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ABSTRACT OF THE DISSERTATION

A Computational Approach to Exploring the Role of Chromatin Modifiers in Development and

Disease

by

Leroy Martin Bondhus

Doctor of Philosophy in Human Genetics

University of California, Los Angeles, 2024

Professor Valerie A. Arboleda, Chair

De novo mutations in chromatin modifier genes can lead to a variety of complex

developmental syndromes that can have severe consequences for affected patients and their

families. In this dissertation we will develop a computational framework for investigating the

etiology of this diverse class of disorders, with the underlying motivation being that a deeper and

more thorough understanding of the mechanisms underlying these disorders is essential to

supporting the development of therapeutics that can improve the quality of life for those

affected. In Chapter 1 we will provide background information essential for understanding the

work developed in this dissertation. We will begin this chapter with a rather broad overview of

the basic biology that grounds our direction of investigation into chromatin modifier syndromes
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and provide some definitions for key concepts. In Chapter 2 we will then cover in some detail

the methods in molecular biology that form the state of the art employed for studying chromatin

modifier syndromes. In particular we will look at the various functional genomics assays that are

used to measure the transcriptomic and epigenomic effects caused by mutations in chromatin

modifier genes. Here we will also give a survey of existing computational methods for the

analysis of data generated by these molecular biology assays. In this survey we will highlight

several critical gaps that exist in current methods of analysis and note how these hinder

investigations into the etiology of chromatin modifier syndromes. This will lead us into the

subsequent chapters of the dissertation where we develop methods that address these gaps.

In Chapter 3, we will look at the gap that exists in our ability to use existing methods to

identify the scale of changes over the genome and develop a method for the analysis of

differential DNA methylation that addresses this problem. In Chapter 4 we will look at the

limitations of current methods for integrating analysis with the wealth of existing knowledge on

the structure of and relationships between biological entities. This limitation we address in our

development of a method to weight measures of gene expression specificity based on the

similarity structure of the biological entities that compose the underlying sample set. The novel

methods that we develop in Chapter 3 and Chapter 4 provide a framework for building a more

systems level understanding of the molecular pathology of chromatin modifier syndromes that

we believe will be essential in the pursuit of effective treatments and therapies for these diverse

and complex disorders. To conclude in Chapter 5, we will summarize our main results and take

a brief prospective look at the direction of the field of research into chromatin modifier

syndromes making note of promising directions for future research to expand on the work

developed here.
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CHAPTER 1

INTRODUCTION

Foundations to the study of chromatin modifier syndromes

1



Context in biology

The genome contains all of the information necessary to guide the development and

continued existence of the organism, provided that the environmental conditions to life are met.

For complex multicellular organisms such as humans, this implies that the genome must be

capable of supporting the differentiation and maintenance of the numerous distinct cell types

that compose the organism through each stage of life along with their varied functions and

behaviors. Critical to supporting this diversity of cells, functions, and behaviors is the ability of

information encoded in the genome to be differentially deployed depending on the context in

which it exists.

We can distinguish between two types of context in which genomic information exists.

One is the context provided by the genomic sequence itself. For instance, each gene exists

somewhere within the sequence of the genome and is regulated with some degree of

independence from all of the other genes encoded in the genome. Generalizing this, we can

consider information encoded in the genome to be subdivided into distinct regions that can be

differentially regulated. We will later explore some of the complexity that arises in trying to

identify genomic regions that form the individual units of regulation and make note of how this

complexity affects attempts to identify those genomic regions affected in disease. The second

type of context in which genomic information exists is the spatial-temporal context in which the

genome and the cell are found. Whereas the sequence of the genome is effectively constant

over the course of the organism's life, the spatial-temporal context in which the cell and genome

exist is dynamic. Temperature and nutrient availability varies, cells migrate and their neighbors

change, pathogen exposure and injury occur. We will be particularly interested in the subdomain

of spatio-temporal context that covers organismal development and anatomic structure which

are in large part products of the genome itself.
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These two basic types of context, the sequential and the spatial-temporal, are

fundamentally linked. The spatial-temporal context of the cell and genome determines which

signals will be present for the cell to respond to while the context encoded in the sequence of

the genome broadly determines which regions of the genome will respond to those signals. In

development, some information that comes from the spatial-temporal domain must be

persistently influential over the genome. That is, cells must retain what is frequently described

as a memory of past signals to which they have been exposed. For example, a cell that has

differentiated into a neuron as a result of cell extrinsic developmental signals must maintain

those gene programs necessary for neuronal function and not turn on those related to other cell

identities. To achieve this memory, the secondary physical and chemical structure of chromatin,

chromatin being the complex of genomic DNA and histone proteins, must be modified and these

modifications maintained.

Chromatin modifiers

The broad class of genes that have a function in modifying chromatin structure, either by

chemical modification of DNA or histones, physically repositioning histones, or by introducing

higher order structure to chromatin such as loops, are called chromatin modifiers. The proteins

encoded by these genes tend to function in multiprotein complexes which contain proteins with

domains that have a variety of functional roles such as enzymatic activity to catalyze specific

chromatin modifications, DNA or histone binding to target the complex to more or less specific

regions of the genome, various adapters that enable binding of the different subunits of the

complex, and domains to enable the integration of external signals for modulation of activity

(Figure 1-1).

Through their joint ability to target specific regions of the genome 1,2, modify chromatin 3,

and respond to and integrate signals containing spatial-temporal information 4, chromatin

3
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modifiers serve as an interface between the information encoded in the genome and the

information in the environment. We note here that we are using the term "environment" in a

broad sense to indicate anything outside the cell itself as opposed to the narrow sense of

anything outside the organism. In this sense, concepts such as "the heart environment" can be

understood to mean and include the different anatomic domains of the heart, such as atria and

ventricles, the pressures of fluids within the heart chambers and their rhythmic variations, the

paracrine and juxtacrine signals produced by the cells of the heart, and so on. The normal

functioning of chromatin modifiers is particularly critical for development, where signals of body

position and the neighboring cell environment must be passed to the genome to ensure that the

cell takes on and maintains its correct identity and contributes properly to the morphogenesis of

the organism 3,5–8. The disruptions that occur when these chromatin modifier genes are mutated,

which we explore next, exemplify their importance in development.

Germline chromatin modifiers syndromes

Germline mutations in chromatin modifier genes can lead to a wide range of distinct

developmental syndromes that are often characterized by effects in multiple body systems

(Figure 1-2). Between these disorders there is considerable variability in the severity of their

phenotypes. Some contribute to the early death of affected individuals, such as with mutations

in ASXL1, a subunit of polycomb and trithorax chromatin modifying complexes, that lead to

Bohring-Opitz syndrome in which patients usually do not survive past childhood 9,10. Others are

fairly benign, such as specific mutations in the chromatin remodeler SMARCAD1 which can

cause individuals to develop without fingerprints in the absence of any other more severe

phenotypes 11,12. Additionally, even within a particular disorder there is often a wide range in the

penetrance and expressivity of phenotypes. For instance, many chromatin modifier syndromes

are associated with congenital heart disease 13, but within most of these disorders only a subset

4
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of affected individuals will have developed with a congenital heart defect, i.e. variable

penetrance of the phenotype. Of those who develop with a heart defect there will often be

variability in the severity of the defect that occurs, i.e. variable expressivity of the phenotype

14–17. A unifying feature of chromatin modifier disorders is that they are expected to manifest

primarily from dysregulation of the chromatin modifier's function in regulating chromatin

structure. We note, however, that some of these genes have functions distinct from their role as

chromatin modifiers such as non-histone acetylation by canonical histone acetyltransferases

18,19, and in cases it could be that disruption of these functions are the major contributor to

disease phenotype.

While a great deal of progress has occurred in the past few decades in identifying the

primary genetic defects that cause chromatin modifier disorders and diagnosing affected

individuals, there are still many unknowns with respect to the etiology of these diseases.

Consider, as a contrast, cystic fibrosis, a well studied disorder with a fairly complete etiology that

has been worked out, as reviewed by 20. Cystic fibrosis which was first identified as a distinct

disease in 1938 with pathology of the pancreas resulting from mucus clogging the pancreatic

ducts and pathology of the lungs from a similar effect of mucus 21. In 1983, the cause of the

mucus effects observed was identified as an issue with chloride ion transport 22,23, and in 1989 a

mutation in the CFTR gene was identified as the most prevalent primary cause of cystic fibrosis

20,24. Having worked out a great deal of detail regarding the mechanism of disease has enabled

the focus of research to shift towards identifying therapies and treatments, for example in the

development of drugs that can partially rescue the function of the defective CFTR protein 25.

This stands in contrast to most chromatin modifier syndromes for which there are many

fundamental questions that remain unanswered, such as those questions around when and

where the secondary defects that lead to the resulting set of phenotypes occur in development,

5
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what regions of the genome are affected, and what intermediate processes are disrupted that

then lead to or exacerbate disease.

Structural complexity of chromatin modifiers

One of the major challenges in answering even basic questions of the mechanisms of

disease for chromatin modifier syndromes comes from various sources of complexity related to

their normal function. For one, chromatin modifiers exist in multiprotein complexes that often

have variable binding partners. That is, one chromatin modifier might exist in several distinct

complexes and have its function modulated by changing the exact partners to which it is bound.

For instance, KAT6A is known to function in complexes that includes one of the three distinct

homologs of the BRPF protein (BRPF1, BRPF2, or BRPF3), however little has been reported

about the divergent functions of these three distinct complexes 26,27. Additionally, KAT6A's close

homolog, KAT6B, can complex with the same set of factors as KAT6A, namely BRPF1/2/3,

ING5, and MEAF6 28. Thus determining for instance the specific effects of loss of the

KAT6A-BRPF1 species of complex compared to the KAT6A-BRPF2/3 species would be

technically challenging because simply knocking out BRPF1 will remove not only the effects of

the KAT6A-BRPF1 complex species but also those of the KAT6B-BRPF1 complex species.

Compared to other proteins, chromatin modifiers tend to have a substantially inflated number of

variable binding partners (Figure 1-3), which may add substantially to their individual functional

diversity but also makes efforts to understand the breadth of their function challenging.

The complexity of the functional form of chromatin modifiers that comes with the

variability in their binding partners is compounded when one considers the potential for splice

variants and alternative transcripts in these genes. Chromatin modifier proteins tend to be fairly

large and encoded by correspondingly large transcripts and genes. When controlling for overall

transcript length we find that chromatin modifiers tend to have a disproportionate number of
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exons making up their gene bodies (Figure 1-4). Alternative splicing is one means by which an

individual gene can give rise to distinct transcripts and protein products with potentially distinct

functions, so the increased number of exons in chromatin modifiers opens up transcript diversity

as a potential means by which a relatively small number of chromatin modifiers genes could

achieve additional functional diversity. The extent to which alternative splice forms of chromatin

modifiers play a role in modulating their functions remains as an open direction for investigation,

though recent studies have begun to identify isoforms of chromatin modifiers with apparently

distinct functions 29,30. Studies of alternative splicing in a number of other genes have shown

alternative splicing as a prevalent mechanism for generating functional protein diversity,

reviewed in 31. Consequently, little is currently known about whether differential splicing for

chromatin modifiers is a common mechanism for modulating the partners they will complex with

or if, alternatively, alternative splice products tend to function with a common set of binding

partners and modulate the function of the multiprotein complexes in other ways.

So far we have discussed the complexity of chromatin modifiers as protein products and

in multiprotein complexes, leaving out discussion of post-translational modifications of the

proteins in these complexes which may add another layer of functional complexity 32. Taken

together we can begin to appreciate the scale of the challenge that confront researchers in their

attempts to identify all the functional varieties of chromatin modifiers and chromatin modifier

complexes. We next turn our discussion from complexity in the form of chromatin modifiers to

the complexity in the effects they have on chromatin.

Functional complexity of chromatin modifiers

As mentioned in the previous sections, chromatin modifiers are responsible for a variety

of chemical and physical modifications to chromatin. Canonically, histone acetyltransferases

(HATs) add acetyl groups to lysine residues of histones, histone deacetylases (HDACs) remove
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these groups from lysine residues of histones, histone methyltransferases (HMTs) add methyl

groups, histones demethylases (HDMs) remove them. Histones have a number of different

amino acid residues that can be modified and each chromatin modifier that acts as a chemical

modifier of histones can affect some subset of these residues. While many relationships

between chromatin modifiers and their modifications have been worked out 33–35, a large number

of histone post-translational modifications (PTMs) have been observed that remain unannotated

in terms of both function and the specific modifiers that catalyze their addition or removal from

histones 33.

Canonical HATs, HDAC, HMTS, and HDMs have also been reported to produce

non-canonical modifications. For example, HAT1, a canonical lysine acetyl-transferase has been

observed to also have lysine isobutyryl-transferase activity for histone H4 36. The precise

modifications to histones that chromatin modifiers make are important for the regulation of the

genomic information that these histones overlay. Transcription factors and other regulatory

proteins may require specific histone marks in order to bind to a region of the genome and

activate or repress transcription, or conversely specific histone marks may be required to block

such binding and activity 37. While we use the example here specifically of histone modifiers,

these observations are similarly valid for other chromatin modifiers and their associated

modifications, such as DNA methylation which can also affect the binding characteristics for a

variety of effector proteins 38.

The specific modifications to chromatin that a chromatin modifier makes is one facet of

its function, another is in the determination of the regions of the genome over which the

chromatin modifier will carry out these effects. The ability of chromatin modifiers to target

specific regions of the genome is critical for their function in turning on or off particular gene

expression programs or in altering the capacity of a genomic region to respond to other

regulatory signals. Such regional specificity is achieved by the integration of information from a
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variety of sources. The sequence of DNA and recruitment by specific transcription factors 39,40,

the histones' current set of chemical modifications 3, and higher order features of chromatin,

such as location within the nucleus 41, together influence whether and to what degree a

particular chromatin modifier complex may bind and carry out its activity over a particular

genomic region.

The complementary functionality that chromatin modifiers possess of recognizing and

binding to genomic regions that are in a specific chromatin state and then modifying the

chromatin state of the same underlying regions, potentially in response to some additional

signals, places them at a key position in choreographing the gene expression programs critical

to cellular and organismal development. We explore some of the developmental functions

chromatin modifiers have been associated with next.

Chromatin modifiers in development

Complementary to molecular biological studies into the function of chromatin modifiers

are investigations into the role they play in development. While a complete understanding of the

molecular biology of chromatin modifiers must account for the complexities described in the

previous section to fully explain the molecular mechanisms of their activity, genetic experiments

in model organisms have shed light on some of the diversity of developmental processes in

which chromatin modifiers play a critical role.

Forward genetic screens in model organisms were foundational in identifying some of

the key processes in which chromatin modifiers play a critical role. Some of the most dramatic

include the early mutagenesis assays in drosophila that identified for instance the polycomb

repressive complex (PRC) 42,43. Reverse genetic approaches introducing mutations to known

chromatin modifiers in mouse and zebrafish models have identified roles in diverse

developmental processes such as hematopoiesis 44 and segmentation 45,46.
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In addition to experimental genetic approaches, genetic studies aimed at diagnosing

disorders provide another avenue for understanding the developmental impact of mutations in

chromatin modifiers. Congenital heart defects 47, autism 48, and a variety of developmental

syndromes 10,15,49,50.

Conclusion

In this chapter, we have attempted to provide the reader with a brief foundation to the

biology of chromatin modifiers and frame some major open questions around the form and

function of this diverse class of genes. Given the importance of chromatin modifiers as an

interface between the information in the genome and that in the environment, especially as it

relates to organismal development and various diseases of development, it is unsurprising that

chromatin modifier biology has rapidly grown as an area of active inquiry. In the next chapter, we

will survey some of the existing molecular assays and methods of analysis that are used to

investigate chromatin modifier biology. There we will outline some of the major gaps that exist,

particularly in modes of analysis for molecular biology data, that affect our ability to understand

chromatin modifier biology. This will then take us to the remaining chapters of this dissertation

where we will develop novel methods of analysis that aim to address some of these major gaps.
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Figures and Tables

Figure 1-1: Toy figure representing some general functions of chromatin modifier

complexes (blue) in reading signals (green) and writing/erasing chromatin features

(yellow). Symbols of the figure are described in the legend. Note that chromatin modifier

complexes do not individually catalyze all shown effects. The chromatin modifier complex shown

above is an aggregate representation of potential functions for chromatin modifiers and not a

model of an individual complex.
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Figure 1-2. Chromatin modifier associated syndromes tend to affect a greater number of

body systems than other mendelian diseases. Phenotype information was obtained from the

online mendelian inheritance in man (OMIM) 51,52 and the human phenotype ontology (HPO)53,54.

Chromatin modifier annotations were from 55 excluding histone and protamine genes as done in

56 A) proportion of genes associated with some mendelian disease that have a phenotype

affecting the major body systems given as rows. Number in each box is number of gene's

associated with phenotypes in each body system. B) boxplot of number of major body systems

affected by genes' associated syndromes. Mean is plotted as diamond.
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Figure 1-3. Chromatin modifiers have an inflated number of variable binding partners.

Binding partner annotations were obtained from the EMBL-EBI Complex Portal 57,58. Chromatin

modifier annotations were from 55 excluding histone and protamine genes as done in 56. A) a toy

figure demonstrating how variable partners are counted. B) empirical cumulative density

function (eCDF) comparing number of variable complex partners for chromatin modifiers to the

same for all other genes that have an associated protein complex.
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Figure 1-4. Chromatin modifiers are encoded by longer genes and transcripts with an

inflated number of exons after accounting for transcript length. Gene structure annotations

from Ensembl 59,60. Chromatin modifier annotations were from 55 excluding histone and

protamine genes as done in 56. A) distribution of gene lengths for chromatin modifiers and all

other genes B) distribution of transcript lengths for chromatin modifiers and all other genes C)

number of exons vs transcript length where each point is the transcript length and exon count

for the canonical gene transcript. Regression lines relating exon count to transcript length are

shown.
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CHAPTER 2

Assays in molecular biology and modes of analysis for the study of chromatin modifier

syndromes
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Introduction

In this chapter we will elaborate on some of the various methods that are used to study

chromatin modifiers, their functions, and the downstream effects that result when their normal

activity is disrupted in disease. This chapter will be divided into two main parts. The first part will

cover methods in molecular biology that are used to measure chromatin state and other

molecular features important to chromatin modifier biology, the second will cover a range of

computational methods used in the analysis of the data generated by these molecular biology

methods. In the second part of this chapter we will also introduce some of the key gaps that

exist in current methods of analysis and highlight those that we will address in the later chapters

of this dissertation.

The analytic methods we develop in the later chapters of this dissertation primarily aim to

improve upon methods for modeling features that map directly to genomic sequence and

describing the anatomic and developmental context over which they occur. This chapter is

primarily intended to give context for those later chapters, and so the scope of the material

presented here will be limited to those assays and methods of analysis most relevant to these

latter discussions. We focus our discussion on methods related to the study of chromatin

modifier effects in cellular systems and model organisms, particularly those related to the

measurement of features that map directly back to genomic sequence.

Survey of molecular biology assays used in the study of chromatin modifier function

As discussed in the first chapter of this dissertation, chromatin modifiers can act both as

readers of chromatin, for instance requiring specific histone modifications to facilitate binding a

region of chromatin, and as writers in the general sense, adding or removing chemical

modifications to histones or DNA or remodeling chromatin or contributing to the formation of

higher order chromatin structure such as loops. A variety of assays have been developed to
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explore various features of chromatin state that collectively form the epigenetic landscape of the

genome. In particular over the past few decades advances in DNA sequencing technology have

made possible assays that can measure the distribution of these features in a genome-wide

manner. In the following sections, we will direct much of our attention to these modern assays,

beginning with a brief discussion of modern DNA sequencing technology that serves as their

foundation.

DNA sequencing

The rapid advancement of DNA sequencing technology over the past few decades have

revolutionized biology 1. In the space of chromatin modifier disorders, whole exome sequencing,

along with the collection of population level genomic data that serve as a reference for

distinguishing between genetic variants that are likely benign and those that are likely

pathogenic 2, have greatly expanded the collective diagnostic capacity of researchers and

clinicians 3,4. Indeed, many chromatin modifier disorders have only been described following the

wide adoption of whole exome sequencing technology as a tool for seeking a genetic diagnosis

in syndromic individuals without a family history or environmental risk factors for disease. Prior

to whole exome sequencing, genetic mapping for many of these disorders was effectively

impossible. This is because these disorders tend to be relatively severe with a dominant mode

of inheritance and so the vast majority cases of disease are the result of de novo germline

mutations. Prior to the era of whole exome sequencing, the primary means by which genes

were associated with their respective disorders was through family based genetic mapping

studies, which by their very nature cannot be used to map de novo mutations 5.

Beyond enabling the identification and diagnosis of chromatin modifier disorders,

modern DNA sequencing technology also forms the basis for a wide range of molecular biology
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assays that are used to measure chromatin state in a genome wide manner. We explore the

variety of these derivative assays in the next sections.

Protein-DNA interactions

Chromatin modifiers, along with a variety of other proteins such as transcription factors,

must localize to specific regions of the genome in order to carry out their functions. Given that a

protein is expected to carry out some function by binding to specific regions of the genome, a

natural question to ask is where in the genome is that protein binding. Two widely used methods

for answering this question are Chromatin ImmunoPrecipitation followed by DNA sequencing,

ChIP-seq 6,7, and the related more recently developed Cleavage Under Targets and Releasing

Using Nuclease, CUT&RUN assay 8,9, both of which we briefly outline below.

ChIP-seq and CUT&RUN share a substantial part of their overall workflow, diverging

primarily in the means by which the DNA bound to the protein of interest is separated from

background DNA. Both methods rely on having some antibody to specifically target the protein

of interest and share a first step of covalently crosslinking DNA and proteins with formaldehyde

so that associations are preserved in the next steps. The DNA with its covalently associated

proteins is then sheared by sonication, typically into fragments of a few hundred basepairs. In

ChIP-seq, the antibody targeting the protein of interest is then added in order to cause the

fragments of DNA bound to the protein of interest to aggregate and precipitate out of solution

when centrifuged. In CUT&RUN, the antibody is added to permeabilized cells along with a DNA

cleaving enzyme that binds to the antibody. When the DNA cleaving enzyme is activated it

results in specific cleavage at the sites around where the protein of interest is crosslinked to the

DNA. The antibody, cleaving enzyme, and the bound protein of interest with the associated DNA

then diffuses out of the cell and is collected in the supernatant fraction following centrifugation.

For both ChIP-seq and CUT&RUN, the crosslinks between the DNA and the associated protein
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of interest are then reversed, the DNA is purified and can then be sequenced to identify the

regions of DNA that were bound by the protein of interest 10.

Both ChIP-seq and CUT&RUN enable identification of the regions where a protein is

bound genome-wide. The resulting data can then be analyzed by a variety of computational

methods to characterize the bound DNA and the genomic regions it came from. This general

strategy has been useful for identifying the specific DNA sequences, or motifs, that certain

proteins such as transcription factors bind in the genome. However, while there has been some

success applying these methods to chromatin modifiers 11,12, in many cases these methods have

not been effective at identifying the regions where chromatin modifiers affect chromatin state.

Part of this may be due to the interactions between chromatin modifiers and the regions of

genomic DNA they affect being more transient or more indirect physically13 as compared to

other proteins such as transcription factors which tend to directly bind their respective target

regions with high affinity 14–18. The modifications that chromatin modifiers impose on chromatin,

in line with their role as a persistent layer of information over the genome, are often more

accessible to measurement.

Histone post-translational modifications

As mentioned in the first chapter, a subset of chromatin modifiers are defined by their

enzymatic activity in adding or removing post-translational modifications (PTMs) to histones.

Measuring the chemical modifications present on histones is therefore an obvious potential

readout for measuring effects that occur when the function of these chromatin modifiers is

disrupted, whether in an experimental context or in observing changes in samples from patients

affected by chromatin modifier disorders.

While the chemical structure of DNA is mostly invariant, with a few exceptions such as

DNA methylation, histones are a common substrate for PTMs. The post-translational
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modification of histones is a critical mechanism by which histone function is modulated, for

instance in specifying whether the histone will function to facilitate or restrict transcription of an

underlying gene.

Histones are rich in positively charged amino acid residues such as lysine and arginine

which enables their binding to the negatively charged DNA. Modifications to histones can act to

decrease their affinity for DNA resulting typically in a more open chromatin state; acetylation of

histone lysines achieves this by neutralizing the negative charge on lysine with an acetyl group.

Alternatively modifications can preserve or enhance histone binding to DNA, for example by

protecting the positive change on lysine residues through the addition of methyl groups which

protects the lysine from acetylation. In addition to the changes PTMs can have on the charge

state of histones, modifications to histones can also introduce or remove binding sites for other

proteins such as transcription factors or chromatin modifiers which may have counterintuitive

effects, such as addition of an acetyl group introducing a repressor binding site which can then

facilitate a more condensed state in opposition to the typical role of acetylation of histones in

opening chromatin 19.

There are two complementary types of approach for querying the histone code of the

epigenome. The first is to use methods such as ChIP-seq or CUT&RUN, discussed in the

previous section, to investigate where histones with a specific PTM are binding genome-wide.

The advantage of these methods is that they enable genome-wide assessment of where a

histone PTM occurs. Their main drawback is that they require antibodies specific to each PTMs

of interest and as a result they cannot be used to identify novel PTMs 8,10.

The second type of approach for investigating the histone code are mass-spectrometry

based methods. In contrast to the sequencing based methods of ChIP-seq and CUT&RUN,

mass-spectrometry does not require specific antibodies and can be used to query effectively all

histone PTMs present in a sample simultaneously, including those that might be novel. It is
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however worth noting that rare PTMs may be difficult to detect without deep, and therefore

expensive, sampling by mass-spectrometry. The drawback compared to ChIP-seq and

CUT&RUN is that mass-spectrometry based methods do not inherently enable mapping histone

PTMs to where they map genome-wide 20.

The sequencing based assays such as ChIP-seq and CUT&RUN along with the

complementary mass-spectrometry based ones together can be used to answer a wide range of

questions around which histone PTMs a chromatin modifier might add or remove, and where

across the genome this activity might be occurring.

DNA methylation

Another feature of the epigenome that can be affected by chromatin modifiers is DNA

methylation, typically in the context of cytosine guanine (CpG) dinucleotides 21, though non-CpG

methylation of cytosine and other nucleotide modifications have also been reported 22–25. While

there are only three genes in humans with DNA methyltransferase activity (DNMT1, DNMT3A,

DNMT3B)26, and three primary drivers of active DNA demethylase activity (TET1, TET2, TET3)

which do not directly catalyze DNA demethylation, but rather oxidize the methylated cytosine

which then induced DNA base excision repair 27, DNA methylation is coupled to a variety of

other chromatin modifier activities and chromatin features. For example, the polycomb

repressive complex which includes histone ubiquitin transferase activity that establishes and

maintains chromatin in a specific repressive state that has been found to prevent DNA

methylation 28–30. DNA methylation is also unique amongst chromatin features in that it can

retain signatures of prior cell states, which in theory may be useful for investigating changes that

occurred in difficult to access precursor cell lineages in individuals affected by chromatin

modifier diseases 31. In the space of chromatin modifier syndromes, DNA methylation has also

been studied as a diagnostic tool. Many chromatin modifier disorders have been found to carry
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specific DNA methylation signatures that can be used to diagnose otherwise ambiguous cases

of disease, such as when attempting to interpret whether a particular missense variant in a gene

is pathogenic and disease causing or benign 32.

There are two primary technologies used for assessing DNA methylation genome wide,

those that are based on arrays of probes and those that are based on sequencing. For both

arrays and sequencing, the specific conversion of unmethylated cytosine residues to uracil

using bisulfite enables differentiation between methylated cytosine and unmethylated cytosine.

The difference in these technologies is that array based methods use arrays of probes to

measure the relative abundance of methylated and unmethylated cytosines at each particular

site represented by a probe on the array, whereas the sequencing based methods sequence the

bisulfite converted DNA directly 33.

DNA methylation arrays have been designed that can sample many thousands of CpG

sites that can be selected to optimize some metric of informativeness. For instance, DNA

methylation has been found to be a robust measure of aging and so arrays have been

specifically designed to sample age correlated CpG sites as an economical means of measuring

this epigenetic age feature across many biological samples 34. Methylation arrays have the

primary advantage of being substantially cheaper than sequencing methods of measuring

methylation.

Direct DNA sequencing methods, typically referred to as whole genome bisulfite

sequencing, WGBS, enable an agnostic and truly genome-wide survey of methylation at all CpG

sites. The drawback is that to get estimates of CpG methylation proportion at individual sites

with a similar accuracy as DNA arrays requires very deep sequencing and is therefore much

more expensive per CpG queried than arrays 35.
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Chromatin accessibility

Chromatin modifiers play an important role in shaping the physical structure of

chromatin, for instance in opening regions of chromatin that are to be transcribed so that they

are accessible to transcription factors and in closing regions of chromatin that must be silenced.

Over the past few decades several technologies have emerged and subsequently replaced one

another for assaying chromatin accessibility in a genome-wide manner 36. MNase-seq was

developed in 2007 37 and coexisted for a while with DNAse-seq after its own development in

2008 38, both have since largely been replaced by ATAC-seq, developed in 2013 39,40, as a result

of ATAC-seq's far lower input requirements. Chromatin accessibility information is useful for

interpretation of a variety of functional genomic features. Regions where chromatin is accessible

tend to be those where transcriptional machinery can bind and facilitate gene expression.

Non-coding regions such as enhancers also need to have a degree of accessibility in order to

function to promote transcription. Measuring accessibility of chromatin can also be used to

assess high resolution features of the epigenetic landscape. For instance, identifying specific

transcription factor binding sites that are occupied can be achieved by high resolution

measurement of chromatin accessibility looking for gaps in peaks of accessible chromatin

representing the "footprint" of the transcription factor 40.

Transcriptomics

The set of RNAs that are transcribed from the genome collectively form the

transcriptome of the cell. Regulating the flow of information from the genome to the

transcriptome is in many ways the primary functional readout of chromatin state. Measuring the

transcriptome is therefore foundational to many studies of the ways that modifications to

chromatin affect downstream biological processes.

27

https://paperpile.com/c/0Pp7KT/zFlgg
https://paperpile.com/c/0Pp7KT/l7w3k
https://paperpile.com/c/0Pp7KT/Hbzuj
https://paperpile.com/c/0Pp7KT/LXmHe+pIyrJ
https://paperpile.com/c/0Pp7KT/pIyrJ


Most methods of RNA sequencing include a step where RNA is reverse transcribed to

DNA, and so much of the sequencing technology is shared between RNA and DNA sequencing.

Different methods of sequencing the RNA content of a biological sample can focus on different

questions. Whole RNA-seq with ribosome depletion and polyA RNA-seq are fairly standard

methodologies for sampling all the RNAs or all polyadenylated RNAs in a sample 41. Long-read

RNA-sequencing is used when questions of isoform usage are of primary interest 42,43. Cap

analysis of gene expression sequencing, CAGE-seq, can be used to identify alternative

transcription start sites with greater depth of sequencing than is typically cost effective for

long-read RNA-sequencing 44. GRO-Seq can identify genes actively being transcribed 45. For

comprehensive reviews of RNA-seq technologies see 46.

Single-cell data

Following the development of high-throughput DNA sequencing technology, one of the

main advances in biology of the past decade has been in the development of microfluidic

devices that enable high-throughput single-cell and single nuclei sequencing. Methods have

been developed to couple many of the assays discussed above, e.g. ChIP-seq, ATAC-seq,

RNA-seq, with single-cell technologies to enable observation of chromatin and transcriptomic

state within individual cells. One of the main common features of these single-cell coupled

assays is the use of cellular barcodes in the form of nucleotides that are ligated to the target

molecules that are being assayed, for instance the cDNA generated from RNAs in scRNA-seq,

or the genomic DNA fragments generated by the transposase in ATAC-seq. These barcodes

enable pooling of fragments before sequencing so that the sequencing part of an experiment

can use the same technologies as any other sequencing experiment 47–49.
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Survey of current computational methods of analysis

Having surveyed a variety of the methods available for measuring features related to

chromatin state (ATAC-seq, ChIP-seq, etc) and the transcriptional readout of chromatin state

(RNA-seq), we next discuss some of the general modes of analysis that are available for

interpreting the data generated by these assays.

Peak calling, regional enrichment testing, and the open challenge in identifying features

varying dramatically in size

The result after sequencing and quality control for many of the assays discussed above

is a file of all the reads or fragments that can then be mapped to the genome. For assays such

as ATAC-seq and ChIP-seq that look at the distribution of some feature across the genome, the

next step is to determine what features the data represent. This is the general role of peak

calling methods, condensing a large file of reads mapped to the genome into a reduced set of

features representing, for ATAC-seq 50, the regions of accessible chromatin, and for ChIP-seq

10,51 the regions where a protein of interest or a specific PTM was bound to the genome.

One of the technical aspects of many of these peak callers is their implementation of

some sort of window size or bandwidth parameter that determines the size of the features or

peaks they return 50–52. Typically such peak calling algorithms are used by default to identify

peaks on the order of tens of basepairs up to a few hundred basepairs. Many studies of

chromatin features have observed that regulatory structures can effectively vary in size from

individual basepairs 53–55 to essentially genome spanning effects 56,57, with intermediate features

existing at nearly all scales. For instance polycomb domains may be tens of thousands or

hundreds of thousands of basepairs in length 58, and topologically associated domains may be

millions of basepairs in length 59–61. Algorithms for peak calling can often be applied to identify

these features by simply increasing the bandwidth parameter to more closely match the
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expected size of the features of interest, however there is a lack of robust methods that can

identify features without a priori knowledge of the feature size of interest. Additionally, when

used in this manner, there are not well defined decision procedures for resolving for instance,

whether a cluster of features called using a bandwidth of ten kilobases is better than a single

feature returned when using a bandwidth of one hundred kilobases.

In chapter 3 we will develop a novel method to address this issue for a similar problem

of identifying regions of the genome that are enriched in differentially methylated CpGs for DNA

methylation data.

Transcript quantification, defining the transcriptome, and the open challenge of

describing features within the context of a broader system

One of the challenges with measuring functional genomic features is in setting a

baseline for measurement. For case-control type studies where the contrast of interest is binary

and well defined, the task of identifying differential features is somewhat simplified, for instance

in identifying all genes upregulated in disease in a given tissue. However, for some questions,

such as identifying all the genomic features that are specific to some context as opposed to all

others, e.g. identifying genes specific to cardiac tissue or with broader specificity to all muscle

tissues, the task is complicated by a number of factors. For one, measurement of transcript

abundance is usually done relativistically, measuring transcript abundance against the

background of all transcripts in the sample. This is easily seen in commonly used units of

measurement for RNA abundance such as TPM or Transcripts (of the gene) Per Million

(transcripts in the sample) 62. This can complicate comparisons between tissues where for

instance a few transcript species dominate the population of transcripts, such as in whole blood

where most transcripts present are from just a few hemoglobin encoding genes, or pancreas

where a similarly large part of the population of transcripts are just a few secreted digestive
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enzymes. For such cases median normalization can make comparisons more meaningful 63.

One of the outstanding issues however, is that the composition of the sample set can drastically

change estimates of gene expression characteristics, such as the specificity of gene expression

64.

In chapter 4 we will develop a novel method for reweighting measures of gene

specificity taking into account the similarity structure of the diverse tissue sample set, which can

in principle be applied to a variety of statistics measured over datasets covering biological

systems.

Conclusion

Modern sequencing technology and complementary molecular biology methods have

opened up a large space in which we can begin to answer some of the most fundamental

questions around chromatin modifier function. As we have highlighted in this chapter, it is now

possible to design experiments to identify the types of modifications chromatin modifiers make

to the epigenome, for instance through mass-spectroscopy based methods; map the regions of

the genomes affected when chromatin modifier function is perturbed, by ChIP-seq, CUT&RUN,

ATAC-seq, and other sequencing based technologies; and measure the transcriptomic output of

those changes with the various flavors of RNA-seq that have been developed. Coupled with

proper experimental design, these assays can generate a wealth of information. Converting that

raw information into real biological knowledge however is far from trivial.

In the latter part of this chapter we briefly outlined some of the computational methods

used in the analysis of the raw data generated by modern sequencing and molecular biology

methods. In particular we focused on the methods of peak calling, to identify regions of the

genome over which some feature exists, and methods for transcript quantification. We

highlighted two major open challenges that exist in these general analysis tasks. First is the
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inability of existing peak-caller methods to identify regions over which some feature is enriched

when these regions may be hypervariable in size. Second is the lack of descriptive statistics that

can take into account the relations that exist between biological entities which can cause issues

of reproducibility and reporting of results. In the next chapters we develop and validate novel

solutions to these problems, the implementation of which can improve our ability to investigate

and understand the form and function of chromatin modifiers in health and disease.
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CHAPTER 3

DMRscaler: A Scale-Aware Method to Identify Regions of Differential DNA Methylation

Spanning Basepair to Multi-Megabase Features
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Abstract

Pathogenic mutations in genes that control chromatin function have been implicated in

rare genetic syndromes. These chromatin modifiers exhibit extraordinary diversity in the scale of

the epigenetic changes they affect, from single basepair modifications by DNMT1 to whole

genome structural changes by PRM1/2. Patterns of DNA methylation are related to a diverse

set of epigenetic features across this full range of epigenetic scale, making DNA methylation

valuable for mapping regions of general epigenetic dysregulation. However, existing methods

are unable to accurately identify regions of differential methylation across this full range of

epigenetic scale directly from DNA methylation data.

To address this, we developed DMRscaler, a novel method that uses an iterative

windowing procedure to capture regions of differential DNA methylation (DMRs) ranging in size

from single basepairs to whole chromosomes. We benchmarked DMRscaler against several

DMR callers in simulated and natural data comparing XX and XY peripheral blood samples.

DMRscaler was the only method that accurately called DMRs ranging in size from 100 bp to 1

Mb (pearson's r = 0.94) and up to 152 Mb on the X-chromosome. We then analyzed methylation

data from rare-disease cohorts that harbor chromatin modifier gene mutations in NSD1, EZH2,

and KAT6A where DMRscaler identified novel DMRs spanning gene clusters involved in

development.

Taken together, our results show DMRscaler is uniquely able to capture the size of DMR

features across the full range of epigenetic scale and identify novel, co-regulated regions that

drive epigenetic dysregulation in human disease.

39



Background

Genes that regulate chromatin structure and function are critical to coordination of

complex developmental trajectories within an embryo. Mutations in these chromatin modifier

genes are enriched in clinical cohorts with autism 1–4, congenital heart disease 5,6 and global

developmental delay 3,5. Pathogenic mutations in chromatin modifier genes can also result in

specific syndromes that have both overlapping and distinct phenotypic features 7–10. While

clinical phenotypes often converge around a common set of chromatin modifier genes, the

underlying molecular mechanisms driving these phenotypes are not well characterized.

Chromatin modifiers work in protein complexes to bind chromatin and shape the physical

and chemical landscape of the genome, i.e. the epigenome. The regions within the genome

where a particular chromatin modifier exerts its influence are critical to defining its role in

development. The genomic region controlled by a chromatin modifier can be highly localized, as

in methylation of individual cytosine nucleotides which modulates the binding affinity for certain

transcription factors (TFs) 11–15, or it can extend across the chromatin landscape more globally,

as occurs with the PRM1/2 mediated compaction of the genome during spermatogenesis 16,17 or

Xist in condensing the X-chromosome in cells with multiple copies of the X-chromosome 18–20.

Between the local and the global are a diversity of epigenetic features that exist at intermediate

scales from tens of kilobases to many megabases. These include features such as polycomb

repressive domains (PRDs) 21–23 and topologically associated domains (TADs) 24 and

co-regulated gene clusters. These intermediate-sized features coordinate higher order

patterning events throughout the genome in development, such as PRD regulation of Hox

segmentation patterning 25, or organization of olfactory receptor gene clusters into TADs 26 with

interdependent epigenetic regulation of the member olfactory receptor genes 27,28. A

comprehensive understanding of chromatin modifiers requires understanding the scale of their

effect on the epigenetic landscape.
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While the direction of causality is still an open question for the interaction between many

epigenetic features, changes in DNA methylation (DNAme) are often associated with changes in

other epigenetic features across the range of epigenetic scale. DNAme is the covalent addition

of a methyl group to a single cytosine nucleotide usually in the context of a CpG dinucleotide 29.

While DNAme directly alters the binding affinity for a set of DNA binding proteins 11–15, it is also

associated with higher order epigenetic features. At promoters and enhancers DNAme tends to

be inversely correlated with gene activity30,31. Over the tens to hundreds of kilobases of PRDs,

DNA methylation is depleted by the antagonistic action of the polycomb repressive complex32,33,

and as a result changes in polycomb activity over PRDs are often associated with differential

methylation33. Megabase scale domains of active and inactive chromatin can be reliably

predicted from DNAme patterns34, and in colon cancer, changes to DNAme have been reported

to overlap with these megabase-sized inactive domains35.

Phenotypic variability and genetic heterogeneity can make the diagnosis of rare

syndromes challenging. Even more challenging is the interpretation of the clinical significance of

rare genetic variants identified in whole genome sequencing studies in patients with rare

disease. In the absence of clear functional data, these genetic variants are annotated as

variants of unknown significance (VUSs). One method to distinguish between pathogenic and

benign variants is to identify common patterns of differential DNAme from patients with known

pathogenic mutations in the same gene, a methylation signature9,10,36. The presence of a

DNAme signature suggests that common epigenetic marks are associated with pathogenic

mutations in specific genes. However, directly linking observed DNAme change to the

epigenetic mechanisms contributing to disease remains an open challenge.

Despite the known diversity in scale of differential DNA methylation features, no existing

methods are designed to identify regions of differential methylation (DMRs) across the full range

of scale from genome-wide methylation data. Instead, existing methods are designed to identify
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DMRs on the scale of single genes or enhancers, which provides important but incomplete

information towards understanding the full epigenetic architecture. This leaves a gap in using

DNA methylation to understand the dynamics of co-regulated genes and regions in a broader

epigenetic context.

Here we describe a method, DMRscaler, that accurately identifies regions of differential

methylation that can span several basepairs up to those existing at much larger scales spanning

many megabases of sequence across the global DNA methylation landscape. We demonstrate

the dynamic range of our differential methylation caller by simulating DMRs varying in size from

100 bp to 1 Mb and testing its performance relative to existing methods. Additionally, we use

real methylation data to test for sex differences in DNA methylation where DMRscaler, at its

highest level calls the X-chromosome as a single differentially methylated feature while still

calling small, gene-level DMRs on the autosomes. Finally, we show that pathogenic mutations in

chromatin modifier genes are associated with differential methylation of large and highly

conserved gene-clusters such as the HOX and PCDH gene clusters. By bridging the local and

the global, DMRscaler can provide a broadened view of differential DNA methylation structure.

Implementation

The primary motivation for DMRscaler is to enable robust and accurate identification of

regions of differential methylation that may exist at dramatically different scales. In DNA

methylation data, DNA methylation is measured as the proportion of cytosines methylated at a

given CpG site in the genome across all cells in a sample. This proportion is the β (beta) value

of that site, with β=0 being completely unmethylated and β=1 being completely methylated. The

distribution of β values for all CpGs across the genome follows a bimodal distribution (Figure

3-1). DMRscaler takes as input a set of CpG probes with their chromosome, genomic position,

and pre-computed p-value for individual CpG level significance, and individual CpG level
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p-value cutoff threshold for the desired Type I error control level. Estimation of the p-value cutoff

for desired Type I error control should be done at the level of individual CpG level to avoid

identifying DMRs that represent correlated blocks of CpGs that are not associated with the

condition of interest. One method for estimation of this cutoff value, implemented with the

DMRscaler package, is to repeat the individual CpG level significance testing with permutations

of the case and control labels and compare the distributions of CpG significance values from

these random permutations against the true case-control partition, however other methods

could also be used. By working on an input of p-values, DMRscaler gives the user the flexibility

to choose the statistical test that is most appropriate for their experimental design.

To identify regions that are characterized by differentially methylated CpGs (i.e

differentially methylated regions or DMRs), DMRscaler uses a sliding window scheme (Figure

3-2 A,B). Windows are defined by a count of adjacent CpGs rather than by the span of the

genomic region. The use of a count of adjacent CpGs for window definition makes DMRscaler

agnostic to CpG density. This allows DMRscaler to scan regions with low CpG coverage, such

as heterochromatin, that might be missed using a distance parameter between CpGs. Future

iterations of the method may allow specification of fixed genomic interval widths for defining

DMRs. However, a limitation here is that it is subject to the choice of methylation sites included

on the currency DNA methylation chips.

Region-wide significance is taken to be the probability of obtaining within a window the

set of CpG ranks or a set of more extreme ranks by random chance, given as a prior that the

most significant CpG in the window has already been drawn. The null hypothesis then is that the

ranks of the CpGs within a window are equally or less extreme than would be expected by a

random draw from the complete set of CpG ranks given as a prior that the most significant CpG

in the window has been drawn. The product of a sequence of hypergeometric tests is used to

determine the region-wide significance of each window as described by the function
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(Eq. 1)

where CpGs in the window, after excluding the most significant overlapping CpG from the

window, are ordered from least to most significant going from to . Variables are

defined as follows:

The hypergeometric cumulative distribution function, , is set up to return the

likelihood of obtaining or more successes in draws from a population of size where

there are success cases total. At each step from to , the function determines

the probability of having or more CpGs of rank or higher from random draws in a

population of CpGs. The variables update at each step to account for how the likelihood has

changed given the information contained in the previous step. The updates to the variables

make the result of each hypergeometric test independent. The product of these independent

tests then gives the region-wide significance value that effectively represents the probability of

associating CpGs with the ranks observed, or ranks more extreme, by random chance in a

window of the given size. This in effect then defines DMRs as regions that have a statistically

significant association by adjacency of individually significant, by FDR or FWER control, CpGs.

It should be noted that this procedure means that while region significance is linked to individual
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CpG level significance, these two metrics of significance are distinct. For example, if a region's

most significant individual level CpG significance value is p=0.01, but the region wide

significance value is p=1e-12, then the region is almost certainly consisting of CpGs that are

truly associated by adjacency (e.g. regulated in some respect as a unit relative to the set of all

measured CpGs), however the determination of whether the differential methylation of this

region is truly associated with the biological condition of interest should be based on individual

CpG level significance.

Since there are nearly as many windows that can be tested for significance as there are

CpGs included in the dataset, multiple testing must be accounted for to avoid excessive Type I

errors. To do this, DMRscaler gives options to use Bonferroni correction procedure to control the

family-wise error rate, or the Benjamini-Yekutieli procedure 37 to control the false discovery rate.

With either of these the user supplies a region-wide significance threshold below which regions

are considered significant. Both procedures are implemented so that the number of tests

performed is equal to the number of measured probes below the user specified individual level

CpG p-value cutoff. We observed conservative FDR control in simulations varying both the

individual CpG level FDR threshold and the region-wide significance threshold (Figure 3-3)

In order to define DMRs that can vary dramatically in scale within the same analysis, we

implemented the sliding window procedure iteratively increasing the size of the windows used to

identify DMRs at each step of the iteration. The set of DMRs called at each step of the iteration

is defined as a layer of the procedure, with layers named by the size of windows used for calling

DMRs within that layer and indexed by the iteration step number. For example, if windows of 4

adjacent CpGs are used first to call DMRs, then layer_1 (or layer1) and the

4_adjacent_CpG_layer are synonymous. An important step to accurately identify the scale of

DMRs and avoid overinflation of DMR size is the inclusion of a step to integrate the results

across these layers (Figure 3-2 B,C). This integration procedure works as the method iterates
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from one layer to the next by testing whether a tentatively significant window called at the

current layer remains statistically significant after the removal of CpGs from each overlapping

DMR from the previous layer individually. For example, if a given window at the current layer

has 100 CpGs and is considered tentatively significant, and there are 2 overlapping DMR from

the previous layer with 20 CpGs and 30 CpGs, the DMR at the current layer is only retained if

the 80 CpGs left after removal of the 20 CpG DMR from the first overlapping previous layer

DMR are still considered significant as a region AND the 70 CpGs left after the removal of the

30 CpG DMR from the second overlapping previous layer DMR are still considered significant

as a region. Otherwise, if either of these remaining 80 CpGs or 70 CpGs are not significant,

then the current layer does not consider the 100 CpGs to be a DMR and instead the current

layer is set to include the 20 CpG and 30 CpG DMRs from the previous layer, thereby

propagating these DMRs from the previous layer.

It should be noted that no additional multiple testing correction is carried out to account

for the number of layers used for identifying DMRs. As each layer is dependent on the same

base layer of individual CpGs for estimation of significance, tests across layers are not

independent and so our intuition is that it is reasonable to perform FDR or FWER correction only

within layers. More rigorous statistical accounting for the dependency structure of this layer

integration procedure is a challenge we have left as a future direction of study.

Here will elaborate on this procedure a little more formally. To begin, the smallest window

size is used as a parameter to identify DMRs and build layer1 of the output. As a note, the term

'layer' is used to describe the resulting set of DMRs constructed with a given window size

parameter to suggest the relation of the results of each iteration of the algorithm. The

construction of each successive layer either expands, adds, or retains DMRs from the previous

layer, and so there is a hierarchical relation between DMRs across layers. DMRs in lower layers

will always map to some DMR in upper layers, ensuring that layeri will always be a subset of
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layeri+1. To define the next layer, the following steps are repeated for windows of the next largest

size: overlaying windows, identifying windows significantly enriched in differentially methylated

CpGs, and merging significant windows (Figure 3-2 A,B). From the second layer onward, an

additional step to integrate the results from the previous layer is performed. This is achieved by

subtracting each previous layer DMR individually from any overlapping tentative DMR in the

next layer, and retesting all generated reduced DMR sets in the next layer for significance

(Figure 3-2 C). If a tentative DMR in the next layer remains significant following the subtraction

of each overlapping previous layer DMR individually, then the tentative next layer DMR is

retained in the new integrated layer. Otherwise, the overlapping previous layer DMRs are

retained without change, replacing the tentative next layer DMR in the integrated layer.

Additionally, any previous layer DMRs that did not overlap a DMR in the next layer are added to

the integrated layer. In this way, at each iteration of the algorithm DMRs are either added,

expanded, or consolidated from the previous layer to the integrated layer but never lost. As the

algorithm proceeds, the previous layer is updated to the most recent integrated layer before the

next step of integration is done with the next layer. Through iteratively calling DMRs using

windows of increasing size and integrating the results, DMRscaler is able to identify DMRs that

vary dramatically in terms of scale.

Methods

Cell culture. For Arboleda-Tham Syndrome data, fibroblast cell lines were derived from skin

punch biopsies performed on the proband and one or both unaffected parents. This project was

approved by the UCLA Institutional Review Board #11-001087. All individual level-data was

de-identified prior to analysis. Fibroblast cell culture lines were created through the UCLA

Pathology Research Portal and fibroblast cell lines were established and grown in DMEM

(Gibco™), 10% FBS (Heat-inactivated Fetal Bovine Serum, Thermofisher), 1% Non-essential
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Amino Acid (Gibco™) and 1% PenStrep at 37℃ in 5% CO2 incubators. Cell lines were tested for

mycoplasma on a monthly basis.

DNA methylation studies. For Arboleda-Tham Syndrome methylation studies, DNA was

extracted from patient-derived fibroblast cell lines. The specific mutation for each line is given in

Table 3-1. DNA samples were bisulfite converted and run on the Illumina MethylationEPIC Array

(850k EPIC array) as previously described38 at the UCLA Neuroscience Genomics Core to

generate idat files. QC on the resulting idat files was done using the MINFI package, and probes

overlapping SNPs were removed39. After QC, 852,671 of 865,919 measured CpGs remiained,

after removal of sex chromosome CpGs, 832,159 measured CpGs remained. Preprocessing

and normalization of individual probes was done using background correction40 and functional

normalization41.

Data sources. Publically available datasets of peripheral blood methylation data for control,

Weaver Syndrome and Sotos Syndrome patients were downloaded from the Gene Expression

Omnibus (GEO) resource42,43 with accession number GSE7443210.

Simulation. To demonstrate how DMRscaler distinguishes itself from other methods, we

simulated differentially methylated regions (DMRs) ranging in size across several orders of

magnitude (Figure 3-4 A).

DNA methylation measured on the Infinium HumanMethylation450 BeadChip (450K

array) from whole blood for 53 controls from GEO (GSE74432) was used as a foundation for the

simulation10. Real data was used as the foundation in order to capture the natural biological and

technical variability present in DNA methylation array data. QC on the resulting idat files was
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done using the MINFI package, and probes overlapping SNPs were removed39. After QC,

468,162 of 485,512 measured CpGs remained, and after removal of the sex chromosomes

456,514 measured CpGs remained. Preprocessing and normalization of individual probes was

done using background correction40 and functional normalization41.

Regions for artificially introducing DMRs were selected at random across the genome

but subject to the following constraints. DMRs specified as 0.1-1 kb in size were required to

have at least 3 CpGs represented on the 450K array (CpGs), those 1-10 kb in size were

required to have at least 6 CpGs, those 10-100 kb in size were required to have at least 9

CpGs, those 0.1-1 Mb in size were required to have at least 12 CpGs. Additionally, to avoid

miscounting, DMRs were introduced such that they were spaced at least 10 CpGs apart from

any other introduced DMR. Distribution of CpG counts in simulated DMRs against simulated

DMR sizes are shown in Figure 3-5.

All 450k array samples used were from control whole blood DNA, so for each run of the

simulation samples were pulled at random into one of two groups, Group1 and Group2. Each

group consisted of 8 samples drawn without replacement from the pool of 53 samples.

Before artificially introducing the DMRs to the real data matrix, a proportion of CpGs

within each DMR, excluding the first and last CpGs, specified by the noise parameter were

randomly masked and kept at their original β values. This was done to model the variability of

methylation state of neighboring CpGs in real data. Values for the noise parameter tested were

0, 0.25 and 0.5, corresponding to 0%, 25%, and 50% of CpGs overlapping a simulated DMR

being masked. Then, the mean β value of CpGs within each DMR was measured for Group1

and Group2. The β values of the group with the greater mean β value would have all

non-masked CpGs inflated by an amount specified by the Δβ parameter. Simulations were run

with Δβ values of 0.1, 0.2, and 0.4 to model small, modest, and large effect DMRs respectively.
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If this resulted in any samples having a β value greater than 1, the β values for that CpG were

divided by the max β value for that CpG to bring values back to the range of 0-1.

Following the introduction of artificial DMRs into the dataset, DMRscaler, bumphunter 44,

comb-p 45 and DMRcate 46 were run on the dataset and the results tabulated. DMRscaler was

tested using a window_size_vector of c(4, 8, 16, 32, 64) adjacent CpGs, locs_pval_cutoff

corresponding to the individual level CpG p-value at which FDR < 10% is achieved,

region_signif_cutoff = 0.01 corresponding to the region level significance threshold for calling a

region as a DMR after multiple testing correction, and region_signif_method =

"benjamini-yekutieli" specifying the benjamini-yekutieli procedure as the method for Type I error

control. Bumphunter was tested with MaxGap = 1e6 with loess smoothing enabled. Comb-p was

tested with dist = 1e6, step = 5000, seed = 1e-3, region-filter-p = 0.1 (Figure 3-6). DMRcate

was tested with lambda = 1e6, C=2000. Parameter sets for methods were chosen to facilitate

identification of larger DMRs for output more comparable to DMRscaler.

To benchmark each method's performance several metrics were used including

proportion of CpGs in DMRs that are differentially methylated, precision, recall, specificity, F1,

Matthew's correlation coefficient (MCC), and the area under the precision recall curve (AUCPR).

These metrics were recorded for analysis at the feature, basepair, and CpG probe level, where

feature level assessment treated each simulated DMR as a single positive feature, the basepair

level treated each basepair overlapping a simulated DMR as a positive feature, and the CpG

probe level treated each CpG probe overlapping a simulated DMR as a positive feature. The

basepair and CpG level assessments are based on direct counts of true and false positives and

negatives. The feature level assessment was conducted following the framing of the problem

for measuring precision and recall for time series proposed by Tatbul and colleagues, which is

generally appropriate for other forms of range data when identification of individual features is of

interest 47. Each simulated DMR was considered as a true feature with true positive (TP) and
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false negative (FN) attributes. Each called DMR was considered a called feature with TP and

false positive (FP) attributes. Called DMRs were ordered by their p-value for all methods. The

precision-recall curve was generated by measuring precision and recall with stepwise inclusion

of the next highest scoring or most significant called DMR. At the n-th step precision and recall

were measured as

(Eq. 2)

(Eq. 2.1)

(Eq. 2.2)

(Eq. 3)

(Eq. 3.1)

(Eq. 3.2)

where is the proportion of the i-th called DMR overlapping simulated

DMR regions, is the proportion of the i-th called DMR not overlapping a

simulated DMR region, is the proportion of the j-th simulated DMR

overlapping any of the 1 to n-th Called DMRs, is the proportion of the j-th

simulated DMR overlapping any of the 1 to n-th Called DMRs, is the number of most

significant called DMRs used at the n-th step, and is the total number of simulated DMRs.

The feature level measure of precision and recall gives equal weight to each simulated DMR so

that large simulated DMRs do not dominate the signal.
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In addition to precision and recall, several other metrics that were included in a recent

benchmark of DMR callers by Mallik et al. 48 were used to assess method performance in the

simulation. All of these metrics were measured on the set of called DMRs that had an adjusted

region-wide significance p < 0.01 for each method. Specificity is a measure of the true negative

rate, and is measured as the proportion of true negatives as a fraction of total negative features,

and is calculated by the equation:

(Eq. 4)

False Discovery Rate as the inverse of precision gives expected proportion of false results and

is given by:

(Eq. 5)

F1 is a measure of a test's accuracy and is given by:

(Eq. 6)

F1 ranges from 0 for worst accuracy to 1 for perfect classification. Finally, the Matthew's

correlation coefficient, which is a measure of correlation between predicted and true class labels

and is given by:

(Eq. 7)

MCC values at +1 indicate perfect classification, 0 indicates equivalence with random

classification, and -1 indicates perfect misclassification.

Rare Disease Data Analyses

For each real data analysis, DMRscaler, bumphunter, comb-p, and DMRcate were used

to call DMRs. DMRscaler was tested using a window_size_vector of c(4, 8, 16, 32, 64) adjacent

CpGs, locs_pval_cutoff corresponding to the individual level CpG p-value at which FDR < 10%
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is achieved, region_signif_cutoff = 0.01 corresponding to the region level significance threshold

for calling a region as a DMR after multiple testing correction, and region_signif_method =

"benjamini-yekutieli" specifying the benjamini-yekutieli procedure as the method for Type I error

control. DMRcate was tested with default parameters, as well as with lambda = 1e6, C=2000 to

capture larger DMRs for output more comparable to DMRscaler. Bumphunter was tested with

default parameters, as well as with MaxGap = 1e6 with loess smoothing enabled.

For the sex analysis, DNA methylation measured on the Infinium HumanMethylation450

BeadChip (450K array) from whole blood for 53 controls from GEO (GSE74432) with 29 female

and 24 male samples was used 10. QC on the raw idat files was done using the MINFI package,

and probes overlapping SNPs were removed39. After QC, 468,162 of 485,512 measured CpGs

remained. Preprocessing and normalization of individual probes was done using background

correction40 and functional normalization 41. Individual level differential CpG significance

between female and male samples was measured using the Wilcox test to serve as input for

DMRscaler and comb-p.

For Arboleda-Tham Syndrome sample analysis, DNA methylation was measured on the

Illumina MethylationEPIC Array (850k EPIC array) with 8 cases and 12 controls. QC on the

resulting idat files was done using the MINFI package, and probes overlapping SNPs were

removed 39. After QC, 852,671 of 865,919 measured CpGs remained, after removal of sex

chromosome CpGs 832,159 measured CpGs remained. Preprocessing and normalization of

individual probes was done using background correction 40 and functional normalization 41.

Individual level differential CpG significance between female and male samples was measured

using the Wilcox test to serve as input for DMRscaler and comb-p.

For Weaver analysis, DNA methylation measured on the Infinium HumanMethylation450

BeadChip (450K array) from whole blood for 8 patients with EZH2 mutations and 53 controls

from GEO (GSE74432) was used 10. This data comes from a study that found an epigenetic
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signature specific to Sotos syndrome from NSD1 mutations using Weaver syndrome samples as

a negative control for their classifier 10. More recently, this data has been used to identify an

epigenetic signature specific to Weaver syndrome 9. QC on the raw idat files was done using the

MINFI package, and probes overlapping SNPs were removed 39. After QC, 468,162 of 485,512

measured CpGs remained, and after removal of the sex chromosomes 456,514 measured

CpGs remiained. Preprocessing and normalization of individual probes was done using

background correction40 and functional normalization 41. Individual level differential CpG

significance between female and male samples was measured using the Wilcox test to serve as

input for DMRscaler and comb-p.

For Sotos syndrome analysis, DNA methylation measured on the Infinium

HumanMethylation450 BeadChip (450K array) from whole blood for 38 patients with NSD1

mutations and 53 controls from GEO (GSE74432) was used10. QC on the raw idat files was

done using the MINFI package, and probes overlapping SNPs were removed39. This comes

from the same study as the Weaver syndrome data 10. After QC, 468,162 of 485,512 measured

CpGs remained, and after removal of the sex chromosomes 456,514 measured CpGs

remiained. Preprocessing and normalization of individual probes was done using background

correction40 and functional normalization41. Individual level differential CpG significance

between female and male samples was measured using the Wilcox test to serve as input for

DMRscaler and comb-p.

Syndrome DMR Overlap Analysis

To test for overlapping regions of differential methylation between Arboleda-Tham,

Sotos, and Weaver syndrome, the number of measured CpGs considered for DMR detection

was downsampled to include only those CpGs measured on both the Infinium
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HumanMethylation450 BeadChip (450K array) and the Illumina MethylationEPIC Array (850k

EPIC array). This left 425,733 measured CpGs for calling DMRs.

Overlaps between DMRs were counted between syndromes as was the overlap of gene

sets. Gene set overlaps were considered separately to identify genes that may be commonly

differentially methylated but identified by non-overlapping regions of the gene, something the

direct DMR overlap measure would miss.

To test whether CpGs identified as belonging to DMRs are enriched between

syndromes, that is whether membership of a CpG to a DMR in one syndrome makes it more or

less likely to also belong to a DMR in another syndrome, we computed the odds ratios (OR).

The OR was calculated by forming a 2x2 contingency table with counts of CpGs belonging to

DMRs in both syndromes, CpGs belonging to one and not the other, and CpGs belonging to

DMRs in neither.

Results

DMRscaler Overview

Our goal in developing DMRscaler was to have a method capable of accurately

identifying regions that demonstrate differential methylation across the full range of epigenetic

scale, from small-promoter to whole-chromosome scale features. The major bottleneck to this

goal is that regions of differential methylation show significant variability in methylation state

between neighboring CpGs. For example, nearly 20% of neighboring CpGs between 0.5 - 1.0

kb away have a difference in the proportion of methylation greater than 50% (Figures 3-7, 3-8).

When trying to identify DMRs that may span larger genomic regions, such as gene clusters, this

variability makes the trivial method of taking contiguous blocks of significant CpGs as the DMRs

ineffective. One approach to resolve this issue of high variability is to smooth differential

methylation sites based on significance across adjacent CpGs or over some specified genomic
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interval. However, the smoothing approach is sensitive to the choice of bandwidth parameter

used for the smoothing window. Windows that are too small will fail to connect features over

larger gaps, windows that are too large will result in excessively broad DMRs. Smoothing alone

is therefore inappropriate when features are expected to vary dramatically in terms of scale. To

capture potentially noisy features that may vary in size by several orders of magnitude, from the

basepair to multi-megabase scale, we need a method that is both robust to noise and that can

accurately determine the feature's size.

To address these limitations in determining the size of a DMR, DMRscaler uses an

iterative sliding window over the genome (Figure 3-2 A,B), represented as a partially-ordered

set of measured CpGs, and implements an integration step between each iteration of the sliding

window (Figure 3-2 C). The windows at each step identify the set of regions that are enriched in

CpGs with significantly different methylation values between cases and controls. By binning

CpGs into windows and testing these windows for enrichment in significant CpGs (Eq. 1), the

algorithm is robust to noise caused by variability in methylation of neighboring CpGs. To

address the bias in feature size introduced by preselecting a window size parameter,

DMRscaler calls significant windows iteratively with a variable increasing size parameter and

integrates the result of each iteration with the results from the previous iterations. The

integration step (Figure 3-2 C) is used between the previous (lower) layer, built from smaller

windows, and the current (upper) layer to determine which features in the upper layer are

already adequately represented by lower layer features and which upper layer features capture

a statistically significant association missed by the lower layer features. If an upper layer feature

captures a statistically significant association missed in the lower layer then that upper layer

feature is retained and resolved with any overlapping lower layer features, otherwise the

overlapping lower layer representation is carried through unmodified. For a more detailed

description, see implementation.
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DMRscaler provides a solution to the problem of identifying DMR features across the full

range of epigenetic feature sizes, whether at the basepair level or across entire chromosomes.

The integration of results across iterations of the windowing procedure DMRscaler implements

is a novel mechanism for defining DMRs that could be generalized to other epigenetic features

or one dimensional data where discontinuity in components defining a feature of interest is

expected and where features of interest may exist at dramatically different scales.

Comparison of DMRscaler with existing methods

We next benchmarked DMRscaler to three commonly used methods in identification of

differentially methylated regions: bumphunter44, comb-p45, and DMRcate46 (Table 3-2). One

significant difference between these methods is that our method, DMRscaler, and comb-p take

pre-computed p-values as input while bumphunter and DMRcate use a t-test to determine

individual level CpG significance. We observed that when running with a small sample size (n=8

per group) there is poor correlation between the significance of differential methylation

determined by the non-parametric Wilcoxon and t-test (Figure 3-9). Since one of our goals was

to develop a method that could detect DMRs in studies that compare rare disease datasets, the

flexibility to choose the most appropriate statistical test for individual CpG significance based on

experimental design and sample size constraints was desirable. While the t-test is appropriate

when the sample size is sufficiently large (n > 30) or the sampling distribution is approximately

normal, differential methylation analysis in small samples breaks these assumptions and

therefore in our analysis of rare disease datasets the flexibility to use the Wilcoxon test was

important.

The second difference between the differential methylation callers compared here (Table

3-2) lie in their modeling to identify differentially methylated regions. Briefly, bumphunter uses a

linear regression model to identify CpG sites that are differentially methylated between case and
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control conditions. Then to detect DMRs, bumphunter identifies stretches of adjacent CpGs that

are above a specified significance threshold after smoothing. However, the methylation

landscape of adjacent CpGs is complex, with CpGs with high, intermediate and low β values

mixed together making definition of large and contiguous regions of differential methylation

challenging (Figure 3-7, 3-8). Comb-p uses the Stouffer-Liptak method for p-value correction

and then groups significant CpGs within a window or window interval defined by the dist and

step parameters. DMRcate is similar to bumphunter in that it also implements linear modeling

(Table 3-2). DMRcate uses a Guassian smoothing function on M transformed β values to

identify DMRs in genome-wide data. This provides the user with control of a bandwidth

parameter, lambda, and control parameter, C, that can be used to identify larger regions of

differential methylation. However, the behavior of DMRcate at larger bandwidth is poorly defined

and the size of DMRs returned tends to be sensitive to parameter choice. For an in-depth

review of methods see48.

The design of the DMRscaler method has several unique features that allow it to more

accurately identify larger co-regulated regions. First, it deals with the intrinsic variability in

methylation distribution across the genome by binning adjacent CpGs into windows before

assigning significance. Second, DMRscaler integrates the results from layers of windows

defined with a series of window sizes to consider regions that are dramatically different in scale

as potential regions of differential methylation. To accommodate a variety of study designs and

constraints, DMRscaler operates on pre-computed p-values for individual level CpG

significance. While here we use the Wilcox test due to the small sample size of our rare disease

cohorts, other methods of generating p-values can be used, for instance to model the effect of

covariates. Together, these features allow for the robust detection of differentially methylated

regions across a large dynamic range, spanning basepair to megabase resolution and allow for
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detection of novel regions that are differentially methylated in rare disease cohorts and between

other biological conditions such as chromosomal sex.

DMRscaler accurately captures the scale of epigenetic features from basepair (bp) to

megabase (Mb) size in simulated methylation data

Except where stated otherwise, in the following sections DMRs are assumed to be

those in the most inclusive top layer, Layer 5, which is built using all lower layers and is meant

to be the most accurate representation of DMR features.

To benchmark our method against existing methods, we compared DMRscaler to

bumphunter, comb-p, and DMRcate on several metrics that highlight behavior of calling DMRs

across a wide range of simulated DMR sizes. These metrics include: the correlation between

simulated DMRs and DMRs called by each method across a wide range of simulated DMR

sizes, the mapping value or the degree to which each method was able to represent individual

simulated DMRs as single unified features, and the run time of each method. Additionally we

used standard metrics of evaluation such as precision, recall, specificity, F1, Matthew's

correlation coefficient (MCC), and area under the precision-recall curve (AUCPR) to assess

method performance.

We first simulated DMRs in methylation data from control blood samples (GSE74432)10

ranging in size from 100 bp to 1 Mb (Figure 3-4 A, see method for details). In our simulation, we

modeled the situation observed in real data where neighboring CpGs often have distinct

methylation states with a noise parameter that represents the proportion of CpGs within

simulated DMRs, excluding the first and last CpGs, that are left non-differentially methylated

between the randomly selected samples placed in Group1 and Group2. In our simulations we

tested noise parameter values of 0%, 25% and 50%. The Δβ parameter was used to control the

magnitude of differential methylation with simulated DMRs, where Δβ is the difference in
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methylation proportion at non-noise CpGs introduced between the samples in Group1 and

Group2. Simulations were run with the Δβ parameter set to values of 0.1, 0.2, and 0.4 to model

small, modest, and large effect sizes for differential methylation respectively. Results from

simulations run with each combination of these parameters are included in Figures

3-10,3-11,3-12. The relative performance and behavior of methods was consistent across

simulations run with each of these parameter combinations, so for space in the main text and

figures we display results and report metrics from simulations run using noise=50% and Δβ=0.2.

DMRscaler was able to accurately call the size of the simulated DMRs (pearson's r =

0.94) relative to bumphunter (pearson's r = 0.04), comb-p (pearson's r = 0.69), and DMRcate

(pearson’s r = 0.85) (Figure 3-4 B). DMRscaler preserves a strong 1-to-1 relation between

simulated and called DMRs, with 85% of simulated DMRs accurately called by DMRscaler with

a 1-to-1 relation, compared with 19% for bumphunter, 44% for comb-p, and 69% for DMRcate

(Figure 3-4 C).

To measure performance of our differential methylation caller, we calculate the AUCPR

for each test. AUCPR combines a measure of precision of features called (ratio of true feature

called to all features called) and recall (ratio of true features called to total number of true

features) into a single value, with AUCPR = 0 representing no classification and AUCPR = 1

representing perfect classification of all features with no false positives. In our simulation,

DMRscaler had an AUCPR of 0.79, bumphunter had an AUCPR value of 0.11, comb-p had an

AUCPR of 0.34, and DMRcate had an AUCPR of 0.65 (Figure 3-4 D, see methods for details

on AUCPR calculation). The low AUCPR of bumphunter is consistent with the low, slightly

negative correlation observed between simulated and called DMR regions (Figure 3-4 B). This

weak correlation is due to the fact that bumphunter has a strict requirement that significant

differentially methylated CpGs are adjacent in order to belong to a common DMR and therefore

breaks up simulated DMR features into many smaller features. The low AUCPR of comb-p is
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the result of a low recall rate of features that are much smaller than the size set by the dist and

step parameters. Setting lower values for the dist parameters increases the ability to detect

smaller DMR features but at the expense of detecting larger DMR features (Figure 3-6), and at

very large values for dist the run time becomes prohibitive especially as smaller step values are

used (Figure 3-6). DMRcate had a reasonably high AUCPR, however there is a bias in the size

of DMRs called based on the choice of the bandwidth parameter lambda, and the control

parameter C. Specifically, there is an excess of false calls of DMRs around 1 Mb and 1 kb

(Figures 3-4 B and 3-13) which is related to the choice of bandwidth parameter λ (set to 1 Mb)

and the scaling parameter C (ratio of λ/C set to 500) (Figure 3-14). Our data suggests that

DMRcate is able to identify larger DMRs but also that called DMR size is sensitive to parameter

choice for the lambda and C parameters. This is supported by the shape of the precision-recall

curve for DMRcate that shows a modest drop in precision as recall increases, suggesting

DMRcate incurs a steeper false positive penalty compared with DMRscaler.

While the Wilcoxon test was used to generate p-values for individual level CpG

significance for the simulation and real data analysis, we note that the performance and

behavior of DMRscaler in the simulation was comparable when the T-test was used (Figure

3-16). Additionally, while these results focus on the top layer of results from DMRscaler,

behavior at each lower layer is shown in Figure 3-16.

Comparing each method on each combination of Δβ (0.1, 0.2, and 0.4) and noise (0%,

25%, and 50%) parameters on metrics of precision, recall, specificity, F1, MCC, and AUCPR,

DMRscaler consistently outperformed competing methods on each metric, except specificity

where bumphunter was consistently the best performing method though the difference between

methods on specificity was generally small (Table 3-3). These results further demonstrate that

DMRscaler performs well for accurately calling DMRs across a wide range of feature size.

61



While DMRscaler performs well compared to other methods at the task of identifying

DMRs across a wide range of scales, the method also performs well in terms of computational

time to the other methods that are time efficient with larger window size analogous parameters.

On average DMRscaler required 30 seconds to 1 minute to complete a run, bumphunter

required around 1 to 3 minutes, and DMRcate only required around 10 seconds to call DMRs.

Comb-p, which uses a sliding window mechanism similar to DMRscaler, required an hour to

complete each run with the given parameter set (Figure 3-4E).

The simulation results show that DMRscaler reconstructs the scale of DMR features

more accurately than other methods across a wide range of DMR feature sizes as measured by

called and simulated DMR size correlation, mapping value, and precision and recall. Additionally

on other measures of performance including specificity, F1, MCC, and AUCPR, DMRscaler

consistently performs well compared to other methods on simulated datasets with DMRs that

vary widely in terms of scale.

Differential methylation between 46,XX and 46,XY individuals captures chromosome-wide

and gene specific regulatory features in empiric data.

To test our hypothesis in real-world DNA methylation data, we sought to determine

whether our method could capture both small regions of autosomal differential methylation as

well as chromosome-wide features such as X-chromosome inactivation. Therefore, our test

case is the natural occurrence of X-inactivation in females, where one copy of the

X-chromosome is largely inactivated by the action of the lncRNA Xist18,19. This process of

inactivation is correlated with a striking chromosome-wide difference in DNA methylation

between males and females on the X-chromosome (Figure 3A, top) as compared to the

autosomes, e.g. chromosome 2 where the size of differentially methylated regions span 103 bp

to 873 bp (Figure 3-17A, bottom). Across all chromosomes, the size of DMRs called by
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DMRscaler spans 98 bp to 152 Mb, representing a 1.5 million-fold difference in the scale of

DMRs detected by DMRscaler.

With the visual intuition of the scale of differential methylation between sexes from

Figure 3-17A, we next compared the result of differential methylation analysis using

DMRscaler, bumphunter, comb-p and DMRcate. DMRscaler was the only method that

consolidated the observed differential methylation into a single DMR that spanned 98% of the

X-chromosome (Table 3-4, Figure 3-17B, Figure 3-18). Even with the maxWidth parameter set

to 1 Mb, Bumphunter reported 1,162 unique DMRs on the X-chromosome with a median width

of 531 bp (IQR: 1 bp - 1.21 kb) (Figure 3-19), likely due to a lack of mechanism for spanning

non-differentially methylated CpGs. With a standard parameter set of dist = 1 kb, step = 100bp,

comb-p reported 2,390 unique DMRs on the X-chromosome with a median width of 2 bp (IQR: 2

bp - 963 bp) (Table 3-4, Figure 3-19). With a wider parameter set of dist = 1 Mb, step = 100 kb,

comb-p called 19 unique DMRs on the X-chromosome with a median width of 3.15 Mb (IQR:

512 kb - 8.54 Mb ) (Table 3-4, Figure 3-19) . DMRcate with default settings reported 1,178

unique DMRs on the X-chromosome with a median width of 1.09 kb (IQR: 616 bp - 1.68 kb).

When DMRcate was provided with a larger bandwidth parameter (lambda = 1 Mb, C = 2000) it

improved in consolidating the DMRs, but still reported 15 unique DMRs (median width: 3.95 Mb,

IQR: 1.00 Mb - 17.89 Mb). For complete distributions of called DMR sizes see Figure 3-20.

DMRscaler iteratively calls DMR-like regions using windows of increasing size while

integrating the results of each iteration into the next layer of DMRs. While the top-most layer is

the primary output of DMRscaler, this procedure produces a nested hierarchy of DMRs when

considering the list of results across all layers that allows for a nuanced view of the differential

methylation architecture. In Figure 3-17B, a subset of this hierarchy within the X-chromosome is

shown. Here DMRs called at layer 1 are consolidated in the DMRs in layer 2, and then those

DMRs in layer 2 are consolidated into DMRs in layer 3, consolidation of DMRs in layer 3 into
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layer 4 results in the final consolidation of DMRs into a single feature spanning the entire

X-chromosome .

While the entirety of the X-chromosome can be considered a differentially methylated

feature, it has been well established that there is a small subset of genes on the X-chromosome

that escape X-inactivation and DNA methylation49. The expectation when comparing methylation

between females and males is that X-inactivation would result in differential methylation

between sexes, with hypermethylation and to a lesser extent hypomethylation across the entire

X-chromosome in females compared to males50. Therefore, we expect regions where the Δβ

between the two groups is at or near zero would be enriched in regions that escape

X-inactivation due to a relative lack of differential methylation at these sites. An example of one

such region is the gap of two DMRs that persists until the integration between layer 3 and layer

4 which occurs at chrX: 71,459,274 - 71,521,494 which corresponds to the gene RPS4X

(Figure 3-17C, Figure 3-21), which is known to escape X-inactivation 51. To test whether this

trend of gaps in DMRs mapping to held more generally across regions escaping X-inactivation,

we performed an enrichment test for CpGs that overlapped genes known to escape

X-inactivation and CpGs overlapping gaps in DMRs called at each layer of DMRscaler's output.

A consensus of genes known to escape or be silenced in X-inactivation reported in a 2015 study

by Balaton et al. was used for the enrichment test 52. In layers 1, 2, 3, and 4 which were defined

by windows of 4, 8, 16, and 32 adjacent CpGs respectively, the odds ratio between CpGs

overlapping gaps between DMRs and CpGs overlapping genes that escape X-inactivation were

OR = 7.57 (95% CI 6.38 - 8.99; p-value = 1.04e-134 Fisher's exact test), OR = 7.24 (95% CI

6.07 - 8.65; p-value = 5.93e-100 Fisher's exact test), OR = 51.99 (95% CI 30.38 - 90.33; p-value

= 4.34e-77 Fisher's exact test), and OR = 160.44 (95% CI 25.42 - 6,396.92; p-value =

5.93e-100 Fisher's exact test) respectively. At layer 5 no enrichment was detected, as the whole

X-chromosome was consolidated into a single feature. Bumphunter similarly displayed
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substantial enrichment, with odds ratios estimated between OR ≈ 10-20, however, as noted

earlier, bumphunter could not consolidate DMRs on the X-chromosome to identify the whole of

the X-chromosome as differentially methylated. Comb-p and DMRcate each observed much

smaller associations of gaps between DMRs and genes escaping X-inactivation with ORs ≈ 1-3

(Table 3-5). These results demonstrate that while the top layer DMR, which spans the

X-chromosome, correlates most intuitively with the phenomenon of X-inactivation, the

exploration of the hierarchical structure of complex DMRs that is enabled by DMRscaler can

reveal biologically meaningful features such as patterns of genic escape from X-inactivation.

The complex hierarchical relation of DMRs within the X-chromosome contrasts with the

DMRs of the autosomal chromosomes. DMRs on the autosome show little to no branching,

which implies that these DMRs are stable at each iteration of the algorithm (Figure 3-18). A

genome view of one such DMR at chr9: 84,302,344-84,304,414 highlights this stability, where a

feature identified as a DMR at the first layer of the algorithm is stable through each subsequent

iteration (Figure 3-17D, Figure 3-21). The gene TLE1 overlaps this DMR and has previously

been identified as an autosomal gene that is differentially methylated between males and

females53,54.

The results of the differential methylation analysis between sexes highlights the utility of

DMRscaler in identifying differential methylation features that exist at dramatically different

scales in real data. This ability distinguishes DMRscaler from existing methods which either are

unable to identify larger DMRs while preserving the stability of smaller DMRs, as in DMRcate

and comb-p, or tend to fragment larger DMR into many smaller features, as in bumphunter. A

brief analysis of the hierarchical structure that results from DMRscaler's layer merging

mechanism reveals how DMRscaler can capture biologically meaningful structure within a DMR,

such as escape from X-inactivation. This ability to represent DMR structure more completely
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highlights DMRscaler's potential value as a tool for exploring the interactions between features

of epigenetic regulation at different scales.

Rare chromatin modifier syndromes contain regions of differential methylation spanning

gene clusters critical for development.

Next we analyzed DNA methylation datasets from several rare diseases of chromatin

modifier genes to see whether DMRscaler revealed novel DMR features that might otherwise be

missed by existing methods. Except where stated otherwise, in the following sections DMRs are

assumed to be those in the most inclusive top layer, Layer 5, which is built using all lower layers

and is meant to be the most accurate representation of DMR features.

First, we compared the DNA methylation profile from fibroblasts from Arboleda-Tham

syndrome patients to control samples. This analysis consisted of 20 samples, with 8 patients

and 12 controls (Table 3-1). All patients were previously reported by Kennedy, et al7. In our

analysis, DMRscaler identified 390 unique DMRs with a median width of 144.59 kb (IQR: 21.1

kb - 481.2 kb), resulting in a total genomic coverage of 4.9% (151.35 Mb) (Table 3-6, Figure

3-22). Over the HOXB gene cluster three unique DMRs were identified. The first and second

DMRs overlap regions of HOXB2, HOXB3 and HOXB4 and is hypomethylated in

Arboleda-Tham Syndrome patients relative to controls. The second overlaps part of HOXB5 and

HOXB6 and is also hypomethylated in Arboleda-Tham Syndrome patients. The third spans

HOXB9 and is hypermethylated in Arboleda-Tham Syndrome patients relative to controls

(Figure 3-23A,B, Figure 3-24). Bumphunter calls many more DMRs over this region that are

highly fragmented, including regions missed by DMRscaler. This is likely due to the regions

called by bumphunter having substantial variance that the Wilcox test used to pre-compute

p-values for comb-p and DMRscaler being more conservative than the t-test used by

bumphunter. Comb-p with the large distance parameter of 1 Mb calls the entire region as
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differentially methylated. The relatively large coverage of the genome by DMRs is driven

primarily by multi-megabase scale DMRs identified spanning relatively gene sparse regions,

which other methods are unable to consolidate, with the exception of comb-p using a distance

parameter of 1 Mb (e.g. Figure 3-23C,D, Figure 3-24).

Weaver syndrome (MIM# 277590), is a rare overgrowth disorder that is caused by de

novo mutations in EZH2, a histone methyltransferase. Comparing Weaver syndrome patient

samples to controls, DMRscaler identified 226 unique DMRs with a median width of 8.88 kb

(IQR: 1.92 kb - 30.04 kb). These regions comprised a total of 0.40% (12.34 Mb) of the genome

(Table 3-7, Figure 3-25).

Over the HOXA gene cluster, DMRscaler identified three distinct DMRs associated with

Weaver Syndrome. The first spans HOXA1-HOXA2 and is modestly hypermethylated in Weaver

syndrome, the second covers HOX5 and the last two exons of HOX6 and is hypomethylated in

Weaver syndrome cases relative to controls. The third DMR covers the first exon of HOXA10,

as well as HOXA11, and HOXA13. This third DMR is generally weakly hypermethylated in

Weaver Syndrome, with a small but significant region of hypomethylation just upstream of

HOXA11. The other methods all report DMRs overlapping these clusters, however they are

either fragmented or overly broad (Figure 3-26 A,B, Figure 3-27).

Finally, we also analyzed Sotos Syndrome (MIM# 117550), an overgrowth syndrome

caused by truncating and missense mutation in the nuclear receptor binding SET domain

protein 1 (NSD1) gene55. Analysis with DMRscaler identified 1776 unique DMRs with a median

width of 555.13 kb (IQR: 156 kb - 1.40 Mb), covering 71% of the genome (2.17 Gb), a similar

degree of coverage was seen with DMRcate where 282 DMRs spanned 77% of the genome

(Table 3-8, Figure 3-28). We identified three unique DMRs at the 32 Adj CpG layer that span

gene clusters of protocadherins. These DMRs caused by mutations in NSD1 cover the

neighboring Protocadherin (PCDH) gene cluster PCDHA, PCDHB, and PCDHGB (Figure
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3-26D,E, Figure 3-27), which encode large transmembrane proteins that are critical for a

diverse range of processes ranging from cell-signaling to dendritic arborization56. One DMR

spans the first exons of PCDHA1-PCDHA12, another spans from PCDHB2 to PCDHB19P, and

the third covers the first exons of PCDHGA3-PCDHGA12 and PCDHB1-PCDHGC5. All of the

DMRs covering these PCDH clusters are hypermethylated in Sotos Syndrome relative to

controls, though it is notable that the β values of CpGs across these clusters are highly variable

reflecting an example of the neighboring CpG heterogeneity described earlier (Figure 3-26D,

Figure 3-27, Figure 3-7 , Figure 3-8). Notably, only DMRcate with parameters λ=1 Mb, and

C=2000 was also able to call a DMR over this region, however it lacks a mechanism to see the

interior structure that shows that each of these three clusters is separated by regions of

non-differentially methylated CpGs that is captured by DMRscaler's hierarchical output.

These results in rare chromatin modifier syndromes highlight DMRscaler's utility in

identifying patterns of differential methylation that exist over broader genomic features such as

gene clusters.

Analysis of overlapping regions of differential methylation

Following analysis of each syndrome individually, we asked whether there was evidence

of shared regions differentially methylated between Arboleda-Tham, Sotos, and Weaver

syndrome. Between Arboleda-Tham and Sotos syndrome, we identified 652 regions with

overlapping DMRs (77.3% of total DMRs for Arboleda-Tham, 4.7% of total DMRs for Sotos),

and 458 genes overlapped by some DMR in both syndromes (11.4% of genes overlapping a

DMR in Arboleda-Tham syndrome, 3.1% of genes overlapping a DMR in Sotos syndrome).

Between Arboleda-Tham and Weaver syndrome, we identified 48 regions with overlapping

DMRs (1.3% of total DMRs for Arboleda-Tham syndrome, 14.1% of total DMRs for Weaver

syndrome), and 39 genes overlapped by some DMR in both syndromes (13.2% of genes
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overlapping a DMR in Arbolelda-Tham syndrome, 5.6% of genes overlapping a DMR in Weaver

syndrome). Between the two growth disorders, Sotos and Weaver syndrome, we identified 414

regions (0.7% of total DMRs for Sotos, 91.0% of total DMRs for Weaver) and 282 genes

overlapped by some DMR in both syndromes (5.9% of genes overlapping a DMR in Sotos,

93.1% of genes overlapping a DMR in Weaver).

To test the significance of the overlap we tested the odds ratio (OR) of overlap between

each pair of syndromes. To simplify the analysis and make the measure of the odds ratio closer

in form to the DMRscaler method, we only used counts of measured CpGs (See methods for

details). Essentially, the odds ratio tests whether there is enrichment of CpGs that are in DMRs

in one syndrome in the set of CpGs found in DMRs in the other syndrome being compared. OR

with a confidence interval (CI) overlapping 1 suggests no enrichment, closer to 0 or further from

1 indicates greater enrichment. The raw overlap counts used to calculate the OR are in (Table

3-9) and the odds ratios are reported in (Table 3-10). The highest odds ratio was between Sotos

and Weaver with OR = 17.16 (95% CI: 12.27-23.99, p = 1.9e-32 Fisher's exact test) in Layer 1.

The OR between Sotos and Weaver drops to OR = 1.55 (95% CI: 1.47-1.64, p = 4.6e-56

Fisher's exact test) in Layer 5, which is likely due to the extensive genomic coverage by DMR

features in Sotos syndrome at Layer 5. The next highest odds ratio was between

Arboleda-Tham and Weaver in Layer 1 with OR = 9.94 (95% CI: 5.83-16.94, p = 4.7e-10

Fisher's exact test) which gains in significance but drops in magnitude at Layer 5 with OR = 3.00

(95% CI: 2.71-3.31, p = 3.1e-77 Fisher's exact test). The OR between Arboleda-Tham and

Sotos is relativately small at Layer 1 with OR = 1.72 (95% CI: 1.43-2.06, p = 5.6e-8 Fisher's

exact test) and drops to non-significance at Layer 5 (Table 3-10). These results show how

DMRs of each of the three syndromes analyzed here are enriched in CpGs in DMRs in each of

the other syndromes tested here at the lower layers output by DMRscaler, where differential

CpG density is required to be higher, and in particular the strong enrichment between the two
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overgrowth disorders offers evidence for common epigenetic effects in these disorder and

potentially common contributing factors.

One region of overlap between Sotos and Weaver syndrome was a region overlapping

INS, and INS-IGF2 proximal to IGF2. This region stood out as a region implicated in another

growth disorder, Beckwith-Wiedemann syndrome (BWS) 57. The DMR called for Sotos syndrome

is just upstream of IGF2 and overlaps INS and INS-IGF2, with sites of moderate effect

hypomethylation (Δβ > 0.2) (Figure 3-29A). The DMR called for Weaver syndrome overlaps the

IGF2 gene and is composed of sites with a small effect size (Δβ ~ 0.05 ), with hypermethylation

over a region of the IGF2 gene body and hypomethylation further upstream overlapping the INS

and INS-IGF2 genes. Upstream of IGF2 overlapping INS and INS-IGF2 the pattern of

hypomethylation in Sotos and Weaver syndrome was consistent (Figure 3-29B).

Across all three syndromes there were 49 genes overlapping some DMR called by

DMRscaler. Among these were PCDHGA1, PCDHGA2, PCDHGA3, PCDHGA8, PCDHGA10,

PCDHGB7, PCDHGA11, PCDHGA12, and PCDHGC3 of the PCDHG cluster genes, previously

discussed in context of Sotos syndrome alone. These genes are worth noting as they are

involved in neural development. The PCDHG cluster is broadly hypermethylated in Sotos, as

noted earlier (Figure 5C,D). In Arboleda-Tham syndrome, there is a small DMR intergenic to

most of the PCDHG genes in this cluster and positioned at the 5' end of PCDHGC3. In Weaver

syndrome there is a DMR with minor hypomethylation at the stretching from the same 5' end of

PCDHGC3 Arboleda-Tham that spans through to the shared 3' end of PCDHG genes. Few of

the other methods evaluated are able to identify this region of the PCDHG gene cluster in either

Arboleda-Tham syndrome or Weaver syndrome (Figure 3-30).

The overlapping DMRs and the genes with overlapping DMRs between Arboleda-Tham,

Sotos, and Weaver syndrome reveal a number of shared regions of differential methylation and

shared genes with patterns of differential methylation. CpGs in DMRs in any one syndrome are
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enriched in CpGs in DMRs of either of the other syndromes across all three pairs of syndromes,

Arboleda-Tham:Sotos, Arboleda-Tham:Weaver, Sotos:Weaver, as measured by the odds ratio.

However, these data are derived from different cell types (fibroblast vs blood) and exhibit

cell-type specific changes in addition to those caused by the genetic mutation. Together these

results suggest that while each syndrome has a distinct profile of differential methylation, there

is also significant overlap in regions mirroring shared phenotypic features.

Discussion

The key development of our new method, DMRScaler, is a substantial improvement over

existing methods in the ability to accurately identify the size of DMRs across the full range of

epigenetic scale.

Differential methylation analysis between sexes performed with DMRscaler showed our

algorithm could handle the full range of DMR features present in simulated and real-world

samples. Looking at the DMRs between XX and XY individuals, DMRscaler was able to identify

a small DMR 2.1 kb in length overlapping the autosomal gene TLE1 that had previously been

identified as differentially methylated between the sexes53, while also consolidating the

differential methylation of the X-chromosome into a single DMR 152.13 Mb in length, spanning

98% of the total length of the chromosome.

Additionally, DMRscaler provides the means for a hierarchical definition of a DMR that is

built through the iterative procedure of merging layers built from increasing window sizes. A

deeper analysis of the DMR spanning the X-chromosome showed that gaps in DMRs at lower

layers that were consolidated in the upper layers were significantly enriched in genes known to

escape X-inactivation, such as RPS4X 51,52, which is concordant with data showing that regions

escaping X-inactivation should have a similar epigenetic landscape between sexes 52. These

enrichment results show how DMRscaler, in addition to providing an intuitive representation of
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DMRs, also provides a mechanism for a hierarchical definition of DMRs that can be used to

investigate the structure of the methylation landscape across larger epigenomic features.

Together these behaviors of intuitive scaling and defining a hierarchical map of DMR features

allow DMRscaler to be used to achieve greater flexibility and more meaningful interpretation of

results in analyses of differential methylation than existing methods.

Finally, given our primary interest in leveraging this method for the smaller sample sizes

in rare-disease studies, we tested DMRscaler on datasets from patients with rare chromatin

modifier syndromes. Specimens that harbor known pathogenic mutations in chromatin modifier

genes often display regional changes to epigenetic features, such as DNA methylation state9,10.

Our study also explored three syndromes that are caused by pathogenic mutations in genes

that directly control histone modifications.

Arboleda-Tham Sydrome (MIM# 616268), also known as KAT6A syndrome, is a genetic

syndrome caused by mutations in the Lysine (K) acetyltransferase KAT6A characterized by

global developmental delay, intellectual disability, speech delay or absence and phenotypes of

variable expressivity such as congenital heart defects and gastrointestinal anomalies7,58. KAT6A

acetylates histones K3K9, H3K14, and H3K2359–61, but the genomic regions affected in

Arboleda-Tham syndrome have not been comprehensively studied. Previously, deletion of

KAT6A in model organisms has identified the HOX genes, including the HOXB cluster, as

regulatory targets of KAT6A60,62. Three DMRs identified here were identified by DMRscaler

spanning multiple genes of the HOXB cluster (Figure 3-23), which encompass 2 genes

(HOXB3, HOXB4) found in a KAT6A knockout mouse model to have shifted domains of

expression resulting in homeotic transformation of the axial skeleton 60. The ability to highlight

the extent of differential methylation beyond a single gene provides further context into the

epigenetic change that occurs in Arboleda-Tham syndrome.
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One limitation of our study is that cases are generally younger in age than the control

groups. Previous studies have identified global hypomethylation as associated with aging63,64.

For regions that are largely hypermethylated in Arboleda-Tham Syndrome patients relative to

controls, we cannot exclude this as a potential confounding factor in our analysis.

Weaver syndrome and Sotos syndrome are rare overgrowth syndromes that can be

difficult to distinguish without sequencing. They are caused by mutations in EZH265,66 and NSD1

gene55, respectively. Despite their common clinical phenotype of overgrowth, the regions of the

genome that are identified as differentially methylated largely diverge between these two

syndromes suggest distinct pathways to a common and complex phenotype. For Weaver

Syndrome, DMRscaler identified differential methylation over the HOXA cluster genes in

Weaver syndrome relative to controls. Genome-wide mapping of EZH2 binding domains shows

EZH2 binds the HOXA cluster67 and EZH2 overexpression in mantle cell lymphoma has been

associated with hypermethylation over the HOXA cluster68. The key improvement is that rather

than highlighting individual genes9 as differentially methylated, DMRscaler is able to

demonstrate the modular nature of the genetic regulation by highlighting the non-random spatial

relation of these features as a pair of DMRs spanning several genes each.

Additionally, DMRscaler identified a novel finding in the neighboring PCDHA, PCDHB,

and PCDHG clusters as broadly hypermethylated between Sotos syndrome patients relative to

controls. The protocadherin family genes are critical in cell-cell adhesion and involved in the

complex patterning of neural circuitry56. These same genes in the PCDHGA/B cluster were also

identified as hypermethylated in Down syndrome human cortex relative to control cortex

tissue69. From these results we can hypothesize that misregulation of the PCDH clusters in brain

development may contribute to the neurodevelopmental phenotype of Sotos syndrome.

Notably, we observed that between the two overgrowth syndromes, Sotos and Weaver

syndrome, the IGFR2 region including the INS and INS-IGFR2 genes was similarly differentially
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methylated. Loss of normal imprinting regulation of IGFR2 has been implicated in another

overgrowth syndrome, Beckwith-Wiedemann Syndrome (BWS)57. Whether this common

difference in DNA methylation proximal to the IGFR2 locus represents an epigenetic contributor

to the overgrowth phenotype or is a consequence of the overgrowth phenotype is worth further

investigation.

The majority of real-world methylation data is in the form of reduced representation

platforms that query CpGs in sites that are likely to play a role in gene regulation, such as

known enhancers and transcriptional start sites. While the distance between the sites are

variable on an array, our sex chromosome results demonstrate the ability of our method to call

established DMRs that vary dramatically in size on this reduced representation platform. Whole

genome bisulfite sequencing (WGBS) offers an alternative to array based technologies for

querying DNA methylation that offers more complete coverage of the genome. While WGBS is

technically and analytically challenging and remains prohibitively expensive for routine use,

DMRscaler is platform agnostic and time efficient on array based data, and so should be readily

portable to analysis of WGBS data. Due to the wider availability of array based DNA methylation

datasets, particularly for rare disease cohorts, we decided to test DMRscaler on array data and

have left validation on WGBS data as a future direction.

Conclusions

Here we have shown that DMRscaler is flexible yet robust in describing the scale of

DMR features from the local scale of individual promoters and CpG sites, to the DMR features

that represent chromosome level differences in methylation. All of the analyses described were

run using a shared parameter set for DMRscaler, which highlights the utility to researchers who

seek to explore these higher order epigenetic features while also describing the local changes

with known biological implication, such as changes in methylation overlapping the promoter of a
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gene. Importantly, DMRscaler serves as a proof of principle. The idea that important epigenetic

features exist beyond the scale of a single gene is not new, however, existing methods for DNA

methylation analysis do not capture this knowledge. Here DMRscaler proves that it is possible

to computationally capture this intuition, and in doing so reveal novel biological insights.
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Figures and Tables

Figure 3-1. Beta Distribution of methylation data from Illumina Infinium Human

Methylation450 Bead Chip 450 array. Beta value is the proportion of methylation at each CG

site.
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Figure 3-2: Outline of DMRscaler method. (A) Flowchart of decision tree for DMRscaler.

Starts with Beta matrix, with individual CpG as rows and samples as columns and Beta values

corresponding to methylation proportion, case-control labels, and a vector of window sizes in

increasing order. Wilcoxon test and permutations are used to assign significance to CpGs as

well as estimate false discovery rate FDR. The window scoring function is used with permutation

to rank and assign significance to windows. Adjacent significant windows are merged forming

the Next_Layer. For the first iteration, the returned Layer_1 is set to this Next_Layer, for

subsequent iterations the returned Layer_i is set to the result of integration of Next_Layer with

Prev_Layer. Integration of layers is described in 1C. Prev_Layer is updated to Layer_i before

proceeding to iteration i+1. After the largest window size layer is generated, a list is returned of

the results from each iteration of the algorithm. (B) Graphical description of algorithm. At the top
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shows representation of CpGs ordered by position and associated with a significance value.

Windows are laid over the ordered CpGs and selected if the window score is significant.

Adjacent windows are then merged. If a Prev_layer has been assigned, then integration occurs.

(C) Integration procedure. For each Next_Layer DMR, all overlapping Prev_Layer DMRs are

identified. A subtraction set is generated by individually subtracting each overlapping

Prev_Layer DMR from the Next_Layer DMR. Subtraction involves removing overlapping CpGs

from the Next_Layer. If all elements of the subtraction set are significant when rescored with the

window scoring function, then the Prev_Layer and Next_Layer regions are merged in the

Integrated_Layer, otherwise the Prev_Layer DMRs are used in the Integrated_Layer. This

procedure ensures that the broader Next_Layer DMRs are only included if no single Prev_Layer

DMR was responsible for the significance of the region identified in the Next_Layer.
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Figure 3-3: Test of FDR control from the CpG level FDR cutoff which is the p-value at which

the set FDR is achieved based on permutation, and the region FDR cutoff, which is the FDR

level set and determined by the Benjamini-Yekutieli procedure.
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Figure 3-4: Simulation of DMRs ranging in size between 1kb to 1Mb for comparison of

methods. (A) Graphical description of simulation design. First, samples are randomly assigned

to one of two groups. Second, non-overlapping regions of the genome are randomly selected to

be DMRs. Third, over selected DMRs one group has the β value of non-masked CpGs inflated

or deflated by Δβ. Next all differential methylation methods are run and relevant summary

statistics are recorded. This procedure is repeated a number of times to generate additional

data points. (B) Simulated DMR Widths v Called DMR Widths plotted on log10 scale. Pairs are

80



formed between simulated and called DMRs if there is any overlap between the two. (C)

Mapping Values plots. The mapping value is calculated for each simulated DMR and is either

the inverse of the number of simulated DMRs sharing an overlapping called DMR or else it is

the number of called DMRs overlapping the given simulated DMR, whichever is more extreme.

Log values > 0 imply multiple DMRs called per simulated DMR. Value < 0 imply multiple

simulated DMRs overlap single called DMR. Value = 0 implies one DMR called per DMR

simulated. The plotted line indicates the cumulative proportion of simulated DMRs up to the

given mapping value. (D) Feature level Precision-Recall Curves for each method, see methods

for details on calculation. (E) Time for each method to run on the simulated dataset across 5

runs.
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Figure 3-5: Simulated DMR width vs number of CpG probes. Plot shows distribution of CpG

probes per simulated DMR against the simulated DMR width across all simulations run.

Regression line and correlation included in upper, left corner of plot.
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Figure 3-6: comb-p parameter testing: (A) Mapping Values plots. Log values > 0 imply

multiple DMRs called per simulated DMR. Value < 0 imply multiple simulated DMRs overlap

single called DMR. Value = 0 implies one DMR called per DMR simulated. The plotted line

indicates the cumulative proportion of simulated DMRs up to the given mapping value. (B)

Simulated DMR Widths v Called DMR Widths plotted on log10 scale.(C) Feature level
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precision-recall curves, see methods for details on calculation. (D) basepair level precision recall

curves (E) time for each parameter set run on the simulated dataset across 3 runs.
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Figure 3-7: Cumulative Probability of difference in beta values between neighboring CG

methylation. Y axis is the difference in Beta between neighboring CGs (CG_i and CG_i+1).

E.g. 70% of adjacent measured CGs that are between 1000-5000 bp apart have a difference in

beta value less than 0.40, said another way, 30% have a difference in beta greater than 0.4.
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Figure 3-8: Neighboring CG methylation correlation. Plotted is beta value from 0-1, for CG_i

on the x-axis and CG_i+1 on the y-axis. Neighboring CGs 1-10 bp apart and 10-100 bp apart

have strong, but not perfect correlation (Pearson's r = 0.98, 0.96), those 100-1000 bp apart

have modest correlation (Pearson's r = 0.8). At 1-10kb distance the correlation becomes weak

(Pearson's r = 0.05).
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Figure 3-9: Wilcox - T-Test pearson's correlation (pearson's r) for each CG. From

Arboleda-Tham Syndrome data, case-control labels determine group.
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Figure 3-10: Simulated vs called DMR width for varied noise and delta_beta parameters.

Simulated DMR Widths v Called DMR Widths plotted on log10 scale. Pairs are formed between

simulated and called DMRs if there is any overlap between the two.
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Figure 3-11: Mapping Values plots for varied noise and delta_beta parameters. The

mapping value is calculated for each simulated DMR and is either the inverse of the number of

simulated DMRs sharing an overlapping called DMR or else it is the number of called DMRs

overlapping the given simulated DMR, whichever is more extreme. Log values > 0 imply multiple

DMRs called per simulated DMR. Value < 0 imply multiple simulated DMRs overlap single called

89



DMR. Value = 0 implies one DMR called per DMR simulated. The plotted line indicates the

cumulative proportion of simulated DMRs up to the given mapping value.
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Figure 3-12: Precision and recall curves with varied simulation parameters for delta_beta

and noise for each method, see methods for details on calculation.
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Figure 3-13. Simulated vs Called Widths with marginal density plots for noise = 50% and

delta_beta = 0.2
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Figure 3-14: Testing variable lambda and C parameters on output from sex analysis for

DMRcate. Only showing autosomal DMRs.DMRs called using a subset consisting of 8 XY and 8

XX controls.
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Figure 3-15: Simulation result for DMRscaler run on T-test derived p-values. Top left:

Simulated vs called DMR width for varied noise and delta_beta parameters. Pairs are formed

between simulated and called DMRs if there is any overlap between the two. Top right: The

mapping value for each simulated DMR is either the inverse of the number of simulated DMRs

94



sharing an overlapping called DMR or the number of called DMRs overlapping the given

simulated DMR, whichever is more extreme. Bottom: Precision and recall curves with varied

simulation parameters for delta_beta and noise for each method, see methods for details on

calculation.
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Figure 3-16: Performance measured at each layer of DMRscaler algorithm Top left:

Precision and recall curves for each layer, see methods for details on calculation. Middle: The

mapping value for each simulated DMR is either the inverse of the number of simulated DMRs

sharing an overlapping called DMR or the number of called DMRs overlapping the given

simulated DMR, whichever is more extreme. Right: Simulated vs called DMR width. Pairs are

formed between simulated and called DMRs if there is any overlap between the two.
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Figure 3-17: Differential Methylation Analysis Between XX and XY individuals. (A) Hilbert

Curves of chrX and chr1. Hilbert curve is constructed by ordering CpGs by their position along

the given chromosome. Red points are differentially methylated CpGs with FDR < 0.1. Point

size scaled to max significance level (-log10 p-value). (B) Diagonal network plots showing
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hierarchical relation of DMRs called by DMRscaler in Layers 4, 3, 2, and 1 (equivalent to 32 16,

8, and 4 Adj. CpG Layers respectively) for X-chromosome. (C) ChrX:71.4-71.6Mb. GVIZ track

stack plot. Top track shows mean β value per group, next track shows Δβ, where Δβ = βfemale -

βmale . Below the gene model track is the DMR track, highlighting the regions called as a DMR

at each result layer from DMRscaler (Layers 1, 2, 3, 4, 5 are equivalent to 4, 8, 16, 32, 64 Adj.

CpG layers) and from each competing method. (D) Chr9:84.302-84.306Mb. Tracks same as 3C.
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Figure 3-18: Radial Network Showing hierarchical structure of DMRs called across all

layers of the DMRscaler algorithm from layer 1 (4 adjacent CG windows) at the edges nodes

to layer 5 (64 CG windows) in the inner ring. Note, all are connected to the virtual root node

which is only used for plotting purposes here. Each node is an individual DMR called.

Coordinates for each DMR are printed at the earliest layer where that DMR appears. Unlabelled

nodes are those that did not change from the previous layer.
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Figure 3-19: Sex analysis DMR width percentile plot. DMRs Called by each method for sex

analysis ordered by dmr width.
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Figure 3-20: Distribution of DMR widths for each method called in XX vs XY sex

chromosome analysis.
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Figure 3-21: Sex analysis. Supplement to Figure 3-17C (left), 3-17D (right). Adjacency plot

of CGs overlapping specified regions. Top panel is significance at individual CG level. Beta

plot shows mean beta value for each group. Delta beta below shows mean beta value for each

group relative to female values. Bottom plot shows in grey bars which layer or method a DMR

was called in and from each competing method.
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Figure 3-22: Arboleda-Tham Syndrome analysis DMR width percentile plot. DMRs Called

by each method for Arboleda-Tham Syndrome analysis ordered by dmr width.
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Figure 3-23: Differential Methylation Analysis in Arboleda-Tham Syndrome. (A) Hilbert

curve of CpGs from chr17, outlined is the region corresponding to Chr17:46.59-46.73Mb, the

HOXB cluster. CpGs with FDR < 0.1 are highlighted red. Point size is scaled to maximum

significance value. (B) Chr17:46.59-46.73Mb. HOXB cluster. GVIZ track stack plot. Top track
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shows mean β value per group, next track shows Δβ, where Δβ = βControl - βArboleda-Tham.

Below the gene model track is the DMR track, highlighting the regions called as a DMR at each

result layer from DMRscaler and from each competing method. (C) Chr2:81.5-84.5 Mb. Design

same as 4A. (D) Chr2:81.5-84.5 Mb. Tracks same as 4B.
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Figure 3-24: Arboleda-Tham analysis. Supplement to Figure 3-23B (left), 3-23D (right).

Adjacency plot of CGs overlapping specified regions. Top panel is significance at individual

CpG level. Beta plot shows mean beta value for each group. Delta beta below shows mean beta

value for each group relative to female values. Bottom plot shows in grey bars which layer or

method a DMR was called in and from each competing method.
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Figure 3-25: Weaver syndrome analysis DMR width percentile plot. DMRs Called by each

method for Weaver syndrome analysis ordered by dmr width.
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Figure 3-26: Differential Methylation Analysis in Weaver (A,B,C) and Sotos

Syndrome (D,E,F). (A) Hilbert curve of CpGs from chr7, outlined is the region
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corresponding to Chr7:27.1-27.3Mb, the HOXA cluster. CpGs with FDR < 0.1 are

highlighted red. Point size is scaled to maximum significance value. (B)

Chr7:27.1-27.3Mb. HOXA cluster. GVIZ track stack plot. Top track shows mean β value

per group, next track shows Δβ, where Δβ = βControl - βWeaver. Below the gene model track

is the DMR track, highlighting the regions called as a DMR at each result layer from

DMRscaler and from each competing method. (C) Chr5:140.1-140.8Mb over the PCDH

clusters. Design same as 4A. (D) .Chr5:140.1-140.8Mb over the PCDH clusters. Tracks

same as 4B. except that Δβ = βControl - βSotos
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Figure 3-27: Weaver (left) and Sotos (right) analyses. Supplement to Figure 3-26B (left),

3-26D (right). Adjacency plot of CGs overlapping specified regions. Top panel is significance at

individual CG level. Beta plot shows mean beta value for each group. Delta beta below shows

mean beta value for each group relative to female values. Bottom plot shows in grey bars which

layer or method a DMR was called in and from each competing method..
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Figure 3-28: Sotos syndrome analysis DMR width percentile plot. DMRs Called by each

method for Sotos syndrome analysis ordered by dmr width.
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Figure 3-29: INS, IGF2, INS-IGF2 region. Overlap between the Sotos and Weaver Syndromes,

two overgrowth syndromes, identified a region proximal to and overlapping INS, IGF2, and

INS-IGF2. Top track shows -log10(p) significance value for the dataset specified at left, next

track shows Δβ, where Δβ = βCase- βControl. Below the gene model track is the DMR track,

highlighting the regions called as a DMR at each result layer from DMRscaler and from each

competing method.
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Figure 3-30 : PCDHG gene cluster GVIZ plot. PCDHG genes were identified as genes

overlapped by some DMR in each of the syndrome datasets analyzed. Within each box, top

track is -log10(p) from Wilcox test of beta values between cases and controls.Middle track
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shows -log10(p) significance value for the dataset specified at left. Next track shows Δβ, where

Δβ = βCase- βControl. Below the gene model track is the DMR track, highlighting the regions called

as a DMR at each result layer from DMRscaler and from each competing method.
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Arboleda-Tham

samples genomic position

coding change

(NM_006766.3)

protein change

(NP_006757.2)

Patient 1 chr8:g.41792353G>A c.3385C>T p.R1129*

Patient 2 chr8:g.41795056G>A c.3070C>T p.R1024*

Patient 3 chr8:g.41792353G>A c.3385C>T p.R1129*

Patient 4 chr8:g.41791630C>A c.4108G>T p.E1370*

Patient 5 chr8:g.41834753G>T c.1136C>G p.S379*

Patient 6

chr8:g.41794839_41794

840insG c.3286_3287insC p.C1096Sfs*6

Patient 7 chr8:g.41791376dupC c.4362dupG p.T1455Dfs*9

Patient 8 chr8:g.41791085A>C c.4653T>G p.S1551R

Table 3-1: Arboleda-Tham Syndrome Patient Mutations
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DMRscaler bumphunter comb-p DMRcate

Individual
CpG

significance

NA (takes p-value
as input)

T-Test NA (takes
p-value as

input)

T-Test, using
M transformed
Beta values 

DMRs
definition

Iterative enrichment
testing for

significant CpGs
within window.

Consecutive
CpGs above
significance
threshold

Groups
significant CGs
if within window

or window
interval

Gaussian
smoothed

regions above
significance
threshold 

DMR
significance

Hypergeometric
Test 

Stouffer's
Method

Stouffer-Liptak Permutation
Test

Parameters
controlling
size (default)

window_size 
(4,8,16,32,64 adj

CpGs)

maxGap (500
bp)

dist, step (no
default)

lambda (1 kb),
C (2)

Table 3-2 : Comparison of Differential Methylation Methods
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method Δβ noise

Proportion
CGs Diff

Methylated

Precision
= 1-FDR
(±1 SD)

Recall
(±1
SD)

Specificity
(±1 SD)

F1
(±1 SD)

MCC
(±1
SD)

AUCPR
(±1 SD)

bumphunter 0.1 0 0.56(±0.1) 0.56(±0.1)
0.06(±0

.03) 1(±6e-04)
0.11(±0.0

4)
0.14(±0

.04)
0.033(±0

.02)

comb-p 0.1 0 0.77(±0.1) 0.71(±0.1)
0.31(±0

.1)
0.98(±0.01

)
0.41(±0.

1)
0.45(±0

.09)
0.255(±0

.1)

DMRcate 0.1 0 0.78(±0.2) 0.77(±0.2)
0.67(±0

.1)
0.95(±0.05

)
0.69(±0.

07)
0.68(±0

.06)
0.58(±0.

07)

DMRscaler 0.1 0 0.99(±0.02) 0.98(±0.02)
0.89(±0
.03) 1(±0.006)

0.94(±0.
02)

0.93(±0
.02)

0.885(±0
.03)

bumphunter 0.2 0 0.76(±0.2) 0.76(±0.2)
0.5(±0.

03) 1(±8e-04)
0.59(±0.

05)
0.36(±0

.04)
0.409(±0

.08)

comb-p 0.2 0 0.64(±0.3) 0.61(±0.3)
0.2(±0.

1)
0.97(±0.00

4) 0.3(±0.2)
0.33(±0

.2)
0.161(±0

.1)

DMRcate 0.2 0 0.77(±0.02) 0.77(±0.03)
0.82(±0

.03)
0.92(±0.01

)
0.8(±0.0

09)
0.76(±0

.01)
0.695(±0

.03)

DMRscaler 0.2 0 0.99(±0.008)
0.99(±0.00

9)
0.94(±0
.02)

0.99(±0.00
6)

0.96(±0.
01)

0.96(±0
.01)

0.932(±0
.02)

bumphunter 0.4 0 0.89(±0.1) 0.89(±0.1)
0.51(±0

.02) 1(±4e-04)
0.65(±0.

04)
0.35(±0

.02)
0.507(±0

.03)

comb-p 0.4 0 0.78(±0.05) 0.71(±0.07)
0.29(±0

.1)
0.98(±0.00

8)
0.4(±0.0

8)
0.44(±0

.06)
0.239(±0

.08)

DMRcate 0.4 0 0.81(±0.03) 0.82(±0.04)
0.81(±0

.08)
0.94(±0.03

)
0.81(±0.

03)
0.78(±0

.02)
0.704(±0

.06)

DMRscaler 0.4 0 0.99(±0.008)
0.99(±0.00

8)
0.97(±0
.02)

0.99(±0.00
7)

0.98(±0.
009)

0.97(±0
.01)

0.956(±0
.02)

bumphunter 0.1 0.25 0.35(±0.2) 0.35(±0.2)
0.012(±
0.01) 1(±6e-04)

0.023(±0
.02)

0.053(±
0.03)

0.003(±0
.003)

comb-p 0.1 0.25 0.68(±0.02) 0.83(±0.02)
0.36(±0

.1)
0.98(±0.00

6) 0.5(±0.1)
0.53(±0

.08)
0.337(±0

.1)

DMRcate 0.1 0.25 0.71(±0.03) 0.88(±0.03)
0.54(±0

.06)
0.96(±0.03

)
0.67(±0.

04)
0.67(±0

.02)
0.508(±0

.04)

DMRscaler 0.1 0.25 0.83(±0.007)
0.99(±0.00

8)
0.86(±0
.05)

0.99(±0.00
6)

0.92(±0.
03)

0.92(±0
.03)

0.848(±0
.06)

bumphunter 0.2 0.25 0.87(±0.1) 0.87(±0.1)
0.32(±0

.03) 1(±9e-04)
0.47(±0.

03)
0.24(±0

.03)
0.268(±0

.05)
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comb-p 0.2 0.25 0.49(±0.3) 0.59(±0.3)
0.26(±0

.1)
0.97(±0.01

)
0.35(±0.

2)
0.37(±0

.2)
0.226(±0

.1)

DMRcate 0.2 0.25 0.66(±0.03) 0.82(±0.04)
0.76(±0

.07)
0.94(±0.03

)
0.79(±0.

03)
0.76(±0

.02)
0.672(±0

.05)

DMRscaler 0.2 0.25 0.82(±0.02) 0.97(±0.02)
0.85(±0
.03) 1(±0.004)

0.91(±0.
02)

0.91(±0
.02)

0.841(±0
.02)

bumphunter 0.4 0.25 0.96(±0.05) 0.96(±0.05)
0.32(±0

.01) 1(±7e-04)
0.48(±0.

01)
0.19(±0

.02)
0.32(±0.

01)

comb-p 0.4 0.25 0.65(±0.04) 0.79(±0.06)
0.25(±0

.09)
0.98(±0.01

)
0.37(±0.

09)
0.43(±0

.05)
0.215(±0

.08)

DMRcate 0.4 0.25 0.66(±0.03) 0.82(±0.03)
0.8(±0.

09)
0.93(±0.04

)
0.8(±0.0

4)
0.78(±0

.02)
0.682(±0

.06)

DMRscaler 0.4 0.25 0.83(±0.008)
0.99(±0.00

6)
0.85(±0
.03)

0.99(±0.00
6)

0.92(±0.
02)

0.92(±0
.02)

0.844(±0
.03)

bumphunter 0.1 0.5 0.15(±0.1) 0.16(±0.1)
0.004(±
0.001) 1(±8e-04)

0.007(±0
.002)

0.017(±
0.007)

0.001(±3
e-04)

comb-p 0.1 0.5 0.5(±0.07) 0.83(±0.1)
0.32(±0

.04)
0.97(±0.01

)
0.46(±0.

05)
0.5(±0.

05)
0.288(±0

.07)

DMRcate 0.1 0.5 0.55(±0.02) 0.91(±0.02)
0.41(±0

.05)
0.99(±0.01

)
0.56(±0.

05)
0.6(±0.

03)
0.39(±0.

05)

DMRscaler 0.1 0.5 0.63(±0.02) 1(±0.004)
0.76(±0
.01)

0.99(±0.00
4)

0.86(±0.
008)

0.86(±0
.008)

0.754(±0
.01)

bumphunter 0.2 0.5 0.93(±0.05) 0.93(±0.05)
0.18(±0

.01) 1(±4e-04)
0.31(±0.

02)
0.17(±0

.01)
0.169(±0

.01)

comb-p 0.2 0.5 0.52(±0.02) 0.86(±0.02)
0.35(±0

.04)
0.98(±0.00

7)
0.49(±0.

03)
0.54(±0

.02)
0.33(±0.

03)

DMRcate 0.2 0.5 0.52(±0.02) 0.9(±0.04)
0.59(±0

.1)
0.98(±0.03

)
0.7(±0.0

6)
0.71(±0

.04)
0.565(±0

.09)

DMRscaler 0.2 0.5 0.64(±0.02)
0.99(±0.00

8)
0.81(±0
.02)

0.99(±0.00
6)

0.89(±0.
01)

0.89(±0
.01)

0.797(±0
.02)

bumphunter 0.4 0.5 0.9(±0.08) 0.9(±0.08)
0.17(±0

.02) 1(±7e-04)
0.29(±0.

02)
0.16(±0

.02)
0.173(±0

.01)

comb-p 0.4 0.5 0.51(±0.04) 0.85(±0.03)
0.37(±0

.04)
0.99(±0.01

)
0.51(±0.

04)
0.55(±0

.03)
0.351(±0

.04)

DMRcate 0.4 0.5 0.5(±0.02) 0.85(±0.03)
0.74(±0

.09)
0.96(±0.02

)
0.79(±0.

04)
0.77(±0

.03)
0.679(±0

.06)

DMRscaler 0.4 0.5 0.63(±0.01)
0.99(±0.00

9)
0.79(±0
.009)

0.99(±0.00
7)

0.88(±0.
008)

0.88(±0
.009)

0.78(±0.
01)
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Table 3-3: Feature level evaluation of methods in simulation on proportion of CpGs

differentially methylated in DMRs, precision, recall, specificity, F1, RCC, and AUCPR metrics on

several choices of noise and Δβ parameters. Noise is the proportion of CpGs within a simulated

DMR that are not differentially methylated, Δβ is the difference in the proportion of methylation

introduced at non-noise CpGs within the simulated DMR region. Shown are the mean values

across five replicates for each measure and the standard deviation. Bolded are the best

performing method for the given combination of noise and Δβ parameters.
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Sex Analysis DMR Summary Table

Method

Chromosome X Autosomes

#
DMRs

Mean
DMR
width

Median
DMR
width

%
total
width

#
DMRs

Mean
DMR
width

Median
DMR
width

%
total
width

DMRscaler
Layer 1:
4 adj CpGs 694 67.91 kb 6.29 kb 30% 18 616 bp 398 bp

0.00038
%

Layer 2:
8 adj CpGs 246

381.32
kb 114.54 kb 61% 19 935 bp 494 bp

0.00062
%

Layer 3:
16 adj CpGs 20 7.30 Mb 1.54 Mb 94% 21 4.73 kb 587 bp

0.0035
%

Layer 4:
32 adj CpGs 2

75.80
Mb 75.80 Mb 98% 23 19.59 kb 624 bp 0.016%

Layer 5:
64 adj CpGs 1

152.11
Mb 152.11 Mb 98% 22 20.32 kb 606 bp 0.016%

bumphunter
Default:
maxGap =
1kb kb 1258 527 bp 238 bp 0.43% 32 67 bp 1 bp

0.00007
5%

maxGap = 1
Mb 1162 6.76 kb 531 bp 5.1% 32 611 bp 1 bp

0.00068
%

comb-p

dist = 1 kb,
step= 100
bp 2390 567 bp 2 bp 0.87% 580 330 bp 292 bp

0.0067
%

dist = 1 Mb,
step = 100
kb 19 6.13 Mb 3.15 Mb 75% 29 140.59 kb

127.23
kb 0.14%

DMRcate
Default:
lambda =
1kb, C=2 1178 1.30 kb 1.09 kb 0.99% 826 658 bp 558 bp 0.019%
Lambda = 1
Mb,
C = 2000 15 8.53 Mb 3.95 Mb 83.0% 197 7.63 kb 676 bp 0.052%

Table 3-4 : Sex Analysis DMR Summary Table
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Method
Odds Ratio (95% CI) p-value (Fisher's

Exact)
DMRscaler

Layer 1: 4 adj CpGs 7.57 (6.38-8.99) 1.04e-134

Layer 2: 8 adj CpGs 7.24 (6.07-8.65) 5.93e-100

Layer 3: 16 adj CpGs 51.99 (30.38-90.33) 4.34e-77

Layer 4: 32 adj CpGs 160.44 (25.42-6,396.92) 6.59e-18

Layer 5: 64 adj CpGs 0 (0-319.59) 1

bumphunter

Default: maxGap = 1kb 14 (11.18-17.61) 7.00E-185

maxGap = 1 Mb 15 (11.95-18.94) 5.36E-193

comb-p

dist = 1 kb, step= 100 bp 2.07 (1.63-2.62) 5.72E-09

dist = 1 Mb, step = 100 kb 0 (0-Inf) 1

DMRcate

Default: lambda = 1kb, C=2 1.27 (1.03-1.57) 0.023608

Lambda = 1 Mb, C = 2000 0 (0-43.86) 1

Table 3-5: Enrichment test for association between genes silenced by X-inactivation and

DMRs, and genes that escape from X-inactivation and gaps between DMRs. Only CpGs on

the X-chromosome overlapping genes are used in the enrichment test.
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Table 3-6: Summary of Arboleda-Tham analysis results
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Table 3-7: Summary of Weaver analysis results
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Table 3-8: Summary of Sotos analysis results
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Syndrome Pair Layer1

CGs in DMR

Layer2

CGs in

DMR

Layer3

CGs in DMR

Layer4

CGs in DMR

Layer5

CGs in

DMR

Arboleda-Tham 63 789 1472 3478 9231

Sotos 2671 52004 76386 177375 343144

Weaver 429 874 2101 4542 7797

Arboleda-Tham:

Sotos

0 139 310 1351 6827

Arboleda-Tham:

Weaver

0 14 18 143 424

Sotos:Weaver 38 333 601 2179 6308

Arboleda-Tham:

Sotos : Weaver

0 5 25 93 469

Table 3-9 : Raw Count of Measured CGs in DMRs called by DMRscaler : Layer1,2,3,4,5 are

equivalent to 4,8,16,32,64 Adjacent CG Layers Respectively. CGs in DMR in each syndrome at

each layer. Where multiple syndromes are listed, count represents CGs overlapped by some

DMR in measured in each method using DMRscaler. Only the 425,733 Measured CGs present

on both the Illumina 450k array, used for Sotos and Weaver, and the Illumina EPIC 850k array

were used for overlap analysis.

125



Syndrome

Pair

Layer1

OR

(OR 95%

CI)

Layer2

OR

(OR 95% CI)

Layer3

OR

(OR 95%

CI)

Layer4

OR

(OR 95%

CI)

Layer5

OR

(OR 95%

CI)

Arboleda-Th

am: Sotos no overlap

1.72

(1.43-2.06)

p=5.6e-8

1.37

(1.21-1.55)

p=1.8e-6

1.04

(0.97-1.11)

p=0.26

1.03

(0.98-1.08)

p=0.20

Arboleda-Th

am:Weaver

no overlap 9.94

(5.83-16.94)

p=4.7e-10

2.8

(1.76-4.47)

p=1.4e-4

4.58

(3.86-5.43)

p=1.5e-46

3.00

(2.71-3.31)

p=3.1e-77

Sotos :

Weaver

17.16

(12.27-24.0)

p=1.9e-32

4.95

(4.32-5.67)

p=1.3e-95

2.06

(1.88-2.27)

p=3.1e-45

1.52

(1.43-1.61)

p=1.0e-43

1.55

(1.47-1.64)

p=4.6e-56

Table 3-10 : Odds Ratio (OR) for CGs found in DMR at each Layer of DMRscaler between

all pairs of syndromes : Layer1,2,3,4,5 are equivalent to 4,8,16,32,64 Adjacent CG Layers

respectively. Odds ratios (OR) are computed by labeling each measured CG as either in a DMR

or not in a DMR for each syndrome to create a 2x2 contingency table to perform the odds ratio

test on. Counts in Table 3-9. An confidence interval (CI) of the OR overlapping 1 implies no

significant enrichment of CGs from one syndrome in the other.
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CHAPTER 4

Balancing the Transcriptome: Leveraging Sample Similarity To Improve Measures of Gene

Specificity
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Abstract

The spatial and temporal domain of a gene's expression can range from ubiquitous to highly

specific. Quantifying the degree to which this expression is unique to a specific tissue or

developmental timepoint can provide insight into the etiology of genetic diseases. However,

quantifying specificity remains challenging as measures of specificity are sensitive to similarity

between samples in the sample set. For example, in the Gene-Tissue Expression project

(GTEx), brain subregions are overrepresented at 13 of 54 (24%) unique tissues sampled. In this

dataset, existing specificity measures have a decreased ability to identify genes specific to the

brain relative to other organs. To solve this problem, we leverage sample similarity information

to weight samples such that overrepresented tissues do not have an outsized effect on

specificity estimates. We test this reweighting procedure on 4 measures of specificity, Z-score,

Tau, Tsi, and Gini in the GTEx data and in single cell datasets for zebrafish and mouse. For all

of these measures, incorporating sample similarity information to weight samples results in

greater stability of sets of genes called as specific and decreases the overall variance in the

change of specificity estimates as sample sets become more unbalanced. Further, the genes

with the largest improvement in their specificity estimate's stability are those with functions

related to the overrepresented sample types. Our results demonstrate that incorporating

similarity information improves specificity estimates' stability to the choice of the sample set

used to define the transcriptome, providing more robust and reproducible measures of

specificity for downstream analyses.
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Introduction

The transcriptome is the set of potential or realized states of gene expression in a cell,

tissue, or organism. In human adults there are estimated to be over 400 distinct cell-types that

each develop along a unique developmental trajectory 1. Add to this the diversity of progenitor

cells and intermediate transition cell-states that occur earlier in development and one begins to

appreciate the complexity of information relayed through the transcriptome. To guide

development through this diversity of cell-types and states requires the ubiquitous expression of

genes with global functions for cell proliferation and survival as well as the precise expression of

genes that control specialized developmental programs. The full extent of a gene's functions are

not known a priori, so investigating spatial and developmental patterns of gene expression, i.e

the context of expression, can provide insight into the gene's function. This context of gene

expression can partially explain the phenotype that results when a given gene is mutated 2–5 or

be used to investigate whether the gene is involved in the specialized functions of a given cell,

tissue, or developmental event and what those specialized functions might be 6–9. A useful

summary of the degree to which a gene's expression leans towards ubiquity or specialization is

the aim of gene expression specificity measurements.

While methods for quantifying gene expression are well established 10, measuring the

specificity of gene expression requires addressing additional challenges (for a review of current

methods of measuring specificity of gene expression see 11). We address here one emergent

challenge associated with the choice of a transcriptomic data sample set on which to measure

specificity. Often, tissues and organs can be subdivided in numerous ways, such as dividing the

brain into distinct functional domains or along different developmental axes, which often include

gradients of expression changes rather than discrete transition points. In the brain, the

transcription profiles of these subregions tend to be highly correlated with one another reflecting

the common functions and developmental origins of these subregions 12. This leads to a
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problem, however, as measures of specificity are sensitive to the sampling depth into any

particular organ system or timepoint 11. A consequence of this sensitivity is that the ability of

measures of gene specificity to detect genes specific to regions or timepoints is diminished if

they are highly similar to other regions or timepoints that are overrepresented in the sample set.

In the case of the brain, this means that sampling multiple brain subregions decreases a

specificity measure's ability to detect brain-specific genes.

One potential means of alleviating the problems associated with adding sampling depth

to a particular organ system when building a representative sample set is by using sample

similarity information to weight samples to adjust each sample's contribution to the measure of

specificity. To establish the intuition for this, consider a sample set that includes biological

replicates. Biological replicates of the same sample type tend to have very high similarity and so

the weight of any given replicate should be inversely proportional to the number of replicates

coming from the same sample type. By extension, the weight of individual samples from

different regions of a common organ should be inversely related to the number of regions

sampled from that organ. Collectively these examples point to the intuition that the weight

assigned to a sample should be inversely related to its similarity to the other samples in the

sample set suggesting that sample similarity is a natural metric on which to assign sample

weight for measures such as specificity.

Presently, no existing methods for measuring gene specificity take into account the

similarity between samples in the sample set used to define the transcriptome. This leads to

instability in existing measures of specificity when called on datasets that vary in the depth of

sampling of particular biological contexts. Here we propose a generalizable procedure for

integrating sample similarity information with measures of gene specificity and demonstrate how

this natural integration of sample similarity information stabilizes specificity measures.
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Results

Description of problem and proposed solution

The similarity between cells and tissues can distort measures of specificity for gene

expression. A balanced sample set where all sampled tissues share nearly the same level of

similarity with one another facilitates specificity measures that match intuition (Figure 4-1A).

However, balancing the sample set by considering only tissues that are at approximately the

same level of similarity occurs at the expense of deeper sampling of individual tissue

subregions. Adding depth to one sample type (e.g. brain), without an equivalent addition of

sample types for other organs can substantially change the measured degree of specificity of

gene expression. This problem is demonstrated in the toy example in Figure 4-1A, where the

brain marker OLIG1 has specificity comparable to other marker genes, such as PRSS2 in the

pancreas and MYH6 in the heart, when the sample set is relatively balanced, but when the

sample set is expanded to include samples from additional brain subregions OLIG1 ceases to

appear specific to any brain tissues.

For the present study, we compare several measures of gene specificity that are

amenable to incorporation of sample weights. These measures are Z-score 13, Tau 14, Tsi 15, and

Gini 16,17 which were previously compared in a benchmarking study of measures of gene

specificity 11 (see Methods for details). We chose to look at these several measures of specificity

to test whether incorporation of sample similarity information to measures of gene specificity

could improve a variety of different measures. Throughout the manuscript, we refer to raw

specificity measures that do not incorporate sample similarity information as flat measures and

measures that do incorporate sample similarity information via weights as weighted measures.

To test the effect of incorporating sample similarity derived weights on measures of

specificity, we used three RNA-seq datasets including a human tissue sample set from the

Gene-Tissue Expression (GTEx) project 18, and single cell datasets from zebrafish 19 and mouse
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20. From GTEx, the matrix of the median gene expression values across all individuals for each

of 54 unique tissue types was used. Brain-region samples are overrepresented in the GTEX

dataset, making up 24% (13/54) of the different available tissue samples. This enabled us to

explore how specificity values varied when measured on balanced sample sets where only one

tissue from each organ system was included compared to unbalanced sample sets where there

is an overrepresentation of brain regions. The zebrafish single cell dataset comes from 19 and

includes 220 unique cell clusters from four developmental time points, subsets of which are

used for our analyses. The mouse single cell dataset comes from 20 and includes cells from 98

major cell clusters representing over 50 mouse tissues and cultures, subsets of these clusters

were used for our analyses. As a note, we use the term sample throughout to refer to either

unique tissues or cell clusters as opposed to biological or technical replicates.

To test the effects of measuring specificity on an unbalanced sample set we looked first

at the correlation of specificity values measured on sample sets that were either balanced or

unbalanced with respect to the set of tissues or cell clusters included. In the balanced GTEx

subsets, we include only one brain subregion in the sample set compared to the unbalanced

GTEx subset that includes all brain-region samples in the sample set. The correlation between

balanced and unbalanced sample sets was repeated for each choice of brain subregion for the

balanced sample set. All non-brain samples were included in both the balanced and unbalanced

sample sets. Genes with Z-score greater than 2 were considered specific with higher values

indicating greater specificity. Tau, Tsi, and Gini measures are all on the scale between 0 and 1,

where 0 indicates non-specific expression and 1 indicates the maximum specificity in the tissue

or cell type with the highest overall level of expression for that gene. Overall, we observe a

strong correlation (R > 0.9) between specificity values calculated using the balanced sample set

and those calculated using the unbalanced sample set for all measures of gene specificity with

the highest average correlation observed for Gini R = 0.991 (95% CI: 0.991-0.991, one sample
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t-test) and lowest for Tsi R = 0.939 (95% CI: 0.938-0.940, one sample t-test). For Z-score the

average correlation was R = 0.962 (95% CI: 0.961-0.963, one sample t-test), and for Tau, R =

0.989 (95% CI: 0.989- 0.989, one sample t-test). A representative example of the specificity

scores measured on the balanced and unbalanced sample sets is shown for each measure in

Figure 4-1B. Relatively strong correlations were similarly found in the single cell datasets.

However, the genes with the largest difference in specificity scores measured between

the balanced and unbalanced sample sets are not a random subset of genes. For example, in

the GTEx dataset, the top 1% of genes with the greatest positive differences in each specificity

score between the balanced and unbalanced sample sets (i.e. where specificity in the balanced

sample set is greater than specificity in the unbalanced sample set) are highlighted in Figure

4-2 in red and represent genes that are the most variable as the sample set becomes

unbalanced. Gene ontology enrichment analysis performed on these genes showed substantial

enrichment in genes that function in brain related processes (Figure 4-2). There was less

consistency in terms associated with the genes where specificity in the balanced sample set

was set less than specificity in the unbalanced sample set across measures (Figure 4-3). The

enrichment of brain related terms in the top 1% of genes with the greatest positive difference

between the balanced and unbalanced sample sets highlights how overrepresentation of

particular sample types can introduce systematic biases into measures of specificity reducing

the power of these measures to identify genes specific to the overrepresented sample type.

To address this problem, we decided to leverage sample similarity information to

reweight samples in the sample set defining the transcriptome such that similar samples tend to

share their weight while more distinct samples tend to retain more of their full weight. The

general workflow proposed, which we call the Specificity-Similarity Integration (SSI) procedure,

is given in Figure 4-1C and discussed in detail in the Methods. In the GTEx dataset, we

measured tissue-tissue similarity using each tissue's respective gene expression profile and
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found brain samples clustered together with a high degree of intragroup similarity, though

cerebellar samples had a lesser degree of similarity than other brain regions (Figure 4-4).

Following the SSI procedure proposed in Figure 4-1C, this sample similarity information was

used to generate a sample similarity (or dissimilarity) tree on which Equation 1 (adapted from 21)

was applied to assign a weight to each sample. After incorporating sample similarity information

into weights, brain subregions were found to have lower weights compared to more distinctive

tissues, such as testis and pituitary (Figure 4-5).

We proceeded to incorporate these weights to each of the specificity measures and

compared the correlation of specificity values measured on the balanced and unbalanced

sample sets to the correlations obtained before weights were applied. For this, each choice of a

single brain subregion was used to generate a distinct balanced sample set (n=13) that included

a single brain subregion and all non-brain samples, using these 13 replicates we tested whether

using the weighted specificity measure resulted in a stronger correlation between balanced and

unbalanced sample sets. For all of the specificity measures tested, the correlation between the

balanced and unbalanced sample sets increased when the weighting approach was applied

compared to when weights were not applied. P(R Z-scoreweighted ≤ R Z-scoreflat ) = 2.2e-16; P(R

Tauweighted ≤ R Tauflat ) = 2.2e-16; P(R Tsiweighted ≤ R Tsiflat ) = 1.1e-4; P(R Z-scoreweighted ≤ R

Z-scoreflat ) = 2.2e-16; using welch's t-test for each test (Figure 4-6). Additionally, the improved

correlation for the weighted measure held as the sample size varied while holding the proportion

of the sample set composed of brain samples constant, except for Tsi which has previously

been shown to be sensitive to sample size 11 (Figure 4-7). This trend of improved correlation

between the balanced and unbalanced sample set was further replicated in the zebrafish and

mouse single cell datasets. For the zebrafish dataset the test results are as follows: P(R

Z-scoreweighted ≤ R Z-scoreflat ) = 5.2e-9; P(R Tauweighted ≤ R Tauflat ) = 4.4e-8; P(R Tsiweighted ≤ R Tsiflat

) = 5.0e-3; P(R Z-scoreweighted ≤ R Z-scoreflat ) = 1.8e-8, using welch's t-test for each test. For the
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mouse dataset the test results are as follows: P(R Z-scoreweighted ≤ R Z-scoreflat ) = 5.2e-8; P(R

Tauweighted ≤ R Tauflat ) = 6.9e-8; P(R Tsiweighted ≤ R Tsiflat ) = 1.8e-5; P(R Z-scoreweighted ≤ R Z-scoreflat

) = 2.0e-8, using welch's t-test for each test (Figure 4-8, Figure 4-9).

When gene ontology enrichment analysis was performed on the weighted measures, the

enrichment of brain related terms in the top 1% of genes with the largest positive difference in

specificity measured between the balanced and unbalanced sample sets decreased for all

measures, except for Tsi which did not change substantially (Figure 4-10). As was the case for

the flat measures, for the weighted specificity measures there was less consistency in terms

associated with the genes where specificity in the balanced sample was set less than specificity

in the unbalanced sample set across measures. However, for Tau there was enrichment of brain

related terms, possibly representing brain subregion specific genes being called as more

specific as the sample set size increases with the inclusion of more brain subregions (Figure

4-11).

These results suggest that incorporating sample similarity information via weights allows

one to include additional samples enriching the transcriptomic diversity within the sample set

without necessarily sacrificing the ability to identify particular tissue- and cell-type specific

genes.

Validation of similarity-weighted specificity scores

To further test whether integration of similarity information improves the stability of gene

specificity measures across variable sample sets, we used the GTEx dataset to quantify the

degree of change in specificity scores as the proportion of the sample set composed of brain

subregions increased for both the weighted and flat measures. The procedure to calculate the

change in specificity is outlined in Figure 4-12A and Figure 4-12B and a more detailed

description of the procedure is included in the Methods section.
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Following the procedure outlined in Figure 4-12A and Figure 4-12B, we observed that

the weighted measures exhibited a marked reduction in the variance of the change in specificity

measures as additional brain samples were added to the sample set (Figure 4-12C). When the

similarity-weighting procedure was applied, specificity measurements were more stable as

sampling depth into brain regions increased than when the procedure was not applied. For the

non-brain samples, assigning weights based on similarity to each tissue resulted in 73.1% (95%

CI: 71.9 - 74.3%, paired t-test) lower variance in the change in specificity scores across all

genes between the baseline with 1 brain sample included and the full set of 13 brain samples

included than when weights were not used. For the brain samples, assigning weights based on

similarity to each tissue resulted in 31.6% (95% CI: 25.4 - 37.3%, paired t-test) lower variance in

the change in specificity scores across all genes between the baseline with 1 brain sample

included and the full set of 13 brain samples included than when weights were not used (Figure

4-12C). A similar reduction in variance of specificity values between the baseline of 1 brain

sample and inclusion of the full sample set was observed for Tau, Tsi, and Gini as well (Figure

4-12C). In contrast, when a similar procedure was used, substituting the brain partitioning with a

random partitioning, we observed a much less dramatic difference in the change in variance

between the weighted and flat measures. For the random partition, the non-brain sample set

was replaced by a random sample set of the same size, called P1, and the brain sample set

was replaced with a random sample generated following the same incrementing procedure

described in Figures 4-12A, called P2. We observed a <20% difference in the variance in

specificity values in P1 and ~0% difference in the variance in specificity values in P2 between

weighted and flat measures in the random partition compared to the 73.1% difference in P1 and

the 31.6% difference in P2 between the weighted and flat measures in the brain partitioned

sample set when the number of samples in P2 increased from 1 to 13 (Figure 4-13, Figure

4-12C).
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As cut-off values are often used to binarize genes as either specific or non-specific, we

wanted to test whether incorporating sample similarity information would also improve the

stability of gene sets called as specific as the sample set becomes more unbalanced. To do this,

we compared the sets of genes that would be called as specific using different cutoff values as

the number of brain subregions included in the sample set increased (Figure 4-12D). The

Jaccard index, which is the ratio of the intersection and the union of two sets, was used to

measure similarity of the gene sets. The Jaccard index ranges from 0, with no elements

common to both sets, to 1, with all elements being shared between both sets. We observed that

the set of genes specific to brain samples changed substantially over typical Z-score cutoff

values between 2 and 3 standard deviations. For example, at a Z-score cutoff of 2 standard

deviations the Jaccard index dropped to 0.24 (95% CI: 0.14 - 0.34, t-test) for the flat measure,

compared to a Jaccard index of 0.59 (95% CI: 0.54 - 0.63, t-test) at the same cutoff for the

weighted measure as the number of brain samples included increased from 1 to 13 (Figure

4-12D). The change in the Jaccard index for the set of non-brain sample specific genes was

also substantial. At a Z-score cutoff of 2 standard deviations the Jaccard index dropped to 0.65

(95% CI: 0.64 - 0.67, t-test) for the flat measure, compared to a Jaccard index of 0.78 (95% CI:

0.77 - 0.79, t-test) at the same cutoff for the weighted measures as the number of brain samples

included increased from 1 to 13 (Figure 4-12D). Similar but less dramatic trends were observed

for Tau, Tsi, and Gini measures (Figure 4-12D). In contrast, when the partition was random such

that expanding the sample set included adding samples without high similarity to those already

in the set, there was no significant difference in the change in Jaccard statistics between the

weighted and flat measures (Figure 4-14).

Effect of integrating weights on patterns of specificity

142



We next wanted to explore the factors which influenced how a gene’s specificity score

changed in response to integration of weighted similarity information. We first looked at the

GTEx dataset. The most striking change in specificity scores that occurred as the sampling

depth of brain subregions increased were in genes with brain related functions (Figure 4-2). If

incorporating sample similarity information reduced the bias introduced by increasing sampling

depth in the brain, then we would expect that most of the differences between the weighted and

flat specificity scores would occur in genes primarily expressed in the brain and with brain

related functions. Indeed when we looked at the top 10 genes with the largest positive difference

between the weighted and flat Z-score in each tissue (i.e. where the weighted specificity score

was greater than the flat score), the genes with the largest change in specificity value were

genes specific to brain samples (Figure 4-15A). Even in non-brain tissues, the largest changes

in gene specificity were in genes where expression was shared with brain samples (Figure

4-15A, Figure 4-16). While we focus on protein coding genes for most of our analyses, we also

found these patterns to be consistent for lncRNA (Figure 4-17, Figure 4-18), which have been

observed to have strong patterns of tissue and cell type specificity 22.

For the top 10 genes with the largest negative difference in specificity value between the

weighted and flat Z-score in each tissue (i.e. where the weighted specificity score was less than

the flat score), the largest effects were in non-brain samples (Figure 4-15B). These changes in

non-brain samples tended to be in genes with high values of specificity from the flat measure

being measured as slightly less specific by the weighted measure (Figure 4-16). This effect is

likely due to the decrease in the effective sample size caused by downweighting individual brain

samples. In the brain samples, while the effect size of the negative difference between the

weighted and flat Z-score was modest (Figure 4-15B), this difference was associated with

genes specifically depleted in brain samples becoming more specifically depleted, suggesting
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an increase in the power of the weighted Z-score to detect genes specifically depleted in brain

tissues (Figure 4-16).

We next looked at the behavior of the flat and weighted specificity scores for genes

known to have tissue-specific expression patterns. Brain specific genes OLIG1 and OLIG2 are

markers for oligodendrocytes, cells which are restricted to the spinal cord and brain 23 though

they are less abundant in the cerebellum than other brain regions 24. With the flat Z-score,

OLIG1 had specificity values in brain samples between 1.02-1.06 SDs in the cerebellar

subregions and 1.56-2.03 SDs in the other brain regions and OLIG2 had specificity values

between 0.91-0.97 SDs in the cerebellar subregions and 1.56-2.11 SDs in the other brain

regions. When measured using the weighted Z-score OLIG1 had specificity values between

1.54-1.60 in cerebellar subregions and 2.22-2.75 SDs in other brain regions and OLIG2 had

specificity values between 1.49-1.57 SDs in cerebellar subregions, and 2.33-3.03 SDs in other

brain regions for the weighted Z-score. Specificity estimates for the more specific basal ganglia

marker, DRD1 25 also increased when weights were applied, up to 4.77-5.00 SDs in brain basal

ganglia subregions from the 3.22-3.30 SDs by the flat Z-score (Figure 4-15C). The specificity

scores between the flat and weighted measures were similar for genes specific to uniquely

represented tissue types. For example, PRSS2, a pancreas specific protease, had a flat Z-score

of 6.38 SDs and a weighted Z-score of 5.40 SDs in the pancreas, and MYH6, a heart specific

myosin heavy chain, had a flat Z-score of 5.16 SDs and a weighted Z-score of 4.77 in the atrial

appendage of the heart (Figure 4-15C). Similar trends for these marker genes were observed

for Tau, Tsi, and Gini coefficients. Further quantification of the differences in genes called as

specific between the flat and weighted measure showed a general increase in the number of

genes called as specific to brain tissues when weights were applied, and modest differences in

the set of genes called as specific between the flat and weighted measures (Figure 4-19).
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We next performed gene ontology enrichment analysis on the genes that changed from

nonspecific to specific in either direction using a Z-score cutoff for classification as specific of 2

SDs. The top 10 terms were those related to synaptic and neurotransmitter function (e.g.

synapse organization, neurotransmitter secretion, signal release from synapse) (Figure 4-15D).

This is consistent with the expectation that weighting based on sample similarity would increase

power to detect genes that are specific to tissues that are more deeply sampled and

overrepresented in the sample set.

We next repeated these analyses for the zebrafish and mouse single cell datasets. In

zebrafish, there was an overrepresentation of cell clusters from brain related cell types as well

as a secondary overrepresentation of cell clusters from skeletal muscle cell types. When looking

at the top 5 genes from each cell cluster with the greatest positive difference in specificity value

measure between the weighted and flat specificity scores, the genes specific to brain and

skeletal muscle clusters had the largest absolute change in specificity values measures (Figure

4-20A). Those genes with the largest change in other cell clusters tended to be those with

expression shared with brain or skeletal muscle (Figure 4-20A). For the bottom 5 genes with

the largest negative difference in specificity between the weighted and flat specificity scores, the

genes with the largest absolute change in specificity value measures were those with high

specificity to non -brain or -skeletal muscle cell clusters being measured as slightly less specific

(Figure 4-20B), likely due to a decrease in the effective sample size between the flat and

weighted measures. In the brain and skeletal muscle cell clusters, the largest negative change

in specificity values occurred in genes depleted in brain and skeletal muscle cell clusters being

measured as more specifically depleted (Figure 4-20B, Figure 4-21) suggesting an increase in

the power to detect specifically depleted genes in these overrepresented cell types when using

the weighted specificity measure. In the mouse, the same patterns were observed where genes

specific to the overrepresented myeloid lineage cell clusters and the kidney cell clusters were
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those that had the greatest positive difference between the weighted and flat measures (Figure

4-22A), and those with the more modest negative difference overlapped more with genes

specifically depleted in the myeloid and kidney cell types being measured as more specifically

depleted (Figure 4-22B, Figure 4-23).

As observed in the GTEx dataset, when we looked at markers genes in the zebrafish

and mouse cell types that were either uniquely represented or overrepresented, we found

similar levels of specificity between the weighted and flat specificity measures for those cell

types that were uniquely represented and an increase in specificity for markers for

overrepresented cell types (Figure 4-20C, Figure 4-22C). In the zebrafish dataset, gene

ontology enrichment analysis of the terms associated with genes that were called as

non-specific with the flat measure and specific with the weighted measure found enrichment in

terms related to the overrepresented brain and skeletal muscle cell types (e.g. muscle cell

development, muscle contraction, brain development, head development) (Figure 4-20D). In

the mouse datasets a similar trend was observed with the top terms being those related to the

overrepresented myeloid cell types, however no terms related to the other overrepresented cell

type, kidney cells, were observed in the top 15 enriched terms (Figure 4-22D).

Overall, these results demonstrate that the use of our sample similarity weighting

procedure improves the stability of gene specificity measures across a variety of sample sets

that are balanced or unbalanced with particular tissue or cell types overrepresented. This

enables the identification of genes specific to more deeply sampled biological contexts and

reduces bias that is otherwise introduced by variation in sampling depth. Implementing this

weighting procedure can give researchers more flexibility in building a sample set, allowing

greater sampling depth into a cell type, tissue, or organ of interest without sacrificing the ability

to detect genes specific to that same cell type, tissue, or organ.
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Discussion

Previous work developing and implementing measures of specificity have had a variety

of aims including imputation of expression levels for cell and tissue precursors 14, investigating

mechanisms of dosage compensation 15, and characterizing conservation of gene expression

patterns across evolutionary time 26,27. While existing measures have been used successfully,

we identified a limitation in that these measures lack a mechanism to account for the similarities

that exist between cells or tissues. The absence of a mechanism to account for sample similarity

makes existing specificity measures sensitive to the choice of sample set used and can

introduce bias into analyses, an issue that has been previously noted 11,28. A feature of this

sensitivity to the sample set composition is a loss of measure robustness as the sampling depth

of particular developmental lineages increases, particularly for the features that are specific to

the more deeply sampled lineage. Greater depth of sampling is necessary for a more complete

view of transcriptome diversity and therefore the antagonistic relationship between sampling

depth and the stability of specificity measures is problematic.

To address this, we utilized sample similarity information to weight each sample's

contribution to measures of gene specificity. In this work we have shown that accounting for

similarity between biological samples in the manner proposed makes measures of specificity

more robust to sample set variation and improves the ability of these measures to detect

features specific to different cell and tissue types, even when the cell or tissue type is

overrepresented within the larger sample set.

One component of the procedure proposed here for integrating sample similarity

information into measures of gene specificity is the use of a similarity (or dissimilarity) tree

structure to partition weight across the sample set, analogous to the method for assigning

sequence weight used by the multiple sequence alignment algorithm ClustalW 21. This

mechanism is a natural choice when samples can be defined along a natural hierarchy, such as
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when the developmental relation between a set of cells is known, however for tissues, which are

often composites of cells from distinct lineages, this model is imprecise. While we have

demonstrated that using this model to weight samples improves existing measures of gene

specificity for tissues, more general graph-based methods that can account for heterogeneous

tissue composition may be able to improve upon the method proposed here by refining the

weighting of samples for heterogeneous samples.

Applying this workflow on single-cell data avoids the issue of dealing with heterogeneous

composites and also provides a higher resolution view of patterns of specificity for gene

expression. However, single-cell analysis requires dealing with problems of low read depth and

accurate transcript estimation amongst others 29. Further, as the method proposed here involves

calculating a similarity matrix between samples which requires time, performing the

calculation on a large dataset of tens of thousands or more cells becomes, though feasible,

somewhat resource intensive without additional optimizations. Clustering cells is a common

part of most workflows for single cell analysis and provides a convenient work around for these

issues 30. Here we have shown that the Specificity-Similarity Integration procedure can be used

on clusters of single cells to achieve improvements to specificity estimates within single cell

analyses.

As additional RNA-seq datasets come online, particularly those spanning various stages

of development, our method for calculating specificity that is robust to expansion of the sample

set will be invaluable. The Developmental Genotype-Tissue Expression (dGTEx) project has

recently been announced and will expand on the GTEx project to include samples from

neonatal, pediatric, and adolescent individuals. dGTEx will add depth to a large range of

developmental stages for many cells, tissues, organs, and will provide a unique opportunity to

broadly investigate transcriptomic changes through development 31. The method for calculating
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gene specificity proposed here is a natural model for hierarchical developmental relationships

that will be captured in this dataset and that currently exist in datasets for model organisms

19,20,32–34. We expect that our method can be used to facilitate improved investigations into the

dynamics of gene expression across development in a transcriptome-wide context.

Here we have demonstrated that integrating sample similarity information into measures

of gene expression specificity in cells and tissues improves the robustness of these measures

to variation in the underlying sample set. By improving the stability of specificity measures to

deeper sampling of particular biological contexts of interest, the proposed procedure can

facilitate the analysis of patterns of gene expression that captures both the broad, by including a

diverse set of cell or tissue types, as well as the focused perspective, by allowing greater depth

of sampling of highly similar cell or tissue types. This procedure for integrating sample similarity

can easily be extended to measure the specificity of other functional measures of the genome

and epigenome such as histone modification or DNA methylation features.

Methods

Data availability

The GTEx data used for the analyses described in this manuscript were obtained from

the Genotype-Tissue Expression (GTEx) Project which was supported by the Common Fund of

the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA,

NIMH, and NINDS 18.

website: https://www.gtexportal.org/home/datasets

access date: March 1, 2022

file: GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz

The zebrafish single cell dataset comes from 19.

website: https://cells.ucsc.edu/zebrafish-dev
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access date: March 1, 2022

cell annotation file: meta.tsv

cell expression file: exprMatrix.tsv.gz

The mouse single cell dataset comes from 20.

website : https://figshare.com/articles/dataset/HCL_DGE_Data/7235471

access date: March 1, 2022

cell annotation file: annotation_rmbatch_data_revised417.zip

cell expression file: dge_rmbatch_data.tar.gz

Data preprocessing

For the data from GTEx, transcripts per million (TPM) values were recalculated after

removing mitochondrial gene reads, to prevent signal driven by relative mitochondrial

abundance in tissues, and after removing non-protein coding genes. Expression values in TPM

were then log transformed as log10(TPM + 1). The addition of 1 to TPM value before taking the

log was done to avoid the issue of taking log of 0, and also because very low TPM estimates

are unstable across replicates at standard sequencing depths in the tens of millions of reads.

Following this transformation, log10(TPM +1) values for gene expression were scaled with

median normalization across all samples 35.

For the single cell data from the zebrafish and mouse datasets, cell cluster annotations

were obtained from their respective source studies. These cluster annotations can be found in

their respective "cell annotation file" linked in the Data Availability section above. RNA read

counts were obtained from their respective "cell expression file" and reads were aggregated

across all cells within each cluster. Reads from mitochondrial and non-coding RNAs were

filtered out. Clusters with less than 100k total reads after this filtering were then removed from

further analysis. Genes with read counts < 10 for each cluster were set to 0 to reduce noise

150

https://paperpile.com/c/e13ufA/L64Fy
https://figshare.com/articles/dataset/HCL_DGE_Data/7235471
https://paperpile.com/c/e13ufA/UzuTe


caused by low read counts. Read counts for each gene were then transformed to TPM values

by multiplying read counts by 1e6 and dividing by the sum of read counts for each cluster.

These TPM values were then log10(TPM + 1) transformed. These transformed log10(TPM + 1)

values were scaled with median normalization across all samples 35.

General algorithm for incorporating sample similarity information into measures of gene

specificity

The Specificity-Similarity Integration (SSI) Algorithm in Figure 4-1C outlines the general

workflow for integrating sample similarity information with an arbitrary measure of specificity.

Beginning with a matrix of log transformed gene expression values for a set of samples (genes

as rows, samples as columns) sample similarity is measured (SSI step a.). The use of the gene

expression matrix for measuring sample similarity is suggested as the gene expression matrix is

already required for measuring gene specificity, however other feature sets could be used to

assign sample similarity. The important component is to have a mechanism for generating a

meaningful sample similarity matrix. Several measures of similarity (cosine, canberra, euclidean,

manhattan) were tested and each of the similarity measures tested produced similar intuitive

sample similarity structure. For example, each measure found brain samples to have a high

degree of similarity with one another. The major difference in measures of similarity was the

average similarity across all pairs of samples Figure 4-24. For downstream analyses, cosine

similarity was used as it has previously been shown to be robust in high dimensional datasets in

benchmarking studies 36,37. The next step is to apply a hierarchical clustering algorithm on the

sample similarity matrix (SSI step b.). Single, average, and complete clustering were tested and

each produced similar intuitive clusters of samples (e.g. brain samples clustered together; tibial,

aortic, and coronary arteries clustering together; etc) (Figure 4-25). Average linkage clustering

was used as it has previously been shown to be robust when the size of cluster groups vary
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substantially 38. Other methods could be substituted so long as a suitable tree structure is

generated for sample representation, where suitability can be determined, for example, on

metrics such known developmental relations between tissues or cells. The dissimilarity tree is

then used to determine the sample weights (SSI step c.) with the recursive function given in Eq.

1 and described in the section below. The final step is to use a specificity function that allows

sample weights with the initial log transformed expression value matrix (SSI step d.). The

specificity functions used in this paper are discussed below.

Assignment of sample weights

Sample weights are assigned using the recursive function:

(1)

where is the weight of node in the dissimilarity tree (where dissimilarity = 1 - similarity).

is the parent of node . is the distance between node and its parent node .

is the number of descendant leaf nodes for node , where a leaf node is considered a

descendant of itself. Weight of the root node is set to zero. Weighting method is based on that

introduced for the guide tree implemented in the ClustalW sequence alignment algorithm 21.

Figure 4-26 provides an example calculation.

Specificity measures tested

Four different specificity scores were used to measure how changes in the depth of sampling of

certain regions affected the variance in specificity scores assigned to genes. For each equation,

is the number of tissues and is the expression of a gene of interest in tissue i.𝑛 𝑥
𝑖
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The first measure is Z-score 13, which determines specificity by calculating how many

standard deviations away gene expression in a given tissue is from the mean expression value

across all tissues for that gene. It is calculated as:

(2)

where

(2.1)

(2.2)

where is the Z-score in tissue , is the gene expression value in tissue , is mean

expression of the gene of interest across all tissues and is the standard deviation in

expression of the gene of interest across tissues. The more positive the Z-score, the more

specific a certain gene is to a certain tissue.

The weighted version of this equation is given by:

(3)

where, from 39,

(3.1)

(3.2)

and is the weight of a given tissue, and other variables are the same as in Eqs. 2, 2.1 - 2.2.

The second measure is tau (τ)14, which is a tissue specificity measure ranging from 0 to

1, with genes with tau near 0 being more ubiquitously expressed and scores near 1 being more
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specifically expressed. At the extremes, a score of 0 corresponds to a gene with equal

expression across all tissues, while a score of 1 represents a gene only expressed in one

tissue. In a benchmark of measures for gene specificity, tau was found to be consistently the

most robust measure of gene specificity on several metrics 11. Tau is calculated as:

(4)

where

(4.1)

with the weighted version of the equation being

(5)

with

(5.1)

where is the same as that for Eq. 4 given in Eq. 4.1. The domain of the weighted tau is the

same as the unweighted tau.

The third measure is tissue specificity index (Tsi)15, which measures specificity on a

scale of to 1. For any given gene, represents equal gene expression across tissues,

while 1 represents expression only in one tissue. Tsi is calculated as:

(6)

with the weighted version of the equation being

(7)
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The weighted Tsi has a similar domain as the unweighted version, except that the lower

bound is with , instead of .

The fourth specificity measure was the Gini coefficient 16,17, a measure of inequality

commonly used in economics. Existing on a 0 to scale, for any gene of interest, a

score of 0 represents uniform distribution of gene expression across tissues, while a score of

would indicate that a gene is only expressed in one tissue. The Gini coefficient is

calculated as:

(8)

where are ordered from least to greatest.

The weighted version from 40 is given by

(9)

where

(9.1)

with and again with ordered from least to greatest . is the mean of . The domain

of the weighted Gini index is similar to the unweighted version except that the upper bound is

instead of .
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Specificity measure robustness testing

The GTEx dataset was used for the specificity measure robustness testing. To test the

robustness of measures of specificity, the change in specificity estimates as the dataset came to

contain an increasing proportion of brain samples was followed. For this the GTEx dataset was

used which consists of 54 tissue types in total, of which 13 (25%) are from different brain

subregions. The GTEx dataset was partitioned into 41 non-brain tissues, P1, and 13 brain

tissues, ¬P1. The following procedure was then repeated 8 times using a unique brain

subregion sample for the baseline and a unique order of addition for the remaining brain

subregion samples:

To begin, one brain sample was selected at random and placed in P2, this is P2baseline.

The union of P1 and P2baseline , P1 U P2baseline , was then taken as the sample set. Specificity was

then measured using the P1 U P2baseline sample set with each of the flat and weighted specificity

measures. The results generated using a single randomly selected brain sample serve as the

baseline to compare estimates of specificity as additional brain samples were added to the

sample set.

Next brain samples were added successively to P2baseline and specificity recalculated on

P1 U P2n=i , where i is the number of brain samples in P2 in the current iteration. The variance

in the change in specificity between specificity measured on P1 U P2n=i and P1 U P2baseline

across all genes was recorded and used in generating Figure 2C. The sets of genes called as

specific at various cutoff values from the specificity values measured on P1 U P2n=i and on P1 U

P2baseline were compared using the Jaccard index. The Jaccard index was recorded and used in

generating Figure 2D. This was repeated until the sample set included all 13 brain tissues.

Gene Ontology analysis
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The clusterProfiler package 41 in R was used to perform enrichment analyses and

generate gene ontology 42 plots. Sets of genes were defined as specified in relevant sections of

text or figure captions and enrichment was tested against the set of all genes in the GTEx,

mouse, or zebrafish expression matrix after filtering non-protein coding and mitochondrial

genes. Benjamini-Hochberg procedure 43 was used to adjust p-values for significance. The

Biological Process set of GO terms was used throughout.

Code Availability

All code used for analyses in this manuscript are available at:

https://github.com/leroybondhus/gene_specificity
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Figures and Tables

Figure 4-1. Problem with unbalanced sample sets for measuring gene specificity and the

proposed solution A) Toy diagram of problem addressed. Global (dis)similarity of tissues is

represented as a dendrogram for the balanced sample set (left) and the unbalanced sample set

(right) that has an excess of brain subregions included. The color of each dot represents the
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relative expression of the gene in the given tissue sample. Fitted normal curve is shown to the

right with sample mean (x̄) and sample standard deviation (s) for log expression values. Bars

plotted with the fitted normal curves each represent an individual tissue sample's expression

and the bar's relative height represents that sample's relative weight. Specificity, as measured

by the Z-score, is the number of standard deviations of the bar from the sample mean for the

given gene-sample pair and is represented by the color of the bar. B) change in specificity

measures with deeper brain sampling. On x- and y-axes are specificity values measured on the

unbalanced and balanced sample sets respectively for each gene (or gene-tissue pair for

Z-score). The unbalanced sample set includes all non-brain samples and all brain subregion

samples while the balanced sample set includes all non-brain and one randomly selected brain

subregion sample from the GTEx dataset C) Specificity-Similarity Integration (SSI) Algorithm or

workflow proposed for integrating sample similarity information into specificity measures.
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Figure 4-2. From the GTEx dataset, genes with greater specificity measured in balanced

than unbalanced sample set for the flat specificity measures. Left column) On the x- and

y-axes are specificity values measured on the unbalanced and balanced sample sets

respectively for each gene (or gene-tissue pair for Z-score). The unbalanced sample set
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includes all non-brain samples and all brain subregion samples while the balanced sample set

includes all non-brain and one brain subregion sample from the GTEx dataset. Highlighted in

red are the top 1% of genes with the greatest difference in specificity between balanced and

unbalanced sample sets with a difference of at least 1 SD for Z-score and 0.1 for other

measures. Middle column) Gene Ratio, i.e. the proportion of the gene set with the given GO

term, for the top 10 GO terms enriched in the highlighted set from the left column Right

column) Network plots between the top 10 GO terms from middle column, where the edge

width indicates the number of shared genes between a connected pair of terms.
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Figure 4-3: From the GTEx dataset, genes with greater specificity measured in

unbalanced than balanced sample set for the flat specificity measures. Left column) On

the x- and y-axes are specificity values measured on the unbalanced and balanced sample sets

respectively for each gene (or gene-tissue pair for Z-score). The unbalanced sample set

includes all non-brain samples and all brain subregion samples while the balanced sample set
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includes all non-brain and one brain subregion sample from the GTEx dataset. Highlighted in

red are the top 1% of genes with the greatest difference in specificity between balanced and

unbalanced sample sets with a difference of at least 1 SD for Z-score and 0.1 for other

measures. Middle column) Gene Ratio, i.e. the proportion of the gene set with the given GO

term, for the top 10 GO terms enriched in the highlighted set from the left column Right

column) Network plots between the top 10 GO terms from middle column, where the edge

width indicates the number of shared genes between a connected pair of terms.
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Figure 4-4: Similarity structure between samples for GTEx dataset with clear clustering of

brain samples with one another. Sample similarity heatmap and dendrogram. Similarity matrix

generated by cosine similarity, dendrogram clustering at top generated by average linkage

clustering
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Figure 4-5: From the GTEx dataset, SSI algorithm decreases weight assigned to

individual brain samples relative to other sample types. Sample weights calculated

following the SSI algorithm (Figure 1C) using cosine similarity to generate similarity matrix and

average linkage clustering to generate (dis)similarity tree.
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Figure 4-6: From the GTEx dataset, incorporating sample similarity information increases

correlation between specificity values measured on the balanced and unbalanced sample

sets. On the x- and y-axes are specificity values measured on the unbalanced and balanced

sample sets respectively for each gene (or gene-tissue pair for Z-score). The unbalanced

sample set includes all non-brain samples and all brain subregion samples while the balanced

sample set includes all non-brain and one brain subregion sample from the GTEx dataset. For

each specificity measure, Z-score, Tsi, Tau, and Gini , specificity was calculated without weight

(i.e. the flat measure) and with weights (i.e. the weighted measure). cor_f is the pearson

correlation between the balanced and unbalanced sample sets for the flat measure, cor_w is the

pearson correlation between the balanced and unbalanced sample sets for the weighted

measure.
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Figure 4-7: Correlation between balanced and unbalanced sample sets as sample set size

changes. On the y-axis is the correlation between balanced and unbalanced sample sets from

GTEx, where the balanced is a subset of the unbalanced for each replicate. Proportion of

sample set composed of brain tissues is held at 50% so change observed is related to sample

set size and not the proportion of the sample set that comes from a particular overrepresented

context .
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Figures 4-8: In the zebrafish single cell dataset incorporating sample similarity

information increases correlation between specificity values measured on the balanced

and unbalanced sample sets. On the x- and y-axes are specificity values measured on the

unbalanced and balanced sample sets respectively for each gene (or gene-cell cluster pair for

Z-score). The unbalanced sample set includes 20 clusters from brain cell types, 8 clusters of

skeletal muscle cell types and 50 other distinct cell type clusters. The balanced sample set

includes 1 brain cell type cluster, 1 skeletal muscle cell type cluster and the same 50 other

distinct cell type clusters included in the unbalanced sample set. For each specificity measure,

Z-score, Tsi, Tau, and Gini , specificity was calculated without weight (i.e. the flat measure) and

with weights (i.e. the weighted measure). cor_f is the pearson correlation between the balanced

and unbalanced sample sets for the flat measure, cor_w is the pearson correlation between the

balanced and unbalanced sample sets for the weighted measure.
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Figure 4-9: In the mouse single cell dataset incorporating sample similarity information

increases correlation between specificity values measured on the balanced and

unbalanced sample sets. On the x- and y-axes are specificity values measured on the

unbalanced and balanced sample sets respectively for each gene (or gene-cell cluster pair for

Z-score). The unbalanced sample set includes 11 clusters from kidney cell types, 7 clusters of

myeloid blood lineage cell types and 21 other distinct cell type clusters. The balanced sample

set includes 1 kidney cell type cluster, 1 myeloid blood lineage cell type cluster and the same 21

other distinct cell type clusters included in the unbalanced sample set. For each specificity

measure, Z-score, Tsi, Tau, and Gini , specificity was calculated without weight (i.e. the flat

measure) and with weights (i.e. the weighted measure). cor_f is the pearson correlation

between the balanced and unbalanced sample sets for the flat measure, cor_w is the pearson

correlation between the balanced and unbalanced sample sets for the weighted measure.
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Figure 4-10: From the GTEx dataset, genes with greater specificity measured in balanced

than unbalanced sample set for the weighted specificity measures. Left column) On the x-

and y-axes are specificity values measured on the unbalanced and balanced sample sets

respectively for each gene (or gene-tissue pair for Z-score). The unbalanced sample set

includes all non-brain samples and all brain subregion samples while the balanced sample set
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includes all non-brain and one brain subregion sample from the GTEx dataset. Highlighted in

red are the top 1% of genes with the greatest difference in specificity between balanced and

unbalanced sample sets with a difference of at least 1 SD for Z-score and 0.1 for other

measures. Middle column) Gene Ratio, i.e. the proportion of the gene set with the given GO

term, for the top 10 GO terms enriched in the highlighted set from the left column Right

column) Network plots between the top 10 GO terms from middle column, where the edge

width indicates the number of shared genes between a connected pair of terms.
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Figure 4-11: From the GTEx dataset, genes with greater specificity measured in

unbalanced than balanced sample set for the weighted specificity measures. Left
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column) On the x- and y-axes are specificity values measured on the unbalanced and balanced

sample sets respectively for each gene (or gene-tissue pair for Z-score). The unbalanced

sample set includes all non-brain samples and all brain subregion samples while the balanced

sample set includes all non-brain and one brain subregion sample from the GTEx dataset.

Highlighted in red are the top 1% of genes with the greatest difference in specificity between

balanced and unbalanced sample sets with a difference of at least 1 SD for Z-score and 0.1 for

other measures. Middle column) Gene Ratio, i.e. the proportion of the gene set with the given

GO term, for the top 10 GO terms enriched in the highlighted set from the left column Right

column) Network plots between the top 10 GO terms from middle column, where the edge

width indicates the number of shared genes between a connected pair of terms.

173



Figure 4-12. Quantification of robustness of specificity measures as sampling depth into

brain subregions increases A) Workflow for generating each specificity matrix with the

validation sampling procedure. P0 is the full dataset. G is the number of genes and S is the

number of samples. P1 is the set of non-brain origin tissue samples. ¬P1 is the set of all brain

origin tissue samples. P2 is a random selection of n brain samples. B) Z-score is illustrated but
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a similar procedure was used for each specificity measure. Each specificity matrix (Zg,s,n) where

n > 1 is compared to a baseline where n=1, where 1 brain sample was included in P2. Plotted

on the x-axis is the density of the change in Z-scores (ΔZ) for all genes in all samples in either

P1 or the brain sample initially selected as baseline from P2, with darker color indicating

increased density. This data is finally summarized in the change in variance of the ΔZ values as

the sample set increases to include more brain samples. Note: for P2, only the change in

specificity scores associated with the brain sample selected for the baseline (darker red in

figure) is recorded for c. and d. for each of 8 permutations of the procedure where each

permutation involves selection of a different brain tissue sample for the baseline and a different

ordering of the addition of the remaining brain samples to the sample set C) On the y-axis is the

variance of change in specificity measure compared to a baseline dataset using 1 brain sample

when n additional brain samples are added. The number of additional brain samples in P2 is

given on the x-axis. For Z-score, specificity values associated with samples in P1 and P2 are

plotted separately since Z-score can be associated with each tissue individually; other specificity

measures aggregate across all samples so resolution of specificity between samples in P1 and

P2 is not possible for these measures. Points are values from each of the 8 permutations of the

procedure, lines are the mean values for each value of n, and the shaded area is the 95%

confidence interval D) On the x-axis is the cutoff above which a gene is called as specific. On

the y-axis is the jaccard index comparing overlap of the set of genes called as specific at the

cutoff given on the x-axis relative to the baseline set where P2 includes only 1 randomly

selected brain region sample. For Z-score, the jaccard index is the average over all samples in

the sample set (P1 or P2), for all other measures which aggregate across all samples the

jaccard index is obtained directly. Line color corresponds to the value of n. Note: at n=1 the

sample set used is the same as the sample set used in the baseline resulting in the line at

jaccard index=1 for n=1 in all cases.
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Figure 4-13: Minor difference between weighted and flat measures in the variance of

change in specificity measured as random samples are added to the sample set. Same

procedure as used in Figure 2, except P1 and P2 are random partitions of the same size as in

Figure 2 (i.e. samples were not first partitioned into brain and non-brain subsets). For Z-score

P1 and P2 are plotted separately since the specificity measure of Z-score can be associated
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with each tissue individually; other specificity measures aggregate across all samples so

resolution between samples in P1 and P2 is not possible for these measures. Plotted is the

variance of the change in specificity measured on the baseline dataset P1 U P2baseline, where

P2baseline includes only the first random sample, and P2n with n random samples added

successively such that P2n+1 includes all the samples in P2n . P1 is held constant in each

permutation. Permutation was repeated 8 times to generate individual data points. Lines are

drawn between the mean value of all permutations for each value of n. The shaded area is 95%

confidence interval around mean estimate.
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Figure 4-14: Minor difference between weighted and flat measures in the sets of genes

called as specific compared to baseline at variable specificity cutoff values as random

samples are added to the sample set as measured by Jaccard index. Same procedure as

used in Figure 2, except P1 and P2 are random partitions of the same size as in Figure 2 (i.e.

samples were not first partitioned into brain and non-brain subsets). For Z-score P1 and P2 are
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plotted separately since the specificity measure of Z-score can be associated with each tissue

individually; other specificity measures aggregate across all samples so resolution between

samples in P1 and P2 is not possible for these measures. The baseline is the set of genes

called as specific using the sample set P1 U P2baseline to calculate specificity where P2 includes

only the first random sample. Plotted is the Jaccard index comparing P1 U P2baseline to P1 U P2n

when P2n is composed of n random samples added successively such that P2n+1 includes all the

samples in P2n. For Z-score, where each tissue has its own set of genes considered specific,

the Jaccard index is the average over all samples in the sample set (P1 or P2). For all other

measures the Jaccard index is obtained directly. The x-axis gives the cutoff above which a gene

is considered specific. Line color corresponds to the value of n. Each line is the mean jaccard

index from 8 permutations as the cutpoint varies for the given value of n, where each

permutation is a distinct sampling of tissues for P1 and P2.
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Figure 4-15. Biological context of differences between flat and weighted measures of

specificity in GTEx dataset. A) Top 10 genes with greatest difference between weighted and

flat Z-score for each tissue. Rows correspond to individual genes, columns to tissues. Note:

diagonal produced by having top 10 genes from leftmost tissue on x-axis as first 10 rows, top 10

from next leftmost tissue as next 10 rows, etc. B) Bottom 10 genes with greatest difference

between weighted and flat Z-score for each tissue C) genes known to be specific to brain
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regions, OLIG1 and OLIG2 , pancreas, PRSS1 and CTRB2, and heart MYH6 and MYL4. For

each gene, top row is flat (F) Z-score, bottom row is weighted (W) Z-score. Dendrogram at top

shows the dissimilarity tree used to generate sample weights which are shown as the area of

the leaf nodes of the dendrogram. D) Gene ontology results highlighting top 10 terms in the set

of genes that have specificity values < 2 standard deviations by the flat Z-score, and >2

standard deviations by the weighted Z-score. On the left is the Gene Ratio, i.e. the proportion of

the gene set with the given GO term. On the right is the network plot, where the edge width

indicates the number of shared genes between a connected pair of terms.
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Figure 4-16: GTEx dataset flat and weighted Z-score for top 10 genes with greatest

positive (top) and negative (bottom) difference between weighted and flat Z-score for

each tissue. Genes on rows, tissue samples on columns. Gene and sample order is the same

as in Figure 2A/B. Note: diagonal produced by having top 10 genes from leftmost tissue on

x-axis as first 10 rows, top 10 from next leftmost tissue as next 10 rows, etc.
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Figure 4-17: In the GTEx dataset, distributions of specificity values for lncRNA and

protein coding genes. Left column shows distribution of specificity values for all genes,

excluding those with their highest expression in the testis. Exclusion of testis was done as this

tissue expresses a disproportionate number of non-protein coding genes relative to all other

tissues and so inclusion of these genes specific to testis would mask the global trend of

specificity for all other tissues. Right column shows distribution of specificity values for genes

where the tissue with the maximum expression value was one of the brain subregions. For

Zscore, specificity value is the maximum specificity value across all tissues for each gene.

Dotted lines show the center of mass, i.e. the mean, for each distribution.
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Figure 4-18: In the GTEx dataset, the difference between weighted and flat, flat, and

weighted Z-score for top 5 lncRNA genes with greatest positive (top) and negative

(bottom) difference between weighted and flat Z-score for each tissue. Genes on rows,

tissue samples on columns. Gene and sample order is the same for left, middle and right plots .

Note: diagonal produced by having top 5 genes from leftmost tissue on x-axis as first 5 rows,

top 5 from next leftmost tissue as next 5 rows, etc.
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Figure 4-19: Quantitative summary of the difference in genes called as specific for the

weighted and flat measures of specificity in the GTEx dataset. The proportion of genes

called as specific as the cutpoint for specificity varies for each specificity measure (top) and the

jaccard index between the sets of genes called as specific at each cutpoint for the weighted and

flat measures (bottom).
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Figure 4-20: Biological context of differences between flat and weighted measures of

specificity in zebrafish single cell dataset. A) Top 10 genes with greatest difference between

weighted and flat Z-score for each tissue. Rows correspond to individual genes, columns to

tissues. Note: diagonal produced by having top 10 genes from leftmost cell type cluster on

x-axis as first 10 rows, top 10 from next leftmost cell cluster type as next 10 rows, etc. B) Bottom

10 genes with greatest difference between weighted and flat Z-score for each cell type cluster
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C) genes known to be specific lens cells, cryaa, to kidney cells, nph2, to skeletal muscle,

cacna1sb and myoz2e, and to brain nes and notch1b. For each gene, top row is flat (F) Z-score,

bottom row is weighted (W) Z-score. Dendrogram at right shows the dissimilarity tree used to

generate sample weights D) Gene ontology results highlighting top 15 terms in the set of genes

that have specificity values < 2 standard deviations by the flat Z-score, and >2 standard

deviations by the weighted Z-score. On the left is the Gene Ratio, i.e. the proportion of the gene

set with the given GO term. On the right is the network plot, where the edge width indicates the

number of shared genes between a connected pair of terms.
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Figure 4-21: Zebrafish single cell dataset flat and weighted Z-score for top 10 genes with

greatest positive (top) and negative (bottom) difference between weighted and flat

Z-score for each cell type cluster. Genes on rows, cell type clusters on columns. Gene and

sample order is the same as in Supplemental Figure S17A/B. Note: diagonal produced by

having top 10 genes from leftmost cell type cluster on x-axis as first 10 rows, top 10 from next

leftmost cell type cluster as next 10 rows, etc.
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Figure 4-22: Biological context of differences between flat and weighted measures of

specificity in mouse single cell dataset. A) Top 10 genes with greatest difference between

weighted and flat Z-score for each tissue. Rows correspond to individual genes, columns to

tissues. Note: diagonal produced by having top 10 genes from leftmost cell type cluster on

x-axis as first 10 rows, top 10 from next leftmost cell cluster type as next 10 rows, etc. B) Bottom
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10 genes with greatest difference between weighted and flat Z-score for each cell type cluster

C) genes known to be specific osteoclast cells, Creg2, pancreas, Prss1, to kidney, Slc12a1 and

Nphs2, and myeloid blood lineages. For each gene, top row is flat (F) Z-score, bottom row is

weighted (W) Z-score. Dendrogram at right shows the dissimilarity tree used to generate sample

weights D) Gene ontology results highlighting top 15 terms in the set of genes that have

specificity values < 2 standard deviations by the flat Z-score, and >2 standard deviations by the

weighted Z-score. On the left is the Gene Ratio, i.e. the proportion of the gene set with the given

GO term. On the right is the network plot, where the edge width indicates the number of shared

genes between a connected pair of terms.
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FIgure 4-23: Mouse single cell dataset flat and weighted Z-score for top 10 genes with

greatest positive (top) and negative (bottom) difference between weighted and flat

Z-score for each cell type cluster. Genes on rows, cell type clusters on columns. Gene and

sample order is the same as in Supplemental Figure S19A/B. Note: diagonal produced by

having top 10 genes from leftmost cell type cluster on x-axis as first 10 rows, top 10 from next

leftmost cell type cluster as next 10 rows, etc.
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Figure 4-24: Comparison of similarity measures for tissue-tissue similarity. Comparison of

cosine similarity, canberra distance, euclidean distance, and manhattan distance as similarity

measures. All measures were normalized to the domain of [0-1] so that min=0 and max=1 for

each measure, distances were converted to similarity analogs by subtracting the normalized

value from 1.
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Figure 4-25: Comparison of clustering methods. Comparison of single-linkage,

average-linkage, and complete-linkage clustering methods computed on the cosine similarity

matrix.
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Figure 4-26: Toy example demonstrating behavior of Eq. 1, the recursive function used

for determination of weights from a dissimilarity tree. Left shows the dissimilarity tree with

similarity between tissues A, A', B, and C. Parent nodes P and Q are generated by clustering.

Right top down: step-through of the calculations for determination of weight for tissue A.
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CHAPTER 5

Conclusions
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Recap of motivations for works discussed

As we introduced in Chapter 1, chromatin modifiers are critical to a variety of normal

developmental processes 1–5 and mutations in the genes encoding these proteins cause a wide

range of rare disorders 6–10. The etiologies of these disorders are just now beginning to be

worked out, but many factors exist that complicate our ability to define the functional species of

modifiers that function in normal development and that are affected in disease. Particularly,

challenges exist in identifying the precise composition of multiprotein chromatin modifier

complexes with respect to their member proteins and isoforms 11,12 , and the post-translational

modifications that may further modulate their function 13. On top of the complexity in form of the

chromatin modifiers are many unresolved questions around their functional output: what is the

full set of modifications they catalyze, what modifiers are responsible for particular orphan

histone marks 14,15, what are the precise genomic targets of modifier complexes, and how do

any or all of these things vary between biological contexts. We discussed in Chapter 2 key

assays and modes of analysis that are being used to investigate these questions and

highlighted fundamental gaps in existing methods. Specifically, we noted the inability of existing

methods to robustly characterize the scale of epigenetic changes that occur in development and

disease, and the inability of existing methods to precisely and robustly describe the context over

which functional genomic changes occur. We addressed these gaps in the novel methods of

analysis we developed in Chapter 3 and Chapter 4.

Summary of key results

In Chapter 3 we developed DMRscaler16, a novel method for identifying regions of

differential methylation across a wide range of genomic scale, from small basepair level features

to those spanning whole chromosomes. While focused on DNA methylation data, generalization

of this method provides a novel means of analyzing chromatin features to understand how they
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are organized across genomic scales. Emergent properties in biology occur in all domains of

study, and the ability to study how features interact across scale will be critical to generating a

comprehensive understanding of how the genome is organized in development and the ways

that alterations to this organization contribute to various pathologies. Beyond the usage of our

method in applications analyzing function genomic elements that map to the genome, one can

imaging further generalizations that encompass features in time or, with some imagination and

some extra dimensions, features in spatial or other more abstract coordinate systems.

In Chapter 4 we developed a novel method for measuring the specificity of gene

expression when provided a diverse sample of tissues and cells as a reference set17. The rapid

advances in sequencing and single cell technologies have made acquisition of vast datasets

covering developmentally and anatomically diverse contexts possible 18,19. While the quantity

and richness of data available to researchers has exploded, methods for contextualizing it and

gleaning biological insights have not kept pace. In particular, existing methods for describing

functional genomics features such as the transcriptome and chromatin states have not taken

into account our knowledge of the developmental relations between distinct tissues and cells. In

our work to develop a method for measuring gene specificity that accounts for the similarity

structure of the base sample set, we have created a portable framework that can readily

generalize to describing other functional genomic features in a more system-aware manner.

We hope our work here will contribute to the advancement of systems levels of analysis

and, through this, aid in the development of a deeper understanding of chromatin modifier

diseases, and, eventually, the discovery of therapies and treatments.

Future direction for research and conclusion

Many diseases of human development that have so far eluded effective treatment or

therapy have done so, in part, through the complexity of their pathology. This is particularly
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resonant for chromatin modifier syndromes. It is possible that understanding these diseases to

the depth necessary to devise effective treatments is beyond the reach of unaided human

cognition. However, human cognition need not go unaided. Just as the index of a book or that of

a library enables the individual to transcend the memory capacity of the human brain,

computational tools allow us to ask questions that are otherwise beyond our own minds'

cognitive limits.

In this work we have expanded on existing methods for the analysis and characterization

of functional genomic features which are key facets of chromatin modifier biology. Going beyond

our work to identify and characterize the scale of DNA methylation changes, future work to

investigate the relations of features across different scales will be an essential part of

understanding mechanistically how epigenetic features are established and maintained. For

instance, identifying cases where a local feature gives rise to higher order organization, such as

CTCF producing broad topologically associating domain (TAD)20 structures, or in contrast to

when a broad pattern then results in local changes such as broad repressive domains

facilitating the methylation of individual CpG sites21. Mechanistic studies aimed at discovering

the relations between functional genomic features are already well underway. Generalizing and

automating methods for the discovery of such relations will enable their more rapid discovery

and characterization in analogous systems, such as in studying gene regulation in novel

non-model organisms.

Part of the motivation for generalizability, and therefore scalability, of analysis is also to

go deeper into understanding the development of epigenetic organization in the course of

organismal development. This was a core part of our motivation in working to improve measures

of gene expression specificity to account for sample similarity information. The method we

developed for balancing statistics of gene expression specificity in diverse sample sets can be

extended to other descriptive statistics, such as the complexity of a gene's expression over
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development. Additionally, the method we developed could be modified and optimized for other

modes of data to enable a more systems level perspective of the whole of the functional

genomic architecture of the cell and organism. Achieving systems level perspectives will require

the development and adoption of methods of visualizing the functional genome and querying its

structure. Summary statistics, which can look at a set of data and return a small, digestible, and

intuitive handle on some aspect of the data's structure are an important component of this effort

to see the functional genome, both as it exists in health as well as in disease.

In addition to the development of tools and methods to identify features of the functional

genome and contextualize them, such as through summary statistics, the adoption of robust

languages for describing and querying biological systems will be essential for the

implementation of systems levels of analysis. In particular, we expect there is a substantial

underutilization of formal biological ontologies, such as the gene ontology 22 and the anatomic

and developmental UBERON ontology 23, in this space of data description, query, and analysis.

The standard use case for the rich structure of ontologies is to perform set enrichment type

analyses 24,25. However, we expect ontology structures will prove useful as a foundation for ever

deeper levels of analysis, richer reporting of discoveries, and more efficient integration of

learned human knowledge. The development of novel computational tools and technologies will

be required to see the full potential of ontology systems in biology come to fruition, but we are

excited by their potential.

Biology is fundamentally the study of systems that: have evolved over a vast period of

time, that develop and function on timescales spanning orders of magnitude, and that respond

to and shape their environment at both microscopic and global scales. Handling the complexity

of living systems to intelligently and efficiently ask questions, including those important for the

advancement of medicine, will necessarily require augmenting our own analytic capacity with

computation tools and methods. We hope that future research will continue to build on some of
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the themes that we have developed here, particularly in advancing modes of analysis that can

provide a more holistic and systems level perspective of biological phenomena.

It is an exciting time to be involved in biological research. Technologies have advanced

rapidly and data is more plentiful and richer than at any other point in human history. Never has

a more full appreciation for the structure, complexity, and beauty inherent to life been possible to

strive for. There is much to be grateful for.
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