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Abstract

For over 100 years, the fruit fly Drosophila melanogaster has been one of the most studied 

model organisms. Here we present a single cell atlas of the adult fly, Tabula Drosophilae, that 

includes 580k nuclei from 15 individually dissected sexed tissues as well as the entire head and 

body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related 

gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole 

animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals 

rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the entire 

Drosophila community and serves as a reference to study genetic perturbations and disease models 

at single-cell resolution.

One Sentence Summary:

A single-nucleus transcriptomic map of the entire adult Drosophila melanogaster

Drosophila melanogaster has a fruitful history in biological research, dating back to 

experiments of Thomas Hunt Morgan a century ago (1) and has been at the basis 

of many key biological discoveries. The highly collaborative nature of the Drosophila 
community contributed to many of these successes, and led to the development of essential 

research resources, including a high-quality genome (2), a large collection of genetic 

and molecular tools, and important databases such as Flybase (3), FlyMine (4), FlyLight 

(5), VirtualFlyBrain (6) and ModERN (7). The fly genome contains about 17,000 genes, 

including 13,968 protein-coding genes of which ~63% have human orthologues. Studies 

such as ModENCODE (8) and FlyAtlas (9) explored expression patterns in different tissues, 

but lacked cell type resolution. Recent advances in single-cell technologies have enabled 

the transcriptomic profiling of thousands of cells at once, facilitating the creation of tissue-

wide atlases. Several studies have already applied single-cell RNA sequencing (scRNA-

seq) to multiple Drosophila tissues and developmental stages (10). However, these data 

were generated by different laboratories on different genetic backgrounds, with different 

dissociation protocols and sequencing platforms, hindering systematic comparison of gene 

expression across cells and tissues.

Here, we present a single cell transcriptomic atlas of the entire adult Drosophila, separately 

analyzing male vs female samples, using a uniform genotype and a unified single-nucleus 
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RNA-seq (snRNA-seq) platform (11) with two sequencing strategies: droplet-based 10x 

Genomics (12) and plate-based Smart-seq2 (13). The resulting Tabula Drosophilae, the first 

dataset within the Fly Cell Atlas consortium (FCA), contains over 580k cells, resulting in 

>250 distinct cell types annotated by >100 experts from 40 laboratories. This atlas reports 

cellular signatures for each tissue, providing the entire Drosophila community a reference 

for studies that probe the effects of genetic perturbations and disease models at single-cell 

resolution. All data and annotations can be accessed through multiple visualization and 

analysis portals from https://flycellatlas.org (fig. S1–S3).

Sampling single cells across the entire adult fly

We used a unified snRNA-seq platform for all samples, because it is difficult to isolate intact 

cells from many adult Drosophila tissues, especially cuticular ones (e.g., antenna, wing) and 

adipocyte-enriched ones (e.g., fat body). In addition, snRNA-seq can be applied to large 

multinucleated cells (e.g., muscle) and facilitates (frozen) tissue collection from different 

laboratories. Finally, 70–90% of transcriptomic information is preserved from snRNA-seq 

compared to scRNA-seq of the same fly cell types (11).

To achieve a comprehensive sampling, we used two complementary strategies. First, we 

dissected 12 individual tissues from both males and females, plus 3 sex-specific tissues 

(Fig. 1A). For tissues that are localized across the body (fat body, oenocytes, and trachea) 

and cannot be directly dissected, we used specific GAL4 lines driving nuclear-GFP to label 

and collect nuclei using FACS. In addition, two rare cell types were sequenced only with 

Smart-seq2: insulin-producing cells (IPCs) and corpora cardiaca cells (CCs). Second, we 

sorted and profiled nuclei from the entire head and body, aiming to detect cell types not 

covered by the selected tissues. In total, we obtained 580k high-quality nuclei: 570k from 

10x Genomics and 10k from Smart-seq2 (Fig. 1A).

To analyze the 10x Genomics data in a reproducible manner, we used the automated VSN 

pipeline (14) (Methods, Table S1), which takes the raw sequencing data as input and 

performs preprocessing (e.g., normalization, doublet removal, batch effect correction) to 

produce LoomX formatted files with expression data, embeddings and clusterings (Fig. 1B 

and fig. S4). A presumed artifactual cluster showed expression of nearly all genes, so we 

added an additional preprocessing step that models and subtracts ambient RNA signals (15) 

to remove this cluster, resulting in a Stringent dataset of 510k cells (see Methods and Fig. 

1C). However, since adjusting the gene expression values per cell can introduce other biases 

(e.g., overcorrection, removal of non-doublet cells), we also retained the original Relaxed 
dataset of 570k cells. In the analyses below, unless mentioned otherwise (e.g., Fig. 2C), the 

Stringent dataset was used.

Cells from 10x Genomics and Smart-seq2 were well integrated after batch correction using 

Harmony (16) (Fig. 1D). Smart-seq2 yielded a higher number of detected genes for most 

tissues (Fig. 1E) as cells were sequenced to a higher depth. We analyzed each tissue 

separately, combining the male and female runs, which yielded between 6.5k (haltere) and 

100k (head) cells and a median of 16.5k cells per tissue for 10x and between 263 (male 

reproductive gland) and 1,349 (fat body) cells and a median of 534 cells per tissue for 
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Smart-seq2 (Fig. 1F). We obtained similar numbers of male and female cells for non-sex-

specific tissues with on average 1895 unique molecular identifiers (UMIs) and 828 genes 

per cell (fig. S5). Next, all cells were combined in a meta-analysis, showing tissue-specific 

clusters like the germline cells of the testis and ovary, and shared clusters of common cell 

types (Fig. 1G; see fig. S24, 25).

Crowd-based cell type annotation by tissue experts

Experts from 40 laboratories collaborated on cell type annotation for 15 individual tissues, 

including 12 tissues for both sexes: antenna, body wall, fat body, haltere, heart, gut, leg, 

Malpighian tubule, oenocyte, proboscis with maxillary palp, trachea, and wing; and 3 

sex-specific tissues: male reproductive gland, testis, and ovary (Fig. 2A). We developed 

a consensus-voting strategy within the SCope web application (https://flycellatlas.org/scope) 

(17), where curators annotated clusters at multiple resolutions (ranging from 0.8 to 8, fig. 

S6A), with additional analysis performed in ASAP (https://flycellatlas.org/asap) (18). To 

ensure that cell type annotations are consistent with previous literature and databases and 

to allow a posteriori computational analyses at different anatomical resolutions, we used 

Flybase anatomy ontology terms (19).

Since some cell types are annotated at low, and others at high resolutions, we collapsed 

all annotations across resolutions and retained the annotation with the highest number of 

up-votes. All initial annotations were performed on the Relaxed dataset, and were then 

exported to the Stringent dataset, where field experts verified the accuracy of the annotation 

transfer (Fig. 2A–E and fig. S6–S18). Overall, we annotated 251 cell types in the Stringent 
dataset (262 cell types if combining Relaxed and Stringent datasets, Table S2), with a 

median of 15 cell types per tissue.

Our dataset provides a single-cell transcriptomic profiling for several adult tissues not 

profiled previously, including the haltere, heart, leg, Malpighian tubule, proboscis, maxillary 

palp, trachea, and wing (fig. S6–S18). In these tissues, all major expected cell types were 

identified. In the proboscis and maxillary palp (fig. S7A, B), we could annotate gustatory 

and olfactory receptor neurons, mechanosensory neurons, and several glial clusters. All 7 

olfactory receptors expressed in the maxillary palp were detected. In the wing (fig. S8), 

we could identify four different neuronal types – gustatory receptor neurons, pheromone-

sensing neurons, nociceptive neurons, mechanosensory neurons, as well as three glial 

clusters. In the leg (fig. S9), we could distinguish gustatory receptor neurons from two 

clusters of mechanosensory neurons. In the heart (fig. S10), we found a large proportion of 

resident hemocytes and muscle cells, with the cardiac cells marked by the genes Hand and 

tinman constituting a small proportion. In the Malpighian tubule (fig. S11), 15 cell types 

were identified, including the different principal cells of the stellate and main segments. In 

the haltere (fig. S13), we identified two clusters of neurons, three clusters of glial cells, and 

a large population of epithelial cells. In some tissues, cell types formed a big cluster instead 

of being split into distinct populations. In these cases, we identified genes or pathways 

that showed a gradient or compartmentalized expression. For example, in the fat body (fig. 

S14 and S19), the main fat body cells formed one big cluster, but our metabolic pathway 

enrichment analysis performed through ASAP (18) revealed that fatty acid biosynthesis and 
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degradation are in fact compartmentalized, highlighting possible fat body cell heterogeneity 

in metabolic capacities.

Our crowd annotations with tissue experts also revealed cell types that had not been profiled 

previously, such as multinucleated muscle cells (Fig. 2B) and two distinct types of nuclei 

among the main cells in the male accessory gland (fig. S17), a cell type that was previously 

thought to be uniform. The high number of nuclei analyzed allowed identification of rare 

cell types. For example, in the testis (Fig. 2C), we identified 25 unique cell types, covering 

all expected cell types, including very rare cells, such as germinal proliferation center hub 

cells (79 nuclei in the Relaxed version, out of 44,621 total testis nuclei).

Next, we compared the distribution of cells between 10x and Smart-seq2, finding a 

good match based on a co-clustering analysis (fig. S20 and S21). Since Smart-seq2 cells 

only account for a small fraction, our previous annotations focused on 10x cells. The 

cell-matched co-clustering analysis allowed us to transfer annotations from 10x to Smart-

seq2 datasets (fig. S20E), using cluster-specific markers as validation (fig. S20F). We also 

identified genes that were specifically detected using Smart-seq2 thanks to its higher gene 

detection rate (fig. S20G and Fig. 1E). In summary, the high-throughput 10x datasets form 

the basis for identifying cell types while the Smart-seq2 datasets facilitate the detection of 

lowly expressed genes and enable future exploration of cell-specific isoform information.

Correspondence between dissected tissues and whole head and body

To generate a complete atlas of the fly, we next performed snRNA-seq experiments on 

whole-head and whole-body samples. Whole-body single-cell experiments were previously 

performed on less complex animals (20, 21). Full head and body sequencing provides a 

practical means to assess the impact of mutations or to track disease mechanisms, without 

having to focus on specific tissues. In addition, it could yield cell types that are not covered 

by any of the targeted tissue dissections.

In the head, we annotated 81 mostly neuronal cell types (Fig. 3A and S22). In the body, 

we annotated the top 33 most abundant cell classes, including epithelia, muscle, and ventral 

nerve cord and peripheral neurons, followed by fat cells, oenocytes, germ line cells, glia, and 

tracheal cells (Fig. 3B and S23). Many of these cell classes can be further divided into cell 

types for further annotation (see Fig. 2 and fig. S6–S18).

Next, we examined how well the head and body samples covered the cell types from 

the dissected tissues. We analyzed head, body, and tissue samples together, with most of 

the selected tissues clustering together with the body. We also detected head and body 

enriched clusters (Fig. 3C). One body-specific cluster contained cuticle cells, likely from 

connective tissue (Fig. 3D). Others were relatively rare cell types in their respective tissues, 

such as adult stem cells. Conversely, most tissue clusters contained body cells, with only a 

small number being completely specific to dissected tissues. As tissue-specific clusters were 

mostly observed in tissues with high cell coverage, such as the testis and Malpighian tubule, 

we anticipate that these clusters would also be identified in the body upon sampling a larger 

number of cells.
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For the head, antenna and proboscis with maxillary palp were dissected for tissue 

sequencing. Cell types from those two tissues largely overlapped with head cells. Many 

other cell types, such as central brain cells, including Kenyon cells (ey, prt) and lamina glia 

(repo, Optix), were only detected in the head sample.

To compare our data with existing datasets, we integrated our head snRNA-seq dataset 

(“head” hereafter) with published brain single-cell RNA-seq data (“brain” hereafter) (17, 

22–24) (Fig. 3E). Head unique clusters made up 20% of the cells, including the antennae, 

photoreceptors, muscle, cone cells and cuticular cell types, whereas the other 80% were 

present in clusters containing both head- and brain-derived cells covering the neuronal and 

glial cell types of the brain. This co-clustering across genotypes and protocols underscores 

the quality and utility of our snRNA-seq data compared to scRNA-seq data. Next, we used 

machine learning models to predict annotations per cluster, followed by manual curation 

(22). Given the high number of neuron types, additional subclustering was performed 

on each cluster, identifying subtypes of peptidergic neurons (dimm, Pdf) and olfactory 

projection neurons based on oaz, c15, and kn. Finally, we identified many cell types in the 

optic lobe, including lamina (e.g. L1–L5), medulla (e.g. Mi1, Mi15), lobula (e.g. LC), and 

lobula plate (e.g. LPLC). Using acj6 and SoxN, we identified the T4/T5 neurons of the optic 

lobe that split in T4/T5a-b and T4/T5c-d subtypes by subclustering. A big clump of neurons 

remained unannotated (Fig. 3A), indicating that our dataset cannot resolve the complexity of 

the central brain, which may contain hundreds to thousands of neuron types.

Subclustering in the combined dataset separated inner and outer photoreceptors from dorsal 

rim area and ocellar photoreceptors, with the inner photoreceptors further splitting into R7 

and R8 types, each with pale and yellow types based on rhodopsin expression (Fig. 3F). 

Additionally, Kenyon cells were split into three types: α/β, α’/β’ and γ (17). These cases 

highlight the resolution in our dataset and the potential of using subclustering to discover 

rare cell types.

Cross-tissue analyses allow comparison of cell types by location

Using the whole body and head sequencing data, we assigned cells to major cell classes 

(e.g., epithelial cells, neurons, muscle cells, hemocytes), allowing us to compare common 

classes across tissues (Fig. 4A–C and fig. S24, S25). First, we compared blood cells 

across tissues by selecting all Hml-positive cells, a known marker for hemocytes (Fig. 4D). 

Combining hemocytes across tissues revealed a major group of plasmatocytes, the most 

common hemocyte type (~56%), crystal cells (1.5%, PPO1, PPO2), and several unknown 

types (fig. S26A, B). Looking deeper into the plasmatocytes, we uncovered gradients based 

on the expression of Pxn, LysX, Tep4, trol and Nplp2 that can be linked to maturation 

and plasticity with Pxn positive cells showing the highest Hml expression, while Tep4, 

trol and Nplp2 are prohemocyte markers (25). Furthermore, different antimicrobial peptide 

(AMP) families such as the Attacins and Cecropins were expressed in different subgroups 

indicating specialization. Finally, expression of acetylcholine receptors was specific for a 

subset of hemocytes, relating to the cholinergic anti-inflammatory pathway as described in 

humans and mice (26). Lamellocytes were not observed in adults as previously suggested 

(27). On the contrary, an unknown hemocyte type expressed Antp and kn (43 cells, 0.5%) 
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reminiscent of the posterior signaling center in the lymph gland, an organization center 

previously thought to be absent in the adult (28, 29) (fig. S26B). These findings highlight the 

value of performing a whole organism-level single cell analysis and constitute a foundation 

to investigate the fly immune system in greater detail.

Second, we compared the muscle cells of the different tissues (Fig. 4E and fig. S26C, D). 

Muscle cells are syncytia—individual cells containing many nuclei, and to our knowledge 

have not been profiled by single-cell sequencing prior to our study. With snRNA-seq, we 

recovered all known muscle cell types, with specific enrichment in the body, body wall, 

and leg. This comprehensive view of the fly muscular system highlights a separation of 

visceral, skeletal, and indirect flight muscle based on the expression of different troponins. 

Specifically, we discovered gradients of dysf and fln in the indirect flight muscle, which 

may indicate regional differences in these very large cells (>1000 nuclei) (fig. S26E). 

We identified four types of visceral muscle in the gut based on expression of the AstC, 
Ms, Dh31 and CCAP neuropeptide receptors, indicating potential modulators for muscle 

contraction (30). Ms and Dh31 have been described to function in spatially restricted 

domains (30, 31, 32), suggesting similar domains for AstC and CCAP. All visceral muscle 

cells are enriched for the receptor of Pdf, a neuropeptide involved in circadian rhythms, 

pointing towards a function in muscle contraction as well (33).

Transcription factors and cell type specificity

Our data allow the comparison of gene expression across the entire fly. Clustering cell types 

showed the germline cells as the most distinct group, followed by neurons (fig. S27–S32). 

We calculated marker genes for every cell type using the whole FCA data as background, 

with 14,240 genes found as a marker for at least one cell type and a median of 638 markers 

per cell type [min: visceral muscle (94), max: spermatocyte (7736)]. Notably, markers 

specific for cell types in a tissue were not always specific in the whole body (fig. S33).

Next, we calculated the tau score of tissue specificity (34) for all predicted transcription 

factors (TFs) (3), identifying 500 TFs with a score > 0.85, indicating a high specificity for 

one or very few cell types (Fig. 5A, Table S3). 127 of these TFs were “CGs” (computed 

genes), indicating that their functions are poorly studied. We found that the male germline 

stands out in showing expression of a great number of cell type-specific TFs. This may be 

related to the broad activation of many genes in late spermatocytes, as discussed below.

Similar analysis across broad cell types (Fig. 5B, C) identified 156 TFs with high tau scores, 

for example the known regulators grh for epithelial cells and repo for glia, as well as 

24 uncharacterized genes. Network visualization shows the grouping of CNS neurons and 

sensory organ cells, including many sensory neurons, with shared pan-neuronal factors such 

as onecut and scrt but each cluster having a unique set of TFs, such as ey, scro and dati for 

CNS neurons and lz and gl for sensory neurons.

In addition to the specificity of TF expression, we predicted gene regulatory networks based 

on co-expression and motif enrichment using SCENIC (31). Because of the stochasticity of 

this network inference method, we ran SCENIC 100 times, ranking predicted target genes 

Li et al. Page 8

Science. Author manuscript; available in PMC 2022 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by their recurrence. This approach selected 6112 “regulons” for 583 unique TFs across all 

tissues, whereby each regulon consists of the TF, its enriched motif, and the set of target 

genes that are predicted in at least 5/100 runs. In fat cells, our analysis predicted a regulon 

for sugarbabe (sug), a sugar-sensitive TF necessary for the induction of lipogenesis (32). In 

photoreceptors, the analysis identified a glass (gl) regulon, with key photoreceptor markers 

such as Arr1, eya and multiple rhodopsins as predicted target genes (Fig. 5D, E)(33). The 

SCENIC predictions for all cell types are available via SCope (https://flycellatlas.org/scope).

Comparative analysis of genes across broad cell types or tissues (Fig. 5F, fig. S34) 

identified common genes and specifically expressed genes, such as a shared set of 555 

housekeeping genes that are expressed in all tissues. The testis has the highest number of 

uniquely expressed genes consistent with previous reports (34), followed by the Malpighian 

tubule and male reproductive glands (fig. S34). These tissue-specific genes seemed to be 

evolutionarily “younger” based on GenTree age compared to the set of commonly expressed 

genes that are all present in the common ancestor. This suggests that natural selection works 

on the tissue specialization level, with the strongest selection on testis, male reproductive 

tract, and Malpighian tubules (35). In addition, this analysis allowed an estimation of 

transcriptomic similarity or difference measured by the number of shared unique genes. 

For example, the two flight appendages, the haltere and wing, share a set of 16 uniquely 

expressed genes, reflecting the evolutionary origin of halteres as a modified wing (36) (fig. 

S34).

Analysis of sex-biased expression and sex-specialized tissues

To study sex-related differences, we compared male- versus female-derived nuclei for all 

common tissues (fig. S35), finding roX1/2 and Yp1/2/3 as the top male- and female-specific 

genes, respectively. Notably, a large fraction of genes with male-enriched expression were 

uncharacterized (37). The primary sex determination pathway in somatic cells leads to 

sex-specific splicing of doublesex (dsx) to encode female- or male-specific TFs (38) (Fig. 

6A). Consistent with this, we found dsx expression in a largely non-sex-specific pattern, 

while many other genes showed sex-biased expression (Fig. 6B).

Next, we performed differential expression between sexes for all cell types. Notably, cell 

types tended to show either high female- or male-bias, not both (Fig. 6B–C). We found 

strong female-bias in the excretory system, including the principal and stellate cells of 

the Malpighian tubule (MT) and in the pericardial nephrocytes (Fig. 6C). Female-biased 

genes (i.e., Ics and whe) were differentially expressed under high salt conditions, suggesting 

sex-bias in nephric ion transport. Across cell types, sex-biased expression strongly correlated 

with dsx expression (Fig. 6D) (39), consistent with the role of Dsx as a key regulator.

Among all tissues in the adult fly, those best characterized that have ongoing cellular 

differentiation are the gut, ovaries, and testis. Trajectory analysis has been performed 

on the gut and ovary stem cell lineages in previous studies (40–42), and our FCA data 

on gut and ovary accurately co-clustered with these published datasets (fig. S36, S37). 

Therefore, we focused on the testis plus seminal vesicle as a case study. The testis has 

two populations of stem cells, the somatic cyst stem cells (CySCs) that produce cell types 
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with supporting roles essential to spermatogenesis, and the germline stem cells (GSCs) that 

produce haploid sperm (Fig. 2C). The main testis analysis (Fig. 2C) revealed transitions 

from GSCs and proliferating spermatogonia, spermatocytes, to maturing spermatids, and 

finally late elongation stage spermatids.

We further performed trajectory inference on spermatocytes and spermatids separately (Fig. 

6E–F). As expected, the spermatocyte stage featured a continuous increase in the number 

of genes being transcribed (Fig. 6E), with many of the strongly upregulated genes (kmg, 
Rbp4, fzo, can, sa, and, for later spermatocytes, Y-linked fertility factors kl-3 and kl-5) 

not substantially expressed in any other cell type. Late spermatocytes, however, showed 

expression of marker genes from many other cell types like somatic cells (Upd1, eya)), 

epithelial cells (grh), muscle (Mhc) or hemocytes (Hml) (Fig. 5A), although their expression 

level was lower than in their marked cell type. Early spermatids are in transcriptional 

quiescence, as can be seen by a very low number of nuclear transcripts (Fig. 6F, low UMI), 

followed by a burst of new transcription in elongating spermatids including many cup genes 

(48).

In the somatic cyst cell lineage, we found CySCs expressing the cell cycle marker string, 

transitioning into post-mitotic (no string expression) early cyst cells, and branching into two 

related clusters of cyst cells likely associated with spermatocytes (Fig. 6G).

Discussion

Recent technological development has enabled single-cell transcriptomic atlases of C. 
elegans (21) and selected tissues in mice and humans (43–46). Here, we provide a single-cell 

transcriptomic map of the entire adult Drosophila melanogaster, a premier model organism 

for studies of fundamental and evolutionarily conserved biological mechanisms. The FCA 

provides a resource for the Drosophila community as a reference for studies of gene function 

at single-cell resolution.

A key challenge in large-scale cell atlas projects is the definition of cell types. We addressed 

this using a consensus-based voting system across multiple resolutions. An FCA cell type 

is thus defined as a transcriptomic cluster detected at any clustering resolution that could 

be separated by the expression of known marker genes from other clusters. Further, all 

annotations were manually curated by tissue experts, leading to a high-confidence dataset 

with over 250 annotated cell types. We note differences in annotation depth for different cell 

groups, with some cell types only linked to broad classes (e.g. epithelial cell), in contrast to 

other, more detailed cell types (e.g., different ORNs). We also note that while many marker 

genes are useful in identifying cell types, some marker gene expression was not congruent 

with cluster expression. This can be caused by discrepancies between mRNA and expression 

or by mistakes that were made in the literature. These examples highlight the need and the 

opportunities presented by Tabula Drosophilae to serve as the basis for future validation.

We have generated lists of marker genes per cell type with different levels of specificity, 

ranging from tissue-wide to animal-wide. This unique level of precision presents a 

blueprint for future integration with other data modalities such as single-cell ATAC-seq 
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(47) and spatial omics, and for generating cell-type reporter lines to study new cellular 

functions. Furthermore, the large number of uncharacterized genes that show cell-type 

specific, sex-biased or trajectory-dependent expression provides the foundation for many 

follow-up studies. Our analysis also presents several technical novelties, including the 

use of reproducible Nextflow pipelines (VSN, https://github.com/vib-singlecell-nf), the 

availability of raw and processed datasets for users to explore, and the development of 

a crowd-annotation platform with voting, comments and references via SCope (https://

flycellatlas.org/scope), linked to an online analysis platform in ASAP (https://asap.epfl.ch/

fca). These elements may inspire future atlas projects. Given the work in other model 

organisms, we also envision a use for the FCA data in cross-species studies. Furthermore, 

Tabula Drosophilae is fully linked to existing Drosophila databases by a common 

vocabulary, benefitting its use and integration in future projects. Finally, all FCA data are 

freely available for further analysis via multiple portals and can be downloaded for custom 

analysis using other single cell tools (fig. S1; links available on https://www.flycellatlas.org).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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custom analyses at https://flycellatlas.org/asap. For each tissue, a CellxGene portal is also 

available (www.flycellatlas.org). Raw data and count matrices can be downloaded from 

ArrayExpress (accession number E-MTAB-10519 for 10x, and E-MTAB-10628 for Smart-

seq2; the same accession numbers are available at EBI Single Cell Expression Atlas https://

www.ebi.ac.uk/gxa/sc). Files with expression data, clustering, embeddings, and annotation 

can be downloaded for each tissue, or all data combined, in h5ad and loomX formats from 

www.flycellatlas.org. Three Supplemental Figures describe how to access and explore FCA 

data: fig. S1 for summary of Data Availability, fig. S2 and S3 for how to use SCope and 

ASAP. We also include a video tutorial for using Scope (https://www.youtube.com/watch?

v=yNETQVaSJYM&t=349s). Analysis codes are at Github (https://github.com/flycellatlas). 

Dataset access: GSE107451 (scRNA-seq adult fly brain), GSE120537 (scRNA-seq adult 

fly gut), GSE136162, GSE146040 and GSE131971 (scRNA-seq adult ovary). The neural 

network from (22) (Appendix 1).
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Figure 1. Overview of the Fly Cell Atlas
(A) Experimental platform of snRNA-seq using 10x Genomics and Smart-seq2 (SS2).

(B) Data analysis pipeline and data visualization using SCope (17) and ASAP (18).

(C) Two versions of 10x datasets: Relaxed and Stringent. tSNE colors based on gene 

expression: grh (epithelia, red), Mhc (muscle, green) and Syt1 (neuron, blue). Red arrow 

denotes an artefactual cluster with co-expression of all three markers in the Relaxed dataset.

(D) tSNE visualization of cells from the Stringent 10x dataset and Smart-seq2 (SS2) cells. 

10x cells are from individual tissues. Integrated data is colored by tissue (left) and platform 

(right).
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(E) Tissue-level comparison of the number of detected genes between 10x and Smart-seq2 

platforms.

(F) Number of cells for each tissue by 10x and Smart-seq2. Male and female cells are 

indicated. Mixed cells are from pilot experiments where flies were not sexed. Different 

batches are separated by vertical white lines.

(G) All 10x cells from the Stringent dataset clustered together; cells are colored by tissue 

type. Tissue names and colors are indexed in F.
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Figure 2: Cell type annotation for dissected tissues
(A) Illustration of 15 individual tissues. 12 sequenced separately from males and females, 

3 sex-specific. Fat body, oenocyte, and tracheal nuclei were labeled using a tissue-specific 

GAL4 driving UAS-nuclearGFP.

(B) tSNE plot with annotations for body wall from the Stringent 10x dataset. *1, 

epidermal cells of the abdominal posterior compartment. *2, epidermal cells specialized 

in antimicrobial response.

(C) UMAP plot with annotations for the testis from the Relaxed 10x dataset.
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(D) tSNE plots of the other 13 tissues from the Stringent 10x dataset. Detailed annotations 

are in fig. S6–S18.

(E) Number of unique annotations for each tissue. Fractions of annotated cells over all 

analyzed cells from the Relaxed dataset are indicated in red.
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Figure 3: Whole-head and whole-body sequencing leads to full coverage of the entire fly
(A) tSNE of the whole-head sample with 81 annotated clusters. See fig. S22 for full cell 

types. Many cells in the middle (gray) are unannotated, most of which are central brain 

neurons.

(B) tSNE of the whole-body sample with 33 annotated clusters, many of which can be 

further divided into sub-clusters. Cells in gray are unannotated. See fig. S23 for full cell 

types.

(C) (left) tSNE of the entire dataset colored by standardized tissue enrichment, leading 

to the identification of head- and body-specific clusters. (right) Bar plots showing tissue 

composition (head, body, or dissected tissues) for different clusters at Leiden resolution 50.
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(D) Examples of head- and body-specific clusters.

(E) Integration of a brain scRNA-seq dataset with the head snRNA-seq for label transfer. 

Outlined are example clusters revealed by the head snRNA-seq dataset but not by the 

brain scRNA-seq datasets, including epithelial cells (EPI), photoreceptors (PRs), olfactory 

receptor neurons (ORNs), and muscle cells (MUS).

(F) Subclustering analysis reveals types of photoreceptors, including inner and outer 

photoreceptors, with the inner photoreceptors further splitting into R7 and R8 types, and 

mushroom body Kenyon cells comprising three distinct types: α/β, α’/β’ and γ.
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Figure 4: Cross-tissue analyses of common cell classes
(A) Overview of main cell classes identified throughout the fly cell atlas. Som. pre., somatic 

precursor cells; male repr. and fem. repr., male and female reproductive system; male germ. 

and fem. germ., male and female germline cells.

(B) tSNE plots showing expression of four markers in four common cell classes.

(C) Composition of whole head and body samples, showing a shift from neurons to 

epithelial and muscle cells. Composition of the entire fly cell atlas shows enrichment for 

rarer cell classes compared to the whole-body sample.
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(D) Cross-tissue analysis of hemocytes reveals different cell states of plasmatocytes. 

Annotations marked as blue are hemocytes containing markers of different cell types, 

including lymph gland posterior signaling center (LGP), muscle (MUS), antenna (ANT), 

neurons (NEU), photoreceptor (PR), male accessory glands (MAG), glia (G), male testis 

and spermatocyte (MS), olfactory-binding proteins (OBP), and heat-shock proteins (Hsp). 

Other abbreviations show top marker gene(s) in red. Plasmatocytes and crystal cells are 

indicated. On the right are genes showing compartmentalized expression patterns within the 

plasmatocyte cluster.

(E) Cross-tissue analysis of muscle cells reveals subdivision of the visceral muscle cells 

based on neuropeptide receptors. Annotations marked as blue are muscle cells containing 

markers of different cell types, including neuron (NEU) and male testis and spermatocyte 

(MS). Muscle cells from three body parts are indicated: head muscle (HEAD), body 

muscle (BODY), and testis muscle (TESTIS). Other annotated muscle types include indirect 

flight muscle (IFM), ovarian sheath muscle (OSM), abdominal visceral muscle (ABD), 

dpy expressing muscle (DPY), visceral muscle of the midgut AstC-R2 (VMM-A), visceral 

muscle of the crop MsR1 (VMC-M), visceral muscle of the midgut Dh31-R (VMM-D), and 

visceral muscle CCAP-R (VM-C). Pdfr is expressed in all visceral muscle cells, including 

the ovarian sheath muscle; other four receptor genes (AstC-R2, MsR1, Dh31-R, CCAP-R) 

are expressed in different gut visceral muscle types.
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Figure 5: Transcription factor (TF) pleiotropy versus cell-type specificity
(A) Heatmap showing the expression of key marker genes and unique TF profiles for each 

of the annotated cell types. TFs were selected based on tau score. Cell types were grouped 

based on hierarchical terms: CNS neurons (N), sensory organ cells (S), epithelial cells (E), 

muscle cells (M), glia (G), fat cells (F), oenocytes (O), hemocytes (H), (fe)male reproductive 

system and germline (MR, MG, FR, FG), excretory system (X), tracheal cell (T), gland (L), 

cardiac cell (C), somatic precursor cell (P).

(B) A network analysis of TFs and cell classes based on similarity of ontology terms, reveals 

unique and shared TFs across the individual tissues.
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(C) Heatmap showing the expression of unique TFs per cell class. Factors from the literature 

are highlighted.

(D) Glass is uniquely expressed in photoreceptors and cone cells in the head.

(E) Overview of the Glass regulon of 444 target genes, highlighting known photoreceptor 

marker genes.

(F) Gene expression comparison across broad cell types. Only sets with more than 10 

genes are shown. The left bar graph shows the number of uniquely expressed genes for 

each tissue. The top bar graph shows the gene age in branches, ranging from the common 

ancestor to Drosophila melanogaster-specific genes (http://gentree.ioz.ac.cn). See fig. S34 

for tissue-based comparison.

Li et al. Page 23

Science. Author manuscript; available in PMC 2022 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gentree.ioz.ac.cn/


Figure 6. Sex-biased expression and trajectory analysis of testis cell lineages
(A) Simplified sex determination pathway. Sex chromosome karyotype (XX) activates Sex-

lethal (Sxl) which regulates transformer (Tra), resulting in a female Dsx isoform (DsxF). 

In XY (or X0) flies, Sxl and Tra are inactive (light gray) and the male-specific DsxM is 

produced.

(B) Top, Dsx expression and female- and male-biased expression projected onto tSNE plots 

of all female (left column) and male (right column) cells except reproductive tissue cells 

(Table S4 and S5). female- and male-biased expression measured as the percentage of genes 

in the cluster showing biased expression in favor of the respective sex (Table S6). These 
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percentage values were computed for each annotated cluster and those cluster-level values 

were projected onto the individual cells in the corresponding clusters. For all four tSNE 

plots, values outside the scale in the heatmap key are represented by the closest extreme 

color (> and < signs in the scale).

(C) Scatter plot of female- and male-bias values across non-reproductive cell clusters 

defined as % sex-biased genes (at least 2-fold change with FDR < 0.05 on Wilcoxon test and 

BH correction) in the cluster (Table S6). Data point size indicatess cell numbers per cluster 

(key). Selected clusters are labeled, with those from excretory cells highlighted (brown). 

MT, Malpighian tubule.

(D) Box plots showing the relationship between dsx gene expression and sex-biased 

expression (Table S5). Clusters (B) were partitioned into the set of clusters with Dsx 

expression (dsx+) or not (no/low) using dsx expression in germ cells as an expression 

cut-off. Each box shows hinges at first and third quartiles and median in the middle. The 

upper whisker extends from the upper hinge to the largest value no further than 1.5 * IQR 

from the hinge (where IQR is the inter-quartile range, or distance between the first and third 

quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR 

of the hinge. Outliers are not shown. p-values are based on Wilcoxon test.

(E–G) Trajectory of testis subsets. We used slingshot to infer a possibly branching trajectory 

for spermatogonia-spermatocytes (E), spermatids (F), and early cyst cells (G). Shown are 

the trajectories on a UMAP (top) and the expression patterns of the strongest differentially 

expressed genes, together with the smoothed proportions of annotated cells and average 

number of unique molecular identifiers (UMIs) along the trajectory (bottom).
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