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Multielectrode array recordings of extracellular electrical field potentials along the depth
axis of the cerebral cortex are gaining popularity as an approach for investigating the activity
of cortical neuronal circuits.The low-frequency band of extracellular potential, i.e., the local
field potential (LFP), is assumed to reflect synaptic activity and can be used to extract the
laminar current source density (CSD) profile. However, physiological interpretation of the
CSD profile is uncertain because it does not disambiguate synaptic inputs from passive
return currents and does not identify population-specific contributions to the signal. These
limitations prevent interpretation of the CSD in terms of synaptic functional connectivity
in the columnar microcircuit. Here we present a novel anatomically informed model for
decomposing the LFP signal into population-specific contributions and for estimating the
corresponding activated synaptic projections. This involves a linear forward model, which
predicts the population-specific laminar LFP in response to synaptic inputs applied at differ-
ent positions along each population and a linear inverse model, which reconstructs laminar
profiles of synaptic inputs from laminar LFP data based on the forward model. Assuming
spatially smooth synaptic inputs within individual populations, the model decomposes the
columnar LFP into population-specific contributions and estimates the corresponding lami-
nar profiles of synaptic input as a function of time. It should be noted that constant synaptic
currents at all positions along a neuronal population cannot be reconstructed, as this does
not result in a change in extracellular potential. However, constraining the solution using
a priori knowledge of the spatial distribution of synaptic connectivity provides the further
advantage of estimating the strength of active synaptic projections from the columnar LFP
profile thus fully specifying synaptic inputs.

Keywords: extracellular potential, cortical column, local field potential, neuronal population, current source density,

synaptic activity, inverse problem

INTRODUCTION
Multielectrode recordings of extracellular electrical field poten-
tials are gaining popularity as a method for studying cortical circuit
behavior,due to its relative simplicity, and high throughput. In par-
ticular, recent improvements in electrode array technology have
enabled routine measurement of electric field potential from one-
and two-dimensional arrays (Ulbert et al., 2001; Csicsvari et al.,
2003). The extracellular potential is generated by transmembrane
currents evoked by synaptic and spiking activity of neuronal cir-
cuit elements and can be divided into high- and low-frequency
components, usually referred to as multiunit activity (MUA) and
local field potential (LFP), respectively (Pettersen et al., 2007).

The low-frequency component (f � 300Hz), or LFP, empha-
sizes synchronized postsynaptic activity of cortical pyramidal cells,
which are aligned perpendicularly to the pial surface, creating a
superposition of fields (Nunez and Srinivasan, 2006). Both excita-
tory (Mitzdorf, 1985) and inhibitory (Hasenstaub et al., 2005)
postsynaptic potentials (PSPs) contribute significantly to LFP;
however, subthreshold membrane oscillations (Kamondi et al.,

1998) and spike afterpotentials (Gustafsson, 1984) might also con-
tribute. Propagation of action potentials along axons, on the other
hand, has been estimated to have a minimal contribution to LFP
(Mitzdorf, 1985).

A growing number of reports have demonstrated the speci-
ficity of point LFP measurements to neuronal processes underlying
higher cognitive functions (Fries et al., 2001; Pesaran et al., 2002;
Gail et al., 2004). However, interpretation of the LFP in terms of
the interaction between neuronal populations across cortical lay-
ers within a functional column requires simultaneous extracellular
recordings from multiple cortical depths. Such “laminar” record-
ings have been performed in awake primates (Schroeder et al.,
1998) and even in humans (Ulbert et al., 2004; Halgren et al.,
2006) and offer a unique opportunity to study the patterns of
neuronal activity in a cognitively alert setting. Therefore, extra-
cellular laminar multielectrode recordings can potentially bridge
the gap between the microscopic activity of neuronal popula-
tions and the diverse cognitive states measured by its extracranial
counterpart – the electroencephalogram (EEG).
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The standard method for analyzing LFP signals recorded with
a one-dimensional laminar multielectrode array, inserted perpen-
dicularly to the cortical surface, is to evaluate the distribution
of the current source density (CSD) across the cortical depth.
Assuming constant extracellular conductivity and laminar homo-
geneity of the sources, the CSD can be evaluated from the second
spatial derivative of the LFP recorded at equidistant locations on
the electrode array (Nicholson and Freeman, 1975). Recently, we
extended the CSD estimation method to include the effects of the
confinement of neuronal activity to the cylindrical column and
conductivity discontinuity at the pial surface by explicitly invert-
ing the forward electrostatic solution (Pettersen et al., 2006). The
benefit of the CSD method is that it expresses the dissipated LFP
signal in terms of a spatially localized distribution of current sinks
and sources. However, the physiological significance of the CSD
analysis is limited because it does not disambiguate the sinks and
sources as belonging to either the synaptic input or passive return
currents. For instance, a CSD sink at a given location can cor-
respond to either a local excitatory synaptic input or the return
current of a remote inhibitory synaptic input. Moreover, the CSD
method measures the net transmembrane current contributed
by all neuronal populations occupying a particular cortical loca-
tion, and does not allow for the decomposition of the signal into
population-specific contributions.

In attempts to extract biophysically relevant information from
laminar multielectrode LFP recordings, a number of previous
efforts have employed principal component analysis (PCA; Di
et al., 1990) and independent component analysis (ICA; Leski
et al., 2009; Makarov et al., 2010). However, PCA and ICA tech-
niques decompose the signal into a sum of components with
no reliance on the underlying biophysical processes and assume
orthogonality or independence, respectively, of the processes to be
isolated – assumptions that are likely to be invalid in the context
of interacting neuronal populations.

As an alternative approach, we have introduced laminar popu-
lation analysis (LPA; Einevoll et al., 2007), which uses physiological
constraints to specify the decomposition of the laminar elec-
trophysiological signals into population-specific contributions,
assuming that the LFP is evoked by the firing of neuronal pop-
ulations measured by the MUA. Using the LPA, we identified,
from stimulus-evoked multielectrode data in the rat somatosen-
sory cortex, the population laminar profiles, their firing rates, and
the laminar LFP profiles evoked in response to firing in the indi-
vidual presynaptic populations. Furthermore, we demonstrated
that by incorporating cell-type specific morphologies the LPA can
be extended to estimate the synaptic connection pattern between
the identified populations.

A recent development is the establishment of the publicly avail-
able databases both for neuronal morphologies1 and detailed data
on synaptic connections2. Here we take advantage of this develop-
ment and describe a new modeling framework which synthesizes
the data on synaptic connections and the cell-type specific mor-
phologies in order to infer activated synaptic projections between

1http://neuromorpho.org/
2http://openconnectomeproject.org/

cell populations within the cortical column based on laminar LFP
data. In contrast to the LPA approach, the present model does
not rely on specific assumptions regarding the causal relationship
between recorded columnar MUA and LFP and does not require
MUA data.

In this paper we develop an anatomically informed compu-
tational model for investigating the possibility of reconstructing
the laminar profiles of population-specific synaptic inputs from
the multielectrode LFP signal when provided with anatomical
information about population-specific cell morphologies or when
additionally supplied with a priori knowledge of the spatial distrib-
ution of synaptic connectivity. In the present model, the dendritic
membrane is assumed to possess only passive properties, allow-
ing for simulation of the essential processing of the subthreshold
PSPs, resulting in a linear model. Such a model is sufficient to
delineate the main relationships between the synaptic input cur-
rents and the evoked LFPs, and is a necessary step toward modeling
more realistic processing of active dendritic conductances (Mainen
and Sejnowski, 1998). The proposed model involves calculation of
the laminar LFP profiles, using compartmental neuron model-
ing in the Fourier domain, for a collection of reconstructed cell
morphologies in response to point input currents applied at dif-
ferent locations relative to their somata. Computational results
from individual cells are then used to construct population lam-
inar LFP profiles. The inversion of laminar profiles of synaptic
currents from extracellular data is performed using a regularized
linear estimation theory. The inverse model is constrained either
by specifying the laminar spatial smoothness of synchronous
population-specific synaptic inputs or by utilizing the detailed
anatomical information about the depth-distribution of synap-
tic connections between the populations. Below, we demonstrate
that this approach successfully decomposes the columnar LFP into
population- or projection-specific contributions and predicts the
corresponding activated synaptic projections.

MATERIALS AND METHODS
FORWARD MODELING: FROM SYNAPTIC INPUT TO THE LFP
Model assumptions
Our model of the cylindrical cortical column includes only excita-
tory granular (layer-4 spiny-stellate), infragranular (layer-5 pyra-
midal), and supragranular (layer-2/3 pyramidal) populations. The
inhibitory cells were not included in the model because they gen-
erate a considerably weaker extracellular response due to their
smaller number, compared to excitatory cells. The reconstructed
cell morphologies were obtained from the NeuroMorpho.Org
database (Ascoli et al., 2007). Assuming that populations are com-
posed of morphologically and physiologically similar cells, each
population is represented by a single reconstructed cell morphol-
ogy from the rat somatosensory cortex. It is assumed that cell
somata in the p-th population are distributed uniformly with
density v(p) per unit disk area of the cylinder; whereas, the depth-
distribution of cell somata around the population center z (p)

within the layer is non-uniform and modeled with a Gaussian

profile P(z , σ
(p)
s ).

The dendritic membrane is assumed to possess only pas-
sive properties sufficient for modeling the processing of the
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subthreshold PSPs, and synaptic currents are modeled as distrib-
uted input currents, rather than via time-dependent changes of
membrane conductance, making the model fully linear. The LFPs
are assumed to be predominantly generated by the processing
of synaptic input currents. Axons are excluded from the model,
following the assumption that axonal currents negligibly con-
tribute to the LFP signal. The full range of model assumptions
and parameters used in the model is summarized in Table 1.

Relationship between the extracellular potential and the CSD
Dendritic processing of synaptic inputs and the propagation of
action potentials are accompanied by ionic currents flowing across
the cell membrane and the surrounding tissue. The electromag-
netic field associated with the currents of physiological origin
satisfies the quasi-static condition (Plonsey and Heppner, 1967).
When applied to a homogeneous extracellular medium with con-
ductivity σ the quasi-static condition leads to the Laplace equation
for the scalar field potential, Φ(r, t ), with an effective solution
(Plonsey, 1964; Geselowitz, 1967)

Φ(r, t ) ∼= 1

4πσ

∫
Am

Jm(r′, t )

|r − r′| dA (1)

where the integration of the membrane current density Jm(r′, t ) is
performed over the membrane surface Am of all cells bounded by
the volume under consideration. This expression tacitly assumes
that the contribution of current density across the external
boundary of the volume is negligible.

Neurons in cortical columns are arranged as collections of sev-
eral tightly packed populations of morphologically and physiolog-
ically similar units activated by similar synaptic input. Therefore,
on a spatial scale that is small in comparison to the distance |r − r′|,

but sufficiently large to include portions of multiple neuritis within
each elementary volume of tissue, the membrane currents can be
described by a continuously distributed CSD (Nicholson, 1973):

C(r′, t ) = 1

ΔV

∑
n

∫
Amn

Jmn

(
r′, t

)
dA (2)

where the transmembrane currents are summed over the mem-
brane surface Amn of each n-th neurite contained within the
elementary volume ΔV centered on position r. Consequently, the
extracellular potential in Eq. 1 can be more conveniently expressed
via a volume integral

Φ(r, t ) ∼= 1

4πσ

∫
V

C(r′, t )

|r − r′| dV (3)

over the CSD distribution within the tissue volume V.

Prediction of laminar LFP profiles evoked in response to input
currents
The model linearity permits us to utilize the Green’s function
method (Tuckwell, 1988) in order to express the p-th population
laminar LFP, Φ(p)(z, t ), evoked in response to an arbitrary tran-

sient laminar distribution of synaptic input currents, i
(p)
s (ζ, t ′), per

unit membrane area. The p-th population laminar LFP Green’s
function, G(p)(z, ζ, t − t′), is defined as a population laminar LFP
generated in response to a unit point input current delivered
instantaneously at time t ′ and applied to all dendritic compart-
ments crossing a virtual plane oriented perpendicularly to the
columnar axis and positioned a distance ζ from the soma of the

Table 1 | Overview of the model at different levels of description.

Level Model assumptions Parameters

Cell Dendritic membrane has passive properties with uniform value of

membrane admittance Y (f ).

Axons are excluded.

Synaptic input is modeled as input current.

LFPs are produced by PSP only.

Specific membrane resistance: rm = 30 kΩ cm2.

Intracellular resistivity: rL = 200 Ωcm.

Membrane time constant: τm = 30 μs.

Specific membrane capacitance: cm = 1 μF/cm2.

Population Morphology is represented by a single cell obtained from the

Neuromorpho.Org database.

Cell somata are distributed uniformly within each lamina and

according to Gaussian profile in the direction of the column axis.

Population Center,

z (p) (μm)

SD,

σ
(p)
s (μm)

Thickness,

δz (p)(μm)

Cell #,

ν(p)πd2/4

Layer-2/3 412 60 272 3735

Layer-4 704 60 263 4447

Layer-5 1124 60 274 2235

Column Geometry is represented by a right circular cylinder. Properties vary

only along the cylinder axis.

Dendrites are confined within the cylinder.

LFP is measured along the column axis.

Only excitatory populations from layers 2/3, 4, and 5 are included.

Column diameter: d = 0.5 mm.

Column height: h = 1.8 mm.

Extracellular conductivity: σ = 0.3 S/m.

The anatomical data for the population parameters was compiled from Meyer et al. (2010a,b); The layer-2/3 population is represented by the layer-3 pyramidal cell

(neuron name: “C260897C-P3,” Wang et al., 2002), the layer-5 population is represented by the layer-5B pyramidal cell (neuron name: “p21,” Vetter et al., 2001), and

the layer-4 population is represented by the layer-4 spiny-stellate cell (neuron name: “DS1_050601_wL,” Staiger et al., 2004).
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respective cell. Then, the population LFP response to an arbitrary
laminar distribution of input currents can be computed from

Φ(p)(z , t ) =
t∫

0

dt ′
ζmax∫

ζmin

dζG(p)
(
z , ζ, t − t ′) i

(p)
s

(
ζ, t ′) (4)

where the coordinate ζ is measured relative to the cell somata
and spans the range [ζmin, ζmax] occupied by cell dendrites, while
coordinate z is measured with respect to the pial surface. The com-
plexity of dealing with the temporal dependence of the Green’s
function can be avoided by analyzing the model in the frequency
domain by taking the Fourier transform of Eq. 4:

Φ̃(p)(z) =
ζmax∫

ζmin

G̃(p)(z , ζ)ı̃
(p)
s (ζ)dζ (5)

where tilde (∼) represents the Fourier transforms of the corre-
sponding variables from Eq. 4 at a particular frequency f.

For the numerical computations the integral in Eq. 5 is
approximated using the midpoint rule, reducing the problem
mathematically to the matrix product:

Φ̃
(p) = G̃

(p)
ı̃(p)
s (6)

where complex-valued gain matrices G̃
(p) = G̃(p)(zj , ζk)Δz and

the arrays of extracellular potentials Φ̃
(p) = Φ̃(p)(zj) and of

synaptic input currents ı̃(p)
s = ı̃

(p)
s (ζk) are evaluated at the

locations zj = Δz/2 + (j − 1)Δz, Δz = h/Nj, j = 1, 2,. . ., Nj; and
ζk = Δζ/2 + (k − 1)Δζ, Δζ = (ζmax − ζmin)/Nk, k = 1, 2,. . ., Nk.
The Δz and Δζ are the depth discretization lengths for the pial-
based and the soma-based coordinates, respectively, and were
equally chosen at 20 μm.

The benefit of modeling the laminar LFP response to input cur-
rents in a frequency domain stems from the ability to compute the

gain matrices G̃
(p)

for each p-th population by applying compart-
mental neuron modeling in a Fourier domain, thus eliminating
the simulations of the time-course of the dendritic response to a
biophysically realistic synaptic input (see Population Laminar LFP
Green’s Function in a Fourier Domain in Appendix). Finally, the
gain matrix for the entire cortical column is constructed as a row

of individual population gain matrices G̃ = [G̃(2/3)
, G̃

(4)
, G̃

(5)]
which is acting on the input currents to the corresponding pop-
ulations combined into a column of arrays ı̃s = [ı̃(2/3)

s ; ı̃(4)
s ; ı̃(5)

s ]
such that

Φ̃ = G̃ı̃s + ñ (7)

which also includes a random noise array ñ to account for various
aspects of model inadequacy.

INVERSE MODELING: FROM LFP TO SYNAPTIC INPUT
Inverse problem
The inverse problem, in our case, is one of finding the frequency
spectrum of the depth-distribution of synaptic input currents ı̃s

from the Fourier transform of the recorded extracellular potential
Φ̃. Since the number of channels recording the field potential is
typically lower than the number of discrete points where synaptic
currents are sought, the solution of the linear system is underde-
termined and non-unique. This problem commonly arises in data
analysis and, practically, the “best” solution is sought by minimiz-
ing the L2 norm of the residual r̃ = Φ̃ − G̃ı̃s and is given by the

least squares solution ˆ̃ıs = G̃
†
Φ̃, where G̃

†
is a Moore–Penrose

pseudoinverse (Aster et al., 2005). Unfortunately, the pseudoin-
verse is commonly strongly ill-conditioned, i.e., small changes in
measurements can lead to huge changes in the estimates, rendering
the inverse solution extremely sensitive to the measurement noise.
The inverse solution to the ill-posed problem can be stabilized by
either selecting the minimum norm solution, as in Tikhonov regu-
larization (Aster et al., 2005), or by enforcing a certain smoothness
of the estimated input currents across the cortical depths as done
here. The input currents are then estimated as

ˆ̃ıs = W̃iΦ̃ (8)

where W̃i is the regularized inverse operator for estimating synap-
tic input currents (see Linear Inverse Operator for Estimation of
Laminarly Smooth Input Currents in Appendix).

Insight regarding the constraints on the input current smooth-
ness can be reached by examining the depth distributions of
synaptic “innervation domains” obtained from the product of
presynaptic axonal densities and the postsynaptic dendritic den-
sities (Helmstaedter et al., 2007). For example, the innervation
domain of presynaptic L2/3 axons on postsynaptic L2/3 cell den-
drites produced by Feldmeyer et al. (2006) indicates that 80%
of the integrated density of the synaptic contacts resides within
a spatial region of about 200 μm when measured relative to the
soma-centered reference frame. Since the magnitude of synaptic
input is related to the density of innervations and the synaptic
projections from individual populations are activated in unison, it
is expected that the synaptic inputs to the population will be cor-
related on the scale of about 200 μm. The assumption of spatial
covariance of the input currents can be effectively incorporated
into the model by representing the laminar distribution of the
population input currents as a linear combination

ı̃s = Bβ̃ (9)

of a set of Nb “smooth” basis functions B = [b1; . . . ; bNb ], where
each column vector bm represents a m-th basis function which is
spatially discretized at Nk equidistant locations; and β is a 1 × Nb

array of weights specifying the contribution of each basis func-
tion to the input current. Consequently, the synaptic inputs can
be reconstructed by estimating the contribution of each basis
function to the reconstructed signal:

ˆ̃
β = W̃βΦ̃ (10)

where W̃β is now the regularized inverse operator for estimating
contributions of each basis function (see Linear Inverse Operator
for Estimation of Laminarly Smooth Input Currents in Appendix).
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Finally, the temporal dependence of the estimated synaptic inputs
is obtained via the inverse Fourier transform:

ı̂s(t ) = F−1
{

B ˆ̃
β
}

. (11)

Model resolution
The quality of the inverse solution can be characterized by assess-
ing the model resolution matrix. From the definitions of the
forward (Eq. 7) and inverse (Eq. 8) operators one obtains the
relationship between the true and estimated synaptic currents:

ˆ̃ıs = R̃ı̃s + W̃iñ (12)

where R̃ = W̃iG̃ is a model resolution matrix (Aster et al., 2005).
Ideally, for well-conditioned problems and in the absence of mea-
surement noise, the estimate must be equal to the correct value
such that R̃ = I, an identity matrix. However, by applying regular-
ization, we sacrifice the details of the inverse solution in order to
minimize the influence of the noise on the reconstructed solution.
Each column (the resolution kernel) R̃k of the resolution matrix
indicates how well the point synaptic input at the location ζk will
be resolved in terms of synaptic inputs at all cortical depths. The
resolution matrix is exclusively determined by properties of the
forward model and the applied regularization technique and is
independent from the specific data.

For the spatially correlated input currents, the resolution
matrix, which measures the quality of the reconstruction of the
point inputs, does not adequately judge the quality of the recon-
struction provided by the inverse model. Instead we are interested
in reconstructing the array of weights β̃ specifying the contribu-

tion of each basis function to the input. The estimated weights ˆ̃
β

are found by substituting Eq. 9 into Eq. 12 yielding

ˆ̃
β = B−1R̃Bβ̃ + B−1W̃iñ (13)

which indicates that the matrix B−1R̃B is a more adequate mea-
sure of the model resolution where each m-th column represents
how well the basis function bmis reconstructed across the cortical
depths.

RESULTS
MODELING LAMINAR LFP PROFILES: SINGLE POPULATION
Here, the methodology outlined in the Section “Materials and
Methods” is applied to compute the frequency spectrum of the
population laminar LFP Green’s functions. All simulations were
carried out using MATLAB, which is well suited to matrix com-
putations. Figure 1 shows the predicted population CSD and LFP
laminar profiles evoked in response to localized excitatory (sink-
like) steady-state currents applied at different positions relative to
the soma of the layer-5 pyramidal cells. The CSD laminar profiles
shown in the left column of Figure 1A indicate that the excita-
tory synaptic inputs to basilar dendrites initiate a strong localized
current sink at the location of synaptic input accompanied by a
spatially distributed return current sources (i.e., current entering
the extracellular medium). The latter are the most prominent in

FIGURE 1 |The predicted CSD (left) and the corresponding LFP (right)

laminar profiles for the population of layer-5 pyramidal neurons in

response to steady-state input current. The laminar profiles are
computed as a function of the cortical depth relative to the position of the
population center (vertical axis) in response to the point steady-state
excitatory input current applied to cells at different vertical positions
measured relative to the soma. The horizontally oriented cells depicted
below each horizontal axis label identifies the locations of the synaptic input
to the population, whereas the group of three vertically oriented cells
depicted to the left of each vertical axis identifies the cell population with
regard to the depth-distribution of the population laminar profiles. The
real-valued laminar profiles (A) are also depicted as a combination of the
absolute magnitude (B) and phase (C) used for complex-valued functions.
The phase ψ = π corresponds to the inward currents on the CSD profile and
the negative potential on the LFP profile. Relative units are used in (A,B):
the color bars are normalized to 20 and 40% of the largest value of the CSD
and the LFP, respectively.

the vicinity of the cell somata and at the apical tuft – the regions
with the highest density of membrane area per unit cortical depth.
Conversely, the excitatory input to the apical branch initiates the
strong local sink there accompanied by the distributed return cur-
rent sources most prominent along the apical branch itself and
around the location of the soma. Despite the qualitative simi-
larity, the CSD profiles in response to the synaptic inputs to the
basilar versus apical dendrites are distinct from one another: (1)
stronger return currents are manifested at the middle of the pop-
ulation in response to basilar rather than to apical stimulation;
(2) the total excitatory input applied at the soma is stronger than
that applied to the apical branch, because of the large somatic
membrane area.
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The corresponding steady-state laminar LFP is shown in the
right column of Figure 1A and manifests a pattern similar to
the CSD but is spatially smoother due to the distal contribu-
tions of sources throughout the column to the LFP at a particular
point along the column axis. In order to introduce the analysis
of the complex-valued laminar profiles for non-zero frequencies,
Figure 1 also shows the corresponding absolute magnitude (B)
and the phase ψ (C) of the laminar profiles (A).

Figure 2 shows the absolute magnitude (A) and phase (B) of
the predicted CSD and LFP laminar profiles at the frequencies of
10, 30, 100, and 250 Hz for the population of the layer-5 pyra-
midal cells. At non-zero frequencies the CSD also includes the
capacitive current whose magnitude is proportional to the fre-
quency of the input. In fact, the ratio of capacitive to leak currents,
2πfτm, is 1.9, 5.7, 18.9, and 47.1 for the frequencies of 10, 30,
100, and 250 Hz, respectively, in the cell having the membrane
time constant τm = 30 ms. Therefore, for inputs at f >

∼

30 Hz,

the dendritic processing is strongly dominated by the capacitive
currents. The high amplitude of the CSD along the main diago-
nal in Figure 2A is dominated by the synaptic inputs with ψ ∼ π,
as shown in Figure 2B. Conversely, the off-diagonal components
of the laminar profiles correspond to the return currents, which
decrease with distance from the location of the synaptic input.
The phase of the return currents ψ ∼ 0 immediately outside the
region of synaptic input and decreases monotonically farther out.
Notably, for f > 100 Hz, the phase may approach that of the input

FIGURE 2 | Predicted CSD and corresponding LFP laminar profiles for

the population of layer-5 pyramidal neurons in response to sinusoidal

input currents. The laminar profiles are computed as a function of the
cortical depth (vertical axis) relative to the position of the population center,
in response to the sinusoidal point input current oscillating at frequencies of
10, 30, 100, and 250 Hz applied to cells at different vertical positions
measured relative to the soma. Complex-valued CSD and LFP profiles
include both the absolute magnitude (A) and the phase (B). Relative units
are used in (A): the color bars are normalized to 20 and 40% of the largest
value of the CSD and the LFP, respectively and display the ratio of the
largest value at a given frequency to that at the steady-state.

current itself at some location on the tree. This implies that a
cell driven with a sinusoidal current may have regions along the
tree, where the return currents are flowing in-phase with the
input current, unlike for the steady-state input, where input and
return currents always flow in the anti-phase. The spectrum of the
laminar LFP constitutes the spatially dissipated analog of the cor-
responding laminar CSD profiles, with a consequence that their
phase advances more slowly with distance from the location of the
synaptic input.

The computed laminar profiles clearly indicate the low-pass
frequency-filtering of the LFP due to the electrical cable proper-
ties of dendrites (Pettersen and Einevoll, 2008; Lindén et al., 2010).
The capacitive currents are stronger at higher frequencies, mak-
ing cell membranes leakier, and consequently limiting the extent of
dendritic processing to a more compact region around the location
of the input, whereas the low-frequency input currents propagate
farther away from the input. This leads to the reduction in the spa-
tial separation of the input and return currents and their partial
cancelation, producing weaker, and more compressed CSD/LFP
laminar profiles as indicated by the colorbar scale in Figure 2A.

In order to appreciate the effect of the capacitive currents on
the extracellular population response, Figure 3 compares the lam-
inar profiles of the CSD and corresponding LFP from Figure 2 for
inputs at a particular location x = 0.2 mm relative to the soma. The
magnitudes of the CSD/LFP in the vicinity of the current input
decrease progressively with increasing frequency of the input as a
result of the larger contribution of the return currents acting in the
anti-phase to the input, thus lowering the amplitude of the total
current there. In contrast, the magnitude of membrane currents
immediately outside the region of the current input is greater at
higher frequencies due to stronger capacitive currents, leaving less
current to pass to more distant dendritic branches. It is useful to
compare the CSD and LFP responses to point input currents of the

FIGURE 3 |The predicted CSD and corresponding LFP laminar profiles

from Figure 2 for current inputs applied at x = 0.2 mm relative to the

cell soma at different frequencies. Complex-valued CSD and LFP profiles
include both the absolute magnitude and the phase. Relative units are used
such that the magnitude of the signal is normalized to that at the
steady-state. The perceived discontinuity of the phase of the CSD is illusory
because the phase is defined on the domain between −π and π.
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population of morphologically realistic cells to those of the popu-
lation of finite parallel cables (discussed in Appendix) in order to
discern the combined effects of cell morphology and scatter of cell
somata around the population center on the evoked extracellular
response.

MODELING LAMINAR LFP PROFILES: MULTIPLE POPULATIONS
Similarly to the population of the layer-5 pyramidal cell, the lam-
inar profiles for the populations of the layer-2/3 pyramidal and
layer-4 spiny-stellate cells were evaluated and assembled into a

columnar laminar LFP response G̃ = [G̃(2/3)
, G̃

(4)
, G̃

(5)]. Since the
electrophysiological recordings measure the extracellular poten-
tial but not the CSD, only the LFP laminar profiles to the synaptic
inputs will be presented in the following discussion.

Figure 4 shows the predicted laminar LFP Green’s functions of
the modeled cortical column in response to the steady-state excita-
tory synaptic inputs. The differences in cell morphologies between
the populations yield distinct features in their LFP laminar pro-
files: (1) The spatial extent of the laminar profiles is determined by
the vertical span of the dendritic arbors, leading to very compact
layer-4 LFP profile when compared to those for the populations
of layer-2/3 and layer-5 pyramidal cells; (2) The magnitude of the
laminar profiles depends on the density of the membrane area per
unit laminar length, thus generating a much weaker response in
the layer-4 spiny-stellate population in comparison to those in the
pyramidal populations. Therefore the contribution of the layer-4
spiny-stellate population to the columnar LFP is overwhelmed by
the contributions from pyramidal populations as demonstrated in
Figure 4.

Figure 5 shows the spectrum of the predicted columnar lam-
inar LFP Green’s functions at the frequencies of 10, 30, 100, and

FIGURE 4 |The predicted columnar LFP laminar profiles in response to

steady-state inputs. The laminar profiles are computed as a function of the
cortical depth relative to the position of the pial surface (vertical axis) in
response to the point steady-state excitatory input current applied to cells
in each population at different vertical positions measured relative to the
soma (horizontal axis). The representative cell morphologies for each
population are shown to the left of the LFP profiles and are positioned such
that their somata are located at the centers of the corresponding
population. The cartoon below the horizontal axis indicates the locations of
synaptic inputs to cells in each modeled population, ordered from left to
right as follows: L2/3, L4, and L5. Relative units are used such that the color
bars are normalized to 40% of the largest LFP value.

250 Hz. Here, the real, Re{LFP}, and imaginary, Im{LFP}, compo-
nents of the columnar profiles are shown. The higher the frequency
of the input the more out of phase the response becomes relative
to the input, as indicated by the increasing imaginary component.
The low-pass frequency-filtering of the LFP is again manifested
by progressively more compressed laminar profiles for each pop-
ulation with the increasing frequency of the input. Notably, the
relative contribution of the L4 population to the columnar LFP
increases at higher frequencies. As a result of the low-pass filtering,
the return currents leak out more proximal at higher frequencies,
thus increasingly canceling the inputs in all cell types. However,
in electrotonically compact cells the additional negation of input
and return currents will have a lesser effect with increasing fre-
quency, because there the currents already cancel strongly even for
the steady-state condition.

This effect is illustrated in Figure 6, which presents the fre-
quency spectrum of the magnitude of the current-dipole moments
evoked by each population in response to point inputs applied at

FIGURE 5 |The predicted columnar LFP laminar profiles in response to

sinusoidal input currents. The laminar profiles are computed as a function
of the cortical depth relative to the position of the pial surface (vertical axis)
in response to the sinusoidal point input current oscillating at frequencies of
10, 30, 100, and 250 Hz applied to cells in each population at different
vertical positions measured relative to the soma (horizontal axis). The
cartoon next to the horizontal axis indicates the locations of synaptic inputs
to cells in each modeled population, ordered from left to right as follows:
L2/3, L4, and L5. Relative units are used such that the color bars are
normalized to 40% of the largest magnitude of the LFP at a particular
frequency and display the ratio of the largest value at a particular frequency
to that at the steady-state.
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FIGURE 6 |The differential effect of low-pass frequency-filtering on the

modeled neuronal populations. The current-dipole moments evoked by
each modeled population in response to point sinusoidal inputs oscillating
at frequencies of 0, 10, 30, 100, and 250 Hz applied at different positions
along the dendritic tree measured relative to the soma. All responses are
normalized to the peak of the steady-state response of the layer-5
population.

different positions ζ, along the dendritic tree. Mathematically, they
represent the magnitude of the equivalent current-dipole length
l̃(ζ), as a function of the point input location. The current-dipole
moment in response to an arbitrary input profile can be found
by integrating l̃(ζ) with the corresponding profile of the synaptic
input (see CSD Green’s Function for a Population of Parallel Finite
Linear Cables in Appendix). The magnitudes of l̃(ζ) for pyrami-
dal populations have a strong peak in the vicinity of the soma
and a smaller one at the apical branch, proportional to the lami-
nar density of the membrane area. The longer L5-pyramidal cells
evoke a stronger current-dipole moment than the L-2/3 pyramidal
cells because the effective separation of the input and the return
currents depends on the vertical extent of dendritic arbors. The
dipole moment decreases sharply with the increasing frequency of
the input for pyramidal populations, except in the population of
compact spiny-stellate cells, in agreement with the above analysis
of the LFP laminar profiles.

RECONSTRUCTION OF SYNAPTIC INPUT: SINGLE POPULATION
The laminar profiles for the layer-5 cell population previously
computed and presented in Figure 2 were used to generate the LFP

FIGURE 7 | Assessment of the ability of the inverse model to

reconstruct input currents to a single population from laminar LFP

data assuming SNR = 10. The LFP data is generated by the population
L5-pyramidal cells stimulated by the sinusoidal input currents oscillating at
frequency f = 30 Hz and applied at different locations along the dendritic
tree. (A) The model resolution matrix R̃ as a measure of the reconstruction
quality of point input currents, and (B) the transformed model resolution
matrix B

−1
R̃B as a measure of the reconstruction quality of smooth input

currents with basis functions’ smoothness σb = 100 μm.

data in response to hypothetical laminar distributions of synap-
tic input currents. The synthesized data was subsequently used
to reconstruct the laminar distributions of hypothetical synaptic
input, applying Eqs. 9 and 10. The specification of the inverse
operator given by Eq. A13 requires a priori information about
the basis functions’ smoothness σ2

b and the SNR level. For our
computations we assume the SNR = 10.

Figure 7A shows the model resolution matrix R̃ for frequency
f = 30 Hz and the smoothness of the basis functions σb = 100 μm.
Away from the end of the cell, a resolution matrix manifests the
diagonal pattern such that most of the reconstructed signal power
is concentrated in the narrow band centered on the main diago-
nal. However, the model does not reconstruct well the point inputs
applied to the top or the bottom of the dendritic tree, as indicated
by an increased contribution of the off-diagonal terms in the reso-
lution matrix. As discussed in the Section“Materials and Methods,”
a more adequate measure of the model resolution for spatially cor-
related inputs is represented by the transformed model resolution
matrix B−1R̃B presented in Figure 7B. It has a better-defined diag-
onal structure compared to the resolution matrix, indicating the
adequacy of the inverse model. The imperfection of the model res-
olution manifested by the smooth resolution kernels around the
location of the true input is a consequence of the regularization,
and is the price paid to stabilize the solution against the effect of
the random noise.

The effect of the smoothness of the basis function on the model
resolution is investigated in Figure 8, showing the hypotheti-
cal and reconstructed laminar profiles of the synaptic inputs at
f = 100 Hz applied to the layer-5 population. The reconstructed
profiles were found using the inverse model with an assumed
basis function smoothness σb = 100 μm. Figure 8A indicates that
the inverse model does not reconstruct well the Gaussian synap-
tic input profiles with a standard deviation (SD) σt = 50 μm,
which are spatially correlated on the scale shorter than that
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FIGURE 8 |The effect of a priori smoothness of basis functions on the

ability of the inverse model to reconstruct the laminar distribution of

synaptic inputs to a single population assuming SNR = 10. The
hypothetical (true) and reconstructed profiles of input currents at f = 100 Hz
applied at different locations along the cells of the layer-5 population when
input smoothness σt = 50 μm (A), and σt = 150 μm (B) and assuming basis
function smoothness σb = 100 μm. (C) The RMSE of the difference
between the hypothetical and reconstructed synaptic input distributions as
a function of the input smoothness, σt, for two choices of the basis function
smoothness: σb = 50 μm and σb = 100 μm.

of the basis functions. Conversely, the shape of the synaptic
inputs with σt = 150 μm is reconstructed perfectly, as seen in
Figure 8B, because the assumed correlation length of the basis
functions is shorter than that of the laminar distribution of
synaptic inputs. Therefore, the specification of the basis func-
tions smoothness parameter, σb, effectively establishes the res-
olution scale of the reconstructed synaptic inputs. More gener-
ally, Figure 8C shows the dependence of the root-mean-square
error (RMSE) of the difference between the hypothetical and

reconstructed synaptic input distributions as a function of the
input smoothness,σt, for two choices of the basis function smooth-
ness parameter: σb = 50 and 100 μm. The quality of reconstruc-
tion improves with the increasing width of the applied inputs
for σt < σb and nearly plateaus at a small value when σt > σb,
indicating that the inverse model reconstructs well the overall
shape of the synaptic input whenever the input current smooth-
ness parameter, σt, is greater than the basis functions smoothness
parameter σb.

The inverse model successfully reconstructs the overall shape
of the hypothetical profiles; however, it is unable to reconstruct
the mean level of applied synaptic current, as seen in Figure 8B,
indicating that the forward model has a non-trivial null-space.
Since an arbitrary laminar profile of the input current may be
represented as the sum of a uniform component at the mean
level of the synaptic input ı̃u and a component with zero mean
ı̃0, it follows that the forward model has a null-space projec-
tion for uniform input currents, i.e., G̃(ı̃0 + ı̃u) = G̃ı̃0, making
it impossible to reconstruct the mean level of synaptic activa-
tion across lamina. The physical cause for the existence of the
null-space is easily understood for steady-state currents. A cell
having a uniform specific membrane resistance stimulated with
a uniform synaptic input current iin per unit membrane area
will experience a shift in resting transmembrane potential by
−iinrm in order to balance the input currents with the pas-
sive leak currents. The cell with an equipotential membrane,
however, will produce zero axial and membrane currents, there-
fore generating no extracellular potential in response to such
activation. Similarly, uniform sinusoidal currents applied to the
cell having uniform membrane admittance will also result in
zero membrane currents, as can be formally seen from Eq. A2.
Indeed, the uniform distribution of the transmembrane volt-
age Ṽj = Ṽ in all compartments will produce zero membrane

current, i.e., Σj Mkj Ṽj = 0 in each k-th compartment because
ΣjMkj = 0. It follows from Eq. A3 that such a uniform distribu-
tion of transmembrane voltage is established when the membrane
is uniformly stimulated by the current ι̃s = − Ṽ /Y (f ). Thus,
the laminarly uniform component of the sinusoidal input cur-
rent is projected to the null-space of the model and cannot be
reconstructed without additional knowledge about the distribu-
tion of transmembrane voltage needed to fix the mean level of
activation.

RECONSTRUCTION OF SYNAPTIC INPUT: MULTIPLE POPULATIONS
Though the presence of the model null-space prevents reconstruc-
tion of the absolute profile of synaptic inputs, each cell population
generates distinct laminar LFP profiles in response to synaptic
inputs, thus suggesting that the inverse model may be used to dis-
criminate the population origin of the evoked columnar LFP. In
order to apply the modeled laminar LFP profiles shown in Figure 4
to the discrimination of the population origin of the LFP signal, it
is necessary to properly constrain the laminar correlations of the
synaptic input. The model assumes that the synaptic inputs are
spatially correlated only within each population and are uncorre-
lated between different populations. The assumed basis functions’
smoothness is σb = 50 μm for the L2/3 and L4 populations and
σb = 100 μm for the L5 population.
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FIGURE 9 |The assessment of the ability of the inverse model to

reconstruct the distribution of the population-specific spatially

smooth synaptic inputs from the composite LFP data. The hypothetical
laminar profiles (A) of synaptic input currents oscillating at frequency
f = 30 Hz applied at different locations along the dendritic tree to each
population. The input smoothness σt = 75 μm for the L2/3 and L4
populations and σt = 150 μm for the L5 population. The corresponding
reconstructed laminar profiles of synaptic input assuming the SNR of 10 (B)

and 1000 (C). The assumed basis functions’ smoothness: σb = 50 μm for
the L2/3 and L4 populations and σb = 100 μm for the L5 population. The
location of the input corresponds to the position of the matrix column
relative to the cartoon shown below the horizontal axis, whereas the
cartoon next to the vertical axis indicates the partitioning of the matrix
column elements between different populations.

The performance of the inverse model is demonstrated in
Figure 9, which compares the hypothetical (A) and reconstructed
(B,C) laminar profiles of synaptic input currents applied at fre-
quency f = 30 Hz, assuming the SNR of 10 and 1000, respectively.
The input smoothness in Figure 9A σt = 75 μm for the L2/3 and
L4 populations and σt = 150 μm for the L5 population. Due to the
linearity of the problem, the more general case of currents applied
to several populations simultaneously can be obtained by the lin-
ear superposition of these basic current inputs. Similarly to the
single population case, the model is fundamentally incapable of
reconstructing the mean level of the synaptic input applied to each
population as indicated by the zero-mean level of reconstructed
laminar profiles in Figures 9B,C. Nevertheless, the inverse model
successfully identifies the population-specific synaptic inputs with
the limited mis-assignment of the reconstructed synaptic inputs
to the other two populations. The mis-assignment largely occurs
between spatially overlapping regions of each population. For
example, the hypothetical inputs applied to the L2/3 population
are reconstructed as the inputs to the L2/3 population with the
partial input to the L5 population applied at the same cortical
depth and vice versa. On the other hand the true inputs to the L4
population are reconstructed with the minimal mis-assignment to
the L2/3 population because of the minimal overlap between the
two populations. Unlike the ambiguity regarding the mean level
of the laminar profiles of synaptic input which results from the
model null-space, the mis-assignment ambiguity results from the
regularization of the inverse operator. Figure 9C indicates that
the mis-assignment ambiguity is strongly diminished for negligi-
ble levels of noise and therefore does not fundamentally limit the
reconstruction of synaptic inputs.

Similarly to the single population analysis, Figure 10A shows
the dependence of the RMSE of the difference between the hypo-
thetical and reconstructed synaptic input distributions as a func-
tion of the input smoothness for two choices of the basis function

FIGURE 10 | Assessment of the ability of the inverse model to

decompose the composite columnar LFP into population-specific

contributions assuming spatially smooth laminar distribution of

synaptic inputs applied at f = 30 Hz. (A) The RMSE of the difference
between the hypothetical and reconstructed synaptic input distributions, as
a function of the input smoothness, σt , for two choices of the basis function
smoothness: σb = 50 μm and σb = 100 μm. (B,C) The signal power
resolution matrix for the modeled column computed from Figures 9B,C,
respectively. Each column represents the normalized distribution of the
power of the reconstructed signal among each population when inputs are
applied to a particular population.

smoothness parameter σb = 50 and 100 μm. Again, the dissimi-
larity decreases with the increasing width of the applied inputs
when σt < σb and nearly plateaus when σt > σb. The hypothetical
and reconstructed profiles are less similar in the column than in a
single population because of the presence of the mis-assignment.
Figures 10B,C shows the signal power resolution matrices for the
modeled column computed from Figures 9B,C, respectively, in
which each column represents the normalized power distribu-
tion of the reconstructed signal among each population when
inputs are applied to a particular population. The perfect reso-
lution matrix would correspond to the identity matrix. However,
the presence of the limited mis-assignment as described above
deposits some signal power into the overlapping cortical pop-
ulations. Figure 10B shows that at the SNR = 10, the strongest
mis-assignment occurs for inputs to the L2/3 population, which
are reconstructed as a combination of inputs to the L2/3 (82%)
and the L5 (18%), whereas, the inputs to the L4 and L5 pop-
ulations are reconstructed with the proper assignment of the
signal power at the levels of 93 and 98%, respectively. When
the noise level is negligible (e.g., SNR = 1000) the decomposi-
tion of LFP signal is nearly perfect as shown in Figure 10C.
Nonetheless, at a finite level of noise, the presence of the spa-
tial overlap between populations prevents a fully unambiguous
decomposition of the LFP into activity of individual populations
without additional information about the distribution of synaptic
innervations.
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RECONSTRUCTION OF POPULATION ACTIVITY BASED ON SYNAPTIC
INNERVATION ANATOMY
The inverse model can be significantly constrained by incorporat-
ing into the model the anatomical information about the laminar
distribution of the density of synaptic innervation between the
populations. The synaptic innervation densities for the canoni-
cal cortical microcircuit of excitatory synaptic projections were
obtained by Lübke and Feldmeyer (2007); (see their Figure 7)
from the product of the presynaptic axonal densities and the post-
synaptic dendritic densities. This includes L4-to-L4, L4-to-L2/3,
L2/3-to-L2/3, L2/3-to-L5, and L5-to-L5 synaptic projections.

The density of synaptic innervation uniquely determines the
basis functions for input currents. Input currents may again be
expressed via Eq. 9, where the matrix of basis functions B = [b1;
. . .; bNb ] is now composed of a set of synaptic innervations den-
sity profiles and β is a 1 × N b array of normally distributed with
zero mean, uncorrelated weights specifying the strength of the
corresponding synaptic projection, and needs to be found from
the inverse solution. The anatomical data from Lübke and Feld-
meyer (2007) was utilized to simulate the laminar response of the
modeled cortical populations having the representative cell mor-
phologies shown in Figure 11A. The digitized depth distributions
of anatomical innervation domains are presented in Figure 11B,
and the corresponding LFP responses of cortical populations at
frequency f = 30 Hz of synaptic input are depicted in Figure 11C.

Figure 12A shows the resolution matrix for the constrained
model where each column represents how well the activation
of a particular synaptic project will be resolved in terms of all
modeled projections. The model discriminates very well between
synaptic projections except for those to the L2/3, where the recon-
struction almost equally assigns the contribution to either pro-
jection from the presynaptic L4 or L2/3 populations. This result
is expected because the laminar profiles of both L4-to-L2/3 and

L4-to-L4 innervation densities are very similar and therefore pro-
duce almost identical LFP, as demonstrated in Figure 11C. In
contrast, the synaptic projections to the L5 population are well
discriminated between those arriving from the L2/3 or L5 popula-
tion because of the strong differences in the respective profiles of
synaptic innervation densities. The role of the differences between
the synaptic innervation domains on the ability to reconstruct the
population activity can be demonstrated by combining the synap-
tic clouds projecting from L2/3 and L4 toward the L2/3 into a
single innervations domain projecting toward the L2/3 population
in the model. The resolution matrix for such a model is shown in

FIGURE 12 | Assessment of the ability of the inverse model to

disambiguate the activated synaptic projection from composite LFP

signal assuming a priori knowledge of the spatial distribution of

synaptic connectivity shown in Figure 11C and SNR = 10. The resolution
matrices for two cases: (A) all known projections are included, and (B)

projections L4-to-L2/3 and L2/3-to-L2/3 are combined into a single synaptic
projection L2/3 + 4-to-L2/3. Each column of the matrix represents the ability
of the inverse model to properly reconstruct the contribution of each
synaptic projection to the evoked LFP signal at the frequency of input
f = 30 Hz.

FIGURE 11 | Modeling of the population-specific laminar LFP

profiles in response to activation of anatomically realistic

excitatory synaptic projections. (A) Representative morphologies of
the cells in the modeled populations; (B) the digitized innervation
domains for each projection from Figure 7 of Lübke and Feldmeyer

(2007); (C) the corresponding complex-valued modes of the LFP
response to sinusoidal inputs oscillating at f = 30 Hz. The somata of
representative cells are properly aligned with the depth-distribution of
the innervation domains. The innervation domains are displayed
normalized to their peak values.
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Figure 12B and indicates a robust discrimination of the modeled
synaptic projections. The quality of the resolution is lowest for
the identification of the L4-to-L4 projection with a corresponding
diagonal element of the resolution matrix 0.83, whereas the diag-
onal elements for the other projections exceed 0.99, indicating an
excellent model resolution. The LFP signal evoked by the popu-
lation of spatially compact L4 spiny-stellate cells is much weaker
than that evoked by the L2/3 and L5 populations of pyramidal cells
in response to the synaptic input. Consequently, the signal from
the spiny-stellate cells is overshadowed by that of the pyramidal
populations, making reconstruction by the inverse model more
difficult.

RECONSTRUCTION OF SYNAPTIC INPUTS FROM EXPERIMENTAL LFP
DATA
In order to illustrate the utility of the proposed method for
interpreting electrophysiological recordings, we here reconstruct
the population-specific laminar profiles of synaptic inputs from
experimental LFP data. We use the data from Einevoll et al.
(2007) collected with a linear multielectrode with 23 channels
spaced at 0.1 mm and inserted perpendicularly to the pial sur-
face into the somatosensory cortex of the anesthetized rat. The
recorded potential was evoked in response to deflection of a sin-
gle whisker. For the purpose of this demonstration, we focused
on a single stimulus condition (rise time: t 1, amplitude: a1
from the experiment #1 in Einevoll et al., 2007). The recorded
laminar-electrode potential was amplified and analogically fil-
tered online into two signals: a low-frequency part and a high-
frequency part. Only the low-frequency part (0.1–500 Hz), sam-
pled at 2 kHz with 16 bits (Ulbert et al., 2001) was used in the
present analysis.

Figure 13A depicts the representative cell morphologies in the
modeled populations and the anatomical structure of the mod-
eled cortical column used to reconstruct the activated synaptic
projections from laminar LFP data. Figure 13B presents the stim-
ulus averaged LFP data for 60 ms following the stimulus onset and
shows a simple laminar structure: positive between 0 and 0.2 mm
and negative elsewhere during its strongest episode between 20
and 30 ms. In order to eliminate the influence of the potential
variation at the reference electrode positioned on the skull, the
mean potential across all electrodes was subtracted from all con-
tacts at each timepoint. Figure 13C shows the laminar profiles of
the reconstructed population-specific synaptic inputs which were
obtained by (1) Fourier transforming the LFP data into a frequency
domain; (2) Estimating the contribution of each basis function to
the reconstructed synaptic inputs by applying the inverse model in
a frequency domain via Eq. 10; and (3) Fourier transforming the
frequency spectrum of reconstructed synaptic inputs back into a
temporal domain via Eq. 11. The inverse operator was constructed
with the assumed SNR = 10 and the basis functions’ smoothness
σb = 50 μm for the L2/3 and L4 populations and σb = 100 μm for
the L5 population.

As previously emphasized, the inverse model is unable to recon-
struct the mean level of synaptic inputs. However, since it is
assumed that the LFP signal is largely generated by the excita-
tory columnar network, each of the population-specific profiles
of synaptic inputs can be uniformly shifted so as to render all

FIGURE 13 | Model application to the reconstruction of synaptic inputs

from experimental LFP data. Representative cell morphologies in the
modeled populations and the anatomical structure of the modeled cortical
column (A); and the corresponding depth distribution of the experimental
LFP data from Einevoll et al. (2007) (B). The estimated population-specific
laminar profiles of synaptic input (C) obtained by applying the inverse
model to the experimental LFP data. The cell morphologies next to the
vertical axis indicate the laminar input locations to the cells in each modeled
population. (D) The estimated population-specific laminar profiles of
synaptic input assuming a strictly excitatory inputs. Relative units
normalized to the maximum of the reconstructed current are used.

currents negative (excitatory) as depicted in Figure 13D. The ear-
liest excitation is projected to layer-4 followed by the synaptic
input to layer-2/3 and layer-5 populations. Strong input to the
layer-2/3 pyramidal population is initiated at the basilar dendrites
and is succeeded by a weaker input to the apical branch. In con-
trast, the input to the layer-5 pyramidal population is applied to
almost the entire dendritic tree. Such a pattern of the laminar
distribution of the population-specific excitatory synaptic inputs
is generally consistent with the innervation anatomy depicted in
Figure 11B and with the predictions of the LPA (Einevoll et al.,
2007). The LFP signal 30 ms after the stimulus onset and the
corresponding estimated currents are presumably generated by
the activity of electrogenic Na+/K+ pumps (not included in this
model), which explains the opposite polarity of these currents
with respect to synaptic inputs activated during 20–30 ms time
window.

DISCUSSION
In the present study, we introduced a novel mathematical frame-
work for reconstructing population-specific synaptic inputs from
laminar LFP recordings, extending beyond the CSD analysis. Our
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approach involves a combination of the forward model, which
predicts population laminar LFP profiles in response to synap-
tic input applied at different locations along the cells, and the
inverse model, which reconstructs synaptic inputs from the lam-
inar LFP data based on the forward prediction. Assuming spatial
correlation of synaptic inputs within but not between neuronal
populations, the model decomposes the columnar LFP profile into
population-specific contributions. Constraining the solution with
a priori knowledge of spatial distribution of synaptic connectivity
further allows prediction of activated synaptic projections from
the columnar LFP measurements.

FORWARD MODELING
In the current modeling approach, neurons have passive den-
dritic trees and no axons, synaptic inputs are modeled as input
currents rather than via voltage-dependent conductance changes,
and LFPs are generated by excitatory synaptic inputs only. This
set of simplifications leads to a fully linear forward model and
allows analysis of the problem via the Green’s function approach
in the Fourier domain. The procedure for simulating the colum-
nar LFP profiles, i.e., LFP Green’s functions, is composed of
the following steps: (1) compute the net transmembrane cur-
rent distributions from the representative cells in response to
input currents injected at different cortical depths relative to
their somata by applying compartmental neuron modeling in a
Fourier domain; (2) compute the population CSD and respec-
tive LFP laminar profiles in response to synaptic inputs from the
transmembrane current responses of the representative cell; (3)
construct columnar LFP laminar profiles from those of individual
populations.

In agreement with previous work conducted for individual cells
(Pettersen and Einevoll, 2008; Lindén et al., 2010), we found low-
pass frequency-filtering of the population LFP signatures due to
the electrical cable properties of dendrites. The effect is manifested
by the compression and weakening of the LFP laminar profiles in
response to input currents at higher frequencies. Consequently, the
synaptic input with, for instance, uniform distribution of spectral
power will generate low-passed spectral distribution of LFP signal
in a homogeneous and purely resistive extracellular medium. The
same conclusions can be drawn from the analysis of the popu-
lation current-dipole moments evoked in response to the point
sinusoidal inputs at different frequencies, shown in Figure 6, indi-
cating a strong reduction in magnitude with increasing frequency
of input.

The predicted laminar LFP profiles for the modeled popula-
tions have distinct features stemming from the morphological
differences between the cell populations. Crucially, the span of
dendritic arborization determines the spatial extent of the LFP
profiles, whereas the laminar density of the membrane area deter-
mines their magnitude. For this reason, at a steady-state, the
LFP profile of the large layer-5 pyramidal population is much
stronger than that of the population of compact layer-4 spiny-
stellate cells. However, as frequency of input increases, the length
of dendritic arborization becomes less important, because most
return currents leave cells in the vicinity of the current input and
do not propagate to the distant dendritic arbors. This effect has
the strongest impact on pyramidal populations and increases the

relative contribution of layer-4 spiny-stellate population to the
total LFP signal at higher frequencies.

The current model only considers variation of extracellular
potential along the axis of a cortical column. Thus, although each
population is represented only by a single reconstructed cell, the
specifics of the dendritic geometry of the chosen representative cell
in any but the axial plane do not affect the forward solution. In
addition, the implemented normal distribution of population ele-
ments along the columnar axis further reduces the field variation
specific to the particular chosen morphologies.

INVERSE MODELING
Inversion of hypothetical laminar LFP recordings is performed
using a regularized linear estimation method requiring a priori
specification of the noise and signal covariance at different lam-
inar locations of synaptic input. The inverse model reconstructs
perfectly the shape of the hypothetical laminar distributions of
synaptic input which are spatially smooth on the scale of the cor-
relation length σb specified by the a priori basis functions. Thus,
the a priori correlation length must be shorter than the correla-
tion scale of the realistic synchronous synaptic inputs in order
guarantee the applicability of the model.

The assumption in the inverse model about spatial correlation
between the inputs at different laminar depths implies that the
reconstructed synaptic input profiles cannot include spatial wave-
lengths on the order shorter than correlation length σb, which
determines the spatial resolution of the reconstructed input cur-
rents. Constraining the spatial resolution of the reconstructed
input is essential to ensure the stability and the validity of the
inverse solution. The forward model does not include highly

detailed spatial scale: wavelengths shorter than σ
(p)
s are filtered

out in the process of constructing the population laminar CSD
profiles via Eq. A6, and then further as a result of computing the
spatially disperse laminar LFP profiles via the convolution oper-
ator in Eq. A7. At the same time, short wavelengths in the data
largely reflect information about specific details of the underly-
ing neuronal morphologies, which is not accounted for in the
forward model. Therefore, wavelengths shorter than the smallest
spatial scale captured by the forward model need to be suppressed
in order to stabilize the inverse solution. As long as the a pri-
ori correlation length is larger than the smallest spatial scale in
the forward model, the inverse model will reconstruct the input
profiles consistent with the a priori constraints. The anatomical
measurements suggest that synchronous synaptic inputs strongly
correlate on the scale of about 200 μm (Feldmeyer et al., 2006),

larger than the resolution of the forward model, σ
(p)
s

∼= 60 μm,
which provides considerable range in the choice of the a priori
correlation length ensuring the validity of the presented model for
realistic biophysical applications.

The inverse model is inherently incapable of reconstructing
the absolute magnitude of the input currents and produces the
zero-mean laminar input current distributions, indicating that
the mean level of the input across different cortical depths is pro-
jected onto the null-space of the forward model. However, the
null-space may be avoided entirely by uniquely specifying basis
functions for activation of each modeled synaptic projection based
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on anatomical data. Applied uniform input current per unit mem-
brane merely shifts the resting transmembrane potential in the
cell, resulting in zero axial currents and no extracellular response,
i.e., the extracellular potential does not mirror the spatial average
of the transmembrane potential and therefore cannot be directly
used to measure the degree of depolarization of cells in the popula-
tion. The inability of the inverse model to reconstruct the uniform
component of input currents is contingent upon the particular
model assumption of having uniform impedance across the cell
membrane. For non-uniform membrane properties, more gener-
ally, it is the current distribution, ι̃sj = Ṽ /Yj(f ), that cannot be
reconstructed by the inverse model, where Yj(f ) is the membrane
impedance of j-th compartment. In either case, the presence of
the null-space prevents the complete reconstruction of the input
currents.

Notwithstanding the presence of the null-space, the distinct fea-
tures of each population laminar LFP permit discrimination of the
population origin of evoked columnar LFP, provided we assume
that synaptic inputs are spatially correlated only within each pop-
ulation. The spatial overlap between the populations across the
column is responsible for a partial mis-assignment of the recon-
structed signal and requires additional anatomical constraints to
discriminate the population origin of the evoked LFP.

The anatomical data about the laminar distribution of synap-
tic innervation domains eliminates the null-space ambiguity by
uniquely constraining the basis functions and reducing the dimen-
sionality of the inverse model to the number of included synaptic
projections. Such an inverse model successfully identifies the acti-
vated synaptic projections from the LFP data, provided that the
population LFP laminar profiles in response to each synaptic
projection are dissimilar from one another.

Previously, Einevoll et al. (2007) demonstrated that by incor-
porating cell-type specific morphologies the LPA can be extended
to estimate the synaptic projections between the identified pop-
ulations while assuming that the columnar LFP is evoked by the
firing of modeled neuronal populations measured by the MUA in
the same column. However, this cannot always be the case, as long-
distance axonal projections impinging on the column, generally,
will also contribute to the LFP. In contrast, the current model does
not require the MUA data and can incorporate the anatomical
information on a synaptic connection regardless of the origin of
the presynaptic populations.

IMPLICATIONS AND FUTURE DIRECTIONS
The current framework is limited inasmuch as it considers only
the populations of excitatory layer-2/3 and layer-5 pyramidal and
layer-4 spiny-stellate cells, each modeled by a single representative

morphology, and as it assigns only passive properties to dendrites.
Nevertheless, the model successfully delineates the key relation-
ships between the synaptic inputs and the evoked LFP and will
serve as a foundation for a more realistic modeling of extracellular
potential in the cortical column. In a more comprehensive model,
the active dendritic properties can be included via linearization of
the voltage-dependent current, resulting in inductance-like terms
in the equations describing the dendritic processing of the input
currents (Koch, 1999); whereas, the electrogenic Na+/K+ pump
currents can be modeled by coupling the membrane current bal-
ance equation with the equations for the conservation of the Na+
and K+ ions (Karbowski, 2009). The additional cell populations,
which might additionally contribute to the LFP signal, can be
included as their morphological reconstructions become readily
available.

One way to resolve the ambiguity caused by the null-space
in the population-specific laminar distribution of synaptic input
currents is to augment the extracellular recordings with the corre-
sponding measurements of the mass transmembrane voltage, e.g.,
by using a voltage-sensitive dye (VSD) technique. Alternatively, the
zero-mean ambiguity in the laminar distribution of synaptic input
caused by the null-space may be resolved if the synaptic input is
positively identified as either excitatory or inhibitory. This infor-
mation can be obtained from the population firing-rate model,
which seeks the optimal pattern of excitation/inhibition transfer
between the populations and corresponding model parameters by
assimilating the experimentally extracted firing rates (Blomquist
et al., 2009).

Here, we present a case for the interpretation of LFP data in
terms of synaptic projections between neuronal populations based
on biophysical rather than mathematical constraints. Notably, our
approach represents a novel synthesis of two types of anatom-
ical information (cell morphologies and synaptic innervation
domains) integrated into a unified computational model to
explore synaptic activity of cortical populations based on multi-
electrode extracellular recordings. Recent trends including grow-
ing public availability of reconstructed morphologies (Ascoli,
2006) and interest in mapping the synaptic connections of the
brain (Helmstaedter et al., 2007; Lichtman and Sanes, 2008)
provide significance and viability to our modeling approach.
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APPENDIX
POPULATION LAMINAR LFP GREEN’S FUNCTION IN A FOURIER DOMAIN
Compartmental modeling in a Fourier domain
The transmembrane current distribution in neurons with complex
dendritic morphology in response to a transient synaptic input
may be found from the compartmental neuronal model (Segev
and Burke, 1998). The compartmental model consists of a set of Nc

ordinary differential equations (ODEs) describing the time-course
of a transmembrane potential Vn(t ) in each n-th compartment
with membrane area An:

An

(
cmn

dVn(t )

dt
+ iionn (t )

)
−

∑
k

Vk(t ) − Vn(t )

Rakn

= −Anisn (t ),

n = 1, . . . , Nc (A1)

where cmn and rmn are specific membrane capacitance and resis-
tance of the n-compartment respectively, Rakn is the axial resistance
between adjacent n-th and k-th compartments, iionn (t ) and isn (t )
are the ionic and synaptic input currents per unit membrane
area through n-th compartment, and Nc is the total number
of compartments. Assuming that ionic current are passive, i.e.,
iionn (t ) = Vn(t )/rmn , Eq. A1 reduces to a set of linear ODEs with
constant coefficients which can now be Fourier transformed to a
set of linear algebraic equations at each frequency f :

(
2πifcmn + 1

rmn

)
Ṽn− 1

An

∑
k

Ṽk − Ṽn

Rakn

= −ι̃sn , n = 1, . . . , Nc

(A2)

where the tilde (∼) denotes the Fourier transformed variables.
Assuming that the membrane properties are uniform, the mem-
brane admittance, Y (f ) = (2πifcm + 1/rm), is a function of fre-
quency alone and allows us to concisely express Eq. A2 in a matrix
form as

(Y (f )I − M)Ṽ = −ι̃s (A3)

where the Ṽ and ι̃s are the column arrays of compartments’ volt-
ages and input currents, respectively, MṼ is a matrix representation
of the axial currents normalized by the membrane area of each
compartment and I is an identity matrix. The full transmem-
brane current per unit membrane area equals the sum of the leak,
capacitive, and input currents:

ι̃m = Y (f )Ṽ + ι̃s = M(M − Y (f )I)−1ι̃s (A4)

representing a linear matrix transformation.

Matrix representation of the laminar LFP Green’s function in a
Fourier domain
Since we assume that cell somata in the p-th population are distrib-
uted uniformly with density v(p) per unit disk area of the cylinder,
the CSD in Eq. 2 is a function of cortical depth ζ alone and is com-
puted, in practice, as a weighted sum of transmembrane currents,

ι̃mn An , , from all compartments of the representative cell found in
an elementary layer of thickness Δζ:

C̃(ζ) = v(p)

Δζ

∑
n

ι̃mn An . (A5)

The non-uniform depth-distribution of cell somata around
the population center z (p) within the layer are modeled with

a Gaussian profile P(z ′, σ(p)
s ). The population CSD is therefore

found by convolving the CSD obtained from Eq. A5 with the
depth-distribution for cell somata:

C̃ (p)(z ′) =
z (p)−z ′+0.5δz (p)∫

z (p)−z ′−0.5δz (p)

P
(
(z (p) − z ′) − ζ, σ

(p)
s

)
C̃(ζ)dζ (A6)

where δz (p) is a thickness of the p-th cortical layer.
The extracellular potential at a cortical depth z along the cylin-

drical column axis generated in response to the distribution of
sources C̃ (p)(z ′) is found by integration of Eq. 3 (Nicholson and
Llinas, 1971):

Φ̃(p)(z) = 1

2σ

h∫
0

(√
(z − z ′)2 + (d/2)2 − ∣∣z − z ′∣∣) C̃ (p)

(
z ′) dz ′

(A7)

where d and h are respectively the cylinder diameter and height.
Combining Eqs A4–A6 and performing spatial discretization along
the cortical depths yields:

Φ̃
(p) = v(p)KPUAι̃m (A8)

where matrices K = 1
2σ

(√
(zj − z ′

l )
2 + (d/2)2 − |zj − z ′

l |
)

, P =
P

(
(z (p) − z ′

l ) − ζk , σ
(p)
s

)
, are evaluated on a spatial grid with the

increment of 20 μm; A is diagonal matrix of compartment areas,
U is a mapping of compartmental membrane currents onto a
laminar current distribution. Substituting Eq. A4 into Eq. A8 and
mapping the laminar distribution of input currents, ı̃s , onto indi-
vidual compartments ι̃s = Tı̃s leads to a matrix transformation
between the laminar LFP and the input currents profiles:

Φ̃
(p) = G̃

(p)
ı̃(p)
s (A9)

with the gain matrix

G̃
(p) = v(p)KPUAM(M − Y (f )I)−1T (A10)

which may be computed for a each population of cells with known
neuronal morphologies. For simplicity, the number of compart-
ments in the simulation equals the number of 3D points in the
reconstruction of each cell’s morphology.
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LINEAR INVERSE OPERATOR FOR ESTIMATION OF LAMINARLY
SMOOTH INPUT CURRENTS
The inverse problem can be stated in terms of the statistical esti-
mation theory provided that we have a priori knowledge about
the statistical distribution of both unknown synaptic currents ı̃s

and noise ñ. The optimal linear inverse operator W̃i is found by
minimizing the expected difference 〈||W̃iΦ̃ − ı̃s||2〉 between the
estimated and the correct solution. Assuming that both the noise
and synaptic input currents are normally distributed with zero
mean, to avoid the bias on the estimates, the procedure yields the
following expression for the inverse operator (Dale and Sereno,
1993):

W̃i = CiG̃
H

(
G̃CiG̃

H + Cn

)−1
(A11)

where Ci and Cn are covariance matrices of synaptic currents and
noise, respectively, and the superscript “H” denotes the Hermit-
ian transpose. The input currents can be represented as a linear
combination ı̃s = Bβ̃ of a set of Nb “smooth” basis functions
B = [b1, . . . ; bNb ], where each column vector bm represents a
m-th basis function which is spatially discretized at Nk equidis-
tant locations; β̃ is a 1 × Nb array of normally distributed with

zero mean, uncorrelated (i.e., 〈β̃β̃
H〉 = σ2

β
I ) weights, having vari-

ance σ2
β
, specifying the contribution of each basis function to

the input current. Such synaptic inputs are characterized by the
covariance matrix Ci = σ2

β
BBT. The smoothness of the basis func-

tions determines the correlation scale between inputs at nearby
cortical depths ζk, k = 1 . . .Nk; and specifies the smallest achiev-
able spatial resolution scale for reconstructed synaptic inputs. In
this model the basis functions assume the Gaussian shape, i.e.,
bm(ζk) = N ((k − m)Δζ, σb), having a common SD σb, which
serves as a measure of the degree of smoothness and the spatial cor-
relation length between inputs at different laminar locations. The
columnar covariance matrix is constructed from the population
covariances and assumes the correlation of the inputs currents
only within but not between the populations regardless of the
degree of their spatial overlap.

Estimation of the contribution of each basis function to the
reconstructed input current can found from Eq. 10 where W̃β =
B−1W̃i and can be constructed given the covariance matrixes for
the input currents and noise. The measurement noise is assumed
to be white and uncorrelated across cortical depths with a covari-
ance matrix Cn = σ2

nI. Defining the square of the signal-to-noise
(SNR) ratio as a mean of ratios of variances across Nj channels

SNR2 = 1

Nj

∑
j

Var(Φ̃j)

Var(ñj)
= σ2

β

σ2
n

〈
Tr

(
ÃÃ

H
)〉

, (A12)

where Ã = G̃B and 〈Tr(ÃÃ
H
)〉 is the mean of the trace of the

matrix ÃÃ
H

, yields the final form for the inverse operator

W̃β = Ã
H

(
ÃÃ

H + 1

SNR2

〈
Tr

(
ÃÃ

H
)〉

I

)−1

(A13)

which is equivalent to the inverse operator for the zeroth-order
Tikhonov regularization (Liu et al., 2002).

CSD GREEN’S FUNCTION FOR A POPULATION OF PARALLEL FINITE
LINEAR CABLES
The time-course of transmembrane voltage V (x, t ) in the passive
cable,having the time and space constants τm and λ, respectively, in
response to distributed time-varying input current iin(x, t ), when
expressed in terms of dimensionless dependent variables T = t /τm

and X = x/λ, satisfies the equation:

∂2V (X , T )

∂X 2
− ∂V (X , T )

∂T
− V (X , T ) = −RmλIin(X , T ) (A14)

where Rmλ is the membrane resistance per unit cable length, λ,
and the current I in(X, T ) satisfies the infinitesimal relationship
iin(x, t )dx = I in(X, T )dX. Taking the Fourier transform of the
above equation, with respect to time yields

∂2Ṽ (X , Ω)

∂X 2
− (iΩ + 1)Ṽ (X , Ω) = −Rmλ Ĩin(X , Ω) (A15)

where transformed variables are denoted with the tilde and
Ω = 2πfτm. The presence of the sealed end on either side of
the finite cable of length l imposes the boundary conditions:
∂V
∂X |X=0 = 0, ∂V

∂X |X=L = 0, where L = l/λ. The solution of Eq.
A15 may be expressed as

Ṽ (X , Ω) =
L∫

0

G̃V
(
X , X ′, Ω

)
Rmλ Ĩin(X , Ω)dX ′ (A16)

where the Green’s function G̃V (X , X ′, Ω) satisfies the following
equation with the same boundary conditions:

∂2G̃V
(
X , X ′, Ω

)
∂X 2

−(iΩ+1)G̃V
(
X , X ′, Ω

) = −δ
(
X − X ′) (A17)

being a transmembrane voltage response to a point input cur-
rent applied at X ′ which is represented by a Dirac delta function
δ(X − X ′). The solution of Eq. A17 can be found following the
approach described in Arfken (1985):

G̃V
(
X , X ′, Ω

)

= 1

q sinh(qL)

{
cosh(qX) cosh

(
q

(
X ′ − L

))
, 0 ≤ X ≤ X ′

cosh
(
q (X − L)

)
cosh

(
qX ′) , X ′ < X ≤ L

(A18)

where the complex-valued coefficient q = √
1 + iΩ.

The transmembrane current Ĩm(X , Ω) per unit dimensionless

cable length, λ, is found as Ĩm(X , Ω) = 1
Rλ

∂2Ṽ (X ,Ω)

∂X 2 , where Rλ is
the axial resistance of the cable segment of length λ. For a popula-
tion of parallel cables perpendicularly crossing the plane with the
density, v, per unit plane area, the CSD equals

C̃(X , Ω) = vĨm(X , Ω) = v

Rmλ

∂2Ṽ (X , Ω)

∂X 2
(A19)
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where we accounted for the fact that Rλ = Rmλ (Dayan and Abbott,
2001). Applying Eqs. A16 and A17 to Eq. A19 results in

C̃(X , Ω) = v

L∫
0

(
q2G̃V (X , X ′, Ω) − δ

(
X − X ′)) Ĩin(X ′, Ω)dX ′

(A20)

or by introducing C̃in(X ′, Ω) = vĨin(X ′, Ω) as the CSD due to
input currents alone, the population CSD can be expressed as

C̃(X , Ω) =
L∫

0

G̃C
(
X , X ′, Ω

)
C̃in

(
X ′, Ω

)
dX ′ (A21)

where

G̃C
(
X , X ′, Ω

) = q2G̃V
(
X , X ′, Ω

) − δ
(
X − X ′) (A22)

is the population CSD Green’s function. The first term in Eq.
A22 represents the contribution of return currents, whereas the
delta-function term expresses the contribution of input currents.

Figure A1 shows the theoretical CSD (A) and the correspond-
ing LFP (B) profiles for the population of parallel finite cables
having the membrane time constant τm = 30 μm and electrotonic
length L = 2 in response to point input currents applied at x = 0.5
at frequencies of 10 and 100 Hz. These theoretical profiles may
serve as useful primitives for understanding the more complicated
response of the populations of cells having realistic morpholo-
gies. The magnitude of the CSD includes only the return currents
because the input current is given by the point delta function. At
f = 100 Hz the return currents have a much stronger peak at the
location of the input, and consequently decrease much faster at
locations away from the position of the input than currents at
f = 10 Hz. This result is due to the low-pass frequency-filtering
phenomenon of the cable membrane, indicating that the high-
frequency components of the input current leave the membrane
locally to the synaptic input, whereas the low-frequency compo-
nents spread much wider over the cable. The phase of the CSD
at the location of the current input is very close to π, the phase
of the input currents, whereas the phase of the return CSD man-
ifests the nearly linear dependence with the distance away from
the location of the input (the strictly linear dependence results
for an infinite cable). The phase of the return currents changes
more rapidly with distance at higher frequencies and can even
approach that of the input currents for long cables or at sufficiently
high frequencies. The LFP profiles along the cylindrical column
axis for the corresponding CSD profiles are found using Eq. A7,
assuming a dimensionless column diameter d/λ = 0.5. The main
peak of the LFP is mainly due to the input current with modest
contributions from the return currents acting to reduce the mag-
nitude of the LFP response. The magnitude of the LFP peak at
100 Hz is lower than that at 10 Hz because of the higher contri-
bution of the return currents to locations near the input at the
higher frequency. The LFP phase profile represents a dissipated
version of the CSD phase profile and manifests the monotonic

phase variation with the distance away from the location of the
input. Similarly to the CSD phase, the LFP phase varies more
rapidly with distance at higher frequencies and can even approach
that of the input currents for long cables or at sufficiently high
frequencies.

CURRENT-DIPOLE MOMENT AND EQUIVALENT CURRENT-DIPOLE
LENGTH ON A SPECTRAL BASIS
The current-dipole moment P(t ) = ∫

V C(r,t )rdV of a distribu-
tion of time-varying currents within the volume V when Fourier
transformed, i.e., P̃(f ) = ∫

V C̃(r, f )rdV , yields the current-dipole
moment in response to sinusoidal currents oscillating at frequency
f. The cylindrical volume of unit cross-section and dimensionless
length L containing current sources homogeneously distributed
in a plane perpendicular to the cylinder axis but varying along the
axis itself will evoke the current-dipole moment

P̃(Ω) =
L∫

0

C̃(X , Ω)XdX . (A23)

Applying Eq. A21, the current-dipole moment takes the form

P̃(Ω) =
L∫

0

dX ′C̃in
(
X ′, Ω

) L∫
0

dXXG̃C
(
X , X ′, Ω

)
. (A24)

The current-dipole moment in response to the input current
of magnitude I 0 per unit cylindrical cross-section applied at the
position X ′ equals to

P̃(X ′, Ω) = I0

L∫
0

dXXG̃C
(
X , X ′, Ω

)
. (A25)

The same current-dipole moment will result from the two point
current sources of magnitude I 0 and opposite polarity separated
by the distance

l̃(X ′, Ω) =
L∫

0

dXXG̃C
(
X , X ′, Ω

)
(A26)

and has a meaning of equivalent current-dipole length. Conse-
quently, the current-dipole moment produced in response to an
arbitrary distribution of input CSD C̃in(X ′, Ω) can be expressed
as

P̃(Ω) =
L∫

0

C̃in(X ′, Ω) l̃ (X ′, Ω)dX ′ (A27)

being the sum of equivalent current-dipole lengths weighted by
the magnitude of input CSD at each location along the length of
the cables.

In case the current sources in the considered volume cylin-
der are generated by a population of parallel linear cables (see

Frontiers in Neuroinformatics www.frontiersin.org December 2011 | Volume 5 | Article 32 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gratiy et al. Estimation of population-specific synaptic currents

FIGURE A1 |Theoretical CSD and LFP Green’s functions for a

population of parallel finite cables. The theoretical CSD (A) and the
corresponding LFP (B) laminar profiles for the population of parallel finite
cables having a membrane time constant τm = 30 μm and dimensionless
electrotonic length L = 2 in response to the point input currents applied at
x = 0.5. The magnitude of the CSD only shows the return currents,
whereas the input CSD is given by the delta function (not shown). The LFP
profiles along the cylindrical column axis are found using Eq. A7 assuming a
dimensionless column diameter D = 0.5. The magnitude of both CSD and
the LFP are normalized to the peak value at the steady-state.

CSD Green’s Function for a Population of Parallel Finite Liner
Cables in Appendix), the equivalent current-dipole length can be
evaluated analytically by substituting the corresponding Green’s
function given by Eq. A22 into Eq. A26, yielding

l̃(X , Ω) = − sinh(q(X − L/2))

q cosh(qL/2)
(A28)

which is symmetric relative to the population center, because of
the symmetry of the cables relative to their midpoint.
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