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604 Knowles Building, Pokfulam Road, Hong Kong SAR 

 

Abstract 

Previous studies proposed that the left hemisphere (LH) 
lateralization in English word recognition is because of the 
LH superiority in language processing. Nevertheless, Chinese 
character recognition has been shown to be more bilateral or 
right hemisphere (RH) lateralized and thus is a counter 
example of this claim. Through computational modeling, here 
we show that at least two factors other than language 
lateralization may influence hemispheric asymmetry in visual 
word recognition: (1) Visual similarity among words, which 
can be influenced by the ratio between the alphabet size and 
the lexicon size and the visual similarity among letters: We 
show that the more similar the words are in the lexicon, the 
more high spatial frequency (HSF) information is required to 
distinguish them, and this leads to more LH lateralization (2) 
The requirement to decompose a word into letters in order to 
map them to corresponding phonemes in pronunciation: We 
show that letter identity mapping requires more HSF 
information than word identity mapping, and  alphabetic 
reading requires more HSF information than logographic 
reading; this leads to more LH lateralization in alphabetic 
languages. These two visual and task characteristic factors 
alone may explain differences in lateralization between 
English word and Chinese character recognition, without 
assuming the influence from language lateralization. 
 
Keywords: visual word recognition, hemispheric asymmetry, 
computational modeling 

Introduction 

Lateralization in visual word recognition 

Words, which surround us ever since our childhood, have 

been extensively studied in the research on visual 

recognition. Previous studies have consistently shown a left 

hemisphere (LH) lateralization effect in visual word 

recognition in alphabetic languages such as English. A 

classical right visual field (RVF)/LH advantage in reading 

English words (or words in alphabetic languages) has been 

demonstrated first in tachistoscopic recognition (e.g., 

Bryden & Rainey, 1963) and consistently reported in other 

word recognition tasks, such as word naming (Brysbaert & 

d‟Ydewalle, 1990) and lexical decision tasks (Faust, 

Babkoff, & Kravetz, 1995). Data from fMRI studies have 

shown a region inside the left fusiform area (Visual Word 

Form Area, VWFA) responding selectively to words (e.g., 

McCandliss, Cohen, & Dehaene, 2003). ERP studies also 

show that words elicit a larger N170 in the LH than strings 

of symbols (e.g., Maurer, Brandeis, & Dehaene, 2005). This 

RVF/LH advantage in visual word recognition in alphabetic 

languages has been argued to be because of the LH 

lateralization in language processing (e.g., Voyer, 1996).  

Nevertheless, this claim has been challenged by at least 

one counter example, that is, the recognition of Chinese 

characters. In contrast to the RVF/LH advantage in the 

recognition of English words, the recognition of Chinese 

characters, a logographic writing system, has been shown to 

have a left visual field/right hemisphere (LVF/RH) 

advantage in orthographic processing, demonstrated in 

tachistoscopic recognition tasks (e.g., Tzeng et al., 1979; 

Cheng & Yang, 1989). In addition, Hsiao and Cottrell (2009) 

showed a left side bias effect in Chinese character 

perception in Chinese readers (experts), but not in non-

Chinese readers (novices). This left side bias effect also 

suggests the RH involvement in Chinese character 

processing. 

As for phonological processing in Chinese character 

recognition, Weekes and Zhang (1999) reported 

phonological priming effects on the recognition of phonetic 

compounds (i.e. characters with a phonetic radical that has 

information about character pronunciation) when the 

characters were presented in the RVF/LH but not in the 

LVF/RH; this effect was not observed in integrated 

characters (i.e. characters that do not have a phonetic radical; 

Weekes, Chen, & Lin, 1998). Thus, research on Chinese 

character recognition has exhibited a LVF/RH advantage for 

orthographic processing, and a RVF/LH advantage for 

phonological processing, especially for phonetic compounds.  

ERP and fMRI studies of Chinese character recognition 

have also shown a more bilateral or RH-lateralized 

activation in the visual system than those of English word 

recognition (e.g., Tan et al., 2000; Liu & Perfetti, 2003), 

which is consistent with the behavioral data. 

The RH advantage in Chinese character recognition has 

been argued to reflect the RH superiority in handling 

holistic pattern recognition (Tzeng et al., 1979). 

Nevertheless, findings in later studies do not support this 

claim. For example, Cheng and Yang (1989) showed no 

laterality effect in the recognition of non-characters and 

pseudo-characters, suggesting that this RH advantage may 

be related to lexical knowledge of Chinese characters or 

learning experience. Also, in contrast to Tzeng et al.‟s claim, 

Hsiao and Cottrell (2009) showed a reduced holistic 

processing effect in Chinese readers compared with non-

Chinese readers. Thus, it remains unclear why Chinese 

character recognition and English word recognition involve 

different hemisphere lateralization. 

Hemispheric processing model 

In order to investigate why Chinese character and English 

word recognition involve different hemispheric 
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lateralization, here we adopt a computational approach, 

aiming to examine potential factors that may influence 

hemispheric asymmetry in visual word recognition, since 

computational modeling approaches enable us to have better 

control over variables. 

Anatomical evidence shows that our visual field is 

initially split along the vertical midline, and the two visual 

hemifields are initially contralaterally projected to different 

hemispheres. In order to examine at which processing stage 

this split information converges, Hsiao, Shieh, and Cottrell 

(2008) conducted a hemispheric modeling study of face 

recognition, aiming to account for the left side bias effect in 

face perception. They proposed three models with different 

timing of convergence: early, intermediate and late 

convergence models (Figure 1). They showed that both the 

intermediate and late convergence models are able to 

account for the left side bias effect in face perception, 

whereas the early convergence model fails to show the 

effect.  

Hsiao et al.‟s hemispheric processing model (2008) 

incorporates several known observations about visual 

anatomy and neural computation: Gabor responses are used 

over the input images to simulate neural responses of cells 

in the early visual system (Lades et al., 1993); Principal 

Component Analysis (PCA), a biologically plausible linear 

compression technique (Sanger, 1989), is used to simulate 

possible information extraction processes beyond the early 

visual system. This PCA representation then is used as the 

input to a two-layer neural network (Figure 2). 

In addition, the model implements a theory of 

hemispheric asymmetry in perception, Double Filtering by 

Frequency theory (DFF, Ivry & Robertson, 1998). The DFF 

theory argues that information coming into the brain goes 

through two frequency filtering stages: The first stage 

involves attentional selection of a task-relevant frequency 

range. At the second stage, the LH amplifies high frequency 

information, while the RH amplifies low frequency 

information. This differential frequency bias in the two 

hemispheres is implemented in the model by using two 

sigmoid weighting functions to assign different weights to 

the Gabor responses in the two hemispheres (Figure 2). 

Here we apply Hsiao et al.‟s hemispheric processing 

model (2008) to the modeling of visual word recognition, in 

order to examine whether visual and task characteristics 

alone are able to account for the differences in hemispheric 

lateralization in different languages, without assuming the 

influence of language processing being LH-lateralized. We 

introduce our hypothesis below. 

 
Figure 1: Hemispheric models with different 

timing of convergence (Hsiao et al., 2008) 

 

 
Figure 2: Hsiao et al.‟s hemispheric processing 

model (2008)  

 

Visual and task characteristics of a writing system 

Here we test the hypothesis that differences in visual and 

task characteristics of a writing system alone are able to 

account for differences in hemispheric lateralization in 

visual word recognition in different languages. We 

hypothesize that at least two factors other than language 

lateralization may influence hemispheric lateralization in 

visual word recognition:  

(1) Visual similarity among words in the lexicon:   

The more similar the words look visually in the lexicon, the 

more high spatial frequency (HSF) information is required 

to recognize them; this leads to more LH lateralization. We 

hypothesize that at least two factors may influence visual 

similarity among words in the lexicon:  

(i) Number of letters shared among words in the lexicon: 

The more letters are shared among words in the lexicon, the 

more similar the words look visually in the lexicon. This 

factor is influenced by the ratio between the alphabet size 

(i.e. the number of letters in the alphabet) and the lexicon 

size (i.e. the number of words in the lexicon); that is, given a 

fixed lexicon size, the smaller the alphabet size is, the more 

number of letters may be shared among the words in the 

lexicon, and thus the more similar the words look visually in 

the lexicon. 

(ii) Similarity among letters in the alphabet: The more 

similar the letters in the alphabet look visually, the more 

similar the words look visually in the lexicon. This factor 

may be influenced by the number of letters in the alphabet; 

that is, given a fixed representational space for all possible 

letters, when we gradually increase the number of letters in 

the alphabet, it becomes more likely that some letters will 

look similar to each other (i.e. closer to each other in the 

space). 

   According to these two factors, we predict that with a 

fixed lexicon size, when we gradually increase the alphabet 

size, the model will first exhibit more and more low spatial 

frequency (LSF) reliance since the words will share fewer 

and fewer common letters (factor (i)); when the letters in the 

alphabet start to look visually similar to each other because 

of the alphabet size increase, the model will start to exhibit 

reduced LSF reliance (factor (ii)). In other words, we expect 
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that there will be an inverted-U-shaped curve in LSF 

reliance/RH lateralization in the model when we gradually 

increase the alphabet size given a fixed lexicon size.  

(2) The requirement to decompose a word into 

letters in order to map them into corresponding 

phonemes in pronunciation  

Maurer and McCandliss (2007) proposed the phonological 

mapping hypothesis to account for the difference in ERP 

N170 lateralization between faces and words: N170 has 

been found to be larger in the RH compared with the LH in 

face recognition, whereas in the recognition of English 

words, it has been found to be larger in the LH compared 

with the RH. They argued that given phonological processes 

are typically left-lateralized (e.g., Price et al., 1997; Rumsey 

et al., 1997), specialized processing of visual words in 

visual brain areas also becomes left-lateralized. Accordingly, 

the LH lateralization of N170 may be specifically related to 

the influence of grapheme-phoneme conversion established 

during learning to read. According to this hypothesis, this 

phonological modulation should be less pronounced in 

logographic scripts such Chinese (Maurer & McCandliss, 

2007).  

In contrast to the phonological mapping hypothesis, here 

we hypothesize that the LH lateralization in English word 

recognition is due to the requirement to decompose a word 

into letters, without assuming phonological processes being 

left-lateralized. We test this hypothesis through two 

simulations. In the first simulation, we contrast two 

mapping tasks using the same stimuli: word identity 

mapping and letter identity mapping. In the word identity 

mapping task, the model learns to distinguish different 

words, whereas in the letter identity mapping task, the 

model learns to identify the constituent letter in each letter 

position of an input word. We expect that the letter identity 

mapping task will require more HSF information (i.e. LH 

lateralization) compared with the word identity mapping 

task
1
.  

In the second simulation, instead of mapping word image 

input to either word or letter identities, we model visual 

word recognition more realistically by mapping them to 

pronunciations. We use an artificial lexicon with Korean-

character-like pseudo-characters as the orthography. Two 

pronunciation conditions are created: in the alphabetic 

reading condition, each component (letter) of a character 

maps to a consonant or vowel in pronunciation 

systematically, whereas in the logographic reading condition, 

each character maps to a pronunciation randomly without a 

systematic relationship between its orthographic 

components (letters) and the phonemes in pronunciation. 

We expect that the alphabetic reading condition will require 

more HSF information (i.e. more LH lateralization) 

compared with the logographic reading 

                                                           
1  Note that we reported some pilot data in Hsiao & Cottrell 

(2009b). Compared with Hsiao & Cottrell (2009b), here we have 

revised the hypotheses and modeling methods, and presented 

brand-new and more complete simulations. 

condition.

 
Figure 3: Images used in the current study: (a) 

palindrome English pseudo-words; (b) Korean 

pseudo-characters (from left to right, vertical 

structure, top heavy structure, and bottom heavy 

structure); (c) & (d) Left and right damaged 

images of the English pseudo-words and the 

Korean pseudo-characters 

Modeling Method and Results 

To test our hypotheses, we applied the intermediate 

convergence model proposed by Hsiao et al. (2008) to 

visual word recognition. In the model, the input word 

images were first filtered with a rigid grid of overlapping 

2D Gabor filters (Daugman, 1985) to obtain Gabor 

responses. At each grid, we used Gabor filters of eight 

orientations and a fixed number of scales. The number of 

scales used depended on the task-relevant frequency range, 

which was determined according to the smaller dimension 

of the images; the highest frequency scale did not exceed 

the smaller dimension of the images (following Hsiao et al., 

2008). In the current simulation, the dimensions of the two 

types of images used were 35 x 100 for the English pseudo-

words and 70 x 80 for the Korean pseudo-characters (see 

Figure 3); thus the number of scales for English pseudo-

word images was five (2
5
 = 32 < 35, and 2

6
 = 64 > 35) and 

that for Korean pseudo-character images was six (2
6
 = 64 < 

70, and 2
7
 = 128 > 70). We applied the Gabor filters to a 

5x18 grid of points on each English pseudo-word image, 

and to a 12x14 grid of points on each Korean pseudo-

character image. So each English pseudo-word image was 

transformed into a vector of size 3600 (5x18 sample points 

x 8 orientation x 5 scales) while each Korean pseudo-

character image was transformed into a vectors of size 8064 

(12x14 sample points x 8 orientations x 6 scales). 

After obtaining the Gabor magnitudes, two conditions 

were created: the baseline condition and the biased 

condition. In the baseline condition (the control condition), 

Gabor responses in different scales were given equal 

weights (i.e. no frequency bias), while in the biased 

condition, we implemented the second stage of the DFF 

theory by using a sigmoidal weighting function to bias the 

Gabor responses on the left half word (RH) to LSFs, and 

those on the right half word (LH) to HSFs (Figure 2). The 

perceptual representation of each of the left and right half 

1443



words was compressed by PCA into a 50-element 

representation each (100 elements in total, following Hsiao 

et al., 2008)
 2
. This PCA representation then was used as the 

input to a two layer neural network, as shown in Figure 2 

(see Hsiao et al., 2008, for more simulation details). 

We trained our neural network model to recognize the 

input images until the performance on the training set 

reached 100% accuracy. The training algorithm was 

gradient descent with an adaptive learning rate. To test 

hemispheric asymmetry effects, in contrast to the previous 

hemispheric models of face and word recognition (e.g., 

Hsiao et al., 2008, Hsiao & Cottrell, 2009b), here we did not 

use “chimeric images” (Figure 3(a) & (b)) as a way to give 

noise to one side of the stimulus in order to test the model‟s 

reliance on either the left or right half of the representation. 

A potential problem in using this kind of chimeric images 

for words is some letters may have a similar shape as their 

mirror images (such as „o‟ and „m‟ in the English alphabet), 

while others do not; thus these letters will give non-uniform 

noise distribution over the mirror-image sides of the 

chimeric words. Here we avoided this problem by using 

damaged images (Figure 3(c) & (d).) It was made by setting 

one half of the PCA representation to zero, so that when 

mapping these damaged images to their identities, only one 

of the visual hemifields was used for recognition. The left 

side bias effect thus was measured as the difference between 

the accuracy of recognizing a right-side-damaged word 

(carrying LSF/RH information only) as the original word 

and the accuracy of recognizing a left-side-damaged word 

(carrying HSF/LH information only) as the original word. 

Visual similarity among words in the lexicon:   

We first used images of six-letter English pseudo-words to 

examine how visual similarity among words in the lexicon 

influences lateralization in visual word recognition. To 

counterbalance the information carried in the two visual 

fields, we used palindrome pseudo-words as the stimuli (e.g., 

Figure 3(a)). We created artificial lexicons with an 

increasing alphabet size (a-c, a-e, a-g…), and trained the 

model to learn each lexicon 50 times. In each of the 50 

simulations, 26 palindrome words were chosen randomly 

from all possible combinations of letters in the alphabet to 

form the artificial lexicon. In the model, each output node 

corresponded to a word identity. 

In the first lexicon with letters from „a‟ to „c‟, there were 

27 possible combinations: aaaaaa, aabbaa, aaccaa, abaaba, 

abbbba… The randomly chosen 26 words thus looked very 

similar to one another. When we increased the alphabet size 

to include „a‟ to „e‟, the number of combinations became 

125, and the randomly chosen 26 words became more 

dissimilar visually to one another (i.e. the similarity among 

words decreased). In other words, the larger the alphabet 

size was, the lower the visual similarities among words in 

the lexicon were. Here we examined how the model‟s 

                                                           
2 In a separate simulation, we found that using 100 components 

each made the representation noisier and deteriorated the model‟s 

performance. 

lateralization changed when we gradually increased the 

alphabet size. 

In the datasets, we used 8 different fonts for each word, 

with 4 of them used as the training data, and the other 4 

used as the testing data (counterbalanced across the 

simulations). Thus, in both the training and testing datasets, 

each word had 4 images of different fonts. 

 

 
Figure 4: RH/LSF preference in the models trained 

with lexicons with different alphabet sizes in the 

word identity mapping task (*p<0.01; **p<0.001; 

***p<<0.001).  

 

The results are shown in Figure 4. The RH/LSF 

preference was defined as the difference in the left side bias 

effect between the biased condition and the baseline 

condition; it reflected how much the model preferred the 

RH/LSF-biased representation over the LH/HSF-biased 

representation compared with the control condition when no 

frequency bias was applied (Hsiao et al., 2008). As shown in 

Figure 4, when the alphabet size was small (e.g., „a‟ to „c‟), 

the model had low RH/LSF preference. When we increased 

the alphabetic size, the RH/LSF preferences became 

stronger, and then decreased after the peak at around „a-g‟ 

(i.e., an inverted-U shape in Figure 4). 

Thus, the results showed that, when gradually increasing 

the alphabetic size of the lexicon, the visual similarity 

among words decreased, and the model relied more on LSFs 

to distinguish the words. But when the alphabetic size kept 

increasing, more and more letters with similar shapes were 

used in the alphabet (e.g., „c‟ and „o‟, „b‟ and „h‟, „m‟ and 

„n‟), and the visual similarity among words in the lexicon 

increased; as the result, the model required more HSFs to 

distinguish the words. 

The requirement to decompose a word into letters  

When reading words in alphabetic languages, the readers 

have to decompose the visual input of a word into its 

constituent letters/graphemes and map them to the 

corresponding phonemes. This decomposition may require 

details of the word image and thus rely more on the HSF 

information. Here we examined lateralization effects in a 

letter identity mapping task using the English pseudo-words. 

Instead of learning to map word images to word identities, 

the model was trained to map a word image to its 

constituent letter identities. The output layer of the model 
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was divided into 3 parts corresponding to the first 3 letter 

positions in a word (the end 3 letters were the same as the 

first 3 since they were palindrome words). The number of 

nodes in each part was equal to the alphabetic size (see 

Figure 5). 

 

 
Figure 5: Output layers of the letter-position identity 

mapping task (Hsiao & Cottrell, 2009b). 

 

 
Figure 6: RH/LSF preference in the letter identity 

mapping task (in red) in the models trained with 

lexicons of different alphabet sizes, compared with 

the word identity mapping task (in blue; *p<0.01; 

**p<0.001; ***p<<0.001). 

 

Figure 6 shows the results. The results showed that 

compared with the word identity mapping task, the letter 

identity mapping task required more LH/ HSF information. 

In addition, in the letter identity task, as the alphabet size 

increased, the model relied more on LH/HSF information. 

In another simulation, we used artificial lexicons with 

Korean-character-like pseudo-characters to examine 

hemispheric asymmetry effects in recognizing square-shape 

characters, and more importantly, to examine hemispheric 

processing difference between logographic and alphabetic 

language reading. In this examination, we modeled visual 

word recognition more realistically by mapping each word 

input into its pronunciation with a consonant-vowel-

consonant structure. 

In the datasets, there were also 8 different fonts for each 

Korean-character-like pseudo-character. Each character 

consisted of three Korean-alphabet-like letters, arranging in 

three different structures: vertical, top-heavy, and bottom-

heavy (Figure 3(b)). The frequency of each letter appearing 

in either side of the characters in the lexicon was balanced. 

In the alphabetic reading condition, each letter 

systematically mapped to either a vowel or a consonant in 

pronunciation, whereas in the logographic reading condition, 

each character mapped to a randomly assigned 

pronunciation without a systematic letter-phoneme mapping. 

Figure 7 shows the results. As shown in the figure, the 

RH/LSF preference in the logographic reading condition 

was always stronger than that in the alphabetic reading 

condition. This result suggests logographic reading requires 

more LSF information compared with alphabetic reading, 

and is consistent with the visual word recognition literature 

showing a more RH lateralization in reading logographic 

languages such as Chinese compared with alphabetic 

languages such as English. 

 
Figure 7: RH/LSF preference in the Korean 

pseudo-character reading task (*p<0.01; 

**p<0.001; ***p<<0.001). 

 

Conclusion and Discussion 

Visual word recognition in alphabetic languages such as 

English has been reported to be LH lateralized, and argued 

to be due to the LH lateralization of language processes. 

Nevertheless, a RH/LVF advantage has been reported in 

orthographic processing of Chinese character recognition. In 

this study, by applying the hemispheric processing model 

(Hsiao et al., 2008) to visual word recognition, we examined 

whether visual and task characteristics alone are able to 

account for differences in hemispheric lateralization in 

different languages without assuming the influence from 

language processing being LH-lateralized. 

We first showed that visual similarity among words in the 

lexicon can influence lateralization in visual word 

recognition. We used artificial lexicons with the same 

number of words and word length, but with different 

alphabetic sizes, and trained the model to map word image 

input to their word identities. The results showed an 

inverted- U -pattern (Figure 4): When the alphabet size 

increases, the model initially relies more and more on the 

RH/LSF information, because words in the lexicon share 

fewer and fewer common letters and the visual similarity 

among words in the lexicon decreases. Nevertheless, with 

further increase of the alphabet size, the model‟s RH/LSF 

reliance starts to decrease, because of the increase of visual 

similarity among letters in the alphabet. 

We then showed that the requirement to decompose a 

word in to its constituent letters can also influence 

lateralization in visual word recognition. We used the same 

artificial lexicons but trained the model to perform a letter-

identity mapping task instead of the word identity mapping 

1445



task. The results showed that decomposition of words into 

letters requires more HSF information and thus results in 

more LH lateralization. In addition, we used Korean 

pseudo-characters to examine lateralization differences 

between logographical reading and alphabetic reading. The 

results showed that logographical reading requires more 

LSF information compared with alphabetic reading, and 

thus results in more RH-lateralization. 

The two factors related to visual and task characteristics 

of a writing system we proposed here are able to account for 

the lateralization differences between English word and 

Chinese character recognition. Compared with Chinese, 

words in the English lexicon may look more similar to one 

other, because of the smaller alphabet size (only 26 letters) 

and a much larger lexicon size (more than 20,000 words). In 

contrast, Chinese has a smaller lexicon size (about 4500 

characters for a native speaker), but a much larger 

“alphabet” (i.e., more than 1000 stroke patterns). In addition, 

English is an alphabetic language whereas Chinese is a 

logographic language. Chinese logographic reading may 

require more LSF information that leads to more RH-

lateralization compared with English alphabetic reading, 

since logographic reading does not require a decomposition 

of words into letters in order to map them to corresponding 

phonemes. 

In summary, here we show that visual and task 

characteristics of a writing system alone may account for 

lateralization differences in visual word recognition in 

different languages. Specifically, they are (1) visual 

similarity among words in the lexicon, and (2) the 

requirement to decompose a word into letters for performing 

grapheme-phoneme conversion during learning to read.  
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