Lawrence Berkeley National Laboratory

Recent Work

Title THE MASSES OF THE HEAVY ISOTOPES

Permalink https://escholarship.org/uc/item/0tn3t116

Author Stern, Martin O.

Publication Date 1952-03-14

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. UNIVERSITY OF CALIFORNIA Radiation Laboratory Contract No. W-7405-eng-48

UNCLASSIFIED

THE MASSES OF THE HEAVY ISOTOPES

Martin O. Stern

April 14, 1952

Berkeley, California

THE MASSES OF THE HEAVY ISOTOPES

Martin O. Stern

Radiation Laboratory, Department of Physics University of California, Berkeley, California

April 14, 1952

ABSTRACT

Radioactive decay data are used to calculate the atomic masses of the heavy isotopes, A \rangle 203. The four radioactive families are then connected by means of neutron binding energies known from (n, Υ), (Υ ,n) and (d,p) reactions on various target isotopes. Finally, all the masses are collectively adjusted for the best fit with mass spectrographic information available in this region. The masses so calculated are presented in Table III. Differences between masses of isotopes are estimated to have an error of ±0.00020 mass units or about 200 Kev; the position of the masses taken collectively is in doubt by about 1.5 Mev.

THE MASSES OF THE HEAVY ISOTOPES

Martin O. Stern

Radiation Laboratory, Department of Physics University of California, Berkeley, California

April 14, 1952

Introduction

In a previous paper¹ the author calculated the atomic masses of more than a hundred heavy isotopes from more or less known data about their modes of decay. At that time it was, however, impossible to interconnect the four radioactive families on a firm basis, inasmuch as no experimental evidence was, as yet, available. The procedure adopted was to fit the mass differences between isotopes of the four decay chains in the thorium-uranium region to those calculated by means of a semi-empirical mass formula². The mass of Pb²⁰⁸ was finally fixed to give what was thought to be a reasonable packing fraction.

In the present paper, many of the uncertainties present in Reference 1 could be removed. As new decay data became known, some of the assumed decay schemes could be replaced by more definite ones, and over twenty new masses were added. In Reference 1 many isotopes were connected to the main decay chains only through electron capture. In that case, their masses remained undetermined to within an unknown amount of energy ν_i carried off by the neutrino. Some of these masses have now become known, as a different mode of decay connecting them to the main chains has been discovered. Those that still remain undetermined have been omitted from the new table altogether. Furthermore, as explained below, it is now

1. Martin O. Stern, Rev. Mod. Phys. <u>21</u>, 316 (19/9)

2. N. Metropolis and G. Reitwiesner, NP-1980 (March, 1950)

-3-

possible to interconnect the four families to very good precision, and to place the masses on an absolute scale with improved accuracy. Finally, the Chemistry Group of the Radiation Laboratory has made a thorough study of the systematics of alpha decay³ which permits one to predict with fair reliability the decay energy of an alpha emitting nuclide if one knows that of its neighbor isotopes. A number of species have been included on the basis of such predictions.

Procedure

Various experimenters $^{4-14}$ have obtained neutron binding energies by observing (r,n), (d,t), (n,r) or (d,p) reactions in various targets, some of them in the region of interest here. It is easy to see¹⁰ that since a (r,n) or (d,t) reaction may result in an excited final nucleus, such a reaction can only put an

- 3. I. Perlman, A. Ghiorso and G. T. Seaborg, Phys. Rev. 77, 26 (1950)
- 4. A. O. Hanson, R. B. Duffield, J. D. Knight, B. C. Diven, and H. Palevsky, Phys. Rev. <u>76</u>, 578 (1949)
- 5. J. McElhinney, A. O. Hanson, R. A. Becker, R. B. Duffield and B. C. Diven, Phys. Rev. <u>75</u>, 542 (1949)
- 6. B. B. Kinsey, G. A. Bartholomew, and W. H. Walker, Phys. Rev. 78, 77 (1950)
- 7. J. A. Harvey, Phys. Rev. <u>78</u>, 344 (1950)
- 8. H. Palevsky and A. O. Hanson, Phys. Rev. 79, 242 (1950)
- 9. J. A. Harvey, Phys. Rev. <u>79</u>, 241 (1950)
- 10. J. R. Huizenga, L. B. Magnusson, O. C. Simpson and G. H. Winslow, Phys. Rev. <u>79</u>, 908 (1950)
- 11. J. A. Harvey, Phys. Rev. <u>81</u>, 353 (1951)
- 12. B. B. Kinsey, G. A. Bartholomew and W. H. Walker, Phys. Rev. 82, 380 (1951)
- 13. J. R. Huizenga, L. B. Magnusson, P. R. Fields, M. H. Studier and R. B. Duffield, Phys. Rev. <u>82</u>, 561 (1951)
- 14. L. B. Magnusson, J. R. Huizenga, P. R. Fields, M. H. Studier, and R. B. Duffield, Phys. Rev. <u>84</u>, 166 (1951)

-4-

upper bound on the neutron binding energy, whereas an (n, Υ) or (d,p) reaction will give a lower bound. If a (Υ,n) or (d,t) reaction can be observed on a target nucleus Z_{N}^{A} , and a (d,p) or (n,Υ) reaction on a target nucleus Z_{N-1}^{A-1} , and both sets of reactions give the same value for the neutron binding energy, this must then be the true binding energy of one neutron in the nucleus Z_{N}^{A} . This true value has been determined only for Pb²⁰⁷ and Pb²⁰⁸. The neutron binding energies, nb, in millimass units (0.001 mass unit or 0.9314 Mev) adopted for connecting the four decay families are:

> Pb^{207} : nb = 7.230 ± 0.009 Pb^{208} : nb = 7.923 ± 0.009 Pb^{209} : nb \rangle 4.151 ± 0.054

where it is assumed that the inequality for Pb^{209} can be replaced by the limiting equality. The neutron binding energy measured in Bi²¹⁰ is in conflict with that for Pb^{209} ; it has been assumed that the established decay values connecting Bi²¹⁰ to Pb^{206} and Pb^{209} to Bi²⁰⁹ are correct, and that it is the binding energy for one neutron in Bi²¹⁰ that is in error. If one uses¹⁵ for the masses of

He ⁴	•	4.00387
He ²	:	2.01473
Н	•	1.00814
n	:	1.00898,

one obtains the following mass differences:

 $Pb^{207} - Pb^{206}$: 1.00175 $Pb^{208} - Pb^{207}$: 1.00106 $Pb^{209} - Pb^{208}$: 1.00483

Additional data on neutron binding energies are also available. These constitute

15. Experimental Nuclear Physics, edited by E. Segrè, J. Wiley and Sons, Inc., New York (in press) upper or lower limits, depending on the reaction used to measure them. They can serve either of two purposes. If it is assumed that the inequalities can be replaced by the limiting equalities, the masses of some species can be found which would otherwise, for lack of decay information, have to be omitted from the table. This is true for several species of Tl, Fb and Bi. In four more cases, the measured mass differences from binding energies can be compared with those obtained from decay data, once the lead isotopes have been adjusted relative to each other as discussed above. The results of this comparison are shown in Table I, and lead one to believe that the good agreement is probably not fortuitous,

Table I

A comparison of mass differences for certain species that are listed in the first column; the second column gives the differences D obtained from masses based on the lead masses and decay energy values as adopted in this paper: the third column shows the same differences nb calculated from measured neutron binding energies.

Isotope	Differences	D, mass units	nb, mass units	(D-nb), mass units
_{Th} 233 _	Th ²³²	1.00348	1.00372 ± 0.00022	-0.00024
Th^{232} -	Th ²³¹	1.00217	1.00216 ± 0.00004	0.00001
v ²³⁹ -	u ²³⁸	1.00376	1.00401 ± 0.00016	
v ²³⁸ -	u ²³⁷	1.00262	1.00259 ± 0.00010	0.0003

but that the inequalities in the neutron binding energy values can be replaced by equalities within the errors quoted, and that the differences obtained from Table III can be assigned errors of \pm 0.00020 mass units or about 200 kev.

The masses can finally be put on an absolute basis with the help of some

-6-

mass spectrographic measurements by Stanford, et al.¹⁶, on Pb²⁰⁸, Th²³², U²³⁴ and U²³⁸. To this end the mass differences of Table III were assumed correct and fixed.* A comparison between Stanford's masses and ours so adjusted is presented in Table II, and leads one to assign an error of about \pm 0.0015 MU or 1.5 Mev to the absolute masses of Table III.**

n . '	1. 1	_	**
18	DT	.е	11

A comparison of the masses of four species as measured mass spectrographically, MS, by Stanford, et al., and as adopted in this paper, D_{p} underlined, with the mass of Pb^{208} taken as 208.04140.

Isotope	D, mass units	MS, mass units	D-MS, mass units
Pb ²⁰⁸	208.04140	208.0434 ± 0.0012	-0.0020
Th ²³²	232.11034	232.1092 ± 0.0010	+0.0011
U ²³⁴	234.11387	234.1133 ± 0.0011	+0.0006
U ²³⁸	238.12493	238.1234 ± 0.0010	+0.0015

Richards, Hays, and Goudsmit¹⁷ have measured the masses of Pb^{208} , Bi^{209} and the difference between them in their magnetic time of flight spectrograph. Their mass values: Pb^{208} , 208.0416 ± 0.0015; Bi^{209} , 209.0466 ± 0.0015; $Bi^{209} - Fb^{208}$, 1.0050 ± 0.0015, agree well with those of this paper: Pb^{208} , 208.0414; Bi^{209} , 209.0455; $Bi^{209} - Fb^{208}$, 1.0041.

- 16. G. S. Stanford, H. E. Duckworth, B. G. Hogg, and J. S. Geiger, Bull. Am. Phys. Soc., <u>27</u>, 1 (1952)
- * The masses D of all four species were displaced in toto until the sum of the squares of the differences, Σ (D-MS)², between them and the masses MS as measured mass spectrographically, was a minimum.

** This error is almost entirely due to the uncertainty in fitting the mass spectrographic data to the disintegration data. Thus a change in the mass of Pb²⁰⁸ by 1 - 2 Mev could be expected; such a change would entail a change of the same amount of all other masses, but leave their differences unaltered.

17. P. I. Richards, E. E. Hays, and S. A. Goudsmit, Phys. Rev. 85, 630 (1952)

Table of Masses

The calculated masses are presented in Table III, the isotopic atomic mass being given relative to 16.00000 for that of 0^{16} . The great majority of the masses were determined relative to others in the table by known decay properties. References for the decay of a given species are given in a column to the right of that species. As in Reference 1, only the number of references needed to make plausible the decay values adopted have been listed. The literature has been checked for new decay values and revisions of old ones, and as a result many new references (to February, 1952) have been included, and some old ones omitted. \circ

Some nuclear species have been included for the sake of completeness, although their decay relations to the main chains could only be estimated. Such estimated masses are in parentheses. SG in the reference column indicates that their alpha decay energies were guessed from alpha systematics² by G. T. Seaborg and R. A. Glass. Such estimates are often reliable to 100 Kev, but the building with their help of long decay chains was avoided.

The letters SPH in the reference column designate decay data communicated privately by G. T. Seaborg, I. Perlman and J. Hollander, who are at present engaged in preparing for publication a new table of isotopes. Some of the data in question were obtained by the Chemistry Group in this Laboratory, while others were in turn communicated to the Group by workers in other laboratories. More detailed references will be found in the new table of isotopes when it is published.

<u>_8</u>_

Table III

Column 1 gives Ξ , the atomic number; Column 2, the chemical symbol; Column 3, the integer atomic weight; Column 4, the exact atomic weight; Column 5, references for the decay properties of the species in the same row.

Z	Symbol	<u>A</u>	<u>Mass, in mass units</u>	References
80	He	203	. 203,03550	L3
	0	205	205.03980	L3
81	TL	203	203.03499	nb, stable
	·	204	204.03697	nb
		205	205°0 37 92	nb, stable
		206	206.04021	Al,
		207	207.04189	Cl, Sl, B2, M3
		208	208.04676	M3, N1
		209	209.05044	H1, H2
		210	210.05537	C4
82	Pb	204	204.036].2	stable
		205	205 .03831	nb
		206	206.03859	nb, stable
		207	207.04034	nb, stable
		208	208.04140	assumed, stable
		209	209.04623	nb, Hl, M3
		210	210.04958	B7
		211	211.05450	R2 ,51
		212	212.05791	SPH
		213	(213.06268)	SG
		214	214.06633	R2, C1, S2
83	Bi	207	(207.04285)	
		208	208.04451	nb
		209	209.04550	stable
		210	210.04951	M3
		211	211.05300	M3
		212	212.05728	M3
		213	213.06072	HI, SPH
		214	214.06526	C4, SPH
84	Po	208	208.04558	B5, K2
		209	209.04750	B5, K2
		210	210.04826	R2
		211	211.05234	Nl
		212	212.05487	M3
		213	213.05922	Hl, M3
		214	214.06185	R2
		215	215.06643	Ll
		216	216.06919	B1. R2

. -

Z	Symbol	<u>A</u>	Mass, in mass units	References
84	Ро	217 218 219 220	(217.07354) 218.07676 (219.08168) (220.08482)	SG Bl, R2 SG SG
85	At	211 212 213 214 215 216 217 218 219 220	(211.05317) (212.05675) (213.05925) 214.06299 215.06562 216.06967 217.07225 218.07638 (219.07928) (220.08372)	N1 SG M3 M3 M3 H1 K1 SG SG
86	Em 、	212 213 214 215 216 217 218 219 220 221 222 223 224	212.05621 (213.06061) (214.06220) 215.06562 216.06750 217.07155 218.07351 219.07776 220.07993 (221.08385) 222.08663 (223.09112) (224.09381)	P4 SG M4 M3 S3 L1 B1 SG B1 SG SG SG
87	Fr	217 218 219 220 221 222 223 224 225 226	(217.07221) 218.07544 219.07747 220.08086 221.08301 (222.08674) 223.08917 (224.09318) (225.09528) (226.09913)	M3 M3 M3 H1 SG P1, P2, P3 SG SG SG
88	Ra	219 220 221 222 223 224 225 226 227 228 229	219.07824 220.07950 221.08276 222.08450 223.08788 224.09001 225.09344 226.09574 227.09982 228.10212 (229.10588)	M4 M3 S3 SPH B1 H1 L1 SPH L2 SG

	···· .			
7	Symbol	<u>A</u>	<u>Mass, in mass units</u>	References
88	Ra	230 231	(230 .10826) (231.11300)	J2 SG
		~/1		54
89	Ac	222	222.08692	M3
		223	223.08860	MI, M3
		224	224.09147	M3
		225	225.09322	HL
	Ň	220	220.0907	
		224	228 10206	14 C5 SDH
		220	(229, 10200)	SG
		230	(230, 10719)	12
		231	(231.11029)	SG
90	Th	223	223.09036	M4.
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	224	224.09116	M3
	1	225	225.09381	M3
		226	226.09525	S3
	· · ·	227	227.09836	
		228	228.0998L	Bo
	4	229	229.10279	
	· ·	230	231 10817	лу .TI .T/ SPH
		232	232 1103/	C3
		233	233,11382	B4
		234	234,11650	B3
		235	235.12037	SPH
91 ⁵	Pa	226	226.09823	M3
		227	227.09953	M1, M3
		228	228.10200	M3
		229	229.10331	P4
		230	230.10599	SPH
		231	231.10783	C/ CDU
		<i>232</i>	232 11250	SPH
		233	23/ 11586	SPH
		235	235-1185/	M2
		236	(236, 12130)	SG
		237	(237.12388)	SG
92	υ	227	227.10166	M4
		228	228.10232	M3
		229	229.10469	M3
		230	230.10553	53 6000
		231	222 100/7	orn Sl
		252	222 11103	94 HJ
		<i>223</i>	23/ 11270	.13
		624 225	235,1170/	62 G2
		236	236,11912	GI. J3
		237	237,12231	SPH
		238	238,12493	C2
		239	239,12869	H5

2	Symbol .	A	Mass, in mass units	References
93	Np	231 232 233 234 235 236 237 238 239 240 241	231.11026 (232.11236) 233.11322 (234.11568) 235.11723 236.12017 237.12158 238.12514 239.12730 240.13002 241.13250	ML SG ML SG ML, J4 O2 ML, HL F1 H5 SPH SPH
94	Pu	232 233 234 235	232.11338 (233.11555) 234.11616 235.11844	Ol SG Ol SPH
• •		236 237 238 239 240 241 242 242 243	236.11962 (237.12192) 238.12366 239.12653 240.12862 241.13154 242.13413 243.13740	54 SG J3 J3, H5 T2 T2 T2 T3
95	Am	236 237 238 239 240 241 242 243 244 244 245	(236.12310) (237.12375) (238.12602) 239.12740 (240.13023) 241.13151 242.13489 243.13686 (244.13952) (245.14187)	SG SG S5 SG A2 O3 S5 SG SG
96	Cm	236 237 238 239 240 241 242 243 244 245 246 247	(236.12503) (237.12698) 238.12713 239.12941 240.13044 (241.13223) 242.13420 243.13694 244.13880 (245.14159) (246.14402) (247.14725)	SG SG S4 SPH P4 SG A2 A3 A3 SG SG SG
97	Bk	242 243 244	(242.13743) 243.13860 (244.14122)	SG Tl SG

UCRL-1728

2	Symbol	A	Mass, in mass units		References
97	Bk	245	245.14229	;	H4
		246	(246.14547)	Ż	SG
	·	247	(247.14726)	:	SG
		248	(248.14977)	;	SG
		249	(249.15197)		SG
98	Cf	242	(242.13925)		SG
•		243	(243.14131)		SG
		244	244.14211		H4
		245	(245.14368)		SG
		246	246.14543		H4
		247	(247.14797)		SG
		248	(248.14964)		SG
		249	(249.15227)		SG

References for Table III

- Al D. E. Alburger, and G. Friedlander, Phys. Rev. <u>82</u>, 977 (1951)
- A2 F. Asaro, F. L. Reynolds and I. Perlman, UCRL-1533 (Oct. 19, 1951)
- A3 F. Asaro, pvt. comm.
- Bl G. H. Briggs, Proc. Roy. Soc. London <u>A-157</u>, 183 (1936)
- B2 E. Bretscher and L. G. Cook, Nature 146, 430 (1940)
- B3 H. L. Bradt and P. Scherrer, Helv. Phys. Acta <u>19</u>, 307 (1946)
- B4 M. E. Bunker, L. M. Langer, and R. J. D. Moffat, Phys. Rev. 80, 468 (1950)
- B5 G. W. Barton, A. Ghiorso and I. Perlman, Phys. Rev. <u>82</u>, 13 (1951)
- B6 J. K. Beling, B. T. Feld and I. Halpern, Phys. Rev. <u>83</u>, 22 (1951); <u>84</u>, 155 (1951)
- B7 R. C. Bannerman and S. C. Curran. Phys. Rev. <u>85</u>, 134 (1952)
- Cl Curie, Debierne, Eve, Geiger, Hann, Lind, St. Meyer, Rutherford, and Schweidler, Rev. Mod. Phys. <u>2</u>, 427 (1931)
- C2 F. L. Clar¹, H. J. Spencer-Palmer, and R. N. Woodward, British Atomic Energy Projects, Reports BR-521, 522 (Oct. 1944)
- C3 F. L. Clark, H. J. Spencer-Palmer, and R. N. Woodward, British Atomic Energy Projects, Report BR-584 (Mar. 1945)
- C4 J. M. Cork, C. E. Branyan, A. E. Stoddard, H. B. Keller, J. M. LeBlanc, and W. J. Childs, Phys. Rev. 82, 681 (1951)
- C5 C. G. Campbell, W. J. Henderson, and J. Kyles, Phil. Mag. <u>43</u>, 126 (1952)
- F1 M. S. Freedman, A. H. Jaffey, and F. Wagner, Phys. Rev. 79, 410 (1950)
- Gl A. Ghiorso, J. W. Brittain, W. M. Manning, and G. T. Seaborg, Phys. Rev. 82, 558 (1951)
- G2 A. Ghiorso, Phys. Rev. <u>82</u>, 979 (1951)
- Hl F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg and A. Ghiorso, Phys. Rev. <u>79</u>, 435 (1950)
- H2 French Hagemann, Phys. Rev. 79, 534 (1950)
- H3 K. L. Hall and D. H. Templeton, UCRL-957, (Oct. 20, 1950)
- H4 E. K. Hulet, S. G. Thompson. A. Ghiorso and K. Street, Jr., UCRL-1224 (April 9, 1951)

H5	J. R. Huizenga, L. B. Magnusson, M. S. Freedman and F. Wagner, Phys. Rev. <u>84</u> , 1264 (1951)
Jl	A. H. Jaffey, J. Lerner and S. Warshaw, Phys. Rev. 82, 498 (1951)
J2	W. A. Jenkins and G. T. Seaborg, UCRL-1512 (Oct. 19, 1951)
J3	A. H. Jaffey, H. Diamond, A. Hirsch and J. Mech, Phys. Rev. <u>84</u> , 785 (1951)
J4	R. A. James, A. Ghiorso and D. Orth, Phys. Rev. 85, 369 (1952)
K1	B. Karlik and T. Bernert, Zeits. f. Physik 123, 51 (1944)
K2	D. G. Karraker, A. Ghiorso and D. H. Templeton, Phys. Rev. <u>83</u> , 390 (1951)
IJ	W. B. Lewis and B. V. Bowden, Proc. Roy. Soc. London, <u>A-145</u> , 235 (1934)
L2	D. D. Lee and W. F. Libby, Phys. Rev. 55, 252 (1939)
L3	W. S. Lyon, Phys. Rev. <u>82</u> , 276 (1951)
MI.	L. B. Magnusson, S. G. Thompson and G. T. Seaborg, Phys. Rev. <u>78</u> , 363 (1950)
M2	W. W. Meinke and G. T. Seaborg, Phys. Rev. <u>78</u> , 475 (1950)
М3	W. W. Meinke, A. Ghiorso and G. T. Seaborg, Phys. Rev. <u>81</u> , 523 (1951)
M4	W. W. Meinke, A. Ghiorso and G. T. Seaborg, Phys. Rev. 85, 429 (1952)
NI.	H. M. Neumann and I. Perlman, Phys. Rev. <u>81</u> , 958 (1951)
01	Donald A. Orth, UCRL-1059 (Dec., 1950)
02	D. A. Orth and G. D. O'Kelley, Phys. Rev. 82, 758 (1951)
03	Grover D. O'Kelley, UCRL-1243 (March 15, 1951)
Pl	M. Perey, Comptes Rendus 208, 97 (1939); J. de Phys. 10, 435 (1939)
P2	M. Perey and M. Lecoin, J. de Phys. <u>10</u> , 439 (1939)
P3	M. Perey and M. Lecoin, Comptes Rendus 212, 693 (1941)
P4	I. Perlman, A. Ghiorso and G. T. Seaborg, Phys. Rev. 77, 26 (1950)
Rl	R. Ringo, Phys. Rev. <u>58</u> , 942 (1940); <u>59</u> , 107 (1941)
R2	F. Rasetti, Elements of Nuclear Physics (Prentice-Hall, Inc., New York, 1947)
R3	S. Rosenblum, M. Valdares and J. Vial, Comptes Rendus 227, 1088 (1948)
Sl	B. W. Sargent, Phys. Rev. <u>54</u> , 232 (1938)
S 2	B. W. Sargent, Proc. Roy. Soc. London, <u>A-139</u> , 659 (1939)

ė,

- S3 M. H. Studier and E. K. Hyde, Phys. Rev. 74, 591 (1948)
- S4 G. T. Seaborg and I. Perlman, Rev. Mod. Phys. 20, 585 (1948)
- S5 K. Street, Jr., A. Ghiorso, and G. T. Seaborg, Phys. Rev. <u>79</u>, 530 (1950)
- Tl S. G. Thompson, A. Ghiorso, and G. T. Seaborg, Phys. Rev. <u>80</u>, 781 (1950)
- T2 S. G. Thompson, K. Street, Jr., A. Ghiorso and F. L. Reynolds, Phys. Rev. 80, 1108 (1950)
- T3 S. G. Thompson, K. Street, Jr., A. Ghiorso, and F. L. Reynolds, Phys. Rev. 84, 165 (1951)

ACKNOWLEDGMENTS

The author would like to thank Prof. E. Segrè for continued interest and many discussions. He is also very much indebted, for helpful information, to the University of California Radiation Laboratory Chemistry Group, in particular to Prof. G. T. Seaborg, Dr. Jack Hollander, and Mr. R. A. Glass.

Information Division 4/16/52 bw