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ABSTRACT 
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. Conditions on the S matrix which arise from the assumption 

that it describes interactions which are at least approximately 

local are discussed. Particular conditions of this kind, Which 

may be called cluster decomposition properties, are formulated 

and the implications of these conditions for the structure of 

the S matrix are studied. The discussion is restricted to the 

case of a world in which there is only one kind of particle, 

namely a spinless boson of finite mass. The considerations pre-

sented apply equally well to relativistic, as well as to nonrela-

tivistic scattering theories. It is not assumed that the S matrix 

can be derived within the framework of a strictly local field 

theory, nor is it assumed that the S-matrix elements possess any 

particular properties of analyticity. As an illustration it is 

pointed out that the cluster decomposition properties assumed 

hold good in the conventional perturbation theory approach to 

field theory. 
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In the s-matrix description of collisions between particles,1 

attention is focused on the relationship between an initial asymptotic 

configuration of particles and the corresponding final asymptotic con

figuration; what happens "during" the collision event is not described. 

The basic assumption of s-matrix theo17 is that the interactions between 

the particles are, in some sense, of short range, and because of this 

property of the interaction it is possible to describe a state either in 

ter-ms of an initial asymptotic configuration of noninteracting particles 

or in ter.ms of a final asymptotic configuration of noninteracting particles. 

In the asymptotic limits, the particles behave like noninteracting particles 

stmply because their mean separations tend to infinity and hence the inter-

actions become ineffective. 

The detailed mathematical formulation of these ideas is well 
2 ' 

known and has been given elsewhere; we shall not repeat this formulation 
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in the general case of an arbitrary number of different kinds of particles. 

We may, however, mention the following: 

The Hilbert space ~ of all possible states of the world is the 

Hilbert space appropriate to the description of all possible states of an 

arbitrary number of noninteracting particles of which there are a finite 

number of different kinds. The group L of all inhomogeneous Lorentz 
0 

transformations, or more precisely the universal covering group of L
0

, 

is realized as a group of unitary transformations on ~. 

The S matrix is a unital->y mapping of J4 onto itself. The Lorentz 

invariance of the description of scattering is expressed mathematically by 

the condition that S shall commute with the unitary transformations lihich 

represent L
0

• From this requirement it follows that S preserves the 

unique vacuum state, jvac), and that s also preserves the various possible 

one-particle subspaces of ~~ or, more precisely, that s can be so 
-

selected without loss of generality. This follows from the fact that the 

group L
0 

acts irreducibly according to the identity representation on the 

vacuum state, and irreducibly according to one of the representations 

r s' m > o, m, on each one of the one-particle subspaces of ~. On the 

remainder of :H, L
0 

acts according to the various tensor products of 

representations of the type r ; the resulting representation of L m,s o 

on ~ is accordingly highly reducibl~.3 For this reason the action of 

S on ~ is by no means unique. 

As we have said, a basic requirement on the S matrix is thus 

·-that it shall commute with the unitary transfo~ations representing L
0

• 

Additionally, we may require that s shall commute with the unitary or 
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anti-unitary transformations on ~! by which other symmetry groups which 

we believe in are realized. 

However, these conditions are not sufficient for the S matrix to be 

meaningful physically. It is our purpose in this paper to consider some 

additional conditions which we believe evel~ physically meaningful S matrix 

must satisfy. 

The conditions we wish to impose derive from the idea that the 

interparticle interactions are of short range; therefore, the outcome of a 

scattering event involving two particles that are close to each other at 

some ttme does not depend on the presence of other particles very far away. 

To dramatize the situation we may say that the presence of particles on the 

Moon must not affect the outcome of events in a bubble chamber on the Earth. 

It should be noted immediately that this property of the S matrix 

by no means follows from its unitarity and its invariance under conjugation 

by Lorentz transformations, but that it must be imposed as a separate 

physical condition. 

For the case that the S matrix can be obtained within the frame

work of a local field theory the condition just mentioned can reasonably be 

expected to hold, and it does hold. One could well argue that one reason 

for trying to describe scattering events in ter.ms of a field theory is just 

to ensure the possibility of at least a rough space-time description of 

scattering events which conforms to the idea of short-range interactions 

between the particles. Looked upon from this point of view, the field 

theory approaCh seems eminently reasonable. On the other hand, one may 

well ask whether it is reasonable to impose the condition of strict 
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microcausality,. in field theory in view of the somewhat l.mphysical and 

obscure nature of this condition. There can be no doubt, however, that a 

satisfactory theory must be what we may call approximately local, and that 

a space-time description must be possible at least in an approximate sense, 

i.e., for distances larger than the characteristic range of the interactions. 

A "pure" S•matrix theory devoid of any notions of space, time, and locality 

would be highly unphysical because it would be unrelated to the obvious 

classical description of what takes place in a bUbble chamber or emulsion. 

In this paper we shall not base our discussion on a field theory. 

We shall assume an S matrix which is unitary and which commutes with the 

Lorentz group. We shall then impose particular physical requirements on 

the S matrix, which we shall call cluster decomposition properties, in the 

fo~ of transparent physical conditions on physically observable quantities. 

We shall then find the mathematical expression of these conditions in the 

form of statements about the structure of the S matrix. Physically, the 

cluster decomposition properties mean that the outcome of a scattering 

event, in Which two or several particles come in close contact with each 

other is unaffected by the presence of any number of particles very far 

away, or, differently stated, that several scattering events spatially 

separated from each other by large distances are independent of each other. 

In a sense the S matriX must therefore 11factor" into a product of S matrices 

describing the various independent events. 

For simplicity we shall restrict our study to the case in which 

there is only one kind of particle in the world, namely a spinless boson of 

finite mass m
0

• 
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It might be stated explicitly that we make no assumption about 

any possible analyticity properties of the S-matrix elements as functions 

of the four momenta of the particles. Such assumptions,5 in the absence 

of any notion of locality, do not seem to reflect any obvious physical 

requirement. 

We feel it of considerable interest to try to find as many 

properties of the S matrix as possible which follow from very basic and 

concrete physical requirements; i.e., which must hold if a common sense 

interpretation of the theory is to be possible. The symmetry properties 

which express Lorentz invariance are of this kind, and so are, we wish to 

maintain, the cluster decomposition properties. For this reason we have 

avoided making specific assumptions of the kind that the interactions can 

be described by a strictly local field theory, or that the s-matrix elements 

possess extensive properties of analyticity. Weak assumptions naturally 

lead to weak results and we believe that the particular property of the S 

matrix ~ich we study in this paper is only one among many of the common 

sense properties ~ich the S matrix must possess if the idea of approxi

mately local interactions is to be incorporated into the theory. 

In Sec. II we discuss the construction of state vectors which 

represent many-particle states. In Sec. III we formulate the cluster 

decomposition properties of the S matrix with which this paper is concerned. 

In Sec. IV we establish a parametrization of the S matrix suitable for a 

discussion of cluster decomposition properties, and in Sec. V we discuss 

the implications of the cluster decomposition properties for the structure 

of the S matrix. In Sec. VI we discuss a representation by diagrams of our 
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expansion of the S matrix in ter.ms of eluster amplitudes. We discuss the 

connection between these diagrams and the Feynman diagrams of conventional 

perturbation theory, and we point out that the S matrix in perturbation 

theory satisfies the cluster decomposition properties. We conclude this 

paper with same general remarks in Sec. VII. 
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II. CONSTRUCTION o:F' MANY-PARTICLE STA'IE VECTORS 

Let ~ be the Hilbert space of all states of an arbitrary number 

of noninteracting particles, all of the same kind. Let at(~) be the 

plane-wave creation operator for this particle, which we assume to be a 

spinless boson of mass m > o. 
0 

The Hilbert space J:f is spanned by the 

(improper) vectors ·obtained by multiplying the unique vacuum state vector, 

I va.c), by any number of creation operators from the left. The following 

relations hold: 

{la) 

[a(p), a(q)] = 0 , (lb) 
N N 

a(p) !vac) = 0 , (lc) 
"' 

(vac I vac} = 1 . {ld) 

The general element A(M, z) of the inhomogeneous Lorentz group 

L
0

, which has the action 

Ax = x' = Mx + z (2a) 

on a position variable x in four-space, and the action 

Ap = p 1 = Mp (2b) 
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on a momentum variable, is represented by the unitary transformation 

U(A) = U(M,z) on J{ such that 

U(M,z) fvac) • fvac) 

and 

where the four-vectors p and p' have components 

p = {p, <D) ,.,. p • = Mp = (p •, w' ) , ,.. 

and where 

2 2 l/2 w = m{p) = (m . + p ) • 
1\1 0 IW 

A position vector x has components 

x = (x, t) 
"' 

and we employ a metric such that 

(3a) 

(3c) 

(3d) 

(4a) 

(4b) 
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The Lorentz transformations A{M,z) are thus parametrized by 

the four-dimensional real matrix M in the group L
0 

of proper homogeneous 

Lorentz transformations, and by the real four-vector z which represents 

a translation. 

The collision events are described by the unitary transformation 

S which maps :U onto itself, and which satisfies the conditions 

S lvac) = lvac) , (5) 

S U(M, z) = U(M, z) S • (6) 

~Te shall next define a particular dense set of vectors in the 

n-particle subspace :U of J:L 
n 

Let U/n be the set of all complex valued functions ¢(£1 , ... , 

~n) of the n three-momentum variables £l' ••• , £n such that 

(a) ¢ is infinitely differentiable. 

(b) If D = D(p; o) is any polynomial in the components of the 
"' "' 

momentum variables p and in the differentiation symbols with respect to 
"' 

these components, then 

lim .j§ ID¢1 = 0 (7a) 
r ~co 

for all integers N, where 

2 2 2 1/2 
r = (pl + P2 + "· + P ) • "' "' ,..,n 

(7b) 
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Furthermore, let U/n be the subset of all functions in U/n 

which satisfy the additional conditions that 

variables 

(c) ~(p1 , ••• , p ) is a symmetric function of the momentum 
"' ..... n 

.£1' ••• , p • 
.... n 

(d) The function ~ is normalized to unity in the sense that 

(8) 

Thus, the set U/_ is a space of testing function appropriate 
n 

for the definition of tempered distributions6; the set of all tempered 

distributions associated with W is defined as the set of all continuous . n 

linear functionals on W • The set U/. may be regarded as the set of all n n 

n-particle momentum-space w.ve functions which are infinitely differentiable 

and "rapidly decreasing," i.e., which are also elements of the set W . . n 

Let us now associate with every ~ in ~an operator At{~) 
acting on 'J:f. by defining 

= (n! rl/2 1 d3'(pl) ••• d3(p ) ~(pl' •.. , p ) at (pl) ••. at (p ) 
(co ) ... ....n "" ,.,n "' ,.,n 

(9) 

Somewhat loosely we may say that At(~} is an operator which 

creates a cluster of n ·particles described by the momentum-space w.ve 

function rp. The. hermitian cmjugate of the operator At[¢} will be 

denoted by A(~) • 

He note the following: 

(a) If rjJ is any function in ~' then the state vector 

is a ~ vector in the n-particle subspace :u. 
n 
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(b ) The set of all vectors c At (~) I vac ) , where ~ is any 

function in U/.. , and c is any complex number, is dense in J:{ • n n 
(c) If ~ is any function in U/n' and if A(M,z) =A is any 

element of 1
0

, then there exists a unique function, denoted A~, in 

Ul such tba t ' 
n 

(lOa) 

The inhomogeneous Lorentz group therefore has an action on ~ 

such that Ul is mapped onto itself.7 We shall be particularly interested n 

in the translations A(I,z) in L, and we then have 
0 

where the function 

n 

~· (pl' • •.' Pn) = ¢(pl' • •.' Pn) exp (i ;1 z·pk) 

is in ~· 

(d) If f/J is in Wn, then the Fourier transform of f/J is 

also in Ul, and roughly speaking we may say that the state vector 
n 

(lOb) 

(lOc) 

At{f/J1 jvac) represents ann-particle state such that its wave function 

in coordinate space as \vell as in momentum space is 11 rapidly decreasing. 11 

A L9rentz transformation on such a wave function gives a wave fUnction of 

the same kind. 
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(e) Since the vectors cAt{¢ ) lva.c) are dense in J:t it n n . . 
follows that the S matrix is uniquely determined by the set of all matrix 

elements of the form 

(lla) 

- -
whe14 e ¢m and ¢n are functions in Wm and Wn, respectively. We have, 

of course, the additional trivial matriX elements 

(va.cl S fvac) = l 
(llb) 

(vacl SAt(¢} lvac) = (vacl A(¢) S fvac) = 0. 

The choice of the sets ~~ and thus of the associated set of 

vectors At{~) I vac}, where ~ is any element of one of the sets W , is n 

to a large extent arbitrary and is not to be taken too seriously. We have 

made our particular choice for the technical reason that we wish to 

describe as tempered distributions the pl.ane-w.ve s-ma.trix elements smn, 

defined by 

at (p ) I vac ) • 
"'n 

(12) 

Therefore, we shall assume that the formal expressions Smn are, for all 

m and n, tempered distributions acting on U/ • Since ¢. * ~ is an m+n m n 

element of wm+n if ¢n and ¢m are in ~ and ~~ respectively, our 

assumption serves to make all matriX elements of the form (lla) well defined. 
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There is, however, no compelling physical reason why we should 

favor tempered distributions over any other kind. We might equally well 

have chosen same other space of testing fUnctions, in which case the 

expressions Smn would be defined as distributions acting on that other 

space. instead. Our only reason for making a particular choice is that 

tempered distributions have been given particular attention in discussions 

of field theory in the past. 8 Same assumption along these lines naturally 

has to be made if the discussion is to proceed at all. We believe that 

much more could be said about the nature of the S on physical grounds. mn 

The weak assumption which we have made is sufficient, however, for our 

purposes and a more restrictive assumption as to the nature of the Smn 

will not invalidate our principal results. 
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III. FORMULATION OF CLUSTER DECOMPOSITION PROPERTIES OF THE S MATRIX 

We have interpreted the operator At(¢), where ¢ is in one 

of the sets ~' as an operator which creates an n-particle cluster 

described by the momentum-space wave function ¢, and we have noted that 

if At(¢) acts on the vacuum state vector we do get a correctly normalized 

n-particle state vector. We may now study the state vectors which arise 

when a product At(¢) At(¢"} of several of these operators acts on the 

vacuum state vector. We will only be interested in the special case of a 

product of two such operators, and we shall accordingly limit our considera-

tions to this case; the generaliZation to more than two operators is per-

fectly straightforward. 

Let {)j be the union of all the sets U/n' n > O. Let ¢' and 

¢" be any two functions in W. We consider a unit vector I (rjJ'; 0) (¢"; z)) 

in 'M defined by 

l(rfJ'; 0)(¢"; z)) = N[(¢'; O)(rjJ11
; z)] At(¢') U(I,z) At(¢11

} lvac), (13a) 

where N is a normalization constant given by 

N [(¢I i 0 )(¢"; z)] 

(13b) 

The state vector defined by Eqs. (13) may be interpreted to 

represent a state in which there is present a ¢'-cluster of particles 
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tqe;etP:_~r .wi:Jh a. displaced ¢"-cluster of particles, the amount of displace-
:·· .. •' ' 

. . . . 

. ~e:n~ be_::l.,ng described by the four-vector z. Let us regard the two momentum·-
,_:' ' ..... "·: ' . . . . . ' ~ ·. ,, 

.space ·wave functions ¢' and ¢" as fixed and consider the vector 

.j(.¢'; o)(¢"; z)) as a function of the displacement z. For a finite z, 

·th~ two clusters may "overlap" more or less in the sense that wave functions 

(say in coordinate space) overlap; but in the limit of infinite z, the 

~wo clusters become effectively separated as manifested by the fact that 

the normalization constant N tends to unity. This mode of speaking is 

admittedly somewhat loose. The picture may be clearest in the case when 

z tends to infinity along a space-like direction, although it is generally 

true that as z tends t~ infinity along any direction (or in fact in any 

manner whatsoever), the overlap of the wave function ¢' with the dis

placed wave function ¢" tends to zero. 

Thus we claim tha.t if ¢• and ¢" are held fixed, then 

lim N[(¢'; o)(¢"; z)] = 1 , (14) 
Z _.co 

where N is the normalization constant defined by Eq. (13b). We shall 

omit the proof Which follows from a simple generalization of the Riemann-

Lebesgue Lemma.. 

We are now in a position to fonnulate our cluster decomposition 

property of the S matrix as follows: 

The cluster decomposition property of the S matrix is understood 

to be the property that if ¢', ¢", 'ljr • and t" are any four functions in 

W, then 



-16- UCRL-1086Q 

lim «w'; o)(w"; z)! s IC¢';o)(¢"; z>> 
z ~ lXI 

(15a) 

= ((w'; o)l s !(¢'; o)} ((w"; o)l sIC¢"; o)), 

whe+e the state vector I~; z)) is defined by 

1(¢; z)) =U(I; z)At{¢) jvac). (15b) 

We shall include in our definition of the cluster decomposition 

property the further condition that 

lim ((w'; o)l sIC¢'; o)(¢"; z)) = o, · (15c) 
z ~ lXI 

which may be regarded as a special case of the conditions expressed by 

Eq. (15a ). 

The authors would like to maintain that the S matrix, if it is 

to be physically meaningful, must satisfy the cluster decomposition proper-

ties expressed byE~ (l5a) and (l5c). If z tends to infinity along a 

space-like direction, we may say that Eqs. (15) express a spatial cluster 

decomposition property, and if z tends to infinity along a time-like 

direction we may similarly speak of a temporal cluster decomposition 

property. 

Let us discuss, physically, the spatial cluster decomposition 

property. The matrix element ( ("'I; 0 )( w"; z ) I s IC¢ I; 0 )(¢"; z )} equals 

the transition amplitude from an initial state consisting of a ¢'-cluster 
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together with a ¢"-cluster displaced by z, to a final state consistin~ 

of a v'-cluster together with a v"·-cluster displaced by the same amount 

z. If z now grows to infinity, for instance along same fixed space-like 

direction, we would expect the transition amplitude to factor into a 

product of two amplitudes, namely the amplitude from an initial ¢'-cluster 

to a final v'-cluster, and the amplitude from an initial displaced 

¢"-cluster to a final displaced 'ljr''-cluster. Since the S matrix commutes 

with all translations, this latter amplitude is, in fact, independent of 

the displacement z, and we obtain the condition expressed by Eq. (l5a). 

A similar ar~ent leads to condition (15c), which we may regard as a 

special case of condition (15a) with the v"-cluster being "void." 

We may argue in favor of the temporal cluster decomposition 

property along similar lines. All "free" many-particle wave functions 

spread out in coordinate space with the passage of time, and after a very 

long time the probability of finding a particle in any finite region be

comes very small. Likewise such a many-particle state is spread out at 

very early times. Suppose that we follow the behavior of the particles 

described by the initial state vector 1(¢; 0)) in time. At a very 

early time, the state has the appearance of a much di~persed state of a 

number of noninteracting particles, say n in number. As time goes on 

the cluster becomes more concentrated and eventually the interparticle 

forces will play a role. During this time of interaction, the description. 

of the state as a state of n particles is not meaningful, but if we wait 

a sufficiently long time, (how long we have to wait depends on the wave 

functiqn ¢), the particles formed in the interaction will have had time 
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to become sufficiently separated from each other and the final state will 

look like a superposition of states of 2, 3, 4, .•• ,particles which do not 

interact with each other. There is thus, for every wave function ¢, a 

crudely defined time, t(¢), at which the interaction takes place. Let us 

now consider the state I(¢ 1 ; 0 )(¢"; z)) 1 where z only has a time 

component, z = (0, t). The ¢'-cluster interacts around the time t• = t(¢' ), 

whereas the ¢"-cluster interacts around the time t" = t(¢" ). The 

¢"-cluster displaced by the amount z = (0, t) interacts around the time 

( t + t" ). We thus expect that as t tends to infinity the two-cluster 

state I (,¢'; 0 )(¢"; z)} behaves like a state of two completely independent 

clusters, which is what the condition expressed by Eqs. (15) asserts. 

The cluster decomposition properties which we have defined 

correspond to very weak requirements. In particular, nothing is said 

about~ the correction term tends to zero, i.e., at what rate the limit

ing factored fo~ is assumed. To find stronger statements of cluster 

decomposition properties one might be guided either by potential scattering 

theory or by perturbation field theory and make some reasonable guesses. 

We wanted, however, to state only the minimum requirements and leave open 

the question of hovT the stronger conditions may be fo~ulated. As it 

turns out, even these weak requirements give a good deal of information 

about the structure of the S matrix. 

Let us now restate the cluster decomposition properties in the 

fo~ of conditions on the distributions S defined in Eq. (12). First . mn 

of all we note that because of the relation ( 14) we can state the cluster 

decomposition properties expressed by Eqs. (15) in the fo~ 
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lim (vac! A{'\jr'1
) u-1 (I,z) A{\jr 1 ) SAt{~') U(I,z) At(¢11

} jvac) 
z -+co 

(16a) 

and 

lim (vacl A{'if') SAt{¢'} U(I,z) At{¢rr} lvac) = 0. (16b) 
z -+ 00 

The ab~ve conditions at·e equivalent to the conditions 

1 -'- iz•6
11 

{ t I tt n, t I II tl) 
.r..w. e S ql , ••• ,a 'ql ,. •• , q , :Pl , .•• , :p ·, Pl , ••• , p m+I•, n+s -v "'"'Il ,., ,.,r ,... --.n "' ..... s 

Z -+'CO 

S ( I I I 1) 8 ( II II, It ") = mn ~l , ••• , ~; ~1 , ••• ,En rs ~1 , ••• , ~r' ~1 , .•• , Es ' 

where 

and 

r s 

-611 = L. Clu" 
U=l 

L. p If 
v 

V=l 

s 

{17a) 

lim S ( I I • f I II tl ) ql , ••• , a ':P1 , ••• , n ':Pl , ••• , P m, n+s ,., ..... "'Il ,., "-n "' -s z -+co 
exp (i L. z·pu11

) = o. 
U=l 

(17b) 

The limits in Eqs. (17) are to be understood as limits of tempered 

distributions. 
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Let us focus our at·:.ention on the first of these conditions; the 

discussion of the second condition does not introduce any new elements. 

First of all we note that the arguments q', p' and q" p" occurring in 
..... ' "' ,.. "' 

the two factors in the right-band side of Eq• (17a) are all independent; 

therefore, we do not violate any of the rules against the multiplication 

of two distributions. Secondly, we observe that Eq. (17a) trivially 

implies Eq. (16a), whereas the converse is not immediately obvious. Equation 

(16a) implies that a relation like {17a) holds when both members act on 
. . * 

testing t'lmctions of the special form v '* ( q 1 
) v" ( q" ) ¢ 1 ( p' ) ¢" (p 11 

) , but 
N 1"\1 t'\,1 "' 

perhaps not when they act on all testing functions in the space W . 
- m+n+r+s 

However, since S is unitary we can approximate an arbitrary testing function 

by a sum of testing t'lmctions of the special product form such that the 

remainder can be kept as small as we please, uniformly in z, and the 

relation (17a) thus follows from the relation (16a). 

Before we conclude this section we wish to give an example of an 

'13 matrix" which is unitary and which satisfies the conditions (5) and (6 ), 

but which violates the cluster decomposition properties, and indeed also 

violates common sense in a most obvious way. 

Let h(p1, p2, p3' p4 ) be any suitably well-behaved real function 

of the four-momenta p1 , .•• , p4, invariant under all proper homogeneous 

Lorentz transformations; i.e., for every M in L
0 

we have h(Mp1 , Mp2, Mp
3
, 

Mp4) = h(p1 , p2, p
3
, P4 ). We construct the hermitian operator H by 
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where 

. 2 

{

B(p•p- m ) 
B (p; m ) = 0 

. 

+ 0 0 otherwise 

for forward time-like p 
(18b) 

We then construct the false "s matrix" S 11 by 

8 11 = exp(iH). (18c) 

It is easy to see that S 11 commutes with all Lorentz transforma-

tions U(M,z ), that 5 11 satisfies the conditions (5 ), and that S" is 

unitary. Acting on two-particle states S" describes elastic scattering 

of the two particles. However, S" acts like the identity on any state of 

more than two particles 1 which is obviously absurd. The1·efore, S 11 clearly 

violates the cluster decomposition properties which we have formulated. 
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IV. PARAMETRIZATION OF TIIE S MATRIX BY CLUSTER AMPLITUDES 

To study the implications of the cluster decomposition properties 

for the structure of the S matrix, we shall first par-ametrize the S matrix 

in a particular way. It is to be noted that this pa1-ametrization is always 

possible and does not in itself imply any cluster decomposition properties. 

Let r} (p) and a (p) be two c-num.ber functions of the momentum 
"' ,.., 

variable p. Let P{at (p ); a(;)) be any formal power series functional 
"' "' "' 

of at (p) and a(p ); i.e., P is a formal sum of multilinear functionals 
"' .... 

of at(£) and a(~). 't-le define a li~ mapping N, of the set Jc of 

all such formal power seriies functionals into the set J g of all formal . 
power series operators acting on the Hilbert space ~' by 

' 
(l9b) 

where c
1 

and c2 are any two complex numbers, and where P
1 

and P2 

are any two elements of J c, 

The formal power series operator 

(20) 

is thus defined without any ambiguity as a formal power series of ordered 

operators which are multilinear expressions in the creation and destruction 

operators at (p) and a(p ). 
,.., "' 
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We next consider the inverse of the mapping N. To shorten our 

formulas we introduce the follmring abbreviations: 

t at (p) = J; d3(p) a(p) ~t(~) a· a =a(p)· 1 
"' ... (oo) "' "' , 

(2la) 

c} . a = at (p) • a(p) = J; d3(p) at (p) a(p) ' 
"' ..... (oo) "' . "' "' 

(2lb) 

and 

(2lc) 

If now P{at(p); a(p)) is defined as in Eq. (20), we have the 
..... "' 

following simple identity 

t t at·a t 
P{a (p); a(p)) = e~ ·a (vacl e P{a (p); a(p)} 

~ ~ ~ ~ 

which is easily proved from 'relations (1). 

t a·a e lvac} 1 (22) 

It follovrs that if X is any operator in J q' i.e. 1 any formal 

power series operator, then 

X = N e·-a ·a (vacl e X e lvac} • ( 
t at •a a· at ) 

(23) 

We now define the scattering functional F by 
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and from what has been said it fo:Uows that the S matrix is given by 

(24b) 

It might be emphasized that all the relations discussed in this 

section are relations between for.mal power series and, in a sense, cambina-

torial relations; therefore, no question of convergence is involved, and 

the manipulations are legitimate. 

The scattering functional F, which is a formal power series 

functional of at(~) and a(~), d.etermines the S matrix tmiquely, and 

vice versa. All S-matrix elements of interest may, in fact, be obtained 

by a process of functional differentiation of the expression F exp(at • a) 

and a(p), 
"" 

after which vre set at (p) = a(p) = 0. 
"" "' 

By differentiating m times with respect to the first of these functions, 

and n times with respect to the second, we thus get the matrix element 

exhibited in Eq. (12), namely s . 
mn 

Let us consider the properties of the scattering functional 

implied by the conditions (5 ). i1e immediately get the relations 

and 

SOm = SmO = 0 for m > 0 , Slm = Sml = 0 for m > 1 , 

(25a) 

(25b) 
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for the distributions S defined in Eq. (12 ). Consequently, the scatteJllo mn 

int functional F may be w-~itten, in a unique way, in the form 

(26a) 

where we may write the functionals nmn {c/; a} in the form 

(26b) 

Formula (26a) merely asserts that the terms linear in at (p ), ,... 

as well as the terms linear in a(p), are absent in the formal power series 
"" 

expansion which represents the scattering functional F. That this is in 

fact the case we see by inspection of the defli1ition (24a) for F, when we 

take the conditions (25) into account. For reasons that will became clear 

later we have chosen to introduce the new functionals n , 't-Thich are of mn 

order m in o: t, and of order n in o:, and to write F in the par-

ticular form shown in Eq. (26a). We have finally introduced the quantities 

Kmn to express the functionals nmn explicitly as in Eq. (26b). Without 

loss of generality we may select the expressions K to be symmetric mn 
functions of the variables ~l' ••• , ~ as well as of the variables 

p1, .•• , p, and we shall assume in the following that the Kmn have this ,..., ... n 

property. 
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We note that each expression Kmn, m ~ 2, n ~ 2, is formed from 

a finite number of distributions S 1 , , where m ~ m 1 and n ~ n' • The mn 

assumption that the expressions Smn are tempered distributions implies 

that the expressions ~ are also tempered distributions. The set of 

distributions Smn determines the distributions Kmn uniquely, and vice 

versa. The formulas (26), which relate the distributions Kmn to the dis

tributions Smn' are thus of a purely combinatorial nature, and again no 

questions of convergence are involved. 

We shall call the distributions Kmn cluster amplitudes and we 

may now combine Eqs. (24} and (26) to obtain a parametrization of the 

S matrix in terms of these amplitudes, namely 

(27) 

This expression for the S matrix is the goal of the discussion 

in this section.9 We emphasize again that the possibility of this particu-

lar parametrization follows from the conditions (25) only; therefore, the 

expansion {27) in no way implies any cluster decomposition properties of the 

S matrix. The formula (27) itself is, in a sense, almost completely 

trivial, and we could have stated it directly. However, our purpose with 

this somewhat lengthy discussion vre.s to state a fevr simple facts and 

definitions which we will make use of in our study of the implications of 

the cluster decomposition properties. 



-27- UCRL-10860 

Before we conclude this section we note that the invariance of 

the S matriX under translations implies that for every four-vector z 

(28a) 

from which it follows that 

(28b) 

for every four-vector z. 
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V. IMPLICATIONS OF THE CLUSTER DECOMPOSITION PROPERTIES 

In this section ire shall study the conditions wM.ch the scatter-

ing functional F and the cluster amplitud.es Kmn must satisfy if the 

S matrix satisfies the cluster decomposition properties postulated in 

Sec. III. 

Let us consider Eqs. (17); to these e~~tions we add the equation 

obtained by complex conjugation of Eq. (17b ). As we let m, n, r, and s 

take on all positive integral values, we thus obtain an infinite set of 

equations which can all be summarized compactly by a condition on the 

generating functional F(c/; o:) exp(o:t • o:), namely the condition 

exp [ ~1(~~ + eiz·p o:2 (~)) • at(~)J jvac} (29) 

o: t • a o: • at a t • a a • at 
= {vacj e 1 · S e 1 lvac} {vacl e 2 S e 2 !va.c} , 

where o:
1 

t (;!? ) , o:2 t ( ~ ) , a1 (~ ) and o:2 (~ ) are independent functions of the 

momentum variable p. The corresponding condition on the scattering 
N 

functional F is 

(30) 
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where we have made use of the fact that, in the sense appropriate for dis-

tributions, 

lim f 3 [ t iz • p t -iz • p ] c1 (p) o:1 (p) e o:2 (p) + o:2 (p) e a1 (p) = o. (.31) 
( ) 

,., "" #'\.# • "' #'ltJ Z .,_.co 00 • . . . 

To avoid any possible misunderstanding we state that Eqs. (29) 

through (31) are statements about limits of tempered distribu-tions, and 

are to be understood as such. By functional differentiations of the 

functionals occurring in these formulas 't-Te recover the distributions Smn, 

delta functions in momentum space, or products of distributions Smn and 

delta functions. In studying limits of this kind it is thel~efore permis-
t . t 

sible to treat the functions a1 (_E), a2 (£ ), a 1 (£) and a2(;e) ~ if 

they~ testing functions, although the nature of these functions is 

really :iJmnaterial since they play only an "algebraic" role in the formulas. 

If we now consider Eq. (26a ), we may reformulate condition (30) 

as a condition on the multilinear functionals n as follows mn 

(32) 

Relations (32) are thus a consequence of the cluster decomposition 

properties expressed by Eqs. (17), and, conversely, relations (32) imply 

relations (17)• We wish to emphasize here that the fact that these two 

formulations of the cluster decomposition properties are equivalent is, in 

essence, nothing but a combinatorial theorem. 
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Let us next restate condi tfons (32) in the form of conditions on 

the cluster amplitudes Kmn' introduced in Eqs. (26). Taking into account 

our convention that the ~ (~; ~) are invariant under any permutation of 

the variables q among themselves and under any permutation of the variables 
"" 

p among themselves, we thus get from Eqs. (32) -
lim K (q1, 

mn"' z ~(1(1 

iz..!~ ••• , .9m; £1' ... , ~n) e = 0 , 

where the four-vector A is any expression of the form 

n m 

(33a) 

(33b) 

and Where each one of the numbers e is either zero or one, except that 

they are neither all equal to zero nor are they all equal to one. The limit 

in Eq. (33a) is of course to be interpreted in the sense appropriate for 

tempered distributions. 

What condition (33a) roughly states is that the cluster ampli-

tude K does not contain any delta functions, nor any derivatives of mn 

delta functions, the presence of which would imply conservation of energy 

or momentum within a subset of variables picked from the set of variables 

10 q1, ••• , ~~ P1, ••• , Pn· On the other hand, ~ does have a delta 

function as a factor which implies conservation of total four-momentum of 

the particles whose momentum variables occur in K • We shall return to mn 

this question later. 
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It may be ilhm.tinating to consider the operator 8 11 defined in 

Eqs. (18) as an example of a false "S matrix11 for which the cluster decomposi-

tion properties are violated. Since s" still satisfies conditions (25 ), 

·we may represent S" in the form (27), where the corresponding "scattering 

functional 11 F" is expressed [as in Eq. (26b )] in terms of certain distri-

butions K ". 
mn In this particular case we have 

and furthe~ore we have the particular relation 

K 11 = 0 whenever m ~ n, mn 

. l33"(~l' ~' ~3;~1' ~2' ~3) = -(l/l2 ) ~ 83(~1 1 -il 1 ) K22"(,S2
1

' ,93 1 ;~2 1 '~3 1 )' 
(34) 

where the sum is over all pe~utations (~1
1 , ~2 

1
, ,33

1
) of (_sl' .32 ; .3

3
) 

and all permutations (~1
1 , £2

1
, £3

1
) of (£1, £2, £

3 
). The distribution 

13
3

" therefore violates the cluster decomposition property expressed by 

Eq. (33a). 

Since we know that the cluster amplitude K must contain as mn 

a factor a delta function which enforces conservation of total energy and 

total momentum in the scattering process, we may exhibit this factor 

explicitly and write 

n 

X (~1 (2£1.)(ps))-l/2) Cmn(ql' ... , ~; Pl' .•. , pn) 

in which case we may rewrite Eq. (26b) in the form 
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m n 

x(n o (q; 
1 + r 

I'= 
mo) (2ru(,Sr))l/2 c/ (~r)) (~1 o+(ps; mo) (2ro(£s))l/2 a(£s)) 

m n (35b) 

Xo4(I: qr- E Ps)cmn(ql' •.• , ~; Pl' .•• , pn) 
ir=l S=l 

where the function o+(p; m
0

) is defined in Eq. (18b). 

We shall call the distributions C the invariant cluster mn 

amplitudes. These amplitudes are defined only on the physical ~~' 

Jnmn' in momentum space defined by the conditions 

q = r (~r' ro(~l· ) ) , p = s (£s' ro(£s)) ' 
m n (36) 

E q = E Ps • 
r=l r S=l 

These amplitudes. are to be regarded as distributions associated with this 

manifold. This manifold Jnmn is of dimensionality (3m+ 3n- 4); since 

the distributions C have indices m and n, which satisfy m ~ 2 mn 

and n ~ 2, we consider only the manifolds ~ for indices m and n, 

which satisfy the same conditions. 

The name invariant cluster amplitude derives from the fact that 

the necessary and sufficient condition for the S matrix to be invariant 

under all Lorentz transformations is that the distributions Cmn be in

variant under all Lorentz transformations in the sense that, for any matrix 

Min L, 
0 
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for all points q, p in the manifold hJ . This condition is meaningful mn 
since the manifold /11mn is mapped onto itself under any Lorentz transfor-

mation. The distributions Cmn are naturally invariant under all permuta

tions of the variables q among themselves, and under all permutations of 

the variables p among themselves. 

The reason why we did not introduce the distributions Cmn 

immediately in our discussion was that we did not wish to mix two separate 

issues, namely the cluster decomposition properties of the S matrix, and 

the invariance of the S matriX under homogeneous Lorentz transformations. 

A moment's reflection will show that our discussion applies equally well 

to nonrelativistic scattering theories, as it should, provided we employ 

the nonrelativistic expression for the energy of a parM.cle as a function 

of its momentum instead of the relativistic expression ro(p). Furthermore, 

the "covariant notation" employed in connection with the amplitudes 

Cmn(q1, .•. , qm; P1, .•. , Pn) can easily lead to misunderstandings as it 

obscures the fact that the invariant amplitude Cmn is not defined at all 

outside the manifold h1 . Therefore, Eq. (35b) must be understood in the mn 

sense that the integrations over the fourth components of the four-momentum 

variables q and p are to be carried out first, leading to the form (26b), 

with Kmn replaced by the right-hand side of Eq. (35a ), if we like. In 

this paper the question of whether it may be useful to extend the definition 

of the distributions Cmn outside the manifold /1~ is not considered. 
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-

We have stated that the C may be regarded as distributions acting mn 
on suitable testing functions defined on the manifold /11mn. A precise 

statement of the nature of such distributions would involve a technical 

· discussion of the nature of the corresponding testing functions, which we 

feel we can properly omit. Anyway, it should be clear that the fundamental . 

property of' these distributions is that K 1 as given by Eq, (35a), is a .mn 

distribution of' the postulated kind; i.e., a tempered distribution for the 

purposes of' this paper. 

The cluster decomposition property of the distributions Kmn' 

as expressed by Eqs. (33 ), may be reformulated as a similar condition on the 

distributions Cmn' namely 

iz·b. l:Un C ( q1, ••• , a ; p1, ••• , p ) e = 0 , 
z -+ co mn "'Ill n 

(38a) 

where the four-vector 6 is any expression of the form 

n m 

6= L. e"p- L. e' 
s=l s s r=l r. qr ' 

(38b) 

where each one of' the numbers e is either zero or one, except that they 

are neither all equal to zero, nor all equal to one. The interpretation of' 

the relation (38a) is again that the distributions Cmn cannot contain any 

delta functions, or derivatives of' delta functions, the presence of' which 

would imply conservation of energy or momentum for a subset of the particles 

whose momentum variables occur in the expressions Cmn. 
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VI. REPRESENTATION OF THE PARAMETRIZATION OF THE S MATRIX 

BY CLUSTER AMPLITUDES IN TERMS OF SCATTERING DIAGRAMS 

It is possible to represent the expansion of the S matrix given 

in EQ. (27) by a system of very simple diagrams, 11 and as such a represen-

tation may aid in an understanding of the nature of this expansion, we 

shall discuss the construction of the diagrams. 

We thus associate with the cluster amplitude Kmn(~1, .•• , ~; 

El' ••• , ~n) {or, if we like, with the invariant cluster amplitude Cmn) 

a diagram like the one shown in Fig. 1. The n lines which enter the 

diagram from below, and which we might label by the momentum variables 

p1, ••• , p , represent n particles initially present, "rhereas the m lines 
"' ,...,n 
which leave the diagram above, and which we might similarly label by the 

momentum variables ~1' ..• ' ~~ represent m particles which are present 

in the final state. 

Let us now consider the matrix element of the S matrix which 

represents a transition amplitude T from a state of n initial particles 
mn 

to a state of m final particles, namely 

. (vacl A{¢"} SAt{¢'} lvac) = T = L.T (D), 
m n mn Dmn (39) 

where ~ 1 is a normalized and symmetrized n-particle momentum-space wave 
n 

function, and ¢ " m 

space wave function. 

is a normalized and symmetrized m-particle momentum-

To find the matrix element T we have to pick out . . mn 

all terms in expansion (27) that have, as factors, at most n destruction 

operators, and at most m creation operators• clearly there is only a 
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finite number of such terms. We may describe all these te1~s graphically 

by drawing all possible diagrams composed of one or several connected 

components, each connected component being either a single vertical line, 

or else a diagram like the one shown in Fig. 1, 't-There the components are 

drawn next to each other and not interconnected in any way; the total 

number of lines entering from below is n, whereas the total number of lines 

leaving the diagram above is m. For every factor n 1 m'n in the expansion 

(27) we have a component in the diagram of the kind shown in Fig. 1, and 

for every pair of momenta ( q 1 , p 1· ) that do not occur as arguments in the 
'V IV 

distributions K m'n' in the integral giving a particular contribution to 

the matrix element in Eq. (39) we have a vertical line. We note that if 

any particular ter-m in the expansion is to give a contribution which is 

nonzero, then the number of variables q "left over" must equal the number 
"' 

of variables p "left over." .... 
To every such diagram D, there corresponds a contribution Tmn(D} 

to the transition amplitude T , and by summing over the contributions mn 

associated with all the diagrams we obtain T , as stated in Eq. (39 ). mn 

It is hardly necessary to state the detailed rules vihereby the numerical 

value of T (D) may be found, given the diagram D, as these rules should mn 

be obvious. Instead we can illustrate the procedure by an example: con-

sider a matrix element describing four incident and five outgoing particles. 

The possible different types of diagrams are shown in Fig. 2. The contri-

bution to the matrix element associated with the diagram "a" is thus given 

by 
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T54 (Da) = ~oo) d.(_s) d(!:) ¢f * (;j) ¢i (!:) K54 (Sp '' •' .S5; ~1' '' '' ~4) ' 

(4oa) 

whereas the contribution associated with all diagrams of type "b" is given 

by 

T54(Db) = (60)1/2 ~oo) d(~) d(~) ¢f*(~) ¢i(~) 1]2(~1' .92' ,93; ~1' ~2) 
(40b) 

where 

¢. (p) = ¢. (pl' ••• ' p4) • 
J.. "' J.. "' "' 

These diagrams can be compared with the Feynman diagrams of per·

turbation theory,12 and we next comment on the relationship between these 

two types of diagrams. Let us therefore consider the S matrix within the 

framework of perturbation theory. 

To find the matrix element describing a transition from n initial 

to m final particles we must consider all Feynman diagrams with the 

corresponding system of external lines. Among these there will be diagrams 

that consist of a single connected piece, as well as diagrams composed of 

several disjoint components~ Now a connected diagram like the one shown 

in Fig. 1 corresponds in perturbation theory to the sum of all connected 
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Feynman diagrams that have the corresponding system of external lines. The 

amplitudes Kmn therefore simply describe the sum of all connected Feynma.n 

diagrams, or, in other words, a process in which all the particles involved 

really interact with each other. Our disconnected diagrams, on the other 

hand, correspond to disconnected Feynman diagrams, and thus describe 

processes in which two or several clusters of particles interact indepen·· 

dently of each other. 

As is well known, there corresponds to every connected Feynman 

diagram a delta fUnction as a factor in the matrix element which implies 

over-all conservation of four-momentum, but there is no other delta fUnction 

which would imply conservation of energy or momentum for a subset of the 

particles whose momentum variables occur in Kmn. This property makes the 

identification of our connected diagrams with the sum of all corresponding 

connected Feynma.n diagrams unambiguous, and expansion ( 27) is therefore 

nothing but a statement of the combinatorial rule whereby one obtains the 

contribution to the matrix element from all diagrams, given the amplitudes 

corresponding to all connected diagrams, and it is easily verified that 

this correspondence holds in every detail. 

We expect, of course, that the perturbation theory formulation 

of field theory should automatically contain the cluster decomposition 

properties since a local interaction is introduced from the beginning, and 

the conclusion that this is the case is therefore almost a triviality. 

Thus, within the framework of perturbation theory, the cluster 

expansion given in Eq. (27) has a very trivial interpretation. In the case 

of a general S-matrix theory, not necessarily based on a local field theory, 



-39- UCRL-10860 

we may say that the procedure leading to Eq. (27), which can always be 

carried out for a physically meaningful S matrix, tells us how to find those 

contributions to the S-matrix elements which corl·espond to the situation in 

which all the particles inte1~ct mutually. Therefore, these contributions 

have to vanish when the particles be,:::ome separated into two or several 

clusters of particles such that the "regions of interaction" of the separate 

clusters have large separations in space and time. 

In this connection we wish to discuss the relevancy of expansion 

(27) to the so-called substitution principle (or crossing symmetry) in 

particle interactions. 13 It is a commonly held belief that the matrix 

elements for two different processes Which' are described by diag~s with 

the same number of external lines are related, and that one amplitude can 

be obtained from the other by a process of analytic continuation, which, 

if it is to have any physical meaning at all, involves only those invariant 

scattering parameters which can actually be varied in the experiments. A 

detailed general formulation of this principle, Which would involve a 

detailed statement of the domain of analyticity together with a detailed 

statement of the path to be followed in the continuation, has not been 

given yet. In spite of this, it is believed--and we share this belief-

that some principle of this kind relating large classes of otherwise com

pletely unrelated processes holds, and that it represents an important, 

although presently not well understood, feature of elementary particle 

interactions. 

To illustrate this principle let us consider the diagrams shown 

in Figs. 3 and 4. It should be clear that whereas the amplitude corresponding 
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to the diagram in Fig. 4 might be related by an analytic continuation to 

the amplitude corresponding to diagram (a) in Fig. 3, the total amplitude 

corresponding to beth diagrams in Fig. 3 cannot be obtained from the ampli

tude described by the diagram in Fig. 4. We therefore believe that the 

substitution principle, if valid at all, can hold only for the connected 

diagrams; i.e., Cmn might be obtainable by analytic continuation from 

Cm'n' whenever (m + n) = (m' + n" ). Expansion (27) thus enables us to 

identify the partial amplitudes of the S matriK for which a substitution 

principle might be formulated. We are, of course, not in a position to say 

anything more about the substitution principle since we assumed so little 

about the nature of the interactions. 
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VII. CONCLUDilfG REMARKS 

We have studied some very simple propel'"ties of the S matrix which 

reflect the approximately local nature of the interparticle interactions. 

We should again emphasize that our considerations apply both to nonrelati-

vistic and relativistic scattering theory. We have only made use of the 

translational invariance of the scattering description, but not of any 

invariance under the homogeneous Gallilei or Lorentz groups, except in the 

discussion of the distributions Cmn' which refers specifically to rela

tivistic scattering theory. 

Our results are not in any way surprising. Hi thin the framework 

of the perturbation theory approach to field theory, these cluster decam-

position properties are a triviality. If, again, we consider S-matrix 

theory in the spirit of Heisenberg's original for.mulation14 we note, as 

we have stated, that our conditions (33) together with expansion (27) are 

at least implied in Heisenberg's work, although the conditions are not 

spelled out in full detail. We felt it would be worthwhile to emphasize 

the importance in principle of these conditions, to formulate them in 

detail, and to trace their origin back to the very transparent physical 

conditions discussed in Sec. III. 

We feel that the simple cluster decomposition properties which 

we have studied are only the simplest examples of a whole hierarchy of 

related properties that all derive from the approximately local nature of 

the interaction. On the next level we would expect to find conditions 

which would tell us something about the manner in which the remainder in 

Eqs. (15) tend to zero. We could, for instance, consider a three-particle 
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scattering event. For a certain initial configuration this ev~nt would 

look as if particles l and 2 would scatter first, after which one of the 

final particles in the first scattering event would scatter with particle 3· 

The bona-fide three-particle cluster amplitude ~3 must therefore, for 

certain initial configurations, "factor" approximately in such a way that 

the event can be described as a succession of two two-particle scattering 

events. This kind of cluster decomposition property is certainly different 

from those that we have studied, but it is likewise a property which must 

be satisfied if the S matrix is to have a sensible interpretation. 15 As 

far as we can see, this property, as well as the direct generalization to 

several particles, does not follow from the properties already assumed, but 

:b..a.s to be imposed separately. We cannot display an example in support of 

t.his belief, as it is a nontrivial problem to find an S matrix that is 

unitary and that has the structure given by Eq. (27) and condition (33). 

We have no reason to believe that the additional cluster decom-

position property just mentioned in any way exhausts the possibilities, but 

rather that more and more such properties may be for.mulated and supported 

by physical arguments. It then becomes an interesting problem how to find 

all of these without resorting to same kind of configuration space formula-

16 tion of scattering theory. 
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FIGURE CAPI'IONS 

Diagram corresponding to the cluster amplitude l<bm. 

The four diagrams contributing to the matriX element that describes 

tour incident and five outgoing particles. 

The tvo diagrams contributing to the matrix element that describes 

three incident and three outgoing particles. 

The only diagram contributing to the matrix element that describes 

tour incident and two outgo:i.ng particles. If' crossing symmetry 

holds, this diagram is related to the diagram of' Fig. 3a. 
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