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ABSTRACT OF THESIS 

 

Effect of Tides and Currents on UAV-Based 

Detection of Giant Kelp Canopy 

 

by 

 

Katherine C. Cavanaugh 

 

Master of Arts in Geography 

University of California, Los Angeles, 2020 

Professor Kyle C. Cavanaugh, Chair 

 

Satellite and aerial imagery have been used extensively for mapping the abundance and 

distribution of giant kelp (Macrocystis pyrifera) in southern California. While tides and currents 

have been shown to affect the amount of floating kelp canopy on the water surface, there have 

been no quantifications of how these processes can bias remotely sensed kelp estimates in this 

region. We used unmanned aerial vehicles (UAVs) to map fine-scale changes in canopy area due 

to tidal height and current speed at both Palos Verdes, CA and Santa Barbara, CA. Additionally, 

we collected a biweekly time series of kelp canopy area in Palos Verdes over the course of a year 

to monitor fine-scale, intra-seasonal changes in canopy coverage. Our automated method for 

detecting kelp canopy in color and multispectral UAV imagery was highly accurate (over 84% and 

98%, respectively) in classifying exemplary kelp and water pixels across a range of weather, ocean, 

and illumination conditions. Increases in tidal height of 1 m reduced the amount of floating kelp 
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canopy by 15% to 32%. Current speeds are generally low in southern California and had no 

statistically significant effect on apparent bed size. However, increases in current speeds of 0.1 

m/s reduced the amount of floating kelp canopy by over 31%. Tidal height and current speed can 

introduce significant variability to estimates of kelp abundance, but the magnitude of this 

variability is region specific. The biweekly time series displayed intra-annual variability typical of 

giant kelp, with a relatively gradual decline in kelp canopy in late summer corresponding with 

high sea surface temperatures, a rapid decline in the winter associated with wave disturbance, and 

a gradual recovery in the spring of the following year. The time series was also able to capture 

intra-seasonal changes in kelp canopy area that would have gone undetected in an annual or 

quarterly dataset, namely an increase in area to about half of the maximum in the late fall before 

wave events began. 
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1. Introduction 

Giant kelp (Macrocystis pyrifera) serves as the structural and nutritional foundation for 

globally distributed and highly productive nearshore ecosystems (Dugan et al., 2003; Graham et 

al., 2007; Miller et al., 2018).  Giant kelp forests offer great societal and economic value through 

the support of fisheries, recreation, a wide range of products including cosmetics, food, and 

fertilizer, and the potential for biofuel production (Gentry et al., 2017, 2019). Accordingly, 

monitoring the abundance and distribution of this valuable resource is particularly important in 

the face of global climate change, as marine ecosystems are especially susceptible to the effects 

of climatic disturbances (Harley et al., 2006). 

Fixed to subtidal, rocky reefs with a holdfast, giant kelp fronds vertically extend towards the 

sea surface to form dense, floating canopies, which are easily visible from above. The use of 

satellite imagery has shown great potential for monitoring kelp populations, as floating kelp 

canopies are visible with moderate resolution (10 to 30 m) spaceborne sensors (Bell et al., 2020; 

Bell, Cavanaugh, Reed, et al., 2015; Cavanaugh et al., 2011; Mora-Soto et al., 2020). Repeated 

global measurements provide a comprehensive view of changes in kelp canopy area through 

time, enabling the purported roles of seasonal (e.g. wave disturbance and nutrient availability) to 

decadal scale (e.g. the El Niño-Southern Oscillation (ENSO) and the North Pacific Gyre 

Oscillation (NPGO)) drivers to be evaluated across a wide range of spatial scales. Satellites with 

moderate resolution can be used to accurately estimate the biomass of continuous kelp canopies 

ranging on the order of tens of meters to hundreds of kilometers in size (Cavanaugh et al., 2011), 

yet are unable to detect sparse stands of kelp that cover less than 15% of a pixel (Hamilton et al., 

2020). Additionally, shallow kelp communities are often difficult to differentiate from land, 

especially when pixels contain a mixture of land, water, and kelp (Bell et al., 2020; Hamilton et 

al., 2020; Schroeder et al., 2019). These issues limit the suitability of moderate resolution 
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satellite imagery for monitoring giant kelp habitat in regions where kelp beds are small, sparse 

and/or found close to the shoreline (e.g. British Colombia; Nijland et al., 2019). 

Unmanned aerial vehicles (UAVs) present a low-cost, versatile solution to the challenges 

and limitations associated with using satellite imagery to study small or sparse kelp beds. 

Offering spatial resolutions on the order of centimeters, UAVs not only provide the fine 

resolution necessary to monitor environmental processes on fine spatial scales, but they also 

present the flexibility for high temporal resolutions (Whitehead et al., 2014; Whitehead & 

Hugenholtz, 2014). Additionally, sensor systems with varying spectral capabilities have been 

developed for UAV platforms, ranging from digital color cameras, containing red, green, and 

blue channels (RGB) to hyperspectral (Whitehead & Hugenholtz, 2014). While emergent giant 

kelp canopy prominently reflects in the near infrared (NIR), water has a high absorption (Jensen 

et al., 1980; Schroeder et al., 2019). As a result, NIR reflectance decreases as kelp fronds 

submerge, making this portion of the spectrum useful for detecting canopy coverage and 

mapping fine-scale changes through time (Cavanaugh et al., 2010). 

Tidal height and surface currents introduce complexity into aerial estimates of kelp 

canopy area (Britton-Simmons et al., 2008). The amount of kelp exposed on the water surface 

periodically fluctuates with incoming and outgoing tides. Portions of the canopy submerge and 

reemerge as tidal height increases and decreases, and at high-tide, deeply submerged individuals 

become undetectable with aerial and satellite-based sensors. Similarly, strong currents can 

temporarily immerse floating canopies, changing the shape and coverage of the forest when 

viewed from above.  

In southern California, satellite and aerial imagery have been used extensively for 

monitoring the drivers of giant kelp biomass dynamics, kelp physiological condition, and 

synchrony and metapopulation dynamics (Jensen et al., 1980; Deysher 1993; Stekoll et al., 2006; 
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Cavanaugh et al., 2011; 2013; 2014; 2019; Bell et al., 2015a,b; 2020; Castorani et al., 2015; 

2017). Despite this widespread use, it is unclear how tidal height and surface currents impact 

apparent bed size in this region. Britton-Simmons et al. (2008) demonstrated a significant impact 

of tides and currents on bull kelp (Nereocystis luetkeana) canopy using oblique-angle, shore-

based photography. However, there are limitations with estimating area from oblique-angle 

imagery, and bull kelp has a different morphology than giant kelp.  

Here, we aim to quantify the influence of tides and currents on floating giant kelp canopy 

in southern California using UAVs. UAV imagery has been successfully implemented in the 

detection and mapping of both floating and submerged seaweed communities, yet sun glint, 

crashing waves, shadows, and spectral noise have made automated classification schemes 

problematic, necessitating manual image classifications (Kellaris et al., 2019; Taddia & Russo, 

2019; Thomsen et al., 2019). As a result, another goal of this work is to develop an automated 

canopy detection algorithm that can be applied consistently to UAV imagery collected across 

varying conditions. Last, using this automated method, we introduce a new data set created from 

multispectral UAV imagery which allows for the local scale assessment of giant kelp canopy 

area at 10 cm resolution every two weeks for one year while controlling for tides.  

 

2. Methods  

2.1 Field Data Collection 

Our study area included two kelp forests located on the southern California coast: Arroyo 

Quemado (34° 28.127′ N, 120° 07.285′ W) west of Santa Barbara, and Honeymoon Cove (33° 

45.906′ N, 118° 25.392′ W) at Palos Verdes (Fig. 1). Both kelp forests experience tidal 

fluctuations ranging from ~ -0.55 m to 2.2 m. 
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Fig. 1. Santa Barbara, California study site: Arroyo Quemado (A) and Palos Verdes, California 
study site: Honeymoon Cove (B). 

 

We conducted flights throughout the tidal range (hereafter referred to as tidal surveys) on 

2 January 2018 at Arroyo Quemado (-0.52 m to 2.15 m) and on 9 July 2018 (0.64 m to 1.96 m) 

and 18 July 2018  (0.25 m to 1.56 m) at Honeymoon Cove to capture the tidal responses of kelp 

beds with different structural properties. The Arroyo Quemado kelp forest is located offshore of 

an open coast, and we sampled one discrete stand within the forest located ~ 400 m from the 

shoreline (surveyed a total area of 0.29 km2). We were able to completely capture the stand in 

our imagery. The Honeymoon Cove kelp forest extends throughout a sheltered cove, with thicker 

stands of kelp fringing the coastline and sparser stands of kelp covering the rest of the cove. We 

only conducted flights within the cove, but the kelp forest continuously extended past the section 

we surveyed (surveyed a total area of 0.25 km2). For each tidal survey, we performed hourly 

flights across the tidal amplitude (approximately six hours). Wind speeds were less than 8 km/h 

during all tidal survey flights.  

Current measurements were not available at Honeymoon Cove, but we performed 

replicate tidal flights 9 days apart for comparison. We conducted a separate set of surveys at 

Arroyo Quemado to isolate the effect of currents on apparent kelp bed site (hereafter referred to 
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as current survey). These consisted of one flight per day at the bottom of low tide across a 5-day 

span (26 June 2019 to 30 June 2019) with varying wind speeds.  

We used a MicaSense RedEdge sensor mounted on a DJI Matrice 100 quadcopter to 

survey the kelp bed at Honeymoon Cove. The RedEdge simultaneously captures data in five 

spectral channels, the blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm), and NIR 

(840 nm). Sun angle and illumination conditions varied temporally across each survey, and while 

the RedEdge was equipped with a downwelling light sensor (DLS), we omitted DLS data in 

image processing to reduce bias introduced by DLS tilting during the flight (Hakala et al., 2018). 

To calibrate reflectance for each flight, we imaged a spectral calibration panel with known 

reflectance before and after each flight. We set the along-track overlap between consecutive 

images to 80% and the side-track overlap between consecutive flight lines to a minimum of 75%. 

Sun glint distorted the reflectance of pixels in the middle and edges of images taken when the 

sun was at or close to zenith. To increase pixel coverage unaffected by sun glint, we increased 

the side-track overlap to 85% during these flights. We used a MicaSense Altum sensor mounted 

on a DJI Matrice 200 quadcopter to survey the kelp bed at Arroyo Quemado. The Altum 

simultaneously captures data in the same five channels as the RedEdge. We kept all other 

settings consistent to those used with the RedEdge sensor. 

A moored CTD and Acoustic Doppler Current Profiler (ADCP) from the Santa Barbara 

Coastal Long Term Ecological Research (SBC LTER) program (http://sbc.lternet.edu) were 

located within the Arroyo Quemado kelp forest, allowing for simultaneous in situ depth and 

current measurement comparisons with each Arroyo Quemado flight. These data included north 

velocity, east velocity, and water depth, which were provided in 20-minute intervals. Velocity 

data were collected at 16 different heights in the water column, from 2.5 m to 17.5 m from the 

bottom.  We used measurements from 12.5 m readings for this study, as measurements taken
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above 12.5 m from the bottom often yielded no data values at low tide. We linearly interpolated 

both depth and current measurements to 1-minute intervals to match the tidal height and current 

speed at the time each kelp forest was imaged. We used NOAA/NOS/CO-OPS 1-minute tidal 

measurements (https://tidesandcurrents.noaa.gov/1mindata.html) from Station 9410660 for 

simultaneous in situ depth measurement comparisons with each Honeymoon Cove flight. 

 

2.2 UAV Image Data Processing  

Before analyzing the UAV images, we converted raw pixel values from digital numbers 

(DN) to reflectance using the recommended MicaSense processing steps 

(https://github.com/micasense/imageprocessing). We applied a dark pixel correction to reduce 

sensor noise, calculated an imager specific radiometric calibration function to account for 

radiometric inaccuracies, removed vignette effects from image corners, and divided each pixel 

by image gain, exposure time, and a sensor-specific calibration coefficient (all imager and sensor 

specific calibrations were provided within the MicaSense GitHub). For each band, we extracted 

and averaged the pixels within the inner 75% of reflectance panel images captured before and 

after each flight to account for any illumination changes from launch to landing. The respective 

panels for the RedEdge and Altum have a known reflectance for each band, which we used to 

convert DN to reflectance. 

 Pixels altered by sun glint and crashing waves introduce distortion into individual 

images, as these pixels are inconsistent across space and time, making image mosaicking 

difficult. To reduce distortion, we masked these pixels from each band of pre-mosaicked 

reflectance images using gray-level co-occurrence matrices (GLCM), which have been 

successful in a variety of remote sensing-based classifications (Changhui et al., 2013; X. Huang 

et al., 2014; Zheng et al., 2018). GLCMs yield textural features from images by calculating the
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spatial distribution of the gray-level variations of individual band values (Haralick et al., 1973). 

The function graycomatrix in MATLAB 2018a creates a GLCM by describing pixel spatial 

dependency, or the frequency at which a pixel with value i occurs adjacent to a pixel with value j 

(MATLAB 2018a). Because sun glint was most prominent in the blue band of RedEdge and 

Altum images, we ran graycomatrix on the blue band of each image. We used the brightest pixel 

grouping within each matrix to mask glint and wave pixels for all images containing 100% water 

to minimize accidental masking of land and coastal pixels. We put a 5-pixel buffer around any 

pixels classified as glint and exported a unique mask for each individual UAV image (Fig. 2). 

We mosaicked reflectance images into orthomosaics using the photogrammetric software Agisoft 

Photoscan Pro and exported each resulting flight as a GeoTiff (Agisoft, St. Petersburg, Russia). 

Masks can be imported directly into Photoscan Pro, which ignores masked values when finding 

tie points for photogrammetric stitching. To account for error in measurements of the UAV’s 

onboard GPS, we manually georeferenced each GeoTiff to an arbitrarily selected base image 

using ten coordinates located along the shoreline of each site. Once images were georeferenced, 

they were resampled to 10 cm x 10 cm, and all land and coastal pixels within 10 meters of the 

low-tide line were removed. 

 
Fig. 2. Unprocessed, grayscale UAV image (A) and corresponding sun glint mask (B). All 
reflectance pixels found within the sun glint mask were removed during photogrammetric 

processing to improve mosaicking success. 
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2.3 UAV-Based Kelp Area Detection 

We compared twenty vegetation indices to determine which was best at separating kelp 

from water in UAV imagery. These included both previously published indices as well as simple 

additive and multiplicative band combinations.  Ten indices were restricted to RGB wavelengths, 

and ten indices included either the red-edge or NIR band (Table 1). To compare the performance 

of various vegetation indices in detecting kelp canopy, we manually identified kelp and water 

pixels across 10 dates from the Honeymoon Cove time series with varying sun angles, wind 

speeds, wave conditions, water clarity, and kelp health to cover a wide range of conditions 

experienced in the field. The number of identified kelp and water pixels varied from image to 

image, and to keep samples consistent, we randomly selected 500 pixels from each class within 

each image for a total of 5,000 pixels per class. We then used two parametric separability 

measures, the transformed divergence (TD) separability measure (Equation 1, Equation 2) and 

the Jeffries-Matusita distance (JM; Equation 3, Equation 4), to assess the ability of each index to 

differentiate kelp from water. JM and TD are both statistical mechanisms for testing the ability to 

distinguish two classes. Each is bound between 0 and 2, with 0 being no separability between 

classes and 2 being complete class separability as: 

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	(𝐷) = 	 !
"
𝑡𝑟[(𝐶! − 𝐶")(𝐶!#! − 𝐶"#!)] +

!
"
𝑡𝑟[(𝐶!#! − 𝐶"#!)(𝜇!#𝜇")(𝜇!#𝜇")$]        (1) 

𝑇𝐷 = 2 61 − exp ;− %
&
<=                                      (2) 

𝐵ℎ𝑎𝑡𝑡𝑎𝑐ℎ𝑎𝑟𝑦𝑦𝑎	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	(𝐵𝐷) = 	 !
&
(𝜇"#𝜇!)$ 6

'!('"
"
=
#!
(𝜇"#𝜇!) +

!
"
𝑙𝑛

)#!$#"" )

*|'!||'"|
          (3) 

𝐽𝑀 = 	G2[1 − exp(−𝐵𝐷)]                (4) 

where C1 and C2 are the covariance matrices of class 1 and class 2, 𝜇! and 𝜇" are the mean 
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vectors of class 1 and class 2, tr is the matrix trace function, and T is the matrix transposition 

function. JM and TD are the transformed divergence and Jeffries-Matusita distances between 

class 1 and class 2, respectively (Jensen 1996; H. Huang et al. 2016).  

 Because JM and TD are only indicative of separability in cases of normality, we used the 

Shapiro-Wilk Normality test to determine whether the kelp and water pixel samples were 

normally distributed after each index was applied. The Shapiro-Wilk Normality test is most 

reliable with small sample sizes, and accordingly, we computed ten iterations of the Shapiro-

Wilk Normality test, each extracting 100 random samples from the 500 kelp samples and 500 

water samples from each image acquisition and spectral index (H. Huang et al., 2016). 

 

Table 1. Blue (B), green (G), red (R), red-edge (Re), and NIR band combinations for each of the 
vegetation indices tested for the separability analysis of kelp and water pixels. 

 
Description Equation Reference 
 
Red-Blue 
 
Normalized Difference of Red and 
Blue 
(NDRB) 
 

 
𝑅 − 𝐵 

 
𝑅 − 𝐵
𝑅 + 𝐵 

 

Modified Green Red Vegetation 
Index (MGVI) 
 

𝐺" − 𝑅"

𝐺" + 𝑅" 
 

Bendig et al., 
2015 

Modified Photochemical Reflectance 
Index  
(MPRI) 
 

𝐺 − 𝑅
𝐺 + 𝑅 Yang et al., 

2008 

Red Green Blue Vegetation Index 
(RGBVI) 
 

𝐺 − 𝐵 ∗ 𝑅
𝐺" + 𝐵 ∗ 𝑅 

 

Bendig et al., 
2015 

Green Leaf Index 
(GLI) 

2𝐺 − 𝑅 − 𝐵
2𝐺 + 𝑅 + 𝐵 Louhaichi et 

al., 2001 
 
Greenness Index 
(GI) 

 
𝐺
𝑅 

 

 
Smith et al., 
2005 
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Blue/Red 𝐵
𝑅 

 

 

Excess of Green 
(ExG) 

 

2𝐺 − 𝑅 − 𝐵 Woebbecke 
et al., 1995 

Visible Atmospherically Resistant 
Index  
(VARI) 

 

𝐺 − 𝑅
𝐺 + 𝑅 − 𝐵 Gitelson et 

al., 2002 

Triangular Vegetation Index 
(TVI) 

120(𝑅𝑒 − 𝐺) − 200(𝑅 − 𝐺)
2  

Broge & 
Leblanc, 
2001 

   
Normalized Difference Vegetation 
Index 
(NDVI) 

 

𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅 

 

Tucker, 1979 

Green Normalized Difference 
Vegetation Index 
(Green NDVI) 

 

𝑁𝐼𝑅 − 𝐺
𝑁𝐼𝑅 + 𝐺 

 

Gitelson et 
al., 1996 

Normalized Difference Blue Index 
(Blue NDVI) 

 

𝑁𝐼𝑅 − 𝐵
𝑁𝐼𝑅 + 𝐵 

 

Zerbe & 
Liew, 2004 

Renormalized Difference Vegetation 
Index 
(RDVI) 

 

𝑁𝐼𝑅 − 𝑅
√𝑁𝐼𝑅 + 𝑅

 Roujean & 
Breon, 1995 

Normalized Difference Red-edge 
Blue 
(NDBRE) 

 

𝑅𝑒 − 𝐵
𝑅𝑒 + 𝐵  

Enhanced Vegetation Index 
(EVI) 

 
2.5 Q

𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 ∗ 𝐵 + 1T 

Huete et al., 
2002 

Green Chlorophyll Index 
(CIG) 

𝑁𝐼𝑅
𝐺 − 1 Gitelson et 

al., 2005 
 
Blue/Red-edge 

 
𝐵
𝑅𝑒 

 

 
Blue/NIR 

 
𝐵
𝑁𝐼𝑅 
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In order to identify kelp using a vegetation index, we identified a threshold, and pixels 

above this threshold were considered kelp canopy. Ideally, we would have used a single 

threshold for all images, but differing sensors, illumination conditions, and kelp condition 

necessitated a more dynamic approach. For each image, we calculated histograms from 

vegetation index values. For images containing both kelp and water, histograms displayed a 

bimodal signature, with one peak characterizing kelp pixels and the other characterizing water. 

We identified the location of each histogram peak with the function findpeaks in MATLAB 

2018a, calculated the mid-point, and used the vegetation index value at the mid-point as the 

unique, image-based classification threshold (Fig. 3). If we were only able to identify one peak 

(i.e. the image was dominated by either kelp or water pixels), we applied the function gradient in 

MATLAB 2018a to identify potential shoulders within the histogram. In these images, we used 

the vegetation index value at the mid-point between the shoulder and the peak as the unique, 

image-based classification threshold.  

 
Fig. 3. Methodology used in the detection of the presence or absence of kelp in each pixel. For 

each image, we applied the vegetation index and calculated histograms to find unique thresholds 
for image classifications.
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Using the separability measures, we identified the best performing RGB-based index and 

the best performing red-edge or NIR-based index (Red-Blue and NDBRE, see Results). We then 

performed an accuracy assessment to compare the automated classifications from these two 

indices. Using the same randomly selected 5,000 kelp and water pixels used within the TD and 

JD separability analysis, we quantified how many pixels each index accurately classified as kelp 

or water and determined where each index fails. 

NDBRE yielded the highest accuracy, and we applied the NDBRE histogram-based 

automated classification to each image in  Honeymoon Cove tidal surveys, Arroyo Quemado 

tidal surveys, Arroyo Quemado current surveys, and Honeymoon Cove time series. We 

multiplied the number of kelp pixels in each classified image by the area of each pixel (10 cm x 

10 cm) to calculate the amount of kelp canopy present. For the tidal analysis, we compared the 

identified kelp area from Arroyo Quemado to ADCP tidal measurements from the SBC LTER 

project and the identified kelp area from Honeymoon Cove to NOAA/NOS/CO-OPS one-minute 

tidal measurements. We used the station-measured tidal height at the mid-point of each flight for 

input in a simple linear regression model. For the current analysis, we compared the identified 

kelp area from Arroyo Quemado to ADCP current measurements from the SBC LTER project 

taken within the kelp forest at 12.5m (from the bottom).  

 

2.4 Seasonal Variability in Kelp Abundance 

We collected biweekly imagery at Honeymoon Cove from June 2018 to August 2019 for 

a total of 25 images. We conducted all flights at mid-tide (~ 1 m) to reduce the impact of tides on 

surface canopy measurements. We did not restrict flights due to time of day or cloud coverage, 

however, we did not fly on days with wind speeds > 16 km/h or in precipitation of any kind.  

For qualitative comparisons between seasonal variations in kelp canopy area and 
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environmental variables, we collected SST measurements from the NOAA National Data Buoy 

Center Station 9410660 and aggregated the measurements to daily means. Additionally, we 

collected maximum wave height data from the Coastal Data Information Program’s (CDIP) 

nowcast alongshore wave-propagation model (O’Reilly et al., 2016). The model uses various 

parameters from sites located at 100 m  intervals along the backbeach to calculate hourly 

estimates of maximum wave height at a depth of 10 m along the California coastline. We 

selected the five sites that incorporated calculations from the backbeach within Honeymoon 

Cove (sites L0389 - L0394) and averaged them by date and time. We calculated the daily 

maximum wave height for analysis. 

 

2.5 Statistical Analyses 

Tidal height and current speed are strongly correlated, and as a result, we performed 

several statistical analyses to detect and separate the effects of tides and currents on variations in 

kelp canopy area (Britton-Simmons et al., 2008). For each tidal survey (both Honeymoon Cove 

surveys and the Arroyo Quemado survey), we applied a simple linear regression to determine 

whether tidal height (independent variable) was significantly correlated with kelp canopy area 

(dependent variable). To test for potential differences between the Honeymoon Cove tidal 

surveys due to current speed, we used a one-way analysis of covariance (ANCOVA) to 

determine whether the Honeymoon Cove simple linear regression slopes from the two tidal 

survey dates were equal. To test for potential differences in the relationship between tidal height 

and kelp canopy area at Honeymoon Cove and Arroyo Quemado, we used an ANCOVA to 

determine if the simple linear regression slopes between the two sites were significantly different 

from each other.  

For the Arroyo Quemado tidal and current surveys, we used multiple linear regression to 
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determine whether tidal height and current speed (independent variables) were significantly 

correlated with kelp area (dependent variable; Britton-Simmons et al., 2008). Additionally, we 

calculated partial correlation coefficients to partition the variance in canopy area explained by 

tidal height or current speed (Britton-Simmons et al., 2008). Partial correlation coefficients 

measure the correlation between two variables while holding a specified covariate constant (i.e. 

correlation between tidal height and kelp canopy area while holding current speed constant, and 

the correlation between current speed and kelp canopy area while holding tidal height constant; 

Sokal & Rohlf 1981). 

 

3. Results 

3.1 Kelp and Water Separability Analysis 

The twenty vegetation indices yielded variable performances in the parametric 

separability analysis of kelp and water pixel samples. P-values from the Shapiro-Wilk Normality 

test, which indicate whether the data come from a normally distributed population, varied within 

and between the ten iterations performed on each vegetation index. All of the data were not 

considered to be normally distributed, which may introduce bias into the JM and TD tests. 

However, these results were only used to help inform the optimal vegetation index for analysis. 

For the RGB-based vegetation indices, Red-Blue exhibited the highest cumulative JM and TD 

values (1.29 and 1.47, respectively), while NDRB exhibited the next highest cumulative values 

(1.29 and 1.42, respectively; Fig. 4). None of the RGB-based vegetation indices yielded 

completely separable results. For vegetation indices that included either the red-edge or NIR 

band, each index exceeded separability scores of 1.5 or greater for both JM and TD. NDBRE 

exhibited the highest cumulative JM and TD values (1.99 and 1.99, respectively), while Blue 

NDVI exhibited the next highest cumulative values (1.91 and 1.93, respectively; Fig. 5). 
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Blue/Red-edge was the only vegetation index that yielded a completely separable TD score of 2, 

while no vegetation index yielded a completely separable JM score (Fig. 4, Fig. 5). 

 
Fig. 4. JM and TD values for the 10 RGB vegetation indices, with 0 being no separability 

between classes and 2 being complete separability. 

 
Fig. 5. JM and TD values for the 10 red-edge or NIR-based vegetation indices, with 0 being no 

separability between classes and 2 being complete separability. 
 
 
3.2 Automated Classification Accuracy Assessment 

The Red-Blue and NDBRE performances in separating kelp and water pixel samples led 

to further analysis of these vegetation indices for use in the histogram-based automated 
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classification. Red-Blue exhibited 84.92% accuracy in identification of the randomly selected 

5000 pixels used as inputs for the JM and TD separability analysis, and 85.26% accuracy in 

identification of the randomly selected 5000 water pixels. NDBRE exhibited 98.70% and 

99.96% accuracy in identification of kelp and water pixels, respectively. Red-Blue was sensitive 

to water surface features (ripples and waves), remnant glint artifacts, shadows (i.e. from steeply 

sloped shoreline), and visible substrate (i.e. on a day with high water clarity), often mis-

classifying these features as kelp. Darkly shaded kelp fronds and remnant glint on kelp fronds 

were often mis-classified as water. NDBRE was much more robust and was able to accurately 

classify kelp and water pixels across a wide variety of environmental conditions and was used to 

distinguish kelp from water in all further analyses. 

 

3.3 Tidal Analysis 

A simple linear regression showed tidal height was significantly correlated with kelp 

canopy area in both Honeymoon Cove tidal surveys (F(1,5) = 213.19, p < 0.001 and F(1,4) = 

10.39, p = 0.03, respectively) and in the Arroyo Quemado tidal survey (F(1,5) = 134.69, p < 

0.001; Fig. 6). Tides had a large impact on the amount of kelp canopy exposed in southern 

California aerial imagery, as a 1 m increase in tidal height resulted in a 30.26% and 32.30% 

decrease in kelp canopy area during the first and second Honeymoon Cove tidal surveys, 

respectively, and a 15.67% decrease in kelp canopy area at the Arroyo Quemado kelp forest (Fig. 

6).
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Fig. 6. Regression analysis between kelp canopy area and tidal height for each tidal survey 

completed at Honeymoon Cove and Arroyo Quemado. 
 

The reduction in canopy area with increasing tidal height was similar between the two 

Honeymoon Cove tidal surveys, as the slopes of the Honeymoon Cove regression lines (one for 

each tidal survey date) were not significantly different. (F(1,9) = 0.02, p = 0.90). The reduction 

in canopy area with increasing tidal height was greater in both Honeymoon Cove surveys than it 

was at Arroyo Quemado (F(1,10) = 60.18, p < 0.001 and F(1,9) = 6.83, p = 0.02, respectively).  

During the Arroyo Quemado tidal survey, current speeds generally increased as tidal 

heights reached their minimum (Fig. 7). The multiple regression analysis from the Arroyo 

Quemado tidal survey showed a significant negative relationship between tidal height and kelp 

area (p = 0.01; Table 2). The relationship between current speed and kelp area was found to be 
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positive, but was insignificant (p = 0.65; Table 2). The partial correlation analysis showed that if 

the effects of current speed were controlled, tidal height would have explained 86.90% of the 

observed variation in and kelp canopy area. By contrast, contribution of current velocity 

explained only 5.7% of the observed variation in canopy area, and this result was not significant 

(p = 0.65; Table 2).  

 
Fig. 7. Temporal variations in tidal height and current speed during each flight of the Arroyo 

Quemado tidal survey. 
 
 

Table 2. Multiple regression and partial correlation analysis results from the Arroyo Quemado 
tidal survey. * indicates statistical significance. 

 
Multiple Regression Analysis Partial Correlation Analysis 
 Coefficients  Tide Effect Current Effect 
Intercept Tide  Current  R2 r R2 r R2 
14441.5* -1913.3* 6912.3 0.98 -0.932* 0.869 0.238 0.057 

 

3.4 Current Analysis 

Current speeds ranged from 0.02 to 0.13 m/s across the five dates, which was 

representative of average conditions in the Arroyo Quemado kelp forest during 2019 as a whole 
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(Fig. 9; annual average of 0.085 ± 0.066 m/s). Current speed exhibited a negative linear 

relationship with kelp canopy area but was not significantly correlated with the amount of kelp 

canopy exposed during the Arroyo Quemado current survey (F(1,5) = 6.05, p = 0.09; Fig. 8). 

However, canopy area declined by 31.99% percent for a 0.1 m/s increase in current velocity. 

 
Fig. 8. Regression analysis between kelp canopy area and current speed during the Arroyo 

Quemado current surveys. 
 

During the Arroyo Quemado current survey, there was no consistent relationship between 

tidal height and current speed (Fig. 9) and the two were not significantly correlated (F(1,5) = 

1.92, p = 0.23). The multiple regression analysis from the Arroyo Quemado current survey 

showed neither a significant effect of current speed on kelp area, nor a significant effect of tidal 

height (F(2,5) = 2.01, p = 0.33). The partial correlation analysis showed that neither tidal height 

nor current speed accounted for statistically significant kelp area variation. With the effects of 

tidal height controlled, variability in current speed accounted for 73.75% of the variability in 

kelp area during the current survey (p = 0.26). Tidal height only explained 2.72% of the 

variability in kelp area during the survey (p = 0.97).
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Figure 9. Temporal variations in tidal height and current speed during each flight of the Arroyo 

Quemado current survey. 
 

3.5 Honeymoon Cove Time Series 

 The mean kelp canopy area across the time series (June 2018 to August 2019) was 6763.2 

m2, but there was a high amount of variability about this mean. With a standard deviation of 

7104.6 m2, the coefficient of variation across the 25 surveys was 1.05. Changes in kelp canopy 

area occurred over a seasonal cycle with kelp area maximums in late summer and minimums in 

winter (Fig. 10). There was also pronounced seasonal variability, as mortality and growth each 

progressed for about four months (from late summer to fall and from spring to early summer, 

respectively) before reaching maximum or minimum values (Fig. 10). These gradual changes 

coincided with SST patterns, with kelp declines occurring after warmer periods and growth 

occurring after cooler periods (Fig. 10). Rapid changes also occurred within seasonal time spans, 

as evidenced by kelp recovery in November, which was followed by dislodgement from large 
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wave events in December. Low kelp canopy area persisted until wave events subsided in late 

spring (Fig. 10). 

 
Figure 10. Honeymoon Cove UAV-derived time series of kelp canopy area from June 2018 to 

August 2019. 
 

4. Discussion 

4.1 UAV Data Collection, Processing, and Classification 

Our automated method for detecting kelp canopy can be applied to both multispectral and 

RGB UAV imagery and is highly accurate across a range of weather, ocean, and illumination 

conditions. This robustness is important as there are a number of challenges associated with 

UAV-based remote sensing in coastal zones (Bevan et al., 2016; Hodgson et al., 2013; Schaub et 

al., 2018). Weather conditions, including precipitation and high wind, are common limiting 
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factors in drone deployment. Sun can also be a limiting factor for marine applications, as glint 

features on the water surface are challenging for photogrammetric software packages to manage. 

During stitching, the software may use glint artifacts as tie points to stitch two non-neighboring 

images in error, or it may be unable to find tie points altogether due to the lack of viable pixels. 

Additionally, any remaining glint in orthomosaics can introduce spectral noise and bias 

classification efforts. Sun glint can be reduced or avoided by collecting data on overcast days or 

by flying when the sun is at lower angles in the sky, but this is not always possible as flights may 

need to be conducted at a certain tidal stage. By introducing sun glint masks into our image 

processing workflow, PhotoScan alignment success increased in almost every flight and the 

presence of sun glint greatly decreased in final orthomosaics.  

Another challenge of using UAV imagery for analysis in marine ecosystems includes 

changing illumination conditions within flights (i.e. on a partly cloudy day when the sun 

continuously emerges and disappears behind clouds) and between flights (i.e. flying on an 

overcast day and flying on a sunny day). Despite spectral corrections with reflectance panels, 

these variations impact output reflectance values and cause spectral inconsistencies. As a result, 

using supervised classification schemes to distinguish kelp from water is difficult, as the training 

data often does not adequately cover the spectral ranges observed through each flight (Taddia & 

Russo, 2019). Additionally, while vegetation indices help to distinguish kelp from water, the 

threshold for separation strongly depends on image-specific spectral values, in turn necessitating 

image-specific thresholds (Taddia & Russo, 2019). Our dynamic thresholding procedure for 

color and multispectral UAV imagery removed the subjectivity and visual bias involved with 

manual threshold selection and was highly accurate (over 84% and 98%, respectively) in 

classifying exemplary kelp and water pixels. However, it is important to note that this accuracy 

was determined using ideal kelp and water samples, and the overall accuracy of the classified 
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image may be lower.  

Our highest accuracies were achieved using multispectral imagery, and a number of other 

studies have demonstrated the utility of multispectral imagery in detecting kelp canopy 

(Cavanaugh et al., 2010; Jensen et al., 1980). While many traditional floating algae indices 

depend on the NIR band (Cavanaugh et al., 2010; Hu, 2009; Tucker, 1979; Xing & Hu, 2016), 

the NIR band on the RedEdge has higher variability as compared to field spectra, which may 

have led to slightly lower separability potential from NIR-based indices (Doughty & Cavanaugh, 

2019). We also found that accuracies of > 80% could be achieved using RGB imagery using a 

simple subtraction between the red and the blue band. This indicates potential for kelp mapping 

using accessible low-cost UAV platforms that come with digital cameras. However, users should 

be aware that RGB imagery is more sensitive to surface features (ripples and waves), remnant 

glint artifacts, shadows (i.e. from steeply sloped shoreline), and visible substrate (i.e. on a day 

with high water clarity).  

 

4.2 Effects of Tidal Height and Current Speed on Exposed Canopy 

The amount of kelp canopy visible on the water surface at both Honeymoon Cove and 

Arroyo Quemado declined significantly with tidal height, suggesting that tides have the ability to 

bias aerial-derived metrics of kelp canopy coverage in southern California. The effect of tide was 

not consistent between the two sites and was almost twice as strong at Honeymoon Cove, which 

may be the result of differing bed structures between the two sites. The Arroyo Quemado kelp 

forest is comprised of a discrete, offshore bed, while the Honeymoon Cove kelp forest is 

comprised of both large, dense kelp stands as well as small, sparse stands. At Arroyo Quemado, 

the depth linearly slopes downward from the shoreline (from about -1.5 m to -16.5m), but the 

extensive rocky reef along the gradient allows for a continuous, dense canopy. Increases in tidal 
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height submerged the edges of the canopy but did not submerge any central canopy features. At 

Honeymoon Cove, the depth slopes downward from the outer edges of the cove to the center 

(from about 0 m to -8 m). There is extensive and continuous rocky reef along the shallow, edges 

of the cove, but the reef in the center is much more fragmented. As a result, dense aggregates of 

kelp grow along edges, and these behave similarly to the beds at Arroyo Quemado as tidal height 

increases. However, the patchy, fragmented aggregates in the center of the cove often only 

consist of a few individuals, and these become fully submerged as the tide increases (Fig. 1). 

Kelp forest demographics might also influence the impacts of tides by controlling the fraction of 

canopy vs. subsurface fronds.  

A region’s tidal range will clearly influence the degree to which UAV estimates of 

canopy area are affected by tides.  Southern California has a generally low tidal range (~ 2 m) 

compared to some other global regions (i.e. Southeast Alaska, ~ 30 m). Yet, even this small 

range impacted kelp canopy coverage by over 15% at Arroyo Quemado and over 30% at 

Honeymoon Cove. This result disagrees with previous work that estimated the weak tidal 

fluctuations in Santa Barbara had no effect on kelp canopy coverage estimates from Landsat 

satellite imagery (Cavanaugh et al., 2010, 2011). However, the higher resolution of the UAV 

imagery and experimental design aimed at isolating the effects of tides likely enabled us to more 

clearly detect the tidal effect. Another study using Landsat imagery for kelp canopy detection 

found inconsistencies in kelp biomass estimates between Landsat TM and ETM+ sensors, which 

was attributed to the 8-day repeat difference between the satellites imaging at different points in 

the tidal cycle (Bell et al., 2020). Aggregating Landsat biomass estimates (30 m resolution) to a 

seasonal scale (3 months) was sufficient for correcting for tidal effects (Bell et al., 2020). 

  Tidal height explained 87% of the variation in kelp canopy area during the Arroyo 

Quemado tidal survey, which is consistent with findings from other regions with similar tidal 
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signals, such as San Juan Island, WA (Britton-Simmons et al., 2008). Kelp beds adjacent to San 

Juan Island experience tidal ranges of 2 to 3 m and are mainly comprised of bull kelp 

(Nereocystis luetkeana). Britton-Simmons et al. (2008) found that tidal height explained between 

67% and 95% of observed variability in kelp area across 6 different sites near San Juan Island, 

which included differing kelp densities, bathymetry, coastline shapes, and current strength. 

While both giant kelp and bull kelp form floating canopies, they exhibit unique morphological 

features. Each giant kelp blade is attached to a pneumatocyst that buoys it to the surface (Graham 

et al., 2007), while bull kelp blades for one individual grow from a single, large (15 cm diameter) 

pneumatocyst (Amsler & Neushul, 1989; Schroeder et al., 2019). As a result, giant kelp canopies 

consist of stipes, pneumatocysts, and blades, while bull kelp canopies mainly consist of stipes 

and pneumatocysts; bull kelp fronds often remain submerged (Schroeder et al., 2019). While 

these morphological differences responded similarly to tidal fluctuations in southern California 

and San Juan Island, they may exhibit different effects in regions with more extreme tidal 

fluctuations. 

Currents had no apparent effect on the amount of kelp canopy visible on the water 

surface, as canopy area was not significantly correlated with current speed. However, the 

relationship may have been significant if more samples were included in the study. Current 

speeds at Arroyo Quemado never exceeded 0.13 m/s during our survey, and while the correlation 

between kelp canopy area and current speed was not significant, a 0.1 m/s increase in current 

speed reduced the amount of floating canopy by over 30%. Our results agree with previous 

studies that found no correlation between current speed and observed canopy area of bull kelp in 

regions with low current speeds (Britton-Simmons et al., 2008).  Britton-Simmons et al. (2008) 

found that in 1 of the 6 beds from the San Juan Island study, current speeds never exceeded 0.4 

m/s. In this bed, there was no clear trend in the relationship between current speed and the 
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amount of visible kelp on the water surface (n > 20; Britton-Simmons et al., 2008).  In contrast, 

the trend between current speed and the amount of visible kelp on the water surface at Arroyo 

Quemado, although not significant, was linear, but additional sampling is needed to understand 

whether this relationship is significant and consistent across higher current speeds. 

The effects of current speed on the other 5 kelp beds from Britton-Simmons et al. (2008) 

were found to be highly significant, but current speeds ranged much higher at these sites (> 1 

m/s). While low current speeds may impact giant kelp and bull kelp similarly, the relationship 

may change as current speed increases. Bull kelp blades begin to stream laterally with moderate 

amounts of current, resulting in larger floating canopies. As a result, the relationship between the 

percentage of bull kelp bed visible and current speed is often non-linear and difficult to quantify, 

as it varies with geographic shading, coastline shape, and bathymetry (Britton-Simmons et al., 

2008). The spatial variation in current dynamics around kelp beds is extremely dynamic, and 

necessitates site-specific corrections – especially in places with high current ranges (Britton-

Simmons et al., 2008). However, our results support that despite the relatively weak current 

patterns at Arroyo Quemado, current speeds at the higher end of the current range at Arroyo 

Quemado can bias canopy estimates. 

 

4.3 UAV Kelp Canopy Time Series 

Our UAV time series dataset represents a high-resolution assessment of local kelp canopy 

area dynamics on a sub-seasonal scale. Previous studies have demonstrated the effectiveness of 

deriving time series of kelp canopy biomass or area from aerial and satellite imagery, but many 

of these analyze data on quarterly or annual time scales (Bell et al., 2020; Bell, Cavanaugh, & 

Siegel, 2015; Berry et al., 2005; Cavanaugh et al., 2010, 2011, 2019; Deysher, 1993; Jensen et 

al., 1980; Pfister et al., 2018; Rogers-Bennett & Catton, 2019; Schroeder et al., 2019; Stekoll et 
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al., 2007). This UAV dataset provides a novel view into the feasibility for collecting long-term 

datasets at high spatial and temporal resolution, and the potential for understanding the rapid, 

sub-seasonal variations in canopy dynamics.  

We conducted flights for our area of interest using one battery set (20 to 30-minute 

flights), allowing for feasible and relatively quick bi-weekly data collection. Additionally, mostly 

automated processing workflows (reflectance corrections, PhotoScan workflow, and 

classifications) allowed for dataset manageability, as processing took about 5 hours from start to 

finish (about 4.5 hours were automated). This time would decrease with more computing power 

and/or GPU processing. 

The Honeymoon Cove time series displayed intra-annual variability that are typical of 

giant kelp. Increased temperature and decreased nutrients in the late summer were associated 

with gradual declines in kelp coverage. The first large wave event of the winter yielded 

immediate kelp declines, and abundance remained low until wave events began to subside in the 

spring. As temperature and nutrient conditions became adequate, kelp abundance continued to 

increase until reaching a peak in late summer. However, we were also able to capture fine-scale 

changes in kelp canopy area that would have gone undetected in an annual or quarterly dataset. 

Kelp cover increased to about half of its maximum in the late fall before wave events began (Fig. 

10).  This increase may have been linked to increased nutrient levels, as it occurred as 

temperatures decreased and began to approach winter minimums. However, a number of other 

factors may have been involved, including increased light availability and unoccupied substrate 

following the late fall kelp decline.  

 

5. CONCLUSION 

The spatial and temporal capabilities of UAV imagery make these platforms useful for 
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local mapping of giant kelp canopies at high spatial resolution. Collecting repeated 

measurements of kelp canopy area is difficult at a relatively small spatial scales (e.g. less than a 

few square meters), as diving efforts require extensive data collection, photographs taken at 

water level are difficult to quantify, and estimates from most satellite platforms do not provide 

suitable resolutions (Britton-Simmons et al., 2008; D. Reed et al., 2009; D. C. Reed et al., 2008; 

Schroeder et al., 2019). UAVs were an ideal platform for quantifying the effect of tides and 

currents on the amount of floating kelp canopy in southern California. Tidal height and current 

speed both introduced bias to canopy estimates, but the magnitude of their impacts was 

dependent upon several factors, including differing kelp densities, species type, bathymetry, 

coastline shapes, and current strengths, making them region specific. 

As a powerful monitoring tool, UAVs were also used to map kelp in small, sparse beds 

close to the coast, to create high spatial resolution time series, and to examine the impacts of 

discrete disturbances such as large wave events. However, this high spatial resolution comes at 

the expense of the broad spatial coverage of satellites, and neither method can robustly replace 

the other. The choice of which method to use is highly dependent on the ecological questions 

being asked.  

 



29 

References 

Amsler, C. D., & Neushul, M. (1989). Diel periodicity of spore release from the kelp Nereocystis 
Luetkeana. J. Exp. Mar. Biol. Ecol, 134, 117–127. 

 
Bell, T. W., Allen, J. G., Cavanaugh, K. C., & Siegel, D. A. (2020). Three decades of variability 

in California’s giant kelp forests from the Landsat satellites. Remote Sensing of 
Environment, 238(June 2018), 110811. https://doi.org/10.1016/j.rse.2018.06.039 

 
Bell, T. W., Cavanaugh, K. C., Reed, D. C., & Siegel, D. A. (2015). Geographical variability in 

the controls of giant kelp biomass dynamics. Journal of Biogeography, 42(10), 2010–2021. 
https://doi.org/10.1111/jbi.12550 

 
Bell, T. W., Cavanaugh, K. C., & Siegel, D. A. (2015). Remote Sensing of Environment Remote 

monitoring of giant kelp biomass and physiological condition : An evaluation of the 
potential for the Hyperspectral Infrared Imager ( HyspIRI ) mission. Remote Sensing of 
Environment, 167, 218–228. https://doi.org/10.1016/j.rse.2015.05.003 

 
Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. 

(2015). Combining UAV-based plant height from crop surface models, visible, and near 
infrared vegetation indices for biomass monitoring in barley. International Journal of 
Applied Earth Observation and Geoinformation, 39, 79–87. 
https://doi.org/10.1016/j.jag.2015.02.012 

 
Berry, H. D., Mumford, T. F., & Dowty, P. (2005). Using Historical Data to Estimate Changes 

in Floating Kelp (Nereocystis luetkeana and Macrocystis integrifolia) in Puget Sound, 
Washington. Berry 2001, 1–6. 
http://depts.washington.edu/uwconf/2005psgb/2005proceedings/papers/F7_BERRY.pdf%0
Apapers3://publication/uuid/A9C39740-8651-46F0-A52A-D1E89664AF5C 

 
Bevan, E., Wibbels, T., & Najera, B. M. Z. (2016). Using Unmanned Aerial Vehicle (UAV) 

Technology for Locating, Identifying, and Monitoring Courtship and Mating Behavior in 
the Green Turtle (Chelonia mydas) TECHNIQUES TECHNIQUES. TECHNIQUES 27 
Herpetological Review, 47(1), 27–32. 

 
Britton-Simmons, K., Eckman, J. E., & Duggins, D. O. (2008). Effect of tidal currents and tidal 

stage on estimates of bed size in the kelp Nereocystis luetkeana. Marine Ecology Progress 
Series, 355, 95–105. https://doi.org/10.3354/meps07209 

 
Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and 

hyperspectral vegetation indices for estimation of green leaf area index and canopy 
chlorophyll density. Remote Sensing of Environment, 76(2), 156–172. 
https://doi.org/10.1016/S0034-4257(00)00197-8 

 
Castorani, M. C. N., Reed, D. C., Alberto, F., Bell, T. W., Simons, R. D., Cavanaugh, K. C., 

Siegel, D. A., & Raimondi, P. T. (2015). Connectivity structures local population dynamics: 
A long-term empirical test in a large metapopulation system. Ecology, 96(12), 3141–3152. 
https://doi.org/10.1890/15-0283.1



30 

Castorani, M. C. N., Reed, D. C., Raimondi, P. T., Alberto, F., Bell, T. W., Cavanaugh, K. C., 
 Siegel, D. A., & Simons, R. D. (2017). Fluctuations in population fecundity drive 
 variation in demographic connectivity and metapopulation dynamics. Proceedings of the 
 Royal Society B: Biological Sciences, 284(1847). https://doi.org/10.1098/rspb.2016.2086 
 
Cavanaugh, K. C., Kendall, B. E., Siegel, D. A., Reed, D. C., Alberto, F., & Assis, J. (2013). 

Synchrony in dynamics of giant kelp forests is driven by both local recruitment and regional 
environmental controls. Ecology, 94(2), 499–509. https://doi.org/10.1890/12-0268.1 

 
Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N., Beas-luna, R., & Barrett, N. S. 

(2019). Spatial Variability in the Resistance and Resilience of Giant Kelp in Southern and 
Baja California to a Multiyear Heatwave. 6(July), 1–14. 
https://doi.org/10.3389/fmars.2019.00413 

 
Cavanaugh, K. C., Siegel, D. A., Kinlan, B. P., & Reed, D. C. (2010). Scaling giant kelp field 

measurements to regional scales using satellite observations. Marine Ecology Progress 
Series, 403, 13–27. https://doi.org/10.3354/meps08467 

 
Cavanaugh, K. C., Siegel, D. A., Raimondi, P. T., & Alberto, F. (2014). Patch definition in 

metapopulation analysis: A graph theory approach to solve the mega-patch problem. 
Ecology, 95(2), 316–328. https://doi.org/10.1890/13-0221.1 

 
Cavanaugh, K. C., Siegel, D. A., Reed, D. C., & Dennison, P. E. (2011). Environmental controls 

of giant-kelp biomass in the Santa Barbara Channel, California. Marine Ecology Progress 
Series, 429, 1–17. https://doi.org/10.3354/meps09141 

 
Changhui, Y., Yuan, Y., Minjing, M., & Menglu, Z. (2013). Cloud Detection Method Based on 

Feature Extraction in Remote Sensing Images. International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1(2013 8th 
International Symposium on Spatial Data Quality), 173–177. 

 
Deysher, L. E. (1993). Evaluation of remote sensing techniques for monitoring giant kelp 

populations. Hydrobiologia, 260–261(1), 307–312. https://doi.org/10.1007/BF00049033 
 
Doughty, C., & Cavanaugh, K. (2019). Mapping Coastal Wetland Biomass from High 

Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 11(5), 540. 
https://doi.org/10.3390/rs11050540 

 
Dugan, J. E., Hubbard, D. M., Mccrary, M. D., & Pierson, M. O. (2003). The response of 

macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy 
beaches of southern California. 25–40. https://doi.org/10.1016/S0272-7714(03)00045-3 

 
Gentry, R. R., Alleway, H. K., Bishop, M. J., Gillies, C. L., Waters, T., & Jones, R. (2019). 

Exploring the potential for marine aquaculture to contribute to ecosystem services. Reviews 
in Aquaculture, 499–512. https://doi.org/10.1111/raq.12328 

 
Gentry, R. R., Froehlich, H. E., Grimm, D., Kareiva, P., Parke, M., Rust, M., Gaines, S. D., & 

Halpern, B. S. (2017). Mapping the global potential for marine aquaculture. Nature Ecology 



31 

and Evolution, 1(9), 1317–1324. https://doi.org/10.1038/s41559-017-0257-9 
 
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote 

sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 
289–298. https://doi.org/10.1016/S0034-4257(96)00072-7 

 
Gitelson, A. A., Stark, R., Rundquist, D., Gitelson, A. A., Kaufman, Y. J., Stark, R., & 

Rundquist, D. (2002). DigitalCommons @ University of Nebraska - Lincoln Novel 
Algorithms for Remote Estimation of Vegetation Fraction. 

 
Gitelson, A. A., Viña, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote 

estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8), 1–
4. https://doi.org/10.1029/2005GL022688 

 
Graham, M. H., Vásquez, J. A., & Buschmann, A. H. (2007). Global Ecology of the Giant Kelp 

Macrocystis : From Ecotypes To Ecosystems. Oceanography and Marine Biology, 
45(January), 39–88. https://doi.org/10.1201/9781420050943.ch2 

 
Hakala, T., Markelin, L., Id, E. H., Scott, B., Theocharous, T., Id, O. N., Näsi, R., Suomalainen, 

J., Id, N. V., & Greenwell, C. (2018). Direct Reflectance Measurements from Drones : 
Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance 
Characterization. https://doi.org/10.3390/s18051417 

 
Hamilton, S. L., Bell, T. W., Watson, J. R., Grorud-Colvert, K. A., & Menge, B. A. (2020). 

Remote sensing: generation of long-term kelp bed data sets for evaluation of impacts of 
climatic variation. Ecology, 0(0), 1–13. https://doi.org/10.1002/ecy.3031 

 
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image 

Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. 
 
Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., 

Rodriguez, L. F., Tomanek, L., & Williams, S. L. (2006). The impacts of climate change in 
coastal marine systems. Ecology Letters, 9(2), 228–241. https://doi.org/10.1111/j.1461-
0248.2005.00871.x 

 
Hodgson, A., Kelly, N., & Peel, D. (2013). Unmanned aerial vehicles (UAVs) for surveying 

Marine Fauna: A dugong case study. PLoS ONE, 8(11), 1–15. 
https://doi.org/10.1371/journal.pone.0079556 

 
Hu, C. (2009). A novel ocean color index to detect floating algae in the global oceans. Remote 

Sensing of Environment, 113(10), 2118–2129. https://doi.org/10.1016/j.rse.2009.05.012 
 
Huang, H., Roy, D. P., Boschetti, L., Zhang, H. K., Yan, L., Kumar, S. S., Gomez-Dans, J., & Li, 

J. (2016). Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for 
burned area discrimination. Remote Sensing. https://doi.org/10.3390/rs8100873 

 
Huang, X., Liu, X., & Zhang, L. (2014). A Multichannel Gray Level Co-Occurrence Matrix for 

Multi/Hyperspectral Image Texture Representation. 8424–8445. 



32 

https://doi.org/10.3390/rs6098424 
 
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview 

of the radiometric and biophysical performance of the MODIS vegetation indices. Remote 
Sensing, 83, 195–213. https://doi.org/10.1080/0965156x.2013.836857 

 
Jensen, J. R., Estes, J. E., & Tinney, L. (1980). Remote sensing techniques for kelp surveys. 

Photogrammetric Engineering & Remote Sensing, 46(6), 743–755. 
 
Kellaris, A., Badia, I. M., Gil, A., Neto, A., & Amaral, R. (2019). Using low ‐ cost drones to 

monitor heterogeneous submerged seaweed habitats : A case study in the Azores. September 
2018, 1909–1922. https://doi.org/10.1002/aqc.3189 

 
Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial 

photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 
65–70. https://doi.org/10.1080/10106040108542184 

 
Miller, R. J., Lafferty, K. D., Lamy, T., Kui, L., Rassweiler, A., Reed, D. C., & Miller, R. J. 

(2018). Giant kelp , Macrocystis pyrifera , increases faunal diversity through physical 
engineering. 

 
Mora-Soto, A., Palacios, M., Macaya, E. C., Gómez, I., Huovinen, P., Pérez-Matus, A., Young, 

M., Golding, N., Toro, M., Yaqub, M., & Macias-Fauria, M. (2020). A High-Resolution 
Global Map of Giant Kelp ( Macrocystis pyrifera ) Forests and Intertidal Green. 1–20. 

 
Nijland, W., Reshitnyk, L., & Rubidge, E. (2019). Satellite remote sensing of canopy-forming 

kelp on a complex coastline: A novel procedure using the Landsat image archive. Remote 
Sensing of Environment, 220, 41–50. https://doi.org/10.1016/j.rse.2018.10.032 

 
O’Reilly, W. C., Olfe, C. B., Thomas, J., Seymour, R. J., & Guza, R. T. (2016). The California 

coastal wave monitoring and prediction system. Coastal Engineering, 116, 118–132. 
https://doi.org/10.1016/j.coastaleng.2016.06.005 

 
Pfister, C. A., Berry, H. D., & Mumford, T. (2018). The dynamics of Kelp Forests in the 

Northeast Pacific Ocean and the relationship with environmental drivers. Journal of 
Ecology, 106(4), 1520–1533. https://doi.org/10.1111/1365-2745.12908 

 
Reed, D. C., Rassweiler, A., & Arkema, K. K. (2008). Biomass rather than growth rate 

determines variation in net primary production by giant kelp. Ecology, 89(9), 2493–2505. 
https://doi.org/10.1890/07-1106.1 

 
Reed, D., Rassweiler, A., & Arkema, K. (2009). Density derived estimates of standing crop and 

net primary production in the giant kelp Macrocystis pyrifera. Marine Biology, 156(10), 
2077–2083. https://doi.org/10.1007/s00227-009-1238-6 

 
Rogers-Bennett, L., & Catton, C. A. (2019). Marine heat wave and multiple stressors tip bull 

kelp forest to sea urchin barrens. 1–9. https://doi.org/10.1038/s41598-019-51114-y



33 

Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from 
 bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384. 
 https://doi.org/10.1016/0034-4257(94)00114-3 
 
Schaub, J., Hunt, B. P. V., Pakhomov, E. A., Holmes, K., Lu, Y., & Quayle, L. (2018). Using 

unmanned aerial vehicles (UAVs) to measure jellyfish aggregations. Marine Ecology 
Progress Series, 591(January), 29–36. https://doi.org/10.3354/meps12414 

 
Schroeder, S. B., Dupont, C., Boyer, L., Juanes, F., & Costa, M. (2019). Passive remote sensing 

technology for mapping bull kelp ( Nereocystis luetkeana ): A review of techniques and 
regional case study. Global Ecology and Conservation, 19, e00683. 
https://doi.org/10.1016/j.gecco.2019.e00683 

 
Stekoll, M. S., Deysher, L. E., & Hess, M. (2006). A remote sensing approach to estimating 

harvestable kelp biomass. Journal of Applied Phycology, 18(3–5), 323–334. 
https://doi.org/10.1007/s10811-006-9029-7 

 
Stekoll, M. S., Deysher, L. E., & Hess, M. (2007). Eighteenth International Seaweed 

Symposium. Eighteenth International Seaweed Symposium, May 2014. 
https://doi.org/10.1007/978-1-4020-5670-3 

 
Taddia, Y., & Russo, P. (2019). Multispectral UAV monitoring of submerged seaweed in shallow 

water. 
 
Thomsen, M. S., Mondardini, L., Alestra, T., Gerrity, S., Tait, L., South, P. M., Lilley, S. A., 

Schiel, D. R., & Marzinelli, E. M. (2019). Local Extinction of Bull Kelp ( Durvillaea spp .) 
Due to a Marine Heatwave. 6(March), 1–10. https://doi.org/10.3389/fmars.2019.00084 

 
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 

vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-
4257(79)90013-0 

 
Whitehead, K., & Hugenholtz, C. H. (2014). Remote sensing of the environment with small 

unmanned aircraft systems (UASs), part 1: a review of progress and challenges. Journal of 
Unmanned Vehicle Systems, 02(03), 69–85. https://doi.org/10.1139/juvs-2014-0006 

 
Whitehead, K., Hugenholtz, C. H., Myshak, S., Brown, O., LeClair, A., Tamminga, A., Barchyn, 

T. E., Moorman, B., & Eaton, B. (2014). Remote sensing of the environment with small 
unmanned aircraft systems (UASs), part 2: scientific and commercial applications. Journal 
of Unmanned Vehicle Systems, 02, 86–102. https://doi.org/10.1139/juvs-2014-0006 

 
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Shape features 

for identifying young weeds using image analysis. Transactions of the American Society of 
Agricultural Engineers, 38(1), 271–281. https://doi.org/10.13031/2013.27839 

 
Xing, Q., & Hu, C. (2016). Mapping macroalgal blooms in the Yellow Sea and East China Sea 

using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. 
Remote Sensing of Environment, 178, 113–126. https://doi.org/10.1016/j.rse.2016.02.065



34 

Yang, Z., Willis, P., & Mueller, R. (2008). Impact of Band-Ratio Enhanced Awifs Image To 
 Crop Classification Accuracy. Pecora 17 – The Future of Land Imaging…Going 
 Operational, 11. 
 
Zerbe, L. M., & Liew, S. C. (2004). Reevaluating the traditional maximum NDVI compositing 

methodology: The Normalized Difference Blue Index. International Geoscience and 
Remote Sensing Symposium (IGARSS), 4(c), 2401–2404. 
https://doi.org/10.1109/igarss.2004.1369774 

 
Zheng, G., Li, X., Member, S., Zhou, L., Yang, J., Ren, L., Chen, P., Zhang, H., & Lou, X. 

(2018). Development of a Gray-Level Co-Occurrence Matrix-Based Texture Orientation 
Estimation Method and Its Application in Sea Surface Wind Direction Retrieval From SAR 
Imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5244–5260. 
https://doi.org/10.1109/TGRS.2018.2812778 

 




