;¢ true at = would be with a valuation 7 such that w(q) = R;(z). However, if F is a standard full

possibility frame, the minimal admissible way of making [J;p true at x is with a valuation 7 such that
7(q) = int(cl(Ri(z))) ={z € S |Vw C 23w Cw: zR;w'}. (22)

Since R;(z) is a downset by R-down, this 7(¢) is the minimal regular open set including R;(z) by Fact
2.17.2. Now consider the second-order translation with respect to xq of O;p — [0;00;p,

VQ(RO(Q) — ST, (Oip — Lilip)),
which is equivalent to

vQ (VV(QV SWEvIV EV QV') —

Vx C xo (Vy(xRiy = Qy) — Vz(xR?z — Qz)))), (23)

using xR?z as the obvious abbreviation. If we plug in for @ the first-order description of the minimal

valuation from (22), i.e., for each variable «, replace Qa with Vw C 3w’ C w xR;w’, then we obtain:

VV((VW Cvaiw CwxRw) < (WEvH' CVVWWLE V' Iw' Cw XRZ‘W/)) —

Vx C xo(Vy(xRiy = Vw C y 3w’ C wxR;w') — Vz(xRjz = Vw C z 3w’ C w xR;w'))). (24)
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Every frame satisfies the main antecedent of (24), so we can reduce (24) to
Vx C xo (Vy(xRiy — Vw C y 3w’ C wxR;w') = Vz(xRiz — Vw C z 3w’ C wxR;w'))). (25)
Moreover, every frame satisfying R-down satisfies the main antecedent in (25), so we can reduce (25) to
Vx C xo Vz(xR?z — ¥Yw C z 3w’ C wxR;w'), (26)
which over frames satisfying R-down is equivalent to the simpler
Vx C xo Vw(xRZw — Iw’' C wxR;w'). (27)
Over frames satisfying both R-down and R-dense, (26) is equivalent to the still simpler
Vx C xo Vw(xRZw — xR;w). (28)

Now we claim that (23) and (26)/(27) are equivalent over standard frames. We already have the implication
from (23) to (26), since (26) is equivalent to (24), which is simply an instantiation of (23). The implication
from (26) to (23) relies on the following two key points:

(A) If a :=W(Qv < W CvIv/ C v Qv’) Ax C x9 AVy(xR;y — Qy) from (23) is satisfied in F with a
variable assignment v such that v(x) = x, then v(Q) is a regular open set that includes R;(x). Thus,
v(Q) is a superset of our int(cl(R;(x))) from (22), which we noted above is the minimal regular open
set that includes R;(x).

(B) Thanks to its positive syntactic form, 3 := Vz(xR?z — Qz) from (23) is semantically upward monotone
in Q: for any assignments v and v’ that agree on x, if § is satisfied by F with v/, and v/(Q) C v(Q),
then S is satisfied by F with v.

Let v be the formula that comes after Vx C x¢ in (26), and suppose ~ is satisfied in F with some assignment

v. It follows that S is satisfied in F with the assignment »/ that differs from v only in that v/(Q) =

int(cl(R;(v(x)))) = {z € S| Yw C 23w’ C w: v(z)R;w'}. Finally, suppose that « is satisfied in F with v.

Then by (A), ' (Q) C v(Q), so by (B) and the previous point that 3 is satisfied in F with v/, we have that

B is satisfied by F with v. This shows that (26) implies (23).

Thus, (27) is a local first-order correspondent of [J;¢ — [J;00;q over standard frames, and (28) is a local

first-order correspondent over strong frames. Then by Fact 6.14, its global first-order correspondents are
Vx Vw(xRZw — 3w’ C wxR;w') and ¥x Vw(xRiw — xR;w)

over standard and strong possibility frames, respectively. Thus, ;¢ — [J;[0;q corresponds to a kind of
“delayed transitivity” over standard frames and to ordinary transitivity over strong frames. N
Example 6.18 can be turned into a general result, which we state as Proposition 6.21 below. First, let
us state the limitation of the minimal valuation method in the context of possibility semantics: it does not
work when a diamond is in the antecedent of an implication, as in, e.g., the 5 axiom {;q — [J;0;q. Recall
from § 2.4 that the derived clause for ¢;p := —J;—¢ is (in its simplified form using R-down):
o M,z 00 iff Vo' C x Jy': 2/ Ryy’ and M,y IF .

This V3 pattern in an antecedent blocks the standard minimal valuation method, just as the [J;0; pattern
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in the antecedent of [J;0;q — ¢;0;q blocks the method in Kripke semantics.

However, this obstacle involving diamonds in antecedents can be overcome. For simplicity, suppose we
have a modal formula ¢ containing only the propositional variable ¢. If the minimal valuation method would
work on ¢, it would give us a formula o € £;(I) with a free variable u such that if we replace, for each
variable «, each occurrence of Qa in STy(p) by o[a/u], then we obtain a formula STx(p)[c/Q] € L1(I)
with exactly x free that is equivalent to the second-order translation VQ(RO(Q) — STx(y¢)) of . But this
is more than we need for local first-order correspondence. It suffices to find a formula o € £1(I) with free
variables including u and ug,...,u, such that the formula Vu;...Vu,ST,(p)[c/Q] € L£1(I) has exactly x
free and is equivalent to the second-order translation VQ(RO(Q) — STx(¢)) of ¢. Thus, we are using o[a/u]
to pick out a family of subsets by varying parameters. This is an example of the more general method of
substitutions for first-order correspondence (see van Benthem 1983, pp. 108-9) that Yamamoto [2017] uses
to prove that every Sahlqvist modal formula has a first-order correspondent over full possibility frames.

Before leaving the minimal valuation method, let us generalize Example 6.18. For this we need a quick
review of relevant notions (see Blackburn et al. 2001, pp. 151-3). Recall that for a propositional variable
g € ®, a modal formula ¢ € L(®,T) is positive (resp. negative) in q iff every occurrence of ¢ in ¢ is under
the scope of an even (resp. odd) number of negations (where we count ¢ — 1 as = V). Then ¢ is positive
(resp. negative) iff it is positive (resp. negative) in every propositional variable that occurs in it. The same
notions apply to a predicate variable Q and a second-order formula @ € L2(®, 1) in the analogous ways. If
© is positive (resp. negative), then obviously - is negative (resp. positive). Also note that ¢ € L(®,])
is positive (resp. negative) iff SOTy(y) is positive (resp. negative). The key property of positive (resp.
negative) formulas is that they are semantically upward (resp. downward) monotone in their variables: if
a positive (resp. negative) formula is true in a structure given an interpretation of the variables, then it
remains true under expanding (resp. shrinking) the interpretation of the variables.

We now define the class of Sahlqvist formulas without diamonds in the antecedents of implications, which
we call safe Sahlqvist formulas (cf. Blackburn et al. 2001, Def. 3.51).

Definition 6.19 (Safe Sahlqvist Formulas). Fix a set £(®,I) of modal formulas.
A bozxed atom is a formula of the form O;, ...0; p for éy,...,i, € I, pe ®. If n=0,0,, ...0; pis p.
A safe Sahlquist antecedent is a formula built from boxed atoms and negative formulas using A and V.
A safe Sahlquist implication is a formula ¢ — 1 where ¢ is a safe Sahlqvist antecedent and v is positive.
A safe Sahlguist formula is a formula built from safe Sahlqvist implications by applying boxes and

conjunctions, and by applying disjunctions only between formulas that share no propositional variables. <«

The correspondence problem for safe Sahlqvist formulas can be reduced to the problem for safe Sahlqvist
implications using the following standard lemma |[Blackburn et al., 2001, Lem. 3.53| that continues to hold
in possibility semantics.

Lemma 6.20 (Inductive Local Correspondence). For any ¢,v € L(®,I) and §,v € L1(I):
1. if ¢ locally corresponds to d(x), then O;p locally corresponds to Vy(xR;y — d[y/x]);
2. if ¢ locally corresponds to ¢, and 1 locally corresponds to 7, then ¢ A 9 locally corresponds to d A 7;
3. if ¢ locally corresponds to 4, ¥ locally corresponds to -, and ¢ and 1 do not share any propositional
variables, then ¢ V 1 locally corresponds to § V 7.

Now we have the following significant generalization of Example 6.18.

Proposition 6.21 (Safe Sahlqvist Correspondence). Every safe Sahlqvist formula ¢ locally corresponds
over full standard possibility frames to a 1(x) € £(I) that can be effectively computed from ¢.
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Proof. Given Lemma 6.20, we need only explain what to do with each safe Sahlqvist implication ¥ — x.
First, using propositional logic, rewrite ¥ as an equivalent disjunction ¥y V --- V v, where each ¢y is a
conjunction of boxed atoms and negative formulas. Then rewrite v — x as the equivalent conjunction

N (¥r — x), which is a safe Sahlqvist formula. Then by Lemma 6.20.2, it suffices to find a local
1<k<n
correspondent for each implication ¥, — x. Using the equivalence of (a« A ) — ~v and a — (=8 V 7),

pull out any negative conjuncts from 1, negate them, and disjoin them with the consequent. Then the
consequent is still positive, so the result is a safe Sahlqvist implication v, — x’ where 1}, is a conjunction
of boxed atoms and X’ is positive. Now we determine the local first-order correspondent of ¢;, — x’ as in
the standard Sahqglvist-van Benthem algorithm, as presented in Blackburn et al. 2001, Theorems 3.40, 3.42,
and 3.49, except for three main differences evident from Example 6.18. First, our second-order translation
has the RO(Q) constraint on each predicate variable Q; but these disappear as in Example 6.18 when we
substitute the description of the minimal valuation in for Q Second, our implications introduce universal
quantification Vx C xg as in Example 6.18, but that poses no problem. Third, our minimal valuation is the

first-order definable int(cl({X)) where X is the minimal valuation used in Blackburn et al.’s proof. O

As noted above, the restriction that diamonds not appear in the antecedents of implications is not
necessary. We will illustrate this in a way that is useful for calculating first-order correspondents of many
standard modal axioms. Where ¢ is a sequence iy, ...,4, of modal operator indices from I, let {,¢ be
Qiy -+ Qi and Oy be O;, ... 0O; . If o is the empty sequence, then ¢,¢ and O, are simply p. We
will prove a possibility-semantic analogue of the correspondence result from Lemmon and Scott [1977, §4]
for formulas of the form ¢,0gp — 0, Osp, where «, 3, v, and § are sequences of indices from 138

First, we recall the original result of Lemmon and Scott for Kripke frames. Given a Kripke frame
F = (W, {R;}icr) and a sequence « = (iy,...,i,) of indices from I, let 2R,y iff there are x,...,x, such
To =T, Tn =y, and xoR;, 21, ©1Ri, %o, ..., zn_1Ruxy. If o is the empty sequence, then xR,y iff x = y.

In the following, we will blur the distinction between our metalanguage for talking about frame conditions

and our formal first-order language £(I), trusting that no confusion will arise.

Proposition 6.22 (Lemmon-Scott Kripke Frame Correspondence). Let § be a Kripke frame. Then for any
sequences «, 3, d, and « of indices from I, ¢,Ogp — Us504p is valid over § iff § satisfies:

VaVyVz((zRsy A 2Rq2) — Ju(yRyu A 2Rgu)). (29)

For a local correspondent of ¢,Cgp — 50, p, simply delete the Va from (29).

For possibility frames, we have a very similar result in Proposition 6.23. Given a possibility frame

F = {(S,C,{R;}icr, P) and a sequence o = (i1, ...,4,) of indices from I, define xR,y as above except that

if & is the empty sequence, let xR,y iff y C . Note that the R-down condition of standard frames implies:
e if zR,y and 3’ C y, then xR,y .

For the empty sequence, this means that if y C x and v’ C y, then ¢y’ C x, which is just the transitivity of C.

We are now ready to prove the analogue of Proposition 6.22 in possibility semantics.

Proposition 6.23 (Lemmon-Scott Possibility Frame Correspondence). Let F be a full standard possibility
frame. Then for any sequences «, 3, §, and v of indices from I, 0,Ugp — Us504p is valid over F iff F

38The result in Lemmon and Scott 1977 is only stated for the unimodal language, but the polymodal version is a straightfor-
ward generalization.
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satisfies
VaVy(zRsy — 32’ T x Vz(2' Raz — Ju(yRyu A zRgu))). (30)

For the case where « is empty, Ogp — Os;0p is valid over F iff F satisfies
VaVy(xRsy — Ju(yRyu A zRgu)). (31)

For local correspondents, replace Vx in (30) and (31) with Vx C xq so xq is free.

Proof. Suppose F satisfies (30). Further suppose that there is a model M based on F and an z € M
such that M,z ¥ Os0,p. Then as in Figure 6.1, there is a y’ such that xRsy’ and M,y" ¥ O, p, ie.,
M, y' ¥ —=0,=p, so there is a y C y’ such that M,y IF O,—p. By R-down, zRsy’ implies xRsy. Now take
an 2’ as in (30) and consider any 2z’ such that 2’ R,2’. We claim that M, 2’ IF -Ogp. So consider any z C z’.
By R-down, z'R,z’ implies 'Rz, so by (30) there is a u with yR,u and zRgu. Then since M, y I- O, —p,
yR,u implies M, IF —p, which with zRgu implies M, z ¢ Ogp. Since this holds for all z C 2/, we have
M, 2" IF =Ogp, as claimed. Then since 2z’ was an arbitrary R,-successor of 2/, we have M,z IF O,—-0Ogp,
which with 2’ C « implies M,z ¥ =0,—-0Ogp, i.e., M,z ¥ 0,Ogp. Thus, 0o0gp — OsO-p is valid over F.

Figure 6.1: diagram for the proof of Proposition 6.23.

In the other direction, suppose F does not satisfy (30), so it satisfies
J23y(xRsy AVz' C o 3z(2' Raz AVu(yRyu — —zRgu))). (32)

Define M = (F, ) such that s € n(p) iff for all ¢t € R, (y), s_Lt, so by Fact 6.16, M is an admissible model
based on F. Now consider any 2’ C x, so we have a z as in (32). We claim that M, z I+ Ogp, so consider any
o’ with zRgu'. Suppose for reductio that v’ ¢ m(p), so there is a t € R, (y) with «’ () ¢, so there is a u T
with u C ¢t. By R-down, zRgu’ and u C v together imply zRgu, and yR,t and u C t together imply yR.u.
But zRgu and yR,u together contradict (32). Thus, v’ € m(p). Since ' was an arbitrary Rg-successor of z,
M, z I+ Ogp, which with 2’ R,z implies M, 2’ ¥ O,—0gp. Since this holds for all ' C z, M,z I+ -0,-0gp,
ie, M,z IF O,0gp. By definition of 7 together with R-down, we also have M,y I O,—p and hence
M,y ¥ Oyp, which with zRsy implies M, x ¥ OsO~p. Thus, OUgp — OsO~p is not valid over F.
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For the claim about the empty « case, suppose F satisfies (31) and there is a model M based on F and an
x € M such that M,z ¥ Os0.p. Thus, there is a ' such that zRsy" and M, y' ¥ Op, i.e., M,y ¥ =0,—p,
so there is a y C y’ such that M,y I- O,-p. By R-down, xRy’ implies xRsy. Then by (31) there is a
u with yR,u and xRgu. Then since M,y IF O,—p, yR,u implies M, IF —=p, which with xRgu implies
M,z ¥ Ogp. Thus, Ogp — OsO4p is valid over F.

In the other direction for the empty « case, suppose F does not satisfy (31), so
VaVy(zRsy — Yu(yR,u — —zRgu)). (33)

Define M exactly as we did after (32). Then by the same form of argument used to show that M, z IF Ogz
in the proof from (32), one can show that M,z I- Ogp from (33). Moreover, the exact same argument used
to show M,z ¥ Us0.p above works here. Thus, Hgp — Us0,p is not valid over F.

Finally, for the claim about local correspondence, where Vx ¢ (x) is (30), we claim that Vx C xq Vx ¢)(x)
is a local correspondent of ¢,Ugp — OsO0.p. If there is a model M based on F and an zy € M such
that M, 20 W 0o0gp — OsO4p, then there is an T xy such that M,z IF 0,Ogp but M,z ¥ O50,p.
Then by the same reasoning as in the first paragraph of this proof, it follows that 1(x) is falsified by z, so
Vx C xo Vx 9(x) is falsified by zo. In the other direction, if the local correspondent is not satisfied at a state
xo in F, then there is an x C x such that z satisfies the formula obtained from (32) by deleting the initial
existential quantifier. Then the proof that M,z IF 0,Ogp and M,z I 50,p proceeds as before. O

Note that the proof that the Lemmon-Scott axiom is valid if F satisfies (30)/(31) does not rely on the
assumption that F is full; thus it holds for all standard possibility frames.
Before applying Proposition 6.23 to some example axioms, it is worth seeing how the frame conditions

in Propositions 6.22 and 6.23 relate between a Kripke frame and its powerset possibilization (Example 2.9).

Example 6.24 (Frame Properties and Powerset Possibilization). For any Kripke frame § = (W, {R;}ier)

and sequences «, 3, 6, and ~y of indices from I, the condition
VaVyVz((aRsy A 2Raz) = Ju(yRyu A zRgu)) (34)
holds of § iff the condition
VXVY (XR;Y = 3X' C X VZ(X'RoZ — AU (YR,U A ZRgU))) (35)

holds of the powerset possibilization § = (S, C, {R; }ies, P).3 This follows from Propositions 6.22 and 6.23
plus the fact that § and F* validate the same formulas (Fact 2.10.2), but it is also easy to prove directly.

First, recall that for possibility frames, we defined X RVY as Y C X, which for § means Y C X, which
is equivalent to Y C RY[X], since we defined zR{y as z = y for Kripke frames.

Now suppose § satisfies (34), and consider X,Y € (W) \ {0} with XRsY, so Y C Rg[X]. Let X' =
{r e X |y eY:zRsy},so 0 # X' C X. Now consider any Z € p(W) \ {0} with X'R,Z, so Z C Ro[X'],
and pick an x € X’ such that for some z € Z, xR, z. Since x € X', we also have a y € Y with zRsy. Then
by (34), there is a u such that yR,u and zRgu. Setting U = {u}, we have U C R,[Y] and U C Rg[Z], so
YR,U and ZRgU. Thus, §% satisfies (35).

39Note that despite the capitalization of ‘X’, ‘Y, etc., we are using them as first-order variables ranging over the domain of
F¥. We are using capital letters only as a reminder that the possibilities in F% are sets of worlds.
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Next, suppose §¥ satisfies (35), and consider x,y,z € W with 2Rsy and 2R,z. Then setting X = {z}
and Y = {y}, there is a X’ C X for which the rest of (35) holds. Now X’ C X = {z} implies X’ = {z}.
Then since xR,z gives us {x}R,{z}, setting Z = {z} in (35) gives us a U # 0 such that {y}R,U and
{#}RgU, which implies there is a v € U such that yR,u and zRgu. Thus, § satisfies (34). N

Example 6.24 enables a quick proof that where L is the least normal extension of K with a set of
Lemmon-Scott axioms, L is complete with respect to the class of rich possibility frames (§ 4.7) satisfying
the conditions corresponding to those axioms as in Proposition 6.23. For each such L is complete with
respect to the class of Kripke frames satisfying the corresponding conditions in Proposition 6.22 [Lemmon
and Scott, 1977, Thm. p. 55ff]; powerset possibilization preserves the truth of modal formulas (Fact 2.10.1);
and powerset possibilizations are a special case of rich frames.

In Example 6.26 below, we check how Proposition 6.23 applies to some familiar axioms. While one
typically visualizes the Kripke-frame conditions corresponding to modal axioms two-dimensionally, it may
help to visualize the possibility-frame conditions corresponding to modal axioms three-dimensionally, e.g.,
with accessibility arrows parallel to the x-y plane and refinement arrows parallel to the x-z plane. The

following fact is useful for simplifying some of the first-order frame conditions produced by Proposition 6.23.

Fact 6.25 (R-common). Every full standard possibility frame satisfies R-common: if 2’ C z and 2’ R;y/,
then 3z C ¢': 2’R;z and zR;z.

Proof. If ' C x and 2’ R;y’, then by the R-rule property of full frames (§ 2.3), Jy: xRy § v', s0 3z: 2 C y

and z C 3. Then since zR;y and z'R;y’, we have zR;z and 2’ R;z by R-down for standard frames. O

Some of the first-order correspondents produced by Proposition 6.23 have even simpler forms over strong
possibility frames (Definition 2.36), which we will note in the following example.
Example 6.26 (Familiar Axioms). Consider the following special cases of the correspondence between
Oalgp = Us504p and VxVy(xR(;y — Ja’ C 2 Vz(2'Raz — Ju(yRyu A ZRﬁu))), and between Ugp — OsO~p
and VaVy(zRs;y — Ju(yRyu A xRgu)), over full standard frames from Proposition 6.23 (recall that if o is
empty, then xR,y means y C x):

e [;p — Oyp corresponds to VaVy(y C x — Ju(yR;uAxR;u)), which by Fact 6.25 is equivalent to seriality,
Vx JuzR;u.

e O;p — O;p corresponds to VaVy(zR;y — I’ C zVz(a'Riz — Ju(u CE y Au C 2))), ie., VaVy(zR;y —
' CaVz(a'Riz =y () 2)).

e [1;p — p corresponds to VaVy C xJu C yxR;u, which by Fact 6.25 is equivalent to Vax Ju C x 2 R;u.
Over strong frames, it is equivalent to reflexivity, Vx x R;z, by R-dense and R-down.

e p — U;p corresponds to VaVy(zR;y — Ju(u C y Au C z)), ie., VaVy(zRy — x § y).

e [;p — 00,00;p corresponds to VaVy(zR?y — Ju(u C y A zR;u)). Over strong frames, this is equivalent
to transitivity, VaVy(zR?y — xR;y), by R-dense and R-down.

e p — [;0;p corresponds to VaVy(zR;y — Ju(yR;u Au C x)).

o O;p — [0;04p corresponds to VxVy(acRiy — 32’ C z Vz(2'Riz — Ju(yRiu AN u E z))) Over strong
frames, this becomes VzVy (le-y — ' Tz Vz(a'Riz — szz)) by R-dense and R-down.

e [;p — O;p corresponds to VaVy(zR;y — Ju(u T y A xR;u)). Over strong frames, this is equivalent to
VaVy(zR;y — xR;y) by R-dense and R-down.

If we combine Proposition 6.23 with Lemma 6.20 and Fact 6.14, we can treat other familiar axioms such as:
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e [0;(0;p — p) (globally) corresponds to YaVy(zR;y — Loc,(d;p — p)), where Loc,(O;p — p) is the local
correspondent with respect to y given by Proposition 6.23. Given R-down, the result is equivalent to
VaVy(zR;y — Ju C y yR;u). Over strong frames, this is equivalent to shift-reflexivity, VaVy(zR;y —
yR;y), by R-dense, R-down, and up-R. <

Note that when we apply the first-order conditions above to the special case of Kripke frames regarded
as possibility frames as in Examples 2.6 and 2.22, so C is the identity relation, then these conditions reduce
to the familiar conditions corresponding to the axioms over Kripke frames (recall Fact 6.13).

Also note that over strong possibility frames, the correspondents for the axioms in Example 6.26 with
boxes in the antecedent and without any diamonds are already the same as the familiar correspondents

40" This observation can be turned into a general result, but we will not go into it

over Kripke frames.
here. (See Kojima 2012, Ch. 4 for a study of when a modal formula has the same first-order correspondent
over intuitionistic modal frames as over classical Kripke frames. We leave for future work a comparison of
first-order correspondence over intuitionistic modal frames vs. classical possibility frames.)

Finally, let us note how the first-order correspondents look over functional frames (§ 4.4). Using Lemma
6.17, all of our correspondence results can be applied to functional full possibility frames. But over functional
frames the correspondents can be further simplified, especially if we assume the frames are separative as in
§ 4.1. Recall that in a separative full frame, for any « € S, |« is an admissible proposition (Fact 4.6). Thus,
in a full frame that is both separative and functional, a minimal valuation 7 making [J;p true at = sets
w(p) = Lfi(x), or w(p) = 0 if f;(x) is undefined. For simplicity, let us consider frames in which each f; is a
total function, which validate the D axiom O;p — {;p. Note that in functional frames the ¢; clause (recall
§ 2.4) is that M,z IF Q;0 iff V&' C o Jy C fi(2'): M,y Ik ¢. Also note that if we have a functional frame
F and obtain the modally equivalent standard frame F| as in Lemma 6.17, then «R;y iff y C f;(x). This

equivalence is helpful when comparing the first-order correspondents in Examples 6.26 and 6.27.
Example 6.27 (Functional Correspondence). Over separative full possibility frames in which each accessi-
bility relation is a total function f;, we have the following global correspondences:
e O;p — O;p corresponds to VaVy C fi(x) 3z’ CzVz C fi(2') y { 2.
e [;p — p corresponds to Yz z C f;(x).
e p — O;p corresponds to Vz f;(z) C x.
o O;p — O0,0;p corresponds to Vz f;(fi((x)) C fi(x) (cf. Example 2.28).
p — 0;0;p corresponds to VaVy C fi(x) Iz’ Tz 2’ C fi(y).
Oip — 0;04p corresponds to VaVy C f;(x) 3z’ C z fi(a) C fi(y).

O;p — O,p corresponds to Vz f;(z) C fi(z).
fi(z) y C fi(y). <

0;(d;p — p) corresponds to VaVy C

7 Beginnings of Completeness Theory

In this section, we begin the study of classes of logics complete with respect to classes of possibility frames.

Our starting point is Theorem 7.1, which follows immediately from results we have already established.

Theorem 7.1 (From Algebraic to Possibility Completeness). Let L be a normal modal logic.

400n this point, we can add a follow-up to Example 6.24: for axioms of the form Ogp — Osp, a Kripke frame § = (W, {R; }ier)
satisfies the corresponding condition VaVy(zRsy — xRgy) iff its powerset possibilization §¥ = (S,C,{R;}icr, P) satisfies
VXVY (XRsY — XRgY), ie., VXVY (Y C Rs[X] = Y C Rg[X]).
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1. L is sound and complete with respect to a filter-descriptive possibility frame;

2. if L is sound and complete with respect to a class of V-BAOs, then L is sound and complete with respect
to a class of principal possibility frames (and vice versa);

3. if L is sound and complete with respect to a class of T-BAOs, then L is sound and complete with respect
to a class of functional principal possibility frames (and vice versa);

4. if L is sound and complete with respect to a class of CV-BAOs, then L is sound and complete with

respect to a class of full (indeed rich) possibility frames (and vice versa).

Proof. For part 1, L is sound and complete with respect to a BAO (Theorem A.11), which can be turned
into a modally equivalent possibility frame (Theorem 5.33) that is filter-descriptive (Proposition 5.39.1).
Parts 2-4 follow from Theorem 5.17 and Proposition 4.28.5 (for the move from quasi-functional to func-

tional completeness), with the vice versa reminders coming from Corollary 5.8. O

Using Theorem 7.1.2-4, we can transfer knowledge about the algebraic completeness notions of V-
completeness, T-completeness, and CV-completeness to knowledge about the associated possibility-semantic
completeness notions. As shown in Litak 2005a, these three completeness notions are distinct and generalize
Kripke-completeness; and as shown in Holliday and Litak Forthcoming, the most general of these notions, V-
completeness, is still a nontrivial notion of completeness—not all normal modal logics are V-complete. More
detailed knowledge about CV- and V-completeness would be of great value for understanding possibility
semantics. At present, only 7-completeness is well understood, as we briefly review in § 7.2.

In the rest of this section, we report some salient results concerning completeness with respect to the
following special classes of possibility frames: full possibility frames (§ 7.1), principal possibility frames

(§ 7.2), atomless possibility frames (§ 7.3), and finally, canonical possibility frames (§ 7.4).

7.1 Completeness for Full Possibility Frames

By the fact that every Kripke frame may be regarded as a modally equivalent full possibility frame, every
Kripke-frame complete logic is also sound and complete with respect to a class of full possibility frames. As
we have seen, the converse does not hold. We already showed in § 2.5 that there are continuum many full
possibility frames for a polymodal language whose logics are pairwise distinct and Kripke-frame incomplete.
By using our duality theory and the polymodal-to-unimodal reduction techniques of Thomason [1974b,

1975b, 1975¢| and Kracht and Wolter [1999], we can now prove the analogous result in the unimodal case.

Theorem 2.51 (Unimodal Full Possibility Frames with No Kripke Equivalents). There are continuum
many full possibility frames for the unimodal language whose logics are pairwise distinct and Kripke-frame

incomplete.

Proof. Theorem 2.50 gives us continuum many full possibility frames for a polymodal language whose logics
are pairwise distinct and Kripke-frame incomplete. Thus, by Theorem 5.6, there are continuum many CV-
BAOs for a polymodal language whose logics are pairwise distinct and Kripke-frame incomplete.

Kracht and Wolter [1999] show that there is a function sim, the Thomason-Simulation, sending each
normal polymodal logic L to a normal unimodal logic L*™ such that: (i) for each n € N, sim is an
isomorphism from the lattice of normal modal logics with n modal operators onto an interval in the lattice
of normal unimodal logics, so for any normal modal logics Ly, and Lo for n modal operators, Ly C Lo iff
L™ C L™ and (ii) if L is Kripke-frame incomplete, so is L*™. Kracht and Wolter (p. 116) also give an

algebraic characterization of the Thomason-Simulation: given a polymodal BAO A, they define a unimodal

116



BAO A®"™ guch that if L is the logic of A, then L**™ is the logic of A%, (They only give the definition of
A% for the case where A has two operators, but one can work out the general definition from the remarks
on p. 121 of their paper.) Now we add the following observation, a proof of which is sketched below: if A
is a CV-BAO, then so is A®"™. Thus, since there are continuum many CV-BAOs for a polymodal language
whose logics are pairwise distinct and Kripke-frame incomplete, there are also continuum many CV-BAOs
for the unimodal language whose logics are pairwise distinct (by (i) above) and Kripke-frame incomplete
(by (ii) above). Then by Theorem 5.17, there are continuum many full possibility frames for the unimodal
language whose logics are pairwise distinct and Kripke-frame incomplete.

Let us now sketch the proof that if A is a CV-BAO, then so is A*"™. For simplicity, consider the case
where A has only two modal operators. Kracht and Wolter (p. 116) define A*™ as follows. Where A is the
Boolean reduct of A, the Boolean reduct A%™ of A% is A x A x 2, which is complete if A is complete.

Where B, and B, are the dual operators in A, the dual operator B in A% is defined as follows:

(bAMa,a NBb, {1}) ifc={1}

Ha,b,c) :=
(0,a N Wb, {1}) ife=10
We claim that if l; and By are completely multiplicative, then so is H. Suppose that A (a;,b;, ¢;) exists
i€l
in A Since meets are calculated pointwise, this means that a := Aa; and b := Ab; exist in A, and
iel iel

N\ (@i, bi,¢;) = (a,b,c), where ¢ := A ¢; in 2. Now we claim that B{a, b, c) is the greatest lower bound of
i€l icl

{B{(ai, bi,c;) | i € I}. That it is a lower bound is immediate from the monotonicity of B, so we need only
show that it is the greatest.

Case 1: ¢ = {1}. Then by the definition of B, a, and b, and the complete multiplicativity of B; and Hs:

B(a,b,c) = (bABRa,anB) {1})
<b A .1 /\ai, a N\ .2/\bi, {1}>
i€l iel

<b/\/\.1ai,a/\/\.2bi,{l}>. (36)

icl i€l

Now suppose (e, f,g) is a lower bound of {B{a;,b;,¢c;) | i € I}, so for each ¢ € I, we have (e, f,g) <
B(ai, bi, ¢;), which implies (e, f,g) < (b AWya;,a A W2b;, {1}) or (e, f,g) < (0,a A Wab;, {1}). In either case,
we have e < b A Bya; and f < a A Byb;. Since this holds for each i € I, we have e < b A A Bya; and
il
f <an A\Wsb;, which with (36) implies (e, f, g) < B(a,b,c).
iel
Case 2: ¢ = (). Then by the definition of B, b, and the complete multiplicativity of By, we have:

Ba,b,c) = (0,aABb {1}) = (0,a A /\Bab;, {1}). (37)
i€l

Again suppose (e, f,g) is a lower bound of {B(a;,b;,¢;) | i € I}, so for each i € I, we have (e, f,g) <
Ba;, bi, ¢;), which implies (e, f,g) < (b A Bya;,a A Bab;, {1}) or (e, f,g) < (0,a A Wb, {1}). Now since
¢ = Ac¢; =0, there is some i € I for which ¢; = () and hence (e, f,g) < (0,a A B2b;, {1}). Thus, e < 0,

icl

and for each i € I, f < a AMyb;, whence f < a A /\ Wb;. Tt follows by (37) that (e, f,g) < B(a,b,c). This
iel

completes the proof that B(a, b, ¢) is the greatest lower bound. O
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Thus, Kripke-completeness is a sufficient but far from necessary condition for a unimodal logic to be
sound and complete with respect to a class of full possibility frames. Whether we can find weaker sufficient
conditions that are illuminating remains to be seen. For the case of completeness with respect to principal
possibility frames, we will see examples of such sufficient conditions in § 7.2.

Recall that the degree of Kripke-incompleteness of a normal modal logic L for £(®,I) is the cardinality
of the set of normal modal logics for £(®,I) that are valid over exactly the same Kripke frames as L [Fine,
1974b]. More generally, we can consider a notion of degree of relative Kripke-incompleteness, suggested by
Tadeusz Litak (see Holliday and Litak Forthcoming), which we can apply as follows. Fixing the language
L(®, 1), let ML(FP) be the set of normal modal logics that are sound and complete with respect to some class
of full possibility frames. Then the degree of Kripke-incompleteness relative to FP of a normal modal logic L
is the cardinality of the set of L € ML(FP) such that L and L’ are valid over exactly the same Kripke frames.
For example, for a polymodal language, Theorem 2.50 showed that the logic of our full possibility frame F in
§ 2.5 has degree 2%¢; for Theorem 2.50 showed that there are continuum many other logics in ML(FP) that
are valid over the same set of Kripke frames, namely the empty set. Of course, this special example involving
the empty set of frames gives little hint of the general situation. While a great deal is known about degrees
of unrelativized incompleteness [Blok, 1980, Litak, 2008, little is currently known about relativized degrees.
Knowing more about degrees of Kripke-incompleteness relative to FP would give us a better measure of how
much more fine-grained full possibility frames are than Kripke frames for distinguishing between logics.

We will see more about completeness for full possibility frames in §§ 7.3-7.4, where we treat completeness

for atomless full possibility frames and canonical full possibility frames.

7.2 Completeness for Principal Possibility Frames

We turn now to classes of logics that are sound and complete with respect to principal possibility frames
(equivalently, V-BAOs), starting with the special case of functional principal frames (equivalently, 7-BAOs).

Recall that a tense logic is a normal bimodal logic containing the axioms p — O Osp and p — Os Q< p.
For any tense logic L, b, p — Ocq iff b, Osp — ¢, and similarly for Os and ¢.. Thus, the Lindenbaum
algebra (Definition A.10) of any tense logic is a T-BAO. Then since every tense logic is sound and complete
with respect to its Lindenbaum algebra (Theorem A.11), every tense logic is sound and complete with respect
to a T-BAO. By contrast, it is well-known that there are tense logics that are not sound and complete with
respect to any class of Kripke frames [Thomason, 1972, Blackburn et al., 2001, §4.4].

More generally, say that a normal modal logic L is a logic with converses iff for every a € I there is a
b € I such that by, p — O,0pp and Fr, p — 0, 0up (this class includes what are called the connected logics
in Kracht 1999, p. 71). By the same argument as for tense logics, every logic with converses is sound and
complete with respect to a T-BAO, namely its Lindenbaum algebra. Note that since we do not require that
the a and b be distinct, any extension of KB (in its unimodal or polymodal fusion version) is also a logic
with converses. Just as there are tense logics that are not sound and complete with respect to any class of
Kripke frames, there are also extensions of KB—in fact, continuum many extension of KB—that are not
sound and complete with respect to any class of Kripke frames [Miyazaki, 2007].

From the previous two paragraphs, Theorem 5.17, and Proposition 4.28.5, we obtain the following.

Corollary 7.2 (General Completeness for Logics with Converses). Every normal modal logic with converses
(and hence every tense logic and every extension of KB) is sound and complete with respect to a functional

principal possibility frame.
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Corollary 7.2 gives us a simple syntactic characterization of a class of logics that are T-complete. We
can give a somewhat more complex syntactic characterization of a strictly larger class of T-complete logics

using the following notion studied in Holliday 2014.

Definition 7.3 (Internal Adjointness). A modal logic L has internal adjointness iff for every i € I and
@ € L(®,I), there is a fF(p) € L(®, I) such that for all ¢ € L(P,]):

Fr @ — O iff b R (@) — . q

It is easy to see that internal adjointness is related to 7-BAOs as follows.

Lemma 7.4 (Internal Adjointness and 7-BAOs). A normal modal logic L has internal adjointness iff the
Lindenbaum algebra of L is a T-BAO.

Then we can strengthen the general completeness result given in Corollary 7.2 as follows.

Corollary 7.5 (General Completeness for Logics with Internal Adjointness). Every normal modal logic with

internal adjointness is sound and complete with respect to a functional principal possibility frame.

Corollary 7.5 is stronger than Corollary 7.2 because every logic with converses has internal adjointness,
but there are logics with internal adjointness that are not logics with converses. Holliday 2014 determines
whether several well-known Kripke-frame complete modal logics have internal adjointness: in addition to all
normal modal logics with converses, the logics K (cf. Ghilardi 1995, Thm. 6.3), KD, T, KD4, and S4 have
internal adjointness, whereas K5 and its extensions with the D and/or 4 axioms lack internal adjointness.
It would be interesting to know more about internal adjointness for Kripke-frame incomplete modal logics.

So far we have shown that various logics are T-complete by observing that their Lindenbaum algebras
are T-BAOs. In other cases, we may know that a logic is sound and complete with respect to a 7T-BAO
that is not its Lindenbaum algebra. For example, consider the much-used veiled recession frame [Makinson,
1969, Thomason, 1974a, van Benthem, 1978, Blok, 1979|, which is the world frame g = (W R, A) where
W =N, nRm iff n — 1 < m, and A is the set of all finite and co-finite subsets of N. It is easy to check that
g is a general world frame. In addition, A has the property that if X € A, then R;[X] € A, because for any
X CN, R[X] is co-finite, since W\ R[X] = {k € N| &k < min(X) — 1}. From here it is easy to see that the
BAO underlying g is a 7-BAO. But the logic of g is not a logic with converses, since ¢ — OO is not valid
over g. Like the logic of any world frame, the logic of the veiled recession frame is a normal modal logic.
Moreover, it is finitely axiomatizable [Blok, 1979]. This logic is Kripke-frame incomplete [Blok, 1979, 1980],
but since the BAO underlying g is a 7-BAO, we have the following result as a corollary of Theorem 5.17.

Corollary 7.6 (Logic of the Veiled Recession Frame). The logic of the veiled recession frame g is sound and
complete with respect to a quasi-functional principal possibility frame, viz., the principal frame (gb)p of its

underlying BAO g®, and hence with respect to a functional principal possibility frame (by Proposition 4.28).

The syntactic conditions mentioned above—being a logic with converses, having internal adjointness—
are sufficient for 7-completeness, but far from necessary. For a necessary and sufficient syntactic condition,
let us say that for a normal unimodal logic L, the minimal tense extension L.t of L is the minimal tense
logic containing L [Kracht and Wolter, 1997, §3.3]. More generally, given a normal modal logic L for the
language £(®, I), let the minimal tense extension L.t of L be the smallest normal modal logic in the language
L(®,TU{i"t | i € I}) such that L.t extends L and for every i € I, L.t contains the axioms p — [J;0;-1p
and p — O0;-10;p. The following result is straightforward to prove (see Litak 2005b, Corollary 3.25).
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Lemma 7.7 (Minimal Tense Extensions and 7-Completeness). For any normal modal logic L, the following

are equivalent:
1. L is sound and complete with respect to a class of 7T-BAOs;

2. the minimal tense extension L.t of L is a conservative extension of L.

Characterizations of V-completeness and CV-completeness in terms of conservativity of extensions are
open questions. The only new result we will report here is the analogue of Lemma 7.4 for V-BAOs. Recall
that the standard “existence lemma” for a normal modal logic L states that for any ¢ € I, ¥ C L(®,I), and
P € L(P,I), if ¥ ¥y, 0,49, then there is a (maximally L-consistent) set A C £(®,I) such that: 1. A Ky, 1,
and 2. for all &« € £(®,I), ¥ br, O;« implies A b, a. Consider the following finitary version of this property.

Definition 7.8 (Finite Existence Lemma). A modal logic L satisfies the finite existence lemma iff for every
i€l and o, € L(®, 1), if 1, ¢ — 0;1, then there is a gl(¢,v) € L(®,I) such that:

2. for all a € L(®,1), b1, ¢ — O;a implies kg, g&(p, 1) — a. <

Clearly L satisfies the finite existence lemma if it has internal adjointness. Conversely, arguments showing
a lack of internal adjointness often extend to show a lack of the finite existence lemma. For example, the
arguments in Holliday 2014 showing that the logic K5 and its extensions with the D and/or 4 axioms lack
internal adjointness can be easily adapted to show that these logics lack the finite existence lemma.*!

The following is the analogue of Lemma 7.4 for complete additivity.

Lemma 7.9 (Finite Existence Lemma and Complete Additivity). A normal modal logic L satisfies the finite

existence lemma iff the Lindenbaum algebra of L is a V-BAO.

Proof. To show that the Lindenbaum algebra A of L is a V-BAO, by Lemma 5.13.2 it suffices to show that
it is an R-BAO as in Definition 5.11, i.e., that for all z,y € A, if x A ¢;5 # L, then there is a 3y’ € A such
that 1 # 1y’ <y and xRy, where xR;y iff for all y’ € A, if 1L #y"” <4y, then x A #;y” # L. So suppose
that for some z,y € A, = A 4;y # L. By definition of AY (Definition A.10), there are ¢, € L£(®,I) such
that z = [¢]r, and y = [¢]r. (We will henceforth omit the subscripts for the equivalence classes.) Thus,
x A 4y # L implies ¥1, ¢ — 0;—1). Assuming that L satisfies the finite existence lemma, it follows that
there is a x € L(®,I) such that (i) ¥, x — — and (ii) for all « € L(®,]), if Fr, ¢ — T;a, then by, x — a.
By (i), ¥ = ¢ A x is L-consistent, so L # [¢] < [¢)]. Now we claim that (ii) implies [p]R;[¢)']. Suppose
not, so there is a [¢”] € A such that L # [¢"] < [¢'] and [p] A #;[¢"] = [¢] A [O:0"] = L. Tt follows that
Fr ¢ — O;—%"”, which with (ii) implies br, x — —¢”. But then since ¢/ = ¢ A x, Fr ¥' — =", which
contradicts | # ["] < [¢]. Thus, [¢]R;[¢], which shows that AL is an R-BAO.

Now suppose L does not satisfy the finite existence lemma, so there are ¢,1 € L(®P,I) such that (a)
Fr ¢ — 0 but (b) for every x € L(®,I) such that ¥y, x — v, there is an o € L(®,I) such that
Fr ¢ — s but ¥, x — a. By (a), [¢] A %] = [¢] A [0:i—] # L. Now consider any x € L(®,])
such that L # [x] <[], so ¥L x — . Then by (b), there is an a € L(®,I) such that Fr, ¢ — O, but
Fr, x = a. Where X' = x A —a, ¥r, x — « implies L # [x/] < [x], and by, ¢ — O, implies [¢] A ;[x'] = L.
Thus, A" is not an R-BAO, so by Lemma 5.13.1, it is not a V-BAO. O

From Lemma 7.9 and Theorem 5.17 we obtain the analogue of Corollary 7.5 for the finite existence lemma

in place of internal adjointness.

41For negative results on internal adjointness and the finite existence lemma in the context of quantified modal logic, see
Harrison-Trainor 2016.
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Corollary 7.10 (General Completeness for Logics with the Finite Existence Lemma). Every normal modal

logic satisfying the finite existence lemma is sound and complete with respect to a principal possibility frame.

7.3 Completeness for Atomless Possibility Frames

As noted in § 1, a topic emphasized in previous work on possibility semantics [Humberstone, 1981, Holliday,
2014] is the completeness of some modal logics with respect to classes of atomless possibility frames, which
we define as possibility frames whose poset (S, C) is such that for every x € S, there is an 2’ € S such that
7' €z, ie., 2 C x but z Z 2. Compare this with the notion of an atomless BAO, which is a BAO such
that for every € A\ {L}, there is an 2’ € A\ {L} such that 2’ < z, i.e., ' < x but £ 2’. Note that if
the set ® of propositional variables is infinite, then the Lindenbaum algebra A of any normal modal logic
L C £(®,I) (Definition A.10) is atomless. We assume in this section that ® is infinite.

Using the fact that for any atomless BAO A, its principal frame A, as in Definition 5.14 is atomless, we

obtain the following result concerning completeness with respect to atomless principal possibility frames.

Theorem 7.11 (Completeness for Atomless Principal Possibility Frames). For any normal modal logic L:

1. if the Lindenbaum algebra A of L is a V-BAO (equivalently, if L satisfies the finite existence lemma),

then L is sound and complete with respect to an atomless principal possibility frame, viz., (AL)p;

2. if L is sound and complete with respect to a class of T-BAOs (equivalently, if the minimal tense extension
L.t of L is a conservative extension), then L is sound and complete with respect to an atomless and

functional principal possibility frame.

Proof. Part 1 follows from Theorem 5.17 and the fact that the Lindenbaum algebra is atomless.

For part 2, it suffices to show that L is sound and complete with respect to a principal possibility
frame F that is atomless and quasi-functional, for then L is also sound and complete with respect to the
functionalization of F (Proposition 4.28), which is principal and atomlessness if F is. Where AL* is the
Lindenbaum algebra of L.t, which is a 7-BAO, let B be the reduct of A¥? to the signature of L, i.e., the
result of dropping from AY? the converse operators B;,—:1. B is still a 7-BAO, because the functions that
must exist for a BAO to be a T-BAO need not be included among the operations of the BAO; and since AL
is an atomless BAO, so is B. Now for any ¢ € L(®,I), we have the following equivalences: ¢ is consistent
in L iff ¢ is consistent in L.t (because L.t is a conservative extension of L) iff ¢ is satisfiable in AM? iff o is
satisfiable in B (because ¢ € L(®,I) and B is the reduct of Ay, ; to this signature) iff ¢ is satisfiable in B,
(by Theorem 5.17.7). Thus, L is sound and complete with respect to B,. Then since B is atomless, so is B,

and since B is a 7-BAO, B, is a quasi-functional principal frame by Theorem 5.17.2, so we are done. O

In addition to proving completeness with respect to atomless principal possibility frames, we would like
to do so with respect to atomless full possibility frames. We will first prove that every normal modal logic
obtained from K by adding a set of axioms of the Lemmon-Scott form ¢,Cgp — Os504p from § 6.3 is sound
and complete with respect to an atomless full possibility frame. To do so, we first show that if a T-BAO A
validates a Lemmon-Scott axiom, then its full frame A, as in Definition 5.14 has the property corresponding

to the axiom according to Proposition 6.23.

Lemma 7.12 (Full Frames of 7-BAOs and Lemmon-Scott Correspondence). For any 7-BAO A and se-
quences a, 3, §, and vy of indices from I, if for all z € A, ¢, Mzr < B;4,2, then A, satisfies:

VaVy(xRsy — 32’ Tz Vz(2'Roz — Ju(yRyu A zRgu))).
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Proof. Let f; be the residual of M; that is given since A is a T-BAO. For a sequence o = (i1,...,4,) of
indices from I, let fo(x) = fi, (fi,_, (... fi,(x)...)), and if o is empty, let f,(z) = =. Recall that by Lemma
5.15, A, is such that xR;y iff y C f;(z), and observe that if 2’ C z and R;(z’) # (), then f;(z') C fi(x). It
follows that 2R,y as in § 6.3 iff y C f,(z), so the property in the statement of the lemma is equivalent to:

VaVy C fs(x) 32’ C aVz C fo(a") Ju(u C f1(y) Aul fa(2)).

Recall that the poset (S,C) of A, is the Boolean lattice (A4, <) of A restricted to A\ {L}. So for y € A,,
y # L. Now suppose y C fs(x). Then = A 5y # L, for otherwise T Bs—y, which implies f5(z) C —y,
which contradicts y C f5(x) given y # L. Let 2’ = x A #5y. Now consider some z C f,(z'), so z # L.
For reductio, suppose f,(y) A fg(z) = L, so f,(y) T —fs(z), which implies y T B,—fz(z), which in
turn implies 45y T 4;M,—f3(z). By our choice of 2/, 2’ T 4#sy, and by the assumption of the lemma,
&0, —f3(z) C WM. 45—f3(2), so «’ C B, 43— fs(z), which implies f,(z") C #3—fs(z). Then by our choice
of z, 2 C #g—fs(z), so z T —Mgfz(z). But then since = C Mgfs(z), we have z = L, which is inconsistent
with our choice of z. Hence f,(y) A fz(z) # L, so taking u = f,(y) A fs(z) completes the proof. O

We can now prove the promised completeness result for atomless full possibility frames.

Theorem 7.13 (Lemmon-Scott Completeness for Atomless Full Possibility Frames). Where L is the least
normal modal logic extending K with a set of axioms of the Lemmon-Scott form ¢.Ogp — OsO~p, L is

sound and complete with respect to an atomless and functional full possibility frame.

Proof. As in the proof of Theorem 7.11, it suffices to show that L is sound and complete with respect to an
atomless and quasi-functional full possibility frame. Any L as in the statement of the current theorem is
Kripke-frame complete [Lemmon and Scott, 1977], so it is complete with respect to a CAV-BAO and hence
a T-BAO, so the minimal tense extension L.t of L is a conservative extension of L by Lemma 7.7. Where
A is the Lindenbaum algebra of L.t, which is a T-BAO, let B be the reduct of A to the signature of L,
as in the proof of Theorem 7.11, so B is still a 7T-BAO and atomless since A™* is. Then as in the proof of
Theorem 7.11, for any ¢ € L(®,I), ¢ is consistent in L iff ¢ is satisfiable in B,. Now if ¢ is satisfiable in
the principal frame By, then ¢ is satisfiable in the full frame B,, so we have that L is complete with respect
to By. It only remains to show that L is sound with respect to B,. For each axiom ¢,0gp — Us0,p added
to K to obtain L, A™* and hence B is such that for all z € B, ¢.M32 < Bs4,2. Then by Lemma 7.12,
B, satisfies the properties that correspond to the axioms of L in Proposition 6.23. Thus, L is sound with

respect to B,. Since B, is atomless, quasi-functional (Theorem 5.17.3), and full, we are done. O

In fact, we have the resources to generalize Theorem 7.13 to any Sahlquist logic, i.e., any least normal
extension of K with some set of Sahlqvist axioms (see Blackburn et al. 2001, §3.6). The key resources
are Proposition 5.48, which showed that the underlying BAO (A,)? of the full frame A, of a V-BAO A
is isomorphic to the Monk completion of A, plus Givant and Venema’s [1999, Cor. 34(ii)] result that all

Sahlqvist equations are preserved in going from a 7-BAO to its Monk completion.

Theorem 7.14 (Sahlqgvist Completeness for Atomless Full Possibility Frames). Every Sahlqvist logic is

sound and complete with respect to an atomless and functional full possibility frame.

Proof. The proof uses the same argument as in the proof of Theorem 7.13, only now we must show that
every Sahlqvist formula valid over B is also valid over B,. Since B is a 7-BAO, the cited result of Givant

and Venema [1999] gives us that every Sahlqvist formula valid over B is valid over its Monk completion.
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By Proposition 5.48, the Monk completion of B is isomorphic to (B,)?, which has the same logic as B, by
Theorem 5.6.6. Thus, the validity of Sahlqvist formulas are indeed preserved from B to B,. O

Theorem 7.14 represents a quite general realization of the goal from Humberstone 1981 of proving com-

pleteness of modal logics with respect to full possibility frames that contain no worlds.

7.4 Completeness for Canonical Possibility Frames

Let us finally treat the topic of canonical possibility frames and models for normal modal logics. In Kripke
semantics, the set of worlds in the canonical frame for a logic L is the set of all mazimally L-consistent sets
of formulas. From an algebraic perspective, these worlds arise from wultrafilters in the Lindenbaum algebra
for L. By contrast, in possibility semantics, we can take the set of possibilities in the canonical frame for L
to be the set of all L-consistent and L-deductively closed sets of formulas. From an algebraic perspective,
these possibilities arise from proper filters in the Lindenbaum algebra for L. We will define the canonical
frame for L in this algebraic way, based on the notions of the filter frame A¢ and general filter frame Az of

a BAO from Definition 5.29. The more syntactic definition is then straightforward to work out.

Definition 7.15 (Canonical Frames, Models, Formulas, and Logics). Given a normal modal logic L, where
AT is the Lindenbaum algebra for L, and MY = (AL ) is the algebraic model such that for all p € @,
0(p) = [p]L (see Definition A.10):

1. the canonical (general) possibility frame for L is the frame G = (AT);

2. the canonical full possibility frame for L is the frame F¥' = (AL);

3. the canonical possibility model for L is the model MY = (MY),.
A formula ¢ € L(®, 1) is filter-canonical iff for any normal modal logic L C L(®, I), 1, ¢ implies F Ik ¢.

A normal modal logic L is filter-canonical iff it is sound with respect to FL.42 N

From Theorem 5.33 and the fact that every normal modal logic is sound and complete with respect to

its Lindenbaum algebra (Theorem A.11), we have the following result for G&.

Corollary 7.16 (General Soundness and Completeness). For any normal modal logic L, L is sound and
complete with respect to its canonical (general) possibility frame G¥, and L is complete with respect to its

canonical full possibility frame F.

Recall that a general filter frame such as G is filter-descriptive (Proposition 5.39), so Corollary 7.16 is another
expression of general soundness and completeness with respect to filter-descriptive possibility frames.

Of course, we cannot have such a general soundness result for the canonical full possibility frame FL—
not every normal modal logic is filter-canonical—because we know from Corollary 5.8 that full possibility
frames are no more general than CYV-BAOs. There are several routes to proving that certain logics are filter-
canonical. First, if we assume the ultrafilter axiom, then the logic of F¥ is exactly the logic of the canonical
Kripke frame for L, or equivalently, the ultrafilter frame of A¥. For these frames have the same logics as
their underlying BAOs (Theorem 5.6.6), and as we observed in § 5.8, the underlying BAOs of the filter and

4211 the context of Kripke semantics, the term ‘canonical’ has been used to mean several things when applied to a normal
modal logic L (with a countably infinite set of propositional variables): (a) that L is sound with respect to its canonical Kripke
frame [Goldblatt, 1976b]; (b) that for any infinite cardinal x, L is sound with respect to the canonical Kripke frame for Ly, the
conservative extension of L to the modal language with k-many propositional variables [Fine, 1975b]; and (c) that if L is sound
with respect to a descriptive frame, then L is sound with respect to the associated Kripke frame [van Benthem, 1979b| (called
‘d-persistent’ in Goldblatt 1974). While (b) and (c) are equivalent [Sambin and Vaccaro, 1988, p. 294], and (b)/(c) obviously
implies (a), it is unknown whether (a) implies (b)/(c). Note that our notion of filter-canonical is analogous to (a).
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ultrafilter frames are isomorphic under the assumption of the ultrafilter axiom. Thus, assuming that axiom,
a logic is filter-canonical iff it is canonical in the traditional sense of Kripke semantics.

A second, more direct route to proving filter-canonicity, which does not require the ultrafilter axiom,
takes advantage of correspondence results for possibility semantics. As an example, we will prove that any

normal modal logic obtained from K by the addition of Lemmon-Scott axioms as in § 6.3 is filter-canonical.

Lemma 7.17 (Filter Frames and Lemmon-Scott Correspondence). For any BAO A and sequences «, 3, 9,
and ~ of indices from I, if for all x € A, ¢,Mgx < B¢z, then A, and Af satisfy:

VXVY (XRsY = 3X' C X VZ(X'RoZ = IU(YR,U A ZRgU))).

Proof. It is helpful to reformulate the assumption as: ¢sM,z < B, 4gz. Suppose X RsY, so by Definition
5.29.3, we have that for all z € A, Bsx € X implies x € Y. Where

X'=XU{#sy|yeY}, (38)

by the same form of argument as in the proof of Theorem 5.31.1, X’ = [X') is a proper filter, and X’ O X
gives us X' C X. Now consider a proper filter Z such that X'R,Z. Where

U={y|MyecY}u{|mzez), (39)

suppose for reductio that [U) is not a proper filter, i.e., L € [U). Then by (39) and Fact 5.30, there are
By, .. By cY and Mgz,...,Mgz; € Z such that

yl/\.../\yi/\zl/\.../\zjgj_,

which implies
.’Yyl/\"'/\.’yyi S.’y_(zl/\---/\zj) (40)

by the properties of M,. Then since Y is a filter, B y;,..., B, y; € Y implies B, y; A ... AByy; € Y and
hence B,—(z1 A ... Azj) € Y by (40). It follows by (38) that ¢;M,—(z1 A ... A z;) € X', which with our
initial assumption and the fact that X’ is a filter implies M, 45—(21 A... A z;) € X’. Then since X'R,Z, we
have #3—(z1 A ... A z;) € Z, which with the properties of 43 and Mg contradicts the fact from above that
Mszi,..., Mz, € Z. Thus, U = [U) is a proper filter, and by (39), YR,U and ZRgU. O

From Lemma 7.17, we immediately obtain the following.

Corollary 7.18 (Lemmon-Scott Filter-Canonicity). For any normal modal logic L and sequences «, 3, 9,
and v of indices from I, if by, 0o0sp — Os50.p, then the canonical full possibility frame F¥ satisfies the
first-order correspondent of ¢,Cgp — Os50,p as in Proposition 6.23, so FX I- 0,0gp — TsOrp.

Together with Theorem 5.31, Corollary 7.18 gives us the following general completeness result.

Theorem 7.19 (Lemmon-Scott Soundness and Completeness for 7). Where L is the least normal modal
logic extending K with a set of axioms of the Lemmon-Scott form ¢,0gp — OsO~p, L is sound and complete

with respect to its canonical full possibility frame F.

A third route to proving filter-canonicity, which also does not require the ultrafilter axiom, uses Theorem
5.49. It follows from Theorem 5.49 that (FY)> = ((AL)¢)® is a constructive canonical extension of the

Lindenbaum algebra AL of L. Conradie and Palmigiano [2016] show in a constructive meta-theory that
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all inductive formulas, which include Sahlqvist formulas as a special case, are preserved under constructive
canonical extensions (cf. Ghilardi and Meloni 1997). Thus, if A validates some inductive formulas, then so
does (F)P and hence FL, which yields the following.

Theorem 7.20 (Inductive Filter-Canonicity). All inductive formulas are filter-canonical. Hence every nor-
mal modal logic L axiomatized by inductive formulas is sound and complete with respect to its canonical

full possibility frame FL.

The results of this section, § 7.3, and § 7.1 concerning completeness with respect to full possibility frames
lead to questions about the “persistence” of modal formulas (see, e.g., Blackburn et al. 2001, §5.6), not in
the sense of persistence that we have used since Remark § 2.13, but in the following sense: a formula ¢ is
persistent with respect to a class F of possibility frames that have associated full frames as in Definition
2.25 iff whenever ¢ is valid over a frame F € F, then ¢ is also valid over the associated full frame (F3)*.
For example, we can consider persistence of ¢ with respect to filter-descriptive possibility frames as in § 5.6,
which implies that ¢ is filter-canonical as in Definition 7.15, since G¥ is filter-descriptive and its associated
full frame ((G% )ﬁ)ﬁ is FL. Or we can consider persistence with respect to principal possibility frames, which
with Proposition 5.48 and our duality theory implies that ¢ is preserved under Monk completions of V-BAOs.

We leave it to future work to study various notions of persistence in the context of possibility semantics.

8 Conclusion

It is remarkable that as a semantics for modal logic originally motivated mainly on philosophical and con-
ceptual grounds [Humberstone, 1981], possibility semantics also turns out to be natural from a mathematical
perspective, e.g., with its topological and set-theoretical connections, and so fruitful for pure modal logic,
e.g., with its new categorical connections with classes of modal algebras. Something similar could be argued
for standard possible world semantics, of which possibility semantics is a generalization. So it is remarkable
that the confluence of the philosophical-conceptual and the mathematical continues.

We will conclude our study of possibility semantics in this paper by looking to the past and present of

related work in § 8.1 and then looking to the future of open problems in § 8.2.

8.1 Related Work

Below we organize our pointers to related work by topic, indicated by the italicized headings. We will

not repeat here discussion of the related work in modal logic and set theory to which we have already referred.

Possibility Semantics for Non-modal Logic. An early source of what is essentially possibility semantics for
classical first-order logic is Fine 1975a. Here we focus on the propositional version of Fine’s semantics, for
comparison with our framework. One can think of Fine’s propositional models as tuples M = (S,C, V)
where (S,C) is poset and V: ® x S + {0,1} is a partial function satisfying the following conditions (see
Fine 1975a, p. 272 and pp. 278-9):

o stability: if V(p,x) is defined and 2’ C z, then V(p,z’) is defined and V' (p,2’) = V(p, x);

e resolution: if V(p,x) is undefined, then there are y C x and z C z such that V(p,y) = 1 and V(p, z) = 0.
Note that stability is the analogue of our persistence, and resolution is the analogue of our refinability.

Fine (p. 279) defines truth and falsity relations F and = as follows:
o M xEpiff V(p,x) =1;

125



M,z 3 piff V(p,z) = 0;

M,xE —piff M, x4 g;

M,z 4 —-piff M,z F ¢

M,xE oAy iff M,xE ¢ and M,z F ¢;

M,xd oAy iff Vo' Cx 32" Ca's M,2"” 3 o or M, 2" = .

The connectives V and — are defined classically in terms of = and A.

It is easy to see from the falsity clause for ¢ A 1, which matches our forcing clause for = V =) (recall
Fact 2.4), that this setup is equivalent to possibility semantics for propositional logic. Let us say that a
propositional possibility model is a tuple M = (S,C, 7) where 7: ® — RO(S,C). Recall from § 2.2 that
RO(S,C) is the set of all X C S that satisfy persistence and refinability, or equivalently, that are regular
open sets in the downset topology on (S,C). We can make the claimed equivalence precise as in Fact 8.1,

the proof of which is straightforward and left as an exercise.

Fact 8.1 (Equivalence of Fine’s Semantics and Possibility Semantics). Given any Fine model M = (S,C, V),
define M? = (S,C, 7y ) by ny(p) = {x € S| V(p,z) = 1}. Then:

1. MP is a propositional possibility model;

2. for any z € S and p € L(®,0), M,z E ¢ iff MP, z |- ¢,
where I is our forcing relation from Definition 2.3.

Conversely, given any propositional possibility model M = (S,C,7), define M/ = (S,C,V,) by:

Velp,z) =1if z € w(p); Va(p,x) =0 if Vo' C z 2’ € w(p); and otherwise V. (p, z) is undefined. Then:

3. M7 is a Fine model;

4. for any x € S and p € L(®,0), M,z - ¢ iff MT 2 E .

In addition to the conditions on Fine models given above, Fine proposes that every element in the poset
(S, C) should be refined by an endpoint, as in our Definition 4.14 for atomic frames (see his condition of
completeability on p. 272). However, he also observes (p. 280) on the basis of a Cohen-style argument as in
our Lemma 2.14 that the assumption about endpoints is not necessary to obtain classical logic.

Another source of possibility semantics for classical first-order logic is van Benthem 1981. Starting with
Kripke models for intuitionistic first-order logic and then imposing the same kind of refinability condition
on valuations as in this paper (but there called cofinality—recall footnote 11), van Benthem observes that
one obtains a semantics for classical first-order logic by retaining the intuitionistic semantic clauses for —,
—, A, and V and defining (¢ V ) as =(—¢ A —¢p) and 3 as =V—. Van Benthem calls this ‘possible world
semantics’ for classical logic, but we prefer ‘possibility semantics’ for reasons that should now be clear.
The main model-theoretic result of van Benthem’s paper is a characterization of the classes of first-order
possibility structures that are definable by a set of first-order sentences, viz., those classes that are closed
under formation of generated submodels, disjoint unions, zig-zag images, filter products and filter bases.

Van Benthem [1981, 1986, 1988] also observes that the universe of all classically consistent sets of formulas,
ordered by inclusion, is a canonical first-order possibility model. (van Benthem 1981 considers taking only
the finitely axiomatized consistent sets.) As he remarks: “There is something inelegant to an ordinary Henkin
argument. One has a consistent set of sentences S, perhaps quite small, that one would like to see satisfied
semantically. Now, some arbitrary mazimal extensions S* of S is to be taken to obtain a model (for ST,
and hence for S)—but the added part ST — S plays no role subsequently. We started out with something

79

partial, but the method forces us to be total” [1988, p. 78|. This “problem of the ‘irrelevant extension’” [van
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Benthem, 1981, 1] need not arise in completeness proofs for possibility semantics, as we saw with our use of
filters instead of ultrafilters in § 7.4 and with our atomless possibility frames in § 7.3.

A more recent study of possibility semantics is Garson 2013. Garson’s (§8.8) notions of possibility models
and forcing for propositional logic are essentially the same as ours, following Humberstone (see Remark 8.3).
Garson’s main result about propositional possibility semantics can be seen as motivating the semantics proof-
theoretically, starting from the natural deduction rules for classical propositional logic. To state the result,
we need some definitions. Let a (nontrivial) valuation for L(®,0) be a v: L(®,0) — {0,1} such that for
some ¢ € L(P,0), v(p) = 0. Given a set V of valuations for £(®,0), define My = (V, Ty, my) by:

e Ly is the binary relation on V such that v’ Cy v iff for all p € L(®,0), if v(p) = 1, then v'(¢) = 1;

o my: & — (V) is such that my(p) = {v eV |v(p) =1}.
Given a set V of valuations for £(®,0), say that ¢ € L(®,0) is V-valid iff for all v € V, v(p) = 1; and
say that a natural deduction rule (an introduction or elimination rule for L, —, A, V, —, or ) preserves

V-validity iff whenever the premises of the rule are all V-valid, the conclusion of the rule is also V-valid.

Theorem 8.2 (Garson 2013, §8.8). For any set V of valuations for £(®, ), the following are equivalent:
1. the natural deduction rules for classical propositional logic preserve V-validity;
2. My = (V,Cy,my) is a propositional possibility model such that for all v € V, v(¢) = 1 iff My, v IF .

Thus, one can “read off” propositional possibility semantics just from the assumption that the natural deduc-
tion rules for classical propositional logic preserve validity. As Garson [2013, §4.4] shows, the same cannot
be said for classical truth-table semantics. (For assumptions about the connection between natural deduc-

tion and propositional semantics sufficient to fix the classical truth tables, see Bonnay and Westerstahl 2015.)

Beth Semantics for Intuitionistic and Classical Logic, Closure Operators on Heyting Algebras, and Closure
Frames for Substructural Logics. As shown in § 2, possibility semantics for classical (modal) logic is closely
related to semantics for intuitionistic (modal) logic. However, the treatments of intuitionistic and classical
logic using partial-state frames in § 2 were not as unified as they could be, due to the handling of disjunction
on the intuitionistic side. Recall that we did not include disjunction as a primitive symbol of the classical
language (Definition 1.1). Instead, we defined ¢ V 1 as an abbreviation in terms of = and A. Of course, for
the (full) intuitionistic language we need a primitive disjunction symbol, for which we used () (Definition
1.3). The disunity arose because we used the forcing clause for () from intuitionistic Kripke semantics
(Example 2.7), so V and () had very different semantics:

e Mzl oV it Vo' Cx 3" T 2's M, 2" IF p or M, 2" |- 1);

e Mzl o@Dy iff M,z I ¢ or M,z 1.
In addition, this clause for () requires that the set P of admissible sets in a frame be closed under unions—in
order for the logic of the frame to be closed under uniform substitution—which clashes with the requirement
on full possibility frames that P be the set of all regular open sets, which need not be closed under unions.

For a more unified treatment, we can move from Kripke semantics for intuitionistic logic to Beth semantics

[Beth, 1956]. Dragalin [1988, p. 72ff] presents a version of Beth semantics in which the difference between
intuitionistic and classical logic emerges at the level of different frame classes, rather than different forcing
clauses.*®> We will present a modified version of Dragalin’s frames, which he calls Beth-Kripke frames. (One of

the differences will be that we include a set P of admissible propositions.) For the case of propositional logic,

43Thanks to Guram Bezhanishvili for pointing out connections between possibility semantics and Dragalin’s version of Beth
semantics, as well as connections with nuclei on Heyting algebras discussed below.
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instead of starting with partial-state frames F = (S,C, P) as in Definition 2.1, we start with richer frames
F =(S,C, P,Q) where F = (S,C, P) is a partial-state frame as before and @ is a function assigning to each
state s € S a set Q(s) C p(S5). An X € Q(s) is called a path starting from s, so Q(s) is the set of all paths
starting from s. For X, X' C S, define X' C X iff Vo € X 32’ € X’ 2/ C 2. Then the function @ is required
to satisfy at least the following natural conditions (for simplicity, we state the stronger version of Dragalin’s
second condition): first, @ & Q(s); second, X € Q(s) implies X C |s; third, s’ C s implies that VX' € Q(s')
3X € Q(s) such that X' C X; fourth, s’ € X € Q(s) implies 3X’ € Q(s’) such that X C X'; and finally,
Q(s) # 0 (for Dragalin’s “normal” frames). As for P, it is required to be closed not only under intersection
and the operation D defined by X DY ={se€ S |Vs Cs:s € X =5 €Y} € P as in Definition 2.1, but
also under the operation + defined by X +Y ={s € S |VZ € Q(s) 3z € Z: z € X or z € Y}. In other
words, s is in X + Y iff every path starting from s hits a state in X or in Y. In addition, to obtain at least
intuitionistic logic, we require that every X € P satisfies persistence and

e barring —itVZ € Q(zx) 3z € Z: z € X, then z € X.

In other words, if every path starting from z hits a state in X, then x € X. Naturally, we define a full frame
as one in which P is the set of all X C S satisfying persistence and barring.

For the semantics, we keep the forcing clauses for p, =, A, and — as in Definition 2.3, throw away ),
and add a new forcing clause for a new primitive disjunction V:

e Mzl VoY iiVZ € Q(z) Iz € Z: M,zIF @ or M,z 11,
so [ Y ]M = [p]M + [¢]™ for the + operation defined above. It is with this treatment of disjunction that
we can achieve a more unified treatment of intuitionistic and classical logic.

Intuitionistic propositional logic is sound and complete with respect to the class of all frames F = (S, C
, P, Q) satisfying the conditions above, according to the forcing relation just described. For soundness, one
can check that the operations N, D, and + above give rise to a Heyting algebra on P. For completeness, in
the case where Q(s) = {s} for each s € S, the requirements on @ hold and the forcing clause for ¥ becomes
the same as for (V) in Kripke semantics, so Kripke completeness implies Beth completeness.

Now an observation of Dragalin (p. 74, Ex. 3) shows that we can use the same forcing relation and
obtain soundness and completeness for classical propositional logic as well. To do so, we do not consider all
frames F = (S,C, P,Q) as above, but only those in which for every x € S, Q(z) = {ly | y C z}, i.e., the
paths starting from x are the principal downsets of refinements of . Observe that given this definition of
Q, the barring condition above is equivalent to our refinability condition, which in contrapositive form says
that if Vo' C o 32" C 2’ 2” € X, then z € X. Also observe that given this definition of @, the forcing clause
for ¥ becomes equivalent to the forcing clause for our classical V above. From these observations it is a short
step to the soundness and completeness of classical propositional logic. Furthermore, one can extend this
analysis to intuitionistic and classical modal logic based on Beth-style semantics.

There is a deeper perspective on this connection between Beth semantics and possibility semantics,
explored in Bezhanishvili and Holliday 2016, Forthcoming. Given a frame F = (S, C, P, Q)) as above, consider
the Heyting algebra H(S, C) of all downsets in (S, C). Then consider the function j on H(S, C) such that for
any downset O, j(O) ={z € S| VZ € Q(x)3z € Z: z € O}. Dragalin shows (pp. 72-3, using ‘D’ instead
of ‘j7) that this j is a closure operator on H(S,C) in the sense of lattice theory [Davey and Priestley, 2002,
§7.1], i.e., where < is the natural order on the algebra, we have that for all elements a and b of the algebra:
a < b implies j(a) < j(b); a < j(a); and j(j(a)) = j(a). In fact, Dragalin shows that j is a nucleus on the
Heyting algebra in the sense of topos theory, i.e., a closure operator that also satisfies j(a) A j(b) < j(a Ab).

There are two other important facts about the j just defined using Q). First, together persistence and barring
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above imply that the sets X € P are fized points of j in H(S,C), i.e., j(X) = X; and if the frame is full, then
P is the set of all fixed point of j. Second, the definition Q(z) = {ly | y C z} for classical frames implies
that j is the operation of double negation. The first fact is important because for any Heyting algebra (resp.
complete Heyting algebra) H and closure operator j, one obtains a new Heyting algebra (resp. complete
Heyting algebra) H; by taking the fixed points of j in H, with the same meet and implication as in H, but
with a new join defined by A + B = j(A U B), where U is the join in H. This is in essence what Beth
semantics does. If P is full, then P together with N, D, and + form the complete Heyting algebra H(S, C),.
Even if P is not full, our requirement that P be closed under N, D, and + guarantees that P gives rise to
a subalgebra of H(S,C); and therefore a Heyting algebra. Finally, the second fact is important because if
we form H; with j as double negation, then Hj; is a Boolean algebra, which is complete if H is complete.
We thereby obtain exactly the regular open algebra from Remark 2.15 (which Dragalin calls the MacNeille
algebra). As we have seen, this is what possibility semantics does.

The foregoing points lead to the idea of replacing P and @ in full frames F = (S, C, P, Q) by a nucleus j
on H(S, C), or rather by something (such as a special binary relation or subframe) that determines a nucleus
jon H(S,C), of which j as double negation is but one example. Frames of this kind are studied in Goldblatt
1981, Fairtlough and Mendler 1997, and Bezhanishvili and Holliday 2016, Forthcoming.

Dragalin’s approach in terms of closure operators also appears in the semantics for substructural logics,
including substructural modal logics, using closure frames in Restall 2000, §12.2. In the non-modal case, a
(full) closure frame is a tuple F = (S,C,T') where (S, C) is a poset and I': p(5) — p(5) is a closure operator
as above, but on the full powerset algebra rather than just the Heyting algebra of downsets. Otherwise the
idea is as above: propositional variables must be interpreted as fixed points of I', and the semantic clause for
disjunction is M, z IF V¥ iff x € T([]MU[¢]™M). (There is also a more general semantics for substructural
negation.) Possibility semantics emerges in the case where I'(X) = int(cl({X)) as in Fact 2.17.2.

Finally, the closure operator approach also appears in the truth-ground semantics for intuitionistic propo-
sitional logic in Rumfitt 2012, 2015. Rumfitt considers lower semilattices (S, C) with a bottom element**
and picks a specific closure operator j on @(9), namely the operator (-)* used for the MacNeille completion
in § 5.8. As above, admissible propositions are taken to be the fixed points of j, and since the fixed points
of ()™ are downsets, they are elements of the Heyting algebra H(S,C). Since (S,C) is a lower semilattice,
the relative pseudocomplement in H(S,C) may be defined by X - Y ={s € S |Vz € X: s Az € Y}, which
is how Rumlfitt defines implication. As above, the conjunction of propositions is their intersection and the
disjunction is the closure of their union. Thus, also as above, from the complete Heyting algebra H(S,C) we
obtain the complete Heyting algebra H(S,C);. Possibility semantics would instead take j to be int(cl({(-)))
with respect to the poset obtained from the bounded lower semilattice by deleting L.

Since both Humberstone [1981] and Rumfitt [2012, 2015] speak of ‘possibilities’, one could reasonably
use the term ‘possibility semantics’ for the general approach using some closure operator or other, reserving

the term ‘classical possibility semantics’ for the specific choice of j as int(cl({(+))). <

Possibility Semantics for Modal Logic. The origin of possibility semantics for propositional modal logic is
Humberstone 1981. The important differences between Humberstone’s frames and our possibility frames are
discussed in § 2.3 and Appendix § B.1. There is also a more superficial difference, namely that Humberstone’s
[1981] valuations were partial functions V: ® x S + {0, 1} satisfying the condition of stability and resolution

from above, but which Humberstone called ‘persistence’ and ‘refinability’. Since the different approaches to

44Rumfitt goes up rather than down for refinements (writing ‘e’ for join), but we maintain our convention from Remark 2.2.
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valuations in the literature may be confusing, we provide the following guide.

Remark 8.3 (Three Approaches to Valuations in Possibility Semantics). There are three approaches to

valuation functions in the literature on possibility semantics:

1. The approach in, e.g., Humberstone 1981 and Holliday 2014: a valuation is a partial function V': ®x .5 -+
{0,1} satisfying stability and resolution above (but called ‘persistence’ and ‘refinability’ in the cited
papers); V(p,z) = 1 means that = determines that p is true; V(p,x2) = 0 means that = determines that

p is false; V(p, ) being undefined means that x does not determine the truth or falsity of p.
2. The approach in, e.g., Garson 2013 (§8.8): a valuation is a total function u: ® x S — {0,1} such that

{z € S| u(p,x) = 1} satisfies persistence and refinability in the sense of this paper; u(p,z) = 1 means
that x determines that p is true; u(p, ) = 0 means that = does not determine that p is true, i.e., either
x determines that p is false or  does not determine the truth or falsity of p—which explains why this

approach, unlike approach 1, does not require that if u(p,x) = 0 and 2’ C x, then 2’ € u(p,x) = 0.4°

3. The approach in, e.g., Humberstone 2011 (§6.44) and the present paper: a valuation is a total function
m: & — p(S) such that 7(p) satisfies persistence and refinability; © € w(p) means that = determines that
p is true; « € w(p) means that x does not determine that p is true, i.e., that either x determines that p

is false or  does not determine the truth or falsity of p.

The three approaches are all mathematically equivalent. We have already seen in Fact 8.1 how to go back
and forth between valuations as in approaches 1 and 3, and it is obvious how to go back and forth between
valuations as in approaches 2 and 3. An advantage of approach 3 is that we can conveniently restate the

constraint on admissible valuations as the constraint that 7: ® — RO(S,C) as in § 2.2. <

A direct follow-up to Humberstone 1981 is Holliday 2014, which focuses on: functional possibility seman-
tics as in § 4.4; the construction of atomless canonical possibility models in which each possibility is given by
a single finite formula (cf. Appendix § B.1); and the closely related issue of internal adjointness mentioned
in § 7.2. The results of § 7.3 here can be seen as generalizing the results on atomless models in Holliday
2014.

The idea of giving a semantic clause for 0J; of the form M, X I+ O;p iff M, f;(X) IF ¢ appears earlier
in Fine’s [1974a, 359] discussion of relevance logic, in Humberstone 1988 (p. 418), and in Humberstone
2011 [p. 899]. The idea also appears in Puncocha¥ 2014, which presents a semantics for modal logic
(using “regular information models”) that is essentially equivalent to possibility semantics over functional
and principal possibility models as in § 4.6. Although Puncochaf uses an apparently different semantic
clause for disjunction, namely the split disjunction discussed below, we show in Fact 8.4 below that split
disjunction is equivalent to our V3 forcing clause for disjunction over principal possibility models.

A more indirect follow-up to Humberstone 1981 is Garson 2013, Ch. 16, which discusses the extent to
which something like Theorem 8.2 above extends to quantified modal logic. Explaining Garson’s results for
modal logic is beyond the scope of this overview, so we refer the reader to Garson 2013.

Finally, we will briefly summarize the recent work on possibility semantics for modal logic in van Benthem
et al. 2017 and Harrison-Trainor 2016, 2017. The starting point of van Benthem et al. 2017 is the following
bimodal perspective on possibility semantics, which parallels previous bimodal perspectives on intuitionistic
modal semantics [Wolter and Zakharyaschev, 1999]. A possibility frame F = (S,C, R, P) for a unimodal

45Cf. Kripke [1965, 98] on his intuitionistic semantics: “if ¢(A, H) = T we can say that A has been verified at the point H

..; if (A, H) = F, then A has not been verified at H. Notice, then, that T and F do not denote intuitionistic truth and
falsity; if ¢(A, H) = T, then A has been verified to be true at the time H; but ¢(A, H) = F does not mean that A has been
proved false at H. It simply is not (yet) proved at H; but may be established later.”
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language gives rise to a frame (S, C, R) for a bimodal language with modalities [C] and [R] with the following
semantics: M,z E [Clp iff for all 2’ C z, M,2' E ¢; M,z E [R]y iff for all y € R(z), M,y E ¢; and F
treats the Boolean connectives as in ordinary possible world semantics. This bimodal perspective sheds
light on both of our titular topics: possibility frames and possibility forcing. First, the frame conditions
relating C and R in § 2.3 (recall Figure 2.12) can be analyzed in terms of corresponding—in the precise
sense of correspondence theory—bimodal interaction axioms relating [C] and [R]. Metatheoretic facts about
the relations between frame conditions as in § 2.3 can then be established by formal derivations in bimodal
logic, as shown by van Benthem et al. Second, the possibility forcing relation I+ and the requirement that
admissible propositions be regular open sets suggests a translation of the unimodal language with O into
the bimodal language with [C] and [R]. As shown by van Benthem et al., this translation embeds unimodal
logics into a range of bimodal logics, including dynamic topological logics as in Kremer and Mints 2005.

The topic of Harrison-Trainor 2016 is possibility semantics for quantified modal logic. In addition to
working out the basic setup of possibility semantics for quantified modal logic, Harrison-Trainor investigates
the extent to which it is possible to do in the quantified modal case what Humberstone 1981 (p. 326) suggests
and Holliday 2014 does in the propositional modal case: prove the completeness of standard modal logics
using a simple canonical possibility model construction in which each possibility is identified with a finite set
of formulas (cf. § B.1). The construction in Holliday 2014 relies on the property of internal adjointness of
certain propositional modal logics, discussed in § 7.2.%6 Harrison-Trainor shows that the quantified versions
of those propositional modal logics lose the property of internal adjointness, as well as the weaker finite
existence lemma from § 7.2. Thus, the direct analogue of the construction from Holliday 2014 does not work
in these quantified modal cases. However, Harrison-Trainor also observes that one can prove completeness
with a canonical possibility model construction in which each possibility is identified with a computable set
of formulas, which retains the spirit of the previous completeness results using finitary possibilities.

As reflected in the title of the present paper, our focus has been on possibility frames—duality,
definability, and completeness for frames. This parallels the state of possible world semantics in its early
decades, which focused on the theory of world frames (see, e.g., van Benthem 1983). The notion of
validity over a class of frames always gives rise to a normal modal logic, whereas validity over a class
of models does not, since the set of formulas valid over a class of models may fail to be closed under
Uniform Substitution. This is one reason for the focus on frames (cf. Hughes and Cresswell 1996, p.
159). But just as the theory of possible world semantics expanded to include the study of models per
se (see, e.g., Blackburn et al. 2001), we can expand the theory of possibility semantics in this direction.
Harrison-Trainor 2017 adopts the model perspective and investigates how possibility models may be turned
into and arise from Kripke models that validate the same formulas. (Recall from § 2.5 that there can be
no such transformation in general from full possibility frames to Kripke frames.) Harrison-Trainor shows
how the method of generic chains used for Lemma 2.14 can be extended to turn any countable possibility
model for a countable language into a Kripke model—a worldization of the possibility model—that has
the same modal theory and bears a natural structural relation to the possibility model.*” In addition,

Harrison-Trainor gives a general definition of a possibilization of a Kripke model, generalizing the powerset

46Note that the proof of Theorem 7.13 in § 7.3 shows how to obtain completeness of a logic L with respect to an atomless
and functional full possibility frame without assuming that L itself has internal adjointness, by taking a detour through the
minimal tense extension of L, which always has internal adjointness.

47A less direct way of turning a possibility model M = (F,n) (of any cardinality) based on F = (S,C, {R;}ics, P) into a
Kripke model that has the same modal theory is to first turn M into an algebraic model MP = (F? 7} as in Theorem 5.6.5 and
then turn MP into the Kripke model (M) = ((FP)4,n4) based on the ultrafilter frame (F®)4 of FP as described in § A.3.
Whereas this construction builds the worlds of the Kripke model out of ultrafilters in (P, C), Harrison-Trainor’s construction
builds the worlds of the Kripke model out of ultrafilters in (S, C).
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possibilization of § 2.1, and shows that if M is a countable possibility model for a countable language
and is separative as in § 4.1 and strong as in § 2.3, then M is isomorphic to a possibilization of a
worldization of M (cf. Propositions 4.17 and 4.52). Thus, we can see every such possibility model
as arising from a Kripke model via possibilization. Crucially, this construction does not build in that
every set of worlds in the Kripke model becomes a possibility in the possibility model. Thus, unlike the
views to be discussed below, Harrison-Trainor’s construction does not imply a picture according to which

the space (S, C) of possibilities must be isomorphic to the powerset of a set of worlds (minus §)) ordered by C.

Possibilities as Sets of Worlds. Before Example 2.9, we discussed the view of possibilities as arbitrary sets
of worlds, leading to the definition of powerset possibilization. Semantics for classical and intuitionistic
propositional logic that evaluate formulas at sets of worlds appear in Cresswell 2004. Semantics for modal
logics that evaluate formulas at sets of worlds appear in recent work on inquisitive epistemic logic [Ciardelli
and Roelofsen, 2015, Ciardelli, 2014], where sets of worlds are taken to be “information states,” and in recent
work on modal dependence logic [Vaéninen, 2008, Hella et al., 2014] and modal independence logic [Kontinen
et al., 2014], where sets of worlds are called “teams.” We will briefly discuss each of these frameworks.

For team semantics, we will not discuss the dependence and independence formulas that are the main
point of modal dependence and independence logic, respectively. We mention only team semantics for the
basic propositional modal language. For comparison to possibility semantics, recall from § 4.3 that the
extended powerset possibilization of a Kripke model 9 = (W, {R;};cr, V) is the extended possibility model
MY = (p(W),C,0,{R{ }icr, m) where XRYY iff Y C R;[X] and 7(p) = {X C W | X C V(p)}. This M isa
quasi-functional possibility model in the sense of § 4.4, i.e., RY(X) has a maximum element, namely R;[X],
so the modal clause is equivalent to: MY, X |- O;¢ iff MY, R;[X] I ¢. Similarly, team semantics evaluates
a formula at a set T of worlds from a Kripke model 9 = (W, {R;};cs, V), using the functional clause for the
box modality: 0, T IF O, iff MM, R,;[T] IF . What we wish to highlight is the clause for disjunction used in
team semantics, which is called split disjunction: M, T IF oV iff 3177, To CW: T =Ty UT,, M, T1 I+ ¢, and
M, Ty IF 4. Tt is easy to check that this is equivalent to our V3 forcing clause for V from Fact 2.4 (holding
fixed the other clauses from Definition 2.3) when the space of possibilities/teams is the whole of (W), as
in the extended powerset possibilization; but the clauses can differ over extended possibility models where
S is a proper subset of p(W). For extended possibility models M = (S,C, L {R;}ics,7) as in § 4.3 where
the states in S are not assumed to be sets of worlds, we may consider the general split disjunction clause:
M, X IF vy iff 3X1, Xo: X = X7V Xy, M, Xy Ik ¢, and M, X5 IF 4. Here X1 V X5 is the least upper
bound of {X;, Xs}, if there is one, in the poset (S, C). Clearly this clause is not equivalent to our V3 clause

for V over arbitrary possibility frames; but they are equivalent over principal possibility frames as in § 4.6.

Lemma 8.4 (Split Disjunction in Principal Models). For any extended principal possibility model M,
X € M, and (p,T/) S £(‘I),I) M,X I _‘(_Mp/\ ﬁw) iff E|X1,X2: X = X1 \/Xg, M,Xl I @, and M,XQ I+ Zb

Proof. By Fact 4.45 and the fact that the poset (S,C) in an extended principal M is a Boolean lattice (Fact
4.41) with complement —, meet A, and join V: M, X IF =(=p A =) iff X C [|=(=p A =) ||M= —(=[l¢|™ A
M) = el MVIGIM, e X = XA(IMV]pIM), which is equivalent to X = (XA M)V(XAJl6]M)
by the Boolean laws. Then where X; = X A ||¢|™ and X5 = X A ||9||™, the right side holds. Conversely,
suppose X = X7 V Xo, X7 C [|p|M, and X C [|¢|™. Then we have X = (X1 A [|¢|M) V (X2 A [l9]M),
and since X; C X and Xy T X, we have (X1 A [|o]|™) V (Xa A |9]|M) T (X A fle|™M) V(X Af0|M) E X.
Thus, X = (X A|jel|™) V (X A ||¢||™M), which we saw is equivalent to the left side. O
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Let us now return to Cresswell 2004. The following observation is close to the main idea of that paper:
while split disjunction behaves classically when the underlying poset is a Boolean lattice, it behaves intuition-
istically when the underlying poset is such that all elements are join irreducible, i.e., for every X,Y, Z € S, if
X =YV Z then X =Y or X = Z. In the join irreducible case, split disjunction requires either M, X IF ¢
or M, X I 1. Roughly, Cresswell’s idea is to use the intuitionistic forcing clauses for =, A, and —, and the
split clause for V, for both classical and intuitionistic logic, while locating the difference between classical and
intuitionistic logic in the assumptions about the underlying poset. (This is not exactly right, since Cresswell
only evaluates formulas at nonempty sets of worlds, in which case split disjunction will not behave classically.
Instead, he uses the following clause: M, X I+ ¢V iff 3X7, X5 € p(W)\ {0}: X C X7 U Xy, [M, X3 IFpor
M, X1 IF 9], and [M, X5 IF ¢ or M, X5 IF9]. See Cresswell 2004, p. 22, for comparison of his disjunction
and split disjunction, which he associates with Beth-Kripke-Joyal semantics for local set theory.)

Finally, let us draw some connections with the semantics for inquisitive epistemic logic from Ciardelli
and Roelofsen 2015 (Defs. 3 and 5) and Ciardelli 2014 (Defs. 2.2 and 2.4). For a direct comparison with
the present paper, we will consider only the case of inquisitive modal logic without inquisitive modalities,
as presented in Ch. 6 of Ciardelli 2016 (Def. 6.1.3). Inquisitive logic has important conceptual motivations,
but we will not go into them here (see Ciardelli and Roelofsen 2011, Ciardelli et al. 2015, 2013, Roelofsen
2013). We take the language of inquisitive modal logic to be the language £'(®,I) from Definition 1.3 that
we used for intuitionistic modal logic. Formulas of the form ¢ ()¢ (written in the cited papers as ‘?{p, ¥}’
or ‘pW’) are no longer thought of as declarative disjunctions, but rather as interrogatives. From the point
of view of this paper, the semantics for inquisitive modal logic is equivalent to the following, as one can check
by comparing the cited definitions from Ciardelli and Roelofsen 2015 and Ciardelli 2014, 2016.

Definition 8.5 (Inquisitive Semantics for £'(®,I)). An inquisitive frame is a tuple §4 = (S,C
. L, {R?}icr, P) that arises from a Kripke frame § = (W,{R;}icr) as follows: S = p(W); X C Y iff
X CVY; L =0; XRIYY iff for some z € X, Ri(z) = Y; and P = {|X | X € S}, where as always,
X={YyeS|YCX}

An inquisitive model is a tuple M9 = (F9, ) that arises from a Kripke model 9 = (F, V) by setting
X € 7w(p) iff X C V(p). The inquisitive support relation between pointed inquisitive models 9%, X and
formulas of £'(®,7) is the same as our forcing relation I+ for £(®,I) from Definition 4.20 extended to
L'(®,1) as in Example 2.7, so that M2, X |- o @ ¢ iff ML, X I ¢ or M2, X | 9. N

Note that the inquisitive /9 differs from the extended powerset possibilization F% /I of F/M (Def-
inition 4.22) only in the definition of the accessibility relation R}. Recall that X R'Y iff Y C R;[X]. Thus,
R is a subrelation of RY, and it may be a proper subrelation.

Fact 8.6 shows that inquisitive frames and models are a special case of extended possibility frames and
models. It also shows that for a Kripke frame §, the inquisitive frame §?¢ is equivalent to the extended

powerset possibilization §*, with respect to £(®, I), though not necessarily £'(®, I) (see Example 8.7).

Fact 8.6 (Inquisitive Frames as Possibility Frames). For any Kripke frame § and Kripke model 9
1. §7 is an extended full possibility frame;
2. for all X € M? and ¢ € L(P,I), M9, X |F ¢ iff M, X IF .
Proof. For part 1, by Definition 4.19, to say that §? is an extended full possibility frame is to say that the

frame ¢ that results from deleting the bottom element () from §¢ is a full possibility frame in the ordinary

sense of Definition 2.21. The fullness requirement that P— = RO(FZ) holds by the same reasoning as in
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the proof of Fact 4.49. Then the key observation is that R} satisfies up-R and R=-win from § 2.3, so by
Proposition 2.30, P_ is closed under B; as required for a partial-state frame.

For an inductive proof of part 2, since M and M"Y, differ only with respect to their accessibility relations,
the only case we need to check is the [;p case. Since R! is a subrelation of RY, M4, X W ;¢ implies
MY, X W O;¢. Conversely, suppose MY, X W O, so there is a Y such that XRYY and MY, Y ¥ ¢. Since
o € L(®,1), by Fact 2.10.1 (which clearly also holds for the extended powerset possibilization) T, Y W ¢
implies that there is a y € Y such that MY, {y} ¥ ¢, so M9, {y} ¥ ¢ by the inductive hypothesis. Since
XRPY, Y C Ry[X], so there is an z € X such that zR;y, so {y} C R;(x) and hence {y} C R;(z). Since
[¢]™ € P satisfies persistence in (S,C), from M2, {y} ¥ ¢ and {y} C R;(x) we have M9, R,(z) ¥ ¢. Then
since z € X, we have X R/R;(x), so M9, R;(z) ¥ ¢ implies M, X ¥ ;. O

For part 1, note that although the set P of admissible propositions in §? is closed under the semantic
operations corresponding to the operators -, A, —, and [J; of £(®, I), it is not necessarily closed under the
semantic operation corresponding to the operator () of £'(®, ), namely union. That is, given | X € P and
1Y € P, it does not follow that there is a Z € P such that Z = | X U ]Y. This is the source of the fact that
inquisitive logic—the set of L'(®, () formulas valid over all inquisitive frames—is not closed under uniform
substitution (see Ciardelli 2009). For example, although ——p — p is valid, =—(p & —p) — (p & —p) is not.

For part 2, the semantic equivalence of 97 and 9% does not necessarily extend to £'(®,I). This is
demonstrated by the following example, for which it is relevant that the intended meaning of O;(p @ —p) in

inquisitive epistemic logic is that agent i knows whether or not p.

Example 8.7 (Distinguishing 9 and MM with @ ). Consider a Kripke model MM = (W, {R;};cr, V) in
which W = {z1,z2,y1,y2}, Ri(z1) = {v1}, Ri(z2) = {y2}, and V(p) = {1 }. In M9, we have R}[{x1,z2}] =
{{y1} {21}, so M {z1, 22} IF Oi(p @ —p); but in MY, we have RY [{z1,22}] = {0, {y1}, {12}, {y1,52}}, so
M®, {x1, 22} ¥ O;(p @ —p) because {z1, 22} R {y1,y2} and MY, {y1,y2} ¥ p @ —p. q

In § 8.2, we will state as a problem for future work to investigate possibility semantics for languages
extending the basic polymodal language £(®, I). But in light of the above observations, we can see that the
program of inquisitive semantics has already been doing this for £'(®,I). Something similar could be said

about the team semantics mentioned above, but for an extended language with (in)dependence formulas.

8.2 Open Problems

We finish by listing a few of the open problems immediately suggested by our results.

As in § 1, for a class X of BAOs or frames, let ML(X') be the set of modal logics L such that L is the
logic of some subclass of X. Where K is the class of Kripke frames, FP is the class of full possibility frames,
PR is the class of principal possibility frames, f-PR is the class of functional principal possibility frames, and

P is the class of all possibility frames—or we could take just filter-descriptive frames—we now know:

ML(CAV) ML(CV) ML(T) ML(V) ML(ALG)
I [ [ [ I
ML(K) € ML(FP) C ML(PR) C ML(PR) < ML(P).

=

We know from the first strict inclusion that full possibility frames are more general than Kripke frames
for characterizing normal modal logics. Indeed, we showed in § 7.1 that ML(FP)\ ML(K) contains continuum

many logics in the unimodal case alone. What more can we say about ML(FP) \ ML(K)?
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Problem 1. Find additional examples of logics in ML(FP) \ ML(K), or equivalently, ML(CV) \ ML(C.AV),
based on a different idea than the (SPLIT) formula of § 2.5.

Problem 2. Investigate degrees of K-incompleteness (Kripke-incompleteness) relative to FP as in § 7.1.

Problem 3. Give a syntactic or alternative semantic characterization of the logics in ML(FP), or of the
logics in the difference ML(FP) \ ML(K).

A direction that may lead to a better understanding of FP, mentioned at the end of § 7.4, is the following.

Problem 4. Investigate notions of persistence of modal formulas from possibility frames to their associated

full possibility frames.

The same kinds of questions as in Problems 1-3 arise from the other strict inclusions above. For example,
we know from the third strict inclusion that arbitrary relations are more general than functions for principal

possibility frames, but what more can we say about this difference?
Problem 5. Investigate analogues of Problems 1-3 for the other classes of frames/BAOs.

We discussed a number of other special classes of possibility frames in § 2.3 and § 4, showing in several
cases that any (full) possibility frame is semantically equivalent to one in a special class. One special class
for which we did not prove such results is the class of Humberstone’s [1981] original frames for possibility
semantics (recall Definition 2.39 and see § B.1). Since every Kripke frame is a Humberstone frame and every
Humberstone frame is a full possibility frame, we have ML(K) C ML(H) C ML(FP), where H is the class of
Humberstone frames. We know that at least one of the inclusions is strict, but which?

Problem 6. Which of the inclusions ML(K) C ML(H) and ML(H) C ML(FP) is strict?
Turning from completeness to correspondence, the next problem is a follow-up to the discussion of § 6.3.

Problem 7. Does every modal formula that has a first-order correspondent over Kripke frames also have a

first-order correspondents over full possibility frames?

Finally, although here we have restricted attention to the basic polymodal language for a direct compari-
son of possibility semantics and world semantics, a natural step is to see how the richer refinement structure

of possibility frames could be exploited for the semantics of extended modal languages.

Problem 8. Investigate possibility semantics for extended modal languages.

Appendices

A Review of Standard Semantics

A.1 Kripke Semantics

To fix terminology and notation, we review the standard definitions for Kripke semantics here.

Definition A.1 (Kripke Frames and Models). A Kripke frame is a tuple § = (W, {R;};cs) where W is a
nonempty set (the set of worlds) and R; is a binary relation on W (the i-accessibility relation). A Kripke
model based on § is a tuple M = (§, V) where V: & — (W) (a valuation). <

We use ‘F’ for the standard satisfaction relation in Kripke models, in contrast with ‘I’ in Definition 2.3.

Definition A.2 (Kripke Semantics). Given a Kripke model 9 = (W, {R;}icr, V) with w € W and ¢ €
L(®,I), define M, w F ¢ (“p is true at w in M”) recursively as follows:
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1. MwkEpiff we V(p);
2. Myw E —p iff M,wk ¢;
3. MwkE AP iff MwkE pand M, wE Y;
4. Mw E p — Y iff M, w ¥ ¢ or M, w E Y
5. M, wkE O iff Yo € Rij(w): M,v E ¢,
where as in Notation 1.4, R;(w) = {v € W | wR;v}.
Validity, satisfiability, soundness, and completeness are defined as in Definition 2.3. 4

Recall the standard Henkin-style canonical model construction for Kripke semantics.

Definition A.3 (Canonical Kripke Frames and Models). The canonical Kripke frame for a normal modal
logic L is the structure & = (WX {RE},cr) where:

1. WY is the set of all maximally L-consistent sets of formulas;

2. for T, A € WY TREA iff for all p € £(®,1), O;p € T implies ¢ € A.
The canonical Kripke model for a normal modal logic L is the structure MY = (F¥, V) where ¥ is the
canonical Kripke frame for L and for all p € ® and I' € WX T' € VE(p) iff p € T. N

As shown in textbooks on modal logic, every normal modal logic L is sound and complete with respect
to its canonical Kripke model 9, so every normal L is complete with respect to its canonical Kripke frame
&L; but not every normal L is sound with respect to §¥—not every normal L is canonical. In fact, there are
many normal modal logics that are not sound and complete with respect to any class of Kripke frames (see

footnote 5), which leads to the following distinction.

Definition A.4 (Kripke Completeness). A normal modal logic L is Kripke-frame complete iff there is a

class F of Kripke frames for which L is sound and complete. Otherwise it is Kripke-frame incomplete. N

The existence of Kripke-frame incomplete normal modal logics is one of the motivations for the semantics

of the following sections.

A.2 General Frame Semantics

The following more general semantics for normal modal logics is due to Thomason 1972 (cf. Makinson 1970,
and see Blackburn et al. 2001, §1.4, §5.5 for a textbook treatment).

Definition A.5 (General Frame Semantics). A general frame—or in the terminology of this paper, a world
frame—is a tuple g = (W, {R;}icr, A) where (W, {R;}icr) is a Kripke frame and A C p(W) is a set (of
admissible propositions) such that if X, Y € A, then W\ X € A, XNY € A, and {w € W | R;(w) C X} € A.
A Kripke model 9t = (W, {R; }icr, V) is based on the general frame g iff for every p € ®, V(p) € A, in
which case V is an admissible valuation for g. We may regard such an 9 as the pair (g, V).
The notions of validity, soundnesss, and completeness with respect to a class G of general frames are

defined in terms of these notions with respect to the class of Kripke models based on general frames in G. <

Note that in a Kripke model 9, we have W \ [¢]™ = [~¢]™, [¢]™ N [¥]™ = [p A ¥]™, and {w €
W | Ri(w) C [p]™} = [Oi¢]™, so the closure conditions on A in g ensure that for any 9t based on g and
0 € L(®, 1), [¢]™ € A. This guarantees that the set of formulas valid over a class of general frames is closed
under Uniform Substitution (Definition 1.2), as is guaranteed for Kripke frames but not for Kripke models.
Also note that any Kripke frame § = (W,{R;}ics) can be equivalently viewed as the general frame
F = (W, {R;}ier, p(W)), called the full general frame of §, in the sense that the class of Kripke models

based on § is the same as the class of Kripke models based on S“, so § and § determine the same logic.
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Note that while in this section we use lower-case Fraktur letters for general frames and upper-case Fraktur
letters for Kripke frames (as in Blackburn et al. 2001), for simplicity in the main text we use upper-case

Fraktur letters for all “world frames,” i.e., general frames and Kripke frames regarded as full general frames.

Definition A.6 (Canonical General Frame). The canonical general frame for a normal modal logic L
[Blackburn et al., 2001, p. 306] is the structure g = (F¥, AL) where FL is the canonical Kripke frame for
L as in Definition A.3 and A¥ = {X C WL | 3p € L(®,1): X = {I' € WI' | p € T'}}. By the Truth Lemma
[Blackburn et al., 2001, §4.2], AL = {[[go]]mL | ¢ € L(®,1)}, so the admissible propositions of g& are the sets
of worlds definable in the canonical model 9% by formulas of £(®, I). <

The following result (see, e.g., Blackburn et al. 2001, Thm. 5.64) shows that general frames, unlike

Kripke frames, can characterize any normal modal logic.

Theorem A.7 (Adequacy of General Frame Semantics). Every normal modal logic L is sound and complete

with respect to its canonical general frame g™

A.3 Algebraic Semantics

In Kripke and general frame semantics, we first define the truth of a formula at a world in a model 9t and
then derivatively obtained a mapping ¢ + [¢]™ of formulas to “propositions,” understood as sets of worlds.
In the algebraic semantics for modal logic (see Blackburn et al. 2001, §5.2 for a textbook treatment), we
cut out the worlds and directly map formulas to propositions, taken as primitive objects. In the following

definition, due to Jonsson and Tarski 1951, 1952, one may think of elements of A as propositions.

Definition A.8 (Boolean Algebra with Operators). A Boolean algebra with (unary, dual) operators (BAO)
isatuple A = (A, A, —, T, {l;};cr) where (A, A, —, T) is a Boolean algebra with A as meet, — as complement,
and T as the top element, and each l;: A — A satisfies:

1. BT =T;

2. forallz,yc A, B (z Ay) =B,z ANRy.

Equivalently, where V is join, L is the bottom element, and for z € A, ¢,z := — M, — x:
3. ¢,L=1
4. forallz,yc A, ¢;(zVy) =&V &y.
A BAO A= (AN —,T,{l;}icr) is trivial if |A] = 1 and non-trivial otherwise. <

BAOs are often defined with the additive operators 4; as primitive, rather than the multiplicative dual
operators B;. But for our purposes, it will be more convenient to take the dual operators as primitive. We
also trust that no confusion will arise by using the same symbol ‘A’ for conjunction in our formal language
and the meet operation in our Boolean algebras, and similarly for ‘v’ with disjunction and join.

Turning to the semantics, instead of mapping each p € ® to a set of worlds where it holds, as in a Kripke
model, an algebraic model based on A maps each p € ® to an element of A, thought of as a proposition, and
this mapping extends to a mapping of each formula of £(®,T) to an element of A.

Definition A.9 (Algebraic Semantics). An algebraic model is a pair M = (A, 0) where A is a BAO and
0: d — A. We extend 0 to a meaning function 6: £(®,1) — A defined by: 0(p) = 0(p); O(—¢) = —0(p);
0(p A1) = 0() A O(); and B(Tip) = M0(p).

A formula ¢ € L(®P,I) is valid over a class C of BAOs iff for every algebraic model M = (A, #) with

AeC, é((p) = T; and @ is satisfiable over C iff there is an algebraic model M = (A, 0) with A € C and
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é(ap) # 1. Soundness and completeness of a modal logic L with respect to a class C of BAOs are defined in

terms of validity over C, as usual. N

For any general frame g = (W, {R; }ie1, A), the structure g* = (A, N, —, W, {l; };¢;) with —: A — A and
B;: A — A defined by —X = W\ X and B,X = {w € W | R;(w) C X} is a BAO, called the underlying
BAO of g. For a Kripke frame § = (W, {R;}ic1), the structure §+ = (p(W),N, —, W, {l;},c;) with — and
B, as just defined is called the full complex algebra of §, which is the underlying BAO of the full general
frame of § (recall § A.2), i.e., T = (F¥)*. One can check that for any general frame g and o € L(®, 1), ¢ is
valid over g according to Definition A.5 iff ¢ is valid over g* according to Definition A.9. Thus, any general
frame or Kripke frame can be turned into a BAO that validates the same formulas.

In the other direction, for any BAO A = (A, A, —, T, {M; };c1), the structure A, = (UfA,{R;}icr) where
UfA is the set of ultrafilters in A, and uR;u’ iff Vo € A: B;x € u implies z € v/, is a Kripke frame, called
the wltrafilter frame of A. (Here one goes beyond ZF set theory and assumes the ultrafilter axiom.) The
structure A, = (A, {a|a € A}) witha = {u € UfA | a € u} is a general frame, called the general ultrafilter
frame of A. One can check that for any BAO A and ¢ € £(®,]), ¢ is valid over A according to Definition A.9
iff  is valid over A, according to Definition A.5. But that ‘iff’ may fail for A : although for any algebraic
model M = (A, 0) based on A, the Kripke model My = (Ay,0,) with 0, (p) = {u € UfA | 6(p) € u} is
modally equivalent to M, there may be Kripke models based on A that are not modally equivalent to any
algebraic model based on A, because A imposes no constraints on admissible valuations.

Given a normal modal logic L and ¢, € L(®,1), let ¢ ~p, ¥ iff b, ¢ < ¥, and [p]r, = {¢ €
L(®,I) | ¢ ~r ¥} One can check that ~p, is a congruence relation with respect to the structure
(L(D,I),07,0-, T,{0;}icr) where On(p, %) = (e A1), O=(p) = —p, T = (pV —p), and O;(p) = T;e.
Thus, we can take the quotient of this structure with respect to ~p,, obtaining the following.

Definition A.10 (Lindenbaum Algebra). The Lindenbaum algebra for a normal modal logic L is the struc-
ture A¥ = (A, A, —, T, {M;}icr) where: A= {[g] | ¢ € L(2,)}; bl A WL = [(¢ AY)]Ls —[PlL = [¢]L;
T =V -p)y; and B[p]r, = [ip]r. <
One can check that A is indeed a BAO. Moreover, A is isomorphic to the underlying BAO of the
canonical general frame g from § A.2, and g% is isomorphic to the general ultrafilter frame of AL.

The following result (see Blackburn et al. 2001, §5.2) is an algebraic analogue of Theorem A.7.

Theorem A.11 (Adequacy of Algebraic Semantics). Every normal modal logic L is sound and complete

with respect to its Lindenbaum algebra AL,

B Deferred Topics

B.1 Stronger Refinability

Recall from § 2.3 that Humberstone’s [1981] original frames for possibility semantics were, in the terminology
of this paper, full possibility frames satisfying up-R, R-down, and R-refinability ™. In this section, we
compare the following refinability conditions, from weaker to stronger:

R-refinability — if zR;y, then 32’ C x V2" T2’ 3y’ C y: 2" Ryy/'s

R-refinability ™ — if zR;y, then 3y’ Cy 32’ C z V2" C 2”: 2" Ryy/;

R-refinability ™™ — if zR;y, then 32’ C x Vz"' C 2': 2" R;y.

In § 2.3, we mentioned the following fact.
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Fact B.1 (Powerset Possibilizations and R-refinability*™). There are Kripke frames § whose powerset
possibilizations §® do not satisfy R-refinability™*.

Proof. For §°, R-refinability ™ requires the following:

e if Y C R,[X], then there is some nonempty X’ C X such that for all nonempty X” C X', Y C R,[X"],
which implies:

e if every world in Y can be “seen” by some world or other in X, then there is some single world in X

that can “see” every world in Y.

This obviously does not hold for all Kripke frames §, so R-refinabilityt* does not hold for all F¥. O

For similar reasons, we cannot always transform a V-BAO into a Humberstone frame as in § 5.5.

In Humberstone 1981 (p. 326), it is stated that one can prove the completeness of some standard modal
logics with respect to classes of atomless Humberstone frames (recall § 7.3) using a canonical model construc-
tion in which each possibility is the set of syntactic consequences of a consistent finite set of formulas, the
refinement relation is the subset relation between sets of formulas, and the accessibility relations and valua-
tion function are defined as for the canonical Kripke frame (Definition A.3). However, the R-refinability

condition is too strong for such a construction to work, as the following fact shows.

Fact B.2 (Infinitary R-refinability* ™). If @ is infinite and L C £(®, I) is a normal modal logic, then there
is no partial-state model M with a nonempty relation R; satisfying R-refinability ™ such that for every
x € M, there is a finite I'y, C L(®,I) such that {p € L(D,]) | M,z - o} ={p € L(®,]I) | T, FL ¢}

Proof. For reductio, suppose there is such a model M. Since R; is nonempty, there are z,y € M such that
zR;y. Since {p € L(D,I) | M,y IF ¢} = {p € L(®,I) | Ty Fr, ¢}, the finite set T, is L-consistent. It
follows that ®(y) = {p € ® | M,y I p} is finite, because no finite L-consistent set I, entails infinitely many
p € ® (For if F, AT, — p for a p not occurring in I'y, then -y, AT, — L by Uniform Substitution.) Thus,
&\ ®(y) is infinite. Since zR;y, by R-refinability™, there is an 2’ C z such that for all 2 C 2/, 2" R;y,
which implies M, z” ¥ O;p for every p € ® \ ®(y). Since this holds for all 2" C 2/, we have M, 2’ IF =O;p
for every p € ® \ ®(y). Thus, there are infinitely many p € ® such that M, 2’ IF —=0;p. But then there is
no finite I';s such that {¢ € L(®,I) | M, 2’ Ik ¢} = {p € L(P,]I) | Ty FL ¢}, because no finite L-consistent
set T'ps entails =;p for infinitely many p € ® . For if -y, AT,» — —;p for a p not occurring in I',/, then
F AT — —0;T by Uniform Substitution, which with Fr, O; T gives us Fr, = A Ty. O

By contrast, we can prove the completeness of various modal logics with respect to classes of atomless
possibility frames satisfying R-refinability using a model construction in which each possibility is (an
equivalence class of) a single finite formula, as in § 7.3 (also see Holliday 2014).

In § 5.3, we showed that full possibility frames and CV-BAOs can be turned into semantically equivalent
rich possibility frames, which satisfy, among other conditions, R-refinability and R-max, the latter being
definitive of quasi-functional possibility frames as in § 4.4. This kind of result cannot be proved with
R-refinability ™ in place of R-refinability, as shown by Fact B.3.4.

Fact B.3 (R-refinability™ and R-max). For any possibility model M = (S,C,{R;}ics, ) with R;
satisfying R-refinability ™ and =,y € S:

1. if M,z IFO;pV O;q and zR;y, then M,y - p or M,y Ik ¢;

2. if R; satisfies R-max and M,z I O;p VvV O;q, then M,z IF C;p or M, z IF O;q;

3. if R; and R; satisfy R-max, then O,;(0;p v O,¢) — (O0;0;p v O,;0;p) is valid over F;
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4. K is not complete with respect to the class of quasi-functional models satisfying R-refinability*+.

Proof. For part 1, suppose M,y ¥ p and M,y ¥ ¢q. By R-refinability*™™", xR,y implies that 32’ C x
V" C2': 2" Ry, so M, z" W O;p and M, 2" ¥ O;q. Since this holds for all " C 2/, we have M,z IF =;p
and M,z IF =;q, which with 2’ C x implies M, z ¥ O;p vV (;q by Fact 2.4.

For part 2, if R;(z) is empty, then M, z I O, for every ¢ € L(®,I), so we are done. If R;(x) is nonempty,
then by R-max it has a maximum, f;(z), in which case M,z I+ O;p V ;¢ and part 1 together imply that
M, fi(z) IF p or M, fi(x) Ik q. If M, fi(z) IF p, then since f;(x) is the maximum of R;(z), it follows by
Persistence that M,y IF p for all y € R;(x), so M,z IF O;p. By the same reasoning, if M, f;(x) IF ¢, then
M,z I+ 0O;q. Thus, M,z IFO;p or M,z I+ O;q.

For part 3, suppose M,z |- O0;(0;p v O,q). If R;(z) is empty, then M,z I O;¢ for every ¢ € L(®,I),
so we are done. If R;(z) is nonempty, then by R-max it has a maximum f;(z), in which case M,z IF
0, (8ip vV Oiq) implies M, f;(x) IF O;p vV O;q. Then by part 2, either M, f;(z) IF O;p or M, f;(z) IF O;q, so
either M,z IF O;0;p or M,z IF0,0,q.

Part 4 follows from part 3 and the fact that 0;(0;pVv0;¢) — (0;0;pv0;0;p) is not a theorem of K. O

We conclude with an observation about the intermediate R-refinability™. If one goes beyond ZF set

theory and assumes the ultrafilter axiom, one can prove that filter frames as in § 5.5 satisfy R-refinability ™.

Proposition B.4 (R-refinability* for Filter Frames). For any BAO A, A, and A¢ satisfy R-refinability™.

Proof. For proper filters X,Y in A, suppose X R;Y. By the ultrafilter axiom, there is an ultrafilter Y’ D Y,
so Y CY. Where
X'=XU{-By|ygY'}, (41)

suppose for reductio that [X’) is not a proper filter, i.e., L € [X’). Then by (41) and Fact 5.30, there are
x € X and yy,...,yr € Y/ such that 2 A —By; A ... A —By, < 1, which implies 2 < B;(y; V...V yx) by
the properties of ;. Then since X is a filter and x € X, B;(y1 V...V yx) € X, which with XR;Y implies
y1 V...Vyr €Y, which in turn implies y; V...V yr € Y'. But since Y’ is an ultrafilter, yq,...,yx € Y’

implies —y1,...,—yi € Y’', which contradicts y1 V...V y, € Y. Thus, X’ = [X') is a proper filter.
Now consider any proper filter X" C X’ ie., X" D X'. If y €Y', then by (41), -y € X', soB,y ¢ X'
by the fact that X’ is a proper filter. Thus, X" R;Y’, which establishes R-refinability™. O

B.2 Separative Quotients

Finally, we prove the following proposition from § 4.1.

Proposition 4.11 (Separative Quotient). For every possibility frame F, there is a separative possibility
frame F= (such that if F is full, so is =) and a surjective robust possibility morphism from F to F=.
Thus, by Proposition 3.7, for all ¢ € L(®,I), F Ik ¢ iff F= I .

For a possibility frame F = (S,C,{R;}icr, P), recall the equivalence relation ~; on S from Definition
4.5, defined by: z ~, yiff t T, y and y Ty x. For z € S, let [z]~ = {2’ € S| © ~, 2’} be the equivalence
class of . Then the frame F~ for Proposition 4.11 is defined as follows.

Definition B.5 (Separative Quotient). Given a possibility frame F = (S, C,{R;}icr, P), define the separ-
ative quotient F= = (S=,C= {R }ier, P~) of F by:

1. 8= ={[z]~ |z € S}

2. [z]~ CF [yl~ iff 2 S5 y;
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3. [2]~R7[yl~ iff 32’ € [z]~ Ty € [y]~: 2'Riy';
4. P~ ={X~= C S¥| X € P}, where X~ = {[z]~ | z € X} q
We will now prove the proposition, defining the morphism A from F to F~ by h(z) = [z]~ (so X~ = h[X]).

Proof of Proposition 4.11. First, we show that (S=, C~) is separative. Consider the relation C% defined
in terms of C~ in F~. Since [z]~ C¥ [y]~ implies [z]~ C7 [y]~, we need only prove the converse. If
[z]~ CF [y]~, then for all [2']~ C= [z]~ there is a [2”]~ CF [2]~ with [2”]~ EF [y]~. This means that (a)
Va' Cs x d2” T 2’ 2” C5 y. To show « T y, consider any ' C . Then 2’ C, x, so by (a), there is an
7" Cs o' with " C, y. Since z” C, a’, there is an z// C z” with z’”" € /. Then together z” C, y and
" C z” imply that there is an 2/ C 2/ with 2’/ € y. By the transitivity of C, 2/ C 2’/ E 2" C '

implies 2"

C a’. Thus, for any 2’ C z, there is an 2" C 2’ with /" C y. Hence z Cg ¥, so [z]~ C= [y]~.
Second, we show that P= C RO(F~). Consider an X= € P=. To show that X~ satisfies persistence,
suppose [z]~ € X~ and [2']~ CF [2]~, so x € X and 2’ Cg x. Then since X € RO(F), it follows that 2’ € X
by Fact 4.2, so [z']~ € X=. To show that X~ satisfies refinability, suppose [z]~ & X=, so © ¢ X. Then
since X € RO(F), z ¢ X implies that there is an 2’ C x such that (b) for all 2" C 2, 2" ¢ X. Now consider
any 3y’ Cs 2/, so there is a ¢y’ C ¢ such that y” C 2/, which with (b) implies y” ¢ X, which with y” C ¢/
and persistence for X implies ' ¢ X. Thus, for all y C; o/, v € X, so for all [{/]~ CF [2/]~, [V]~ & X=.

Finally, from 2’ C  we have [2']~ CF [2]~, so [2/]~ is the witness we need for refinability.

Next, we must prove that F= is a partial-state frame. To do so, we first show:

() (XNY)™ = X~NY™; (i) (X DY)~ = X~ 5% V™; and (iii) (M, X)~ = B> X~
Checking (i) is straightforward. For (ii), from right to left, if [2]~ € (X D Y)™,s0 2 ¢ X DY, then there
is a 2/ C z such that 2/ € X but 2/ ¢ Y, which implies [2/]~ C= [z]~ and [2/]~ € X= but [Z/]~ € Y=,
s0 [z]l~ € X= D= Y=. From left to right, if [2]~ & X~ D% Y=, then there is a [2]~ CF [z]~ such that
[2]~ € X= but 2]~ €Y=,s02" € X but 2/ €Y, 802 ¢ X DY. Since [¢/]~ CF [2]~, we have 2/ C; 2.
Finally, since X DY € RO(F), 2/ ¢ X DY and 2/ T, z together imply 2 ¢ X D Y by Fact 4.2, so
[2]~ & (X D Y)=. For (iii), from right to left, if [z]~ ¢ (B;X)=, so z ¢ B, X, then there is a y € S such
that zR;y and y ¢ X, which implies [¢]~ R [y]~ and [y]~ &€ X=, so [x]~ ¢ BFZX=. From left to right, if

[z]~ ¢ WX, then there is a [y]~ € ST such that [z]~R7[y]~ and [y]~ € X=. From [z]~ R [y]~, we have
o’ € [z]~ T € [y]l~: ’Riy’. From [y]~ ¢ X=, we have y ¢ X. Since X € RO(F), together y ¢ X and
y ~s vy imply ¢ € X by Fact 4.2, which with 2’ R;y’ implies 2’ ¢ B; X. Then since B; X € RO(F), together
' ¢ ;X and z ~; 2’ imply z ¢ B, X by Fact 4.2, so [z]~ ¢ (B, X)=.

Since F is a partial-state frame, P is closed under N, D, and M;. It follows from (i)-(iii) and the definition
of P= that P~ is also closed under N, D=, and W5, so F= is a partial-state frame. Since we also showed
above that P~ C RO(F=), we conclude that F= is a possibility frame. To see that F= is full if F is, one
can easily show that if ¥ € RO(F=), then h=1[X] € RO(F) = P, so X = h[h~}[X]] = (h~![X])™ € P=.

The function h: F — F= defined by h(x) = [z]~ is surjective (which gave us X = h[h~![X]] above).
Given surjectivity, the condition for a robust morphism is that for all X € P, X = h=![h[X]] and h[X] € P=.
By the definition of P~, X € P implies h[X] = X= € P=. Also observe that h™1[X~] = X, so h"![h[X]] =
X. Next, it follows from (ii) above, taking Y = (), that h satisfies the C-matching clause of possibility
morphisms; it follows from (iii) above that h satisfies R-matching; and it follows from the definition of P~

and h™1[X=] = X that h satisfies pull down. Thus, h is a surjective robust possibility morphism. O
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