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M A T E R I A L S  S C I E N C E

Strength through defects: A novel Bayesian approach 
for the optimization of architected materials
Zacharias Vangelatos1,2†, Haris Moazam Sheikh1,3†, Philip S. Marcus1,3*, Costas P. Grigoropoulos1,2*, 
Victor Z. Lopez4, George Flamourakis5, Maria Farsari5

We use a previously unexplored Bayesian optimization framework, “evolutionary Monte Carlo sampling,” to 
systematically design the arrangement of defects in an architected microlattice to maximize its strain energy 
density before undergoing catastrophic failure. Our algorithm searches a design space with billions of 4 × 4 × 5 
3D lattices, yet it finds the global optimum with only 250 cost function evaluations. Our optimum has a normalized 
strain energy density 12,464 times greater than its commonly studied defect-free counterpart. Traditional optimi-
zation is inefficient for this microlattice because (i) the design space has discrete, qualitative parameter states as 
input variables, (ii) the cost function is computationally expensive, and (iii) the design space is large. Our proposed 
framework is useful for architected materials and for many optimization problems in science and elucidates how 
defects can enhance the mechanical performance of architected materials.

INTRODUCTION
Background
The advances in modeling, fabrication, and testing of architected 
materials have promulgated their utility in engineering applications, 
such as ultralight (1–5), reconfigurable (6), high–energy ab-
sorption materials (7), and in bioimplants (8). Architected materials 
that mimic crystal microstructures and share their enhanced me-
chanical performances have captured the attention of the scientific 
community (1, 9–12). In particular, lattice structures consisting of 
different unit cells or with strategically removed beam lattice mem-
bers, defined as geometric defects (12), can emulate mechanisms in 
crystal microstructures, e.g., dislocation motion and strain harden-
ing mechanisms (13), such that they have superior strength, energy 
dissipation, and controllable failure. Unfortunately, a systematic, 
algorithmic search for the optimal designs of lattices can be prohib-
itively expensive (11), so historically, their designs have been driven 
by engineering ingenuity and intuition and further improved by 
iterative evolution with design approaches such as addition of beam 
members, controlled shell buckling, chemical effects, or hybrid struc-
tures (1, 3–6, 14–16). Although there have been successful designs 
based on intuition (1, 4–6, 9, 14, 15, 17, 18), intuition cannot be 
universally applied to other problems. Furthermore, there is no 
guarantee that a successful design found by intuition is the true 
global optimal solution, with the intuition merely showing the po-
tential for improvement within the design space. In addition, the 
counterintuitive strategy of removing lattice members to enhance the 
mechanical performance (9, 11) has not been explored as thoroughly 
as the aforementioned design approaches. This study aims to show 
how the removal of beam members guided by optimization can 
provide a remarkable mechanical enhancement.

We propose to optimize the strain energy density of a 4 × 4 × 
5 microlattice structure. Each site of the microlattice can choose be-
tween four different unit cells and can have two different orientations 
of attachment, yielding a large combinatorial design space. In addition 
to qualitative, discrete input variables, the cost function for evaluating 
strain energy density is extremely expensive. In previously reported 
works, architected defects were introduced as a design strategy 
(9–11). Although the improved designs were validated by fabrication 
and testing, few systematic approaches have been taken to optimize 
them. Successful designs of tailored materials have been found with 
systematic searches using data mining (19), particle swarm and evo-
lutionary algorithms (19–21), random search algorithms (22, 23), 
and topology optimization (12, 24–27). However, in all of these 
studies, the input variables of the design were continuous, and these 
algorithms are not applicable to our qualitative design space. The 
optimization method in some of these studies (22, 24–27) required 
tens of thousands of samples to be evaluated. Recently, deep learn-
ing (DL) techniques have also been used in material design (28, 29), 
but DL generally requires millions of samples or evaluations of cost 
functions. In our study, where the cost of evaluating the black-box 
function is extremely high, large number of evaluations would be 
intractable, rendering these algorithms impractical (25, 29–31).

Bayesian optimization (BO) has proven to work well for optimi-
zation problems with costly black-box functions by finding global 
optimum with minimum number of function calls (32, 33). However, 
in previous studies, BO has been used for architected materials for 
problems with continuous variables (30, 34, 35). We introduce a novel 
BO framework, which we term “evolutionary Monte Carlo sampling” 
(EMCS), to optimize the prohibitively expensive qualitative input 
design space of our architected microlattice structures. We also 
introduce “stochastic Monte Carlo” (SMC) acquisition function as 
part of the EMCS framework, which outperforms the existing ac-
quisition functions used in literature for qualitative variables.

Although some implementations of BO have been developed to 
work with qualitative input variables (36–38), these require training 
a large set of hyperparameters and modifying the underlying kernel. 
Our EMCS algorithm can handle mixed variable problems and find 
global optimum with minimum number of function calls without 
modifying underlying kernel for BO by using a genetic algorithm (GA) 

1Department of Mechanical Engineering, University of California, Berkeley, Berkeley, 
CA 94720, USA. 2Laser Thermal Lab, University of California, Berkeley, Berkeley, CA 
94720, USA. 3Computational Fluid Dynamics Laboratory, University of California, 
Berkeley, CA 94720, USA. 4California Institute of Technology, Pasadena, CA 91125, 
USA. 5Institute of Electronic Structure and Laser (IESL), Foundation of Research and 
Technology–Hellas (FORTH), Heraklion 70013, Crete, Greece.
*Corresponding author. Email: cgrigoro@berkeley.edu (C.P.G.); pmarcus@me.
berkeley.edu (P.S.M.)
†These authors contributed equally to this work.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

mailto:cgrigoro@berkeley.edu
mailto:pmarcus@me.berkeley.edu
mailto:pmarcus@me.berkeley.edu


Vangelatos et al., Sci. Adv. 2021; 7 : eabk2218     8 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 14

to deal with mixed variable space. On the basis of standard bench-
mark tests against other common optimization algorithms used in 
literature, we show that our EMCS framework is more efficient in 
terms of minimum number of function calls compared to other 
commonly used optimization schemes for mixed variable problems. 
Applying the EMCS framework to our microlattice structure prob-
lem, our optimization yields four orders of magnitude greater nor-
malized strain energy density compared to the existing microlattice 
structures in literature. These notable results highlight the efficien-
cy and usefulness of our proposed design strategy for optimization 
of large and expensive mixed variable design spaces.

Problem setup
The objective of our optimization problem is to design an optimal, 
nonmonolithic microlattice consisting of discrete unit cells to max-
imize strain energy density. Figure 1 illustrates the design scheme 
used to obtain and validate the optimum structure.

In this study, we use four different unit cells, henceforth described 
as states. Each of these four possible states, shown in Fig. 1A, is 
labeled by a letter A, B, C, or D. The octet truss unit cell (16) without 
any defects is labeled with A and, hereafter, is referred to as the 
unblemished structure. Unit cells B, C, and D have missing members. 
We selected them as inputs because a lattice made up with any 

combination of them has sufficient rigidity and will not collapse un-
der its own weight, as it was shown in previous work that describes 
these explicit design principles and their benefits with respect to the 
buckling and densification response (9–11). In addition, we tested 
other types of unit cells to examine their structural integrity, and it 
was found that these four were the best candidates based on the re-
quired dimensions realized by the multiphoton lithography (MPL) 
apparatus. Despite the fact that including more states is feasible, it 
will also exponentially increase the design space. For four states, the 
design space is 8.58 × 109 (including another design variable that 
will be described next). All of these combinations, regardless of 
symmetries that decrease the number of physically independent 
geometries, determine the required computational cost. Because of 
the repercussions of dimensionality, increasing the number of states 
or variables will have a substantial effect on the required number of 
function evaluations for finding the global optimum. Furthermore, 
lattices made of these four cells will not have a disproportional re-
duction in structural stiffness (9–11). These unit cells, or states, are 
positioned in a 4 × 4 × 5 array. The 16 qualitative design variables 
(i.e., the lattice sites of the 16 unit cells) can each have four possible 
states. Note that there are five layers in the “extruded” direction of 
the microlattice, aiming to emulate the periodic arrangement of lattice 
layers in a crystal lattice structure (13). That is, whatever 4 × 4 array 

Fig. 1. Design space of the optimization and flowchart of work. (A) Classification of inputs. Top: Four types of unit cells: (A) unblemished (no missing members), 
(B) defected (four missing members shown in cyan), (C) defected (12 missing members shown in purple), and (D) defected (16 missing members shown in red). Middle: 
Schematic of orientations. Bottom left: Schematic of the 2D cross section of the 3D lattice in the plane perpendicular to the extrusion, showing 4 × 4 unit cells. Bottom 
right: Symbolic representation of the lattice, where a letter F or E in the rightmost box indicates that all the unit cells are either aligned or rotated by 45°. In both orienta-
tions, the structure is perpendicular to the load (vertical) direction. Thus, the input has 16 dimensions with four possible values and 1 dimension with two possible values. 
(B) Flow chart beginning with the selection of 50 initial random microlattices (and 5 intuitive solutions; see text). The two-step iteration loop, shown within the box with 
broken lines, consists of (i) finite element analysis (FEA) evaluation of the critical buckling load Pc, of a microlattice structure and (ii) sequential optimization of the design 
space using our proposed EMCS framework. After the two-step iteration loop is exited, the optimal design is fabricated and tested, as illustrated with SEM images of 
the microlattice structure before loading and after the instigation of buckling. Our objective is optimizing the impedance of fracture due to the early commencement of 
buckling modes, illustrated in the helium ion microscopy (HIM) image, and thus increasing the strain energy density.
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of cells is selected (e.g., the structure shown at the bottom of Fig. 1A) is 
exactly repeated in all five layers of the extruded direction, discussed 
in further detail in the subsequent section. Apart from the strategy 
to imitate crystal lattices, arbitrary or irregular three-dimensional 
(3D) arrangement of unit cells will precipitate an abrupt increase 
of the design space, rendering the optimization problem intractable 
within normal computational or experimental budget limits. For 
instance, the 4 × 4 × 5 array will have ∼1.46 × 1048 structures if 
arbitrary 3D arrangements are used. This will also render the experi-
mental validation of internal instability events abstruse using a 
characterization technique with a single detector as in the scanning 
electron microscopy (SEM). While optical microscopy from two ob-
jective lenses and digital image correlation could capture the 3D 
deformation, the lower resolution and mitigation of noise would 
increase the complexity and cost of the experimental validation. 
However, there is one additional important design variable, which 
is the relative orientation of the unit cells. Adjacent cells can be con-
nected either at their faces (labeled as state F in Fig. 1) or their edges 
(state E). This two-valued state is the 17th variable of the problem. 
The reason for selecting only these two orientations is that other 
orientations would lead to a noncuboid distortion of the lattice, and 
allowing that distortion in the design space would significantly 
increase the complexity of our search. Figure 1A shows a compact 
way to symbolically represent the 17 inputs of a design: the unit cells 
in the 4 × 4 array and their orientation.

Figure 1B shows the optimization scheme of the problem. Ideally, 
as a load is applied to a lattice, our optimization goal would be to 
maximize the strain energy density of the lattice while maintaining 
the lattice’s structural integrity and stiffness before fracturing. To 
achieve this goal, a numerical code would be required to compute 
the static behavior of the lattice in its elastic domain and its elastic-
plastic domain (where post-contact of lattice members induces 
densification) at the instigation of fracture-induced collapse. For 
the optimization of a 3D lattice with thousands of beam members, 
this analysis needs to be repeatedly carried out, which would be 
prohibitively expensive for any search method. Furthermore, this 
optimization goal presents difficulties with respect to experimental 
fabrication and verification. The material that was used was the 
hybrid organic-inorganic Zr-DMAEMA [(2-dimethylaminoethyl) 
methacrylate] (further details about the fabrication and the material 
properties are provided in Materials and Methods). Using other 
types of photoresists would require finding the correct fabrication 
parameters that will enable ductile instead of brittle behavior. Other-
wise, the commencement of buckling would lead to early brittle 
fracture before densification. However, this material and design 
challenge should be surpassed for applications that require high-
strength materials such as ceramics made through pyrolysis (39). 
The reason is that the reduction of the unit cell size will reduce 
the distance between proximal beam members, enabling densifi-
cation after buckling. Despite the fact that this would lead to ultrastrong 
and resilient materials, the volume reduction should also be included 
as a design variable to maximize the densification before fracture. 
Since the MPL polymerization process is a near-threshold phenom-
enon (40–42), we have observed that small variations in the process 
can affect the plastic performance (10, 11). Hence, the strain energy 
density at fracture collapse uf and other post-yield constitutive 
parameters of the fabricated lattices, such as the back stress 
modulus, yield function, tensile flow resistance, and rate of strain 
hardening, are likely to be too sensitive for a valid comparison 

between experimental and numerical results. To mitigate the prob-
lems of the high computational cost of numerically optimizing uf and 
the inherent sensitivities in the mechanical properties of the fabri-
cated materials, we conceived another metric to optimize the struc-
ture: the structure’s critical buckling load Pc. Our motivation for 
choosing Pc as the proxy cost function to be minimized is that the 
large deformation of lattice members instigated by buckling insta-
bility leads to the densification and stiffening of the structure by the 
post-contact of the deformed lattice members. The consequence of 
densification is that fracture is impeded despite excessive plastic de-
formation. Using Pc as the proxy performance function to be mini-
mized is advantageous because the calculation of Pc does not require 
excessive computation since Pc can be determined by solving an 
eigenvalue problem in the elastic domain. Moreover, Pc depends on 
parameters that characterize the deformation of the structure in the 
easier-to-compute elastic domain. Not only is the optimization with 
this proxy less expensive to compute, but the laboratory measure-
ment of Pc is also not overly sensitive to fabrication variations. In 
previous studies, we found that the elastic modulus and Poisson’s 
ratio are relatively less sensitive to variations of the fabrication con-
ditions (10, 11). Although the critical buckling load has been used as 
a cost function for machine learning optimization (43–46), it must 
be noted that these investigations required thousands of training data 
using continuous variables for single structural members, which has 
substantially smaller computational cost than a 3D lattice structure. 
Despite the fact that the challenge of an explicit finite element anal-
ysis (FEA) simulation is alleviated, a small number of data is still a 
necessary requirement.

Although the effect of buckling deformation on densification is 
well established (47), there is not a succinct, closed expression that 
relates the critical buckling load Pc to the strain energy density at 
fracture-induced collapse uf. In part, this is due to the fact that uf 
depends on properties in the elastoplastic contact and fracture 
regime, while Pc depends on those in the elastic regime. However, 
we show below that laboratory experiments demonstrate that min-
imizing the critical buckling load leads to an exponential increase of 
the structure’s strain energy density; therefore, a small Pc is a very 
good proxy for large uf. Details about the methodology to obtain the 
critical buckling load are provided in Materials and Methods.

The flow chart in Fig. 1B shows that our optimization method is 
initialized with 50 randomly chosen lattice structures. The main 
work needed to achieve optimization is carried out in a two-step 
iterative loop (shown by the steps within the dashed lines). The first 
(and most computationally expensive) step (i) is either the FEA cal-
culation of the Pc of the 50 random structures (but only for the first 
iteration of the loop) or the calculation of the Pc of the new lattice 
design that was selected by the BO algorithm [step (ii)] in the previous 
iteration. The algorithm exits the iterative loop with an “optimally 
designed” lattice, i.e., with the globally minimized Pc. As shown in 
Fig. 1B [step (ii)], our 17D search space has many local minima. A 
key strength of our framework is that it does not become “stuck” at 
a local minimum but moves on to find the global minimum. Once 
the iteration loop for optimization is complete, the optimum lattice 
is then fabricated and tested.

The BO framework: EMCS
Optimization techniques, in general, are used for optimizing func-
tions with ordered continuous, input states such as real numbers or 
integers. In our problem, an input state is a unit cell or an orientation 
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with no inherent numerical value i.e., a qualitative variable. Even 
nonconvex optimization problems in which all of the inputs are 
quantitative variables can often be efficiently solved with gradient 
and other standard methods, but for our optimization problem, the 
qualitative inputs rule out these methods. The defining characteris-
tics of our optimization problem is that step (i) of the iterative loop, 
where the cost function (i.e., Pc) is computed, is much more costly 
to evaluate than step (ii), where the search algorithm determines the 
next set of input values (i.e., the 17 values in Fig. 1A) to be evaluated. 
In optimizations such as ours, it is highly advantageous to choose a 
sequential search algorithm that converges to the optimal solution 
with the fewest possible iterations of the two-step loop, even if it 
requires a slight increase in the cost of step (ii).

We propose a nascent BO framework to be used in step (ii) that we 
term EMCS, which can handle mixed variables and uses all of the 
information about the design space from previous function evalua-
tions. Running our BO algorithm on test problems with known 
global minimum values (see the next section) and with complexities 
and dimensions similar to our microlattice optimization problem, 
we determined that our BO would find the global minimum of Pc 
for a 17D problem (8.58 × 109 combinations) within 250 evaluations 
of the cost function. BO is efficient because (see Materials and Methods) 
it uses all of the information from the previous evaluations of the 
cost function to examine the design space and determine the next 
point to evaluate by using Bayes’ theorem. In the BO’s exploration 
phase, it examines regions of the design space where the cost func-
tion is unknown and in which the uncertainties of its value are very 
large. In the BO’s exploitation phase, the BO is focused in regions of 
the design space that are most likely to contain the global optimum. 
An acquisition function is used to determine the next point in de-
sign space to be evaluated by balancing both exploration and ex-
ploitation and is tailored so that the evaluation of the cost function 
at the point will yield the most useful information about the design 
space. The acquisition function prevents the BO from getting “stuck” 
at a local extremum by exploring, whereas other optimization methods, 
such as simulated annealing and GAs, often use less efficient prob-
abilistic methods (e.g., heating/cooling or mutation) to get out of a 
local extremum. Conventional BO methods have been developed for 
problems with continuous and ordered inputs. The novelty of the 
present study is the adaptation of the BO to the discrete, qualitative 
inputs of the microlattice (Fig. 1A) using GA. Acquisition functions 
used in literature are usually designed for continuous variables and 
do not perform well for qualitative variables. We introduce SMC as 
part of our EMCS framework, which outperforms all the existing 
acquisition functions in literature for qualitative variables. Our major 
contributions for the optimization technique can be summarized as 
follows: (i) A novel EMCS framework is developed that uses a con-
strained GA to handle mixed variable problems without modifying 
the underlying kernel and is more efficient than existing optimiza-
tion algorithms for mixed variables. (ii) A proposed acquisition 
function SMC is introduced as part of EMCS framework that 
outperforms existing acquisition functions for categorical variables 
in anisotropic input parameter spaces. (iii) Benchmark tests are 
performed on EMCS and SMC, and the EMCS framework is shown 
to outperform existing optimization strategies for expensive mixed 
variable problems. The details of our optimization algorithm are 
included in Materials and Methods.

For benchmarking the efficiency of EMCS, we use a broad range 
of existing optimization strategies that are commonly used for 

expensive black-box function optimization with mixed variable 
capabilities: GP_skopt [a Gaussian process (GP)–based BO library]; 
DV_skopt is a dummy variable random search done by uniform 
sampling within the given bounds and is an efficient methodology 
for hyperparameter optimization (48)); RF_skopt (random forest 
sequential optimization) uses decision trees; GBRT_skopt is a se-
quential optimization that uses gradient boosted regression trees and 
is a set of mixed variable optimization libraries publicly available in 
scikit-optimize (49); erlineTPE_Hyperopt (tree-structured Parzen 
estimator) is a sequential method for optimizing expensive black-box 
functions, introduced in (50) and available in the Hyperopt package; 
and SMAC3, which is a popular BO algorithm in combination with 
an aggressive racing mechanism to efficiently decide which of the 
two configurations performs better (51). Note that GP_skopt uses a 
hedge strategy (52) as an acquisition function, with expected improve-
ment (EI), probability of improvement (PI), and upper confidence 
bound (UCB) acquisition functions used in the hedge portfolio. 
RF_skopt and GBRT_skopt use UCB as their acquisition function. EI 
is used as an acquisition function for TPE_Hyperopt and SMAC3. 
The number of points to be sampled on the surrogate surface for 
scikit-optimize libraries was set to 105. Our EMCS framework uses 
our SMC acquisition function.

There are two important items that must be addressed. The 
primordial fundamental problem would be an infinite array with 
infinite numbers of defected states. However, from the standpoint 
of computational budget, such a problem would require hundreds 
of thousands of data. In addition, the buckling load of an infinite 
lattice would be related to long wavelength buckling, which leads 
to global instability of the structure and catastrophic collapse (53). 
From this perspective, investigating a finite array is expedient since, 
in this case, the buckling load is related to microscopic instability 
patterns that are associated with densification and impedance of 
catastrophic fracture (54). This array can be used as the building 
block to create a large structure having high energy absorption and 
densification of its constituents. On the basis of previous results 
(10, 11, 55), it was verified that the size of the array will not render 
the boundary effects dominant, as it will also be shown by the ex-
perimental results in the next section.

Moreover, as in most design problems, geometric and loading 
symmetries (in our case, reflection symmetries in each of the three 
principal directions and the fourfold rotational symmetry about the 
vertical axis) reduce the number of independent input configurations 
in the design space. Therefore from the perspective of the optimization 
algorithm, our design space is larger than 8 billion, but the space of 
independent configurations is fewer than a billion. However, as it was 
addressed in the previous section, the computational cost depends 
on all of the design space and not the independent configurations.

Compared to other optimization techniques, 250 evaluations for 
this 17D problem is very small. For example, our numerical experi-
ments on searches with our test functions (see the Supplementary 
Materials for a list and definitions of those functions) showed that 
GAs (see the Supplementary Materials) require an order of magni-
tude more evaluations of the cost functions to find the global mini-
mum than our BO required. Unlike the tests of the BO described in 
the next section, the search used in the actual optimization of the 
lattice was initiated not only with the Pc values of 50 random lattices 
but also with the Pc values of 5 lattices that we refer to as “intuitive 
solutions” that were selected, fabricated, and tested because studies 
by others (or our own intuition) suggested that they might be near 
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optimal. As discussed in the next section, they were not even close 
to optimal. These were included to augment the initial dataset. For 
any black-box function, it is mathematically impossible to say 
whether the global optimum for any problem has been achieved. 
However, on the basis of the benchmarking presented in the next 
section, we believe that the microlattice design found by our BO is 
the global optimum of our design space.

RESULTS
EMCS framework benchmarking results
The EMCS algorithm was validated on a suite of test functions against 
alternative optimization strategies commonly used for expensive 
mixed variable black-box functions. We present the results of the 
tests on our “‘encrypted amalgamated function,” an anisotropic func-
tion that we created using a combination of commonly used bench-
mark functions (56, 57). We created this test function, described in 
detail in Materials and Methods, for use with mixed variables. The 
17D variation of the function tested here consists of 17 categorical 
variables with four categories each. To incorporate the noise caused 
from fabrication imperfections and the experimental measurement, 
a 0.005 noise variance (7% SD) was built into the test function on 
the basis of previously reported results (55).

The benchmarking algorithms were run for the test function in 
comparison with EMCS (with SMC as the acquisition function). 
The function evaluation budget was set at 300 with 50 initial ran-
domly sampled data points, except for SMAC3, which determines 
its own initial sample size. The evaluation budget for SMAC3 was 
still capped at 300. Each benchmark was run 10 times for every test 
function. The sequential optimization history results for all algorithms 
applied to the optimization of the amalgamated function with 
17 categorical variables (each with four possible input values so it is 
similar in scope to the architected lattice optimization problem) are 
presented in Fig. 2A. The figure shows how the normalized cost 
function (i.e., the difference between current optimum and global 
optimum) decreases with increasing evaluation number. The best 

algorithm is defined to be the one that consistently reaches a cost of 
zero after 300 evaluations. Note that only the normalize current best 
optimum is shown in Fig. 2A, and the algorithm is actually exploring 
the 17D space searching for new optima and the value in the graph 
only changes when a better optimum is found by the algorithm. The 
EMCS framework with SMC acquisition function performs signifi-
cantly better than the other algorithms for the 17D, anisotropic 
modified amalgamated function. Moreover, for the encrypted 
amalgamated function 17D, EMCS(SMC) finds the global optimum 
(with zero cost) 9 of 10 times. None of the other algorithms are able 
to find the global optimum in any of their runs. RF_skopt and GP_
skopt are the next best optimization algorithms, but they are signifi-
cantly worse than our EMCS framework. This shows the efficacy of 
our algorithm for qualitative variables against other algorithms 
and the strength of the EMCS framework for expensive mixed 
variable problems.

Optimization of architected microlattice structures
Figure 2B shows the results of using our BO algorithm to optimize 
the lattice problem initialized with 50 random lattices. In addition, 
five microlattice structures that we call the intuitive solutions were 
also used in the initialization. These lattices were based on the pro-
posed design principles for the strain energy density (10, 11).

These five structures have defected states in their ±45∘ planes, 
leading to localized collapse that imitates the failure of bulk materials 
at the planes of maximum shear (10). From those five structures, the 
one with the lowest Pc, referred to as the “best intuitive solution,” 
was fabricated and tested, along with eight structures that were ran-
domly generated. They were fabricated by the MPL process [see the 
Supplementary Material (58)]. The 17 inputs of the fabricated 
materials and the numerical values of their Pc are given in tables S1 
and S2 (58). These structures were tested, and the average difference 
between experiments and simulations with respect to Pc was found 
to be equal to 7.4%, indicating a good match between experiments 
and simulations. Figure 2B shows results of the optimization algo-
rithm. After 160 evaluations of the Pc [or 105 ≡ (160 − 55) BO 

Fig. 2. Convergence of the BO algorithm. (A) Optimization progress history for algorithm comparison. Each algorithm was run 10 times for encrypted amalgamated test 
function for a maximum budget of 300 function evaluations including 50 initial random samples. Cost ≡ global optimum − current optimum. The optimum value of the 
Cost is 0. For each algorithm, the figure shows the mean Cost of the 10 runs as a function of the number of test function evaluations. The cloud around the mean value 
shows ±0.2 SDs. Our EMCS (SMC) algorithm outperforms the others. (B) Convergence of the BO algorithm for the FEA-computed critical buckling load Pc of the microlattice 
plotted as in (A), but for the lattice, the cost function is not shifted or normalized. Evaluations 56 to 250 for the 195 configurations are determined by the BO algorithm 
(see text for the other 55). The insets in (B) show SEM images of the structures with four fabricated states: the random structure with the lowest Pc, the monolithic state D; 
the intuitive solution with the lowest Pc; and the BO optimum or optimal lattice found with the BO algorithm (see text for details of these structures).
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iterations], our search found a structure with a critical buckling load 
42.4% less than that of the best random structure. The optimal lattice 
found after 250 function evaluations was defined to be the “BO 
optimum.” The Pc of the BO optimum is 85.7% less than that of the 
defect-free unblemished structure, as shown in Table 1.

However, there are four other microlattice structures that we 
deemed important to evaluate. We conjectured that the lattice with 
the lowest Pc should be a configuration consisting of only one of the 
four units cells. The logic being that if one unit cell is better than all 
of the others, then a lattice made up of only those superior unit cells 
would be the optimal lattice. Therefore, we evaluated the Pc values 
of the A, B, C, and D unit cells (see Materials and Methods, Experi-
mental Design for the simulations and mechanical modeling). 
Thus, we found a hierarchy of the Pc values of the unit cells. In ad-
dition, the Pc values of 4 × 4 monolithic microlattices made up ex-
clusively of unit cells A, B, C, or D have the same ordering as the Pc 
values of the unit cells. The 4 × 4 microlattice with only D unit 
cells connected at their edges (17th design variable = E) also has 
lower critical buckling load compared to the microlattice with D 
unit cells connected at their faces (F) (see Materials and Meth-
ods, Experimental Design for the simulations and mechanical 
modeling). Hence, we speculated that the optimum lattice might 
intuitively only have D cells connected at their edges. We call this 
the “monolithic state D.” However, Fig. 2B shows that the Pc of the 
BO optimum is 43.4% less than that of the monolithic state D, which 
is opposed to our initial expectation based on mechanics principles 
only. The comparative results are shown in Table 1.

The 17 input values of the BO optimum lattice that uniquely de-
termine its structure along with its Pc are listed in the first row of 
table S1 (58). Figure 2B shows SEM images of the fabricated best 
random structure, the monolithic state D, and the BO optimum. 
Note that 17 input states of the BO optimum have no discernible 
pattern that would have led to its design by intuition. The reduced 
Pc and the unexpected structure of the BO optimum support not only 
the efficiency of BO but also, more generally, the argument against 
the use of intuition in designing materials.

Properties of the BO optimum
To assess the effect of the critical buckling load on the mechanical 
response and strain energy density of the microlattice structures, 
additional specimens were fabricated (14 in total). Apart from the 
structures mentioned in the previous section, i.e., the three best 
solutions determined by the BO algorithm, the unblemished structure 
composed only of state A and the monolithic structure with state D 
were also fabricated. The arrays of the 14 different geometries are 

given in table S1 (58). The results of the measured buckling load Pc, 
strain energy density at fracture-induced collapse uf, and measured 
stiffness S are summarized in table S2 (58). As shown in table S2, the 
BO optimum has substantially lower critical buckling load compared 
to the other geometries, and there is a close match between the 
experiments and simulations.

Figure 3 shows illustrative results revealing the mechanical per-
formance of microlattice structures. The stress-strain curves shown 
in Figs. 3A and 4 indicate that the design determined by the BO 
algorithm sustained fracture at a significantly larger deformation 
compared to the unblemished structure, the best intuitive structure, 
and the monolithic structure with state D. To evaluate the delaying 
of fracture-induced collapse, the deformation of the unblemished 
and the BO optimum structures were recorded and are presented in 
movies S1 and S2, respectively (58). For the case of the unblemished 
structure (movie S1), shortly after the beginning of the loading, the 
first layer began to undergo buckling and almost instantly collapsed, 
resulting in the fracture-induced collapse event shown in the SEM 
image of the inset of Fig. 3A and indicated by the diamond symbol. 
These deformation modes are consistent with buckling eigenmodes 
of the unit cells and the whole structure obtained by the FEA simu-
lations and explained in previous work (11, 59). As the indenter 
continued to load the structure, the next layer that carried the load 
also sustained fracture-induced collapse and the same mechanism 
occurred in the subsequent layer. Nevertheless, it is shown in movie S2 
that the unblemished structure sustained buckling almost instantly 
after the initiation of loading (marked by the red box in Fig. 3A), 
resulting in contact of the beam members. This mechanism ob-
structed fracture-induced collapse of the layers due to the densification 
of the structure. The stress-strain curves of the optimum structures 
show serrated profiles, indicating the conglomeration of buckling 
and post-contact events prompted by densification, which is the 
same mechanism that has been investigated in our previous work 
(11). In the light of movie S2, the layers of the structure sustained 
plastic deformation and fracture commenced only at 50% of de-
formation, which is verified by the video recording. The deformed 
structure just before the instigation of fracture is shown in the inset 
of Fig. 3A. As it will be shown later, this was also verified by high-
depth-of-focus imaging of the tested specimens. While these re-
sponses can be efficiently characterized for a limited number of 
experiments, such a complex 3D mechanical response beyond the 
plastic domain is extremely computationally expensive to be attained 
with FEA simulations and then compared with experimental results 
obtained at the microscale for the reasons interpreted earlier. The 
effectiveness of the choice of the proxy cost function is illustrated in 
Fig. 3B, where the normalized strain energy density uf/ub is plotted 
against the critical buckling load Pc, where ub is the strain energy 
density at the instigation of buckling. This normalization is used to 
enable focusing on the effect of the critical buckling load on the 
mechanical response after the occurrence of buckling. The normal-
ized strain energy density of the optimum structure is 12,464 times 
higher than that of the unblemished structure (Table 1). The ratio of 
the normalized strain energy density of the other structures with 
respect to the BO optimum is given in table S2 (58). Even without 
normalization, the strain energy density of the optimum structure is 
203 times higher than that of the unblemished structure, one of the 
most thoroughly investigated and used architected geometries 
(2–4, 9–12, 14–16, 26, 47, 60, 61). The strain energy density corre-
sponding to the three best solutions determined by the BO algorithm 

Table 1. Experimentally obtained values of the critical buckling Pc 
and the experimentally measured value of the strain energy density 
at fracture and uf. The last column is the ratio of the normalized strain 
energy density of each structure compared to the unblemished structure. 

Structure Pc (N) uf (MJ m3) (ufi/ubi)/
(ufUB/ubUB)

Unblemished 3905.8 0.071 1

Random sampling 938.6 2.85 20.12

Monolithic D 1106.0 2.51 52.8

BO optimum 547.1 14.71 12,464
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shows a high sensitivity to the critical buckling load. While the 
mechanics responsible for the observed direct correlation between 
uf/ub and Pc with respect to the selected states requires further 
investigation, Fig. 3B shows that the selected cost function yields a 
solution that is orders of magnitude better than that of the 

unblemished structure. It is noted that in previously reported re-
sults relying solely on mechanics principles, the best result was 
inferior by just one or two orders of magnitude (10, 11). Moreover, 
although the random structures and the rest of the defined designs 
also exhibit one or two orders of magnitude higher uf/ub than the 
unblemished structure, they do not approach the optimum structure 
because they do not have such a low Pc. In comparison with previ-
ous studies that did not use optimization (1, 9–11), this result illumi-
nates the unique effectiveness of our BO algorithm. Nevertheless, it 
is also important to elucidate these results in the light of the per-
spective deformation profiles of the tested specimens.

Figure 5 shows high-resolution images of undeformed and de-
formed microlattice structures obtained with helium ion microscopy 
(HIM). HIM was selected since it provides high resolution and high 
depth of focus that cannot be accomplished by other imaging tech-
niques, enabling the effective characterization of the internal members 
of the structure. The unblemished structure (Fig. 5A) sustained 
excessive collapse of the top layer (Fig. 5B), which propagated and 
proliferated in the next layers and the internal beam members 
(Fig. 5C). However, the optimum structure (Fig. 5D) demonstrated 
excessive buckling rather than catastrophic collapse and almost no 
fracture (Fig. 5E). The deformed buckling mode shows the out-of-
plane buckling mechanism of beam members that was observed in 
movie S1 (Fig. 5F), without the total collapse of the layers, conversely 
to the unblemished structure. Figure 4G shows a side view of the 
optimum structure before testing. The large deformation of the array 
induced structure densification, which, in turn, inhibited fracture, 
leading to partial deformation recovery of the array upon unloading 
(Fig. 5H). A comparison of the mechanical responses of the un-
blemished and optimum structures reveals the remarkably improved 
mechanical performance determined by the BO algorithm based on 
the minimum critical buckling load. It was observed that the 

Fig. 3. Mechanical performance of microlattice structures. The commencement of buckling is indicated by a square for the BO optimum (red) and a diamond for the 
unblemished structure (black). (A) The prematurely instigated buckling in the optimum structure found by the BO algorithm precipitated an “ävalanche" of buckling 
events, leading to densification of the structure and the impedance of fracture (shown in the SEM image). Because buckling occurred at a later deformation stage of the 
unblemished structure, fracture was not obstructed, resulting in early collapse of the first layer (shown in the SEM image) and lower strain energy density before fracture. 
Black scale bars, 10 m. (B) Experimentally determined critical buckling load Pc versus strain energy density at the instant of fracture collapse uf normalized by the strain 
energy density at the onset of buckling ub. The results show that 1/Pc is a good proxy function for uf ; as Pc decreases, uf increases. With only 14 nonrandomly selected 
points, this figure should not be used to infer to correlations between uf/ub and Pc. The strain energy density of the optimum structures is 12,464 times that of the unblemished 
structure. Inset: Schematic to determine the onset of buckling. The critical buckling load Pc at (B) is calculated upon the commencement of an instability and is consistent 
with the onset of deformation in the videos included in the Supplementary Materials. With the progression of deformation, fracture of the layers or conglomeration of 
beam members occurred, leading to the collapse of the structure (F). The blue, black-lined (red-lined) shaded area represents the strain energy density ub at the onset of 
buckling (at fracture uf). In the schematic, uf and ub are commensurate for illustrative purposes.

Fig. 4. Comparison of the mechanical performance of different structures. The 
stress versus strain of the BO optimum (# 1 on table S1), BO penultimate optimum 
(# 2), BO antepenultimate optimum (# 3), unblemished structure (# 14), best intuitive 
solution (# 8), monolithic state D (# 5), and representative random structure (# 11).
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monolithic structure with state D also sustained premature fracture 
due to the delay of the instigation of buckling (Fig. 6). A random 
orientation of defected states does not provide the same response as 
the optimum structure a priori because specimens with random ge-
ometries, such as that shown in movie S3, sustained catastrophic col-
lapse at the early stage of deformation. In this structure, buckling 
occurs at a higher load and does not provide early densification and 
impedance of fracture. Last, the best intuitive structure (movie S4) 
exhibited localized failure (Fig. 7), in agreement with our previously 
reported results (10, 11). However, this localized mechanism did not 
lead to uniform densification as in the BO optimum structure but in 
densification of a tilted layer (Fig. 7B), and fracture could not be im-
peded for the whole geometry. It is also noted that the stiffness of the 
optimum structure is 18% larger than that of the unblemished structure 
(table S2). The stiffness enhancement is attributed to the design of the 
states, as dictated by the previous work that guided the incorporation 
of the architected defects in the present study (10, 11). The results re-
garding the unblemished structure, monolithic state D, the BO opti-
mum, and the best random structure are summarized in Table 1.

DISCUSSION
We have presented a BO framework EMCS that can be used for 
problems with discrete, qualitative design variables and a large input 

design space composed of billions of possible combinations. Using 
different test functions, we showed that our BO algorithm would 
lead to the global optimum design of our 3D geometrically defected 
microlattice with only 250 function calls (i.e., FEA calculations of 
the critical buckling load). This is an order of magnitude smaller 
number of function calls than that required by a GA and two orders 
of magnitude smaller than that required in previously reported 
optimizations of architected materials (25, 29–31). To apply BO to 
discrete and qualitative variables, a new BO framework EMCS was 
introduced, which restricts the variable space for mixed variable 
problems using GA and a new acquisition function SMC was 
proposed as part of the EMCS framework. This framework was shown 
to outperform all existing optimization techniques for expensive 
mixed variable problems.

Rather than trying to directly maximize the normalized critical 
strain energy density uf/ub to obtain our optimal design, we chose to 
minimize the critical buckling load Pc as a less expensive and easier 
to experimentally validate proxy cost function. The optimal micro-
lattice that we obtained using this proxy has a normalized strain 
energy density that is four orders of magnitude greater than the 
unblemished microlattice structure. Our use of the critical buckling 
load Pc as a proxy during the optimization revealed an unexpected 
strong inverse correlation between Pc and uf/ub. While a qualitative 
inverse relation has been previously established (1, 4, 10, 11, 47), we 

Fig. 5. HIM images of the loaded and unloaded unblemished and optimum structures. (A) Image of the unblemished structure consisting only of units cells of type 
A as in Fig. 1. (B) Same as (A) but after loading, showing severe fracture and collapse of many beam members. (C) High-depth-of-focus image of the region inside the 
square box shown in (B) revealing several fractured beams and the internal collapse of the upper layer that subsequently instigated the accumulation of damage in the 
underlying layers. (D) Same as in (A) but for the unloaded optimum structure. (E) Same as in (B) but after the structure was subjected to the same maximum compressive 
load as the structure shown in (B). Unloading of the optimum structure showed only excessive plastic deformation without catastrophic collapse and the manifestation 
of the buckling mode. (F) High-depth-of-focus image of the region inside the square box shown in (E) revealing the effect of buckling that led to deformation but no 
fracture due to the occurrence of densification. (G) Side view of the unloaded optimum structure shown from an isometric view. (H) Side view of the unloaded optimum 
structure shown from an isometric view revealing that fracture was inhibited throughout the structure due to the densification precipitated by the low critical buckling 
load. Scale bars, (A to H) 10 m.
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have shown that near the maximum value of uf/ub, it increases much 
faster than 1/Pc increases. These findings illuminate the design re-
quirement for the emergence of global microscale buckling events 
for uniform densification instead of the previously reported layer-
by-layer or tilted layer collapse. Furthermore, our results illuminate 
a mathematical methodology to design optimal architected materials 
with exceptional mechanical properties, and they pave the way on 
how the BO can be critical for low budget optimization of large, 
multivariable problems. The BO technique presented here is suitable 
for use in not only other architected materials but also a wide range 
of problems in science and engineering where other optimization 
techniques either fail or are too costly.

Our study has shown that a systematic optimization can produce 
large increases in the mechanical performance of architected 
structures and that the optimum design found by an unbiased BO 
algorithm has no obvious or intuitive pattern or structure. We are 
currently applying our BO technique to achieve multi-objective opti-
mization of a nonmonolithic structure for both stiffness and strain 
energy density and to explore multi-objective optimization of a non-
monolithic structure for a structure with minimal anisotropy and 
maximal auxeticity, which has applications ranging from stress 
shielding on bone implants to ultralight resilient structures in aero-
space vehicles against space debris. Specifically, this algorithmic 
scheme could also be used for the optimization of irregular meta-
materials (62), structures that have a nonuniform random arrange-
ment. Since the algorithm presented in this work can also be used 
for problems with mixed variables, including continuous variables 
such as the prebending curvature of specific beam, members for 
some states would lead to even more complex buckling modes and 
reversible nonlinear elastic behavior, as it was presented in previous 

work (55). The computational cost for nonlinear wave mechanics 
for cloaking, plastic evolution, instabilities, and crack propagation 
impedance is prohibitively expensive, rendering the utility of thousands 
of data for GAs or machine learning unfeasible. Moreover, including 
the constitutive material behavior and unit cell size as design vari-
ables into the optimization process will lead to the expansion of this 
design scheme for any category of material, setting the framework 
for the study of brittle to ductile transitions (63), scalability with 
smaller unit cells but larger arrays, and nonlinear response (64). 
Therefore, using BO with either discrete qualitative variables or 
mixed variables would circumvent this major challenge to obtain 
the global optimum for large-scale problems using small-scale and 
cheap experimental or simulation tools. In addition, future work 
should also focus on the enlargement of the array size and the cor-
relation between long wavelength buckling and microscale buckling 
for the transition from densification to catastrophic collapse and its 
effect on the required computational cost. This will also be an 
important stage for the design of “polycrystalline” lattice structures. 
All of these compelling applications would also set the framework 
for further investigation on strategies that can decrease the compu-
tational cost for larger or mixed problems.

The EMCS framework is further developed to deal with higher 
dimensional problems, which is a concern with GP-based methods. 
Multi-objective optimization is an active research area and, generally, 
evolutionary algorithms are preferred. However, the inherent frame-
work of EMCS using GA makes multi-objective optimization and 
batch update at each iteration feasible tasks and a natural fit for 
EMCS, a possibility that we are currently exploring and applying 
to develop nonmonolithic structures with maximal isotropy and 
auxeticity. The results presented in this paper have been using SMC 

Fig. 6. HIM images of the microlattice structure with a monolithic state D. (A) Unloaded structure, (B) loaded structure, and (C) high magnification of part of the panel 
shown in (B) revealing fracture at the nodes of beam members (shown by white arrows). White scale bars, (A to C) 10 m.

Fig. 7. SEM images of the microlattice structure with the best intuitive solution. (A) Before loading, (B) after loading showing excessive deformation in a slopped 
plane that eventually led to the collapse of the beam members on that plane, and (C) at maximum deformation showing sustained global collapse in the proximal region 
of the sloped plane. Black scale bars, (A to C) 10 m.
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as our acquisition function. Studies have shown that “Hedge”-based 
strategies (acquisition function strategies working with a portfolio 
of acquisition functions at each iteration) outperform individual 
acquisition functions (52). A hedge strategy for mixed variables thus, 
with SMC included as a candidate in the portfolio of acquisition 
function, is an attractive prospect, and we are further developing 
our framework to incorporate this.

On the basis of the large improvements that we achieved with 
systematic optimization of microlattice structures, we speculate that 
a similar systematic optimization would also lead to large increases 
in the electrical, magnetic, wetting, surface chemistry, and thermal 
properties of architected materials. We are already using modified 
versions of our BO scheme in a wide range of science and engineer-
ing problems. In particular, we are currently applying our EMCS 
framework to maximize the power output of vertical axis wind 
turbines (65) and for draft tubes of hydroelectric turbines. In addi-
tion, we are modifying our current BO algorithm for use in planetary 
sciences, specifically to determine the structures of Jupiter’s Great 
Red Spot and zonal jet streams (66, 67). We believe that many opti-
mization problems that require discrete and qualitative input design 
variables, which have previously been considered intractable because 
of the computational expense, can now be solved with our algorithm.

MATERIALS AND METHODS
Experimental design
All of the FEA simulations were performed with the multipurpose 
finite element code ANSYS (Workbench 18.0). The selected material 
properties are typical of polymeric materials used in MPL processing 
and have been found to yield a good agreement between experimental 
and simulation results. Specifically, the following beam lattice prop-
erties were used in the FEA: 1.281 elastic modulus, 0.4999 Poisson’s 
ratio, and 131.99 yield strength. The structures were discretized with 
10-node, tetrahedral finite elements. Each structure comprised an 
average of 262,008 elements with 552,042 nodes. The number of 
nodes and elements was determined by examining the convergence 
of the critical buckling load with the variation of the mesh size. The 
boundary conditions were chosen to closely match those in the ex-
periments reported in our previous work (10, 11). The compressive 
load was applied at the cusps of the top-face beams that initially came 
into contact with the indentation tip. Because the bottom face of 
each structure was firmly attached to the substrate, all the degrees 
of freedom of the bottom nodes were fully constrained. All of the 
structures were designed with the ANSYS Design Modeler.

The critical buckling load was determined from an analysis of the 
structure’s stability using the potential energy , defined by

	​   = ​ ∫ V​ ​​ W(u ) dV + ​​ ext​​​	 (1)

where W is the energy function of the system, u is the displacement 
field, V is the volume domain of the structure, and ext is the 
potential due to the external loading. The structure instability was 
determined by setting the variational potential energy equal to 
zero, i.e.

	​   = ​ ∫ 
V

​ ​​ W(u ) dV +  ​​ ext​​  =  0​	 (2)

The above equation yielded a set of differential equations that 
dictate the buckling response of the system, depending on the beam 

model used, e.g., Timoshenko, Euler-Bernoulli, or Elastica. Because 
of the complexity of the problem, the displacement field of the beam 
members was expressed by

	​ u  = ​ ∑ A​ ​​ ​N​ A​​ ​​ ~ u​​ A​​​	 (3)

where NA is the shape function in Galerkin theory and ​​​ ~ u ​​ A​​​ is the 
displacement field at the nodes of the mesh. Using Eqs. 2 and 3 and 
the fact that the critical buckling load Pc can be extracted from 
the potential due to the external loading, the variational potential 
energy yielded

	​ ​ ~ u​ · [​K​ mat​​ − ​P​ c​​ ​K​ geom​​ ] ​ ~ u​  =  0​	 (4)

where Kmat is the material stiffness that depends on the energy func-
tion of the structure and Kgeom is the geometric stiffness that depends 
on the loading conditions of the structure and is derived from the 
potential due to the external loading ext. Both matrices depend on 
the shape function NA used to approximate the displacement field 
in the beam members. For this equation to hold, the global stiffness of 
the structure must be positive semidefinite, leading to the instigation 
of buckling instability. Since the term multiplying the variational ​​ ~ u​​ 
must be zero, Eq. 4 leads to the following eigenvalue problem

	​  det [ ​K​ mat​​ − ​P​ c​​ ​K​ geom​​ ] = 0​	 (5)

Equation 5 gives the critical buckling load Pc, whereas Eq. 4 pro-
vides the corresponding buckling mode ​​ ~ u​​. Further details about the 
analytical derivation of the foregoing equation and the association 
of the stiffness matrices with the shape function can be found else-
where (68). The numerical computation of the critical buckling load 
can be implemented in ANSYS Workbench using the Lanczos algo-
rithm (Block Lanczos). Further details about this numerical process 
can be found elsewhere (69).

The Pc values of the A, B, C, and D unit cells are 338.23, 290.72, 
131.68, and 32.59 N, respectively. Moreover, a lattice structure com-
posed only of monolithic state D has a critical buckling load equal 
to 964.68 and 1130.32 N for connection at the edges (E) or at the 
faces (F), respectively.

To calculate the normalized strain energy density ratio between 
different structures, the strain energy density at the instigation of 
buckling ub was first calculated from the following equation

	​  ​u​ b​​  =  0.5 ​​P​ c​​​​ 2​ / (S ​A​​ 2​)​	 (6)

where S is the stiffness of the structure and A is the contact area due 
to the applied load. The experimental values of ub were verified by 
numerical results of the strain energy density at buckling. Since all 
of the structures comprised the same number of unit cells and 
contact with the structure commenced at the cusps of the top beam 
members, the contact area was the same for all structures. Therefore, 
using Eq. 6, the normalized strain energy density ratio between the 
BO optimum (with index 1) and any other geometry from table S2 
(with index i) was obtained from the following equation

	​​  
​u​ f1​​ / ​u​ b1​​

 ─ ​u​ fi​​ / ​u​ bi​​
 ​  = ​  

​u​ f1​​ ​​P​ ci​​​​ 2​ ​S​ 1​​
 ─ 

​u​ fi​​ ​​P​ ci​​​​ 2​ ​S​ i​​
 ​​	 (7)
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Fabrication
The microlattice structures were fabricated with a hybrid organic-
inorganic material Zr-DMAEMA [30 weight % (wt %)]. The com-
position of this material is 70 wt % zirconium propoxide and 10 wt % 
DMAEMA (Sigma-Aldrich). Further information about the material 
preparation can be found elsewhere (70, 71).

The test structures were fabricated by diffusion-assisted high-
resolution direct femtosecond laser writing, which uses MPL and the 
aforementioned photoresist for high-resolution fabrication. The 
system consists of a FemtoFiber pro NIR laser with a wavelength of 
780 nm, pulse width of 100 fs, and repetition rate of 80 MHz. The 
local photopolymerization of the photosensitive material was ac-
complished with a 100× microscope objective lens (Plan-Apochromat 
100×/1.40 Oil M27, Zeiss).

The laser output energy for the fabrication was measured right 
before the objective lens opening at 10 mW, and the scanning speed 
used was 80 m/s. A detailed description of the setup can be found 
elsewhere (72).

Mechanical testing and characterization
Uniaxial compression tests were performed in situ with a nanoin-
dentation apparatus (PI 85 SEM PicoIndenter, Hysitron) mounted 
inside the chamber of a SEM (FEI Quanta 3D FEG). All of the struc-
tures were aligned such that the front faces to be visible during test-
ing to facilitate the detection of the location and instant of buckling 
and fracture. To capture the structure collapse and track the prolif-
eration of damage, each structure was deformed at a rate of 500 nm/s 
to a maximum compressive strain of 55%. To ensure repeatability, 
at least five tests were performed with structures of a given design. 
To capture the instigation of the first buckling instability and, con-
sequently, compute the critical buckling load, the measured force-
displacement curves were frame-by-frame juxtaposed with the 
recordings of the deformation to identify whether excessive de-
formation produced a singularity in the force-displacement response. 
Further details can be found elsewhere (11, 55, 59).

Statistical analysis
The BO that we used to determine the optimal structure was based 
on the EMCS algorithm that we developed specifically for optimi-
zation problems with discrete, qualitative variables. The fact that 
our optimization of an architected material used a design space 
with nonquantitative inputs (i.e., four types of unit cells) and re-
quired an expensive cost function (FEA) presented challenges 
that cannot be addressed with conventional optimization tech-
niques. Therefore, we used a version of BO, EMCS, that is adapted 
to work with mixed variables using a GA to restrict the design 
space. We use “Hamming distance” in the covariance kernel 
and a novel acquisition function that we call SMC for qualitative 
variables.

BO is a sequential optimization technique that uses Bayes’ theo-
rem (32, 33, 73). We are given a cost function f(x) (in this case the 
FEA-calculated Pc) to be optimized such that f(x) can be evaluated 
at any input value xi (in this case the 17 input values in Fig. 1). Assume 
f(x) has been evaluated at n inputs, and let those inputs and their 
evaluations be represented as ordered pairs as D1:n = {x1:n, f(x1:n)}. 
We use Bayes’ theorem to express

	​ P(g ∣ ​ D​ 1:n​​ ) ∝ P(​D​ 1:n​​  ∣  g ) P(g)​	 (8)

Here, P(g) is the prior distribution, a probability that represents 
our existing beliefs about a function g(x) from the space of possible 
candidate functions that approximate f(x); P(D1:n∣g) is the condi-
tional probability or likelihood of observing D1:n given a specific 
candidate function g; and P(g∣D1:n) is the conditional probability 
or posterior distribution, which represents the probability that a 
candidate function g is the cost function f, given our observations 
D1:n (33).

To minimize the number of evaluations of f(x) required to find 
the optimum solution, an acquisition function (73) is used to deter-
mine the next input xn+1 to be evaluated. After the next input, xn+1 is 
determined by the acquisition function, f(x) is evaluated, the poste-
rior distribution is updated, and the process is repeated until the 
global optimum is found or a computational limitis reached.

Here, a uniform GP prior is used (73, 33). A GP is defined as a 
stochastic process such that a linear combination of a finite set of the 
random variables is a multivariate Gaussian distribution. The GP is 
uniquely specified by the mean (x) of g(x) and the covariance func-
tion k(x, x′) and is a distribution over functions. g(x) is a function 
that is sampled from this GP such that

	​  g(x ) ∼  GP [ (x ) , k(x, ​x ′ ​ ) ]​	 (9)

Here, k(x, x′) is the covariance between any two input variables, 
x and x′ (32, 73). Once a GP has been defined, at any xi, the GP re-
turns the mean (xi) and variance (xi). In our problem, the inputs 
x are discrete and qualitative, rather than continuous and ordered 
due to the fact that the inputs are states (e.g., A, B, C, and D) that 
cannot be numerically ordered. We define the covariance k with a 
modified squared exponential kernel that works with inputs that 
are states

Fig. 8. Convergence tests of our BO algorithm with a variety of test functions. 
The colored curves show the convergence of the normalized and shifted amalgam-
ated function, the encrypted amalgamated function, the Rastringin function, the 
Syblinski-Tang function, and the spherical test function. [See their definitions in the 
Supplementary Materials (58).] Each test function has 17 dimensions, and each 
dimension has four discrete inputs. Each of the test functions was shifted by adding 
a constant to it so that its global minimum in the discrete search space of input values 
is zero. The shifted test functions were then evaluated with 50 random configurations, 
and the minimum cost function value was defined as the norm. Each test function’s 
value was divided by its norm, so its shifted and normalized "cost" was unity after 
the 50th evaluation. The cost function of the optimized configuration is zero.
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	​​ k(x, ​x ′ ​ ) ≡ ​ ϵ​f​ 
2​ exp​[​​ − ​ 1 ─ 2 ​ ​∣ x, ​x ′ ​ ∣​C​ T ​​​M _​ _​ ​∣ x, ​x ′ ​ ∣​ C​​​]​​​​	 (10)

where ∣x, x′∣C is our capped distance vector made from two qualitative 
input variables. Hamming distance is used to determine this vector. 
The matrix ​​​M _​ _​​ is the covariance hyperparameter matrix. In this 
problem, we have chosen it to be diagonal with

	​​ ​(​​​​M _​ _​​)​​​ mn​​  = ​ ​ mn​​ ​h​m​ −2​​	 (11)

The 17 values of hm and ϵf are hyperparameters. Hyperparameter 
values essentially control the shape of the surrogate function based 
on the available samples of the objective function. The capped norm 
is the product ​​∣ x, ​x ′ ​ ∣​C​ T ​ ​​M _​ _​ ​∣ x, ​x ′ ​ ∣​ C​​​. There were many possible choices 
of norms that work with qualitative inputs, but the simple capped 
norm in Eq. 10 worked well with all five of our test functions.

In this study, we use leave out one cross-validation (LOO-CV) 
(32, 73), a data-driven technique of model fitting given a represent
ative sample of data. Cross-validation (CV) (33) is a commonly used 
hyperparameter fitting method. LOO-CV is the most computationally 
expensive variant of CV and therefore often prohibitive in large 
optimization problems, but it provides the best model fit. However, 
we need only 250 evaluations of our cost function, so we can use 
LOO-CV in this problem.

BO uses acquisition function, 𝒜, for exploring the surrogate 
model to maximize reward by balancing exploration and exploita-
tion. The input point where this “reward” is optimized is the next 
test point or black-box function call for BO. For mixed variables, 
optimizing 𝒜 is problematic if the surrogate surface is not smooth. 
GAs, however, can be constrained to work with mixed variable spaces, 
particularly with qualitative variables. These variables can be dealt 
with by using probabilistic mutation rates. The mutated genes are 
only allowed mutation within the prescribed categories. The same 
approach for GAs for mixed variables is used in most openly avail-
able evolutionary algorithm libraries. This allows us to use our GA 
to optimize 𝒜((x), (x)) with x constrained to discrete qualitative 
space. Note that this framework, constrained GA for optimizing 𝒜, 
coupled with a modified distance metric can now deal with mixed 
variable spaces. This is the basis of our EMCS framework.

Any acquisition function can be used within this framework for 
BO. However, most common acquisition functions such as EI, PI, 
and UCB (32) or Hedge techniques (52) do not work well with or-
dinal and particularly categorical variables. We propose a new ac-
quisition function, SMC, which, for minimization of an objective, is 
defined as

	​ SMC(x ) ≡  (x ) +  r(x)​	 (12)

where r is a random uniformly distributed number between [0, −2] 
and (x) and (x) are the mean and SD returned by the GP at x, 
respectively. This is equivalent to taking Monte Carlo samples from 
left half of the distribution. For qualitative variable problems, this 
acquisition function outperforms other acquistion functions.

The use of a constrained GA for optimizing 𝒜, coupled with 
SMC acquisition function in our EMCS framework, provides a novel 
strategy to handle mixed variables. Using SMC or adding it to the 
portfolio of hedge strategies (52) can significantly improve algorithm 
performance for mixed variable problems. Existing BO frameworks 
for continuous variables can thus easily be modified, to incorporate 

EMCS framework, to increase capability for mixed variable problems 
without having to compromise efficiency.

The next input xn+1 to be sampled and evaluated by the cost 
function (FEA) is the input that minimizes 𝒜(x). If x were continuous, 
then 𝒜(x) could be minimized using standard schemes, such as gra-
dient methods. However, when x is discrete or (as in our case) dis-
crete and qualitative, these schemes cannot be used. Therefore, we 
minimize 𝒜 with a GA despite our earlier criticisms of GA. The 
reason that we can use a GA efficiently to minimize 𝒜 is that the 
evaluation of 𝒜, unlike the evaluation of Pc with an FEA, is inex-
pensive, and we can easily afford to perform thousands of evalua-
tions of the GP to find the x that minimizes 𝒜.

Once the next input xn+1 has been determined by 𝒜, the Pc of 
that lattice is computed and the GP is updated. The whole sequential 
procedure is then reapplied to find the next input xn+2. This process 
is repeated until the black-box function is globally optimized or 
maximum allowed budget is reached.

Our BO algorithm was benchmarked against other algorithm, 
which are commonly used to optimize expensive qualitative variable 
problems and shown to outperform them all (Fig. 2A). We also tested 
our algorithm on different test functions, and our algorithm found 
the global optimum of each of the test functions with only 250 func-
tion calls per test, including the 50 initial random inputs. The results 
are demonstrated in Fig. 8.

Note that our algorithm successfully found the global minimum 
of each test function with only 250 or fewer evaluations of the test 
function. The test functions used for benchmarking are detailed in 
the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk2218
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