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Abstract

This review delves into B cell responses in the context of allergy. The primary contribution 

of B cells to allergy is the production of IgE, the antibody isotype that triggers immediate 

hypersensitivity reactions through the release of mediators from mast cells and basophils. B cells 

may also have protective roles in allergy, such as through the production of IgG or as regulatory B 

cells. Here we focus on the basic principles of B cell differentiation and discuss features relevant 

to allergic immune responses. In particular, we discuss 1) class switch recombination, 2) plasma 

cell differentiation, 3) germinal centers and affinity maturation, and 4) memory B cells and recall 

responses, with an emphasis on IgE, IgG1, and IgG4. We also consider how B cells may contribute 

to allergic responses independent of antibody production, for example, by serving as antigen 

presenting cells.

Introduction

The major well-established contribution of B cells to allergy is through the production 

of IgE antibodies specific for components of allergens. Secreted IgE is captured by a 

high affinity Fc receptor, FcεRI, that is abundant on the surface of two major classes of 

effector cells: mast cells and basophils. These cells are pre-loaded with IgE, and binding 

of antigens derived from allergens to specific IgE results in cross-linking of FcεRI and 

signal transduction. This may result in a rapid response in which pre-formed granules 

are released, termed degranulation. The mediators contained in these granules, such as 

histamine, are responsible for the key features of immediate hypersensitivity (1). Mast cells 

and basophils also produce various cytokines, chemokines, and proteases that contribute 

to allergic inflammation and modify the cellular environment. Local activation of mast 

cells and basophils in tissues contributes to the symptoms associated with allergic responses
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—for example, degranulation of mast cells under the skin causes erythema, edema, and 

pruritis. Widespread degranulation of mast cells and/or basophils in the body may result 

in a dangerous life-threatening condition known as systemic anaphylaxis. FcεRI is also 

expressed on some antigen presenting cells in humans, including some subsets of dendritic 

cells. With the importance of IgE to allergy, the development of new methodologies to detect 

IgE-producing B cells and plasma cells has enabled significant progress in the past decade in 

understanding the factors that regulate these responses (2).

It is important to note that other antibody isotypes derived from B cells also play 

important roles in allergy. In humans, IgG4 has been implicated in immunological 

tolerance to allergens and the amount of IgG4 increases during allergen immunotherapy 

(3). Interestingly, it has been reported that IgG4 has the unusual ability for the heavy 

chain dimers to dissociate and reassociate with other heavy chains, resulting in some 

antibodies with a single binding site rather than two binding sites for a given antigen, 

thereby reducing the likelihood of cross-linking and immune complex formation (4). Despite 

its roles in tolerance, however, excessive production of IgG4, as occurs in IgG4-related 

disease, may also be pathological (5). Other antibody isotypes, such as IgG1 or IgA, could 

also potentially help neutralize allergens and reduce the likelihood of their binding to IgE. 

Immune complexes formed by IgG bound to allergens may also ligate inhibitory FcγRIIb 

receptors on B cells, basophils, and some subsets of mast cells, which can suppress the 

responses of these cells (6). Overall, it is thus important to consider that B cells may play a 

critical role both in inducing allergic responses through IgE and also in suppressing allergic 

responses through IgG and possibly IgA.

Here we will first discuss the stages of B cell differentiation and consider features relevant 

to allergic disease. We will also briefly discuss some other potential roles of B cells 

independent of antibody production.

Class switch recombination

Naïve B cells express B cell receptors (BCRs) of the IgM and IgD isotypes through 

alternative splicing of the IgM and IgD constant regions. The genes encoding the constant 

regions of IgG, IgE, and IgA isotypes are located downstream. In order to express these 

other isotypes, B cells must undergo a class switch recombination (CSR) event through 

a DNA rearrangement at switch regions that precede the constant regions. The DNA 

containing the previously expressed constant region, and any intervening constant regions, is 

excised and permanently removed from the chromosome. For example, a B cell can ‘switch’ 

from IgM/IgD to IgG1, resulting in the loss of the constant regions encoding IgM, IgD, 

and IgG3. The CSR process can be repeated to a downstream isotype, in a process known 

as sequential switching. For example, a B cell that has ‘switched’ to IgG1 can then further 

‘switch’ to IgE, resulting in the loss of the constant regions encoding IgG1, IgA1, IgG2, 

and IgG4 (note that mice do not have IgA1 or IgG4 constant regions). Direct switching 

from IgM/IgD to any of these isotypes can also occur; for example, B cells can switch from 

IgM/IgD to IgE resulting in IgE expression and the loss of all IgG constant regions (7).

This carefully controlled process of CSR results in changes in 1) the signaling properties 

of the BCR and 2) secreted antibody function. The way in which CSR occurs is also 
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important to consider in terms of the differentiation path of the B cell. A B cell expressing 

the IgE constant region could have been derived by direct switching from IgM/IgD, or by 

sequential switching through an IgG or IgA1 isotype (Figure 1A). In contrast, however, a 

B cell expressing IgG could never have switched to IgE. A B cell that expresses IgE could 

only further switch to the last constant region encoding IgA2 in humans (IgA in mice). 

The process of sequential switching often leaves a ‘footprint’ in the switch region enabling 

detection of the constant region(s) that were previously expressed, such that in some B cells 

one can definitively detect when the process of sequential switching has occurred (7). As 

discussed below, this may have important implications for the origin and fate of B cells 

expressing IgE.

A prerequisite to CSR is the induction of transcription of the downstream constant region to 

which the B cell will switch (7). This so-called germline transcription is thought to provide 

increased accessibility to the DNA of the constant region enabling the recombination event 

to occur. Preceding each constant region is a unique promoter element, enabling selective 

control of germline transcription by signals from various receptors including the B cell 

receptor, innate pattern recognition receptors, cytokine receptors, and CD40 (8). In the case 

of the T-cell dependent responses that will be discussed here, T cells contribute to CSR 

through cytokine production and the expression of CD40L. Most studies indicate that IgE 

responses are T-cell dependent (9).

Classical studies highlighted the critical role of the cytokine IL-4 in CSR to IgE (9). In 

contrast, the cytokine interferon gamma (IFN-γ) inhibited CSR to IgE and promoted CSR to 

IgG2 isotypes (9). The original identification of stable populations of T cells that produced 

IL-4 (Th2 cells) versus IFN-γ (Th1 cells) led to the hypothesis that the Th1/Th2 dichotomy 

was a critical factor in determining whether CSR to IgE occurred (10). This Th1/Th2 

balance has formed the basis of understanding how CSR to IgE is regulated in numerous 

textbooks and reviews. This Th1/Th2 dichotomy was also foundational for some forms of 

the hygiene hypothesis, with the notion that exposure to viral or bacterial infections that 

promote Th1 responses would inhibit CSR to IgE. A lack of these infections in early life 

due to increased hygiene has been proposed to promote a Th2-biased response favoring IgE 

production and allergy (11, 12).

However, some key aspects of CSR to IgE were never explained by the Th1/Th2 dichotomy. 

CSR to IgG1 and IgG4 can also occur in the presence of IL-4 (9, 13, 14), thus CSR to 

IgE and allergic sensitization are not necessarily consequences of IL-4 production. Indeed, 

CSR to IgE appears to be a remarkably rare event in vivo, whereas B cells can readily be 

induced to switch to IgE in cell culture, suggesting other mechanisms negatively regulate 

CSR to IgE in vivo (14). In addition, rather than effector Th2 cells, the cells that produce 

IL-4 in lymphoid tissues are primarily follicular helper T cells (Tfh) (15–17). Recent studies 

have highlighted that Tfh cells play a critical role in IgE CSR in models of allergic immune 

responses and helminth infection (18–22).

One of the major cytokines produced by Tfh cells is IL-21. Elevated IgE responses in mice 

lacking the IL-21 receptor were first noted nearly two decades ago (23, 24). IL-21 was 

proposed in separate studies to either inhibit IgE germline transcription, thereby suppressing 
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IgE CSR (25), or to induce the apoptosis of B cells expressing IgE (26). IL-21 was also 

reported to inhibit sequential switching from IgG1 to IgE in cultures of mouse B cells 

(27). However, paradoxically, in some cell culture studies of purified human B cells, IL-21 

seemed to promote IgE production (28, 29). It was proposed that IL-21 suppresses IgE 

production indirectly through the action of other cytokine(s), such as by inducing IFN-γ 
expression in T cells (28).

While IFN-γ can inhibit IgE CSR in cell culture (9), IFN-γ was largely dispensable in mice 

for IgE regulation, as IFN-γ-deficient mice showed normal frequencies of IgE-producing 

cells in the context of adjuvants that promoted type 1 and/or type 2 immune responses (14). 

It seems likely that in most immune responses, the abundance of IFN-γ is not sufficient to 

have a significant impact on IgE CSR. In contrast, lower amounts of IFN-γ can induce CSR 

to IgG2 isotypes (9).

Recent work has clarified that IL-21 is the critical cytokine for the negative regulation 

of CSR to IgE in both mouse and human B cells. In mice lacking IL-21 or its receptor 

(IL-21R), the vast majority of plasma cells produced IgE, whereas in normal mice most 

plasma cells produced IgG isotypes (14). Similarly, elevated IgE was observed in human 

patients with IL-21R mutations (30). The IL-21R signals primarily through the adapter 

STAT3, and dominant negative mutations in STAT3 cause hyper-IgE syndrome (also known 

as Job’s syndrome) (31, 32). Dramatically increased IgE responses were observed in 

chimeric mice in which B cells selectively lacked expression of the IL-21 receptor (IL-21R), 

demonstrating that IL-21R signaling in B cells is critical for IgE regulation (14). Indeed, 

selective deficiency of STAT3 in B cells, but not in T cells, also resulted in greatly elevated 

IgE responses in mice (14, 33, 34). This finding is also supported by a report of somatic 

mutations in STAT3 in B cells in a human patient leading to high serum IgE (35). Taken 

together, these studies have established that IL-21, signaling through the IL-21R and STAT3 

in B cells, is a major negative regulator of IgE responses in vivo.

IL-21 was confirmed to inhibit IgE CSR by suppressing IgE germline transcription, but did 

not selectively promote the apoptosis of IgE-expressing lymphocytes (14). The molecular 

mechanism by which the IL-21-IL-21R-STAT3 axis suppresses IgE germline transcription 

remains unknown. The effect of IL-21 on IgE CSR was found to depend on the strength of 

CD40 signaling; strong CD40 signaling enabled IgE CSR to occur even in the presence of 

IL-21 (2, 14). This finding, together with the potent ability of IL-21 to promote proliferation 

of human B cells, may explain why some earlier studies of human B cells had found that 

IL-21 could promote IgE production. In the context of weaker signals through CD40, IL-21 

clearly inhibited the IgE CSR of human B cells (14).

The effects of IL-21 on IgE CSR likely depend on the balance of IL-21 and IL-4 signals 

(2, 36). Recent studies have shown a variation in the timing and relative amounts of IL-21 

and IL-4 produced by Tfh during immune responses (37, 38). Mice with haploinsufficiency 

in the genes encoding IL-4 or IL-4Rα had greatly reduced IgE responses but normal IgG1 

responses to immunization or infection (39, 40). IL-4Rα signals through the adapter STAT6, 

and haploinsufficiency in the gene encoding STAT6 also nearly abrogated IgE production 

in mice and B cell cultures (41). In the context of limited amounts of IL-4, IL-21 strongly 
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promoted IgG1 but not IgE CSR in cultures of both mouse and human B cells (14). These 

findings may explain why in typical immune responses, most B cells undergo CSR to IgG1 

rather than to IgE.

For human B cells, the control of CSR to IgE versus IgG4 is an important component of 

allergen sensitization versus tolerance. Surprisingly, the molecular mechanisms regulating 

CSR to IgE versus IgG4 are not well understood. Of cytokines, IL-10 has been most clearly 

implicated in inhibiting IgE and promoting IgG4 responses of human B cells (42–45). IL-10 

does not seem to be a direct switch factor for IgG4, but may potentiate CSR to IgG4 in the 

context of IL-4. IL-10 has also been reported to inhibit IgE CSR of human B cells, although 

this finding is not consistent and may be due to indirect activity of IL-10 on other cell types 

(42, 45–48). The interpretation of some studies may also be complicated by effects of IL-10 

on cell proliferation, plasma cell differentiation and antibody production (42, 48–50). While 

some studies suggested IL-10 may also inhibit IgE responses in mice, a direct analysis of 

mouse IgE B cells showed that IL-10 had no measurable effect on the differentiation of IgE 

B cells from purified naïve B cells in cell culture, and normal frequencies of IgE B cells and 

PCs were observed in IL-10-deficient mice (14). More studies are needed to determine the 

physiological relevance and cellular source(s) of IL-10 and other fac that may regulate CSR 

to IgE versus IgG4 in human B cells in vivo.

While IL-4 is critical for IgE CSR, the role of the related cytokine IL-13 is less clear. IL-13 

is primarily secreted by Th2 and ILC2 cells, and some recent studies in mice have described 

a subpopulation of Tfh cells that express IL-13, denoted as Tfh2 or Tfh13 cells (51–53). In 

mice, naïve B cells do not express the IL-13RA1 subunit of the type II IL-4 receptor needed 

for responses to IL-13 (54, 55), and genetic deficiency in IL-4 or antibody blockade of IL-4 

abrogate the primary IgE response to immunization (9, 17, 56), making it unlikely that IL-13 

plays a significant role in the initial CSR to IgE. Interestingly, Tfh2/Tfh13 cells also express 

IL-4 yet have reduced expression of IL-21, making them potentially important candidates 

for promoting IgE CSR independent of their IL-13 production. One group has reported 

IL-13RA1 is upregulated by mouse GC B cells, with the highest expression on IgE GC B 

cells, after immunization with allergen (51). Whether IL-13 enhances IgE CSR of IgG1 GC 

B cells, or directly affects IgE GC B cells such as by promoting proliferation, differentiation, 

and/or survival, has not yet been tested. It is important to note that unlike naïve mouse B 

cells, human naïve B cells express IL-13RA1 (57, 58), and IL-13 has indeed been reported 

to directly promote IgE CSR in human B cell cultures (59–61). The expression patterns of 

IL-4 and IL-13 in human Tfh in tissues, and relevance of these cytokines to IgE CSR, needs 

further exploration.

Plasma Cells

B cells that have received appropriate signals through their BCR, CD40, cytokine receptors, 

and/or innate pattern recognition receptors may terminally differentiate into antibody-

secreting cells. In the first stage of this differentiation, these antibody-secreting cells are 

referred to as plasmablasts due to ongoing cell proliferation (62). The plasmablasts then 

continue differentiation into plasma cells that exit the cell cycle. For the purposes of this 

review, we will not distinguish between plasmablasts and plasma cells, thus we will refer 
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to all antibody-secreting cells as plasma cells (PCs). We do note two major categories of 

PCs: short-lived PCs that undergo apoptosis within the first few days, versus long-lived 

PCs that continue to secrete antibody for months or years. Short-lived PCs accumulate in 

extrafollicular foci in lymphoid tissues such as the spleen and lymph nodes, whereas most 

long-lived PCs migrate to the bone marrow. Both short-lived and long-lived PCs have also 

been found to accumulate in the lamina propria of mucosal tissues (63–65).

Interestingly, IgE B cells have an increased preponderance to undergo PC differentiation 

compared with B cells expressing other isotypes, such as IgG1 (27, 66–68). While antigen 

ligation of the BCR is typically part of the PC differentiation process, multiple groups have 

reported that the IgE BCR promotes PC differentiation even in the absence of antigen (66, 

68). The IgE BCR was found to exhibit constitutive, weak signaling that differs from other 

isotype BCRs. Ectopic expression of the IgE BCR in primary B cells demonstrated that the 

IgE BCR promotes PC differentiation in the context of T cell help signals.

In primary immune responses in lymphoid tissues, activated B cells ultimately migrate 

to two major areas: extrafollicular foci where they undergo PC differentiation, or the 

center of B cell follicles where they form germinal centers (GCs) (69). At later stages 

of the primary immune response, PCs may differentiate from GC B cells and exit these 

structures. As a result, there are essentially two initial waves of PC responses, the first in 

extrafollicular foci and the second derived from GCs. A key difference in these responses 

is that most of the PCs in extrafollicular foci are short-lived, whereas a subset of PCs 

derived from the GC are long-lived and often migrate to other sites such as the bone 

marrow. In addition, in the extrafollicular foci, most PCs express antibodies encoded by 

their original germline sequences, with minimal numbers of somatic mutations, and these 

antibodies typically have low to moderate affinity for antigen. In contrast, PCs derived from 

GCs are often extensively somatically mutated and selected for particular characteristics of 

antibody-antigen binding, such as increased affinity, as discussed below. These distinctions 

between the extrafollicular and GC-derived PCs are not absolute; for example, somatic 

mutations can occur in extrafollicular foci (70). In addition, some immune responses seem 

to favor extrafollicular responses and others seem to favor GC responses. This has not yet 

been thoroughly evaluated in the context of allergens. In addition, as described below, many 

allergy models and some types of human allergy involve repetitive allergen exposure, in 

which the characteristics of the initial primary response to the allergens is unknown.

Interestingly, data available thus far from primary immune responses suggests that a large 

fraction of the initial IgE produced is derived from the extrafollicular foci, and accordingly, 

most of the initial IgE PCs generated are short-lived and secrete antibodies encoded by 

germline sequences with low to moderate affinity for antigen (71) (Figure 1B). Studies of 

Bcl2 transgenic mice further suggest that the vast majority of IgE PCs undergo apoptosis 

(67). Nevertheless, a smaller proportion of IgE PCs are derived from GCs, which may 

give rise to a limited number of long-lived IgE PCs (Figure 1B). Some studies in rodents 

have reported the persistence of a small number of IgE PCs in the bone marrow or in 

lymph nodes long after primary immunization (72). It has been reported that the IgE BCR 

hinders migration to the chemokine CXCL12, which is important for PC migration to the 

bone marrow (73). Consequently, the IgE BCR may disfavor the ability of IgE PCs to 

Allen Page 6

J Immunol. Author manuscript; available in PMC 2023 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reach niches for long term survival. Interestingly, in mice deficient in Blnk, an adapter 

involved in BCR signaling, it was observed that IgE B cells were more abundant in GCs and 

that long-term production of antigen-specific IgE could be detected in serum (66), though 

whether these findings are directly linked needs further investigation.

Upon subsequent exposures to antigen, memory B cells (described further below) undergo a 

recall response, in which they may undergo rapid differentiation to PCs and/or GC B cells 

(74, 75). Most PCs derived from memory B cells produce somatically mutated antibodies, 

often with high affinity for antigen. Some of these PCs may be short-lived and others are 

long-lived, the latter of which tend to migrate to the bone marrow. Many allergy models 

in rodents involve repetitive dosing with allergens over an extended period, such that one 

may presume the majority of IgE PCs are derived from memory B cells. There have been 

limited direct spatiotemporal studies of the IgE PC response in these settings, although there 

are certainly some reports of finding IgE PCs that may be long-lived in the bone marrow 

in some of these models at their endpoints (76, 77). It remains unclear, however, how 

the magnitude of these IgE responses to repetitive dosing with allergens compares to the 

predominant generation of short-lived IgE PCs in primary immune responses. There is also 

evidence in humans that IgE PCs may differentiate and/or reside in the lamina propria of 

mucosal tissues (7, 78, 79), though the life span of these cells has again not been thoroughly 

evaluated.

Overall, limited information is available about the relevance of short-lived IgE PCs or 

long-lived IgE PCs to serum IgE production at a given snapshot in time, such as at the 

endpoint of an allergy model or in a sample collected from a human patient. It is important 

to note that even when IgE PCs are short-lived, IgE-mediated allergen reactivity may persist 

for some time, as IgE was found to be retained on mast cells in mice for months in the 

absence of detectable IgE production (80, 81). Upon allergen re-exposure, memory B cells 

may differentiate into IgE PCs to maintain allergic sensitization. While allergen re-exposure 

regularly occurs in the respiratory tract, not all allergic responses involve highly repetitive 

exposures. For example, patients who become allergic to bee venom or food allergens 

and develop anaphylaxis may do everything they can to avoid these exposures. In patients 

with allergic rhinitis, there is substantial evidence for seasonal variation in serum IgE that 

correlates with exposure to pollen, suggesting that some of this IgE is produced by short-

lived IgE PCs that differentiate during each pollen season (82–86). Interestingly, blocking 

the IL-4 receptor with the monoclonal antibody dupilumab in patients results in a substantial 

drop in serum IgE over time (87, 88), suggesting a large fraction of IgE production may 

be derived from recent IgE CSR and the generation of short-lived IgE PCs. Some fraction 

of IgE production, however, seems persistent, which may be derived from long-lived PCs 

(89). It seems plausible that the relative proportions of IgE production that derive from 

short-lived PCs versus long-lived PCs may vary depending on the allergen properties and 

other characteristics, such as the frequency and route of exposure. More studies are needed 

to determine the factors that lead to the generation of short-lived versus long-lived IgE PCs 

specific for allergen components and their relative contributions to allergic diseases.
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GCs and Antibody Affinity

During immune responses, GCs form within B cell follicles in secondary lymphoid organs, 

such as the tonsils and lymph nodes, as well as in some ectopic lymphoid structures (78, 

90). In GCs, B cells undergo a remarkable process of somatic hypermutation of their 

antibody variable genes. These mutations may alter the characteristics of the binding of 

the antibody to its cognate antigen (e.g., a component of an allergen). In some B cells, 

these mutations may lead to higher affinity binding of antibody to cognate antigen, and this 

confers an advantage to those B cells for antigen uptake and presentation to T cells, leading 

to selection. Selected GC B cells may then differentiate into PCs or memory B cells, both of 

which may be long-lived. This process results in a gradual increase over time in the affinity 

of encoded antibodies for antigens that can encompass several orders of magnitude, known 

as affinity maturation.

It is important to note, however, that increases in affinity are not the only changes 

in antibodies that are selected for in GCs (90). Somatic mutations can also reduce 

antibody binding to self antigens, thereby increasing selectivity for foreign antigens (91–

93). Remarkably, studies with similar foreign and self antigens have shown selection for 

somatic mutations that allow selective binding to particular conformational properties, such 

as whether antigens are polyvalent versus monovalent, or differ in flexibility (91, 94). Over 

time as selected GC B cells differentiate into PCs, the secreted antibody begins to compete 

with the ability of GC B cells to bind to antigen (95). This may favor the selection of 

B cells that encode antibodies that bind a different region (epitope) of the antigen or to 

different antigens, ultimately leading to diversification of the antibody response. In the 

context of immune responses to allergens, GCs may thus have several important impacts on 

the antibody response, including 1) an increase in affinity to particular antigen components 

of allergens, 2) an increase in selectivity for binding to antigens derived from allergens 

rather than self antigens, 3) a change in the conformational properties of antibody binding 

and 4) an increase in the diversity of allergen epitopes bound by antibodies.

Interestingly, several studies have shown that B cells that have undergone CSR to IgE are 

greatly disfavored within the GC compared to B cells that have switched to other isotypes 

(27, 67, 96–99) (Figure 1B), due to properties of the IgE BCR (66, 68). In IgE GC B 

cells, the surface expression of the IgE BCR is very low (68, 96), resulting in decreased 

antigen uptake and presentation (68). As a result, IgE GC B cells likely compete poorly 

for T cell help in GCs, consistent with the observation of prolonged cell cycle times 

in IgE GC B cells compared with IgG1 GC B cells (68). The low surface expression 

of the IgE BCR on IgE GC B cells also hinders antigen-induced BCR signaling (96), 

whereas the constitutive activity of the IgE BCR on IgE B cells in the absence of antigen 

binding promotes PC differentiation (66, 68). Some studies, but not others, have reported 

increased rates of apoptosis among IgE GC B cells (66, 68, 96). Taken together, IgE B 

cells are at a competitive disadvantage within GCs, consistent with the finding that IgE B 

cells only appear transiently in the early phase of GCs and rapidly disappear from these 

structures. This loss of IgE B cells over time from GCs was also observed in IL-21-deficient 

mice with enhanced IgE CSR (14), suggesting that most IgE CSR occurs outside of GCs, 

consistent with recent evidence for CSR to IgG isotypes (100). We have proposed that the 
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transient presence of IgE B cells in GCs is a regulatory mechanism to reduce the likelihood 

of generating long-lived IgE cells encoding high affinity antibodies to allergens, thereby 

reducing the risk of developing anaphylaxis (71). It is important to note, however, that the 

transient presence of IgE B cells in GCs could still be significant, as this may contribute to 

the generation of a small number of IgE PCs encoding moderate to high affinity antibodies. 

Overall, the generation of affinity matured IgE PCs derived from GCs is proposed to be 

miniscule compared with the generation of IgG PCs (71). In mucosal lymphoid tissues, GCs 

also play a significant role in the generation of IgA PCs (63).

Given the limited participation of IgE B cells in the GC response, other mechanisms have 

been proposed to account for the generation of high affinity IgE antibodies to allergens. 

A model that has been extensively evaluated involves sequential switching of B cells to 

IgE through an IgG1 intermediate stage (7). In this model, IgG1 B cells undergo extensive 

somatic hypermutation and selection in GCs, potentially acquiring mutations that increase 

antibody affinity for antigen, followed by subsequent CSR to IgE and PC differentiation, 

providing a path to the production of high affinity IgE specific for allergens. Evidence 

supporting this model has been derived from 1) a temporal analysis of the IgE B cell 

response including the detection of high affinity somatic mutations and the detection of 

‘footprints’ revealing past CSR to IgG1 and 2) decreased high affinity IgE production in 

mice with a targeted disruption of the IgG1 locus (27, 96, 101). Further supporting this 

sequential switching model, studies of human IgE PCs have also revealed evidence of IgG1 

‘footprints’ in some cells as well as the presence of somatic mutations in the antibody 

variable regions (102).

The sequential switching model provides a solid mechanistic basis for the generation of 

somatically mutated, high affinity IgE antibodies, yet we also draw attention to some 

features of the IgE responses studied that are often overlooked. In studies of a mouse model 

in which all B cells started out expressing the same BCR, after repeated immunization, a 

higher proportion of sequences derived from IgG1-switched B cells contained high affinity 

somatic mutations than from IgE-switched B cells (27, 96). In studies of the adoptive 

transfer of IgG1 memory B cells, high affinity somatic mutations were detected in a greater 

proportion of IgG1 PCs than IgE PCs derived from these memory B cells (103). These 

findings would suggest that greater selection for high affinity mutations occurs in the 

IgG1 response than in the IgE response, even in the context of sequential switching from 

IgG1 to IgE. This could be due to the ability of the IgE BCR to autonomously promote 

PC differentiation even without antigen binding (66, 68), whereas antigen binding to the 

IgG1 BCR promotes PC differentiation, thereby enabling greater selective pressure for 

high affinity mutations in the generation of IgG1 PCs. Thus, although sequential switching 

contributes to the acquisition of numerous somatic mutations in IgE PCs, the degree to 

which these mutations confer high affinity binding is more limited than in IgG1 PCs. Greater 

selection for high affinity mutations in IgG1 PCs than in IgE PCs was also observed at 

later stages of primary immune responses, in which these cells are likely derived from GC 

B cells (67). Notably, human studies showing significant numbers of somatic mutations in 

IgE-producing cells have not determined whether these mutations increase the affinity of the 

encoded antibodies for allergens. As we noted above, somatic mutations in the GC not only 

increase affinity, but could also have other effects such as decreasing binding to self antigens 
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and altering the selectivity of antibody binding to particular conformations of antigens. We 

propose that sequential switching through IgG1 could therefore also play a role in refining 

the selectivity and diversity of the IgE antibody response.

The degree to which high affinity IgE production occurs in different allergic diseases 

remains unknown. Studies of mast cell responses in cell culture and in mice have shown that 

high affinity IgE binding to antigen can be sensed through FcεRI by a kinetic proofreading 

mechanism, resulting in enhanced degranulation and release of mediators (104). However, 

high-affinity IgE did not seem to be essential for anaphylaxis in a mouse model of peanut 

allergy, perhaps due to challenge with a large dose of antigen and/or the generation of 

a polyclonal IgE antibody response targeting different antigen epitopes that allows FcεRI 

cross-linking on mast cells (81). From basic principles, it would seem that IgE antibody 

affinity should determine the relative amount of allergen needed to elicit a response. It is 

thus tempting to speculate that high affinity IgE may be relatively abundant in patients 

that are susceptible to anaphylaxis upon consuming minute amounts of foods to which 

they are allergic. In contrast, although many individuals produce IgE specific for antigens 

derived from aeroallergens, these responses almost never elicit anaphylaxis, and thus these 

aeroallergen-specific IgE antibodies could primarily be of low to moderate affinity.

GC responses could also be protective against the development of allergic responses. IgG 

B cells that undergo numerous rounds of somatic hypermutation and selection in GCs are 

thought to ultimately differentiate into IgG memory B cells and IgG PCs that are long-lived 

(90). If GCs are induced in response to encounter with allergens, this would result in 

the sustained production of high affinity IgG for antigens derived from allergens. This 

IgG could neutralize the allergens preventing them from reaching mast cells and basophils 

loaded with IgE. Alternatively, IgG bound to allergens could form immune complexes that 

ligate inhibitory FcγRIIb receptors on B cells, basophils, and some subsets of mast cells. 

We propose that strong or prolonged GC responses would also result in the sustained 

maintenance of a larger population of Tfh expressing IL-21, which as described above is 

inhibitory toward IgE CSR, thereby decreasing the likelihood of generating allergen-specific 

IgE.

Eliciting allergic responses, therefore, may actually be difficult in the context of strong GC 

responses. Indeed, it was proposed that allergic sensitization may actually be favored in 

the context of weak GC responses (105, 106). This hypothesis is supported by evidence 

that in aeroallergen sensitization, IgE is made to allergen components that elicit weak IgG 

responses. In rodent allergy models, immunization with low doses of antigen or without 

adjuvant have been reported to favor IgE rather than IgG production (105). There is also 

substantial evidence that IgE CSR and production may occur in some peripheral tissues, 

as has been discussed in depth in other reviews (7, 78). While some of these tissues may 

develop ectopic lymphoid structures containing GCs, in many cases GCs may not be present 

in peripheral tissues, which may support the generation of local IgE responses. We highlight 

new work showing that in peanut allergy, IgE-switched cells were detected in the stomach 

and duodenum that were clonally related to IgG and IgA-switched cells, suggesting the 

possibility of local CSR to IgE and local IgE production in the stomach and duodenum in 

food allergy (79).
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Memory B cells

Long-term allergen sensitization or tolerance may be maintained by long-lived PCs 

(discussed above) or by memory B cells. Antigen-specific memory B cells persist in a 

relatively quiescent state, ready to be rapidly reactivated upon de novo antigen exposure. 

Upon reactivation, memory B cells may differentiate into PCs or GC B cells, or further 

expand the pool of memory B cells. The tendency to undergo these differentiation paths 

depends on the isotype of BCR expressed and the transcriptional state of the cell. 

Particular subsets of memory B cells have been identified that preferentially undergo these 

differentiation paths. For more information, we refer the reader to other reviews that discuss 

these topics in depth (74, 75, 107)

Some memory B cells recirculate throughout the body whereas others seem to become 

resident in tissues, referred to as resident memory B cells. For example, resident memory 

B cells have been identified in the lung after viral infection (108, 109). Within lymphoid 

tissues, memory B cells may also alter their migration patterns, such as to a subcapsular 

niche in lymph nodes, which is thought to enable rapid encounter with incoming antigen and 

cognate Tfh cells (110). The relevant niches in which memory B cells reside in the context 

of allergic disease have not yet been investigated.

Given the importance of IgE in allergy, there has been considerable interest in whether a 

population of IgE memory B cells contributes to long-term allergic sensitization. Answering 

this question has been challenging because such cells are likely exceedingly rare, and 

numerous technical artifacts can obscure the detection of bona-fide IgE B cells (71, 111). 

Sporadic reports have appeared in the literature regarding the detection of IgE memory B 

cells in patient samples, yet one has to approach these data with extreme caution as to the 

methodology used, especially when these cells seem to be unusually abundant. As a case in 

point, one study has highlighted how most putative IgE memory B cells detected in human 

blood samples were false positives (111). Most rigorous studies in mice and humans would 

seem to suggest that the frequency of IgE memory B cells in circulation is almost negligible 

(96, 111), which would make these cells likely of minimal significance in the context of the 

recall response to allergen re-exposure. We do not exclude the possibility of exceptions to 

this finding in particular patients, for example those with mutations in genes important for 

regulation of the IgE response (2). In addition, these findings do not exclude the possibility 

of resident IgE memory B cells in tissues. Overall, what has been learned in recent years 

about the IgE BCR suggests that its expression may be incompatible with the generation of 

a stable population of memory B cells, because the IgE BCR exhibits antigen-independent 

signaling that promotes PC differentiation and/or apoptosis (66, 68).

It seems much more likely based on existing evidence that upon allergen re-exposure, 

new IgE PCs are derived from memory B cells expressing other isotypes. In these recall 

responses, these memory B cells would first need to undergo CSR to IgE. This is supported 

by classical studies showing a requirement for IL-4 in the production of IgE in secondary 

immune responses to helminth parasite infection, suggesting de novo CSR to IgE was 

essential (112). Most studies thus far have focused on the role of IgG1 memory B cells in 

the production of IgE after antigen re-exposure (7) (Figure 1C). Immunization of mice in 

which the extracellular domains of IgG1 were swapped with IgE, thereby altering the IgG1 
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BCR, resulted in diminished IgE secondary responses (113). As discussed above in regard 

to sequential switching, it has been reported in mice that the production of high affinity IgE 

after antigen re-exposure depends on IgG1 memory B cells, particularly the CD73+ CD80+ 

subset (103). Taken together, these findings implicate IgG1 memory B cells as significant 

contributors to IgE production relevant to allergic disease, and this may be particularly 

important for high affinity IgE production. It remains unclear, however, whether memory B 

cells expressing other isotypes, such as IgM, may also contribute to IgE production after 

allergen re-exposure.

Other potential roles of B cells in allergy

In addition to their role in the production of antibodies, B cells may also make other 

significant contributions to allergic immune responses. These include, but are not necessarily 

limited to, their role as antigen presenting cells, their contributions to lymphoid tissue 

organization, and as regulatory B cells. B cells are known to be critical antigen presenting 

cells for Tfh cells and are required for the maintenance of Tfh (114). These Tfh cells in 

secondary lymphoid tissues may subsequently develop into central memory T cells that 

recirculate, and may thereby contribute to the pool of effector Th2 cells involved in eliciting 

local tissue inflammation, such as in the lung in mouse models of allergic airway disease 

(115, 116). Conversely, by promoting Tfh responses, B cells may reduce the likelihood 

of generating effector Th2 cells that home to the lung (117). In cell culture, it has been 

established in numerous studies that B cells may serve as antigen presenting cells for 

Th2 cells, such as in cultures of lymphocytes derived from the lung in mouse models 

of allergic airway disease (118). However, it remains unclear whether B cells serve as 

antigen presenting cells for Th2 cells in vivo. Interestingly, B cells readily accumulate 

in the lung in mouse models of house dust mite immunization (116). B cells are also 

known to produce molecules, such as lymphotoxin-α1β2, that act on other cells in the 

local tissue environment, with impacts on chemokine production and the organization of 

lymphoid tissues (119). Whether this function of B cells is relevant to allergic inflammation 

in peripheral tissues, such as in the lung, remains unknown. Conversely, regulatory B cells 

express cell surface molecules and produce various cytokines, such as IL-10, which dampen 

the allergic response (120). Interestingly, one study has reported a subset of regulatory B 

cells that produces both IL-10 and IgG4, which may be important for allergen tolerance 

(121).

Conclusions

In this review, we provided a detailed discussion of the fundamental stages of B cell 

differentiation in the context of allergy. Given the critical importance of IgE for allergic 

sensitization and pathogenesis, we focused primarily on the unique features of IgE 

responses. CSR to IgE is tightly regulated by cytokines, and once IgE B cells are generated, 

the distinct features of the IgE BCR determine cell fate. We compared IgE responses 

to IgG1 and IgG4 responses, which may be protective in allergy. Our discussion of B 

cell differentiation highlights key ‘decision points’ that may ultimately determine allergic 

sensitization versus tolerance. For example, CSR to IgE, IgG1, and IgG4 are all promoted 

by IL-4, yet these are differentially regulated by the relative amounts of IL-21 and IL-10, as 
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well as the strength of CD40 signaling. Germinal center responses may also both suppress 

and promote allergy. Within the germinal center, selection occurs for IgG and IgA B cells 

at the expense of IgE B cells, ultimately leading to the production of high affinity IgG 

and IgA that may suppress responses to allergens. Conversely, sequential switching of IgG 

cells to IgE contributes to the production of high affinity IgE antibodies and may also 

affect antibody selectivity and diversity. Throughout the review, we have provided insights 

into which conclusions can be robustly drawn from published data, as well as the many 

unknowns regarding B cells in the context of allergic diseases. Future studies may greatly 

benefit from high resolution studies of single cells in relevant tissue sites through recent 

innovations in RNA sequencing, flow cytometry, and microscopy.
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Figure 1: Key decision points in B cell responses affecting IgE production
A) CSR showing potential for direct and sequential switching of isotypes relevant to allergic 

immune responses (human isotypes are shown). All B cells start out expressing IgM and/or 

IgD by alternative splicing. Current data suggest CSR occurs in activated B cells prior to GC 

formation. Once B cells are activated (as shown in figure), IgD expression is downregulated 

and B cells express IgM on their surface. CSR is initiated by the transcription of downstream 

Ig heavy chain constant region(s) followed by DNA rearrangement at switch regions. This 

leads to the expression of the constant region of a new isotype (such as the switch from 
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IgM to IgG1) and the loss of intervening constant region DNA. The constant regions are 

illustrated in different colors. This process can be repeated resulting in sequential switching 

(such as IgM to IgG1 to IgE). As the upstream constant region DNA has been excised, the B 

cell cannot ‘go back’ to a previous isotype.

B) The potential fates of an activated IgE B cell are shown, which are important for 

determining the magnitude, duration, and affinity of IgE production in allergic diseases. 

IgE B cells are predominantly observed to differentiate into short-lived PCs, which then 

undergo apoptosis. A smaller proportion of activated IgE B cells differentiate into GC B 

cells; however, IgE B cells are not maintained in GCs due to PC differentiation, reduced 

proliferation, and/or increased apoptosis. Nevertheless, IgE GC B cells may contribute to the 

generation of a small number of long-lived IgE PCs. Such long-lived IgE PCs may also be 

derived from sequential switching (see panel C). Theoretically, activated IgE B cells may 

differentiate into memory IgE B cells in a GC-independent or -dependent manner, however 

there is little conclusive evidence that this occurs. Some studies, but not others, have also 

provided evidence for increased rates of apoptosis among activated IgE B cells.

C) The potential differentiation programs of IgG1 memory B cells are shown, which are 

critical for determining whether allergic sensitization occurs upon allergen re-exposure. 

Most IgG1 memory B cells are thought to differentiate into IgG1 PCs upon antigen 

re-exposure, and this may protect against allergy. IgG1 memory B cells may also enter 

into GC responses for further maturation/diversification, ultimately generating additional 

IgG1 memory B cells and IgG1 PCs. Memory IgG1 B cells may also undergo CSR to 

other isotypes such as IgG4 and IgE, and then these switched B cells may become PCs. 

After allergen re-exposure, IgG1 memory B cells thus have the potential to contribute to 

IgG1/IgG4 production that may promote allergen tolerance, versus IgE production resulting 

in exacerbation of allergic disease.
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