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Abstract

Background: Obesity is an established risk factor for multiple cancer types. Lower microbial 

richness has been linked to obesity, but human studies are inconsistent and associations of early-

life BMI with the fecal microbiome and metabolome are unknown.

Methods: We characterized the fecal microbiome (n=563) and metabolome (n=340) in the 

Northern Finland Birth Cohort 1966 using 16S rRNA gene sequencing and untargeted 

metabolomics. We estimated associations of adult BMI and BMI history with microbial features 

and metabolites using linear regression and Spearman correlations (rs) and computed correlations 

between bacterial sequence variants and metabolites overall and by BMI category.
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Results: Microbial richness, including number of sequence variants (rs=−0.21, P-value<0.0001), 

decreased with increasing adult BMI but was not independently associated with BMI history. 

Adult BMI was associated with 56 metabolites but no bacterial genera. Significant correlations 

were observed between microbes in 5 bacterial phyla, including 18 bacterial genera, and 

metabolites in 49 of the 62 metabolic pathways evaluated. The genera with the strongest 

correlations with relative metabolite levels (positively and negatively) were Blautia, Oscillospira, 

and Ruminococcus in the Firmicutes phylum, but associations varied by adult BMI category.

Conclusions: BMI is strongly related to fecal metabolite levels, and numerous associations 

between fecal microbial features and metabolite levels underscore the dynamic role of the gut 

microbiota in metabolism.

Impact: Characterizing the associations between the fecal microbiome, the fecal metabolome, 

and BMI, both recent and early life exposures, provides critical background information for future 

research on cancer prevention and etiology.

Keywords

obesity; body mass index; microbiome; microbial diversity; microbiota; metabolome; 
metabolomics; metabolites; epidemiology

Obesity is an increasingly common, and costly disease that confers substantial negative 

health consequences. The World Health Organization (WHO) estimates that worldwide 

obesity rates rose from approximately 3% to 11% in men and from 6% to 15% in women 

from 1975 to 20161, and in some countries the prevalence of obesity is markedly higher. For 

example, in the United States the prevalence of adult obesity was nearly 40% in 20162. 

Obesity is a major risk factor for some cancers and other chronic diseases, including 

cardiovascular disease and type 2 diabetes,3 making it an important cause of preventable 

death. A recent study estimated that overall and class 3 obesity were associated with 

shortening of life expectancy by 4.2 and 9.1 years in men, respectively, and by 3.5 and 7.7 

years for women, respectively4.

Although weight gain has largely been attributed to excess energy intake and physical 

inactivity, animal5–7 and some human8,9 studies have also indicated that the gut microbiota 

play a key role in weight gain and loss. Ley et al. showed that the gut microbiota in obese, as 

compared with lean, mice release more energy from food during digestion5, and Thaiss et al. 

demonstrated in a mouse model of recurrent obesity that the microbiome contributes to 

reduced energy expenditure and faster weight regain following successful diet-induced 

weight loss suggesting an important role of the microbiome in weight-cycling induced 

obesity10. Despite considerable interest in the role of the gut microbiome in obesity, there is 

little clinical evidence supporting weight loss as a direct consequence of changes to the gut 

microbiota. A few small randomized clinical trials of fecal microbiota transplantation (FMT) 

from lean donors using direct administration of fresh stool suspensions via endoscopic 

procedures found short-lived effects of FMT on insulin sensitivity in obese men with 

metabolic syndrome11,12, but a recent double-blind randomized placebo-controlled pilot trial 

of oral FMT capsules found no improvements in insulin sensitivity or body composition in 

obese adults with mild to moderate insulin resistance despite engraftment of donor bacterial 
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groups among FMT recipients13. Observational studies have found that microbial diversity is 

lower in obese than in lean individuals and that diversity tends to increase as individuals lose 

weight8,9,14,15. However, results from human studies, both clinical and observational, have 

been inconsistent11–13,16–18 and the potential mechanisms linking the human gut microbiota 

to obesity and related chronic diseases are speculative19.

Gut microbes produce and modify many biologically active compounds, including 

hormones20, carbohydrates, and lipids21; yet, few large human studies have described the 

relationships between obesity, fecal microbial composition, and fecal metabolite levels22. 

Several observational studies have explored associations of circulating metabolite levels with 

body mass index (BMI), characterizing metabolic profiles of adiposity and providing 

potential avenues of exploration for mechanistic links between obesity and disease risk23–30. 

Moreover, one epidemiological study estimated fecal metabolite associations with adiposity 

and gut microbial composition and found that fecal metabolites were strongly associated 

with abdominal obesity and explained nearly 68% of the variance in gut microbial 

composition22. Additional studies, particularly those with longitudinal data, investigating the 

links between obesity and the gut microbiome and metabolome are needed to replicate and 

extend these findings.

The aim of our study was to investigate the relationships between early-life and adult BMI 

and the fecal microbiome and metabolome among a subset of individuals enrolled in the 

Northern Finland Birth Cohort 1966 (NFBC1966), a population-based birth cohort, with 

longitudinal data on height and weight collected during adolescence and adulthood. In 

addition, we surveyed the cross-sectional associations of adult BMI with the fecal 

microbiome and metabolome.

Materials and Methods

Study Design

The NFBC1966 included 12,055 expectant mothers within two Finnish provinces, Oulu and 

Lapland, with expected delivery dates between January 1st and December 31st, 1966. A total 

of 12,058 children, representing 96% of live births were included in the cohort and have 

been followed prospectively from birth up to 46 years of age (https://www.oulu.fi/nfbc/)31. 

At ages 14, 31 and 46, questionnaire or clinical outcome data, including anthropometric 

measures, were documented. Fecal samples were collected at 46 years of age. Samples were 

collected by participants at home, immediately frozen at −20°C, brought to the study 

laboratory, and frozen without preservative in −70°C freezers within days of collection. 

Written informed consent was obtained from all participants in-person or by mail at ages 31 

and 46 years. Ethical approval for the NFBC1966 project was obtained from the Ethical 

Committee of the Medical Faculty of University of Oulu and Northern Ostrobothnia 

Hospital District.

We conducted a sub-study within the NFBC1966 to explore the associations of BMI history 

and current BMI at 46 years of age with fecal microbial diversity and metabolite levels. 

Among individuals with available fecal specimens as well as complete data on height and 

weight at ages 14, 31, and 46 (n=3,102), we randomly selected 517 individuals from the 
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following three BMI history strata: 1) normal BMI (i.e., >18.5 and <25 kg/m2) at ages 14, 

31, and 46 years (n=172); 2) normal BMI at ages 14 and 31 but overweight or obese (i.e., 

≥25 kg/m2) at age 46 years (n=173); and 3) normal BMI at age 14 but overweight or obese 

at ages 31 and 46 years (n=172). For the fourth strata, we selected 70 participants who were 

overweight or obese at ages 14, 31, and 46 years. Following processing of microbiome data, 

our final analytic sample for BMI-microbiome analyses included n=563 individuals (Figure 

S1).

Covariate Assessment

Adolescent and adult height and weight were assessed three times during follow-up at ages 

14, 31 and 46 years. BMI was calculated using self-reported height and weight at age 14, 

either measured or self-reported height and weight at age 31, and measured height and 

weight at age 46. Smoking status and frequency of intake of major food groups (e.g., fruit, 

vegetables, cereals, dairy, fish, red and processed meats, and poultry) as well as alcohol were 

ascertained by self-administered questionnaires at age 46.

Microbiome Analysis

The fecal microbiome was characterized using 16S rRNA gene sequencing. DNA extraction, 

PCR amplification, and amplicon preparation for sequencing were performed as described 

by Vogtmann et al32,33. In brief, DNA was extracted with the MO-BIO PowerSoil® DNA 

isolation kit and the V4 region of the 16S rRNA gene was amplified using barcoded 515F/

806R primers. DNA was then sequenced using the MiSeq (Illumina, San Diego, CA) in a 

2×150 run, with an average of 111,848 (SD = 35,369) sequences per sample.

Microbiome bioinformatics was performed using QIIME 2 2017.834. The sequence quality 

control was performed on forward reads only with DADA235 using the q2-dada2 plugin to 

QIIME 2 (parameter setting for trim-left was 0, and trunc-len was 150). Paired end reads 

were not joined, because shorter 16S rRNA gene sequences would be dropped because they 

cannot be joined with 150 base reads, resulting in systematic bias in community 

composition. Diversity metrics were calculated using QIIME 2 at an even sampling 

(rarefaction) depth of 29,000 sequences per sample, resulting in an analytic sample of n=563 

individuals that were included in microbiome analyses. Taxonomy was assigned to amplicon 

sequence variants (ASVs) using q2-feature-classifier classify-sklearn against the Greengenes 

13_8 reference database36. A phylogenetic tree was constructed by aligning ASV sequences 

with MAFFT (q2-alignment mafft)37, filtering highly variable positions with q2-alignment 

mask, building an unrooted tree with FastTree (q2-phylogeny fasttree)38, and rooting the 

resulting tree by midpoint rooting with q2-phylogeny midpoint-root.

Study samples were randomly ordered and batched and replicate fecal samples from three 

individuals (n=62) were distributed within and across batches. The replicate fecal samples 

were used to estimate technical reproducibility by means of intraclass correlation 

coefficients (ICCs). ICCs were high (>0.85) for most alpha (e.g., Faith’s Phylogenetic 

Diversity index39 and observed sequence variants) and beta diversity metrics40,41 (e.g., 

Bray-Curtis and Unweighted UniFrac) (Table S1). In addition, two types of replicate QC 

samples (i.e., artificial community and chemostat) were included in every batch. We used 
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principal coordinates analysis (PCoA) to plot QC samples by the first and second principal 

coordinates of each beta diversity distance matrix to visually inspect that QCs clustered by 

type, and we used bar plots of the relative abundance of the top five taxa grouped by QC 

type to evaluate potential batch effects (Figure S2). Overall, inspection of QC data suggested 

good reproducibility within and across batches.

Metabolomics Analysis

In a subset of fecal samples (n=340), global biochemical profiles were measured using 

Metabolon’s non-targeted platform42. Metabolon’s procedures for sample preparation and 

mass spectrometry analysis of fecal samples and identification and quantification of 

metabolites have been described in detail elsewhere22,42. In brief, lyophilized fecal samples 

were extracted at a constant per-mass basis and recovery standards were added prior to 

methanol extraction. To remove proteins, dissociate small molecules bound to proteins or 

trapped in the precipitated protein matrix, and to recover chemically diverse metabolites, 

proteins were precipitated with methanol under vigorous shaking for two minutes followed 

by centrifugation. Samples were placed briefly on a TurboVap® (Zymark) to remove the 

organic solvent, and sample extracts were stored overnight under nitrogen before preparation 

for analysis. The extract was divided into fractions, and four were used for analysis by two 

separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI) or negative ion mode ESI. The fourth fraction was analyzed by HILIC/

UPLC-MS/MS with negative ion mode ESI. The sample extract was dried then reconstituted 

in solvents compatible with each of the four methods. Each reconstitution solvent contained 

a series of standards at fixed concentrations to ensure injection and chromatographic 

consistency. One aliquot was analyzed using acidic positive ion conditions, 

chromatographically optimized for more hydrophilic compounds. Another aliquot was also 

analyzed using acidic positive ion conditions; however, it was chromatographically 

optimized for more hydrophobic compounds. The third aliquot was analyzed using basic 

negative ion optimized conditions using a separate dedicated C18 column. The fourth aliquot 

was analyzed via negative ionization following elution from a HILIC column (Waters UPLC 

BEH Amide 2.1×150 mm, 1.7 μm).

Raw data was extracted and peak-identified by Metabolon42. Compounds were identified by 

comparison to library entries of purified standards or recurrent unknown entities. Metabolon 

maintains a library based on authenticated standards that contains the retention time/index 

(RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data). 

In our sample, Metabolon identified a total of 1,143 compounds. Of these 65% of 

identifications were confirmed with chemical reference standards, 10% were putatively 

annotated, and 25% were of unknown identity (Table S2)43. Peaks were quantified using the 

area-under-the-curve. To correct variation resulting from instrument inter-day tuning 

differences, a data normalization step was performed in which each compound was corrected 

in run-day blocks by registering the medians to equal one (1.00) and normalizing each data 

point proportionately.

We blinded and randomized all study samples and distributed blinded study sample 

duplicates (n=16) within and across batches. Using our blinded duplicate samples, we 
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calculated the technical reproducibility for metabolites that were detected in ≥80% of study 

samples (n=606 annotated metabolites) using the mass normalized, log-transformed 

metabolite values. Technical reproducibility was high with a median ICC of 0.84 

(interquartile range: 0.68–0.92).

Statistical Analysis

BMI and Microbiome—We computed partial Spearman correlations (rs) to estimate 

correlations between alpha diversity metrics and BMI at age 46. We also used multivariable 

linear regression models, to estimate the associations of BMI history (categorical)) and 

current BMI with alpha diversity metrics. We estimated the association of BMI (continuous, 

kg/m2) at age 46 with relative abundance of genera that were present in at least 50% of the 

study samples using multivariable zero-inflated beta regression using the function 

“BEINF0” as implemented in R package “gamlss”44 corrected for multiple comparisons at a 

false discovery rate (FDR) corrected alpha of 0.01. All BMI-microbiome regression models 

and partial Spearman correlations described above were adjusted for age, sex, smoking 

status, and for BMI history models, current BMI at age 46. Indicator variables were used to 

account for missing covariate data; no single variable had more than 3.5% missing data.

To assess associations of BMI with beta diversity, we transformed each distance matrix to a 

kernel similarity matrix and conducted the microbiome regression-based kernel association 

test (MiRKAT), using exact methods, to estimate P-values for the multivariable association 

of each BMI category and history, each categorized as indicator variables, with each kernel 

similarity matrices, individually and overall. For associations with P-values < 0.05, we 

repeated the corresponding MiRKAT models with 10,000 permutations to check that the P-

value remained statistically significant under the empirical null distribution of the test 

statistic. Furthermore, we estimated the multivariable association of BMI, as categories and 

BMI histories, with the first three PCoA vectors for Bray-Curtis, unweighted UniFrac, and 

weighted UniFrac distance matrices45.

BMI and Metabolites—Linear regression models were used to estimate the associations 

between BMI (continuous, kg/m2) at age 46 (i.e., current BMI) or BMI history, adjusting for 

current BMI, with metabolites detected in at least 50% of study samples (n=797 

metabolites), adjusting for age, sex, smoking status, and batch effects. Correction for 

multiple comparisons was performed using an FDR-corrected alpha of 0.01. We also 

considered the associations of sub- and super- metabolic pathways, based on KEGG 

pathways as defined by Metabolon, with BMI at age 46. The dataset was limited to 

metabolites detected in at least 50% of study samples and to named compounds with 

information on chemical class (n=603 metabolites). Using linear regression models, we 

modeled metabolite values as a function of BMI (continuous, kg/m2) at age 46, adjusting for 

age, sex, smoking status, and batch, followed by Fisher’s Method to combine individual 

metabolite P-values across 83 sub pathways or 8 super pathways to evaluate the overall 

combination of P-values using parametric bootstrap (n=106 permutations).

Microbiome and Metabolites—We computed Pearson and Spearman correlations 

between relative abundances of bacterial 16S rRNA sequence variants, observed in at least 
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50% of the samples, and metabolome features, also observed in at 50% of samples, overall 

and stratified by current (i.e., age 46) BMI group. The correlations, both Pearson and 

Spearman, that remained statistically significant at an FDR-corrected alpha of 0.001 and 

were in the same direction46 were illustrated using circos plots47 overall and by current BMI 

category (i.e., normal, overweight, or obese).

Results

Of the 563 NFBC1966 participants in our analytic sample set, 217 or 38.5% participants 

were male. Weight history categories 3 (i.e., normal BMI at age 14 but overweight or obese 

at ages 31 and 46 years) and 4 (i.e., overweight or obese at ages 14, 31, and 46 years) had 

higher percentages of males and current smokers than categories 1 (i.e., normal BMI at ages 

14, 31, and 46 years) and 2 (i.e., normal BMI at age 14 and 31 but overweight or obese at 

age 46 years), and those in categories 1 and 2 tended to be more formally educated than 

those in categories 3 and 4 (Table 1). Participants included in our analytic sample (n=563) 

did not differ markedly in terms of demographic and lifestyle characteristics from the larger 

sample of 587 participants who were randomly selected for microbiome analysis (Figure S1; 

Table S3).

BMI and Microbiome

Measures of microbial richness, including Faith’s phylogenetic diversity index, number of 

observed sequence variants, and Shannon index, decreased with increasing BMI at age 46; 

adjustment for age (months), sex and smoking status (Tables 2, Figure S3) and further 

adjustment for dietary variables did not meaningfully alter associations between measures of 

microbial richness and BMI. No genera were statistically significantly associated BMI, 

defined continuously (kg/m2) or categorically (i.e., obese vs normal BMI), at age 46 at an 

FDR-corrected alpha of 0.01; however, at a less stringent FDR-corrected alpha of 0.05, we 

observed 8 associations with continuous BMI and 3 associations when comparing obese to 

normal BMI (Table S4). For continuous BMI, higher BMI was most strongly positively 

associated with Roseburia and Blautia and most strongly inversely associated with the 

family Rikenellaceae and phylum Bacteroidetes. For categorical analyses, comparing obese 

to normal weight participants, associations were generally similar to those observed for 

continuous BMI; we found that obesity was inversely associated with the families 

Rikenellaceae and Oscillospira (Table S4). After adjusting for adult BMI, we found no 

independent associations between bacterial genera and BMI history. We found no 

associations for the Firmicutes:Bacteroidetes ratio with adult BMI or BMI history (Table 

S5).

In MiRKAT models estimating associations of BMI and beta diversity (Table 3, Figure S3), 

we found that being obese compared to having a normal BMI at age 46 was statistically 

significantly associated with Bray-Curtis, unweighted UniFrac, and weighted UniFrac 

distances (all P-values ≤ 0.001); whereas, overweight BMI and BMI history were not 

statistically significantly associated with the beta diversity matrices. Similarly, in models 

estimating the associations of BMI category and history with the first three PCoA 

components of Bray-Curtis, unweighted UniFrac, and weighted UniFrac distances (Table 
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S5), we found that obesity, but not overweight BMI or BMI history, was statistically 

significantly associated with pairwise distance for all beta-diversity metrics.

BMI and Metabolites

BMI at age 46 was positively associated with 46 metabolites and inversely associated with 

10 metabolites at an FDR-corrected alpha of 0.01 (Figure 1). After adjusting for dietary 

variables BMI remained statistically significantly associated with 30 of the 46 metabolites 

(Table S6). There were no significant associations between BMI history and metabolite 

levels following adjustment for BMI at age 46.

We found that BMI was associated with 21 sub- (Table S7) and 3 super- (Table S8) 

pathways at an FDR-corrected alpha of 0.01. Of the sub pathways significantly associated 

with BMI at age 46, the food component/plant pathway (P-value=3.16×10−5), which falls 

under the super pathway xenobiotics, contained the greatest number of contributing 

metabolites (n=46). Finally, many BMI-associated metabolites were highly correlated with 

each other, and we observed a number of distinct clusters, including clusters of metabolites 

related to sphingolipid metabolism (i.e., sphingosine, sphingadienine, hexadecasphingosine, 

hexadecasphingosine, and ceramide), lysine degradation (i.e., cadaverine, n-acetyl-

cadaverine, and piperidine), and fatty acid metabolism (i.e., eicosenoylcarnitine, 

margaroylcarnitine, stearoylcarnitine, palmitoylcarnitine, and oleoylcarnitine) (Figure 2).

Microbiome and Metabolites

Significant correlations were observed between microbes in five bacterial phyla, including 

18 bacterial genera, and metabolites in all eight metabolic super-pathways, including 49 of 

the 62 sub-pathways. The genera with the strongest correlations with relative metabolite 

levels (positively and negatively) were Blautia, Oscillospira, and Ruminococcus in the 

Firmicutes phylum (Table S9). The super-pathways most strongly correlated with microbial 

taxonomic relative abundances were lipids and amino acids. Circos plots illustrate the large 

number of statistically significant correlations between microbiome and metabolite features. 

Correlations between microbiome and metabolome features overlapped for those who were 

normal weight and overweight at age 46 and for those who were overweight and obese at 

age 46; however, there was no observable overlap in correlations between the normal weight 

and obese groups (Figure 3; Table S9).

Discussion

The gut metabolome and microbiome are modifiable exposures that have been cross-

sectionally associated with adiposity22, and prior research indicates that early life exposures, 

such as mode of delivery and breast feeding, impact the infant gut microbiota48 and risk of 

childhood obesity49–51. Therefore, we investigated whether BMI history from adolescence 

to middle age was independently associated with fecal microbial diversity in adulthood. 

Despite our selection of participants with diverse BMI histories, we did not observe 

associations of BMI history with measures of fecal microbial diversity or metabolite levels 

following adjustment for contemporaneously measured BMI. Rather, our results suggest 

more dynamic associations of BMI with the fecal microbiome and metabolome that reflect 
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an individual’s current phenotype. Nevertheless, studies with serially collected stool samples 

as well as longitudinal data on BMI and potential confounders are needed to replicate and 

extend these observations.

Human studies have indicated that gut microbial diversity is lower in obese than in normal 

weight individuals and that weight loss increases diversity8,9,14,15. However, results from 

human studies have been inconsistent and have been criticized for small sample sizes and 

insufficient statistical power to detect modest associations16–19. In fact, one study by Sze 

and Schloss that pooled data from ten studies with BMI and 16S rRNA gene sequence data 

found that effect sizes were small with obese individuals, which the investigators defined as 

a BMI >35 kg/m2, having, on average, 2.1% lower diversity, 0.9% lower evenness, and 7.5% 

lower richness as compared with nonobese individuals17. However, it is important to note 

that effect sizes in the study by Sze and Schloss may have been attenuated because the 

comparison, “nonobese”, group included individuals who are considered overweight (i.e., 

25≤ BMI<30 kg/m2) and class I obese (i.e., 30≤BMI<35 kg/m2) according to the WHO 

classification of BMI. Among the 563 participants in the NFBC1966 with diverse weight 

histories, we found that adult BMI, measured proximate to stool collection, was negatively 

correlated with measures of microbial richness and that differences in community structure, 

estimated with measures of beta diversity, were observable when comparing obese 

individuals (i.e., ≥30 kg/m2) to those with a normal BMI (i.e., ≥18.5 and <25 kg/m2) but not 

when comparing overweight individuals (i.e., ≥25 and <30 kg/m2) to those with a normal 

BMI.

We did not observe any statistically significant associations between adult BMI and bacterial 

genera at a more conservative FDR-corrected threshold of 0.01, but at an FDR-corrected 

level of 0.05, we found that increasing BMI was cross-sectionally associated with higher or 

lower relative abundances of several genus-level taxa. More specifically, higher BMI was 

linked to higher abundances of genera in the phylum Firmicutes, including Roseburia, 

Blautia, Dorea and Ruminococcus, but lower abundances of Rikenellaceae (Bacteroidetes) 

and Oscillospira (Firmicutes). In a study of nearly 600 US adults, Peters et al. found that 

obesity was characterized by greater abundance of several sub-taxa within Firmicutes, 

namely bacteria belonging to the Streptococcaceae and Lactobacillaceae families but lower 

abundance of others, including Clostridiaceae and Dehalobacteriaceae families52. In genus-

level analyses, Peters et al reported associations with obesity that generally agreed with our 

findings for both continuous and categorical measures of BMI; they found that obesity was 

positively associated with Blautia and Ruminococcus and inversely associated Rikenellaceae 
with Oscillospira. However, they found no association between obesity and Roseburia and 

found that the genus Dorea was inversely, not positively, associated with BMI. Despite 

differences in BMI-taxa associations, both studies found that microbial composition was 

altered and that richness was reduced in obese as compared with normal weight 

individuals52. The genera Blautia has also been linked to diet-related exposures. A recent 

randomized controlled-feeding trial studying the effects of dietary fat on the fecal microbiota 

and metabolite profiles found that a low-fat diet increased abundance of Blautia, which 

includes known butyrate-producing bacteria, and that a higher relative abundance of Blautia 
was negatively correlated with serum low-density lipoprotein cholesterol53. However, a 

study of Swedish adults found that both Blautia and Ruminococcus were cross-sectionally 
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associated with higher BMI54 while a longitudinal study of healthy women from the 

TwinsUK Study found that the family Ruminococcaceae was protective of long-term weight 

gain55. In line with our findings, a weight loss trial in obese, post-menopausal women found 

that the relative abundance of the genus Roseburia decreased with calorie-restricted induced 

weight loss56. Overall, evidence linking BMI to specific microbial families and genera is 

often contradictory. There are many possible reasons for such inconsistencies including, but 

not limited to, differences in study design, population demographics and exposures, and 

analytical methods. Large human studies of diverse populations are needed to systematically 

describe associations between the gut microbiota and obesity.

Our analysis of BMI and fecal metabolites revealed strong positive and negative 

associations, which apart from a few carnitine-related metabolites57,58, did not overlap with 

previously observed associations between BMI and circulating metabolite levels, measured 

in serum or plasma23–30. Of the 56 statistically significant associations that we observed 

between BMI and fecal metabolite levels, two positive associations with the lipids 

arachidonate and stearoylcarnitine, replicated earlier findings by Zierer et al22. In addition, 7 

of the 56 BMI-associated fecal metabolites in our study were also positively associated with 

visceral fat in the TwinsUK Study22; these included five lipids (i.e., arachidonate, dihomo-

linolenate, docosapentaenoate, sphingosine, stearoyl ethanolamide), one peptide (i.e., 

gamma-glutamyl-epsilon-lysine), and one unidentified compound (i.e., Metabolon unknown 

24766). We also observed positive associations between BMI and two polyamines, 

putrescine and cadaverine. Interestingly, elevated levels of serum and urinary putrescine as 

well as urinary cadaverine have been observed in colon cancer patients as compared with 

healthy controls59. Prior studies have also demonstrated that the expression of several 

polyamine metabolic genes is impacted by two commonly mutated genes in colon 

cancer60–62 and that inhibition of spermine oxidase, a highly inducible polyamine catabolic 

enzyme, activity reduces colon tumorigenesis in mice63. The strong association between 

BMI and these microbial metabolites of polyamines which may play a role in the obesity-

colon cancer relationship warrants further investigation.

We observed many statistically significant correlations between microbial features and 

metabolite levels illustrating the dynamic and complex relationship between the gut 

microbiota and metabolism. Moreover, we found evidence that the strength of these 

associations depends on other phenotypic factors such as BMI. Understanding how 

microbiome-metabolome associations relate to chronic disease risk factors, such as obesity, 

could help elucidate disease etiology and identify targets for intervention. Interestingly, we 

found substantial overlap, in terms of statistically significant correlations, between microbial 

and metabolomic features between adjacent BMI groups (i.e., normal weight and overweight 

as well as overweight and obese) but no overlap in correlations between non-adjacent BMI 

categories (i.e., normal weight and obese). This may be explained in part by the larger 

sample size for overweight (n=253) versus normal weight (n=167) or obese (n=143) at age 

46, which afforded greater power to detect statistically significant correlations. Nevertheless, 

the strongest correlations between microbial and metabolomic features were distinct for 

normal weight and obese individuals, which reflects earlier suggestions that obese but not 

overweight individuals have lower microbial diversity and different community structures as 

compared with normal weight individuals. Among normal weight individuals, we observed 
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strong positive correlations between Firmicutes, namely Blautia, and lipid metabolites 

related to secondary bile acid metabolism as well as amino acid metabolites related to lysine 

and alanine/aspartate metabolism. Whereas among obese individuals, we observed strong 

positive correlations between Firmicutes (unknown genus) and lipid metabolites, namely 

dicarboxylic acids, which are involved in fatty acid metabolism.

A major strength of our study is that it is nested within a birth cohort; therefore, we have 

longitudinal measures of height and weight, which allowed us to study fecal microbiome and 

metabolome associations, accounting for diverse BMI histories. Additionally, the 

NFBC1966 is a homogenous population, having expanded from recent bottlenecks, with a 

similar genetic background64, making it well-suited to study nongenetic correlates of 

obesity. However, our study is observational, and our analyses of adult BMI, fecal 

metabolites, and fecal microbiome are cross-sectional since stool samples were collected at a 

single time point when participants were 46 years old; thus, the temporality of these 

associations cannot be established and should be interpreted with caution. In addition, 

possible selection bias or residual confounding by unmeasured or poorly measured 

confounders, such as dietary intake, may have inflated or attenuated associations of BMI 

variables with microbiome and metabolite measures. Although we used cutting-edge 

bioinformatics tools for our microbiome analyses, our 16S rRNA gene sequencing data does 

not provide sufficient resolution for species-level analyses. We did, however, survey the 

fecal metabolome, using a nontargeted approach, which allowed us to explore the myriad 

connections between the gut microbiota and metabolome. Such integrated analyses provide 

insight into complex chronic disease-linked phenotypes like obesity and promise to generate 

novel hypotheses for studies of disease etiology.

In conclusion, we found that BMI associations with measures of the fecal microbiota and 

metabolome were driven by recent rather than earlier-life BMI. Moreover, we found that 

cross-sectional associations between fecal microbial features and metabolites differed by 

current BMI category such that there was no observable overlap in significant correlations 

between obese and normal weight adults. Understanding how these associations relate to 

cancer risk could provide valuable insight for future research on cancer prevention and 

etiology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Fecal metabolite and BMI associations.
56 fecal metabolites were associated at an FDR-corrected P-value<.01 with BMI 

(continuous, kg/m2) at age 46 with adjustment for age, sex, smoking status and batch.
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Fig. 2. Fecal metabolite-metabolite associations.
Spearman correlation plot, with hierarchical clustering, of 56 fecal metabolites associated at 

an FDR-corrected P-value<.01 with BMI at age 46 with adjustment for age, sex, smoking 

status and batch.
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Fig. 3. Microbiome-metabolome associations.
Circos plot of microbiome feature-metabolite level associations. Significant Spearman 

correlations (FDR-corrected alpha: 1×10–3) between microbiome features (16S rRNA gene 

sequence variants) and metabolome features (individual metabolites). Outer circle contains 

high level feature descriptions (super pathway for metabolites; phylum for microbiome 

features) and inner circle contains low level feature descriptions (sub-pathway for 

metabolites; genus for microbiome features). Positive correlations are illustrated in green 

and negative correlations are illustrated in red. Width of line indicates relative abundance of 

microbiome features. Lines are are not scaled on the metabolome end of the plot. Panel A 

illustrates correlations identified for all samples (n=293 subjects), while panels B-D 

represent correlations identified within normal weight, overweight and obese individuals, 

Loftfield et al. Page 18

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. Microbiome features were included in this analysis if they were observed in 

50% or more of samples, to reduce issues with computing correlations on sparse data.

Loftfield et al. Page 19

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Loftfield et al. Page 20

Table 1.

Descriptive characteristics for participants in analytic microbiome sample at age 46 (N=563)*

BMI History†

1 2 3 4

n 167 167 163 66

BMI, mean kg/m2 (±SD) 22.8 (1.4) 27.6 (2.0) 31.2 (5.0) 34.3 (6.1)

BMI category

 Normal weight (i.e., <25 kg/m2), n (%) 167 (100) 0 (0) 0 (0) 0 (0)

 Overweight (i.e., ≥25 and <30 kg/m2), n (%) 0 (0) 149 (89.2) 84 (51.5) 20 (30.3)

 Obese (i.e., ≥30 kg/m2), n (%) 0 (0) 18 (11.0) 79 (48.5) 46 (69.7)

Male, n (%) 38 (22.3) 60 (35.9) 94 (57.7) 25 (37.9)

Smoking status

 Never smoker, n (%) 109 (65.7) 99 (58.2) 78 (48.5) 30 (44.1)

 Former smoker, n (%) 32 (19.9) 41 (25.0) 40 (26.0) 17 (26.2)

 Current smoker, n (%) 25 (15.5) 25 ( 15.2) 41 (26.6) 18 (27.7)

Matriculation exam (i.e., ≥secondary education), n (%) 90 (56.3) 86 (52.4) 51 (32.9) 26 (40.0)

Alcohol drinker, n (%) 153 (93.9) 153 (93.3) 148 (94.3) 57 (87.7)

Alcohol intake, mean drinks/day (±SD) 0.6 (0.8) 0.8 (1.1) 0.8 (1.2) 0.4 (0.6)

Fruit, mean frequency/day(±SD) 1.6 (1.1) 1.3 (1.1) 1.1 (1.0) 1.0 (1.0)

Vegetables, mean frequency/day (±SD) 2.6 (1.1) 2.7 (1.4) 2.4 (1.4) 2.5 (1.3)

Cereals, mean frequency/day (±SD) 3.4 (1.5) 3.2 (1.7) 3.2 (1.5) 3.1 (1.6)

Fish, mean frequency/day (±SD) 0.3 (0.2) 0.3 (0.3) 0.3 (0.3) 0.2 (0.1)

Red and processed meat, mean frequency/day (±SD) 1.3 (0.9) 1.4 (1.1) 1.7 (1.1) 1.5 (0.9)

Poultry, mean frequency/day (±SD) 0.5 (0.5) 0.6 (0.6) 0.5 (0.4) 0.6 (0.5)

Dairy, mean frequency/day (±SD) 2.6 (1.4) 2.3 (1.4) 2.4 (1.4) 2.1 (1.4)

*
N may not total 563 due to missing data

†
BMI history strata: 1) normal BMI (i.e., >18.5 and <25 kg/m2) at ages 14, 31, and 46 years (n=167); 2) normal BMI at ages 14 and 31 but 

overweight or obese (i.e., ≥25 kg/m2) at age 46 years (n=167); 3) normal BMI at age 14 but overweight or obese at ages 31 and 46 years (n=163); 
and 4) overweight or obese at ages 14, 31, and 46 (n=66).
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Table 2.

Associations of BMI at age 46 with measures of alpha diversity (n=563)

BMI at age 46

Alpha diversity measure Spearman correlation (rs) P-Value Partial rs
* P-Value

Observed ASVs −0.21 <0.0001 −0.18 <0.0001

Faith’s phylogenetic diversity index −0.18 <0.0001 −0.16 0.0001

Shannon index −0.13 0.001 −0.12 0.003

*
Adjusted for exact age, sex, and smoking status (never, former, current or missing)
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Table 3.

Associations of BMI category at age 46 and BMI history with Bray Curtis, unweighted UniFrac, and weighted 

UniFrac distance matrices using MiKRAT models (n=563)

Beta diversity measure

Bray-Curtis Unweighted Unifrac Weighted Unifrac Omnibus

BMI Category P-Value† P-Value† P-Value† P-Value†

Obese vs. normal BMI* 0.0002 0.001 0.01 0.002

Overweight vs. normal BMI* 0.79 0.80 0.92 0.96

BMI History

History 4 vs. 1* 0.41 0.15 0.48 0.45

History 3 vs. 1* 0.16 0.13 0.18 0.34

History 2 vs. 1* 0.26 0.21 0.20 0.39

*
MiKRAT models adjusted for exact age, sex, and smoking status (never, former, current or missing), and BMI at age 46 (for history models only)

†
For statistically significant p-values (<0.05), after repeating the MiRKAT models with 10,000 permutations they remained statistically significant 

under the empirical null distribution of the test statistic
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