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The Thue-Siegel method in diophantine geometry

Paul Vojta

Abstract. This mini-course described the Thue-Siegel method, as used in

the proof of Faltings’ theorem on the Mordell conjecture. The exposition fol-

lowed Bombieri’s variant of this proof, which avoids the machinery of Arakelov
theory.

In the 1950s, K. F. Roth [Rot55] proved a much-anticipated theorem on dio-
phantine approximation, building on work of Thue, Siegel, Gel’fond, Dyson, and
others.

Theorem 0.1. Given an algebraic number α ∈ Q, a number C ∈ R, and ε > 0,
there are only finitely many p/q ∈ Q (with p, q ∈ Z and gcd(p, q) = 1) that satisfy

(0.1.1)

∣∣∣∣pq − α
∣∣∣∣ ≤ C

|q|2+ε
.

This theorem was proved using the Thue-Siegel method (which was described
in M. Nakamaye’s course).

The goal for this course is to briefly describe how the Thue-Siegel method was
adapted by Vojta [Voj91], Faltings [Fal91], and Bombieri [Bom90, Bom91] to
give a proof of the Mordell conjecture (which had already been proved by Faltings):

Theorem 0.2. [Fal83] (Mordell’s conjecture) Let k be a number field and let
C be a smooth projective curve over k of genus > 1. Then C(k) is finite.

Faltings’ original 1983 proof used results from the theory of moduli spaces
of abelian varieties to prove a conjecture of Shafarevich on principally polarized
abelian varieties of given dimension with good reduction outside of a fixed finite set
of places of a number field. He then used “Parshin’s trick” to obtain the Mordell
conjecture. In short, this was very different from the Thue-Siegel method.

Analogies with Nevanlinna theory suggested that there should be a common
proof of both Roth’s theorem and the Mordell conjecture, and this led the author
to try to prove the Mordell conjecture using the Thue-Siegel method. This led
ultimately to the paper [Voj91], which gave another proof using the Thue-Siegel
method, but which relied heavily on the Arakelov theory as developed by Gillet and
Soulé. In particular, the use of Siegel’s lemma was replaced by an argument using
an adaptation of the Riemann-Roch-Hirzebruch-Grothendieck theorem to Arakelov
theory, due to Gillet and Soulé.

Shortly thereafter, Faltings [Fal91] managed to eliminate the use of the Gillet-
Soulé Riemann-Roch theorem, replacing it with arguments on the Jacobian of the
curve C. This allowed him to make use of more than two rational points (as did
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2 PAUL VOJTA

Roth), as well as extend his result to prove a special case of a conjecture of Serge
Lang on rational points on closed subvarieties of abelian varieties not containing
any nontrivial translated abelian subvarieties. (He later succeeded in removing the
latter hypothesis [Fal94].)

Following that, Bombieri [Bom90] simplified the proof further, by removing
Arakelov theory altogether, at the (minor) cost of some clever geometrical argu-
ments. He was able to use the fact that Arakelov intersection numbers can be
realized more classically as heights. Then, he was able to avoid the use of the
Riemann-Roch theorem of Gillet and Soulé by applying a more classical theorem
of Riemann-Roch type (due to Hirzebruch), together with some clever geometrical
manipulations. In the end, he obtained a proof relying only on elementary facts
from algebraic geometry and the theory of heights.

This course describes Bombieri’s proof (but will omit some details, due to lack
of time). Another description of his proof appears in [HS00, Part E].

For those interested in the earlier proof [Voj91], a good place to start would
be an earlier paper [Voj89], which proved the function field variant of Mordell’s
conjecture (first proved by Manin [Man63]). This paper also used the Thue-Siegel
method, but used classical intersection theory instead of Arakelov theory, and the
Riemann-Roch-Grothendieck theorem in place of the Riemann-Roch theorem in
Arakelov theory due to Gillet and Soulé.

This paper is organized as follows. Section 1 gives an overview of the Thue-
Siegel method, as used to prove Roth’s theorem and its predecessors. Section 2
defines the basic geometrical objects to be used in Bombieri’s proof. Section 3
gives some basic information on curves and their Jacobians, as used by a result
of Mumford [Mum65], and which forms the core of Bombieri’s proof (and its
predecessors by Vojta and Faltings). Section 4 then gives an upper bound for the
height of a carefully chosen point (P1, P2) on C × C, relative to a line bundle on
C × C that is chosen based on properties of P1 and P2. Section 5 gives a lower
bound for the same height, depending on the height of a global section of the
line bundle. This global section plays a role comparable to that of the auxiliary
polynomial in the classical Thue-Siegel method. Section 6 constructs such a global
section with a bound on its height. In Section 7, the index of a local section of a
line bundle is defined; this generalizes the index used in the classical Thue-Siegel
method, and is a weighted order of vanishing. Finally, Section 8 concludes the
proof by comparing the two bounds for the height derived in Sections 4 and 5,
and deriving a contradiction to the assumption that C has infinitely many rational
points.

In this paper, N = {0, 1, 2, . . . } and Z>0 = {1, 2, 3, . . . }. We will fix throughout
a number field k, and work in the category of schemes (and morphisms) over k.
A variety is an integral separated scheme of finite type over k, and a curve is
a variety of dimension 1. When working with a product X × Y , the associated
projection morphisms are denoted p1 : X × Y → X and p2 : X × Y → Y . On
Pr × Ps, O(n,m) = p∗1O(n) ⊗ p∗2O(m). A line sheaf is an invertible sheaf. If D1

and D2 are divisors, then D1 ∼ D2 denotes linear equivalence. If D is a divisor on a
variety X, the notations Hi(X,O(D)) and hi(X,O(D)) are shortened to Hi(X,D)
and hi(X,D), respectively. Finally, the function field of a variety X is denoted
K(X).
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For the number field k, the set Mk is the set of all places of k; this is the disjoint
union of the sets of real places, complex places, and non-archimedean places of k.
The real and complex places are in canonical one-to-one correspondence with the
set of injections k ↪→ R and the set of unordered pairs (σ, σ) of injections k ↪→ C
with image not contained in R, respectively. The set of non-archimedean places is
in canonical one-to-one correspondence with the set of nonzero prime ideals in the
ring Ok of integers of k (Ok is the integral closure of Z in k). For each place v ∈Mk

we define a norm ‖ · ‖v, as follows:

‖x‖v =


|σ(x)| if v is real and corresponds to σ : k ↪→ R;

|σ(x)|2 if v is complex and corresponds to (σ, σ);

(Ok : p)− ordp(x) if v is non-archimedean and corresponds to p ⊆ Ok .

(In the non-archimedean case, the formula assumes x 6= 0; of course ‖0‖v = 0 for
all v.) Note that these are called norms, not absolute values, because ‖ · ‖v does
not obey the triangle inequality when v is complex.

We have the product formula

(0.3)
∏
v∈Mk

‖x‖v = 1 for all x ∈ k∗ .

Also, let

Nv =


1 if v is real,

2 if v is complex, and

0 if v is non-archimedean.

Then

(0.4)
∑
v∈Mk

Nv = [k : Q]

and

(0.5) ‖a1 + · · ·+ an‖v ≤ nNv max{‖a1‖v, . . . , ‖an‖v}

for all n ∈ Z>0 and all a1, . . . , an ∈ k. Finally, heights are always taken to be
logarithmic and absolute. For example, the height of a point P ∈ Pn(k) with
homogeneous coordinates [x0 : x1 : · · · : xn] is

(0.6) h(P ) =
1

[k : Q]

∑
v∈Mk

log max{‖x0‖v, . . . , ‖xn‖v} .

For more information on the basic properties of heights (which we shall assume),
see [HS00, Part B] or [Lan83, Ch. 4].

1. The Thue-Siegel Method

This section briefly describes the Thue-Siegel method, which was originally
used to prove Roth’s theorem (and its predecessors), and later was extended to
consider hyperplanes in Pn by W. M. Schmidt [Sch72, Lemma 7] (see also [Sch80,
Ch. VI, Thm. 1F]), as well as to prove Mordell’s conjecture as described in the
Introduction to this paper.

The Thue-Siegel method is as described in Nakamaye’s course, starting with
Thue’s seminal paper [Thu09]. Basically, it involved constructing an auxiliary
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polynomial in one variable [Lio44], two variables (Thue, Siegel [Sie21], Gel’fond
[GL48] and [Gel52], Dyson [Dys47]), or many variables [Rot55].

In a nutshell, the Thue-Siegel method is as follows.

Step −1: Assume that there are infinitely many p/q ∈ Q for which (0.1.1) is false.

Step 0: Choose two (or n) exceptions p1/q1, p2/q2 to (0.1.1) with certain proper-
ties.

Step 1: Using information about those exceptions, construct a polynomial f in
two (or n) variables with certain properties.

Steps 2, 3: Show that the above choices, considerations, etc. imply that

f

(
p1

q1
,
p2

q2

)
= 0 ,

and the same for certain partial derivatives of f .

Step 4: Derive a contradiction.

In trying to adapt this to give a proof of the Mordell conjecture, some obstacles
arise:

(1) What should play the role of α?
(2) How do we work with polynomials, when we’re trying to prove something

about points on a (non-rational) curve?

Let’s answer the second question first.
One can view a polynomial in x of degree d as a global section of a line sheaf

O(d) on P1; for example, ax2 + bx+ c corresponds to

ax2
1 + bx0x1 + cx2

0 ∈ Γ(P1,O(2)) .

Likewise, f ∈ Z[x, y] of degree d1 in x and d2 in y corresponds to a global section
of the line sheaf O(d1, d2) := p∗1O(d1) ⊗ p∗2O(d2) on P1 × P1, where for i = 1, 2,
pi : P1 × P1 → P1 is the projection to the ith factor. The line sheaf O(d1, d2)
corresponds to the divisor d1([∞]× P1) + d2(P1 × [∞]).

Having described that background, to answer the question let C be a smooth
projective curve over k of genus g > 1, and fix P ∈ C(k). (If C(k) = ∅, then there
is nothing to prove.) The first thing to try is to look at sections of the line sheaf
O(d1([P ]× C) + d2(C × [P ])). As it turns out, though, this does not work.

However, the product C × C has many other line sheaves. One possibility is
to note that if Q ∈ C(k) and Q 6= P , then O(Q) � O(P ) (otherwise C ∼= P1;
see [Har77, II Example 6.10.1]). Therefore, one can create other line sheaves by
allowing P to vary. This does not work, either.

Instead, what actually does work is to look at the diagonal ∆ on C × C. We
have deg

(
O(∆)

∣∣
∆

)
= 2 − 2g (so ∆2 = 2 − 2g). Therefore O(∆) is not isomorphic

to p∗1O(D1) ⊗ p∗2O(D2) for any divisors D1 and D2 on C. This is because, for a
closed rational point P ∈ C, we have the intersection numbers

∆ . ({P} × C) = ∆ . (C × {P}) = 1 ,(
p∗1D1 + p∗2D2

)
. ({P} × C) = degD2 , and(

p∗1D1 + p∗2D2

)
. (C × {P}) = degD1 .
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This would imply degD1 = degD2 = 1, so the divisor ∆ would need to be numer-
ically equivalent to the divisor ([P ]× C) + (C × [P ]), and that would give

2− 2g = ∆2 =
(
([P ]× C) + (C × [P ])

)2
= 2 ,

a contradiction since g > 1.
Here we have used intersection theory on C ×C: There is a function (D1 .D2)

from Div(C × C)×Div(C × C) to Z that satisfies:

(1) The pairing is symmetric: (D1 .D2) = (D2 .D1) for all D1, D2 ∈ Div(C ×
C);

(2) the pairing is bilinear : ((D1 + D2) . D3) = (D1 . D3) + (D2 . D3) for all
D1, D2, D3 ∈ Div(C × C);

(3) the kernels on the left and the right contain the subgroup of principal
divisors (and hence this is actually a pairing Pic(C×C)×Pic(C×C)→ Z);
and

(4) if D1 and D2 are prime divisors on C × C that cross transversally, then
(D1 .D2) is the number of points of intersection in (C × C)(Q).

For more details on intersection theory, see [Har77, App. A].
So now let

∆′ = ∆− {P} × C − C × {P} .
This is a better divisor to work with than ∆, because (unlike ∆) it has degree 0
on the fibers of p1 and p2, so it is orthogonal (in the intersection pairing) to the
“obvious” divisors on C × C. We have

(∆′)2 = ∆2 − 2∆({P} × C)− 2∆(C × {P}) + 2({P} × C)(C × {P})
= (2− 2g)− 2− 2 + 2

= −2g .

For the actual proof of Faltings’ Theorem (Mordell’s conjecture), we will use a
divisor of the form

(1.1) dY = d(∆′ + a1({P} × C) + a2(C × {P})) ,

where a1, a2 ∈ Q, d ∈ Z, d > 0, and d is sufficiently divisible so that da1, da2 ∈ Z.
How will this divisor be used, and why is this form of Y useful?
Part of an answer to this question lies in Siegel’s lemma.

Proposition 1.2. (Siegel’s lemma) Let M and N be positive integers with
N > M , and let A be an M ×N matrix with integer entries whose absolute values
are bounded by B ∈ Z. Then there is a nonzero element x ∈ ZN such that Ax = 0
and |x| ≤ (NB)M/(N−M).

Here |x| = max{|xi| : 1 ≤ i ≤ N}.

Proof (sketch). For c ∈ N, we have∣∣{x ∈ ZN : 0 ≤ xi < c ∀ i}
∣∣ = cN .

For x in this set, we have |x| < c and |Ax| < NBc, so A maps a set of size cN to
a set of size < (2NBc)M . If c is large enough so that cN > (2NBc)M , then there
will be distinct x′,x′′ ∈ ZN with |x′|, |x′′| < c and Ax′ = Ax′′. Let x = x′ − x′′.
Then x 6= 0, |x| < c, and Ax = 0. The inequality cN > (2NBc)M is equivalent to
c > (2NB)M/(N−M).
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With a little more work, a similar result can be obtained with c = (NB)M/(N−M);
see [HS00, Lemma D.4.1]. �

When using the Thue-Siegel method to prove Roth’s theorem (or, since we’ll
be using only two variables, one of the earlier weaker versions of Roth’s theorem),
Siegel’s lemma is used to construct a polynomial in two variables.

Given positive integers d1 and d2, Siegel’s lemma is used to construct a polyno-
mial f ∈ Z[x, y] of degree≤ d1 in x and≤ d2 in y. The proof requires some vanishing
conditions at (α, α); these conditions lead to a system of linear equations in which
the variables are the coefficients. The number of variables is N = (d1 + 1)(d2 + 1).

As for the number M of equations, let’s first look at a polynomial for which
d2 = 1. We will want this to be a polynomial of the form

f(x, y) = (x− α)nG(x)− (y − α)H(x) .

A polynomial f will be of this form if and only if

f(α, α) =
∂

∂x
f(α, α) =

(
∂

∂x

)2

f(α, α) = · · · =
(
∂

∂x

)n−1

f(α, α) = 0 .

For larger values of d2, the linear conditions will come from requiring the vanishing

of
(
∂
∂x

)i ( ∂
∂y

)j
f(α, α) for certain pairs (i, j) ∈ N2.

Returning to the context of a proof of Mordell’s conjecture, we need to find out
what N is in this case. This amounts to finding dimkH

0(C × C, Y ).
A useful way to find this dimension (or at least a lower bound for it) is the

following special case of the Riemann-Roch-Hirzebruch theorem.

Theorem 1.3. Let L be a line sheaf on a nonsingular complete surface X over
a field k, and let d ∈ N. Then

(1.3.1) h0(X,L ⊗d)− h1(X,L ⊗d) + h2(X,L ⊗d) =
d2

2
(L . L ) +O(d) .

(Here hi(X,L ⊗d) = dimkH
i(X,L ⊗d).)

When L = O(Y ), the right-hand side of (1.3.1) is

d2

2
(−2g + 2a1a2 + o(1)) = d2(−g + a1a2 + o(1)) .

As long as this is positive, H0(C ×C, dY ) will be nonzero. This is because h1(C ×
C, dY ) ≥ 0, and h2(C ×C, dY ) = h0(C ×C,KC×C − dY ) = 0 for d� 0 by duality
and the fact that Y will have intersections a2 > 0 and a1 > 0 with the fibers of p1

and p2, respectively.
To give a little more information about the definition (1.1) of Y , a1 and a2 are

positive rational numbers chosen such that a1a2 > g (but is very close to g) and
a1/a2 is close to h(P2)/h(P1), where P1 and P2 will be two suitably chosen rational
points on C and h(P1) and h(P2) are their heights (using a height function that
will be described later).

In summary, the answer to the second question, about what object replaces the
auxiliary polynomial in the proofs of Thue, Siegel, etc., is that the replacement is
the line sheaf O(dY ) (for large d).

Let us now return briefly to the first question: What replaces α? Mordell’s
conjecture does not contain any diophantine inequality, so this was perhaps the
hardest question that came up when trying to find a proof.
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The quick answer is that nothing replaces α, because h0(C × C, dY ) (which
replaces N −M , a lower bound for the dimension of the solution space in Siegel’s
lemma) is already small.

But this is not all of the answer. In the proofs of Thue, Siegel, etc., as N −
M → 0 the bound on |x| becomes larger, so Steps 2 and 3 become harder. That
phenomenon occurs in the proof of Mordell, too—see (6.1.1) as γ → 0.

Note that the Riemann-Roch-Hirzebruch theorem does not say anything that
corresponds to the bound on the coefficients in Siegel’s lemma. This is a necessary
aspect of the proof, yet it is handled differently in the three major variants of the
proof:

• My own proof used Arakelov theory (as developed by Gillet and Soulé),
in particular the “Riemann-Roch-Hirzebruch-Grothendieck-Gillet-Soulé”
theorem, which extended the Riemann-Roch-Hirzebruch theorem by en-
compassing families of varieties (Riemann-Roch-Hirzebruch-Grothendieck)
and further incorporated Arakelov theory.

• Faltings’ proof replaced the Riemann-Roch-. . . -Gillet-Soulé Theorem with
a fancier Siegel’s lemma (and also extended the theorem to higher dimen-
sions).

• Bombieri’s proof also put Siegel’s lemma back in, but used the basic Siegel
lemma and used it in a different way.

This paper will follow Bombieri’s proof.
Getting back to the question about what replaces α, for simplicity we restrict

to considering the proof, in the classical Thue-Siegel method, that the auxiliary
polynomial f vanishes at (p1/q1, p2/q2). Assume that it is nonzero there. The
approximation conditions, together with vanishing conditions for f at (α, α) and
the bounds on the coefficients of f , imply an upper bound on ‖f(p1/q1, p2/q2)‖v
when v =∞. By the product formula (0.3), this gives a lower bound on the product

(1.4)
∏
v 6=∞

∥∥∥∥f (p1

q1
,
p2

q2

)∥∥∥∥
v

.

However, since the coefficients of f are integers, the denominator of f(p1/q1, p2/q2)

is bounded by |qd11 qd22 |. The proof obtains a contradiction from these two facts to
conclude that f(p1/q1, p2/q2) = 0.

In the case of Mordell’s conjecture, there is no α, so we can consider the equiv-
alent of the product (1.4) over all places of the number field k. The geometry of
the curve C (or, more precisely, of its Jacobian), implies a lower bound on this
product. This is equivalent to an upper bound on minus the logarithm of such a
product, which is closely related to the height of a point (P1, P2) on C ×C relative
to a certain line sheaf. The proof then proceeds to a contradiction by finding a
contradictory lower bound for this height.

Thus, it is the geometry of the Jacobian that replaces α. This is very natural,
from the point of view that the approximation conditions in the Thue-Siegel proof
can be viewed as taking place on the log Jacobian of P1 minus the Galois conjugates
of α.
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2. Basic Constructions in Bombieri’s Proof

Bombieri avoids Arakelov theory in his proof by taking suitable embeddings
into projective space and suitable linear projections, and by expressing the divisor
dY as a difference of two suitably chosen divisors on C × C.

Here is the basic geometric construction used in Bombieri’s proof.
Recall that C is a smooth projective curve of genus g > 1 over a number field

k. We are assuming (by way of contradiction) that C(k) is infinite.

Step 0. Fix a divisor A of degree 1 on C, chosen so that (2g − 2)A ∼ KC ,
where KC is the canonical divisor on C. (The reason for this condition will be
explained in Section 3.) (This may require extending the base field k.) By abuse of
notation, we write p∗1A and p∗2A as A× C and C × A, respectively, instead, where
p1, p2 : C × C → C are the two projection morphisms.

Let

(2.1) ∆′ = ∆−A× C − C ×A .

Step 1. Fix s ∈ Z sufficiently large such that the divisor

(2.2) B := s(A× C) + s(C ×A)−∆′

is very ample. Choose a projective embedding

φB : C × C → Pm

associated to the complete linear system |B|, and use φB to define a height hB on
C × C:

(2.3) hB(P1, P2) = h(φB(P1, P2)) ,

where the second height h(·) is the standard Weil height (0.6) on Pm.

Step 2. Choose d ∈ Z sufficiently large so that the map

(2.4) H0(Pm,O(d)) −→ H0(C × C, dB)

is surjective. (This can be done by choosing d such that H1(Pm,IC×C⊗O(d)) = 0,
where IC×C is the ideal sheaf on Pm corresponding to the image of φB , with
reduced induced subscheme structure. This condition on d is true for sufficiently
large d by [Har77, III 5.2].)

Step 3. Fix N ∈ Z such that NA is very ample. Let

(2.5) φNA : C ↪→ Pn

be some associated projective embedding, chosen suitably generically to satisfy
conditions to be described later (see Section 6). As with hB , let hNA be the height
on C defined by φNA:

(2.6) hNA(P ) = h(φNA(P )) ,

and also let hA(P ) = 1
N hNA(P ), for all P ∈ C(k).

Step 4. As before, the natural map

(2.7) H0(Pn × Pn,O(δ1, δ2)) −→ H0(C × C, δ1(NA× C) + δ2(C ×NA))

is surjective for all sufficiently large δ1, δ2 > 0. (In fact, it is true for all δ1, δ2 with
min{δ1, δ2} sufficiently large, but for our purposes it suffices to know that for each
positive r ∈ Q it is true for all sufficiently large δ1, δ2 with δ1/δ2 = r, with the
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bound depending on r. This special case follows directly from [Har77, III 5.2] as
before.)

Step 5. We will be working with points P1, P2 ∈ C(k), chosen such that
hNA(P1) and hNA(P2)/hNA(P1) are large. Given such P1 and P2, choose rational
a1 and a2 such that

(2.8) a2
1 ≈ (g + γ)

hNA(P2)

hNA(P1)
and a2

2 ≈ (g + γ)
hNA(P1)

hNA(P2)
,

so that
a1

a2
≈ hNA(P2)

hNA(P1)
.

Here γ > 0 is small (to be determined later). Let

(2.9) δ1 = (a1 + s)
d

N
and δ2 = (a2 + s)

d

N
,

and let

Y = δ1NA× C + C × δ2NA− dB
= d(a1A× C + a2C ×A+ ∆′) ,

(2.10)

where d is an integer chosen sufficiently divisible so that δ1, δ2 ∈ Z. (This differs
by a factor of d from the Y of (1.1).) Define

(2.11) hY (P1, P2) = δ1hNA(P1) + δ2hNA(P2)− dhB(P1, P2) .

By definition, the height hY behaves well as a1, a2, and d vary.
Bombieri’s proof avoids Arakelov theory by using clever manipulations in the

heights hB , hNA, and hY instead.

3. Divisors, Heights, and Jacobians

This section describes the connections with the Jacobian of C, which are central
to all three variants of the proof discussed here.

Let J be the Jacobian of C, and define

j : C ↪→ J

to be the map j(x) = (x)− A ∈ J . (More precisely, it is defined by taking a point
x ∈ C ×k k to the divisor (x)−A in J ×k k, but this map comes from a morphism
C → J over k; see [Mil86, Thm. 1.1].) Also let Θ be the associated theta divisor;
this is the sum j(C) + · · ·+ j(C) with g − 1 terms (under the group operation).

The following is a well-known fact about the theta divisor.

Lemma 3.1. [HS00, Lemma E.2.1] With notation as above, we have

(a). Θ is a symmetric divisor; i.e., [−1]∗Θ ∼ Θ, where [−1] denotes taking
the inverse under the group operation;

(b). j∗Θ ∼ gA; and
(c). if s : J × J → J is the group operation, then

(3.1.1) (j × j)∗(s∗Θ− p∗1Θ− p∗2Θ) ∼ −∆′ .

In addition, Θ is ample; see [Mil86, Thm. 6.6 and the preceding paragraph].
Since Θ is ample and symmetric, it gives rise to a (Néron-Tate) canonical

height ĥΘ on J :
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Theorem 3.2. [HS00, Thm. B.5.1] Let J be an abelian variety over a number
field k, and let D be a symmetric divisor on J . Then there exists a unique canonical

height ĥD : J(k)→ R such that

ĥD([m]P ) = m2ĥD(P ) for all P ∈ J(k) and all m ∈ Z
and for all (conventional) Weil heights hD on J relative to D,

ĥD(P ) = hD(P ) +O(1) for all P ∈ J(k) ,

with the implicit constant depending on hD. Moreover:

(a). (Parallelogram Law)

ĥD(P +Q) + ĥD(P −Q) = 2ĥD(P ) + 2ĥD(Q) for all P,Q ∈ J(k) .

(b). The canonical height ĥD is a quadratic form. The associated pairing

〈·, ·〉D : J(k)× J(k)→ R

defined by

(3.2.1) 〈P,Q〉D =
ĥD(P +Q)− ĥD(P )− ĥD(Q)

2

is bilinear and satisfies 〈P, P 〉D = ĥD(P ).

Since ∆ is an effective divisor on C × C, we have h∆(P1, P2) ≥ O(1) for all
P1, P2 ∈ C(k) with P1 6= P2. This fact can be combined with (3.1.1) to give
information on the canonical heights of rational points on C, as follows.

Since the bilinear form 〈·, ·〉Θ is positive definite on J(k)⊗Z R, the latter is an
(infinite dimensional) Euclidean space, and in particular

(3.3) 〈x, y〉Θ = (cos θ)
√
|x|2|y|2

for all x, y ∈ J(k)⊗Z R, where

|x|2 = 〈x, x〉Θ = ĥΘ(x)

and θ is the angle between x and y. In particular, let x = j(P1) and y = j(P2).
Then, by (3.3), (3.2.1), (3.1.1), functoriality of heights, and Lemma 3.1b,

(cos θ)
√
|x|2|y|2 = 〈x, y〉Θ

=
ĥΘ(x+ y)− ĥΘ(x)− ĥΘ(y)

2

= −1

2
h∆′(P1, P2) +O(1)

= −1

2
h∆(P1, P2) +

1

2
hA(P1) +

1

2
hA(P2) +O(1)

≤ |x|
2

2g
+
|y|2

2g
+O(1) .

(3.4)

Since
√
|x|2|y|2 can be as large as (|x|2 + |y|2)/2 (when |x| = |y|) and g > 1, this

means that cos θ is bounded away from 1 (so θ is bounded away from 0) when |x|
and |y| are close to each other.

When P1 and P2 are rational over k, we have x, y ∈ J(k). By the Mordell-
Weil theorem [HS00, Thm. C.0.1], J(k) is finitely generated, so J(k)⊗Z R is finite
dimensional. Since the angle θ is bounded from below when |x| and |y| are close,
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this implies that not too many points in C(k) can have heights sufficiently large and
in a sufficiently small range. This is the analogue for Mordell’s conjecture of the
“gap principle” in the context of diophantine approximation [HS00, Exercises D.12
and D.13], and was originally discovered by Mumford [Mum65]; see also [HS00,
Prop. B.6.6].

This idea will be used in the next section, using a different effective divisor in
place of ∆.

4. An Upper Bound for the Height

The purpose of this section is to find an upper bound for the height hY (P1, P2),
which will be compared with the lower bound (5.5.1) to ultimately derive a contra-
diction in the proof of the theorem.

This will be done using the results of Section 3 on canonical heights on the
Jacobian of C.

To begin, let a1 and a2 be positive rational numbers, to be determined later,
and let di = aid for i = 1, 2.

Lemma 4.1. There is a constant c1, depending only on C, A, φNA, and φB
(but not on P1 or P2), such that

(4.1.1) hY (P1, P2) ≤ d1

g
|j(P1)|2 +

d2

g
|j(P2)|2−2d〈j(P1), j(P2)〉Θ + c1(d1 +d2 +d)

for all P1, P2 ∈ C(k).

Proof. Recall from (2.11) that hY is defined using hNA and hB . We also use
(2.2) to define h∆′ :

hB(P1, P2) =
s

N
hNA(P1) +

s

N
hNA(P2)− h∆′(P1, P2) .

With this definition, (2.9) and (2.11) give

(4.1.2) hY (P1, P2) = d
(
h∆′(P1, P2) +

a1

N
hNA(P1) +

a2

N
hNA(P2)

)
.

Note that this holds exactly (i.e., not up to O(1)), by the various definitions. By
Theorem 3.2 and Lemma 3.1b,

|j(P )|2 = ĥΘ(j(P )) =
g

N
hNA(P ) +O(1)

for all P ∈ C(k). In addition, by (3.1.1) and (3.2.1),

h∆′(P1, P2) = −2〈j(P1), j(P2)〉Θ +O(1)

for all P1, P2 ∈ C(k).
Applying these two equations to (4.1.2) gives (4.1.1). (Actually, (4.1.1) is an

equality up to O(d1 + d2 + d).) �

The next step is to use (3.4) to get the right-hand side of (4.1.1) to be negative
(for sufficiently large d1 + d2 + d).

As noted at the end of Section 3, J(k)⊗ZR is a finite-dimensional vector space.
Therefore, since we have assumed that C(k) is infinite, there is an infinite subset
Σ′ of C(k) such that, for all P1, P2 ∈ Σ′, the angle between j(P1) and j(P2) in
J(k)⊗ R is at most cos−1(3/4); therefore

〈j(P1), j(P2)〉Θ ≥
3

4

√
ĥΘ(j(P1))ĥΘ(j(P2)) .



12 PAUL VOJTA

Incorporating this into (4.1.1) gives

(4.2) hY (P1, P2) ≤ d1

g
|j(P1)|2 +

d2

g
|j(P2)|2 − 3

2
d|j(P1)||j(P2)|+ c1(d1 + d2 + d)

for all P1, P2 ∈ Σ′.

5. A Lower Bound

In Section 3, since ∆ is an effective divisor and P1 6= P2 (hence (P1, P2) /∈ ∆),
the height h∆(P1, P2) is trivially bounded from below. In the present case, though,
∆ will be replaced by an effective divisor associated to a global section s of O(Y ).
The section s will be constructed using Siegel’s lemma, and it will be hard to
guarantee that s will not vanish at (P1, P2). In fact, in general s will vanish there,
but we will derive a contradiction based on its (weighted) multiplicity at (P1, P2).

Since Y depends on P1 and P2, it will be necessary to control the constant O(1)
in (3.4), and this is a major part of the proof.

We start by defining a notion of the height of a global section s of O(Y ), which
plays the role of the height of the auxiliary polynomial in the classical Thue-Siegel
method.

Lemma 5.1. Let Y be a divisor on C × C as in (2.10). Let y0, . . . , ym be the
global sections of O(B) corresponding to the coordinates of φB. Also let x0, . . . , xn
and x′0, . . . , x

′
n be bases for the global sections on C×C of p∗1O(NA) and p∗2O(NA),

respectively. Then, for each global section s of O(Y ) there are polynomials

F0(x,x′), . . . , Fm(x,x′)

such that

(i). each of the Fi is homogeneous of degree δ1 in the variables x = (x0, . . . , xn)
and homogeneous of degree δ2 in x′ = (x′0, . . . , x

′
n),

(ii). for all i ∈ {0, . . . ,m},

Fi(x,x
′) = ydi s ,

and
(iii). for all i, j ∈ {0, . . . ,m},

(5.1.1)
Fi(x,x

′)

ydi
=
Fj(x,x

′)

ydj

everywhere on C × C \ {yiyj = 0}.
Conversely, each set of polynomials F0, . . . , Fm satisfying (i) and (iii) uniquely de-
termines a global section s of O(Y ) that satisfies (ii). Thus, there is a one-to-many
correspondence between global sections s and systems (F0, . . . , Fm) of polynomials
satisfying (i) and (iii).

Proof. Let s be a global section of O(Y ) on C × C. For each i, the global
section

ydi s ∈ Γ(C × C, δ1NA× C + C × δ2NA) ,

lifts by surjectivity of (2.7) to

Fi(x,x
′) ∈ Γ(Pn × Pn,O(δ1, δ2)) .

These Fi are polynomials in x and x′ that satisfy (i) and (ii) by construction. They
also satisfy (iii), because the two sides of (5.1.1) are equal to s everywhere.
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Conversely, let F0, . . . , Fm be polynomials satisfying conditions (i) and (iii).
For each i, Fi(x,x

′)
∣∣
C×C is a global section of O(δ1NA×C+C×δ2NA) on C×C,

and yi
∣∣
C×C is a global section of O(B) on C × C. Therefore

(5.1.2)
Fi
ydi
∈ Γ((C × C) \ {yi = 0}, Y ) .

Since y0, . . . , ym are never simultaneously zero, the sections (5.1.2) glue together to
give a global section s of O(Y ) on C × C, by (5.1.1). �

Lemma 5.2. Let s be a global section of O(Y ) that does not vanish at (P1, P2),
let F = (F0, . . . , Fm) be as in Lemma 5.1 (as determined by s), and define

h(F ) =
1

[k : Q]

∑
v∈Mk

max
i

max
c∈{coefficients of Fi}

‖c‖v .

Then

(5.2.1) hY (P1, P2) ≥ −h(F )− n log((δ1 + n)(δ2 + n)) .

(Recall that n = h0(C,NA)− 1.)

Proof. Let x̃ = φNA(P1) and let x̃0, . . . , x̃n ∈ k be homogeneous coordinates
for x̃. Define x̃′ = φNA(P2) and x̃′0, . . . , x̃

′
n ∈ k similarly, as well as ỹ = φB(P1, P2)

and ỹ0, . . . , ỹm ∈ k.
Then, by definition,

hY (P1, P2) =
δ1

[k : Q]

∑
v

max
j

log ‖x̃j‖v +
δ2

[k : Q]

∑
v

max
j

log ‖x̃′j‖v

− d

[k : Q]

∑
v

max
i

log ‖ỹi‖v

=
1

[k : Q]

∑
v

min
i

max
j,j′

log

∥∥∥∥∥ x̃
δ1
j (x̃′j′)

δ2

ỹdi

∥∥∥∥∥
v

,

(5.2.2)

where all sums are over all v ∈Mk.
As before, we continue to let x0, . . . , xn and y0, . . . , ym be the global sections

of O(NA) and O(B), respectively, corresponding to the coordinates of φNA and
φB , respectively. We assume that x0 does not vanish at P1 or P2, and that y0

does not vanish at (P1, P2). Then x̃0 6= 0, x̃′0 6= 0, and ỹ0 6= 0. Assume that
x̃0 = x̃′0 = ỹ0 = 1. For each j, xj/x0 is a rational function on C that is regular at
P1 and at P2, and we have

(5.2.3)

(
xj
x0

)
(P1) =

x̃j
x̃0

= x̃j and

(
xj
x0

)
(P2) =

x̃′j
x̃′0

= x̃′j .

Similarly, for each i, yi/y0 is a rational function on C×C that is regular at (P1, P2),
and

(5.2.4)

(
yi
y0

)
(P1, P2) = ỹi .

Since s and p∗1(xδ10 )p∗2(xδ20 )/yd0 are both regular sections of O(Y ) in a neighbor-
hood of (P1, P2) and the latter section does not vanish at (P1, P2), the ratio

s(P1, P2)

/
x0(P1)δ1x0(P2)δ2

y0(P1, P2)d
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is a well-defined element of k, and it is nonzero at (P1, P2) by the assumption that
s also does not vanish at (P1, P2). Therefore, by the product formula (0.3),

1

[k : Q]

∑
v

log

∥∥∥∥s(P1, P2)

/
x0(P1)δ1x0(P2)δ2

y0(P1, P2)d

∥∥∥∥
v

= 0 .

Subtracting this from (5.2.2) and applying (5.2.3) and (5.2.4) then gives

hY (P1, P2) =
1

[k : Q]

∑
v

min
i

max
j,j′

log

∥∥∥∥ xj(P1)δ1xj′(P2)δ2

s(P1, P2)yi(P1, P2)d

∥∥∥∥
v

=
1

[k : Q]

∑
v

min
i

max
j,j′

log

∥∥∥∥xj(P1)δ1xj′(P2)δ2

Fi(x(P1),x(P2))

∥∥∥∥
v

= − 1

[k : Q]

∑
v

max
i

min
j,j′

log

∥∥∥∥Fi( x(P1)

xj(P1)
,
x(P2)

xj′(P2)

)∥∥∥∥
v

,

(5.2.5)

where x = (x0, . . . , xn).
For each v and i let jv,i and j′v,i be the values of j and j′, respectively, where

the minimum occurs; i.e.,

min
j,j′

∥∥∥∥Fi( x(P1)

xj(P1)
,
x(P2)

xj′(P2)

)∥∥∥∥
v

=

∥∥∥∥∥Fi
(

x(P1)

xjv,i
(P1)

,
x(P2)

xj′v,i
(P2)

)∥∥∥∥∥
v

.

Then, by bihomogeneity of Fi, ‖xj/xjv,i‖v ≤ 1 and ‖x′j′/x′j′v,i
‖v ≤ 1 for all j and j′

(respectively). Since the number of nonzero terms in Fi is at most (δ1+n)n(δ2+n)n,
(5.2.6)

min
j,j′

∥∥∥∥Fi( x(P1)

xj(P1)
,
x(P2)

xj′(P2)

)∥∥∥∥
v

≤
(

(δ1 + n)n(δ2 + n)n
)Nv

max
c∈{coefficients of Fi}

‖c‖v

for all v ∈Mk and all i, by (0.5).
The inequality (5.2.1) then follows from (5.2.5), (5.2.6), (0.4), and the definition

of hF . �

This will be used to do the equivalent of controlling the constant O(1) in (3.4),
because Y here will play the role of ∆ later on.

However, things are a bit more complicated than that, because it is possible
that s may vanish at (P1, P2). In general, what will be needed is a similar argument
using “partial derivatives” of s. Since s is a section of a line bundle, as opposed
to a function, the meaning of partial derivative is not so clear. However, as with
s itself, under certain conditions it is possible to obtain a well-defined notion of
whether certain partial derivatives of s are zero.

Definition 5.3. Let s be a rational section of some line sheaf L on C × C,
and let P1, P2 ∈ C(k) be points such that s is regular at (P1, P2). Fix a rational
section s0 of L that generates L in a neighborhood of (P1, P2), and let ζ1 and
ζ2 be local coordinates on C at P1 and P2, respectively. Then we say that a pair
(i∗1, i

∗
2) ∈ N2 is admissible if

(5.3.1)

(
∂

∂ζ1

)i1 ( ∂

∂ζ2

)i2 ( s

s0

)
(P1, P2) = 0

for all pairs (i1, i2) ∈ N2 such that i1 ≤ i∗1, i2 ≤ i∗2, and (i1, i2) 6= (i∗1, i
∗
2).
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We note that, by elementary computations and induction on (i1, i2), the condi-
tion (5.3.1) is independent of the choices of s0, ζ1, and ζ2 when (i1, i2) is admissible.
Therefore admissibility itself is independent of these choices.

The usefulness of admissibility of pairs stems from the following lemma.

Lemma 5.4. Let s, L , P1, P2, s0, ζ1, and ζ2 be as in Definition 5.3, and let
(i∗1, i

∗
2) be an admissible pair. Then the quantity(

∂

∂ζ1

)i∗1 ( ∂

∂ζ2

)i∗2 ( s

s0

)
(P1, P2) ·

(
s0 ⊗ (dζ1)⊗i

∗
1 ⊗ (dζ2)⊗i

∗
2

) ∣∣∣
(P1,P2)

∈ L ⊗ p∗1Ω
⊗i∗1
C ⊗ p∗2Ω

⊗i∗2
C

(5.4.1)

is independent of the choices of s0, ζ1 and ζ2.

Proof. Independence of s0 is easy to see from the Leibniz rule and admissibil-
ity of (i∗1, i

∗
2), and independence of ζ1 and ζ2 follows from formalisms of differential

geometry. �

For admissible pairs (i∗1, i
∗
2), we can then define(
∂

∂ζ1

)i∗1 ( ∂

∂ζ2

)i∗2
s(P1, P2)

to be the section of (5.4.1).
With more work, one can then generalize Lemma 5.2 as follows.

Lemma 5.5. Let s be a global section of O(Y ), let F = (F0, . . . , Fm) be as in
Lemma 5.1 (as determined by s), and let (i∗1, i

∗
2) be an admissible pair at (P1, P2)

for s. Assume that (∂/∂ζ1)i
∗
1 (∂/∂ζ2)i

∗
2s(P1, P2) 6= 0. Then there are constants c2

and c3, depending only on C, φNA, and φB, such that
(5.5.1)
hY (P1, P2) ≥ −h(F )− c2(i∗1hA(P1) + i∗2hA(P2))− c3(i∗1 + i∗2)− (1 + o(1))(δ1 + δ2) .

The proof of this is quite technical, so it will not be included here. The inter-
ested reader is referred to [Bom90, Lemma 6] for a detailed proof.

6. Construction of a Global Section

This section gives Bombieri’s construction of a global section of O(Y ) with
bounds on its height h(F ). This is the core of Bombieri’s additions to earlier
proofs, as it replaces the use of advanced Arakelov theory with arguments using
more classical algebraic geometry.

Lemma 6.1. Let γ > 0 and let a1 and a2 be positive rational numbers with

(1− γ)a1a2 > g .

Let Y be the divisor defined by (2.10) for a suitable d > 0. Then there exist a
nonzero global section s of O(Y ); a constant c4 depending only on C, φNA, and
φB; and a representation F = (Fi)0≤i≤m of s, such that

(6.1.1) h(F ) ≤ c4(d1 + d2)/γ + o(d1 + d2) .

Proof. The section s will be constructed by finding F that satisfies the con-
ditions of Lemma 5.1.
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By the Riemann-Roch theorem for projective algebraic surfaces,

h0(C × C, Y ) = d2(a1a2 − g) +O(d1 + d2 + d)

≥ d2(a1a2γ)−O(δ1 + δ2) .
(6.1.2)

By Riemann-Roch for curves,

h0(C × C, δ1NA× C + C × δ2NA) = (Nδ1 + 1− g)(Nδ2 + 1− g) ,

and therefore the space of all possible F has dimension

(6.1.3) (m+ 1)(N2δ1δ2 −N(g − 1)(δ1 + δ2) + (g − 1)2) .

(Here (6.1.2) and (6.1.3) are close to the values of N −M and N , respectively, in
the application of Siegel’s lemma; see the details later in this proof.)

We will work using (local) affine coordinates ξj := (xj/x0) ◦ p1, ξ′j := (xj/x0) ◦
p2, and ηi := (yi/y0)

∣∣
C×C on C × C.

For suitably generic choice of φNA (which we assume has been chosen), the
rational map π1 : Pn 99K P1 given by [x0 : x1 : · · · : xn] 7→ [x0 : x1] is a morphism
on φNA(C). Likewise, we assume that φNA has been chosen such that the projection
π1,2 : [x0 : x1 : · · · : xn] 7→ [x0 : x1 : x2] maps φNA(C) birationally to its image in
P2 (which is therefore a curve of degree N), and ξ2 is integral over the ring k[ξ1].

Since the morphism φNA × φNA : C × C → Pn × Pn is a closed immersion,
composing with π1,2 × π1,2 gives a birational map from C × C to its image in
P2 × P2, so we have

K(C × C) = k(ξ1, ξ2, ξ
′
1, ξ
′
2)

and therefore, for all i,

ηi =
Pi(ξ1, ξ2, ξ

′
1, ξ
′
2)

Qi(ξ1, ξ2, ξ′1, ξ
′
2)

for polynomials Pi and Qi with coefficients in k. The conditions Fi/y
d
i = Fj/y

d
j

then become

((PiQj)
dFj)

∣∣
C×C = ((PjQi)

dFi)
∣∣
C×C for all i, j .

Note that the height of (PiQj)
d is O(d) for all i, j.

In order to apply Siegel’s lemma, it is necessary to find a basis for the set of
all possible F such that the linear conditions relative to this basis do not become
much larger than the heights of (PiQj)

d. The easiest way to do this is to use a
linear subspace of slightly smaller dimension. This will change N and N −M in
Siegel’s lemma by O(δ1 + δ2), which is small enough not to change the outcome
appreciably.

The details of this are as follows. The image of the morphism π1,2 ◦φNA : C →
P2 is a curve of degree N , and is birational to C. Moreover, the field extension
K(C)/k(ξ1) is also of degree N , generated by ξ2. We then restrict our choices of
the Fi to the space generated by the monomials

xδ1−u1−w1
0 xu1

1 xw1
2 (x′0)δ2−u2−w2(x′1)u2(x′2)w2 , 0 ≤ w1 ≤ N , 0 ≤ u1 ≤ δ1 − w1 ,

0 ≤ w2 ≤ N , 0 ≤ u2 ≤ δ2 − w2 .
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The number of ordered pairs (w1, u1) is

(δ1 + 1) + (δ1 + 1− 1) + · · ·+ (δ1 + 1− (N − 1)) = Nδ1 +N − N(N − 1)

2

= N

(
δ1 −

N − 3

2

)
,

and similarly for the number of pairs (w2, u2). Therefore the dimension of this
subspace is

(m+ 1)N2

(
δ1 −

N − 3

2

)(
δ2 −

N − 3

2

)
,

which differs from (6.1.3) by O(δ1 + δ2).
With the setup described above, the height of the linear forms remains O(d),

and therefore Siegel’s lemma constructs F satisfying the conditions of Lemma 5.1
with

h(F ) / O

(
d · (m+ 1)N2δ1δ2

γd1d2

)
= O

(
d1 + d2

γ

)
.

(Recall that Nδi = d(ai + s) and di = dai (i = 1, 2). Then a1 → ∞ and a2 →
0 as h(P2)/h(P1) → ∞; therefore Nδ1/d1 → constant and Nδ2/d2 grows like
h(P2)/h(P1) as h(P2)/h(P1)→∞.) �

The above proof omits many of the details that determine the bounds on h(F ).
For a complete proof see [Bom90, § 8].

7. The Index

Since the inequality (5.5.1) will be applied when h(P2)/h(P1) and h(P1) are
large the effect of an increase in i∗2 will be much greater than the effect of the same
increase in i∗1. Therefore it will be useful to work with a measure of vanishing of s
at (P1, P2) that assigns more weight to ζ2 than to ζ1.

This is consonant with the fact that the ratio δ1/δ2 is large, which stems
from the fact that a1 and a2 are chosen such that their ratio a1/a2 is close to
hA(P2)/hA(P1) (see (2.8)). This ensures that the two components of the term
c2(i∗1hA(P1) + i∗2hA(P2)) in (5.5.1) have approximately the same size.

With this in mind, the Thue-Siegel method relies heavily on the “index” of
a polynomial or a global section, which may be regarded as a weighted order of
vanishing at a point.

Definition 7.1. Let k be a field, let d1 and d2 be positive integers, let f ∈
k[x1, x2] be a nonzero polynomial, and let α1, α2 ∈ k. Write

f(x1, x2) =
∑

i1,i2∈N
ai1,i2(x1 − α1)i1(x2 − α2)i2 .

Then the index of f at (α1, α2) relative to (d1, d2) is the (rational) number

indd1,d2(f, (α1, α2)) = min

{
i1
d1

+
i2
d2

: i1, i2 ∈ N, ai1,i2 6= 0

}
= min

{
i1
d1

+
i2
d2

: i1, i2 ∈ N,
(

∂

∂x1

)i1 ( ∂

∂x2

)i2
f(α1, α2) 6= 0

}
,
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where the second expression is valid only if char k = 0.

This definition is used in the proofs of Thue and Siegel. In those proofs, d1/d2

is taken close to (h(p1/q1)/h(p2/q2))−1 (with notation as in Section 1), so that
dih(pi/qi) is approximately independent of i. In addition, |q1|d1 ≈ |q2|d2 , so since f
has degree ≤ d1 in x1 and degree ≤ d2 in x2, the contributions to the denominators
from each variable in the expression f(p1/q1, p2/q2) are approximately the same.

In Bombieri’s (and my) proof of the Mordell conjecture, d1 = a1d and d2 = ad2,
which are approximately the intersection numbers of the divisor Y with fibers A×C
and C ×A, respectively.

In the above definition, f may be a power series, and may be further extended to
the index of a global section of O(Y ) at (P1, P2) (by dividing by a local generator of
O(Y ) at (P1, P2) and expressing the quotient as a power series in local coordinates
on the factors). This is easily seen to be well defined, for the same reason that
admissibility is well defined.

8. The End of the Proof

So far we have constructed a global section s of O(Y ) whose height h(F ) is
bounded by (6.1.1), and obtained upper and lower bounds for the height hY (P1, P2).

In more detail, combining (5.5.1) with (6.1.1) gives the lower bound

hY (P1, P2) ≥ −c4
(
d1 + d2

γ

)
−c2(i∗1hA(P1)+i∗2hA(P2))−c3(i∗1+i∗2)−(1+o(1))(δ1+δ2) .

Recall that the upper bound (4.2) is

hY (P1, P2) ≤ d1

g
|j(P1)|2 +

d2

g
|j(P2)|2 − 3

2
d|j(P1)||j(P2)|+ c1(d1 + d2 + d) .

Combining these two bounds then gives

c2 max{d1hA(P1), d2hA(P2)}
(
i∗1
d1

+
i∗2
d2

)
≥ −

(
d1

g
|j(P1)|2 +

d2

g
|j(P2)|2 − 3

2
d|j(P1)||j(P2)|

)
− c3(i∗1 + i∗2)− c4

(
d1 + d2

γ

)
−O(d1 + d2) .

(8.1)

The first thing to notice about this inequality is that the quantity i∗1/d1 + i∗2/d2

on the left-hand side is the index indd1,d2(s, (P1, P2)) of s at (P1, P2) relative to d1

and d2 (for suitable choices of i∗1 and i∗2, which we now assume).
Another important fact about (8.1) is that all of the terms on the right-hand

side grow linearly with d, as does the coefficient c2 max{d1hA(P1), d2hA(P2)} on
the left. Therefore, (8.1) implies a lower bound on the index that does not depend
on d.

Of course, such a lower bound is not useful if it is negative. However, since

|j(P )|2 = ĥΘ(j(P )) = g hA(P ) +O(1) for all P ∈ C(k),
(8.2)

−d1

g
|j(P1)|2−d2

g
|j(P2)|2+

3

2
d|j(P1)||j(P2)| ≈ dg

√
hA(P1)hA(P2)

(
−2

√
g + γ

g
+

3

2

)
.
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Since g ≥ 2 (this is where the assumption on the genus is used), one can take γ > 0
sufficiently small so that

√
g + γ/g < 3/4, so this term is positive. Moreover, it

grows at the same rate as max{d1hA(P1), d2hA(P2)}.
Thus, if hA(P1) and hA(P2) are sufficiently large, then the last three terms of

(8.1) are insignificant, and we have a lower bound

(8.3) indd1,d2(s, (P1, P2)) ≥ ε ,
where ε > 0 depends only on C, N , A, φNA, φB , etc., but not on P1, P2, or d.

The final contradiction will be obtained using Roth’s lemma:

Theorem 8.4. Let f be a nonzero polynomial in m variables x1, . . . , xm, of
degree at most ri ∈ Z>0 in xi for each i, and with coefficients in Q. Let (b1, . . . , bm)
be an algebraic point. Finally, let ε > 0 be such that

(8.4.1)
ri+1

ri
≤ ε2

m−1

, for all i = 1, . . . ,m− 1

and

(8.4.2) rih(bi) ≥ ε−2m−1

(h(P ) + 2mr1) , for all i = 1, . . . ,m .

Then the index of f at (b1, . . . , bm) satisfies

indr1,...,rm(P, (b1, . . . , bm)) ≤ 2mε .

This lemma appears (with proof) in [HS00, Prop. D.6.2] (and in many other
places), and will not be proved here.

Of course we will use m = 2 in applying Theorem 8.4, and will also need to
adjust ε in (8.3). But first, it will be necessary to address the fact that f is a
polynomial in two variables (which can be regarded as a global section of O(r1, r2)
on P1 × P1), whereas s is a global section of a line sheaf on C × C.

This difference can be handled as follows. For suitable a and b, fix finite maps
C → P1 given by the rational functions xa/x0 and xb/x0, and let g = F0/η

d
0 , which

has poles only along x0 = 0 and x′0 = 0. Now, recalling that ξa = (xa/x0) ◦ p1 and
ξ′b = (xb/x0) ◦ p2, take the norm

f = N
K(C×C)
k(ξa,ξ′b) g

to get a section of O(N2δ1, N
2δ2) on P1 × P1. This is the polynomial f , and one

can bound its height by

h(P ) ≤ O
(
d1 + d2

γ

)
+O(d1 + d2) ;

see [Bom90, § 9].
One will have b1 = ξa(P1) and b2 = ξb(P2), so h(b1) = hNA(P1) + O(1) and

h(b2) = hNA(P2)+O(1) by elementary properties of heights [HS00, Thm. B.3.2(b)
or Cor. B.2.6]. Therefore, one can choose P1 ∈ Σ′ with hA(P1) sufficiently large so
that (8.3) and (8.4.2) hold, and subsequently choose P2 ∈ Σ′ with hA(P2)/hA(P1)
sufficiently large so that (8.4.1) is true.

This then gives a contradiction, so the assumption that C(k) is infinite must
be false.

Note that much has been left out of the proof, most notably the derivations of
the bounds of the heights in the application of Siegel’s lemma, as well as the height
inequalities in this section. The interested reader is referred to [Bom90] for more
explicit details.
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