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Abstract

Compositional Networks for Detecting and Localizing Activities

by

A S M Iftekhar

The development of automated methods capable of detecting and localizing actions is

crucial for a variety of applications, ranging from surveillance and autonomous driving to

content moderation. This thesis focuses on creating action detection methods that deliver

robust performances. At the heart of these methods’ robustness lie two fundamental

elements: the detection of atomic actions and the ability for compositional understanding.

Atomic actions are those that are identifiable from a single image or a short video. In

this research, we developed innovative methods to detect and localize such actions that

achieve state-of-the art performance. The key strength of these methods lies in their abil-

ity to refine visual features both spatially and semantically, enabling precise identification

of action-specific regions. For scalability, we further developed a multi-branch network to

recognize new composition of objects and actions. Our design ensures that each branch

learns decoupled features, allowing the network to transfer previously learned concepts

to identify new compositions. This approach outperforms existing methods by a good

margin as our extensive experiments on benchmark datasets demonstrate. Further, the

correct identification of the attributes of the participating objects in actions helps to

detect unknown compositions. Therefore, we have created a network utilizing spatially

localized learning to correctly associate objects and attributes. This network achieves

state-of-the-art performance in object-attribute association on cluttered scenes.

The developed methods in this thesis can do robust action detection at scale and

serve as a base for numerous future applications.
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Chapter 1

Introduction

In today’s interconnected world, characterized by the ubiquitous presence of cameras and

the seamless accessibility of the internet, the urgency to engineer automated systems ca-

pable of delving into the intricate analysis of videos and images has surged exponentially.

The volume and diversity of visual content have reached a magnitude where the reliance

on manual labor for comprehensive analysis has become impractical. Furthermore, a host

of complex issues, including privacy concerns and biases in content assessment, have com-

pounded the challenges inherent in constructing automated systems for visual content

analysis.

Amid this complex backdrop, the focal point of this thesis resides in the creation of

automated methods for content analysis. Specifically, we developed methods to detect

actions within varied contextual settings. These methods have significant applications

in both security and consumer domains. Through our analysis, we have identified two

pivotal properties essential for an action detection method to achieve robustness. These

properties are:

1



Introduction Chapter 1

Atomic Action Detection: For any robust action detection method, the precise lo-

calization and detection of atomic actions is a fundamental requirement. Atomic actions

encompass activities that can be inferred from a single image or a brief video snippet

lasting 1-2 seconds [17]. These actions include basic movements like walking, standing,

or sitting on a chair. Various related fields [1, 18] have coined diverse terms such as

scene-graphs, HOIs for such actions. The identification of these actions are extremely

important since multiple atomic actions can combine to form more complex composite

actions. Consider the process of exiting a car, for instance. This action involves several

atomic actions such as opening the door, standing up, all contributing to the overall

action.

The Figure 1.1 provides two examples of atomic action detection. This localization

process entails pinpointing each element participating in a specific action while concur-

rently predicting the action’s class. The first half of our thesis delves into the development

of robust models capable of proficiently performing atomic action detection.

Compositional Ability: The notion of compositionality refers to the capacity to com-

bine familiar concepts to infer unfamiliar ones, a cognitive skill of great significance in

human comprehension. Existing action detection methods often exhibit subpar perfor-

mance in detecting actions beyond a predefined set. Nonetheless, encounters with unfa-

miliar actions are quite common. Two of such unusual actions are shown in Figure 1.2.

Humans can trivially identify these actions using the power of compositionality over pre-

viously learned concepts, even in the absence of prior exposure to the exact combination

of actions. Our underlying hypothesis is that achieving truly effective action detection

in images and videos dependent on the method’s compositional ability. Through the

development of a series of innovative networks, the latter part of our thesis provides

compelling evidence that supports our hypothesis.
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Figure 1.1: Two examples of atomic action localization. We marked humans and
objects involved in the action with green and red bounding boxes. The images are
taken from V-COCO dataset [1].

The series of action detection methods that will be described in this thesis have

extensive applications. Before going into the details of our developed methods, we will

be giving a brief overview of these applications.

1.1 Motivation

Security Applications: In the domain of security, the extensive deployment of surveil-

lance cameras in urban settings has accentuated the demand for advanced automated ac-

tion detection methods. For instance, New York City alone has around 15,000 roadside

cameras [19], generating hours of data. Most large cities in the world has similar kind

of surveillance camera statistics. Manually monitoring these cameras are expensive and

time-consuming. This approach becomes unsustainable for large-scale systems due to its

inability to scale effectively.

By employing advanced methods to automatically detect and localize actions, the de-

pendence on manual monitoring can be significantly diminished. This not only augments

operational efficiency but also addresses concerns surrounding the privacy of citizens. If

an automated method processes surveillance videos, the individual privacy rights can be
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Figure 1.2: Two examples of unusual actions. Humans can leverage previously learned
concepts such as dancing, skateboarding to identify these actions. Second half of this
thesis focuses on developing methods that demonstrate similar kind of compositional
capabilities as humans. The images are taken from the UnRel dataset [2].

protected more effectively.

Consumer Applications: In the broader consumer context, automated action detec-

tion methods are extremely important. A quick example is the web content moderation.

For filtering out contents based on the actions in the images and videos, we need advanced

methods. These methods will help intuitions such as schools, corporate organizations to

remove undesired web-contents from their systems. Moreover, these methods can identify

and block malicious content websites.

Additionally, advanced action detection methods are crucial for the development of

autonomous cars. In the paradigm of self-driving vehicles, the effective use of action

detection methods hold the promise of enhanced road safety and optimal traffic manage-

ment. By discerning different actions – be it pedestrians crossing the street or cyclists

navigating through intersections – autonomous vehicles can anticipate and adapt to dy-

namic scenarios with a level of nuanced awareness that is unprecedented. This usage

of action detection methods constitutes a paradigm shift that has the potential to save

lives, mitigate accidents, and fundamentally redefine transportation systems.
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1.2 Challenges and Contributions

1.2.1 Atomic Action Detection Models

Among the different types of atomic actions, those involving humans hold paramount

importance. Consequently, the initial portion of this thesis is dedicated to the devel-

opment of methods that can effectively detect human-object interactions (HOIs) within

images. Defined as atomic actions where one participating entity is a human, HOIs serve

as foundational elements for a range of other computer vision applications, including

scene understanding [20–22] and visual question answering [23,24].

The existing methodologies in this field typically adhere to a two-stage sequential

process. Initially, off-the-shelf object detectors [25] are deployed to detect all humans

and objects present in the image. Following this, the second stage involves generating

predictions for interaction classes corresponding to each unique pairing of a human and

an object.

While this sequential methodology has demonstrated strong performance across stan-

dard benchmark datasets, it is not without its challenges. Specifically, there are two

primary issues: 1) The exhaustive pairing of humans and objects leads to significant dif-

ficulties in filtering out non-interacting human-object pairs; and 2) Identifying the salient

spatial regions within images that effectively highlight interactions between human-object

pairs remains a complex task. We provide solutions to these challenges in Chapter 3 and

Chapter 4.

In chapter 3, we utilize relative spatial configuration and structural relations between

humans and objects to help filter out non-interacting human object pairs. Relative spatial

configuration refers to the relative spatial layout between a human and an object. We

use this configuration to refine or guide our visual features. This refinement helps to

filter out non-interacting pairs. Additionally, we utilize a graph convolution network to
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utilize structural connections between human-object pairs.

In chapter 4, we develop an attention [26] architecture to find salient spatial context

for HOI detection. Here, spatial context refers to specific regions within an image that are

crucial for identifying HOIs. Given the diversity and complexity of HOIs, it is impractical

to develop heuristic-based approaches for discerning the relevant spatial contexts for each

unique interaction. Moreover, the spatial context associated with a particular interaction

often lacks a rigid, predefined structure. Therefore, we utilize a Transformer [26] based

architecture to find out the salient spatial context.

Transformers, with their query-key based attention architecture, have proven highly

effective in identifying correlations across different segments of input data. We utilize

human-object pairs as queries in the Transformer architecture. These queries are subse-

quently guided by both the relative spatial configuration and the semantic category of

the involved object. In chapter 2 we already established the utility of relative spatial

configuration for guiding visual features. We enhance our guiding mechanism by inte-

grating object semantics, defined here as the categorical identity of the object. These

categories are pivotal in characterizing the nature of the interaction. For instance, when

the object in a human-object pair is a football, the likelihood of the interaction to be

eating is substantially reduced. As such, the combination of relative spatial configuration

and object semantics offers an effective guidance mechanism. Our guided query based

transformer architecture has demonstrated outstanding ability in accurately detecting

HOIs by leveraging salient spatial contexts.

In summary our key contributions to advancing atomic action detection models are:

• VSGNet: A Visual Spatial Graph Network utilizing Graph Convolutional Network

alongside relative spatial configurations for enhanced Human-Object Interaction

(HOI) detection.
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• GTNet: A Guided Transformer Network designed to identify salient spatial regions

relevant to HOI detection, utilizing a Transformer-based architecture.

1.2.2 Compositional Models

Scene-Graph Generation: As previously discussed, a defining characteristic of action

detection models is their capability to compose previously learned concepts to identify

novel actions. To enhance compositional skills in action detection models, we choose

scene-graph generation (SGG) as our primary focus. Unlike our earlier atomic action de-

tection models, which are limited to identifying human-involved actions, SGG provides

a more expansive scope. It creates a structured representation of a scene by predict-

ing subject-object-relation triplets from the given data. In this context, atomic action

detection can be considered a specialized subset of SGG, where the relationships are

specifically interactions like eating, walking, and so on [12].

More specifically, our objective is to identify relationship triplets that fall outside

a predefined set. Current methodologies struggle significantly in this aspect, primarily

due to the interdependent learning of object and relationship features. This coupled

learning leads existing methods to form associations between specific relationships and

fixed object combinations, thereby inhibiting their ability to recognize novel relationship

triplets.

To address the challenge of interdependent feature learning, chapter 5 introduces our

innovative decoupled SGG model. At the core of this model is the separation of relation-

ship and object feature learning, a design choice aimed at overcoming the limitations of

existing methods. To achieve this, we employ a multi-branch architecture: one branch is

tasked with relationship detection, while another focuses on object detection. Our inno-

vative design ensures that each branch learns decomposed cues of different relationships
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and objects. As a result, when encounter an unfamiliar unseen relationship triplet, our

model can successfully detect it from the previously learned concepts.

In our model each branch follows a Transformer-based encoder-decoder architecture.

We employ two separate sets of queries in our two decoders, each set tailored to learn

generalized representations of relationships and objects. This is achieved by extracting

information from feature maps that are uniquely encoded by our encoders.

Object-Attribute (O-A) Compositions: The attributes of objects participating in

an action can serve as indicators for detecting the action, as noted by [27]. For example,

consider a video where full-sized tomatoes are initially shown. If subsequent frames

reveal the same tomatoes in a diced form, we can infer that a tomato-cutting action

has occurred, even in the absence of explicit visual confirmation. Therefore, a robust

action detection model needs to detect both objects and attributes. Understanding O-A

compositions in a holistic manner plays a crucial role in this aspect. The formal study

of predicting unseen O-A combinations is known as Compositional Zero-Shot Learning

(CZSL) [13,28,29].

Despite significant progress in CZSL, present models fail to associate correct O-A in

a cluttered scene. For instance, identifying a ripe, red apple amidst surrounding leaves

on a tree proves challenging for existing algorithms, due to the overpowering influence

of confounding elements. This in turn is due to the bias towards seen O-A composition

during training time of existing algorithms.

To tackle the mentioned challenge, in chapter 6, we propose a novel model that uses

weakly supervised localization to detect correct O-A composition. Our model follows a

two step approach. In the first step, we developed a Localized Feature Extractor (LFE)

that associates an object with its attributes by minimizing the interference from other

attribute-related visual cues within the image. It’s important to note that the standard
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CZSL benchmark datasets lack localization information. To circumvent these limitations,

we have developed a weakly supervised method specifically for localized feature extrac-

tion. In the second step, we utilize a composition classifier that leverages these localized

and distinctive visual features to accurately predict O-A pairs.

In summary, with respect to the compositional models, our contributions are:

• DDS: A Decoupled Dynamic Scene-Graph Network that has two branches to learn

decoupled features for relationship triplets prediction

• LOCL: Learning Object-Attribute (O-A) Composition using Localization – that

generalizes compositional zero shot learning to objects in cluttered realistic settings.

1.3 Dissertation Organization

The organization of the thesis is as follows,

Chapter 2, Visual Spatial Graph describes the model with spatial refinement and

graph convolution for HOI detection. It includes detail comparison with existing works

along with qualitative results.

Chapter 3, Guided Transformer introduces the novel transformer architecture to

find and leverage salient spatial context to detect HOIs. It provides deep analysis behind

the success of the model by providing attention maps and quantitative analysis.

Chapter 4, Decoupled Dynamic Scene-Graph Generation gives detail account

of the multi-branch encoder-decoder model for scene-graph generation. Additionally, it

has strong evidences showing the effectiveness of decoupled model in detecting unseen

relationship triplets.

Chapter 5, Learning Object-Attribute Compositions Using Localization in-

troduces the two step approach for correctly associating objects and attributes.
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Chapter 6, Discussion provides a comprehensive summary of the key contributions

made in this thesis. Additionally, it offers preliminary guidance for future research en-

deavors.
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Chapter 2

Visual Spatial Graph

2.1 Introduction

The task of human object interaction (HOI) detection in images involves identifying

and localizing interactions between a human and an object. As previously noted, HOI

detection focuses on a specific type of atomic action where one of the entities involved is

a human. It can be considered a part of the task of visual scene understanding [20–22],

visual question answering [23, 24, 30, 31], and activity recognition in videos [3, 32, 33].

This and the next chapter describe two developed robust HOI detection methods.

Many current methods in HOI detection, such as [34–36], share a common structure.

They begin by extracting human and object features using an object detection framework.

These features, along with additional data (like pose and relative geometric locations), are

then exhaustively paired and input into a multi-branch deep neural network to identify

the relationship between humans and objects. Even though such an approach achieves

good results for detecting HOIs, exhaustive pairing treats interacting and non-interacting

human-object pairs in a similar manner. However, for a robust HOI detection network,

the emphasis should be on the interacting pairs. An effective approach to reduce the
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Figure 2.1: Visual, Spatial and Graph branches of our proposed VSGNet model. Vi-
sual branch analyzes humans/objects/context individually, Spatial branch uses spatial
configurations of the pairs to refine visual features and the Graph branch utilizes the
structural connections by Graph convolutions which uses interaction proposal scores
as edge intensities between human-object nodes.

impact of non-interacting human-object pairs involves explicitly integrating interaction

data or the spatial relationships between them. Interactions, such as a person on a

skateboard or holding a bat, exhibit unique spatial and structural characteristics that

can enhance HOI detection. To capitalize on this, we developed Visual-Spatial-Graph

Network (VSGNet) architecture.

For utilizing spatial configurations, VSGNet uses a spatial attention branch that

explicitly uses the spatial relations of the pairs to refine the visual features. Instead of

modeling humans and objects individually, our module uses the spatial configurations of

the pairs to extract attention weights which refine the visual features. Although a few past

works [6,35] have used these types of spatial configurations as features for classification
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directly, these models do not combine the visual information with spatial information.

These features are more useful for refining the visual features and providing an attention

mechanism for modeling the interactions of the human-object pairs explicitly.

For modeling the interactions, an image can be defined as a graph. Nodes in this

graph are the humans and objects, in which case the edges define the interactions. As the

edges between nodes define interactions between pairs, our model utilizes the interaction

proposal scores as the intensities of the edges in the graph. Interaction proposal scores are

generated from the spatially refined visual features and they quantify if the human-object

pair is interacting.

To summarize, the proposed VSGNet for HOI detection refines the visual features

using spatial relations of humans and objects. This approach amplifies the visual features

of spatially relevant pairs while damping the others. Additionally, this model uses graph

convolutional networks to model the interactions between humans and objects. The

resulting model consists of multiple specialized branches. We evaluate our model on

V-COCO [1] and HICO-DET [6] datasets and demonstrate 4 mAP ( 8%) and 3 mAP

( 16%) improvement over the state of the art methods.

Technical Contributions:

• We propose a new spatial attention branch that leverages the spatial configuration

of human-object pairs and refines the visual features such that spatially relevant

human-object pairs are amplified.

• We use a graph convolutional branch which utilizes the structural connections be-

tween humans and objects. The interaction proposal score, generated from the

spatially refined features, are used to define the edge intensities between human

and object nodes.
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• We implement a robust pipeline that contains Visual, Spatial and Graph based

branches named VSGNet. This model achieves state-of-the-art results for HOI

detection task on V-COCO and HICO-DET datasets.

2.2 Related Work

Object Detection: For detecting HOIs the first step is to detect humans and objects

properly. With the recent object detection frameworks like RCNN [37], Faster RCNN [25],

YOLO [38], Feature Pyramid Network [39] and SSD [40], models are able to detect multi

scale objects robustly in images. Following this we utilize a pre-trained Faster-RCNN

model in our network for detecting humans and objects. Additionally, we utilize the

region proposal network idea from Faster-RCNN and extend it to interaction proposals

which predict if an human-object pair is interacting.

Human Object Interaction: Activity recognition is a research area in computer

vision that has received interest for a long time. There are different datasets like UCF-

101 [41], Thumos [42] with a focus on detecting human actions in videos. But in these

datasets, the goal is to detect one action in a short video which is not representative

of real life scenarios. To extend human activity recognition in images Gupta et al. [1]

introduced V-COCO dataset and Chao et al. [6] introduces HICO-DET dataset. These

datasets are different from the previous datasets as they require models to explicitly

detect humans, objects and their interactions. This extends the task to include detection

of human activities while localizing the humans and the objects.

For the HOI detection task, Gkioxari et al. [36] proposed a human-centric approach

arguing that human appearance provides strong cues in both detecting the action and

localizing the object. This method does not consider interactions where the object is far

away from the human. Qi et al. [43] proposed a graph based network which depends
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on detecting an adjacency matrix between various nodes(here, nodes are humans and

objects) but does not utilize any spatial relation cues between pairs. Kolesnikov et al. [44]

incorporates HOI detection with object detection by individually analyzing humans and

objects without considering the spatial relationship between the pairs.

Gao et al. [35] proposed an attention network based on the previous work of [26].

They derived an attention map from the human and object features over the whole

convolutional feature map. Although they used a binary spatial map similar to [6], they

use the spatial map to extract features and concatenate them with human visual features.

As these are two completely different features defining separate things, concatenation

does not enforce spatial configurations as much as an attention mechanism. To address

this in our network we use the spatial features as attention maps which refines our visual

features.

Li et al. [34] integrated pose estimation with the iCAN [35] and predicted the inter-

action probabilities between a human and object pair. These methods however, do not

explicitly leverage the interaction probabilities to detect the relational structure between

the human and object pairs. Our VSGNet addresses this by utilizing a graph network

for learning interactions and achieves better results without using poses which shows

VSGNet can benefit from pose estimation as well.

2.3 Proposed Method

This section introduces our proposed VSGNet for detecting human-object interac-

tions(HOI). From each given image, the task is to detect bounding boxes for the humans,

objects and correctly label the interactions between them. Each human-object pair can

have multiple interaction labels and each scene can include multiple humans and objects

in them. We streamline the task by employing a pre-trained object detector to identify
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Figure 2.2: Model Architecture. Rounded rectangles are operations, sharp rectangles
are extracted features and ⊗ is element-wise multiplication. The model consists of
three main branches. Visual branch extracts human, object and context features. Spa-
tial Attention branch refines the visual features by utilizing the spatial configuration
of the human-object pair. Graph Convolutional branch extracts interaction features
by considering humans/objects as nodes and their interactions as edges. Action class
probabilities from each branch and the interaction proposal score are multiplied to-
gether to aggregate the final prediction. These operations are repeated for every
human-object pair.

humans and objects within an image.

Detecting the interactions between human-object pairs is a challenging task. Simple

methods such as extracting features from human and object locations individually and

analyzing them are ineffective as these methods ignore the contextual information of the

surroundings and spatial relations of the human-object pair. Extensions such as using

union boxes to model the spatial relations/context also fall short as they don’t explicitly

model the interactions. To address these issues, we propose a multi-branch network with

specialized branches. The proposed VSGNet consists of the Visual Branch (Section 2.3.2)

which extracts visual features from human, object and surrounding context individually;

the Spatial Attention Branch (Section 2.3.3) which models spatial relations between the

human-object pair; and the Graph Convolutional Branch (Section 2.3.4) which consid-
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ers the scene as a graph with humans and objects as nodes and models the structural

interactions. The proposed model architecture with the branches is shown in Fig.2.2.

2.3.1 Overview

The inputs to our model is image features F from a backbone CNN (e.g. ResNet-

152 [45]) and bounding boxes xh for human h ∈ [1, H] and xo for object o ∈ [1, O]. H and

O represents the total number of humans and objects in the scene respectively. Bounding

boxes are obtained from a pre-trained object detector. We define the objective of this

model as:

• Detect if human h is interacting with object o with an interaction proposal score

ih,o.

• Predict the action class probability vector ph,o of size A where A is the number of

classes.

2.3.2 Visual Branch

This branch focuses on extracting visual features for the human-object pairs. Fol-

lowing the object detection methods, we use region of interest (RoI) pooling on the

human/object regions to extract features. This operation is followed by a residual block

(Res) [45] and global average pooling(GAP) operations to extract the visual feature vec-

tors for objects and humans.

fh = GAP (Resh(RoI(F, xh))) (2.1)

fo = GAP (Reso(RoI(F, xo))) (2.2)
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where Res{} represents residual blocks, fh and fo are visual feature vectors of sizes R.

This operation is repeated for each human h and object o.

Context plays an important role in detecting HOI. Surrounding objects, background

and other humans can help detecting the interactions. We include the context in our

network by extracting features from the entire input image followed by a residual block

and global average pooling.

fC = GAP (ResC(F)) (2.3)

where fC is a feature vector of size R.

Finally, this branch combines all the visual feature vectors by concatenating them

and projecting it by a fully connected layer.

fV is
ho = Wvis(fh ⊕ fo ⊕ fC) (2.4)

where ⊕ is the concatenation operation, W{} is the projection matrix, fV is
ho is the com-

bined visual feature vector of dimension D which represents the human-object pair ho.

The feature fV is
ho can be used directly for classifying actions. We implement this as a

base model for comparisons.

2.3.3 Spatial Attention Branch

This branch focuses on learning the spatial interaction patterns between humans and

objects. The main task is to generate attention features which are used to refine the

visual features by amplifying the pairs with high spatial correlation. This branch is

visualized in Fig.2.3.

Given the human bounding box xh and object bounding box xo, we generate two
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Figure 2.3: Spatial Attention Branch. Initially human, object and context visual
features are extracted from the image using RoI pooling. Using binary maps of hu-
man and object locations, spatial attention features are extracted using convolutions.
These attention features encode the spatial configuration of the human-object pair.
Attention features are used to refine the visual features by amplifying the pairs with
high spatial correlation.

binary maps. These binary maps have zeros everywhere except in locations defined by

human and object box coordinates xh and xo for each map respectively. This generates

a 2-channel binary spatial configuration map Bho.

Similar to [6,35], we use 2 layers of convolutions to analyze the binary spatial config-

uration map. This is followed by a GAP operation and a fully connected layer.

aho = WSpat(GAP (Conv(Bho))) (2.5)

where aho is an attention feature vector of size D and represents the spatial configuration

of the human-object pair ho. As the objects and humans are defined in different channels,

using convolutions on the binary spatial configuration maps Bho allows the model to learn

the possible spatial relations between humans and objects.
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Since aho encodes the spatial configuration, it can be used directly to classify the

HOIs as in [6]. We keep this classification as an auxiliary prediction but mainly use

aho as an attention mechanism for refining visual features. Auxiliary predictions can be

defined as:

pAtt
ho = σ(WAtt(aho)) (2.6)

where pAtt
ho is the action class probabilities of size A and σ is the sigmoid function.

The attention vector aho and the visual feature vector fV is
ho are set to be the same size

D. This allows us to multiply these two vectors together in order to refine the visual

features with spatial configuration. We use aho as an attention function and multiply aho

and fV is
ho elementwise.

fRef
ho = aho ⊗ fV is

ho (2.7)

where ⊗ is element-wise multiplication and fRef
ho is the spatially refined feature vector of

size D.

The refined feature vector is then used to predict the interaction proposal score of

human-object pair ho and to predict the action class probabilities.

iho = σ(WIP (fRef
ho )) (2.8)

pRef
ho = σ(WRef (fRef

ho )) (2.9)

where iho is the interaction proposal probability of size 1 and pRef
ho is the action class

probabilities of size A.
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Figure 2.4: Graph Convolutional Branch. This model learns the structural connec-
tions between humans and objects. For this task, we define the humans and objects
as nodes and only connecting edges between human-object pairs. Instead of using
visual similarity as the edge adjacency, we propose to use the interaction proposal
scores. This allows the edges to utilize the interactions between human-object pairs
and generates better features.

2.3.4 Graph Convolutional Interaction Branch

This branch uses a graph convolutional network to generate effective features for

humans and objects. Graph convolutional networks extract features that model the

structural relations between nodes. This is done by traversing and updating the nodes

in the graph using their edges. In this setting, we propose to use humans and objects as

nodes and their relations as edges.

Instead of having a fully connected graph, we connect each human with every object

and each object with every human. However, without this simplification, proposed model

can also be extended to fully connected settings.
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Given the visual features fh, fo and connecting the edges between humans and objects,

graph features f ′h and f ′o are defined as follows:

f ′h = fh +
O∑

o=1

αhoWoh(fo) (2.10)

f ′o = fo +
H∑

h=1

αohWho(fh) (2.11)

where αho defines the adjacency between h and o and Woh, Who are mapping functions

which project the object features to human feature space and vice versa. Previous works

[43,46] defined the adjacency as visual similarity. In our task, however, adjacency defines

interactions between nodes of visually unsimilar things which are human and object.

Following this idea, we define adjacency values between h and o pair as:

αho = αoh = iho (2.12)

where iho is the interaction proposal score which are generated from the spatially refined

visual features and measure the interactions of the human-object pair. Pairing up the

graph features, classification predictions are calculated as:

pGraph
ho = σ(Wgraph(f ′

h ⊕ f ′
o)) (2.13)

where ⊕ is concatenation operation and pGraph
ho is the action class probabilities of size A.

The graph convolutional branch is visualized in Figure 2.4. This concludes all of

the outputs of the proposed network. Finally we combine the action predictions and

the interaction proposal scores by multiplying the probabilities similar to previous works

[34–36].
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pho = pAtt
ho × pRef

ho × pGraph
ho × iho (2.14)

where Pho is the final prediction vector of size A.

2.4 Experiments

We first introduce the datasets and our evaluation metrics along with our implemen-

tation details and then perform extensive quantitative and qualitative analysis on our

model and show the improvements over the existing methods.

2.4.1 Datasets and Evaluation Metrics

Datasets: To evaluate our model’s performance, we use the V-COCO [1] and HICO-

DET [6] datasets.

V-COCO is derived from COCO [47] dataset. It has 10,346 images. 2533 images are

for training, 2867 images are for validating and 4946 images are for testing. The training

and validation set images are from COCO training set and the test images are from the

COCO validation set. Each person in the images are annotated with a label indicating

one of the 29 actions. If an object in the image is related to that action then the object

is also annotated. Among these 29 actions, four of them has no object pair and one of

them(point) has only 21 samples. Following the previous HOI detection works, we are

not going to report our performance in these classes. We report our performance for the

rest of the 24 classes.

HICO-DET is a large dataset for detecting HOIs with 38118 training and 9658 testing

images. HICO-DET annotates the images for 600 human-object interactions. Following

the previous works, in HICO-DET we report our performance in Full, Rare and Non-Rare
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Categories. These categories are based on the number of training samples [6].

Metrics: Following [1] we evaluate our performance on two types of average preci-

sion(AP) metrics: Scenario 1 and Scenario 2. During AP calculation in both metrics,

a prediction for a human-object pair is considered correct (1) if the human and object

bounding boxes have an IoU greater than 0.5 with the ground-truth boxes and (2) the

interaction class label of the prediction for the pair is correct. For the cases when there is

no object(human only), in Scenario 1 a prediction is correct if the corresponding bound-

ing box for the object is empty and in Scenario 2 the bounding box of the object is not

considered. This makes Scenario 1 much harsher than Scenario 2 [1]. In HICO-DET our

evaluation metrics is similar to the Scenario 1 case of V-COCO.

2.4.2 Implementation Details

Resnet-152 [45] network is used as the backbone feature extractor. We extract the

input feature map before the last residual block of Resnet-152. This serves as the input to

the rest of the network. We extract 10× 10 feature maps for all the humans and objects

from the input feature map by region of interest pooling [48]. Extracted RoIs and input

feature map(context) pass through a residual block followed by a global average pooling

similar to [35]. After these steps, we obtain three feature vectors of size R = 1024 for

human, object and context. These are fed to the rest of the network. For the spatial

attention branch we have used 64 × 64 × 2 binary inputs. Before the element wise

multiplication with the attention vector in the spatial attention branch, we project all

our input feature vectors to a D = 512 dimensional space followed by a ReLU. In our

final classification layer for all the branches, we have one linear layer.

For training the network, we utilize off-the-shelf Faster-RCNN [25] to generate human

and object bounding boxes. We have filtered the detected bounding boxes by setting 0.6
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confidence threshold for human bounding boxes and 0.3 for object bounding boxes. The

threshold values are chosen experimentally. Following [36] we did not fine tune the

backbone CNN Resnet-152 [45] and Faster-RCNN during our training process. Faster-

RCNN was trained on the COCO [47] training set and did not see any image from

V-COCO testing sets. Unlike previous works [34, 35], we do not use ground truth boxes

during training as object proposals. As our object detector is robust, we directly use

the bounding boxes generated from the detector which generates sufficient amount of

positive and negative boxes.

Initially, we trained the model on the training set of V-COCO while validating with

the validation set. Then we train the model in both training and validation set like [36].

Our initial learning rate is set to 0.01 with a batch size of 8. As optimizer, Stochastic

Gradient Descent(SGD) has been used with a weight decay of 0.0001 and a momentum

of 0.9. To reduce the training time we increased our learning rate to 0.01 for all the

layers except for the spatial attention branch between epoch 9 to epoch 21. We trained

the whole model for 50 epochs.

For HICO-DET we use the same hyper-parameters from V-COCO. We train the

network individually for 20 epochs in HICO-DET training set without any initialization

from the V-COCO model.

During inference, we multiply all the prediction outputs from the different branches

of our network as in 2.14. Additionally, we multiply the final prediction output with the

detection confidences of the human and object from the object detector. To differentiate

between high and low quality detection scores we have adopted Low grade Instance

Suppressive Function (LIS) [34]. We additionally remove the incompatible interaction-

object pairs by using a post processing similar to iCAN [35] (e.g. if the object is not

phone then the interaction can not be talk on the phone).

While making inference most of the existing [34–36] models multiply all the outputs
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V-COCO mAP(Sc 1) mAP(Sc 2)
InteractNet [36] 40.0 47.98
Kolesnikov et al. [44] 41.0 -
GPNN [43] 44.0 -
iCAN [35] 45.3 52.4
Li et al. [34] 47.8 -
VSGNet 51.8 57.0

Table 2.1: Comparison of results in V-COCO [1] test set on Scenario 1 and Scenario
2. Our method outperforms the closest method by 8%. For actor only classes (no
object), scenario 1 requires the model to detect it specifically as no object, whereas
scenario 2 ignores if there is an object assigned to that prediction. Some of these
methods did not provide results for scenario 2.

from different modules but these modules are optimized separately while training. Fol-

lowing [49] we have used a single cross entropy loss function for each action class to

optimize the network. One thing to note is that as in Eq. 2.14, interaction proposal score

is also multiplied in these predictions and included in predictions for every class. This

allows the proposal score to quantify if there are interactions between the human-object

pair regardless of the class of that interaction. Our experiments show that combining all

the predictions and using a single loss function improves the performance.

2.4.3 Comparisons with the State of the Art

We compare our model’s performance with five recent state of the art methods [34–

36,43,44] in both of the datasets. We report mean Average Precision (mAP) score in the

settings provided by [1] and [6].

Table 2.1 shows that our method outperforms all the existing models and achieves

an improvement of 4 mAP in scenario 1 for V-COCO dataset. We also reported our

performance in scenario 2 which outperforms all the available existing methods who

reported their results in that scenario.

Table 2.2 shows the results compared to other methods in HICO-DET and our model
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HICO-DET (mAP) Full Rare Non-Rare
HO-RCNN [6] 7.81 5.37 8.54
InteractNet [36] 9.94 7.16 10.77
GPNN [43] 13.11 9.34 9.34
iCAN [35] 14.84 10.45 16.15
Li et al. [34] 17.03 13.42 18.11
VSGNet 19.80 16.05 20.91

Table 2.2: Comparison of results in HICO-DET [1] test set. VSGNet outperforms
the closest method by 16%.

achieves the best results among the previous works.

In terms of performance, the closest work to our results is Li et al. [34]. This method

is built on top of the exisiting work iCAN [35] by adding an interaction proposal network

and utilizing person poses. Addition of interaction proposal and person poses improve

∼ 2 mAP in V-COCO and ∼ 3 mAP in HICO-DET on top of iCAN with a computational

cost of calculating the poses for each human. Our model achieves better results than Li

et al. [34] without the pose extraction.

In Table 2.3 we report per-class performances compare with the existing methods

which reported per-class APs for V-COCO. Our proposed VSGNet achieves better per-

formance in majority of the classes compared to the other methods. Additionally, per-

class performances show that some of the action classes perform badly due to the failure

of object detectors (e.g. eat instruments which usually have small objects and commonly

become occluded in the images). As our main task is to detect HOIs, we did not fine-tune

the existing object detectors according to our needs which can also possibly handle these

cases.

Analysis of Backbone CNNs: In addition to all Resnet models [45], we implement our

model with various common CNNs used in image analysis. Table 2.5 shows the results of

VSGNet implemented with these various backbone CNNs in V-COCO with Resnet152
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HOI Class InteractNet [36] iCAN [35] VSGNet
hold-obj 26.38 29.06 48.27
sit-instr 19.88 26.04 29.9
ride-instr 55.23 61.9 70.84
look-obj 20.2 26.49 42.78
hit-instr 62.32 74.11 76.08
hit-obj 43.32 46.13 48.6
eat-obj 32.37 37.73 38.3
eat-instr 1.97 8.26 6.3
jump-instr 45.14 51.45 52.66
lay-instr 20.99 22.4 21.66
talk on phone 31.77 52.81 62.23
carry-obj 33.11 32.02 39.09
throw-obj 40.44 40.62 45.12
catch-obj 42.52 47.61 44.84
cut-instr 22.97 37.18 46.78
cut-obj 36.4 34.76 36.58
work on comp 57.26 56.29 64.6
ski-instr 36.47 41.69 50.59
surf-instr 65.59 77.15 82.22
skateboard-instr 75.51 79.35 87.8
drink-instr 33.81 32.19 54.41
kick-obj 69.44 66.89 69.85
read-obj 23.85 30.74 42.83
snowboard-instr 63.85 74.35 79.9
Average 40.0 45.3 51.76

Table 2.3: Per class AP comparisons to the existing methods in V-COCO Scenario 1.
Our method demonstrates superior performance in majority of the classes. We only
compared to the methods which have reported the per class AP values. Obj refers
object cases where instr refers to instrument [1].
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Branches mAP(Sc 1) mAP(Sc 2)
Visual (Base) 47.3 52.15
Visual+Graph 48.19 53.12
Visual+Spatial 50.33 55.32
Visual+Spatial+Graph(VSG) 51.76 57.03

Table 2.4: Analysis of the branches. Our base model consists of only the Visual
branch. We add the graph branch and the spatial attention branch to this base model
separately to analyze their performances. Individually, both branches improve the
performance upon the base model. Visual+Spatial model beats the state of the art
results and all three branches combined adds another 1.5 mAP.

Branch mAP (Scenario 1)
VGG-19 [50] 48.37
InceptionV3 [51] 49.39
SqueezeNet [52] 43.4
Resnet34 [45] 50.88
Resnet50 [45] 51.01
Resnet101 [45] 50.01
Resnet152 [45] 51.76

Table 2.5: Effects of the backbone CNN on V-COCO dataset. VSGNet is im-
plemented using various common backbone CNNs. Resnet-152 model with VSGNet
achieves the best performance.

performing the best.

2.4.4 Ablation Studies

Analysis of Individual Branches: Our overall architecture consists of three main

branches. To evaluate how these branches are affecting our overall performance, we

evaluate these branches individually in the V-COCO [1] test set. Our evaluation method

and metrics are same as Table 2.1. We consider the base model as the Visual branch

without the spatial attention or the graph convolutions. In this setting, interaction

proposal score Iho and the class probabilities Pho are predicted from the visual features

fV is
ho directly.
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Figure 2.5: Qualitative results. Red values show the confidences for the base model
(Visual only) and blue values are the results for the VSGNet. The prediction results
and the correct action labels are shown for the human-object pair visualized with the
bounding boxes.

We have added the graph network and the spatial network with our base model

individually to evaluate each of the branch’s performance separately. The results are

shown in Table 2.4. With addition of the individual branches, model performance has

improves gradually. Visual+Spatial branch achieves state of the art results by itself

without the Graph branch. Addition of the graph branch adds additional 1.5 mAP and

a total of 4mAP over the state of the art.

An important detail is that the graph branch directly depends on the quality of the

interaction proposal score iho as it is used to determine the edge interactions. Without

the spatial attention, visual features generate inferior iho which affects the graph branch.

This is the reason that addition of Graph to Visual branch only adds 0.9 mAP whereas

addition of Graph to Visual+Spat makes a larger improvement and adds 1.5 mAP.

Spatial attention branch improves the result by 3 mAP when added to the visual

branch. This demonstrates the importance of the spatial reasoning and refining the

visual features. Graph and Spatial attention combined improves the performance by

about 4.5 mAP over the base model.
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Figure 2.6: Few of the cases where our VSGNet’s prediction is wrong due to the
confusing visual and spatial cue from the images. (a) Human-object pair is detected
to be interacting but they are not, (b) Label mismatch (hold vs carry), (c) confusing
scene and (d) object detector fails to detect the fork.

Qualitative Results: Figure 2.5 shows qualitative results and compares the VSGNet

with the base model (Visual only). The interaction prediction probabilities for the correct

action is visualized. The images show the variance in object sizes, human sizes and

different interaction classes. VSGNet performs better than the base model. Even in the

cases when the object is not entirely visible (image 9) or the interaction is very subtle

(image 2) VSGNet performs well and improves upon the base model.

Failure Cases: When the visual or spatial cues are confusing, the model can fail to

predict the correctly. In Figure 2.6 a few failure cases are shown. Our method can fail if
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the spatial configuration is confusing (a), confusing ground truth labels (hold and carry in

(b)), multiple humans interacting with the same object with similar spatial configuration

(c), the object detector fails to detect the objects of interest (d).

2.5 Discussions

2.5.1 Comparisons with Related Works

We compare VSGNet with methods using spatial relations [6, 34, 35], attention [35]

and graph convolutions [43, 46].

There have been previous works which use spatial relation maps such [6, 34, 35].

These methods have either used the spatial relation maps directly for classification [6] or

concatenated the spatial relation features to their visual features [34,35]. Directly using

them for classification ignores the visual features which in turn only learns relationship

between the interaction label and spatial configuration. Concatenation of visual and

spatial relations is also inferior to our method. As these are two completely different

features defining separate things, concatenation does not enforce spatial configurations

as much as an attention mechanism. In contrast, we use the spatial relations to extract

attention features which are then used to alter the visual features. This is more effective

as it models the relations between the visual feature channels and spatial configuration

due to the element-wise multiplication.

Attention models also have been used on HOI task. iCAN [35] model uses an atten-

tion model inspired from [26] and models the attention of the human or object region

with the whole input scene individually. However, this approach does not consider the

relation between the pairs and they only include the spatial configuration at the end.

Our approach uses the spatial configuration directly to alter the visual features of the
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pairs which amplifies connected ones and dampens irrelevant ones at feature level.

Graph convolutions [43, 46] have been effective in various tasks. These tasks learn

or use visual similarity as adjacency values between nodes and extract graph features.

However, for our task, interaction proposal scores already defines the adjacencies between

human-object node pairs and are used as edge intensities. This approach effectively

extracts graph features by traversing relevant object nodes for the humans and relevant

human nodes for objects.

2.5.2 Summary

We presented a novel human-object interaction detection model VSGNet which uti-

lizes Visual, Spatial and Graph branches. VSGNet generates spatial attention features

which alter the visual features and uses graph convolutions to model the interactions

between pairs. The altered visual features generate interaction proposal scores which

are used as edge intensities between human-object node pairs. We demonstrated with

thorough experimentation that VSGNet improves the performance and outperforms the

state-of-the-art.
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Guided Transformer

3.1 Introduction

One of the primary objectives of computer vision systems is to interpret human

activities in images and videos. A critical initial step in this endeavor involves the

accurate detection of human-object interactions (HOIs). This process entails identifying

the interactions between humans and objects and pinpointing their specific locations

within the image. In Chapter 2, VSGNet was introduced as a tool for HOI detection,

featuring a refinement mechanism designed to eliminate non-interacting HOI pairs. This

chapter shifts focus to the identification of key spatial regions critical for effective HOI

detection.

In basic detection frameworks for existing HOI detection networks, human and object

features are usually extracted with an object detection network. Then, interactions are

predicted from the extracted features. To strengthen these features, one could use addi-

tional features such as relative spatial configurations [35,53], human pose estimation [54],

or more accurate segmentation masks [55].

However, to fully utilize the power of these additional features, the local spatial
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Figure 3.1: GTNet’s performance with and without its guidance mechanism. Blue
indicates GTNet’s predictions with the guidance mechanism; red indicates without.
Green bounding boxes indicate the human under consideration; yellow boxes indicate
the object. Left column: Simple Scenarios (higher confidence score is better). Right
column: Potentially Confusing Scenarios (lower confidence score is better). With the
guidance mechanism, it is easier find salient spatial context for detecting different
types of HOIs.

context needs to be leveraged more effectively. In computer vision tasks, context often

refers directly to the background and surroundings of the objects or people of interest.

In the following, we use “context” to refer to spatial regions localizing the human-object

interactions. Few current works [4, 35, 56, 57] have tried to find relevant spatial contexts

by having separate attention mechanisms for humans and objects but do not leverage

any additional features in the attention framework.

Towards this, we developed a unique approach to identify spatial contextual informa-

tion for detecting HOIs by leveraging spatial configurations (i.e. relative spatial layout

between a human and an object) and object semantics (i.e. category of objects repre-

sented by word embeddings). This method has proven to be very effective, as can be

seen in Figure 3.1, where our proposed Guidance Module improves performance over our
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model without the guidance mechanism. We refer to our proposed network as Guided

Transformer Network or GTNet.

GTNet takes inspiration from Natural Language Processing (NLP) where the self

attention [58] based Transformer architecture [26] has shown significant success in identi-

fying contextual information. To adapt the Transformer architecture for detecting HOIs,

GTNet concatenates pairwise human and object features and uses them as queries to

the attention mechanism. However, detection of HOIs often depend upon relative spatial

configuration (shown in previous chapter) and the type of the objects [59]. Therefore,

we combine relative spatial configurations with object semantics to guide the queries

throughout the network. With the help of our proposed guided attention, we success-

fully encode the spatial contextual information in these queries.

The proposed GTNet architecture is shown in Figure 3.2. From the input image and

the bounding boxes of the humans and the objects present in it, our baseline module

(Section 3.3.1) extracts visual features. We guide these visual features by pertinent

spatial configurations and object semantics in our Guidance Module (Section 3.3.2). On

top of these guided visual features, we develop the TX module, which enriches the visual

features with relevant contextual information using attention (Section 3.3.3). Finally,

we propose an early fusion strategy to make our final predictions (Section 3.3.4). We

evaluated our network’s performance on V-COCO [1] and HICO-DET [6] and achieve

state of the art results on both of the datasets. Our contributions in this chapter can be

summarized as follows:

• We leverage pairwise spatial contextual information via a novel end to end guided

self attention network for detecting HOIs. See Section 3.3.3.

• We design a guidance mechanism that combines relative spatial configurations and

object semantics to guide our attention mechanism. See section 3.3.2.
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• GTNet achieves state of the art results for the HOI detection task on both V-COCO

and HICO-DET datasets. See section 3.4.3.

3.2 Related Works

Human-Object Interaction: With the introduction of benchmark datasets like V-

COCO [1] and HICO-DET [6], there is a plethora of works detecting human-object

interactions [4,34,35,43,53–57,59–64]. Earlier works [36] in this area focus on the visual

features of humans and objects. Many subsequent works [4, 35, 56] try to find spatial

context for interactions on top of these visual features. Gao et al. [35] present a self-

attention mechanism around individual humans and objects. T. Wang et al. [56] leverage

this attention mechanism with a squeeze and excitation block [65] from object detection.

Recently, graph-based architectures where humans and objects are considered nodes at-

tempt to understand spatial context [4,57] for the structural relations. ConsNet [59] has

leveraged word embeddings of the objects in this graph structure. Additionally, Hou et

al. [66, 67] have utilized object affordance to detect HOIs. A few recent works [68–71]

have developed a one stage pipeline to detect HOIs rather than the two-stage (object

detection + HOI detection) approach. We only compare our method with two stage HOI

detection networks. However, none of the existing attention-based works try to utilize

additional features like relative spatial configurations or object semantics to find richer

spatial contextual features in the attention framework. In this aspect, GTNet proposes a

pairwise attention network with a guidance mechanism for detecting HOIs by encoding

spatial contextual information. We leverage spatial configurations and object semantic

information to guide our attention network.

Many of the current works also use different additional features [6,34,53–55,72] rang-

ing from pose information of humans to 3D representations of 2D images for detecting
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HOIs. Our work, VSGNet [53] has shown the effectiveness of relative spatial configura-

tions for refining visual features. We utilize the similar configuration in GTNet. Further,

we combine object semantics [59,73] with spatial configurations [6] for our guidance sys-

tem. Our empirical results show that this combination performs better as a guidance

mechanism.

Transformer Network: Recently, Transformer [26] based networks have achieved the

state of the art performances in different vision tasks [68,74,75]. For detecting HOIs, one

of the first attempts to use transformer like self-attention was [76]. Following that work,

Girdher et al. [77] has developed the Actor Transformer network for detecting human

activities in videos. Few recent works [68–71] have developed one stage Transformer net-

works for detecting HOIs. However, all these works rely only on self-attention mechanism

to find salient context in the Transformer architecture. In contrast, we guide our joint

feature representations of each human-object pair with spatial configurations and object

semantics to find salient spatial context. Our state of the art performance over standard

datasets validates our design choices for the self-attention network.

3.3 Technical Approach

In this section, we introduce GTNet architecture for Human-Object interaction (HOI)

detection. Given an input image, the task is to generate bounding boxes for all humans

and objects while detecting the interactions among them (e.g. a person hitting a ball).

Each human-object pair can have multiple interactions. We use a pre-trained object

detector to detect humans and objects in the images.

GTNet takes image features F as input. For extracting features, we use standard

feature extractor networks (e.g., resnet [45] and efficientnet [78]). Consider a single

image of size c× h× w where c, h, and w are the number of channels, height and width
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Figure 3.2: Model Overview. We extract human and object feature vectors from the
input feature map, F via two RRG operations. For clarity we do not explicitly show
two separate RRG operations. Human and object features are used to generate a
query vector, fQ. Before feeding fQ to the TX Module, we guide it via an element
wise product with spatial (fS) and semantic (fW ) guidance feature vectors. Inside the
TX Module, contextual information is encoded to the guided query vector to generate
a context-aware updated query vector fC . Finally, we make HOI predictions (PHOI)
from the updated query and the baseline feature vectors in the Inference Module.
Details of TX Module in Figure 3.4.

of the image. For a given image, F has a dimension of C ×H ×W in the feature space.

The relationship between C,H,W and c, h, w depends on the backbone network.

Along with image features, for each human and object our network takes bounding

boxes bh and bo as inputs when there are M ≥ 1 humans and N ≥ 1 objects present in

the image. As mentioned earlier, we use a pre-trained object detector to generate those

bounding boxes. Our network will predict an interaction probability vector pHOI for

each human-object pair. In the next sections, we will describe different components of

our network.
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3.3.1 Baseline Module

Our baseline module extracts human and object feature vectors fH , and fO from the

input feature map F. Following existing work [35] we use region of interest pooling fol-

lowed by a residual block and average pooling to extract these feature vectors. Moreover,

we use the overall feature map F to get generalized context information by extracting

feature vector fG with average pooling.

To get a joint representation of these feature vectors, we concatenate and project

them in the same space using a fully connected (FC) layer.

fB = FCB(fH ∥ fO ∥ fG) (3.1)

Here, ∥ represents concatenation. This naive feature vector fB is not adequate to detect

all fine-grained HOIs. In the next sections, we describe how to refine and couple visual

features with human-object pairwise spatial contextual information.

3.3.2 Guidance Module

Vaswani et al. [26] propose the Transformer network for processing sequential data

in natural language processing (NLP). This network uses self attention [58] to find con-

textual dependence in sequential data. The original Transformer network introduces the

concept of queries, keys, and values, which we adopt to the context of HOI detection. In

this section, we explain the idea of queries and the mechanism to guide it. In the next

section, we explain our attention mechanism.

Queries are defined as the pairwise joint representation of human and object feature

vectors (fH , fO). We get the pairwise representation by concatenation and projection.

fQ = FCT (fH ∥ fO) (3.2)
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Figure 3.3: Importance of semantic priors in the guidance mechanism. Both of the
human-object pairs have similar relative spatial relations. However, one person is
holding a phone and the other person is holding corn. Object semantics along with
the relative spatial configurations in the guidance mechanism will help to guide the
query vector to encode rich spatial contextual information to distinguish the two
interactions: holding corn and talking on the phone.

Here, fQ is the query vector, and ∥ represents concatenation operation. For a single

human-object pair query vector has a length of D. This query vector will be used to find

relevant spatial context in the feature map.

For action recognition, Girdhar et al. [77] embedded bounding box sizes and locations

in the queries as additional information to the network. HOI detection is a more subtle

task as, along with the size of the humans and the objects, relative configurations among

them are also important. To this end, we propose our guidance module that uses relative

spatial configurations and semantic representations of humans and objects to guide the

attention mechanism.

Spatial Guidance: Relative spatial configurations have proven to be very useful [6,34,

35,53] in detecting HOIs. We use a two-channel binary map with a dimension of 2×s×s

(s is chosen as 64, see Table 3.6) to encode relative spatial configurations. For a human-

object pair, the first channel is 1 in the location of the human-bounding box, whereas
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the second channel contains 1 in the location of the object bounding box. Everywhere

else is zero in the binary map. Following [6], we use two convolutional layers along with

average pooling and linear projection(FCS) to get a feature vector fS, representing the

relative spatial configurations. We utilize fS to guide the TX Module.

Semantic Guidance: Although fS is a strong cue to detect HOIs, the information it

conveys can be confusing without proper knowledge of the object. An example of this is

shown in Fig. 3.3 where the interaction looks similar but the objects are clearly different.

That is why we combine object semantics with spatial configurations in our guidance

mechanism. Instead of just using a look-up table for identifying each object, we use

word embeddings (vector representation of words) from the publicly available Glove [79]

model. For our specific case, every detected object by the object detector is represented

with a vector. For example, phone and football are presented by two different vectors.

We express humans with one fixed vector. After concatenation of these human and

object word embedding vectors together we get a combined feature vector fW with linear

projection (FCW ). Along with fS, we utilize fW in the guiding mechanism.

Guidance Mechanism: The information present in fS and fW is used to guide the

queries sent to the TX Module. Guiding here refers to encoding relative spatial configu-

rations and object semantics to the queries before feeding them to the TX Module. This

can be achieved either by concatenation or by taking the element-wise product among

the spatial, semantic ,and the query vectors. We use element-wise product as it is proven

to be more effective guidance mechanism (See Table 3.4) than concatenation.

fGQ = fQ ◦ fS ◦ fW (3.3)

Here, ◦ represents element wise dot product. The guided query vector fGQ is subsequently

fed into the TX Module.
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Figure 3.4: TX Module. From the input feature map, we generate key and value by
1× 1 convolutions. With scaled dot-product attention, we produce an attention map
for a particular human-object pair from the query and the key. This attention map is
used to weigh the value to derive the contextually rich feature vector fC .

3.3.3 TX Module

The TX module is our adaptation of the original Transformer architecture. Figure 3.4

shows the details of TX Module. This module encodes spatial contextual information to

the guided query vectors via attention. We leverage the concept of keys and values from

the original Transformer architecture in this mechanism.

Keys (FK) and values (FV ) are generated from the input feature map (F) by two

separate 1× 1 convolutions.

FK = convK(F) (3.4)

FV = convV (F) (3.5)

Here, convK and convV are two different 1× 1 convolution operations. FK and FV

can be thought of as two different representations of the input feature map. For a single
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image, both of them have the dimension of D ×H ×W .

The guided query vectors are used to search keys, FK to find pairwise contextual

information. Imagine a person is talking on phone in an image. Our guided query vector

representing the person and the phone pair finds the important region (i.e. close to the

ear) in FK to detect the interaction: talking on phone.

This search process is done by scaled dot-product attention (equ. 3.6). In each spatial

location of FK , we take a channel-wise scaled dot-product with the guided query vector.

Softmax is applied to present the important context for a particular guided query in

probabilities.

A = Softmax(
fGQF

T
K√

D
) (3.6)

For a particular guided query, A is the attention map where each element signifies the

probability of that spatial location to be significant for detecting interactions. A has a

dimension of H×W for each guided query vector. We use the attention map A to weigh

FV to get updated contextually rich query vectors. Following Transformer [26], we use

fully connected layers with residual connections in this process.

fC =
∑
H,W

A ∗ FV (3.7)

fC = LN(fC + fGQ) (3.8)

fC = LN(fC + FCC(fC)) (3.9)

Here, LN means layer norm. It is used to stabilize the operations and prevent overfitting

during training. Also, ∗ represents the Hadamard product between A and each channel

of FV . The resultant weighted FV was averaged over the spatial dimensions. fC is the
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contextually enriched feature vector that will be used in the Inference Module.

We stack multiple TX Modules together to get better context representations in the

updated queries like the original Transformer architecture [26,77].

3.3.4 Inference Module

According to [80], fusing features from different layers of a neural network increases

the expressive capability of the features. Therefore, we fuse features from our Baseline

Module with the TX Module. Moreover, we refine the naive visual features fB in the

same way as equ. 3.3.

fBR = fB ◦ fS ◦ fW (3.10)

We concatenate fB, fBR, fC together to increase the diversity in the final feature represen-

tation. With fully connected layers we make class-wise predictions for each human-object

pair over this concatenated feature. Following [34, 53], we also generate an interaction

proposal score, bI using the baseline features for each human-object pair. This score

represents the probability of interactions between a human-object pair irrespective of the

class.

pI = σ(FCP (fB ∥ fBR ∥ fC)) (3.11)

bI = σ(FCPB
(fB ∥ fBR)) (3.12)
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Here, σ represents a sigmoid non-linearity. For each human-object pair, we achieve our

final predictions by multiplying these two individual predictions.

pHOI = pI × bI (3.13)

pHOI has a length equal to the number of classes in considerations.

3.3.5 Loss Function

As HOI detection is a multi-label detection task (multiple interactions can happen

with the same human-object pair), almost all prior works use binary cross entropy loss

for each class to train the network. However, as pointed out by [4,53], confusing labels,

missing labels, and mislabels are common in the HOI detection datasets. To handle

those scenarios we utilize Symmetric Binary Cross Entropy (SCE) from [81] instead of

only using binary cross entropy. This idea is derived from symmetric KL divergence and

defined by:

SCE = αCE + βRCE = αH(p, q) + βH(q, p) (3.14)

where, CE is the traditional binary cross entropy, RCE is reverse binary cross entropy, H

is entropy, p is target probability distribution and q is predicted probability distribution,

α and β are the weight values for each type of the loss. CE is useful for achieving good

convergence, but it is intolerant to noisy labels. RCE is robust to noisy labels, as it

compensates the penalty put on network by CE when the target distribution is mislabeled

but the network is predicting a right distribution. We select α and β as 0.5 to balance

both kinds of losses.
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3.4 Experiments & Analysis

In this section, we first describe our experimental setup and implementation details.

We then evaluate GTNet’s performance by comparing with previously state of the art

methods. Next, we validate our design choices via different ablation studies. Finally, we

analyze network’s performance qualitatively.

3.4.1 Experimental Setup

Datasets: There are two widely used publicly available datasets for the HOI detection

task: V-COCO [1], HICO-DET [6].

V-COCO is a subset of the COCO dataset [47] and contains in total 10,346 images.

The training, validation, and testing splits have 2,533; 2,867; and 4,946 images. Among

its 29 classes, 4 do not contain any object annotations, and one of the classes has very

few samples (21 images). Following previous works, we report our model’s performance

in the rest of the 24 classes. HICO-DET has in total 47,776 images: 38,118 for training,

and 9,648 for testing. With 117 interaction classes, HICO-DET annotates in total 600

human-object interactions. Based on the number of training samples, the dataset is split

into Full (all 600 HOI categories), Rare (HOI categories with sample number less than

10), and Non-Rare categories (HOI categories with sample number greater than 10) [6].

We evaluate GTNet’s performance in these categories.

Evaluation Metrics: We follow the protocol suggested by both datasets [1, 6] and

report our model’s performance in terms of mean average precision (mAP). A prediction

for a human-object pair is correct if the predicted interaction matches the ground truth

and both the human and object bounding boxes have an intersection over union (IOU)

score of 0.5 or higher with their respective ground truth boxes. For V-COCO, there
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are two protocols (Scenario 1 and Scenario 2) for reporting mAP [1]. When there is

an interaction without any object (human only), in scenario 1 the prediction would be

correct if the bounding box for the object is [0, 0, 0, 0], in scenario 2 in these human only

cases the bounding box for the object is not considered. For HICO-DET there are two

settings: default and known. In default setting all images are considered to calculate

AP for a certain HOI whereas in known setting only images that contain the particular

object involved in that HOI are considered.

3.4.2 Implementation Details

As a backbone of GTNet, we experimented with different architectures and selected

resnet-152 [45] based on performance in the training set of V-COCO and HICO-DET.

We also report our performance using resnet-50 [45] for a fair comparison with existing

methods. Output from the fourth residual block of resnet with a dimension of 1024 ×

25 × 25 was used as the the input feature map. By two separate 1 × 1 convolutions we

generate key and value with a dimension of 512× 25× 25.

For training, following the policy of previous works [4,59] we use human-object bound-

ing boxes from a pre-trained Faster-RCNN [25] based object detector. For selecting the

human and object bounding boxes we use 0.6 threshold for human and 0.3 threshold for

object. All projected feature vectors (baseline feature vector fB, query vector fQ, spatial

guidance vector fS, semantic guidance vector fW , guided query vector fGQ, and context

rich query vector fC) have a length of 512.

Hyper parameters of the network were selected by validating on V-COCO’s validation

set and a small split from the training set of HICO-DET. Our initial learning rate was

0.001 and the optimizer was Stochastic Gradient Descent (SGD) with a weight decay

and a momentum of 0.9 and 0.0001. Our network was trained on GeForce RTX NVIDIA
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Method Feature Backbone Scenario 1 Scenario 2
DRG [4] ResNet50-FPN 51.0 -
Wan et al. [54] ResNet50-FPN 52.0 -
Zhong et al. [61] ResNet - 152 52.6 -
H. Wang et.al. [57] ResNet50-FPN 52.7 -
Kim et al. [62] ResNet - 152 53.0 -
Liu et al. [55] ResNet-50 53.1 -
ConsNet [59] ResNet-50 53.2 -
IDN [64] ResNet-50 53.3 60.3
OSGNet [82] ResNet-152 53.4 -
Sun et al. [83] ResNet - 101 55.2 -
GTNet (Ours) ResNet-50 56.2 60.1
GTNet (Ours) ResNet-152 58.29 61.85

Table 3.1: Performance comparisons in the V-COCO [1] test set. Many current works
do not report their models’ performance in Scenario 2. Best results in each category
are marked with bold and the second best results in those categories are marked with
underline.

GPUs (one 2080 Ti for V-COCO, four 2080 Ti and four 1080 Ti for HICO-DET dataset)

with a batch size of 8 per GPU. For each input image during training we randomly

apply two augmentations from a set of augmentations (affine transformations, rotation,

random cropping, random flipping, additive Gaussian noise, etc.). Our model has ∼ 60M

parameters. Total training time for V-COCO was 7 hours and for HICO-Det was 80

hours. The network was trained with symmetric binary cross entropy (See Section 3.3.5)

for 60 epochs on V-COCO dataset and 350 epochs on HICO-Det dataset. In V-COCO,

the learning rate is increased to 0.01 between 10 to 33 epochs. In HICO-DET, the learning

rate is reduced by a factor of 10 after each 20 epochs.

During inference, for each human-object pair, we multiply class-wise predictions pHOI

from equ. 3.13 with the detection confidence scores of the humans and objects. Also, we

apply Low grade Instance Suppressive Function (LIS) [34] to improve the quality of the

object detection confidence scores.
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Method Feature Backbone Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
UnionDet [62] ResNet50-FPN 17.58 11.72 19.33 19.76 14.68 21.27
IPNet [84] Hourglass-104 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [85] Hourglass-104 21.1 14.46 23.09 - - -
Bansal et al. [86] ResNet-101 21.96 16.43 23.62 - - -
Hou et al. [63] ResNet-50 23.63 17.21 25.55 25.98 19.12 28.03
ConsNet [59] ResNet-50 24.39 17.1 26.56 - - -
DRG [4] ResNet50-FPN 24.53 19.47 26.04 27.98 23.11 29.43
IDN [64] ResNet-50 26.29 22.61 27.39 28.24 24.47 29.37
VSGNet [53] ResNet-152 26.54 21.26 28.12 - - -
ATL [66] ResNet-50 27.68 20.31 29.89 30.05 22.40 32.34
FCL [67] ResNet-50 29.12 23.67 30.75 31.31 25.62 33.02
GTNet (Ours) ResNet-50 26.78 21.02 28.50 28.80 22.19 30.77
GTNet (Ours) ResNet-152 29.71 23.23 31.64 31.64 24.42 33.81

Table 3.2: Performance comparisons in the HICO-DET [6] test set. Def and ko mean
default and known settings respectively. Best results in each category are marked
with bold and the second best results in those categories are marked with underline.

3.4.3 Results

We now compare GTNet’s performance with the current state of the art methods.

As mentioned in Section 3.4.1, we follow the evaluation protocol suggested by the V-

COCO [1] and HICO-DET [6] datasets. Moreover, for fair comparison we only compare

our method with two stage HOI detection networks.

For testing on V-COCO, we use the object detection results from our work VS-

GNet [53], which come from an object detector trained on COCO. For testing on HICO-

DET, we use the object detection results provided by DRG [4], which is used by the

state of the art models [4, 64]. These detections come from an object detector trained

on COCO and finetuned on the training set of HICO-DET. GTNet achieves state of the

art results in all datasets. Also, as most prior works either use resnet-152 [61, 62, 82] or

resnet-50 [4, 55, 59, 64] as feature backbone, we report our network’s performance using

both of these backbones.

In Table 3.1 and Table 3.2 GTNet’s performance can be seen in V-COCO [1] and

HICO-DET [6] datasets. Our network outperforms all other existing methods on the

V-COCO dataset in both protocols. The current state of the art method [83] used a
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Method Feature Backbone Full(def) Rare(def) None-Rare(def)
iCAN [35] ResNet-50 33.38 21.43 36.95
Li et al. [34] ResNet-50 34.26 22.9 37.65
Peyre et al. [73] ResNet-50-FPN 34.35 27.57 36.38
GTNet (Ours) ResNet-50 44.71 33.80 47.97
GTNet (Ours) ResNet-152 49.35 36.93 53.07

Table 3.3: Performance comparisons in the HICO-DET [6] test set with oracle object
detector. Def means default setting. Best results in each category are marked with
bold and the second best results in those categories are marked with underline.

fusion method to fuse features from seven branches. We clearly outperform them with

both of our backbones.

Moreover, GTNet outperforms all other existing methods in the difficult default set-

tings. Also, though Transformer based network’s needs good amount of data to train [87],

we manage to achieve second best performance in the RARE category. Actually, HICO-

DET’s rare category has 138 HOI classes with an average of 3 samples per class while

45 classes in rare category has only 1 sample in the training set. We expect to achieve

much better performance in this category with a healthy number of samples.

The closest work to our network is DRG [4], which utilizes a disjoint self-attention

mechanism for each human and object in a dual relation graph network. By contrast,

GTNet leverages the query, key, and value concept to encode pairwise contextual informa-

tion in the queries along with a guiding mechanism and achieves significant improvement

(7 mAP improvement in V-COCO and 5 mAP improvement in HICO-DET).

3.4.4 Oracle Object Detector

The performance of all two-stage HOI detection models heavily relies on the quality

of the object detector. In Table 3.3, we evaluate HOI detection performance using

an oracle object detector. By oracle object detector, we mean providing the two-stage

models with ground truth object bounding boxes. In this context, our model exhibits
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Figure 3.5: Class-wise performance comparison of GTNet with VSGNet [3] and Gao et
al. [4] in V-COCO test set. Moreover, we also compare GTNet’s performance without
the guidance mechanism to show the effectiveness of the Guidance Module. Obj is
object and instr is instrument [1].

markedly superior performance, achieving a significant improvement over the current

state-of-the-art. This underscores the effectiveness of our architecture, suggesting that

when paired with a superior object detector, our model outshines its competitors.

3.4.5 Classwise Performance Analysis

We compare GTNet’s class-wise performance in V-COCO [1] test set with few SOTA

methods in Figure 3.5. We also compare our network’s performance without the guid-

ance mechanism to demonstrate the effectiveness of the Guidance Module. Without the

guidance mechanism, GTNet’s performance is close to the state of the art methods, and

with its guidance mechanism it exceeds the recent methods in most of the classes. For a

few classes (jump instr, lay instr) the improvement from the recent state of the art meth-
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Scenario 1 Scenario 2
GTNet 58.29 61.85
without Spatial Guidance 57.27 61.39
without Semantic Guidance 53.46 57.10
without Guidance Module 52.45 56.61
without TX Module 51.65 55.81
without reverse cross entropy loss 56.35 59.85
without interaction proposal score 57.27 60.97
without data augmentation 56.00 57.18
guided by concatenation 57.02 61.20

Table 3.4: Ablation studies of GTNet in V-COCO test set. GTNet achieves state of
the art performance with the guidance mechanism. It is interesting to observe that,
in the same dataset, semantic guidance performs better than spatial guidance when
tested independently. Also, it shows the effectiveness of symmetric cross entropy,
interaction proposal score and data augmentation.

ods are more than 10 AP. Moreover, in a small number of classes, the object detectors

perform badly. As a result the overall AP values are low in those classes. Eating with

utensils (instruments) are usually very small and not clearly visible in many images, so

the object detectors miss them. Even with poor object detection results in eat instrument

class, GTNet improves that class’s performance by ∼ 6 AP over recent state of the art

methods.

3.4.6 Ablation Studies

Effect of various Components and Training Policy: GTNet consists of several

small modules and a unique training policy including the use of symmetric cross entropy

loss, data augmentation, etc. In this section, we examine their effectiveness in our overall

performance in V-COCO test set (Table 3.4). As shown in Table 3.4 without the

TX module, our baseline network achieves a mAP of 51.65. The performance improves

slightly with the introduction of TX module. It is expected because, without the guidance

mechanism, it is difficult to encode rich spatial contextual information to the visual
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Number of Channels Scenario 1 Scenario 2
64 57.21 61.1
128 57.46 61.6
256 57.48 61.25
512 58.29 61.85

Table 3.5: Performance of GTNet with different number of channels for key and value
in V-COCO test set.

s Scenario 1 Scenario 2
4 56.84 60.63
16 57.30 60.99
32 57.95 60.63
64 58.29 61.85

Table 3.6: Performance of GTNet with different size of binary spatial map, s in
V-COCO test set.

features. With the help of the guidance mechanism, we improve our result by more

than 6 mAP, highlighting the importance of the guiding mechanism in the attention

framework. Also, our experiments demonstrate that semantic guidance is more effective

than spatial guidance. Additionally, in Table 3.4 we have shown GTNet’s performance

without reverse binary cross entropy loss (just using binary cross entropy loss), data

augmentation, and interaction proposal scores. All these actually helps our network to

achieve superior performance. Moreover, as mentioned in Section 3.3.2 guidance can be

achieved by either concatenation or product. As can be seen in Table 3.4, with guidance

by concatenation we achieve 57.02 mAP compared to 58.29 mAP achieved with guidance

by product.

Number of Channels and Size of the Spatial Map : We take 1 × 1 convolution

over the input feature map to generate key and value with different number of channels.

As can be seen in Table 3.5 with the increasing number of channels the network seems

to perform a little better.

Similar trend can be seen in Table 3.6 with the increasing size of binary spatial map,
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Figure 3.6: Stacking of TX Module. Two layers, two heads combination. Red colored
boxes representing each layer. Each TX module inside the red box represents a head.
Guided query vector fGQ and input feature map F are divided into two equal parts
to feed into two heads (Head 1A, Head 2A) in Layer A. The output of Layer A is
concatenated to create fI and fed to the two heads (Head 1B, Head 2B) in Layer B.
The final spatial context rich feature vector is the output of Layer B (fC) which will
be fed to the Inference Module.

heads \layers 1 2 3
1 56.2 56.0 55.9
2 55.9 58.29 56.2
4 56.3 55.9 55.8

Table 3.7: GTNet’s performance on V-COCO test set for different number of heads
and layers.

s in the spatial guidance mechanism. We choose 512 as the channel size for key and value

and 64 as the size of the binary spatial map considering memory constraint in our GPU.

Stacking of TX Modules: To get a better feature representation in the updated queries

we stack multiple TX modules. Following [77], we use the concept of heads and layers.

Each layer is made up of H heads. The input to the first layer is fGQ, the guided

query. This input is split into H parts, one for each head. Similarly, the feature map

F is split into H parts such that the input to each head is one part of F and one part

of fGQ. The input to each intermediate layer is the concatenated output of the previous
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Backbone Scenario 1(mAP)
Vgg19 [50] 53.4
Mobile Net [88] 53.1
Dense Net [89] 54.2
Resent-34 [45] 54.6
Resnet-50 [45] 54.6
Resnet-101 [45] 55.0
Resnet-152 [45] 56.4

Table 3.8: GTNet’s performance with different backbones. As can be seen, Resnet-152
achieves the best mAP in Scenario 1 of V-COCO test set.

layer and the feature map F. All layers get the same F but a modified query vector. We

always use same number of heads in all the layers. Fig 3.6 illustrates an example of a

configuration with two heads and two layers. We experiment with different combinations

and find that two heads and two layers combination perform best in V-COCO test set

(Table 3.7). Similarly, for HICO-DET we empirically choose a combination of two heads

and three layers. As can be seen, the network’s performance is not very sensitive to

different combinations.

Different Backbone Networks: We test with different Convolutional Neural Net-

works(CNN) as our feature extractor backbone networks. Table 3.8 shows the perfor-

mance of different backbones. We use Resnet-152 as our backbone as it achieves best

result among different backbones.

3.4.7 Qualitative Results

Visualized Detections: In Fig. 3.7 we visualize a few predicted HOIs by GTNet. Each

column in the figure represents a different situation. GTNet performs well across various

situations. Moreover, our network performs poorly when interacting human is not fully

present in the image. This case is shown in column (e) in Fig. 3.7.

Activation Maps: Figure 3.8 shows some detection performances of GTNet along with
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Figure 3.7: Visualized HOI detection results. Each human bounding box includes
predicted interaction labels with confidence scores for that human. Interaction labels
and the bounding boxes of the interacting objects are in the same color. Each column
represents a different situation: (a) a single human is interacting with multiple objects,
(b) no contact between interacting human and object, (c) interacting object is small
or not fully visible, (d) multiple humans are interacting with either same object or
different objects, (e) interacting human is not fully present in the image.

the class activation maps [5] for particular human-object pairs. As can be seen in Fig-

ure 3.8, GTNet correctly identifies the interactions with high confidence even when mul-

tiple interactions are happening together (image 1, 5). From the class activation maps

it is clear that our network is finding relevant context for the interacting human-object

pair.

3.4.8 Limitations

There is room for improving the proposed model further. The attention mechanism

depends on the spatial and semantic information for detecting HOIs. Therefore, if the

human is not fully present in the image then our network may fail to detect interaction for

57



Guided Transformer Chapter 3

Figure 3.8: Analysis of performance in V-Coco test set. The top row is showing im-
ages with a particular human-object pair. The bottom row is showing class activation
maps [5] generated for these pairs along with the interaction probability for partic-
ular interactions. The red region in the class activation map means the network is
putting more attention in these areas. When there are same actions done by different
human-object pairs (rightmost and leftmost images), the feature map gets activated
in all relevant regions for the particular interaction. However, our pair wise guided
attention strategy forces the network to consider the region significant to a particular
pair.

that human as the guidance mechanism has trouble generating effective guidance in these

cases. Moreover, we use pre-trained object detector, as a result GTNet’s performance

depends on the quality of object detection. Also, some of the interactions are visually

challenging/confusing to detect. A few examples of such failure cases are shown in

Fig. 3.9.

3.5 Discussion

3.5.1 Comparison with Other Attention Mechanisms

We undertook a comparative analysis of GTNet in relation to another contemporary

attention mechanism-based HOI detection network, notably DRG [4]. The DRG model

interprets pair-wise spatial-semantic features of humans and objects by viewing them as
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Figure 3.9: GTNet fails to detect the interactions between the marked human object
pairs due to following reasons: (1) human is not fully present, (2) object detector fails
to detect the spoon, (3) confusion between lay/sit interaction.

nodes within their dual relation graph. To detect HOIs, the model capitalizes on the

self-attention mechanism, aggregating these features.

However, merely relying on spatial-semantic features in the attention mechanism,

without integrating the actual visual features, can pose challenges for the network in

comprehending and capturing the true spatial context. This potentially limits the efficacy

and accuracy of the model.

In contrast, GTNet employs a more encompassing approach. It scans the entire

feature map using specific queries. These queries, influenced by spatial-semantics, serve

as guidance, aiding the network in identifying the pertinent spatial context. This method

ensures a more nuanced and contextually informed understanding, which, as our empirical

findings suggest, provides a more accurate HOI detection. Our quantitatively superior

results act as a testament to the efficacy and robustness of our methodology. We would

like to point out our developed model, VSGNet (described in chapter 2) is the first

attempt to utilize relative spatial configurations to refine visual features. We utilize

VSGNet’s refinement strategy with object semantics to guide our attention mechanism.

This way, our network can encode rich contextual information in the visual features.

59



Guided Transformer Chapter 3

3.5.2 Summary

We propose a novel guided self-attention network to leverage contextual information

in detecting HOIs. Our pairwise attention mechanism utilizes a Transformer-like archi-

tecture to make visual features context-aware with the help of the guidance module. To

the best of our knowledge, we are the first to propose a Guidance Module to guide the

Transformer like attention mechanism to detect HOIs. We demonstrate by detailed ex-

perimentation that GTNet shows superior performance in detecting HOI and achieves

the state of the art results in the standard datasets.
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Chapter 4

Decoupled Dynamic Scene Graph

4.1 Introduction

Dynamic Scene-Graph (DSG) provides a graph structure presenting the relationships

among different objects in a scene. It aims to create the scene-graph by predicting

relationship triplets composed of ⟨subject, object, relationship⟩ at each frame of an input

video. This acts as a foundational block for various computer vision tasks [3,32]. Current

DSG generation systems [12, 90, 91] operate in a constrained setting where the possible

triplets are predefined for a given set of relationships and objects. However, in a more

realistic deployment scenario, it is likely that the network will encounter triplets that it

has not seen before. Therefore, a method should be able to transfer the learned concepts

of relationships and objects to compose unseen triplets. Our analysis has shown (Table

4.4) poor performance in detecting these unseen triplets using the state-of-the-art (SOTA)

method. This poor performance is mainly attributed to the learning of highly dependent

feature representations of relationships and objects. The proposed decoupled dynamic

scene-graph (DDS) addresses this issue. Fig. 4.1 shows the core idea of the proposed DDS

network. This architecture utilizes two different branches to learn decoupled features for
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Figure 4.1: Diagram to show the concept learning and transferring in DDS. By focusing
on different spatial regions, DDS learns the concept of relationships (ride, on) and
objects (person, bicycle, bed) independently. In the lower section of the diagram, we
show how these learned concepts are transferred and utilized to detect the unseen triplet
⟨dog, bicycle, ride⟩.

relationships and objects. As shown in the figure, DDS learns the concept of ‘ride’, ‘on’,

‘person’, ‘bicycle’, and ‘bed’ from the training examples of a ‘person riding a bike’ and a

‘dog on the bed’. The decoupled design makes DDS look into different spatial regions for

relationships and objects. These learned concepts are transferred to successfully detect

the unseen triplet ⟨dog, bicycle, ride⟩, see Section 4.5.3 for more details.

Existing works [12, 90, 91] for generating DSGs follow a two-stage process. First, an

object detector localizes objects irrespective of their relationship status. In the second
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stage, different attention-based [90,91] and graph-based [12] methods utilize features ex-

tracted from the previously localized objects to predict relationships. In this process, the

extracted features of the objects are fed throughout the network for relationship detec-

tion. As a result, these methods learn to associate a relationship only with a particular

combination of objects and hence perform poorly to predict unseen triplets.

In contrast, DDS ensures the learning of discriminative spatio-temporal cues for rela-

tionships and objects. Fig. 3.2 shows the overview of our architecture. It consists of two

separate branches: the relation and the object branch. We chose a Transformer based

encoder-decoder [74] architecture for these branches with two different sets of queries.

Moreover, a novel temporal decoder is added to embed temporal information into the

queries. These separate sets of queries focus on learning generalized representations for

relationships and objects from differently encoded feature maps in both temporal and

spatial domains. This is significantly better than the existing works, where the same

object features are used for both object and relationship detection. Also, DDS does not

have the dependence on the off-the-shelf object detectors like previous works.

Our proposed model is thoroughly evaluated on the Action-Genome [92] dataset for

DSG generation, where it achieves significant performance gains compared to the SOTA

models. Additionally, we evaluate DDS on the task of static scene-graph (SSG) generation

on the HICO-DET [6] dataset and unusual SSG generation on the UnRel [2] dataset,

where DDS outperforms all the existing models in both datasets. Finally, the proposed

design choices are evaluated in an extensive ablation study.

4.2 Related Works

DDS is built on the previously developed works in SSG and DSG generation. This

section is used to review the literature in the mentioned areas along with additional
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relevant publications on scene-graph generation under the compositional setting.

4.2.1 Static Scene-Graph (SSG) Generation

SSG generation is proposed by [93] for the task of image retrieval. An extensive liter-

ature exists [4,34,35,53–57,59–62,64,94–102] in this area. The initial works [4,34,53–56]

rely heavily on two-stage (object detection and then scene-graph generation) structures.

Few of these works utilize different recurrent neural network (RNN) variants [18, 103]

while other prominent researches focus on graph structure [4,35,53] with attention mech-

anisms. Also, many authors utilize prior knowledge [53,59,104] (e.g. semantic knowledge,

statistical heuristics) for SSG generation. Despite recent improvements in SSG gener-

ation, these methods are heavily constrained by their reliance on the object detection

quality as noted in [105].

Modern works [68–71,105–111] in SSG generation focus on utilizing a one-stage Trans-

former based architecture to deal with the aforementioned issues. These approaches

mainly focus on human-object interaction (HOI) detection. HOI detection is a sub-

task of SSG generation where the relationships among objects are limited to interaction

verb [90], such as hold, work, talk. These methods employ one-stage Transformer based

encoder-decoder architectures following the architecture from DETR [74]. These archi-

tectures rely on set-based predictions to generate SSG. Among these works, Qpic [68]

uses a single encoder-decoder model while CDN [107] extends Qpic by using sequen-

tial decoding of objects and relationships. Additionally, MSTR [106] enables the use

of multi-scale feature maps to these networks. Another concurrent work, SSRT [105]

refines the overall architecture with spatial and semantic support features. Moreover, a

recent line of research heavily exploits the usage of very large-scale semantic knowledge

engines (e.g. CLIP [112]) [105, 108, 111]. Also, few works propose to utilize different
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types of post-processing steps [111] for the task. Apart from the obvious limitation of

these works being unable to utilize temporal dependencies, they perform poorly while

detecting unseen triplets. With the decoupled multi-branch design, we significantly differ

from these works by using separate sets of queries for relationship and object detection.

4.2.2 Dynamic Scene-Graph (DSG) Generation

DSG is an extension of the SSG where the scene-graph is created for videos. This

process is harder since temporal cues need to be utilized [12, 90, 91]. Current works in

this area have two-stage architectures following the initial works on SSG. Among these

works, STTran [12] utilizes a temporal decoder based on the self-attention mechanism.

DSGAP [91] expands STTran with an anticipatory pre-training paradigm. On the other

hand, HORT [90] utilizes a multi-branch design with different types of Transformers.

Both STTran and HORT use similar features for relationship and object detection.

These features come from the object bounding boxes predicted by off-the-shelf object

detectors. STTran concatenates pair-wise object features to use as relationship features

whereas HORT pools relationship features from a joint box of object pairs. However,

using similar features for relationship and object detection forces the learning of rela-

tionships and objects to be dependent on each other. Therefore, to ensure generalized

learning, we focus on learning the features independently.

4.2.3 Compositionality in Scene-Graph Generation

Creating new compositions from base known concepts during inference is known as

compositional zero-shot learning (CZSL) under the compositional setting [9, 13, 28, 113,

114]. In this paper, we utilize this setting to evaluate our model. Kato et al. [115]

introduce CZSL in SSG generation with an embedding-based model. Many following
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works [67, 116, 117] adapt different object-affordance ideas. These works assume there

exist common relationships between the subjects and the objects. Our work does not

have such limited assumptions, and as a result, is able to generate scene graphs even

when the relationships are very unusual (See Table 4.7).

4.3 Method

This section describes the developed model for DSG generation. Here, we propose

a multi-branch network that learns distinct feature representations for relationships and

objects.

4.3.1 Problem Formulation

Given an input video, V = {I1, I2, .., It, .., IT} with T frames, the task in DSG gener-

ation is to predict a set of relationship triplets, {R1, R2, .., Rt, .., RM} at every frame of

the video. Every frame has NM number of relationship triplets. Each relationship triplet

can be presented by ⟨s, o, rso⟩. Here, s, o refers to subject, object and are represented by

bounding boxes and category labels. rso is the relationship between s and o. In a single

frame It, s and o can have multiple relations, as shown in the sample input-output pair

in Figure 4.2.

In this paper, the main goal is to predict relationship triplets under the compositional

setting. In this setting the test set contains triplets that are not present in the training

set. Consider having in total No number of objects and Nr number of relations. The

training set has Ns number of relationship triplets composed from the mentioned No

objects and Nr relationships. On the other hand, the test set has Nu number of unseen

triplets not present in the training set in addition to the Ns number of seen triplets,

where all the unseen triplets are composed of the same No objects and Nr relationships.
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Figure 4.2: Overview of DDS’s architecture. Given an input frame It, features are
extracted by the backbone. These features are fed to the object and the relation branch.
These decoupled branches consist of an encoder and a spatio-temporal decoder. En-
coders from both branches encode the feature maps differently and send them to the
decoders. Each spatio-temporal decoder takes a set of queries (object/relation) along
with the previous frame’s embeddings (shown by the red arrow). The output of the
spatio-temporal decoders are learned embeddings. These learned embeddings are fed to
the object and the relation heads to predict relationship triplets.

4.3.2 Technical Overview

The proposed work adopts a one-stage approach for DSG generation compared to

the current two-stage methods [12, 90, 91] as the former [68–71] have shown impressive

performance in creating SSG. However, these image-based works present poor general-

ization capabilities. Therefore, we propose a network that uses a different set of queries

with two branches: the relation branch and the object branch. Each branch follows a

Transformer-like encoder-decoder architecture. Fig. 4.2 shows a diagram of the model,

where a convolutional neural network (CNN) extracts features from the input frame,

and those are encoded differently by the object and the relation encoders. Each spatio-

67



Decoupled Dynamic Scene Graph Chapter 4

temporal decoder takes encoded features from their respective encoder in addition to two

types of inputs: queries for the current frame (oQt, rQt) and the embeddings (oEt−1,

rEt−1) propagated from the previous frame. As the encoded features differ for each

branch, the queries learn decoupled features for relationships and objects. The decoder

outputs are the learned object and relation spatio-temporal embeddings. These embed-

dings are sent to the relation and the object heads for final predictions. Moreover, these

embeddings are propagated to the next frame of the video.

4.3.3 Feature Extraction & Encoders

Consider a frame It ∈ RNC×H×W at time t of the input video V . Here, NC , H,W are

the number of channels, height, and width of the frame, It. DDS uses a CNN network

as backbone, B (e.g. resnet-50 [45]) to extract features B(It) ∈ RNC′×H′×W ′
from the

input frame. Then, 1× 1 convolution is used to reduce the channel dimension from NC′

to d. After that, a flattening operation is performed and a fixed positional embedding is

added to B(It) like existing works [68–71] to get the feature map Ft ∈ R(H′W ′)×d′ . These

embeddings express each spatial position of the feature map in high dimensions [74].

DDS uses Ft as a common feature for both the relation and the object branches.

Both of the network’s branches have an encoder comprising of stacked multi-head

self-attention layers [26] with a feed-forward network (FFN). The output of the encoders

are two separate feature maps,

rFt = Relation Encoder(Ft) (4.1)

oFt = Object Encoder(Ft) (4.2)

Here, rFt, oFt refer differently encoded versions of the feature map Ft. Our spatio-

temporal decoders will utilize these feature maps for decoupled learning.
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Figure 4.3: Design of the spatio-temporal decoders. Every spatio-temporal decoder is
composed of a temporal and a spatial decoder. Each decoder converts a different set of
queries into learned embeddings while making sure decoupled learning in each branch.

4.3.4 Spatio-Temporal Decoders

DDS’s spatio-temporal decoders convert a set of learnable queries into output embed-

dings. This transformation occurs in two stages. In the first stage, the current frame’s

queries attend to the previous frame’s output embeddings to aggregate temporal informa-

tion. In the second stage, these aggregated queries gather information from the encoded

feature maps of the current frame. The proposed multi-branch design ensures discrimi-

native feature learning for the queries of each branch. Each decoder consists of two small
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components: temporal and spatial decoder. Please see Fig. 4.3 for reference.

Temporal Decoders: These decoders allow queries to leverage temporal dependen-

cies. Each temporal decoder takes two sets as inputs: the current frame’s queries and

the embeddings from the previous frames. For frame It, the current frame’s relation and

object queries sets are defined as rQt ∈ RNq×d and oQt ∈ RNq×d. Every query is a d

dimensional vector, and every branch has Nq number of queries. Embeddings from the

previous frames for the relation and the object branches are presented by rEt−1 ∈ RNq×d

and oEt−1 ∈ RNq×d, and are marked with red arrows in Fig.4.3.

Temporal decoders are made of stacked multi-head cross-attention layers [74] with an

FFN network. The cross-attention in the temporal decoders allows the current frame’s

queries to select what to learn from the previous frame’s embeddings. The outputs of

the temporal decoders are the temporally aggregated queries rAt, oAt. They are fed to

their respective spatial decoders. In the case of the first frame of a video, the temporal

decoders directly output rQt and oQt as rAt and oAt without passing them through

the cross-attention and FFN blocks as there is no previous frame in this case.

Spatial Decoders: The spatial decoders architecture is similar to the standard

Transformer decoder [74]. These decoders consist of both self-attention and cross-attention

layers along with FFN networks. Each decoder takes encoded feature maps (rFt or oFt)

along with the aggregated queries of the temporal decoders (rAt or oAt) from their re-

spective branch as inputs. Also, these decoders take learnable positional embeddings.

These embeddings for the relation and the object branch are defined as rPE ∈ RNq×d,

oPE ∈ RNq×d.

rEt = Relation Decoder(rNt, rPE, rQt) (4.3)

oEt = Object Decoder(oNt,oPE,oQt) (4.4)
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The outputs of the decoders are the learned spatio-temporal embeddings. They are used

in the object and the relation heads to make the final relationship triplet predictions.

Also, each spatial decoder’s output is fed to the next frame’s temporal decoder as previous

embeddings.

Both spatial and temporal decoders keep the separation in feature learning for re-

lationships and objects using different encoded features, set of queries, and previous

embeddings. As a result, the output embeddings from the decoders are decoupled gen-

eralized representations.

4.3.5 Object Heads

The output embeddings from the object spatio-temporal decoder, oEt are fed to

four different FFNs. For input frame It, these FFNs predict subject bounding boxes,

sBt ∈ [0, 1]Nq×4, object bounding boxes, oBt ∈ [0, 1]Nq×4, subject prediction vectors,

sPt ∈ [0, 1]Nq×No , and object prediction vectors, oPt ∈ [0, 1]Nq×No . Here, Nq is the

number of queries, and No is the total number of objects.

4.3.6 Relation Heads

Like the object heads, the learned output embeddings, rEt, are fed to two FFNs

that produce as output the relation prediction vectors, rPt[0, 1]Nq×Nr and relation region

bounding boxes rBt ∈ [0, 1]Nq×4. Here, Nq is the number of queries, and Nr is the total

number of relationships under consideration. Notice that the relation region bounding

box is defined as the union between the subject and object bounding boxes.
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4.3.7 Inference

We compose Nq relationship pairs by one-to-one matching of sBt and oBt. One-to-one

matching refers to matching the q-th prediction from sBt with the q-th prediction from

oBt. Moreover, for every prediction vector in sPt and oPt, the maximum confidence

score is used to create sPtmax ∈ [0, 1]Nq and oPtmax ∈ [0, 1]Nq and the corresponding

index is used to determine the category label for each of the bounding boxes. For every

composed relationship pair, the final relation score prediction vectors are calculated as:

rPtfinal = rPt ∗ sPtmax ∗ oPtmax (4.5)

4.3.8 Training

For training DDS, we utilize losses similar to Qpic [68]. This loss calculation implicitly

binds the two sets of queries from the relation and the object branch. The loss calculation

happens in two stages:

In the first stage, we find the bipartite matching between the predictions and the

ground truths. First, the total prediction set for the input frame It is generated as,

Pt = {sBt,oBt, sPt,oPt, rBt, rPt} (4.6)

This yields Nq number (equal to the number of queries in each branch) of predictions.

Nq is chosen in such a way that it is always greater than the number of ground truths

per frame. We pad ground truths with ϕ (no relationship triplet) so that it is possible

to have the ground truth set Gt with Nq number of elements. One important detail to

note here is that there are three kinds of ground truth bounding boxes: subject bounding

boxes, object bounding boxes, and relation regions. Ground truth relation regions refer
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to the union bounding boxes between the subject and the object bounding boxes that

have relations, and are only used during the training phase. Next, each element in Pt is

matched with an element from the ground truth set, Gt. The matching cost metrics is,

C ∈ R[Nq×Nq ]. Any element (i, j) in this metrics refers to the cost to match ith element

from Pt with jth element from Gt and defined as,

C(i,j) = ηb(C
(i,j)
sb + C

(i,j)
ob + C

(i,j)
rb ) + ηsC

(i,j)
s + ηoC

(i,j)
o + ηrC

(i,j)
r (4.7)

C
(i,j)
sb ,C

(i,j)
ob ,C

(i,j)
rb are the subject bounding box, the object bounding box and the

relation region matching costs, C
(i,j)
s is the subject label matching cost, C

(i,j)
o is the

object label matching cost and C
(i,j)
r is the relation label matching cost between ith

element from Pt and jth element from Gt. These costs are calculated following [68].

ηb, ηs, ηo, ηr are fixed hyper-parameters. The Hungarian matching algorithm [74] is used

to find the optimal matching between the predictions and the ground truths by using

these cost metrics. After this matching, every prediction is associated with a ground

truth. Next, the following loss is calculated for training the network:

L = λgLGIOU + λlLL1 + λsLsub + λoLobj + λrLrel (4.8)

Here, LGIOU and LL1 are the generalized intersection over union (gIOU) and L1 box

regression losses for the predicted subject bounding boxes, object bounding boxes, and

relation regions. Lsub and Lobj are the cross-entropy losses for subject and object label

predictions. Lrel is the binary cross-entropy loss for the relationship label predictions.

λs, λo, λg, λl, and λr are the corresponding hyper-parameters.

Notice that a portion of the datasets [6, 92] fixes the subject as humans. In this

case, the subject prediction vectors and subject bounding boxes are not used for loss

73



Decoupled Dynamic Scene Graph Chapter 4

Attention Spatial Contact
Looking at On the side of Standing on
Not looking at Above Touching
Unsure Beneath Wearing

In Writing on
In front of Carrying
Behind Covered by

Have it on the Back
Lying on
Eating
Holding
Wiping
Twisting
Not contacting
Leaning on
Drinking from
Sitting on

Table 4.1: Different types of relationships in the AG dataset. In total, it has 25
relationships divided into three types.

Dataset Name
Number of

Seen Triplets
Number of

Unseen Triplets
Number of

Training frames
Number of
Test frames

Action genome (AG) [92] 499 0 166,785 54,371
Action genome* (AG*) [92] 421 80 146, 517 54, 371
HICO-Det [6] 480 120 37,328 9,552
UnRel [2] 4015 65 4000 1000

Table 4.2: A summary of the datasets used for evaluating DDS. * refers to the new
training split created by us to test DSG generation models in the compositional setting.

calculation.

4.4 Experiments

4.4.1 Experimental Setup

We evaluate DDS’s performance in Action Genome (AG) [92] dataset. Moreover, we

show our model’s performance in SSG generation datasets: HICO-DET [6] and UnRel [2].

All the datasets provide relationship triplet annotations with subject and object bounding

74



Decoupled Dynamic Scene Graph Chapter 4

boxes. SSG generation datasets only contain images, therefore, each sample is treated as

a single-frame video. Next, the used datasets will be presented in more detail:

Action Genome (AG) [92]: This dataset is built on top of the Charades [118]

dataset, provides frame-level annotations, and is extensively used in the literature for

DSG generation. It has 36 distinct object classes and 25 relationship classes. The object

classes are common household items such as doors, windows, and cups, and have a total

(train and test set) of 476, 229 bounding boxes. The relationship classes are divided into

3 distinct sub-types:

• Attention relationships indicate how the subjects are looking at the objects.

• Spatial relationships present the spatial layout of the different interacting objects.

• Contacting relationships report the manipulation of the objects by the subjects.

Table 4.1 is showing different types of relationships in the AG dataset. In total,

AG provides 1, 715, 568 instances of the mentioned relationships contained in 135, 484

subject-object pairs. Every subject-object pair can have multiple relations. Also, on AG

the subject class is always human.

Originally, the AG dataset provided 7, 464 videos with 166, 785 frames in the training

set and 1, 737 videos with 54, 371 frames in the test set. The original training set contains

530 relationship triplets. All these relationship triplets are present in the test set. We

refer to this setting as the fully-supervised setting. The main interest in this work is to

evaluate DDS’s performance in the compositional setting. To this end, we have generated

a new training data split. While this split retains all individual relationships and objects,

it has fewer relationship-object triplets compared to the original training set. In this way,

our test set now has relationship triplets that are not present in the training set.

To create this split, we calculate the occurrence score Di for each object-relationship
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pair, Pi. Di is defined as,

Di =
NFi

TFi

(4.9)

Here, NFi is the number of frames in the training set containing Pi and TFi is the

number of total frames in the training set.

Two object-relationship pairs (Pi and Pj) are defined as connected if they appear

together in any of the video. We select the pair Pi with the maximum Di value in the

training set and subsequently include all the pairs connected to it. This process continues

until our training split encompasses all distinct objects and relationships.

This new proposed training set contains 6, 784 videos with 146, 517 frames containing

421 relationship triplets. The original test set is not changed. It contains 499 object-

relationship, where 80 of them are not present in our new training set.

HICO-Det [6]: This dataset has 80 objects and 117 relationship classes. The rela-

tionships are limited to interactions such as holding, working, etc. In the literature, this

dataset is used for HOI detection (described in the chapters 2 and 3). Recently, a RF

(Rare First) protocol is proposed by [102] for this dataset to evaluate SSG generation

performance under compositional setting. Under this protocol, a new training split has

been created by not selecting rare interaction classes. An interaction class is called rare

if it has less than 10 samples in the HICO-Det’s original training set. This protocol has

37, 328 images in the training set with 480 relationship triplets. The test set has 9, 552

images with 480 seen relationship triplets and 120 unseen relationship triplets.

UnRel [2]: This dataset provides extremely unusual SSG triplets, for example:

(⟨elephant, bike, riding⟩). It has 4000 training and 1000 test images with 100 objects

and 70 relationships. The original train/test split provided by the authors already pro-

vides a compositional setting where the test set has 65 unseen relationship triplets. The

training set contains 6672 seen relationship triplets. Every image in the training set
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contains multiple relationship triplets. On average, every image has 7.5 relationships.

A summary of all the datasets is shown in Table 4.2.

4.4.2 Evaluation Metrics

Following existing works [12,90–92], we report our performances in AG dataset with

Recall@K metric. Here, K = [20, 50]. We utilize the most challenging SGDet [92] proto-

col to report our performances. In this protocol, the network needs to detect relationship

triplets along with subject and object bounding boxes. There can be multiple relation-

ship triplets between a subject-object pair. Moreover, mAP (mean average precision)

was selected to report the performances in UnRel and HICO-Det datasets similar to cur-

rent works [2, 67, 73, 116]. Here, performances are reported in three categories: unseen

(only unseen relationship triplets), seen (only seen relationship triplets), and full (all

relationship triplets) [102].

For all datasets, a prediction triplet from DDS is considered correct if subject and

object bounding boxes have at least 0.5 Intersection over Union (IoU) with ground truth

bounding boxes and subject, object, and relationship labels match with ground truth

labels.

4.4.3 Implementation details

ResNet-50 [45] is used as the CNN backbone. Both temporal decoders inside the

spatio-temporal decoders have a single layer. We follow Qpic’s [68] setup for the encoders.

Each encoder has 6 layers. We select 6 layers for the object decoder with 3 layers for

the relation decoder. All loss coefficients in equation 4.7 and equation 4.8 are set as [68].

The number of queries in each branch is 64. Each query is a vector of size 256. The

model is trained with AdamW [119] optimizer. We initialize the parameters of DDS from
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DETR [74] trained on COCO [47] object detection dataset. The initial learning rate for

the backbone network is 10−6 and for the other part of the network is 10−5.

When training in the AG dataset, we drop the learning rate by 10 times at every 40

epochs and utilize a batch size of 128. DDS processes each video frame from a single

video sequentially. We utilize scale augmentation like [74]. Input frames are resized with

the shortest side being at least 480 and at most 800 pixels, and longest side is at most

800.

In the other datasets [2,6], the learning rate is dropped by a factor of 10 at every 60

epochs with a batch size of 32. We use a scale augmentation scheme similar to the one

used for AG, except that the longest side of the resized image is chosen as 1333. In AG

dataset, the model is trained for 50 epochs and in the other datasets models are trained

for 100 epochs. We resize the frames from the AG dataset to dimensions smaller than

the resized frames from the SSG generation datasets. This adjustment ensures a more

manageable training time for the AG dataset.

4.4.4 Data Processing and Training

DDS is trained in 8 A100 Nvidia GPUs using pytorch’s distributed data parallel

(DDP) framework [120]. AG dataset has different length of videos. While doing sequen-

tial processing of the input data this characteristic of the AG dataset creates a unique

challenge for utilizing the DDP framework. We propose a novel data loading strategy to

solve the challenge.

Consider a dataset of 9 videos processed by 2 GPUs with batch size of 2, as depicted

in the Figure 4.4. In DDP, each GPU receives an independent model copy and a data

subset. As illustrated, GPU 1 and 2 obtain videos of lengths 2 and 6 in one mini-batch,

respectively. After 2 frames, GPU 1 has no more frames to process because DDP doesn’t
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Figure 4.4: Using Pytorch’s distributed data parallel (DDP) for processing dataset with
videos of varying lengths presents a challenge. A situation like this is depicted here.
Gradients are accumulated after each iteration across the GPUs. If a mini-batch
contains videos of different lengths, one GPU, as shown with GPU 1 in the figure,
might have no frames to process. This causes the training to stall; pytorch waits
indefinitely for the gradient from the idle GPU.

Dataset Name
Per epoch training time

in closest minutes
AG [92] 29
HICO-Det [6] 7
UNRel [2] 1

Table 4.3: Training time of DDS in different datasets.

load new data until the mini-batch is complete. Consequently, GPU 1 won’t return any

gradient during the accumulation step, causing the program to stall without an error

message. We can solve the described stalling in training by using common techniques

like padding data or sampling data. We define these techniques below,

• Padding data: We pad each video in the dataset to match the frame count of the

longest video. Padding can be done using a black frame or by repeating the last

frame. This method is extremely wasteful specially if the difference between the

smallest and largest size videos in the dataset is large.
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Figure 4.5: Padding and sampling dataloading for dataset with videos of different
lengths. Each yellow block represents a video frame. Each white block is a padded
frame.

• Sampling data: We sample each video in the dataset to have the same frame

count as the average length video. We remove the videos with less frame count

than the average length from the dataset. This may degrade the performance of

the model as huge amount of data is being discarded.

These techniques are visualized in Figure 4.5. However, our analysis in section 4.5.2

indicates that these methods are either inefficient (padding) or imprecise (sampling).

Therefore, we propose a novel method for dataloading called Block Load - BLoad.

Figure 4.6 shows our method.

BLoad innovatively extends the traditional padding strategy. Instead of simply

padding a video sequence with zeros or repeating its last frame, we introduce a more

dynamic approach. For reference, please see our algorithm 4.1. We create blocks sized to

the largest video, Tmax. A block, B, might contain multiple videos, but its total frame

count will always match Tmax. We iteratively fill B with videos. If a video of the needed
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Figure 4.6: Proposed BLoad strategy. We create block of videos. Each block has number
of frames equal to the largest video in the dataset. Each yellow block represents a video
frame.

length is absent, we use padding.

To ensure accuracy in processing, we maintain a record of the starting index for

each video within the block, referred as reset table in algorithm 4.1. This allows us

to correctly relay previous frame embeddings to our spatio-temporal decoders. BLoad

strategy is only used for training in the AG dataset as other datasets used to evaluate

DDS are SSG generation dataset.

Training time for different datasets can be seen in Table 4.3. As expected DDS

requires most time to train in the AG dataset.

4.5 Results & Analysis

In this section, we first compare DDS’s performance with the SOTA models in Section

4.5.1. Next, a detailed study on the impact of different components of our network is

presented in Section 4.5.2. Finally, in Section 4.5.3 qualitative results from our model

are provided.
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Algorithm 4.1: Our dataloading algorithm - BLoad.

// Initialize a dictionary Ldict with video lengths as keys and

video ids as values

Ldict ← Dictionary();
new dataset← [];
reset table← [];

while Ldict is not empty do
remaining frames← Tmax;
block← [];
block reset← [];

while remaining frames ≥ min(keys(Ldict)) do
sampled sequence← Random(Ldict);
block.append(sampled sequence);
remaining frames −= len(sampled sequence);
block reset.append(Tmax − remaining frames);

end

Pad(block, remaining frames);
new dataset.append(block);
reset table.append(block reset);

end

4.5.1 Comparison with the SOTA models

In the AG [92] dataset, we report DDS’s performances in Table 4.4 under the com-

positional setting. In this setting, there are ∼ 12% less training data with 80 unseen

relationship triplets. We retrain the SOTA model STTRan [12] in the mentioned setting

for comparison. It is important to note here, among the three recent DSG generation

models [12,90,91], only STTran’s code is publicly available, therefore limiting the capac-

ity to evaluate other models. DDS outperforms STTran in all recall levels in both unseen

and seen relationship triplet detection. Especially, for detecting unseen triplets DDS

achieves 4 − 24 times improvement over the SOTA model. It shows the generalization

power of DDS.

Additionally, for a fair comparison with other models, we train DDS in the full training
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Seen Unseen
R@20 R@50 R@20 R@50

STTran [12]* 33.7 36.6 0.3 4.4
DDS (Ours) 41.8 48.8 7.4 18.2

Table 4.4: DDS’s performance comparison in AG test set under the compositional
setting. Both reported models are trained on the proposed small-size training set
under the compositional setting. * means the model was trained using publicly avail-
able code. Among recent DSG generation models, only STTran’s [12] code is publicly
available. The best results are shown in bold.

Method Backbone R@20 R@50
GPNN [43] ResNet-101 33.3 42.6
PPDM [85] Hourglass-104 34.1 43.5
VRD [121] ResNet-101 22.0 32.7
IMP [18] ResNet-101 34.4 43.7
MSDN [122] ResNet-101 34.7 43.8
Graph RCNN [123] ResNet-101 35.0 44.1
RelDN [95,124] ResNet-101 35.1 44.9
VCTree [95] ResNet-101 35.0 44.3
STTran [12] ResNet-101 36.2 48.8
HORT [90] ResNet-101 36.5 46.7
DSGAP [91] ResNet-101 37.9 50.1
DDS (Ours) ResNet-50 43.3 51.5
DDS (Ours) ResNet-101 46.3 54.4

Table 4.5: DDS’s performance comparison in AG test set. Here, like other models,
DDS is trained in the full training set of AG dataset. The best results are shown
in bold. For the other models, all the reported numbers are taken from the original
publications.

set of AG dataset and report performance in Table 4.5. Here, all methods up to VCTree

[95] are SSG generation methods implemented by [12]. As expected, with similar training

data like other models in Table 4.5, DDS achieves SOTA performance on all metrics.

In Table 4.6 and Table 4.7, DDS outperforms all existing methods in HICO-Det [6]

and UnRel [2] datasets. Among these methods, [7] and [117] follow a Transformer based

encoder-decoder architecture. The proposed network shows superior performance than

both of the models. In summary, DDS outperforms existing works in both seen and

unseen SSG generation (full category) in HICO-Det by 5% and in UnRel by 33%.
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Method Unseen (mAP) Seen (mAP) Full (mAP)
VCL [102] 10.1 24.3 21.4
ATL [116] 9.2 24.7 21.6
FCL [67] 13.2 24.2 22.0
THID [7] 15.5 24.3 23.0
SCL [117] 19.1 30.4 28.1
DDS (Ours) 21.1 31.7 29.6

Table 4.6: DDS’s performance comparison in HICO-Det test set under RF (Rare–
First) compositional setting. The best results are shown in bold.

Method Unseen (mAP) Seen (mAP) Full (mAP)
VRD [121] - - 7.2
WSL [2] - - 9.9
DUV [73] - - 13.4
DDS (Ours) 16.3 27.4 17.9

Table 4.7: DDS’s performance comparison in UnRel test set. The best results are
shown in bold. Not reported results are marked with -.

4.5.2 Ablation Studies

We perform ablations for different design choices of our network in this section. For

these ablations, we report our performances in the HICO-Det [6] dataset, except for data

loading ablation, where we report the performances in the AG [92] dataset.

Multi-branch Design: We first validate our decoupled multi-branch design. The

performances are reported in Table 4.8. The base network has one single branch where a

single set of queries is used for both relationship and object detection. In row 1 of Table

4.8 the performance is pretty poor for the single branch base network, especially in the

unseen category. Next, a multi-branch network is created by using two spatio-temporal

decoders. Both decoders get the same encoded features. However, the relation branch in

this case doesn’t do relation region prediction. A performance improvement is observed

compared to the single branch for this design. Similarly, with the gradual introduction

of two encoders and relation region prediction, the performance keeps increasing. In

particular, all these components yield a significant improvement in the unseen category
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Type
Relation
Region

Separate
Encoders

Separate
Spatio-temporal

Decoders
Unseen (mAP) Seen (mAP)

Single branch (base network) ✗ ✗ ✗ 17.9 29.9

Multi branch
✗ ✗ ✓ 18.7 30.5
✗ ✓ ✓ 19.7 31.6
✓ ✓ ✓ 21.1 31.7

Table 4.8: Impact of different components on our decoupled multi-branch design.

Unseen (mAP) Seen (mAP)
DDS with o to r 19.6 30.6
DDS with r to o 19.4 28.8
DDS with separate queries 21.1 31.7

Table 4.9: Different kinds of query sharing strategy. o to r refers to object to relation
branch query sharing. r to o refers to relation to object branch query sharing.

compared to the seen category and thus show the impact of decoupled learning on unseen

relationship triplet predictions. We also do qualitative analysis between DDS and the

base network described in the section 4.5.3.

Relation Region Ground Truths: As noted in Section 4.3.6 the relation branch

only produces relation region prediction during training. Ground truth relation region is

required for the training. However, ground truth relation regions are not strictly defined

by the provided annotations such as subject and object bounding boxes. Therefore, we

experiment with different settings to generate ground truth relation regions for subject

and object pairs that have relationships:

• Mixture: In this case, the intersection of the subject, and object bounding boxes

is selected as the relation region if the boxes have an IoU greater than the θ. For

any other case, the relation region is defined as their union boxes. Different values

of θ are tested.

• Union box: Here, the union of the subject and object bounding boxes are defined

as the relation regions.
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Relation
Region

Sub-Obj
IoU, θ

Unseen (mAP) Seen (mAP)

Mixture
0 19.2 30.3

0.1 18.0 30.4
0.5 19.4 30.8

Union Box - 21.1 31.7

Table 4.10: Different kinds of relation region ground truths. Sub-Obj IoU refers to
the IoU between the subject and the object bounding boxes.

Object Spatial
Decoder

Relation Spatial
Decoder

Unseen (mAP) Seen (mAP)

3 3 20.2 31.4
3 6 20.8 31.8
6 3 21.1 31.7
6 6 18.0 31.3

Table 4.11: Different number of layers in the object spatial decoder and the relation
spatial decoder.

The performances of the network with different relation region ground truths are shown

in Table 4.10. With union boxes, DDS performs best (last row). This may be due to the

fact that the union box guarantees the inclusion of the spatial location of the relation

and therefore it can be very helpful in detecting non-contact relationship triplets (e.g.

subject looks at object etc.).

Share Queries: DDS utilizes two different sets of queries for the relation and the

object branches. We also test DDS’s performance by sharing the queries between the

branches with two different strategies:

• DDS with o to r: In this case, the output of the object spatio-temporal decoder is

fed as input relation queries to the relation spatio-temporal decoder.

• DDS with r to o: In this case, the output of the relation spatio-temporal decoder

is fed as input object queries to the object spatio-temporal decoder.

The performances are reported in Table 4.9. Without sharing the queries DDS performs
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Number of
Queries, Nq

Unseen (mAP) Seen (mAP)

32 19.8 30.5
64 21.1 31.7
100 19.7 31.3

Table 4.12: DDS’s performance with different number of queries, Nq.

Padding Sampling BLoad
Number of frames padded 534,831 0 3695
Number of frames discarded 0 92,271 0
Time per epoch in minutes 170 18 29
Performance (recall @20) - 39.2 43.3

Table 4.13: Comparison of various data processing schemes in the AG dataset. -
indicates that performance was not assessed due to excessive computational costs.

the best, especially in unseen categories. This matches our hypothesis on the importance

of decoupled learning by utilizing two different sets of queries. We also notice a significant

performance drop even in seen classes when we share queries from the relation to the

object branch (2nd row). This shows object queries have more generalization ability than

the relation queries.

Spatial Decoders: We test with different numbers of layers for spatial decoders.

The result is shown in Table 4.11. DDS performs poorly in extreme cases (first and

last row). This is expected as DDS is getting underfitted due to the decrease in the

number of layers (first row) and overfitted as the number of layers increases (last row) in

the relation branch. Also, the best performance in the unseen category arises when the

object decoder has more layers than the relation decoder. Given that the object spatial

decoder decodes two entities (subject, object), it is reasonable to require more layers

than the relation spatial decoder.

Number Of Queries: We also test with different number of queries, Nq. Our design

ensures equal number of queries in both our branches. For example, if the object branch

has Nq = 32 queries then the relation branch will also have Nq = 32 queries. The
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performance comparison can be seen in Table 4.12. In both seen, unseen category the

best performance is reached with 64 number of queries. From that point, we can see the

performance decreases in both direction.

Data Loading: As described in section 4.4.4, loading data efficiently from a dataset

(e.g. AG) with varying length of videos poses a significant challenge. Common solutions

such as padding, sampling suffer from inefficiencies and inaccuracies. To solve the prob-

lem, we propose our own dataloading strategy BLoad where we create blocks of videos

equal to the largest length video in the dataset. Please see 4.4.4 for reference.

To emphasise the differences and potential advantages of BLoad, we present a com-

parative analysis in Table 4.13. As expected when every video is padded to match the

length of the dataset’s largest video, it leads to an excessively redundant training set.

In particular, the AG dataset has a total of 166, 785 frames. The padding strategy aug-

mented this count by almost fivefold, primarily due to the predominance of shorter videos

within AG. The sheer computational intensity required by padding made it impractical

to even complete the training.

The sampling strategy makes each video in the dataset to have the average video

length. In this scheme, videos shorter than the average are discarded. While this expe-

dited the training process, it compromised performance.

Our BLoad method strikes an elegant balance by neither discarding any frames nor

resorting to excessive padding. This inclusive approach, which ensures every frame is

taken into account, has shown better performance compared to the more exclusionary

sampling method.

In summary, BLoad has shown superior performance in terms of efficiency and accu-

racy compared to other data loading schemes.
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Figure 4.7: Qualitative results of DDS for predicting unusual relationship triplets in
UnRel [2] dataset. The subject bounding box is green and the object bounding box is
red. Our base network (single branch) fails to detect these marked triplets. For both
networks, we utilize top-20 predictions per sample.

4.5.3 Qualitative Results

This section qualitatively analyze DDS’s performance.

We first show DDS’s performance in the UnRel dataset. This dataset has very unusual

unseen relationship triplets. In this dataset, we compare DDS with our base network,

a single branch network with one encoder, and one spatio-temporal decoder (details in

section 4.5.2). Fig. 4.7 illustrates the samples where DDS is successful; however, our

base network completely misses the relationship triplets (predicted bounding boxes do
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Figure 4.8: Qualitative results of DDS for predicting unseen relationship triplets in
HICO-Det [6] dataset. The subject bounding box is green and the object bounding
box is red. SOTA network THID [7] fails to detect these marked triplets. For both
networks, we utilize top-20 predictions per sample.

not match with ground truth). We utilize the most confident 20 predictions for each

sample from both networks for this visualization.

Next, we visualize DDS’s performance in the HICO-Det [6] dataset in Figure 4.8.

Here, we show examples where DDS’s prediction matches with the ground truth, however,

SOTA network THID [7] does not make correct predictions. THID [7] is an end-to-end

Transformer based one stage network. It utilizes large-scale pretrained vision-langage

model CLIP [112] to distill knowledge for unseen relationship triplet detection. DDS

clearly outperforms THID for detecting unseen relationship triplets.

We also evaluate DDS on custom samples in Fig. 4.9. These samples contain common

90



Decoupled Dynamic Scene Graph Chapter 4

Figure 4.9: Performance of DDS on custom samples. The subject bounding box is
green and the object bounding box is red. For these samples we only utilize the top
most prediction of DDS.

relationships with unusual contexts. DDS predicts the correct relationship triplets in all

the samples.

We compare the attention maps from DDS and the base network to further analyze

our improved performances. Fig. 4.10 presents attention maps for the samples where

both DDS and the base network have correct predictions. The attention maps are of the

queries that predict the marked subject and object bounding boxes from the last layer of

the spatio-temporal decoders. We overlap attention maps from both our spatio-temporal

decoders to get the final attention map. As can be seen, although both networks have

correct predictions, DDS’s attention maps cover the correct spatial region. In contrast,

the base network with only one spatio-temporal decoder has attention on a very random
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Figure 4.10: Performance analysis of DDS over the base network. The subject bound-
ing box is green and the object bounding box is red. The attention maps are visualized
from the last layer of the spatio-temporal decoder.
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portion of the object and the subject.

4.6 Discussion

This work proposes a multi-branch decoupled network for DSG generation. The DDS

network is comprised of two encoder-decoder based Transformer branches. This design

enables independent learning of objects and relationships, thus enabling DDS to detect

unseen relationship triplets. The effectiveness of DDS is demonstrated through exten-

sive experiments with DDS achieving SOTA performance on three benchmark datasets.

Moreover, the conducted ablation studies have provided the motivation and significance

for different components of DDS. However, while successful compared to the existing

works, the quantitative results (Table 4.5, 4.6, 4.7) show room for improvement in de-

tecting unseen relationship triplets. Future research will focus on improving DDS for a

better generalized DSG generation.
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Chapter 5

Learning Object-Attribute

Compositions Using Localization

5.1 Introduction

Human visual reasoning allows us to leverage prior visual experience to recognize

previously unseen Object-Attribute (O-A) compositions. O-A compositions can play

crucial role in detecting actions as exaplined in the previous chapter 1. In this Chapter,

we focus on correctly associating attributes and objects specially in clutter scenes.

Predicting novel O-A compositions – referred to as Composition Zero Shot Learning

(CZSL) [8,9,13,16,28,113,125,126]–is an active area of research. There has been signifi-

cant progress on CZSL methods in recent years, however, as our experiments demonstrate,

their performance degrades in natural cluttered scenes, as illustrated in Fig. 5.1. The

main reason in these cases is the interference from the other potential confusing elements.

For example, in Fig. 5.1(B.1), the SOTA methods are not able to detect the object of

interest given its size relative to image; and while the bird is the object of interest in Fig.

5.1(B.2), the surrounding context dominated by the green leaves results in an incorrect

94



Learning Object-Attribute Compositions Using Localization Chapter 5

Figure 5.1: The object of interest shown in images A.1, A.2, and A.3 presents simple
scenarios where all SOTA (SymNet [8], CGE [9], CompCos [10]) methods make correct
O-A associations. However, for the same object (apple) in a more cluttered scene in
image B.1, these methods fail. Even in cases where there is a dominant object of
interest, such as a bird in (B.2), where there is significant background clutter, most
of the SOTA methods have incorrect O-A associations.

association of the color attribute to the object.

The poor performance of the SOTA methods can be attributed to the dominant

confounding elements thereby impeding the right O-A composition prediction. This in

turn is due to the bias towards seen O-A composition during training time. Generalization

to more realistic cases as seen in Fig. 5.1(B) is crucial for robust systems.

Inspired by these limitations, we propose Learning Object-Attribute Composition

using Localization (LOCL). Our model (LOCL) leverages spatially-localized learning,

which is not present in the existing CZSL networks. It is reasonable to ask Why not

first localize the objects and then associate the attributes? In principle, this can be done,

however, the SOTA methods for object detection and localization use extensive datasets

for their training. Hence it will not be possible to meaningfully test the CZSL with

pre-trained detectors. The images shown in Fig. 5.1 are from existing datasets for CZSL
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methods [9,14,15]. We note that all the experiments reported in this work use the datasets

that are created for evaluating CZSL approaches.

Existing SOTA O-A detection approaches do not take into account the possibility of

scene attributes confounding with correct O-A composition prediction [8, 9, 125]. These

methods are designed to work with wholistic image features [13, 16, 28, 113, 126]. Some

recent work address this issue by partitioning the image into regions [58, 127] or equal-

size grid cells [128–130], but they are not very effective in capturing distinctive object

features.

Our approach towards better generalization of CZSL to more challenging images

(Fig. 5.1.B) with background clutter is to leverage localized feature extraction in O-A

composition. Specifically, we adopt a two step approach. First, a Localized Feature

Extractor (LFE) associates an object with its attribute by reducing the interference

arising from additional attribute-related visual cues occurring elsewhere in the image.

The CZSL benchmark datasets do not contain any localization information. As noted

before, off-the-shelf object detectors can be inadvertently exposed [25] to unseen OA

compositions. Therefore, we developed a weakly supervised method for localized feature

extraction. Second, the composition classifier uses the localized distinctive visual features

to predict an O-A pair.

The proposed LOCL outperforms competing CZSL methods on all existing datasets

– including the more challenging CGQA – providing a strong evidence in favor of its

applicability to more realistic scenes. Further, the performance of all existing methods

improve when our localized feature extractor is included as a pre-processing module –

although LOCL still outperforms these methods.
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Figure 5.2: LOCL architecture. The Localized Feature Extractor (Section: 5.3.1)
generates proposals that are likely to contain objects. These proposals are refined
with the object and attribute semantics using Composition Classifier (Section: 5.3.2).

5.2 Related Work

Existing works in object attribute (O-A) CZSL task typically assume that the images

of the object of interest present in uncluttered context. This assumption is also true for

the initial CZSL datasets [14, 15]. As a result, most of the CZSL methods [9, 13, 16,

28, 29, 113, 125, 126, 131, 132] perform quite well on uncluttered scenes. As noted before,

some of the methods reduce the interference from confounding elements by partitioning

the image. Among these works, [129] is designed for datasets with a dominant object

with a clear background. On the other hand, [127] partitions the image to equal-sized

grid cells and relies on aligning the attribute semantic and visual features. However, our

analysis has shown these works are not fully effective in the cluttered scenes.

In many other recent works, the O-A problem is considered as a matching problem in

a latent space [13,28,113,131]. For this matching task, [113] proposes a modular network

with a dynamic gating whereas [13] defines objects and attributes using a support vector

machine (SVM). On the other hand, [8, 132] consider attributes as functional operation

over objects. More recently [9,16,29,125,126] focus on the relationships among attributes

and objects. [29] disentangle attributes and objects with metric based learning. [9]
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learns attribute-object dependence in a semi-supervised graph structure where unseen

combinations are considered connected during training. This is extended in [16, 26, 125]

where all possible combination of objects and attributes are considered during inference.

In general, the performance of current methods drop significantly on images with

background clutter. Taking inspiration from the generic pipeline of weakly supervised

object detection (WSOD) [133–139], LOCL consists of a region proposal network with

pseudo-label generation module that leverages supervision from linguistic embeddings in

a novel contrastive framework. This feature extraction can be utilized to improve the

existing network’s performance in images with background clutter as shown in Table 2.4.

5.3 Approach

The primary issue to be addressed is the scene complexity, that require that the meth-

ods are able to make the correct associations during the training phase and predict the

unseen configuration during testing. The proposed method is intuitive and straightfor-

ward in creating a weakly supervised framework that is modular and generalizes well. The

LOCL extracts localized features of object regions in the image, which allows it to learn

useful OA relationships and also suppress spurious O-A relations from the background

clutter.

First, we pre-train a Localized Feature Extractor LFE(.) (Sec. 5.3.1) network to

extract features from multiple regions of the image. Second, the pre-trained LFE(.)

along with a Composition Classifier CC(.) (Sec. 5.3.2) network learns to detect the O-

A composition. The key insight is to leverage the features from regions containing the

object of interest to learn accurate O-A associations. Fig. 5.2 summarizes the overall

LOCL architecture.
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Problem Setting: Let {I, To, Ta, (a, o)} be the training dataset with N samples, where

I is the input image. To, Ta are the list of all object and attribute labels, respectively,

and (a, o) is the tuple of attribute-object pairs in the image. The O-A pairs labels used

during training are categorised as seen pairs. The goal of CZSL trained model is to take

in an input image I and predict (â, ô). The O-A pairs labels used during inference are

novel and unseen. Here the seen and unseen object-attribute pairs are mutually exclusive.

Proposed Network: The proposed LOCL is as (â, ô) = CC ( LFE (I), Ta, To),

where LFE(.) and CC(.) are trainable networks. LOCL is trained in two stages. In

the first stage, given an image I, pre-training of LFE(.) is done to generate multiple

localized features. The details of the LFE(.) module are discussed in Sec. 5.3.1. The

output of the trained network LFE(.) is a list of n features of object regions identified

in the image.

In the second stage, out of these n features, r features (r < n) are input to the

composition classifier ( Sec. 5.3.2) to make the final prediction of attribute and object

present in the image.

5.3.1 Pre-training Localized Feature Extractor(LFE(.))

Our Localized Feature Extractor network LFE(.) is a combination of an image en-

coder (ResNet-50 [45]), text encoder, Region Proposal Network (RPN), and a pseudo

label generator, as shown in Fig. 5.3. The RPN is inspired from F-RCNN [25]. It is

trained from scratch using a contrastive learning framework. It generates proposals fea-

tures for regions in the image that has high likelihood of object presence. The pseudo

label generator creates labels to supervise the visual space that have high semantic sim-

ilarity with ground truth O-A pair.

Given the input image I, the image encoder generates feature map F ∈ RH′×W ′×C
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Figure 5.3: Summary of pre-training the localized feature extractor.The image en-
coder and region proposal are jointly trained to generate features of object of interest.
During training time, we use text embeddings to generate pseudo labels to train the
image encoder and region proposal using contrastive learning. At the test time, the
learned image encoder and region proposal network are used to generate features from
object regions.

where H ′,W ′ and C are the height, width and channel dimensions. Then n valid anchors

(based on input image size, in our case for an image of 256×256, n = 576,) are generated

on the input image [25]. Anchors are a set of rectangular boxes with different aspect

ratio and scale generated at each pixel of the input image [25]. Corresponding

to each anchor, a list of features is pooled from F. The pooled anchor features are

[f anc1 , f anc2 , ..., f ancn ] ∈ RC shown as output of “Anchor Generator” in Fig. 5.3

The text encoder generates semantic pair embedding from the input text label (a :

Blue, o : Bird) pair. With the help of these semantic pair embedding, we generate

pseudo ground truth labels to train LFE(.) network with weak supervision [140]. In the

following, we refer to “pseudo ground truth labels” as “pseudo labels” for simplicity.
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Pseudo Label Generator: The ground truth O-A semantic pair embeddings gen-

erated from text encoder are projected through fully connected layers (FFN) into a

common subspace as visual embeddings. The output of FFN is denoted by f textao ∈ RC ,

where “ao” index is the ground truth (in our case one per image). Here the length C

of semantic embedding equal to channel dimension C of visual feature vector F. Now to

generate pseudo labels, a cosine similarity score is computed between each f anck and f textao .

ϕk =
f textao · f anck

||f textao || ||f anck ||
∀ f anck , where (ϕ = [ϕ1, ϕ2, .., ϕk, .., ϕn]) (5.1)

y =


1 argsort(ϕ)[0 : l]

0 for all other indexes

(5.2)

where y = [y1, y2, .., yk, .., yn], l top anchors are selected out of n based on cosine similarity

score ϕ. They are assigned with label 1 in y and rest are assigned 0 as shown above with

Eq. 5.2. Here each yk represents the presence/absence of object of interest regions in the

image. Intuition here is that f anck ’s which contains the object will lie closer to f textao in

feature space.

Region proposal Network (RPN): The RPN branch shown in Fig. 5.3 is inspired

from FasterRCNN [25]. The RPN generated proposals are used to pool a list of fea-

tures from the feature map F. The pooled features are [f p1 , f
p
2 , ..., f

p
n ] ∈ RC . Now

the anchor features [f anc1 , f anc2 , ..., f ancn ], proposal features [f p1 , f
p
2 , ..., f

p
n ] and pseudo label

y = [y1, y2, .., yn] are used to train the function LFE(.) using contrastive learning as

explained in next section.

Contrastive Pre-training: Recall that the current benchmark CZSL datasets [10,14,

15] do not have ground truth bounding boxes for objects of interest. For this reason,
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we use both the anchor features and proposal features to localize the objects of interest.

This is different from regular object detection networks [25]. The pseudo label y informs

the network which anchor features are likely to represent object(s) of interest. Using

contrastive learning, we train the regional proposal network branch to localize the object

with weak supervision. The goal of contrastive learning is to maximize the similarity

between similar feature vectors and minimize the similarity between the dissimilar feature

vectors. Here, the objective is to maximize the cosine similarity between < f anck , f pk >

features where there is a possibility of object being present and minimize in all other

cases. The contrastive objective function is:

LCON =
n∑

k=1

yk ∗ d2k + (1− yk) ∗max(0, 1− d2k), (5.3)

where ∗ is element wise multiplication, yk tells us which features have the possibility of

having an object (Eq. 5.2), dk is the cosine distance between < f anck , f pk >.

dk =
f pk · f

anc
k

||f pk || ||f
anc
k ||

∀ k = [1, 2, ..n] (5.4)

Along with contrastive loss, we optimize binary cross entropy over the objectness score

predicted by region proposal network. The overall loss function is:

Ltotal = α ∗ LCON + β ∗ LBCE(o, ϕ), (5.5)

where, α and β are empirically-determined scaling parameters, o is the objectness score

from RPN and ϕ is the cosine distance from Eq. 5.1. Once the LFE(.) network is

trained, the output of trained model are the proposal feature vectors [f̂ p1 , f̂
p
2 , ..., f̂

p
n ] along

with objectness score ô = [ô1, ô2, .., ôn]. This learnt parameter objectness score ensures

selection of features with object information, thereby minimizing the interference from

102



Learning Object-Attribute Compositions Using Localization Chapter 5

Figure 5.4: Composition Classifier CC(.) architecture. The proposal features

[f̂ p1 , f̂
p
2 , ..., f̂

p
r ] are the outputs from LFE(.) which are combined into a single rep-

resentation f pall. The attribute and object semantics are the semantic encoding of all
attributes and objects under consideration. Two branches predict attribute and ob-
ject from semantically refined f pall.

potential confusing elements as shown in Fig. 5.1

5.3.2 Composition Classifier CC(.)

The ability to learn individual representation of O-A in visual domain is crucial for

transferring knowledge from seen to unseen O-A associations. Existing SOTA works [9,

10, 125, 126, 141] use homogeneous features from whole image as without localizing the

object, they ignore the discriminative visual features of object and its attributes. Our

Composition Classifier network CC(.) leverages the distinctive features extracted by

LFE(.) to predict the object and its corresponding attribute as shown in Fig. 5.4. It is

challenging to associate right attribute with the object by using homogeneous features,

as there can be interference from prominent confounding elements like examples shown

in Fig5.1B.

The input to CC(.) is a set of top r (r < n) proposal feature vectors from pre-
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trained LFE(.) [f p1 , f
p
2 , ..., f

p
r ] ∈ Rr×C sorted in descending order based on objectness

score o = [o1, o2, .., or]. The proposal feature vectors are fused into a single visual feature

f pall ∈ R1×C using weighted average with learnable parameters [142] as shown in Fig. 5.4.

Input to the learnable parameters has r×C dimension. r is the number of proposals and C

is the number of channels. We swap the dimensions at the input to fuse different proposals

together. The output of it is a single feature vector of length C. The fusion operation

is a learnable weighted average operation, that learns to create joint representation from

features of object regions. Next, f pall is projected to two different representation via

two feed forwards networks FCAH and FCOH layers as shown in Fig. 5.4. Similarly,

the semantic embeddings of all attributes F text
A = [f texta1 , f texta2 .., f textai ] and all objects

Ftext
O = [f texto1 , f texto2 .., f textoj ] (generated from Ta and To) are projected via feed forward

network FCAS and FCOS. Here Ta and To are the list of all attributes and objects

in the dataset respectively, and i = len(Ta), j = len(To). len(.) is length. Inspired

by [8, 26, 53, 104, 105], the visual feature projections are refined as shown below. The

particular choice of refinement by one-to-one multiplication is an empirical choice. We

explore different refinement techniques in Table 5.6. This all is done by Refinement block

as shown in Fig. 5.4.

Frefined
O = FCOH(f allp ) ◦ FCOS(Ftxt

O ) ; Frefined
A = FCAH(f allp ) ◦ FCAS(Ftxt

A ) (5.6)

where, “◦” represents element-wise multiplication and the feed forward network are two

fully connected layers with ReLu activation. This refinement aggregates semantic infor-

mation with the visual features. These refined features are passed through another feed

forward network (Fig. 5.4) and softmax layers to make the final decision on the object

ô and attribute â present in the image I. To train the composition classifier function

CC(.), we optimize binary cross entropy function over the O-A prediction.
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5.4 Experiments

5.4.1 Datasets

Table 5.1 summarizes the datasets used. In the MIT-states dataset the images are

of natural objects collected using an older search engine with limited human annotation

causing a significant label noise [29]. For UT-Zappos [14] the simplicity of the images

(one object with white background) makes it unsuitable to work in natural surround-

ings. We performed experiments on very recently released Compositional GQA (CGQA)

dataset [10,143]. This dataset is proposed to evaluate existing CZSL models in a more re-

alistic challenging scenarios with background clutter. The splits used on all the datasets

are as follows.

MIT-States [15] has a total of 53,000 images with 245 objects and 115 attributes.

The splits for MIT-States dataset have 1262 object-attribute pairs (34,000 images) for

the training set, 600 object-attribute pairs (10,000 images) as the validation set and 800

pairs (12,000 images) as test set.

UT-Zappos [14] has 29,000 images of shoes catalogue. The splits used are of 83

object-attribute pairs (23,000 images) for the training set, 30 object-attribute pairs (3,000

images) for the validation set and 36 pairs (3,000 images) for test set. These splits are

selected following previous works [10,113]. The images in UT-Zappos [14] dataset are not

really entirely a compositional dataset as the attributes like Faux Leather vs Leather are

material differences but not specifically any visual difference [10]. Also, the simplicity of

the images (one object with white background) makes it unsuitable to work in natural

surroundings where the object of interest has interference confounding elements in the

scene.

The third dataset used is Compositional-GQA (CGQA) dataset [9, 143]. It has 453

attributes and 870 objects. The splits for CGQA have 5592 object-attribute pairs (26,000
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images) for training set, 2292 pairs (7,000 images) for validation set and 1811 pairs (5,000

images) for testing set. These splits are as proposed by [10]. The CGQA dataset have

images curated from visual genome dataset [144] which comprises of images from natural

and realistic settings. Most of the images in CGQA have an object of interest with

confounding elements in the background, that makes it an extremely challenging dataset

to evaluate CGQA models.

5.4.2 Implementation Details

Both the localized feature extractor LFE(.) and Composition Classifier CC(.) are

trained on all the datasets. To train LFE(.), an efficient contrastive pre-training frame-

work is used with a margin distance of 1. As IE, we use ResNet-50 [45] pre-trained

on [112]. For text encoding we utilize text encoder similar to [112]. The Anchor Gen-

erator generates 576 valid anchor boxes. Corresponding to each of these anchor boxes,

features [f anc1 , f anc2 , ..., f anc576 ] are pooled from F. To generate ϕ according to Eq. 5.7, each

f ancj is matched with semantic word embedding vector, and top 20 scores are labeled as

1 and rest as 0 as shown in Eq. 5.8 to create the pseudo label y. This is an empirically

selected value, it covers almost all the object regions in the image. The Region Pro-

posal Network generates proposal boxes and an objectness score corresponding to each

proposal box. The number of proposal boxes are equal to the number of anchor boxes.

Corresponding to these proposals boxes, features [f p1 , f
p
2 , ..., f

p
576] are pooled from feature

map F.

Contrastive loss is used for pre-training. The cosine distance dk is computed be-

tween each anchor feature f anck and f pk , the total number of features are 576 for anchors

and 576 proposals. The pseudo label y is of length 576. yk is equal to 1 where the f anck

feature have potential object. The scaling parameters for contrastive loss α and clas-
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sification loss β are set to 0.6, 0.4 respectively. The network is trained for 100 epochs,

convergence is observed around 45 epochs, based on that, early stopping is done at 50

epochs. The learning rate starts with 1e−5 with decay of 0.1 after every 10 epochs.

The batch size is set at 24. The optimizer used is Adam optimizer. The region proposal

branch of the network learns to select features from regions where the objects are present.

During training, we restrict the learning rate of linear projection layer of f txt
ao to a low

value to stabilize the region proposal branch.

Compositional Classifier CC(.): The ability to learn individual representation of

O-A in visual domain is crucial for transferring knowledge from seen to unseen O-A

associations. Existing SOTA works [9, 10, 125, 126, 141] use homogeneous features from

whole image as without localizing the object, they ignore the discriminative visual fea-

tures of object and its attributes. Our Composition Classifier network CC(.) leverages

the distinctive features extracted by LFE(.) to predict the object and its corresponding

attribute. It is challenging to associate right attribute with the object by using homoge-

neous features, as there can be interference from prominent confounding elements. CC(.)

takes as input, the top 10 pooled features [f p1 , f
p
2 , ..., f

p
10] from pre-trained LFE(.) sorted

in descending order based on objectness score ô = [ô1, ô2, .., ô10]. Each block in CC(.)

consists of two fully connected layer with ReLU activation. The initial learning rate for

CC(.) network is set to 1e−3 with a decay of 0.1 after every 7 epochs. We observed that

fine tuning LFE(.) with a lower learning rate of 1e−6 while training CC(.) performed

better than freezing it. The batch size used is 32. All the experiments are done on a

single nvidia V100 Tesla.
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# Images # Objects #Attributes # OA Pairs
Train Val Test

MIT-States [13] 30k 10k 13k 245 115 1962
UT-Zappos [14] 23k 3k 3k 12 16 116

CGQA [9] 26k 7k 5k 870 453 9378

Table 5.1: Comparison of different CZSL datasets [9, 13,14]

5.4.3 Evaluation Metrics

Following current methods [8,9,113], we evaluate our network’s performance in Gen-

eralized Compositional Zero Shot Learning Protocol (GCZSL). Under this protocol, we

draw seen class accuracy vs unseen class accuracy curve at different operating points of

the network. These operating points are selected from a single calibration scaler that is

added to our network’s predictions of the unseen classes [8,9,113]. We report area under

“seen class accuracy vs unseen class accuracy curve” (AUC) as our performance metrics.

Additionally, we report our network’s performance on Top-1 accuracy in seen and unseen

classes.

5.4.4 Results

LOCL outperforms current methods in the test set of all benchmark datasets in almost

all categories as shown in Table 5.2. We evaluate LOCL’s performance in terms of AUC

under Generalized Compositional Zero Shot Learning (GCZSL) protocol. We also report

Top-1 accuracy in seen and unseen classes. In MIT-States [15] LOCL outperforms SOTA

method by 8% on unseen class accuracy and 1.7% AUC. In UT-Zappos [14] LOCL’s

unseen class accuracy is 5.2% better than the SOTA method. Moreover, it almost doubles

the unseen class accuracy while achieving 1.1% improvement in terms of AUC for the

more challenging CGQA [9] dataset.

Current CZSL methods use homogeneous features from the backbone instead of using
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distinctive visual features of objects and attributes. While such techniques may work on

simpler datasets like UT-Zappos [14], as evidenced by the high performance, the more

realistic datasets such as CGQA pose challenges. Table 5.2 shows, LOCL achieves the

best results on the challenging CGQA dataset. Bias towards seen O-A compositions is a

common issue [113] in current CZSL methods. Recent approaches [9, 16] have utilized a

graph structure with message passing/blocking [16] or prior possible O-A knowledge [9]

to reduce this bias. However, they still tend to be biased towards seen O-A pairs at

inference as pointed out by the authors of [16]. In contrast, LOCL learns distinct object

and attribute representations in the two separate branches of the CC(.) and achieves

high unseen class accuracy and AUC.

BMPNet [16] achieves state-of-the-art (SOTA) performance in seen classes of MIT-

States [13] and UT-Zappos [14]. However, their sub-optimal performance in unseen

classes indicates a bias towards seen classes. To further investigate this bias, we evaluate

BMPNet on the challenging CGQA dataset [9]. We utilize the official repository provided

by the authors for this evaluation and report performance in the same matrices used for

other datasets. In Table 5.3, we can observe LOCL outperforms BMPNet in all category.

Especially in unseen classes, LOCL achieves more than double accuracy than BMPNet.

This poor performance indicates a seen class bias of BMPNet. Moreover, LOCL is very

efficient and utilizes only ∼ 5GB memory for training in the large-scale dataset CGQA.

Current graph-based SOTA networks CGE [9] (∼ 10GB), BMPNet [16] (∼ 40GB) utilize

much higher GPU memory for the same batch size in CGQA dataset. Therefore, LOCL

is suitable for training on large scale challenging CZSL datasets.
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Methods
MIT-States [15] UT-Zappos [14] CGQA [9]

Seen Unseen AUC Seen Unseen AUC Seen Unseen AUC
Attop [132] 14.3 17.4 1.6 59.8 54.2 25.9 11.8 3.9 0.3
LabelEmbed [13] 15 20.1 2.0 53.0 61.9 25.7 16.1 5 0.6
TMN [113] 20.2 20.1 2.9 58.7 60.0 29.3 21.6 6.3 1.1
SymNet [8] 24.2 25.2 3.0 49.8 57.4 23.4 25.2 9.2 1.8
CompCos [125] 25.3 24.6 4.5 59.8 62.5 28.1 28.1 11.2 2.6
ProtoProp [126] - - - 62.1 65.5 34.7 26.4 18.1 3.7
BMP-Net [16] 38.6 21.7 6.0 87.3 64.5 49.7 - - -
CGE [9] 32.8 28.0 6.5 64.5 71.5 33.5 31.4 14 3.6
LOCL (Ours) 35.3 36.0 7.7 68.0 76.7 37.9 29.6 26.4 4.2

Table 5.2: Performance comparisons on MIT-States [15], UT-Zappos [14], CGQA [9]
Datasets. ‘-’ means unreported performance in a particular category. In all three
datasets, LOCL significantly outperform current methods. Specially, for the more
challenging (significant background clutter) CGQA dataset, the effectiveness of LFE
is clearly demonstrated by its performance on the unseen O-A associations.

Methods
CGQA [9]

Seen Unseen AUC
BMP-Net* [16] 29.1 11.7 2.7
LOCL (Ours) 29.6 26.4 4.2

Table 5.3: Performance comparison on CGQA [9] dataset. LOCL significantly out-
perform BMP-Net [16] in a challenging (significant background clutter) dataset. The
performance of LOCL shows the effectiveness of LEF in unseen OA associations. *
refers to as our implementation as the authors do not evaluate their model in CGQA
dataset.

5.4.5 Ablation Study

5.4.6 Image Encoder and Localized Feature Extractor

Our Localized Feature Extractor LFE(.) is modular and can easily be adapted to

other methods. In Table 5.4, we show different SOTA methods’ improved performances

with our feature extraction. For the sake of fair comparison with SOTA methods: Sym-

Net [8], ComCos [10] and CGE [9], we replace their backbones with our image encoder

(IE) pre-trained on a larger dataset [112]. As expected, both our IE and LFE(.) improve

the existing networks’ performances. This shows that the performance improvement is

because of localized features generated from LFE(.). All existing methods use ResNet-18
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Methods
Our
IE

LFE
CGQA [9] MIT-States [15]

Seen Unseen AUC Seen Unseen AUC

SymNet [8]
✗ ✗ 25.2 9.2 1.8 24.2 25.2 3.0
✓ ✗ 25.3 9.3 1.8 26.6 26.1 3.5
✓ ✓ 27.7 13.5 2.0 28.7 27.7 3.8

CompCos [10]
✗ ✗ 28.1 11.2 2.6 25.3 24.6 4.5
✓ ✗ 28.4 13.5 2.8 25.6 24.8 4.5
✓ ✓ 28.9 16.7 2.9 27.9 26.7 5.1

CGE [9]
✗ ✗ 31.4 14.0 3.6 32.8 28 6.5
✓ ✗ 31.4 19.3 3.8 33.3 28 6.5
✓ ✓ 31.9 26.1 4.1 36.3 29.8 6.6

LOCL ✓ ✓ 29.6 26.4 4.2 35.3 36.0 7.7

Table 5.4: Performance of SOTA methods with our image encoder (IE) and LFE.

as the backbone following the seminal work of [13]. We recommend that CZSL networks

should utilize stronger backbones for challenging datasets like CGQA [9]. However, our

improved performance is not just coming from a stronger IE. With LFE(.), the perfor-

mance boost is more significant (specially in terms of unseen class accuracy) than the

performance boost with our IE for the CGQA dataset. In particular, LFE(.) increases

the unseen class accuracy of CGE [9] in CGQA by 86%, and other methods also get great

improvement with LFE(.). The performance improvement in the MIT-States dataset is

less due to the noisy annotations [29] of this dataset. In summary, LFE(.) improves

three different architectures thus proving the effectiveness of localized feature extraction.

5.4.7 Number of Proposals

Table 5.5 shows the selection criterion of number of proposal selected from pre-trained

LFE(.) the goes as input to CC(.). With r < 10, the proposals features miss regions

of the object, which leads to poor performance. While when r > 10, more background

features are picked that suppress the prominent object and lead to drop in prediction

quality.
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# of proposals Seen Unseen AUC
5 32.1 33.6 7.2
10 35.3 36.0 7.7
15 35.3 35.9 6.9
20 27.6 28.4 6.5

Table 5.5: Performance of LOCL as we select different number of top r proposals
from pre-trained LFE in the MIT-States [15]. Best performance is observed with
r=10. With r > 10, more background features are picked that suppress the prominent
objects.

5.4.8 Object\Attribute Refinement

Table 5.6 shows refinement operations done on visual features f allp as shown in Equa-

tion 5.6. The multiplication operations generates more selective information and sup-

presses the redundant information as compared to concatenation and addition opera-

tion [53,104].

Method Seen Unseen AUC
Addition 28.5 29.6 6.6
Multiplication 35.3 36.0 7.7
Concatenation 32.7 33.1 7.2

Table 5.6: Performance of compositional classifier with different refinement operations
in the MIT-States dataset [15].

5.4.9 Pre-training LEF (.) with object embeddings

As discussed in section 5.3.1, we use OA pair name < Blue,Bird > as input during

the pre-training of LEF (.). We also test with using only the object names < Bird > as

the input. We observe 3% drop in accuracy as compared to OA pair names in the unseen

category as shown in Table 5.7. This is expected as the text embeddings generated by the

text encoder are more meaningful and have closer representation with the visual features

when we provide a complete description of the object in the image i.e. OA pair name.

112



Learning Object-Attribute Compositions Using Localization Chapter 5

Names Used Seen Unseen Obj Attr AUC
Obj-Attr 35.3 36.0 42.7 53.4 7.7
Obj 32.5 32.8 37.4 41.9 7.1

Table 5.7: Performance of the network in MIT-States [15] with different names used
as input to the text encoder while pre-training LFE(.). Bold numbers are the best
performance setting. The network performs well with Obj − Attr names as input
compared to just Obj names. The Obj and Attr columns display the top-1 accuracy
for detecting objects and attributes, respectively.

5.4.10 Number of Pseudo Labels

For creating pseudo labels y during pre-training, we assign value 1 to top 20 indexes

and rest are assigned 0. The equation is:

ϕ = [ϕ1, ϕ2, .., ϕk, .., ϕn] (5.7)

y =


1 argsort(ϕ)[0 : l]

0 for all other indexes

(5.8)

where y = [y1, y2, .., yk, .., yn], 20 anchors are selected based on cosine similarity score ϕ.

They are assigned with label 1 in y and rest are assigned 0 as shown above with Eq. 5.8.

Here each yk represents the presence/absence of object of interest regions in the input

image. We experiment with different values for number of potential objects. As shown

in Table 5.8, the overall performance of the model drops if we pick a number greater

than or less than 20. This is because for smaller value, the LFE(.) is penalized for

detecting even the right regions of interests and for larger value than 20, we are learning

information from confounding elements from the background where the object may/may

not be present.
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# Pseudo Labels Seen Unseen AUC Obj Attr
10 31.5 27.9 5.2 27.9 31.5
15 33.8 34.1 6.5 28.4 30.8
20 35.3 36.0 7.7 42.7 53.4
25 29.1 29.6 6.1 31.5 34.6

Table 5.8: Performance of the network in MIT-States [15] with different number of
region of interest while pre-training LFE(.). Bold numbers are the best performance
settings. Here # is ”Number of”. Obj, Attr columns present the top-1 accuracy in
detecting objects and attributes respectively.

5.4.11 Margin distance for contrastive loss

For pre-training LEF (.) with contrastive loss, we use a margin distance of 1. We

experimented with different distances for the margin for MIT-states [15] dataset. We

achieved best performance at a margin of 1. The experimental evaluation with different

margin distance is shown in Table 5.9. Our observations of is that with bigger margin,

the network start clustering features from those regions also, which have object of interest

along with a significant section of background regions. This leads to drop in attribute

detection accuracy.

Margin Seen Unseen AUC Obj Attr
0.5 29.6 30.4 5.2 30.2 47.3
1.0 35.3 36.0 7.7 42.7 53.4
3 34.1 33.9 6.5 41.1 46.8
7 25.3 26.5 4.8 37.3 38.9

Table 5.9: Performance of pre-training the LFE(.) using different margin distance for
contrastive learning in MIT-States [15]. We achieve best performance when margin is
1. For higher margin, LFE(.) cluster features of object of interest which have signif-
icant region of background/confounding regions also. Leaning to poor performance.
Bold numbers are the best performance setting. The Obj and Attr columns display
the top-1 accuracy for detecting objects and attributes, respectively.
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5.4.12 Scaling parameters of loss function

While pre-training, we combine contrastive loss and binary cross entropy loss using

scaling parameters α and β. The equation is:

Ltotal = α ∗ LCON + β ∗ LBCE(o, ϕ), (5.9)

where, LCON is the contrastive loss and LBCE is the binary cross entropy loss. We test

for different values α and β as shown in Table 5.10. It appears giving a bit more weight

to the contrastive loss helps LFE(.) to extract better localized features.

α β Seen Unseen AUC Obj Attr
0.3 0.7 30.6 32.5 6.9 30.9 33.1
0.4 0.6 35.1 35.4 7.5 36.4 39.9
0.5 0.5 34.9 35.8 7.7 40.8 49.3
0.6 0.4 35.3 36.0 7.7 42.7 53.4
0.7 0.3 32.7 33.7 7.1 33.0 35.2

Table 5.10: Performance of the network with different scaling parameters of the loss
function during pre-training in MIT-States [15]. Bold numbers are the best perfor-
mance settings. Obj, Attr columns present the top-1 accuracy in detecting objects
and attributes respectively.

5.5 Qualitative Results

We show qualitative results for unseen novel composition with top-1 prediction in

Figure 5.5. The examples are presented from datasets : CGQA [9], MIT-States [15],

and UT-Zapos [14]. The order of the datasets is in decreasing order of the clutter in

the images. As can be seen that in the CGQA dataset, the images contains object of

interest with lot of confounding elements creating background clutter. MIT-States [15]

is also of natural images. However, most of the images have a dominant object. On the

other hand, in UT-Zappos [14] all the images contain a single object with clear white
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Figure 5.5: Qualitative results of LOCL. Left three columns show correct predictions
from our network. Rightmost column shows missed predictions, here, ground truth
labels are marked with green box and our predictions are marked in red box. The
datasets contain only one OA pair and our predictions though visually correct, do not
match with the ground-truth OA in these cases.
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Figure 5.6: Proposals selected based on objectness score. We can see that the pro-
posals are generated on the object of interest. Though LOCL is not designed for
multi O-A, but in case of multiple objects, the proposals are distributed over multiple
objects.

background. This shows the complexity and the challenges of CGQA dataset compared

to the existing ones.

The first three columns represent the examples where our model is making the right

predictions. The last column in each dataset shows examples where our model makes

the visually correct prediction. However, it does not match with the ground truth label

of object and attribute. Our model is selecting object of interest, and it is creating the

right attribute-object associations. For example in case of fourth row on the rightmost

column, our prediction of the object is right but the image contains multiple attributes,

while the ground truth contains only one OA pair. This put an artificial limitation on

the evaluation metric even when the predictions are perceiveably correct.

We also show LFE(.) proposals quality in eliminating background in Fig. 5.6. As can

be seen LFE(.) only generates proposals for the objects of interest. Even it can generate

proposals covering multiple O-As.
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5.6 Summary

We present a novel two-step approach, LOCL, for recognizing O-A pairs. Our ap-

proach includes a robust local feature extractor followed by a composition classifier.

LOCL is evaluated on benchmark datasets. Additionally, our experiments show that the

local feature extractor improves the performance of current SOTA CZSL models by a

significant margin of 12%.
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Chapter 6

Conclusion and Discussion

Action-detection methods are crucial for various security and consumer applications.

The primary objective of this thesis is to develop automated methods for detecting and

localizing actions. In this chapter, we recap our contributions and explore potential

future research directions inspired by this work. Our developed methods focus on two

key aspects: atomic action detection and compositional capability, both essential for

robust action detection.

In the first half of our thesis, we presented two novel methods for atomic action de-

tection: VSGNet (see chapter 2) and GTNet (see chapter 3). Both of these methods can

successfully detect and localize atomic action. In these methods, our main contributions

are spatial refinement technique and an attention architecture to identify salient spatial

context. Our thorough analysis has clearly shown the positive impact of our innovations

on atomic action detection. Spatial refinement helps the the two stage sequential meth-

ods to filter unnecessary human-object pairs. On the other hand, our innovative guided

attention architecture clearly identifies the spatial regions that are important for under-

standing atomic actions. These collective efforts have markedly advanced the frontiers of

atomic action detection methods. Impressively, both these methods operate in real-time,
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processing images at a rate of 26 FPS in a small NVIDIA RTX 2080 Ti GPU.

In the latter part of the thesis, we introduced two methods endowed with composi-

tional capabilities. Compositional ability enables methods to leverage previously learned

concepts to recognize new ones. In this regard, we devised DDS (as detailed in chapter

4) and LOCL (explained in chapter 5).

DDS is a multi-branch decoupled network for relationship triplet prediction. We

utilize a Transformer like encode-decoder architecture for each of our branch. This de-

sign ensures decoupled concept learning. As a result, DDS has been able to compose

previously learned concepts to detect out of vocabulary relationship triplets. DDS has

achieved SOTA performances in three benchmark datasets. Remarkably, DDS can iden-

tify exceptionally rare relationship triplets by drawing upon foundational concepts it has

learned earlier.

We also developed LOCL to correctly associate objects with attributes. Attributes

play an important role in detecting actions [27]. We created a contrastive learning based

pretraining strategy to identify potential object locations with specific attributes. The

pretrained feature extractor subsequently generates localized features. These are then

utilized by a composition classifier to detect accurate O-A associations. Our assessments

indicate a marked enhancement over prior methods, attributable to our innovative pre-

training approach. Furthermore, substituting conventional feature extractors with our

superior version also resulted in performance boosts in existing models.

6.1 Future Work

Integration of Models: The methods we have developed can act as foundational

elements for more intricate methods. Our atomic action detection models, namely VS-

GNet and GTNet, are modular in design. However, they face challenges in detecting
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Figure 6.1: Consider a complex activity depicted across three consecutive frames
illustrating an exchange of objects. In the first frame, person 1 is observed walking
out of a door with a red bottle. In the subsequent frame, person 2 is walking out
of the door with a coffee mug. At the third frame, the items have switched hands:
person 1 now holds the coffee mug, while person 2 possesses the red bottle. Despite
the absence of direct visual evidence of the objects being exchanged, one can deduce
from the sequence of these three frames that an object exchange has happened.

actions that are scarcely represented in the training set. Our proposed DDS addresses

this limitation by leveraging compositional capabilities. A logical next step for future re-

search would be the cohesive integration of these models. Given their modular structure,

such integration promises to be relatively straightforward. Additionally, it’s feasible to

amalgamate these action detection models with our compositional object-attribute (O-A)

association model, LOCL. This amalgamation would endow the unified action detection

model with enhanced capabilities. Another intriguing avenue for exploration is quantify-

ing the influence of attributes on action detection. This integrated model can be utilized

for various applications such as content moderation, autonomous driving. A next re-

search avenue can focus on reducing the size of developed models without hurting the

performances. This will ensure the implementation of our models on edge devices.
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Figure 6.2: Complex activity detection method. RTD refers to relationship triplet
detectors. For each frame of an input video we predict relationship triplets by RTDs.
These triplets are fed to the LLM to infer complex activity. Our DDS is an example of
a RTD. In this experiment, we utilize an oracle RTD. As LLM we utilize ChatGPT [11].
The LLM can perfectly infer the complex activity without using any visual input.
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Complex Activity Detection with LLMs: Complex activity refers to the activities

that are composed of multiple atomic actions [145]. An example can be seen in Figure

6.1. Although there is no visual evidence of the action: exchange of objects, we can

infer it from the images shown here. Detecting this kind of activity automatically is

extremely difficult as the method needs to have the power of detection and hierarchical

reasoning. With the recent remarkable progress in multi-modal Large Language Models

(LLMs) [146–149], we can build method to detect complex activity by integrating our

models with the LLM. A method for complex activity detection is shown in Figure 6.2.

We can utilize LLM for inferring such complex activity. Here, RTD refers to relationship

triplet detectors. Our DDS is such a kind of network. The output of these RTDs are

relationship triplets that are fed to the LLM to infer complex activity. It is remarkable to

see the performance of LLM without any kind of visual input. This framework is limited

by the quality of RTDs. Future research can start from this kind of method and explore

the utilization our developed models in this thesis with LLMs to build a robust complex

activity detection method.
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