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Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted
infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public
health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not
resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need
for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider
the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical
testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models
of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide
vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates
for development. At least one is currently in clinical development and efforts now need to be directed
toward further development of the most attractive candidates. Overall, the discussions and presentations
from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the
remaining gaps and questions needed to move vaccines forward.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction and objectives

The World Health Organization (WHO) estimates that 131 mil-
lion cases of sexually transmitted Chlamydia trachomatis (Ct) infec-
tions occurred in 2012, with estimated incidence highest among
women in the WHO Region of the Americas (72 per 1000) and
Western Pacific Region (56 per 1000) [1]. Ct is a public health pri-
ority because infection in women can cause pelvic inflammatory
disease (PID) and other long-term sequelae including infertility
and ectopic pregnancy. An estimated 10–15% of cervical infections
spread to the fallopian tubes and approximately 10–15% of these
result in infertility [2]. Given that an estimated 68 million cases
of Ct occur among women each year, and most are likely left
untreated, up to 1 million new cases of infertility could result
annually on a global scale.

As the vast majority of infections are asymptomatic, current Ct
control programs are based on screening and treatment, and are
not available in most of the world because they are costly, complex
to roll out, and difficult to bring to scale. For instance, in the US
alone, only about half of women eligible for screening are actually
tested [3]. Furthermore, existing programs have not clearly
resulted in reduced infection incidence, and reinfection remains
all too common. The complexities of current Ct control efforts
highlight the need for continued work toward an effective vaccine.

A recent cost-effectiveness model of a hypothetical Ct vaccine
for young females in the United States concluded that a Ct vaccine
could be cost effective even in the context of ongoing screening
programs [4]. In settings with >6% Ct prevalence, vaccinating 14
year-old girls and continuing to screen females (15–24 years),
assuming 30% Ct vaccine coverage and vaccine costs of $547 (as
for human papillomavirus [HPV] vaccine), the vaccine was cost
saving. At 3.2% prevalence, as in the United States, a Ct vaccine
would cost approximately $35,000 per quality-adjusted life-year
(QALY), similar to HPV vaccine. Vaccine cost, duration of immunity,
vaccine efficacy and risk of sequelae also influenced cost-
effectiveness. Better data on Ct infection and disease burden in dif-
ferent settings will inform future models.

Given the magnitude of Ct rates, the complexity of control
efforts and preliminary models showing a vaccine would be cost
he way
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effective, now is the time for serious consideration of Ct vaccine
development by leveraging decades of basic and preclinical
research studies. In May 2015, the National Institute of Allergy
and Infectious Diseases (NIAID), part of the National Institutes of
Health, sponsored a workshop entitled ‘‘Chlamydia Vaccines: the
Way Forward”. The goals of the workshop were to gather Ct
experts to discuss key questions on the research status and path
forward to a licensed Ct vaccine. Representatives from academia,
WHO and U.S. Government agencies attended. This review summa-
rizes key areas of focus discussed during the workshop and pro-
vides next steps for chlamydial vaccine development.
2. Goals of a vaccine

Meeting participants discussed the goals of a Ct vaccine in
terms of reducing infection and/or disease and how these goals
shape research and development, trial design and evaluation, and
measures of vaccine efficacy. The ultimate goal of a Ct vaccine is
to reduce the burden of upper genital tract sequelae in women. A
vaccine may achieve this by preventing infection, preventing
ascension of infection to the upper genital tract, or reducing the
duration or bacterial load of infection. However, the ultimate goal
of a vaccine may differ from the clinical endpoints that can be mea-
sured in trials, which could be infection, disease (such as PID) or
both. The choice of trial endpoint is influenced by several consider-
ations, including the natural history and timing of clinical events
following infection, the proportion of PID associated with Ct, the
accurate ascertainment of PID, and other clinical trial design con-
siderations. For example, with respect to timing, a vaccine trial
would need to consider the time to incident Ct infection and then
to incident disease. The precise timing of PID following incident Ct
infection is unknown, but generally occurs within 1 year and rates
may be greater soon after infection. Even if tubal damage occurs
relatively soon, infertility may not be apparent until years later
when attempting pregnancy.

Acute PID is a clinical syndrome with multiple etiologies [5].
The proportion caused by Ct varies by setting, but typically Ct is
involved in about one third of cases [6]. Attribution of PID to a par-
ticular etiologic agent is difficult, as cervical and fallopian tube
microbiologic tests do not always agree and co-infection is com-
mon. Measurement of PID as a trial outcome may be difficult in
part because current diagnostic criteria are nonspecific and many
cases of upper genital tract infection are subclinical. A critical ques-
tion will be whether a decrease in clinical PID parallels a decrease
in subclinical PID. Magnetic resonance imaging (MRI) may be the
most useful diagnostic test but has not been widely evaluated
and is not uniformly available [7]. Inaccuracy in PID diagnosis will
bias findings toward the null hypothesis. Using PID rather than
infection as an endpoint will require larger sample sizes, as PID
incidence in screening trials has been about 2% per year whereas
infection incidence is several-fold higher; however, such sample
sizes are not out of the question. If both endpoints are used, fre-
quency of follow-up Ct testing will have implications for PID
assessment, as positive tests require treatment.

To use only Ct infection as a clinical trial endpoint, several ques-
tions will need to be answered. (1) Does a decrease in infection
precisely parallel a decrease in sequelae? If protection is limited,
are the infections prevented the ones that would lead to PID? (2)
Conversely, could ascension to the upper tract and thus PID still
be prevented even with breakthrough infection? (3) Could break-
through infections lead to an enhanced risk for PID? Now is the
time to carefully consider and develop consensus around vaccine
trial endpoints. Even if infection is the primary endpoint, assess-
ment of PID as a secondary endpoint or during phase IV post-
licensure trials will likely be needed. Research needs to inform
Please cite this article in press as: Zhong G et al. National Institute of Allergy
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these discussions include: better ways of measuring upper genital
tract ascension, inflammation, and damage; improved knowledge
of which infections cause PID and longer-term damage; and a
package of evidence to confirm a vaccine would not increase tubal
immunopathology on breakthrough infection.

Biomarkers that indicate upper genital tract tissue damage
would be useful for trial design and other aspects of Ct vaccine
development [8], and may result from insights into the human
immune response. Using a Ct whole proteome array [9], humoral
immune responses in women were mapped for identifying
biomarkers to aid diagnosis of tubal infertility [10,11]. Antibody
responses to Ct antigens CT147 and CT875 were associated with
acute Ct infection while those to Ct HSP60, CT557 and CT443 were
associated with tubal infertility. A recent analysis of 225 high-risk
young women showed that serum antibodies were associated with
reduced cervical Ct bacterial load, however systemic CD4 + T cell
IFN-c responses to Ct antigens correlated with immunity to cervi-
cal infection [12,13]. Data from studies like these will be critical in
designing clinical trials to test Ct vaccines, as well as better under-
standing the burden of Ct-associated sequelae.

Based on these discussions, meeting participants outlined clear
goals for a Ct vaccine, but raised questions about how best to eval-
uate these goals in trials given current data. Participants agreed
that clinical testing of a Ct vaccine is currently feasible, but explor-
ing more novel methods to measure outcomes could expand
options for vaccine evaluation.
3. Animal models

3.1. Mouse models

For several decades the C. muridarum (Cm) cervicovaginal infec-
tion mouse model has been successfully used to study chlamydial
pathogenic mechanisms and host immune responses due to the
high genomic similarity between Cm and Ct and the ability of
Cm to induce pathologies in the upper genital tract that mimics
pathologies observed in Ct-infected women. Both macroscopic
and microscopic evaluations of genital tract pathologies such as
uterine horn dilation [14] and hydrosalpinx [15,16] have become
standardized in the murine model. Using this model combined
with genetic tools for Chlamydia and the host, significant progress
has been made in defining roles of the pathogen, host, and environ-
mental factors in bacterial ascension and tubal inflammation
[17,18]. For example, it has recently been shown that plasmid gene
product 3 (Pgp3)-deficient Cm was attenuated in ascending infec-
tion and no longer able to induce hydrosalpinx [19]. Possible
mechanisms for Pgp3 involvement in upper genital tract pathology
include neutralization of mucosal antimicrobial peptides and mod-
ulation of TNF signaling pathways [20,21]. Further defining the
molecular basis of chlamydial upper genital tract pathogenicity
using the Cm murine model should provide novel information for
identifying potential vaccine targets.

Researchers have also utilized the Ct model of genital infection
of female C3H/HeJ mice, which have a toll-like receptor 4 mutation
making them resistant to endotoxin. Primary infection in this
model results in ascending infection with delayed clearance.
Inflammatory salpingitis is observed, but not hydrosalpinx. Sec-
ondary infection shows a lower burden of organisms in the genital
tract, but little difference in duration compared to primary infec-
tion. Virulence in this model is partially dependent on an intact
or nearly intact CT135 gene, and laboratory-passaged Ct strains
(as opposed to low-passaged clinical isolates) tend to accumulate
disruptive and therefore attenuating mutations in this gene [22].

Newer mouse models include transcervical infection where
bacteria are administered directly into the uterine horns and result
and Infectious Diseases workshop report: ‘‘Chlamydia vaccines: The way
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in upper genital tract infection, albeit with lower burden and
reduced duration compared to ascending Cm infection. Other
model modifications include immunity-related GTPases 1 and 3
knockout mice expressing human indole oxidase, and TCR trans-
genic mice harboring naïve T cells with single specificity for Ct
antigens [23].

Meeting participants did not conclude which model constituted
the standard for testing preclinical vaccine candidates. Cervicovagi-
nal infection ofmice seemsmore straightforward than transcervical
infection as it mimics the natural infection route in women. Both Ct
and Cm vaginal inoculation models have advantages and disadvan-
tages for testing candidate vaccines. For initial testing of vaccines
the Cm model may prove superior given the acute nature of infec-
tion and strong protective immunity developing from primary
infection, while the Ct C3H/HeJ mouse model may prove more use-
ful in studying Ct pathogenesis given the often chronic indolent
nature of Ct infection in women. Overall, it was concluded that
investigators should evaluate candidate vaccines with respect to
likely clinical trial endpoints and/or licensing indications and then
employ an animal model that most closely replicates these criteria.
3.2. Non-human primate (NHP) models

Meeting participants discussed the potential use of NHP models
of Ct infection to test vaccines, vaccine formulations and explore
mechanisms of immunity and pathogenesis. Female pigtail maca-
ques share many similarities with human females including the
length of the menstrual cycle, reproductive tract anatomy, cervical
tissue cellular structure, and vaginal microflora. However, pigtail
macaques have displayed variable susceptibility to cervical inocu-
lation with Ct and limited genital tract inflammatory pathology
[24]. One attempt to increase the percentage of animals infected
and generate more robust pathology was reported where animals
were inoculated in both the endocervix and fallopian tubes with
Ct. Inflammatory and pathological responses in the fallopian tubes
and fimbriae were confirmed. If developed further such a model
may prove useful for vaccine development, particularly for safety
testing where vaccinated animals could be surveyed for upper gen-
ital tract pathology upon challenge with Ct.

Rhesus macaques have also been used to model Ct infection
[25]. After repeated cervical inoculation with a Ct serovar D isolate,
some animals developed infection in the fallopian tubes as
revealed using fimbrial swabs while others resisted ascending
infection. However, the limited disease produced with lab-
passaged Ct hampers its utility for evaluating vaccine prevention
of disease.

Despite availability of several NHP models, no regulatory
requirement exists for testing vaccines in NHPs. NHPs may play
some role in Ct vaccine development given their more human-
like IFN-c response, and some vaccines may need safety testing
in a human-like reproductive tract. Further, NHP studies should
continue as a research tool to shed light on mechanisms of immu-
nity and upper genital tract pathology. However, it is unlikely
these studies will be included in the critical pathway of Ct vaccine
development.
4. Correlates of protective immunity and pathogenesis

Participants discussed data on protective immunity derived
from both in vitro and in vivo Ct and Cm studies including several
on trachoma, the major form of infectious blindness globally
caused by ocular infection with specific Ct serovars. Emphasis
was placed on the type(s) of immunity a putative vaccine should
elicit and potential immunological markers needed to judge vac-
cine efficacy, safety and/or disease progression.
Please cite this article in press as: Zhong G et al. National Institute of Allergy
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For ocular Ct infection, increasing age correlates inversely with
bacterial burden, duration and prevalence of ocular infection, sug-
gesting protective immunity can be induced [26,27]. A role for T
cell-mediated protection was revealed by elevated peripheral
blood mononuclear cell proliferative responses in subjects whose
clinical signs resolved spontaneously versus those with persistent
signs of trachoma [28]. A recent reexamination of some of the pri-
mary data from human trachoma whole cell vaccine trials from the
1960s [29] concluded that the vaccine preparations either resulted
in no difference in incident infection or short-lived protection in
vaccinated children, with no evidence for adverse outcomes
[30,31]. In some studies, scarring had originally been considered
a sign of healing and trachoma severity scores were lowered when
conjunctival scarring was present. The prevalence of scarring was
lower two years post vaccination, thus the original scoring system
led to an erroneous conclusion that vaccinated children had
enhanced inflammatory disease. Other studies from Saudi Arabia
[32] and Taiwan [33–35] evaluated whole cell killed vaccines at
different doses in children. At 6 months to 1 year of follow-up,
no difference in disease severity was observed [36]. However, some
meeting participants were still concerned about potential side
effects of whole cell-based vaccines since in other studies in both
humans and NHPs there was evidence of a hypersensitivity reac-
tion and in a few cases, an increase in infection rate in vaccinated
individuals [32–35,37–41].

Studies of conjunctival gene expression in children with active
trachoma and adults with scarring disease provide information
related to disease pathways. Microarray analyses reveal enhanced
inflammation and disease in persons with increased expression of
pro-inflammatory cytokines/chemokines IL1, IL17, CXCL5 and
S100A7 [42–45] involved particularly in neutrophil chemotaxis
and activation. A recent longitudinal study explored the pathogen-
esis of progressive scarring [44]. In Tanzanian and Ethiopian adults
with established trachomatous conjunctival scarring followed for
two years, progressive scarring was found in 308/1162 (27%) of
participants. A strong relationship existed between progressive
scarring and numbers of inflammatory episodes, but few episodes
of Ct infection were detected. Thus, scarring progressed in the
absence of detectable Ct. These data suggest that prior Ct infection
may lead to epigenetic changes in conjunctival tissue such that
other bacteria could then stimulate preprogrammed inflammation
and pro-fibrotic pathways. A similar phenomenon could contribute
to development of tubal factor infertility in women with previous
Ct genital tract infection.

Using Cm mouse genital infection models, immune responses
resolving primary infection can be distinguished from responses
contributing to protection from reinfection. Studies with mice
genetically deficient for or postneonately depleted of specific
immune cells indicate that MHC Class II-mediated responses, ab
TCR + T cells, CD4 + T cells and IFN-c-producing CD4 + T cells are
necessary for resolution of primary infection [17,46–49] while
MHC Class I-mediated responses, CD8 + T cells, Th2 cytokines,
and antibody are dispensable. However, antibody is a highly effica-
cious in preventing secondary infection in the genital tract [50–53].
Antibody seems to protect through an antibody-cellular interac-
tion. Independently, antibody and CD4 + T cells confer equivalent
levels of protective immunity, but in combination, reduce shedding
of infectious bacteria in mice an additional 100-fold. Given the
combined benefit of antibody and CD4 + T cells, meeting partici-
pants noted that a vaccine targeting both CD4 + T cell and antibody
responses is highly desirable.

Since replication of genital serovars of Ct is limited to reproduc-
tive tract epithelium, and MHC Class II expression and CD4 + T cells
are essential for controlling infection, the most straightforward
mechanism for clearing genital tract infection would involve Ct-
specific CD4 + T cell interactions with infected epithelial cells.
and Infectious Diseases workshop report: ‘‘Chlamydia vaccines: The way
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IFN-c-inducible MHC-II expression on oviduct epithelial cells cor-
related with inhibition of Cm replication by Cm-specific CD4 + T
cell clones [54]. IFN-b blunted the IFN-c induction of MHC-II on
epithelial cells, resulting in inhibition of T-cell activation, suggest-
ing a major role of IFN-c in upregulating MHC-II on epithelial cells
during infection.

Different murine CD4 + T cell clones rely on different primary
mechanisms for Cm inhibition including nitrous oxide production,
perforin-mediated cytolysis, and T cell degranulation [55]. Two
genes, Plac8 and Casd1 were highly expressed by CD4 + T cell
clones that terminated Cm replication by an iNOS-independent
mechanism. Plac8-deficient mice had delayed clearance of infec-
tion, and when treated with the iNOS inhibitor N-monomethyl-l-
arginine were largely unable to resolve infection. These results
demonstrated two independent and redundant T cell mechanisms
for clearing Cm genital tract infections: one dependent on iNOS,
and the other dependent on Plac8 [56]. Thus, putative vaccine anti-
gens might be evaluated for their ability to induce Plac8/Casd1-
positive CD4 + T cells in vaccinated mice. An important goal is to
determine if similar molecules play a role in inhibition of Ct by
human CD4 + T cells.

Despite >99% conservation in the open reading frames between
Ct and Cm, these two species have evolved specific mechanisms to
resist inhibition from human and murine IFN-c, respectively. The
canonical mechanism for inhibitory effects of human IFN-c on Ct
is via activation of indoleamine 2,3-dioxygenase (IDO), which cat-
alyzes conversion of tryptophan to N-formyl-kynurenine, which
depletes tryptophan stores and undermines pathogen growth
[57–59]. Human genital tract strains possess a functional trypto-
phan synthase, which can generate tryptophan needed for chlamy-
dial growth and replication using indole as a substrate, thus
evading IFN-c induction of IDO. Since ocular strains of Ct lack a
functional tryptophan synthase, they may be compromised in
comparison to genital strains.

Murine IFN-c drives induction of p47 GTPases in murine cell
lines, which can restrict Ct growth. The importance of murine
p47 GTPases in clearing C. psittaci and Ct infection in mouse models
has been documented [60–62]. Resistance to these effects is
observed with Cm and may be due to a full-length cytotoxin gene
in Cm [61,63]. The human genome does not encode IFN-c-
inducible homologues of p47 GTPases. Although human IFN-c
can induce human cells to express guanylate-binding proteins that
harbor GTPase activity, data are lacking regarding the potential for
human IFN-c to inhibit Ct via a GTPase-driven ubiquitin-centered
mechanism in ocular or genital epithelial cells. Such data would
strengthen the utility of testing Ct vaccine candidates in the mur-
ine Cm model.

A relative consensus was reached that putative Ct vaccines
should generate Ct-specific CD4 + T cells targeting genital epithe-
lial cells, combined with a strong antibody response. Markers such
as Plac8/Casd1 and specific GTPase activity may prove useful in
designing vaccines and could possibly be incorporated in potency
assays for clinical development. Connection of the molecular basis
of conjunctival scarring in trachoma to development of tubal factor
infertility in women with previous Ct infection may prove impor-
tant for the design of future clinical trials and the evaluation of
genital Ct vaccine safety.
5. Vaccine development and approaches

Efforts to develop vaccines started soon after the isolation of Ct
from ocular tissue. Early concerns about enhanced pathologic
responses, as discussed above, pushed the field toward develop-
ment of subunit vaccines to enhance safety (Table 1). Additionally,
efforts have been made to optimize whole cell-based vaccines by
Please cite this article in press as: Zhong G et al. National Institute of Allergy
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removing pathogenic factors. The goal has been to induce long-
lasting protection with minimal side effects, and in large part, test-
ing has utilized the Cm or Ct mouse models.

5.1. Whole cell-based vaccines

The successful identification of Cm virulence factors in animal
models has made development of a live-attenuated chlamydial
vaccine possible. Both the plasmid-encoded pGP3 [19,64] and the
chromosomal gene encoded TC0237/TC0668 [65,66] have been
identified as key virulence factors for Cm induction of hydrosalpinx
in mice. Attenuated strains lacking these genes not only failed to
cause upper genital tract pathology but also triggered protective
responses against subsequent challenge with wild type Cm. These
findings are consistent with an earlier observation that attenuated
plasmid-deficient Cm maintained the ability to induce protective
immunity against challenge-induced pathology [67]. Despite
promising data from mouse studies, applying a live-attenuated Ct
vaccine in humans would potentially raise safety concerns. A killed
whole organism vaccine would significantly reduce these concerns.
However, killed Cm failed to induce any significant protection
[68,69], indicating the need for adjuvants that lead to controlled
inflammation for inducing a protective immune response. A recent
study in mice evaluated immunogenicity of a whole cell killed vac-
cine formulated in charge-switching synthetic adjuvant particles
(cSAPs) containing TLR ligand as adjuvant [70]. When delivered
via intranasal inoculation, this formulation induced robust trans-
mucosal immunity in the mouse genital tract, which suggests that
the dependence on chlamydial viability for inducing protective
immunity can be overcome by an optimized formulation delivered
via a mucosal route. Importantly, only mucosal vaccination
induced resident memory T cells that led to optimal Ct clearance
upon challenge.

5.2. Subunit vaccines

Protective immunity generally correlates with CD4 + T cell
responses during chlamydial infection [17,71]. A genome-wide Ct
protein array screening of human antibody responses identified
Ct antigens associated with tubal pathology but not protection
[10,11]. Thus, extensive efforts have been made to identify chlamy-
dial T cell protective antigens. By analyzing peptides eluted from
pulsed dendritic cells, various chlamydial membrane proteins have
been determined to have T cell epitopes including PmpG, TC0420
and PmpE. Some of these proteins induced protection against gen-
ital challenge with Cm [56,72,73]. The Ct-secreted serine protease
or Chlamydia protease-like activity factor (CPAF) [74,75] is a
dimeric complex [76,77] and an immunodominant antigen [78],
which has been shown to promote Ct survival in the mouse lower
genital tract [79], potentially via targeting host innate effectors
[80,81]. Immunization with a recombinant CPAF alone, or in com-
bination with other antigens, induced significant protection
against infection and pathology in various mouse strains and gui-
nea pigs [82–85]. The chlamydial major outer membrane protein
(MOMP) is the serovar-typing antigen with multiple B and T cell
epitopes [86–88] and has long been proposed as a vaccine candi-
date [89–91]. Its vaccine efficacy became obvious only when native
MOMP (nMOMP) purified from chlamydial organisms was tested.
nMOMP induced solid immune protective responses against both
infection and infertility in mice [92,93]. The protection was depen-
dent on CD4 + T cells while antibodies were also shown to be
highly protective [53,94]. Cynomolgus monkeys vaccinated with
Ct serovar A nMOMP mounted high serum IgG and IgA antibody
titers with robust strain-specific neutralizing activity against the
homologous serovar [95]. The PBMC of immunized monkeys pro-
duced a broadly cross-reactive, antigen-specific IFN-c response.
and Infectious Diseases workshop report: ‘‘Chlamydia vaccines: The way
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Table 1
Candidate chlamydia vaccines and vaccine concepts.

Vaccine candidate
or concept

Description Challenge model Results Development
status

Ref.

Attenuating
chromosomal
and plasmid
mutations in Cm

Cm strains deficient in either plasmid gene
product Pgp3 or chromosomal gene TC0668

Vaginal infection of
mice with virulent Cm

Vaccine strains showed attenuation
Protective immunity against oviduct
pathology upon challenge

Preclinical [19,66]

Plasmid-deficient
Cm

Cm cured of virulence plasmid Vaginal infection of
mice with virulent Cm

Vaccine strains showed attenuation
Protective immunity against oviduct
pathology upon challenge

Preclinical [67]

UV-inactivated
whole cells

UV-inactivated Ct or Cm elementary bodies
formulated in nanoparticles coated with a toll-
like receptor ligand adjuvant delivered
transcervically or intranasally

Transcervical or vaginal
infection of mice with
virulent Ct or Cm

Protective immunity was induced
based on reduced chlamydia load
and pathology in vaccinated animals

Preclinical [70]

Membrane protein-
based vaccine

T cell epitope-containing polymorphic
membrane proteins (Pmp) PmpG, TC0420 and
PmpE
Combination vaccine containing PmpEFGH +
MOMP

Vaginal infection of
mice with virulent Cm
and transcervical
infection of mice with
Ct

Individual antigens were protective
Robust protection with combination
vaccine in multiple strains of mice

Preclinical [73,103]

Soluble protein-
based vaccine

Recombinant Chlamydia protease-like activity
factor (CPAF) alone, or in combination with
other antigens

Vaginal infection of
mice with virulent Cm
and guinea pigs with
virulent C. caviae

Significant protection against
challenge infection and pathology

Preclinical [82–85]

The native major
outer membrane
protein
(nMOMP) as a
vaccine

Native major outer membrane protein
(nMOMP) from Cm or Ct

Vaginal infection of
mice with virulent Cm
Ocular infection of
cynomolgus monkeys
with virulent Ct

Solid protection against both
infection and infertility in mice by
Cm nMOMP
Monkeys immunized with Ct
nMOMP exhibited significant
decrease in infectious burden but no
protection against ocular disease

Preclinical [92–95]
[53]

A bacterial ghost as
a vehicle for
delivering
chlamydial
subunit vaccine

Vibrio cholera ghosts as a vaccine delivery
platform for antigens including PmpD, MOMP,
and PorB from Ct

Vaginal infection of
mice with virulent Ct

Immunized mice showed reduced
IFU recovered from vaginal swabs
and normal fertility rates

Preclinical [100,101]

MOMP peptide-
based vaccine

Recombinant vaccine formulated using multiple
repeats of the VD4 region of Ct MOMP, or VD4
that included contiguous regions of the VD4 and
VD3 regions, which contain B and T-cell
epitopes

Vaginal infection of
mice with virulent Ct

Immunized mice showed a decrease
in the number of IFUs recovered
from vaginal swabs and decreased
upper genital pathology

Clinical
(Phase I)

[96,97]
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Following an ocular challenge, immunized monkeys exhibited a
significant decrease in infectious burden but no protection against
ocular disease. Mice and mini-pigs immunized with a recombinant
vaccine formulated using multiple repeats of MOMP variable
domain 4 (VD4), or VD4 that included contiguous regions of con-
stant domain-4 and -5, were protected against both infection and
pathology following intravaginal challenge [96,97]. This vaccine
is currently in Phase I human testing.

It is clear that both membrane-anchored and secreted proteins
can induce protection. There are also many other chlamydial anti-
gens that have been evaluated including the chlamydial glycogen
phosphorylase [98], macrophage infectivity potentiator [69], and
Pgp3 [99]. The logical next steps are to evaluate these antigens in
parallel and to formulate the most effective combinations for com-
paring with whole cell-based vaccines in various models. Parallel
efforts are also required for further improving the efficacy of
promising antigens, including developing delivery vehicles and
maintaining/creating structural determinants required for induc-
ing protective immunity. Recombinant Vibrio cholera ghosts have
been evaluated as a delivery platform for antigens from Ct or Cm
[100,101] and mice immunized with these constructs showed pro-
tection against intravaginal challenge. Protection against infection
by different serotypes of HIV has been achieved by immunization
with optimized and stabilized antigen structural determinants tar-
geted by broad neutralization antibodies [102]. The challenge is
whether chlamydial vaccinologists can borrow similar approaches
for inducing protection against infection and pathology by all rele-
vant Ct serovars.
Please cite this article in press as: Zhong G et al. National Institute of Allergy
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6. Challenges and recommendations

The NIAID Ct vaccine workshop allowed the Ct research com-
munity, public health professionals, and government agency staff
to work collaboratively to define the current status of Ct vaccine
research and identify gaps and challenges to catalyze further
development. The workshop established that Ct vaccine develop-
ment is needed and has a firm foundation in basic research, and
a robust set of vaccine candidates already exists, with at least
one entering clinical development. However, several challenges
remain, and efforts to address these challenges could accelerate
progress toward a successful Ct vaccine:

� Although preliminary modelling suggests even a partially pro-
tective Ct vaccine may be cost-effective, more data are needed
regarding progression of Ct infection to upper genital tract
sequelae and burden of Ct-associated disease, especially in
lower- and middle-income countries, to better define the poten-
tial worldwide impact of a Ct vaccine.

� Clinical testing of a Ct vaccine is feasible; however, choice of
clinical trial endpoints warrants further investigation and dis-
cussion. Blood biomarkers and other novel approaches for iden-
tifying upper genital tract infection and inflammation in women
would be useful for defining endpoints for vaccine efficacy stud-
ies as well as disease burden.

� Although the immunological basis for protection from Ct infec-
tion and disease has been well studied, key issues such as the
role of antibody still need to be clarified. A relative consensus
and Infectious Diseases workshop report: ‘‘Chlamydia vaccines: The way
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was reached that putative Ct vaccines should generate Ct-
specific CD4 + T cells targeting genital epithelial cells, combined
with a strong antibody response.

� Further analysis is needed on the utility of several mouse mod-
els available to test candidate vaccines. Harmonizing these
models such that candidate vaccines can be compared across
labs with respect to important clinical endpoints or product
indications would be valuable.

� Although intramuscular immunization has worked effectively
for preventing cervical HPV infection, it is unclear whether a
Ct vaccine can be similarly administered to achieve protection
given the need for robust local T cell immunity. An effective
Chlamydia vaccine may need to induce strong transmucosal
immunity with resident memory T cells in the genital tract.

It is hoped that these proceedings will be used as a guide for
future high-quality and thematically integrated research projects
on Ct vaccine design and testing.
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