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ABSTRACT

_Conditions on the S matrix which arise from the assumption
that it describes interactions which are at least approximately
local are discussed. Particuler conditions of this kind, which
may be called cluster decomposition properties, are formulated
and the impiications of.these conditions for the structure of
the 5 matrix are studied. The discussion is restricted to the
case of & world in vhich there is only one kind of particle,
namely a spinless boson of finite mass. The considerations pre-
sented apply equally well to relativistic, as well as to nonrela-
tivistic scattering theories. It is not assumed that the S matrix
can be derived within the framework of a sirictly local field
theory, nor is it assumed that the S-matrix elements possess any
particular properties of anal&ticity. As an illustration it is
pointed out that the cluster decompositibn properties assumed
hold good in the conventional perturbation theory approach to

field theory.
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I. INTRODUCTION

In the S-matrix description of collisions between particles,l
attention is focused on the relationship between an initial asymptotic
configuration of particles and ‘the corresponding final asymptotic con-
figuratioﬁ; what happens "during" the collision event is not described.
The basic assumption of S~matrix theory is that the 1n£eractions between
the particles are, in scme sense, of short range, and because of this
property of the interaction it is possible to describe a state eifher in
terms of an initial asymptotic configuration of noninteracting particles
or in terms of a final asymptotic configuration of noninteracting particles.
In the asymptotic limits, the particles beéhave like noninteracting parficles
simply because their mean separations tend to infinity and hence the intef—
actions become ineffective.

The detailed.maﬁhematical formuation of these ideas is wellw

known and has been given elsewhere;2 we shall not repeat this formulation
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in the general case of an afbi%rary nunber of different kinds of particles.
We maj, however, mention the following: |

The Hilbert space H of a1l possible states of the world is the
Hilbért space appropriate to the description of all possible states of an

arbitrary number of noninterécting particles of which there are a finite

numbér of different kinds. The growp io of all inhomogeneous Lorentz
transformations, or more precisely the universal covering group of io’
is realized as a group of unitary transformations on H.

Thé S matrix is a uwnitary mepping of H onto itself. The Lorentz
invariance of the description of scattering is expressed mathematically by
the condition that S shall‘cammute with the unitary transformations which
represent fg. From this requirement it follows that S preserves the
unigque vacuum state, |vac), and that S also preserves the various possible
one-particle subspaces of 34, or, more precisely, that S can be so
selécted without loss of generality. This follows from the fact that the
group fo acts irreducibly according to the identity representation on the
vacuum state, and irreducibly according to one of the representations
Pm,s’ m > 0, on each one of the one-particle subspaces of N. on the
remsinder of :ﬂ, fo .acts according to the various tensor products of
representations of»the type Pm,s; the resulting representation of Eo
on & is accordingly highly reduciblé.3 For this reason the action of
S on ¥ is by no means unique.

As we have sai&, a basic reQuirement on the S matrix is thus

that it shall commute with the unitary transformations representing Lo'

Additionally, we may reguire that £ shall commute with the unitary or
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anti-unitary transformations on 34 by vhich other symmetry groups which
we believe in are realized. -

However, these conditions are not sufficient for the S matrix to be
meaningful physically. It is our purpose in this paper to consider some
additional conditions which we believe every physically meaningful S matrix
must satisfy.

The conditions we wish to impose derive from the idea that the
interparticle interactions are of short range; therefore, the outcome of a
scattering event involving two partiéles that are close to each other at
some time does not depend on the presence of other particles very far away.
To drematize the situation we may say that the presence of particles on the
Moon must not affect the outcome of events in a bubble chamber on the Earth.

It should be noted immediately that this property of the S matrix
by no means follows from iﬁs unitarity and its invariance under conjugation
by Lorentz transformations, but that it must be imposed as a sepérate
physical condition. |

For the case that the S matrix can be obtained within the frame-
work of a local Tield theory the condition just mentioned can reasonably be
expected to hold, and it does hold. One could well argue that one reason
for trying to describe scatteringAevents in terms of a field theory is Jjust
to ensure the possibility of at least a rough space-time description of
scéttering events which conforms to the idea of short-range interaqtions
between the particles. Looked upon from this point of view, the field
theory approach seems eminently reasonable. On the other hand, one may

well ask whether it is reasonable to impose the condition of strict
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microcausalityu in field theory in view of the somevhat unphysical and
obscure nature of this condition. There can be no doubt, however, that a

satlisfactory theory must be vhat we may call gg?roximately local, and that

a space-time description must be possible at least in an approximate sense,
i.e., for distances larger than the characteristic range of the interactions.
A "pure" S-matrix theory devoid of any notions of si)ace , time, and locality
would be highly unphysical because it would be unrelated to the obvious
classical déscription of what takes place in a bubble chamber or emulsion.
In this paper we shall not base our discussion on a field theory.
We shall assume an S matrix vhich is unitary and which commutes with the
Lorentz group. We shall theﬁ impose particular physical requirex;xents on

the S matrix, which we shall call cluster decomposition properties, in the

form of transparent physical conditions on physically observable quantities.
We shall then find the mathematical expression of these conditions in the
form of statements about the structure of the S matrix. Physically, the
cluster decomposition properties mean that the outcome of a scattering
event, in vhich two or several particles come in close contact with each
other is wnaffected by the presence of any number of particles very far
awvay, or, differently stated, that several scattering events spatially
separated from each other by large diéta.nces are independent of each other.
Ina sen;e the S matrix must therefore "factor" into & product of S matrices
describing the various independent events.

For simplicity we shall restrict our study to the case in which
there is only one kind of particle in the world, namely a spinless boson of

Pinite mass n x
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It might be stated explicitly that we make no assumption about
any possible analyticity properties of the S-matrix elements as functions

5

of the four mcmenta of the particles. Such assumptions,” in the absence
of any notion of locality, do not seem to reflect any obvious physical
requirement.

We feel it of considerable interest to try to find as many
properties of the S matrix as possible which follow from very basic and
concrete physical requirements; i.e., which must hold if a common sense
interpretation of the theory is to be possible. The symetry properties
which.express Lorentz invariance are of this kind, and so are, we wish to
maintain, the cluster decomposition properties. For this reason we have
avoided making specific assumptions of the kind that the interactions can
be described by a strictly local field theory, or that the S-matrix elements
possess extensive properties of analyticity. Weak assumptions naturally
lead to weak results and we believe that the particular property of the S
matrix vhich we study in this paper is only one among many of the common
sense properties which the S matrix must possess if the idea of approxi-
mately local interactions is to be incorporated into the theory.

In Sec. II we discuss the construction of state vectors which
represent manyoparticle states. In Sec. III we formulate the cluster
decomposition properties of the S matrix with which this paper is concerned.
In Sec. IV we establish a parametrization of the S matrix suitable for a
discussion of cluster decomposition properties, and in Sec., V we discuss
the implications of the cluster decomposition properties for the structure

of the S matrix. In Sec. VI we discuss a representation by diagrams of our
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expansion of the S matrix in terms of cluster amplitudes. We discuss the
connection between these diagrams and the Feynman diagrams of conventional"
perturbation theory, and we point out that the S matrix in perturbation
theory satisfies the cluster decomposition properties. We conclude this

paper with some general remarks in Sec. VII.
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IT. CONSTRUCTION COF MANY-PARTICLE STATE VECTORS _
Let ¥ be the Hilbert space of all states of an arbitrary number
of noninteracting particles, all of the same kind. Let af (B) be the
plane-wave creation operator for this particle, which we assume to be &
spinless boson of mass m, > 0. The 3ilbert space H s spanned by the
(improper) vectors 'obtained by multiplying the unique vacuum state vector,

Ivac),- by any number of creation operators from the left. The following
relations hold:

[2(2); " (g)] = 83(p - 9) (1a)
[a(p), a(g)] =0, (1b)
a(p) |vac) = 0, (1c)
(vac | vac) = 1. (14)

The general element A(M,z) of the inhomogeneous Lorentz group

i o» Vhich has the action

i
x—
i

Ax Mx + 2 (2a)

on a position'variable x in four-space, and the action

Ap = p' = Mp (2v)
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on a momentum variable, is represented by the unitary transformation

U(A)= U(M,z? on ¥ such that
v(M,z) |vac) = |vac) (32)
and
u2) o (p) UR2) = (/)2 2P ST ey, (3b)
vhere the four-vectors p and p' have components
= (p, ®) p'=Mp = (p', 0'), (3¢)

~ and where

2 2,1/2
w=w(g)=(mo-+g)/ . (34)
A position vector x has components
x= (%, t) (ka)

and we employ a metric such that

x-p:cot-‘;“c-p. (hb)
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The Lorentz transformations A(M,z) are thus parametrized by
the four-dimensional real matrix M in the group Lo of proper homogeneous
Lorentz transformations, and by the real four-vector 2z which represents
a translation. |

The collision events are described by the unitary transformation

S vhich maps # onto itself, and which satisfies the conditions
+ \
5 lvac) = |vac) , S a (B) [vac) = a (g) Iva'c) s (5)
S U(M,z) = U(M,z) S . (6)

We shall next define a particular dense set of vectors in the
n~pérticle subspace Mn of &,
Let Wn be the set of all complex valued functions ¢(£l’ cee,
gn) of the n three-momentun varisbles p,, ..., p, such that
4 (a) P 1is infinitely differentiable.
(b) If D= D(E; 9) 1is eny polynomial in the components of the
momentum va.ria.bles p and in the differentiation symbols with respect to

~

these components, then

1im & gl = 0 (72)

Y -

for all integers N, vhere

2 )1/2

2 2 ;
r=(gl +Py *eee B . (o)
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Furthermore, let Wn be the subset of all functions in Wn
vhich satisfy the additional conditions that |

(c) ¢(gl, veey ) is @ symmetric function of the momentum
variables Dys eees Py |

v

(d) The function $ is normalized to unity in the sense that
2
f( ) B(py) +.r S(o) 18pys ooes pIP =1 - (8)
[+ 4]

Thus, the set Wn is a space of testing function appropriate
for the definition of tempered d:i.si:ributions6 ; the set of all tempered

distributions associlated with % is defined as the set of all continuous

linear functionals on Wn. The set Wn may be regarded as the set of all

n-particle momentmﬁ-space wave functions which are infinitely differentiable

and "rapidly decreasing," i.e., which are also elements of the set Wn'

Let us now associate with every § in % an operator N )

acting on H by defining

atgg) = (nt)H? f(«,) Bpy) ... S(p) Blpys ooor p) 8 () o aT ()
| (9)

Sémewha.t loosely we may sa& that Af [¢} is an operator which
creates & cluster of n ~particleé described by the momentum-space wave
function @. The hermitian cmjugate of the operator A* (%3 will. be
denoted by A{g}.

We note the following:

(a) If p is any function in i(-/n , ‘then the state vector

at {#} |vac) 1is a unit vector in the n-particle subspace l{n.
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(b) The set of all vectors c Al ()} |vac), where § is any
function in H/n s and ¢ is any complex number, is dense in Mn‘

(¢) If § is any function in “é, and if A(M,z) = A 1is any
element of io’ then there exists a unique function, denoted AP, in

Wn such that '

u,z) AT (8} UTN(,2) = AT (ag) . -~ (10a)
The inhomogeneous Lorentz group therefore has an action on Wn
such that Wn is mapped onto :’L’cseln‘.‘.7 We shall be 'par'bicularly interested

in the translations A(I,z) in L, and we then have
| t -1 g '
U(I,z) A {¢) U (1,z) = A" {§"} - (10b)

where the function

n

R (pl, cees D )—fb(pl, ey B ) exp( pX zpk> (10c)

is in W

(&) If P is in W then the Fourier transform of § is
also in Wn , @and roughly speaking we may say that the state vector
A'!h {¢] |vac) represents an n-particle state such that its wave function
in cvc‘nord.in‘a‘te space .as well as in momentum space is 'rapidly decreasing."
A Lgrentz transformation on such a wave function gives a wave function of

the. same kind.
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(e) Since the vectors c A (¢n] |vac) are dense in :H'n it
follows that the S matrix is uniquely determined by the set of all matrix

elements of the form
(vac| A{g) 5 AT(B} |vac) , (112)

vhere ¢m and ¢n are functions in “/m and Wn , respectively. We have,

of course, the additional trivial matrix elements

(vac| S |vac) = 1
. (11b)
(vac| s AT(g} |vac) = (vac| A{#) S |vac) = O .

The choice of the sets Wn s, and thus of the associated set of
vectors A' {#) |vac), where P is any element of one of the sets R/n , 1is
to a lafge extent arbitrary and is not to be taken too seriously. We have
made our particuler choice for the technical reason that we wish to
describe as tempered distributions the plane-wave S-matrix elements Sﬁn’

defined by

U u
Sy vees GpiBys cers Bp) = (vac| a(g,) ... a(q,) sa (21? beo 8 (gn) [vac).
(12)
Therefore, we shall assume that the formal expressions S — for all

m &and n, tempered distributions acting on lf/

*
fen® _Since g ¢n is an

element of l/{{n +n if ¢ n and ¢m are in % and {'({n , respectively, owr

assumption serves to make all matrix elements of the form (1lla) well defined.
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There is, however, no compelling physical reason why we should
favor tempered distributions over any other kind. We might equallj well
have chosen scme other space of testing functions, in which case the
expressions Smn wbuld be defined as distributions acting on that other
space .instead. Our only reason for makiné & particular choice is.that
tempered distributions have been given particular attention in discussions
of field theory in the past.8 Some assumption along these lines naturally
has to be made if the discussion is to proceed at all. We believe that
much more could be said about the nature of theA Smn. on physical grounds.
The weak assumption which.WB have made is sufficient, however, for our
purposes and a more restrictive assumption‘asvto the nature of the Smn

will not invalidate our principal results.
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IIT. FORMULATION OF CLUSTER DECOMPOSITION PROPERTIES OF THE S MATRIX
We have interpreted the operator A'(@}, where $ is in one

of the sets Rﬁ, as an operator which creates an n-particle cluster
described by the momentum-space wave function ¢, and we have noted that
if A't {§} acts on the vacuum state vector we do get a correctly normalized ‘
n-particle state vector. We may now study the state vectors which ‘arise
when a product Af 6y ... Iy {p"} of several of these operators acts on the
vacuum state vector. We will only be interested in the special case of a
product of two such operators, and we shall accordingly limit our considera-
tions to this'case; the generalization to more than two operators is per-
fectly straightforward.

: Let. ;{-/ be the union of all the sets Q/n’ n>0. Let ¢' and
$" be any two functions in ﬁl We consider a unit vector [(#'; 0)(8"; z))

in # defined by
[(B5 0)(®"; 2)) = N[(B's 0)(8"; 2)] AT ($') U(L,2) AT(#"} |vac) , (13a)
where N is a normalization constant given by

N[(p'; 0)(B"; 2)]
(13b)
= (vac| (g™ UH(z,2) A9') ATEH') U(T,2) AT(Y) [vac) M2

The state vector defined by Eqs. (13 ) may be interpreted to

represent & state in which there is present a ¢'-clus‘ter of particles
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‘together with-a displaced P"-cluster of particles, the amount of displace-

, Fﬂgnﬁﬁbg;pg described by the four-vector z. Let us regard the two momentum-
”fSpééégwave functions @' and §" as fixed and consider the vector

f;"(¢‘; 0)(#"; 2)) as a function of the displacement z. For a finite z,

‘f&he two clusters may "overlap" more or less in the sense that wave functions

” (say in coordinate space) overlap; but in the limit of infinite 2z, the

:”two clusters become effectively separated as manifested by the fact that
tpe normalization constant N <+tends to unity. This mode of speaking is
édmittedly scmewhat loose. The picture may be clearest in the case when
2z tends to infinity along & space-like direction, although it is generally
true that as 2z tends to infinity aiong any direction (or in fact in any
manner whatsoever), the overlap of the wave function @' with the dis-
placed wave function #" tends to zero.

Thus we claim that if @' and @" are held fixed, then

lim N[(§'; 0)(P"; 2)] =1, (1)
2 - C _
where N is the normalization constant defined by Eq. (13b). We shall
omit the proof which follows from a simple generalization of the Riemann-
Lebesgue Lemma.

We are now in a position to formulate our cluster decomposition
property of the S matrix as follows:

The cluster decomposition property of the S matrix is understood

to be the property that if @', ¢", y' and " are any four functions in

u4 then
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Lim ((¥'; 0)(¥"; z)| s |[(#'50)(8"; 2))

Z 00 :
' (158)
= (v's o) s [(B'5 0)) {(¥"s 0)] s [(B"5 0))
where the state vector |@; z)) is defined by
(85 2)) = U(T; =) AT(R) [vac) . (15b)

We shall include in our definition of the cluster decomposition

property the further condition that

lim ((¥'; 0)] 8 |(B'; 0)(#"; 2)) =0, (15¢)
2 - .

which may be regarded as & special case of the.conditions expressed by

_Eq. (15a).

The authors would like to maintain that the S matrix, if it is
to be physically meaningful, must satisfy the cluster decomposition proper;
ties expressed by Egs. (15a) and (15¢). If 2z tends to infinity along a
space-like direction, we méy say that Egs. (15) express a spatial cluster
decomposition property, and if 2z +tends to infinity along a time-like
direction we may similarly speak of a tempdral cluster decomposition
property. ’

Let us discuss, physically, the spatial cluster decomposition
property. The matrix element ((v'; O}(Y"; z)| s | (B'; 0)(B"; z)) equals

the transition amplitude from an initial state consisting of a @'-cluster
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together with a @$"-cluster displaced by 3z, to a final state consisting
of a {'~cluster together with a w"_clustér displaced b& the same amount
z.  If z now grows to infinity, for instance along some fixed spéce-like
direction, we would expect the transition amplitude to factor into a
product of two amplitudes, namely the amplitude from an initial @'-cluster
to a final '~cluster, and the amplitude from an initial displaced
P"-cluster to a final displaced y"-cluster. Since the S matrix commutes
with all translations, this latter‘amplitude is, in fact, independent of
the displacement z, and we obtain the condition expressed by Eq. (15a).
A similar argument leads to condition (15c), which we may regard as a
special case of condition (15a) with the V"-cluster being "void."

We may argue in favof of the temporél cluster decomposition
property aiong similar lines. All "free" many-particle wave functions
spread out in coordinate space with the passage of time, and after a very
long time the probability of fihding a particle in any finite region be-
comes very small. Likewise such a many-particle state is spread out at
very early times. Suppose that we follow the behavior of the particles
described by the initial state vector |(f; 0)) in time. At a very
early time, the state has the>appearance of aﬂmuch dispersed state of a
number of noninteracting particles, say n in number. As time goes on
the cluster becomes more concentrated and eventually the interparticle
forces will play a role. During this time of interaction, the description
of the state as a state of n particles'is not meaningful, but if we wait
a sufficiently long time, (how long we have to wait depends on the wave

function p), the particles formed in the interaction will have had time
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to become sufficiently separated from each other and the final state will
look like a superposition of states of 2, 3, 4, ..., particles which do not
interact with each other. There is thus, for every wave function $, a
crudely defined time, t(@), at which the interaction takes place. Let us
now consider the state [(§'; 0)(§"; z)), where 2z only has a time
component, z = (0, t). The ¢’;cluster interacts around the time t' = t(§'),
vhereas the ¢"-clustér interacts around the time <" = t(g§"). The
@"-cluster displaced by the amount z = (0, t) interacts around the time

(t + t"). We thus expect that as t tends to infinity the two-cluster

state {(¢'; 0)(#"; z)) behaves like a state of two completely independent
clusters, whicﬁ is whét the condition expressed by Egs. (15) asserts.

The cluster decomposition properties which we have defined
correspond to very weak requirements. In pgrticular, nothing is said
about how the correction term tends to zero, i.e., at what rate the limit-
ing factored form is aésumed.’ To find stronger statements of cluster
decomposition properties one might be guided either by potential scattering
theory or by perturbation field theory and make some reesonable guesses.

We wanted, however, to state only the minimum reguirements and leave open
the question of how the stronger conditions may be formulated. As it
turns out, even these weak requirements give a good deal of information
about the structure of the S matrix.

Let us now restate the cluster decomposition properties in the
form of conditions on the distributiops Smn defined in Eq. (12). First
of all we note that because of the reiation (14) we can state the cluster

decomposition properties expressed by Egs. (15) in the form
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lim (vac] A{y"} U"S(T,z) Aly'} 8 AT{p') U(z,z) AT{S") |vec)

Z - ©
(16a)
= (vac] A{y'} 8 AT{B"} |vac) (vac] A(y"} s AT(#") |vac) ,
and
Lim (vac| A{y'} s AT{p*} U(z,2z) AT (#") |vac) =0 . (16b)
2 - o ’
The above conditions are equivalent to the conditions
iz.A" . .
o e 8y nes{@ s G B 5 By Bt By B
Z -0 )
_ (17a)

= 8un(8y seeer Gu's Bytoeees Br') Spg(@ s @5 By ey BST)

where
T . 8
_A" - Z 11 - Z P t
u=1l * v=1 '
and

1 1, 1 1 " " . . " - .

Llim Sm,n-x-s(gl seeey @5 Pytaeees Pp'y Bylaeees By ) X il =z pu> 0
Z-oe : u=1

(7o)

The limits in Egs. (17) are to be understood as limits of tempered

distributions.
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Let us focus our attention on the first of these conditions; the
discussion of the seqond condition does not'introduce any new elements.
First of all we note that the arguments ‘3', g' and g", g" occcurring in
the two factors in the right-hand side of Eq. (17a) are all independent;
therefore, we do not violate any of the rules against the multiplication
of two distributions. SeCondly, we observe that Eq. (173) trivially
implies Eq. (16a), whereas the converse is not immediatelj ob#ious. Equation
(16a) implies that a relation like (l7a) holds when both members act on
testing functions of the special form ﬁ'*Qg’) w"*(g") ¢'(g') ¢"(g"), but
perhaps not when they act on glg.testing functions in»the space “£+n+r+s'
However, since S is unitary we can approximafe en arbitrary testing function .
by a sum of testing functions of the special product form such that the
remainder can be kept as smell as we please, uniformly in 2z, and the
relation (17a) thus follows from the relation (l6a).

Before we conclude this section we wish fo give an example of an
'S matrix" which is unitary and which satisfies the conditions (5) and (6),
but which violates the cluster decomposition properties, and indeed also
violates common sense in a most obvious way.

Let h(pl, Pos p3, ph) be any suitably well-behaved real function
of the four-momenta Pys coes pg, invariant under all proper homogeneous

Lorentz transformations; i.e., for every M in Lo we have h(Mpl, Mpz, Mp3,

Mph) = h(pl, Pps P3; pu). We construct the hermitian operator H by
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. | | (180)
{1 2,5 my) (o2} e () o (g,) [vme) (vac a(py) (e,

E = f( ) dl‘(p,_) du(ph) 8y(py + Py = 23 - B) B(pys By Py 1)

where
S(p-p - m°2) for forward time~-like p
5, (p; m,) = { - (18v)
0 otherwise . :
We then construct the false "S matrix" S" by
8" = exp(iH) . (18c)

It is easy to see that S" commutes with all Lorentz transforma-
tions U(M,z), that s" satisfies the conditions (5), and that 8" is
unitary. Acting on two-particle states S" describés elastic scattering
of the two particles. However, S" acts like the identity on any state of
more than two particles, which is obviously absurd. Therefore, S" clearly

violates the cluster decomposition properties vwhich we have formulated.
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IV. PARAMETRIZATION OF TIE S MATRIX BY CLUSTER AMPLITUDES

To study the implications of the cluster decomposition properties
for the structure of the S matrix, we shall first parametrize the S matrix
in a particular way. It is to be noted that this parametrization is always
possible and does not in itself imply any cluster decomposition properties.

Let of ('g) and a(g) be two c-number functions of the momentum
variable p- Let f{a* (g); a(;é )} be any formal power series functional
of ozf(g) and a(g); i.é., P is a formal sum of multilinear functionals
of a’r(‘g) and a(g). We define a linear mapping /\/, of the set }c of
all such.formal powér seriies functionals into the set }q of all fo'rmal

»

power serles operators acting on the Hilbert space H, by

N(cl Py + ¢y By) = oy MRy ) + o /V(Pe) (19a)

NK[“ o'(q,)] [slgloc(gs)]> [z a'(g )J[; a(e,)|  (a9m)

vhere c, and c, are any two complex numbers, and where Pl and P2

1 2
are any two elements of } o

-

The formal power series operator
p{a’ () a(e = N P[af'(g); a(g)]) (20)

is thus defined without any embiguity as a formal power series of ordered
operators which are multilinear expressions in the creation and destruction

operators af(p) and a(p).
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We next consider the inverse of the mapping /V To shorten our

formulas we introduce the following abbreviations:

a-a =ap) - al(p)- S) alp) o' (p) , (21a)

Q
o
]
Q

ey
o

o~
Lo
il

f( P d e e, (21b)

and

o' ca-d'p)rap - [ PedEap . (@)

-]

If now P(a (p); a(p)] is defined as in Eq. (20), we have the

following simple identity
t -OtT-O: aT-a T a-af
Pla’ (p); a(p)} = e (vac| € "7 Pla'(p); a(p)} e = [vac) , (22)

vhich is easily proved from relations (1).

It follows that if X 1is any operator in jq, i.e., any formal

power series operator, then
t + Lot
X = /V(e"a % (vac] & "B x &8 |va.c)> . (23)

We now define the scattering functional F by

t t ot
F{aT(B); a(g)} =@ @ {vac| & 'a g e |vac) , (2ka)
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and from what has been said it follows that the S matrix is given by
s = /V(Ma" (p); oe(g)}) . (24b)

It might be emphasized that all the relations discussed in this
section are relations between formal power series and, in & sense, combina-
torial relations; therefore, nc question of convergence is involved, and
the manipulations are legitimate.

The scattering functional F, which is a formal power series
functional of o (g) and a(p), determines the S matrix wniquely, and
vice versa. All S-matrix elements of interest may, vin fact, be obtained
by a process of functional differentiation of the expression F exp(air ca)
with respect to of (p) end op), after which we set o:'r('g) = a(g) = 0.
By differentiating mt times Witl’;. respect to the first of these funétions B
and n times with respect to the second., we thus get the matrix element
exhibited in Eq. (12), namely Smn'

Let us conéider the properties of the scattering functional

implied by the conditions (5). We immediately get the relations
Spo =1 &nd 5y,(g5 p) = 8303 - p), (252)
and

5. =8 =0 form>0 , S, =285

om o 1m m =0 form>1, (25b)
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for the distributions Smn defined in Eq. (12). Consequently, the scatter

int functional F may be written, in a unique way, in the form

¥, - ex ' T, ,
Fla'; a} e*? ?2 nEg szmn{a ; a}> , | (26a)

where we may write the functionals @ mn[czf ; ¢} in the fom

a5 0} = (m! ntyH/2 f(m) B(g,) ... Dlg) Spy) .. ds(En?
’ (26D)

t t
Kmn(gl’ veey Qs Pps vees gn).a- (.9.1) cee O (gm)a(gl)— a(gn) .

Formula (26a) merely asserts that the terms linear in of (B),
as well as the terms linear in oc(g) , are absent in the formal power series
expansion which represents the scat’(;,er.ing functional F. That this is in
fact the case we see by inspection of the definition (24a) for F, when we
take the conditions (25) into account. For reasons that will become clear
later we have chosen to introduce the new functionals an , Wwhich are of
order m in ch , @end of order n in @, and to write F in the par-
ticular form shown in Eq. (26a). We have finally introduced the gquantities
Kmn to express the functionals szmn explicitly as in Eq. (26b). Without
loss of generality we may select the expressions Kmn 10 be symmetric
functions of the variables Gy vee , 9, as well as of the variables
Ell’ sees Bos and we shall assume in the following that the K n have this

property.

~
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We note that each expression Ko m2 2, n2z 2, is formed from
a finite number of distributions Sm'n" vhere m2m' and n 2= n'. The
assumption that the expressions Smn are tempered distributions implies
that the expressions Kﬁn are also tempered distributions. The set of
distributions Smn determines the distributions Kin uniquely, and vice
versa. The formulas (26), which relate the distributions K, to the dis-
tributions . Smn’ are thus of a purely combinatorial nature, and again no

questions of convergence are involved.

We shall call the distributions Kﬁn cluster amplitudes and we
may now combine Egs. (24 ) and (26) to obtain a parametrization of the

S matrix in terms of these amplitudes, namely

A o0 -]
S = /V(eXp ) samn{af; a}:l > . (27)
=2 n=2
This expression for the S matrix is the goal of the discussion
in this section.9 We emphasize again that the possibility of this particu-
lar parametrization follows from the conditions (25) only; therefore, the
expansion (27) in no»way implies any cluster decompésition properties of the
S matrix. The formula (27) itself is, in a sense, almost completely
trivial, and we could have”stated it.directly. However, our purpose‘with
this somewhat lengthy discussion was to state a few simple facts and
definitiqns which we will make use of in our study of the implications of

the cluster decomposition properties.
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Before we conclude this section we note that the invariance of

the S matrix under translations implies that for every four-vector =z
Fe " Pa'(p); ™ Pa(p)) = Pl (p); a(p)) (26)
from vhich it follows that
mn

o (e-i%p ot (e ) Jzep O‘(E)} _ an(ai.. (p); a(p)} (28b)

for every four-vector z.
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V. IMPLICATIONS OF THE CLUSTER DECOMPOSITION PROPERTIES

In this section we shall study the conditions which the scatter-
ing functional F and the cluster a.mplitud.es K n must'.satisfy if the
S matrix satisfies the cluster decomposition properties postulated in
Sec, III.

Let us consider Egs. (17); to these equations we add the equation
obtained by complex conjugation of .Eq. (17v). As we let m, n, r, and s
take on all positive integral values, wé thus obtain an infinite set of
equations which can all be summarized éompactly by a condition on the

generating functional F[aT ; o) exp(af « a), namely the condition

lim (vac| exp[ (al'ir(g) + eT1Z°P a;(gD . a(g)} S

z 5w
" iz-p T
exy[ (ocl(g) te a2(2)> ‘a8 (g)] [vac) - (29)
alf'a al'af a2*~a aa'a.'r
=(vacle™ Se |vac) (vac] e S e  |vee) ,

where ctl'l~ (p), a;(g )s al(g) and az(g) are independent functions of the
momentun variable p. The corresponding condition on the scattering

functional F is

zlj.fm F {(af(g) + e iz ocJ(g)) ; (051(2) + el%'P 0‘2(2))}

(30)

= F{Otl)‘r (2); oy (@) F{a; () a,(p)}
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vhere we have made use of the fact that, in the sense appropriste for dis-

tributions,

Lim & (p) [af (p) e'*P ay(p) + oy (p) %P al(g)] = 0.(31)
2 oo J (o) ~. : -~ ,
~ To avoid any possible misunderstanding we state that Eqs. (29)
through (31) are statements about limits of tempered distributions, and
are to be uﬁderstood as such, By functional differentiations of the
functionals occurring in these formulas we recover the distributions smn’
delta functions in momentum space, or products of distributions Smn and
delta functions. In studying limits of this kind it is therefore permis-
sible to treat the functions alf(g), aaf(g), al(g) and aa(g) as if

they were testing functions, although the nature of these functions is

reelly immaterial since they play only an "algebraic" role in the formulas.
If we now consider Eq. (26a), we may reformulate condition (30)

as a condition on the multilinear functionals an as follows

i e 'm0 {("‘l}r () + ¥ % a) (g )> ; <°‘1(£? » ei® “2(20 }

(32)

=£zmn{af(g‘); o (p)) + amn{azf(g?; oy(p)} -

Relations (32) are thus a consequence of the cluster decomposition
propértiés expressed by Egs. (17), and, conversely, relations (32) imply
relations (17). We wish to emphasize here that £he fact that theée two
formulations of the cluster decomposition properties are equivalent is, in

essence, nothing but a combinatorial theorenm.
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Let us> next restate conditions (32) in the form of conditions on
the cluster amplitudes K , introduced in Egs. (26), Taking into account
our convention that the %(35 g) are invariant under any permutation of
the variables g among themselveé and under any permutation of the variables

p among themselves, we thus get from Egs. (32)

Zlipm K9y eons Q5 Bys voes gn) 28 2 o , (33&)
vhere the four-vector A is any expression of the form
n vm

and where each one of the numbers € is either zero or one, except that
they are neither all equal to zero nor are they all equal to one. The limit
in Eq. (33a) is of course to be interpreted in the sense appropriate for
tempered diétri‘butions.

What condition (33a) roughly states is that the cluster ampli-
tude Kmn does not contein any delta functions, nor any derivatives of
delta functions, the presence of which would imply conservation of energy
or momentum within & subset of variables picked from the set of variables
Qs ++es s Bys cees pn.lo On the other hand, K does have a delta
function as a factor which implies conservation of total four-momentum of

the particles whose momentum variables occur in Kmn' We shaell retura to

this question later.
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It may be illuminating to consider the operator S" defined in
Egs. (18) as an example of a false "S matrix" for which the cluster decomposi-
tion properties are violated. Since s" still satisfies conditions (25),
' we may represent S" in the form (27), where the corresponding "scattering
functional” F" is expressed [as in ﬁq. (260)] in terms of certain distri-
butions K mn"' In this particular case we have Kmn” = 0 whenever m # n,

-and furthermore we have the particular relation

| K33 (ql, Sor 935B1s Bpr B3) = (1/12)28 309"y ") K" (9p"s 95'5Bp"5Bs") 5
| (34)

where the sum is over all permutations (gl', 22’, 33') of (51’ Qo5 33)
and all permutations -(gl', 22’, '133’) of (Bl’ By 23)3 The distribution
K33" therefore violates the cluster -decomposition proﬁerty expressed by
Eq. (332). |

H Since we know that the cluster amplitude Kmn must contain as
a factor a delta function which enforces conservation of total energy and
total momentum in the scattering process , we may exhibit this factor

explicitly and write

nm
-1/2
K (s eer Syf Bysocoes Bp) =8y r§1q - Z p)(ﬂ (2w(a,.)) />
(35a)

(1, @) epla s g 7 s By)

in which case we may rewrite Eg. (26b) in the form
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Rula’s @) = (af nt)/2 [y ) g ) ey

m ' n
x (1o, (a,0 m,) (2a(g, )2 o' (g,)) (1 2,025 m,) (2n(p, )1/ atp,)

r=l .
n o (35b)
Xﬁu % qr - L PS> Cmn(ql’ seey qm3 Pl: coey Pn)
r=) s=1

where the function &, (p; m ) is defined in Eq. (18b).

We shall call the distributions Cmn the inveriant cluster

amplitudes, These amplitudes are defined only on the physical manifold,

M in momentum space defined by the conditions
mn’

q, = (Sl"’ U)(Sl)) s By = (BS’ ‘D(Es)) ’
. (36)

gt}
ol
]
gt}
3

These amplitudes are to be regarded as distributions associated with this
manifold. This manifold /an is of dimensionality (3m + 3n - 4); since
the distributions Cmn have indices m and n, which satisfy mz 2
and n 2 2, we consider only the manifolds mmn for indices m and n,
which éatisfy the same conditions.

| The name invaridnt cluster amplitude derives from the fact that
the necessary and sufficient condition for the 8 matrix to be invariant
under all Lorentz transformations is that the distributions C,, Ve in-
variant under all Lorentz transformations in the sense that, for any matrix

M in L,
o
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Cmn(Mql, veoy qu; Mpl, cae, Mpn? = Cmn(ql’ ceey G pl{ ceey pn) (37)

for all points q, p in the manifold mmn This condition is meaningful
since the manifold /an is mapped onto itself under any Lorentz tra‘a,nsfor.-
mation. The distributions Cmn are natura).ly invariant ﬁnder all permuta~
tions of the variables q among themselves, and under all pemutatvions of
the varisbles p among themselves,

The reason why we did not Introduce the distributions C mn
immediately 1n our discussion was that we did not wish to mix two separate
issues, namely the cluster d.ecompositibn properties of the S matrix, and
the invariance of the S matrix under homogeneous Lorentz transformations.

A moment's reflection will show that our discussion applies equally well

to nonrelativistic scattering theories, es it should, provided we employ
the nonrelativistic expression for the energy of a particle as a function

of its momentum instead of the relativistic expression 0.)(~p). Furthermore,
the "covariant notation" employed in connection with the amﬁlitudes

ConlQys <vvs pi, .ev; P ) can easily lead to ﬁismderswndings as it
obscures the fact that the invariant amplitude Cmn is not defined at all
outside the manifold /Hmn Therefore, Eq. (35b) must be understood in the
sense that the integrations over the fourth components of the four-mementum
variables g and p are to be carried out first, leading to the form (26bv),
with Kmn replaced by the right-hand side of Eq. (35a), if we like. 1In A
this paper the question of whether it may be useful ‘co‘extend the definition

of the distributions Cmn outside the manifold /}lnn is not considered.
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We have stated that the ¢ may be regarded as distributions acting
on suitable testing functions defined on the manifold M n’ A precise-
statement of the natwe of such distributions would involve a technical
~discussion of the nature of the corresponding testing functions, which we
feel we can properly omit. Anyway, it should be clear that the fundamental
property of these distributions is that Kmn’ as given by Eqa. (35a), is a
distribution of the postulated kind; i.e., a tempered distribution for the
purposes of this paper. |

The cluster decomposition property of the distributions Kmn’
as expressed by Egs. (33), may be reformulated as a similar condition on the

distributions C '’ namely

iz.H '
11’0’1 Cmn(ql’ erey qln; pl, *e 0y Pn) e = O ) (38a)
Z -
where the four-vector A is any expression of the form
n m
A=ZG"p—ZG'q, (38p)
=1 ° 8 Ly ¥ T

vhere each one of the numbers € 1is either zero or one, except that they
are neither all equal to zero, nor all equal to ohe. The interpretation of
the relation (38a) is again that the distributions cmn cannot contain any
delta functions, or derivatives of delta functions, the presence of which
would imply conservation of energy or momentum for a subset of the particles

whose momentum variables occur in the expressions C mn”
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VI. REPRESENTATION OF THE PARAMETRIZATION OF THE S MATRIX

BY CLUSTER AMPLITUDES IN TERMS OF SCATTERING DIAGRAMS

It is possible to represent the expansion of the S matrix given
in Eq. (27) by a system of very simple diagrams,ll and as such a represen-
tation may.a.id. in an understanding of the nature of this expansion, we
shall discuss the construction of the diagrams.

We thus associate with the cluster amplitude Kmn(gl’ cees QS
By cees gn) (or, if we like, with the invariant cluster amplitude Cmn)
& disgram like the one shown in Fig. 1. The n lines which enter the
diagram from below, and which we might _ls,bel by the momentum variables
gl, eees Pps represent n particles iﬁi’cially present, vhereas the m lines
vhich leave the diagrem above, and which wé might similarly label by the
momentum variasbles Q35 cv0r Yo represent m particles which are present
in the final state.

Let us now consider the mafrix element of the S matrix ;which
represents a transition amplitude Tmn from a state of n iﬁitial particles

to & state of m final particles , namely
1.
(vacl A{¢mﬂ} S A {¢n') Ivac) = Tmn = % Tmn(D) 2 (39)

where ¢n’ is a normalized and symmetrized n~particle momentum-space wave
function, and ¢m" is a normalized and symmetrized m-particle momentum-
space wave function. To find the matrix element T Ve have to pick out
all terms in expansion (27) that have, as factors, at most n destruction

operators, and at most m creation operators: clearly there is only a
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finite number of such terms, Ve may describe all these terms graphically
by drawiné all possible diagrams composed of one or several connected
components, each connected component being either a single vertical line,
or else a diagram like the one shown in Fig. 1, where the components are
drewvn next to each other and npt interconnected in any ﬁay; the total
number of lines entering from below is n, whereas the total number of lines

leaving the diagram above is m. For every factor gm, y 1in the expansion

n
(27) we have a component in the diagram of the kind shown in Fig. 1, and
for-every pair of momenta (3’, B‘) ‘that do not occur as arguments in the
distributibns Kﬁ'n' in the integfal giving a particular contribution to
the matrix element in Eq. (39) we have a vertical line. We note that if
any particular term in the expansion is to give a contribution which is
nonzero, then the number of variables q "left over" must equal the number
of variables p "left over."

To every such diagram D, there corresponds a contribution Tmn(D)
to the transition amplitude Tmn’ and by summing over the contributions |
associated with all the diagrams we obtain Tmn’ as stated in Eq. (39).

It is hardly ﬁecessary to state the detailedArules vhereby the numerical
value of Tmn(D) way be found, given the diagram D, as these rules should
be obvious., Instead we can illustrate the procedure by an example: con-
sider a matrix element describiﬁg four incident and five outgoing particles.
The possible different types of diagrams are shown in Fig. 2. The contri-

11" 1

bution to the matrix element associated with the diagram "a" is thus given

by
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*
TS)-I-(Da) = ./;m) d(g) d(g) ¢f (,g) ¢l<'13) K51+(,9ﬂ’ se ey 355 El’ sy ;g)_l_) b
(koa )
vhereas the contribution associated with all diagrams of type "b" is given

by

75,(0,) = (60)™/2 f( Ly 20 5(R) 8:7(9) By(e) Kply, 90 95 Bur )
' ‘ (40b)

X Kool 853 B3 By) »

Where
ag) a(p) = X(gy) ... S(g5) Blpy) e Sy
_ ¢f(ﬂ) = ,¢f(gl’ seny SS) ’ ¢1(B) = ¢i(gl’ seey 2’4) .

These diégrams can be compared with the Feymman diagrams of per-
turbation theory,l2 and we next comment on the relationship between these
two types of diagrams. Let us thérefore consider the S matrix within the
framework of perturbation theory.

To find the matrix element describing a transition from n initial
to m final particles we must cqnsider all Peynman diagrams witﬁ the
corresponding system of exfernal lines. _Amoﬁg these there will be diagrams
that consist of a single connected piece, as well as diagrams composed of
several disjoint components. Now a connected diagram like the one Shown

in Fig. 1 corresponds in perturbation theory to the sum of all connected
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Feynman diagrams that have the corresponding system of external lines. The
amplitudes Kﬁn therefore simply describe the sum of all connected Feynman
diagrams, or, in other words, & process in which all the particles involved
really interact with each other. Our disconnected diagrams, on the other
hand, correspond to disconnected Feynman diagrems, and thus describe
processes in which two or several clusters of particles interact indepen-
dently of each other.
| As is well known, there corresponds to every connected Feynman

diagram a deltavfunction és a factor in the matrix element which implies
over-sll conservation of four-momentum, but there is no other delta function
which would imply conservation of energy or momentum for a subset of the
particles whose momentumVQariabies ocecur in Kin' This property makes the
identification of our connected diagrams with the sum of all corresponding
connected Feynman diagrams unambiguous, and expansion (27) is therefore
nothing but a statemenf of the combinatorial rule whereby'one obtains the
contribution to the matrix element from all diagrams, given the amplitudes
corresponding to all connected diagrams, and it is easily verified that
this correspondence holds in every detail.

We expect, of course, that the perturbation theory formulation
of field theory should sutomatically contain the cluster decomposition
properties since a local interaction is introduced from the beginning, and
the conclusion that this is the case is therefore almost & triviality.

Thus, within the framework of perturbation theory, the cluster
expansion given in Eq. (27) has a very trivial interpretation. In the case

of a general S-matrix theory, not necessarily based on a local field theory,
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we may say that the procedure leading to Eq. (27), vhich can always be
carried out for a physically meaningful S matrix, tells us how to find those
contributions to the S-matrix elements which correspond to the situation in
which all the particles interact mutually. Therefore, these contributions
have to vanish when the particles become separated into two or severél
clusters of particles such that the "regions of interactionV of the separate
clusters have large separations in space and time.

In this connection we wish to discuss the relevancy of expansion
(27) to the so-called substitution principle (or crossing symmetry) in
_ particle 1nteractions.l3 It is a commonly held belief that the matrix
elements for two different processes which'arg deséribed by diagrams with
the same number of external lines are related, and that one amplitude can
be obtained from the other 5y & process of enalytic continuation, vhich,
if it is to have any physical meaning at all, involves only those invariant
scattering parameters which can actually be vapied in the experiments. A
detailed general formulation of this principle, which would involve a
detailed statement of the domain of analyticity together with a detailed
statement of the path to be followed in the continuvation, has not been
given yet. .In spite of this, it is believed--and we share thié belief--
that some principle of this kind relating large classes of otherwise com-
Pletely unrelated processes holds, and that it répresents an ilmportant,
although presently not well understood, feature of elementary particle
interacfions.

To illustrate this principle let us comsider the diagrams shown

in Figs. 3 and 4, It should be clear that whereas the amplitude corresponding
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to the diagrem in Fig. 4 might be related by an analytic continuation to
the amplitude corresponding to diagram (a) in Fig. 3, the total amplitude
corresponding to both diagrams in Fig. 3 cannot be obtained from the ampli-
tude described by the diagram in Fig. 4. We therefore believe that the
substitution principle, if valid at all, can hold only for the connected
disgrams; i.e., cmn might be obtainable by analytic continuvation from
Cptn?
identify the partial a@litudes of ‘t;he S matrix for v}hich a substitution

vhenever (m + n) = (m' + n')., Expansion (27) thus enables us to

principle might be formulated. We are, of course,i not in a position to say
enything more ebout the substitution principle since we assumed so little

about the nature of the interactions,
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VII. CONCLUDING REMARKS
We have studiled some very simple properties of the S matrix which
reflect the approximately local nature of thé interparticle interactions.
We should again emphasize that our considerations apply both to nonrelati-

vistic and relativistic scattering theory. We have only made use of the

translational invariance of the scattering description, but not of any
invariance under the homogeneous Gallilei of Lorentz groups; except in the
discussiop of the distributions Cmn’ which refers specifically to rela-
tivistic scattering theory.

Our results are not in any way surprising., Within the framework
of the perturbation theory approach to field theory, theée cluster decom~
position properties are a triviality. If, again, we consider S-matrix
theory in the spirit of Heisenberg's original :f:"orm.ulet’c:i.onl,+ we note, as
we have stated, that our conditions (33) together with expansion (27) are
at least implied in Heisenberg's work, although the conditions are not
spelled out in full detail. We felt it would be worthwhile to emphasize
the importance in principle of these conditions, to formulete them in
detail, and to trace their origin back to the very transparent physical
conditions discussed in Sec. III.

We feel that the simple cluster decomposition properties which
we have studied are only the simplest examples of a whole hierarchy of
related prdperties that all derive from the approximately local nature of
the interaction. On the next leveltwe would expect to find conditions
vhich would tell us something about the manner in which the remainder in

Egs. (15) tend to zero. We could, for instance, consider a three-particle
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scattering event. For a certain initial configuration this event would
look as if particles 1 and 2 would scatter first, after which one of the
final particles in the first scattering event would scatter with particle 3.
The bona-~fide three-particle cluster amplitude K33 must therefore, for
certain initial configurations, "factor" approximately in such a way that
the event can be described as a succession of two two-particle scattering
events. This kind of cluster decomposition property is certainly different
from those that we have studied, but it is likewise a property which must
be satisfied if the S matrix is to héve a sensible interpretation.l5 As
far as we can see, this property, as well as the direct generalization to
several particles, does not follow from the properties already assumed, but
has fo be imposed separately. We cannot display an example in support of
this belief, as it is a nontrivial problem to find an S matrix that is
unitary and that has the structure given by Eq. (27) and condition (33).

We have no reason to believe that the additionallcluster decom~
position property just mentioned in any way éxhausts the possibilities, but
rather that more and more such properties mey be formulated and_supported
by physical arguments. It then becomes an interesting problem how to find
all of these without resorting to some kind of configuration space formula-

tion of scattering theory.16
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For a formulation of the axioms of local fieid theory, and a discussion
of results obtained, see R. Haag, Nuovo cimento Suppl. 14, 131 (1959);

or see the article by A. S. Wightman in Theoretical Physics (Inter-

national Atomic Energy Agency, Viemna, 1963), Book I, Part I, p. 1l.
The case for a sca.ttering theory based on properties of analyticity
instead of notions of local field operators is stated in, for instance,

G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. Benjamin,

Inc,, New York, 1962), Ch. I; or see H. Stapp, Revs. Modern Phys. 3k,
390 (1962).
See for instance, L. Ggrding and J. L. Lions, Nuovo cimento Suppl. _;I._{_&,

9 (1959). A short account may be found in A. Messiah, Quantum Mechanics

(North-Holland Publishing Co., Amsterdam, and Interscience Publishers,
Inc,, New York, 1961), I, Appendix A; as well as in S. S. Schweber, op.

cit., Ch. 18.
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Conéequently the Lorentz group has an action on the tempered distribu-
tions acting on “ﬁ. See L. Ggrding and J. L. Lions, op. cit., or

S. 8. Schweber, op. cit., Ch. 18.

The notion of tempered distributions oceurs in very many studles of
quantum field theory. See S. S. Schweber, op. cit., Ch. 18.

The discussion in this section should be.compared with the discussion
in E. Freese, Nuovo cimento 2, 50 (1955), which is very similar, except

that Freese assumes the existence of local field operators. Since this

assumption is immaterial for the derivation of the expansion shown in

Eg. (27) our treatment differs from Freese's only in unessential details.
That thé S matrix should have a structure of this nature is, of course,
nothing new, A statement to this effect ¢ah in fact be found in the
previously cited article by W. Heisenberg, Z. Physik 120, 513 (1943),
jo I8 527, and our conditions (33 ) are therefore merely an eléboration of
Heisenberg's results. For a discussion of this structure in the case
of local field theory see V. Zimmermann, Nuovo cimento 13, 503 (1959).
Compare with the discussion in Freese, op. cit.

S. S. Schweber, op. cit., Ch. 1k,

Crossing symmetry is invariably included in the programs based on the
analyticity properties of the S-matrix; see referénces 5.

See W. Heisenberg, z. Physik 120, 513 (1943). 1In this connection we
also wish to draw attention to some remarks made by N. N. Bogoliubov,
Proc. 1958 Annual International Conference on High Energy Physics

(CERN Scientific Information Service, Geneva, 1958), p. 129.
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Very closely related problems of this kind have been studied by M. L.
Goldberger and K. M. Watson, Phys. Rev. 127, 228l (1962), and by M.
Froissart, M. L. Goldberger and K. M. Watson, Phys. Rev. (to be
published). We wish to thank Professor Watson for showing us the manu-
script pr:i.or to publication.

Cluster decomposition properties of a somewhat different kind, which
may be said to correspond to common sense properties of vacuum expecta-
tion values of products of local quantum field operators, have been
studied fairly recently within the framework of loc;al field theory:

H. Araki, Ann. Phys. 11, 260 (1960); H. Araki, K. Hepp and D. Ruelle,
Helv. Phys. Acta 35, 164 (1962); A: S. Wightman, op. cit. We do not
know vhat the precise connectién is between these cius’cer decomposition
propefties and the cluster decompositioﬁ properties we have discussed
and hinted at in the present paper, although it is clear that there
must exist an intimate relationship. It would appear that the cluster
decomposition properties known in field theory would be much strqnger
(bgcause they are based on the assumption of a strictly local field)
than any property which one might arrive at on the basis of a merely

approximately local interactionm.
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FIGURE CAPTIONS
Fig. 1 Disgram corresponding to the cluster amplitude Kﬁn'

Fig. 2 The four diagrams contributing to the matrix element that describes

four incident and five outgoing particles.

© Fig. 3 The two diagrams contributing to the matrix element that describes

three incident and three outgoing particles.

Fig. 4 The only disgram contributing to the matrix element that describes
four incident and two outgoing particles, If crossing symetry

holds, this diagram is related to the diagram of Fig. 3a.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the.

' Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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