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Isotropic Proton-detected Local-field Nuclear Magnetic Resonance in Solids

Robert H. Havlin,∗ Jamie D. Walls,† and Alexander Pines‡

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720

(Dated: July 24, 2004)

Abstract

A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-

detected local-field spectra forINS spin systems in powdered samples. The method, HETeronuclear

Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling fre-

quencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways.

The theory behind HETIE is presented along with experimental studies conducted on a powdered sample

of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural

determination in solid-state NMR are discussed.

PACS numbers:
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I. INTRODUCTION

The determination of the molecular structure is central to our understanding of complex chemi-

cal systems. During the past century, structural techniques such as X-ray crystallography and more

recently liquid state NMR have tremendously advanced our comprehension of molecular processes

in nature. However, some systems such as the prion protein1,2, spider silk3, amyloid fibrils4, and

frozen snapshots of protein folding5 are not amenable to liquid state NMR structural studies or

X-ray crystallographic techniques. In such systems where these otherwise robust techniques fall

short, solid-state NMR has become a valuable technique. Solid-state NMR utilizes interactions

such as dipole-dipole couplings and/or chemical shift anisotropy (CSA), which are present in

solids and are very sensitive to molecular structure. In particular, dipole-dipole couplings, due to

their dependence upon the distance between the interacting spins, have already provided useful

structural constraints for molecules in solids6.

Although there have been many attempts to further develop the use of dipolar couplings for

use in structure determination, the progress of these methods has been impeded by the Zeeman

field-induced angular dependence of the dipolar frequencies, which hinders the extraction of the

desired distance information from the spectrum. In the presence of a large Zeeman field, taken to

be along thêz−axis, the heteronuclear dipolar Hamiltonian between anI andS spin is given by

HHF
D = ωD

3 cos(θL)2 − 1

2
(2IZSZ)

(1)

whereθL is the angle that the internuclear vector~rIS makes with respect to the Zeeman field. The

dipolar coupling constant is given byωD = γIγS

|~rIS |3
whereγI andγS are the gyromagnetic ratios of

spin I and S respectively. For a powdered sample, the spectrum consists of a typical Pake pattern

for a pair dipole coupled spins [Figure 1(A)] since the eigenvalues ofHHF
D depend uponθL. This

anisotropic broadening limits resolution, lowers sensitivity, and complicates spectral assignments

of dipolar couplings in solids. One of the main objectives of developing a dipolar coupling based

structural technique is to remove the anisotropic nature of observed couplings.

Since the anisotropy of the dipolar frequencies in a powdered sample is due to the presence

of a large Zeeman field, many methods have been developed which either evolve the system in

zero-field7,8 or make the system appear to have evolved in zero-field through the application of
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some multiple-pulse sequence9–12. The zero-field dipolar Hamiltonian is given by

HZF
D = ωD(~I · ~S − 3(~I · r̂IS)(~S · r̂IS)) (2)

= ωD

2∑
m=−2

(−1)mAIS
2,m(θIS, φIS)T IS

2,−m

whereAIS
2,m(θIS, φIS) andT IS

2,m are second rank spatial and spin tensors respectively, and(θIS, φIS)

are polar angles relating the spin quantization axis to~rIS. The eigenvalues ofHZF
D are independent

of θIS andφIS, which, even for a powdered sample, result in three sharp peaks [Figure 1(B)].

Tycko9–11 demonstrated for a homonuclear spin system that the dipolar Hamiltonian in high-

field can be manipulated by a series of rotor-synchronized radiofrequency (RF) pulses such that the

system appears to evolve under an effective Hamiltonian proportional toHZF
D over the duration of

the pulse sequence. Although Tycko’s methodology has only been demonstrated for homonuclear

spin systems, it is possible to extend the method to create an isotropic zero-field Hamiltonian for

the heteronuclear case.HHF
D can be rewritten as follows:

HHF
D = ωD

3 cos2(θL)− 1

2
2IZSZ

=
2

3
ωDAIS

2,0(θL)
(
3IZSZ − ~I · ~S + ~I · ~S

)
=

2

3
ωDAIS

2,0(θL)
(
T IS

2,0 + T IS
0,0

)
=

2

3
ωD

[ ∑
l=0,2,4

C(l, 0, 2, 0, 2, 0)Fl,0 + C(2, 0, 2, 0, 0, 0)F
′

2,0

]
(3)

where theC(2, 2, l, 0) are Clebsch-Gordon coefficients, andFl,0 are spherical tensors in the com-

bined space of spin and space. Note thatF
′
2,0 andF2,0 describe different second rank tensors in

the combined space. The scalar term,F0,0, is rotationally invariant to any combined rotation of

space and spin and hence is proportional to the zero-field Hamiltonian,HZF
D , in Eq. (3). If a pulse

sequence is implemented which removes all the second and fourth rank tensors in the combined

space of spin and space fromHHF
D , then the zero-field Hamiltonian is obtained with a maximum

scaling factor given byσMAX = 2/15. The resulting spectrum obtained would consist of three

sharp peaks at frequencies0 Hz and±3ωD/(20π) Hz. For anINS spin system, the homonuclear

couplings between the I spins can in principle be removed without removing the heteronuclear

interactions since the I and S spins can be independently manipulated under high-field conditions.

Even though the anisotropy has been removed leading to sharp spectral features, the spectrum

under the zero-field Hamiltonian [Eq. (3)] for anINS system can still be quite difficult to interpret.
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Consider the scenario of anI2S system where the dipole-dipole coupling between the I spins has

been removed, and, through some method, the zero-field dipolar Hamiltonian between the I and S

spins has been created. The resulting zero-field Hamiltonian is given by

HZF
D =

2∑
m=−2

[
ωS1

D (−1)mT S1
2,mAS1

2,−m(θS1, φS1) + ωS2
D (−1)mT S2

2,mAS2
2,−m(θS2, φS2)

]
= ωS1

D

(
3SZI1

Z − ~S · ~I1
)

+ ωS2
D

(
3SZI2

Z − ~S · ~I2
)

= HZF
D,S1 + HZF

D,S2 (4)

where a collinear geometry has been chosen for theI2S system. The spec-

tra corresponding to evolution of the total magnetization of theI spins,

1/3
∑

j=X,Y,Z Trace[Ij exp(itHZF
D )Ij exp(−itHZF

D )] are shown in Figs. 2(A) and 2(C) for

two different sets of dipolar couplings. The spectra contain features that are not simply related

to the couplings. This is due to the fact that typically the zero-field couplings do not commute

with one another, i.e.,[HZF
D,S1, H

ZF
D,S2] 6= 0. The corresponding spectra therefore contain features

which are not linear in the number of spins, making interpretation difficult. This is in contrast

to standard proton-detected local field (PDLF) spectroscopy as shown in Figures 2(B) and 2(D).

Here the high-field Hamiltonian [Eq. (1)] was used for one crystallite orientation(θL = 0◦). In the

absence of homonuclear dipolar couplings, the resulting spectra are linear in the number of spins,

with the splitting of each doublet equal to the effective heteronuclear coupling. In most PDLF

experiments, the protons are decoupled from one another and evolve under the heteronuclear

coupling to another nucleus, typically a13C. Most PDLF experiments have been implemented in

oriented phases where nonzero, motionally averaged dipolar couplings exist. This results in N

sharp doublets where the motionally averaged heteronuclear dipolar couplings can be interpreted

quite readily13,14. Applications of PDLF spectra to solids have also been performed; however, the

resulting spectra consist of N overlapping Pake patterns, which due to the anisotropy in Eq. (1),

are difficult to interpret15,16.

Recently an alternative method was proposed, called HOMonuclear Isotropic Evolution

(HOMIE), which produces isotropic dipolar spectra for pairs of homonuclear coupled spin

systems17. The HOMIE method works as follows: from Eq. (1) the observed dipolar frequen-

cies are proportional toωD(3 cos2(θ) − 1). If another Hamiltonian is generated with frequencies

proportional toωD sin2(θ), the anisotropic contribution to the combined signal is cancelled using

the relationsin2(θ) + cos2(θ) = 1. Unlike the ZFHF method, only the frequencies are combined
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in order to remove the anisotropy. Such problems as noncommuting couplings therefore do not

enter into the HOMIE methodology, and proton-detected local-field spectra, such as those shown

in Figure 2(B), should be possible to obtain in powdered samples.

In the following article, the HOMIE methodology is applied to heteronuclear spin systems in

order to produce isotropic dipolar spectra. The method, called HETeronuclear Isotropic Evolution

(HETIE), produces isotropic proton-detected local-field spectra. For anINS spin system, HETIE

generates N doublets with splittings proportional to the heteronuclear coupling. The basic theory

for HETIE is first presented, followed by a set of multiple-pulse sequences which can be used to

implement the HETIE method. Finally, the HETIE method is applied to a sample of ferrocene in

order to experimentally validate the method.

II. THEORY

The Hamiltonian for anINS spin system in the solid-state under sample rotation and RF radi-

ation is given by

Hsys = HII(t) + HIS(t) + HI(t) + HS(t) + HI
RF (t) + HS

RF (t) (5)

whereHII(t) andHIS(t) are the homonuclear dipolar and heteronuclear isotropic scalar and dipo-

lar couplings.HI(t) andHS(t) are the chemical shift and chemical shift anisotropy (CSA) Hamil-

tonians for theI andS spins respectively, andHI
RF (t) andHS

RF (t) are the radiofrequency (RF)

Hamiltonians applied to theI andS spins respectively. The explicit forms of the various Hamil-

tonians are given by

HII(t) =
∑
i<j

ωij
D[θij(t)]

(
3I i

ZIj
Z − ~I i · ~Ij

)
(6)

HIS(t) =
∑

j

(
2ωj

D[θjS(t)] + Jj

)
Ij
ZSZ (7)

HI(S)(t) =
∑

j

Ω
I(S)
j [θj(t), φj(t)]I

j
Z(SZ) (8)

H
I(S)
RF (t) = ω

I(S)
RF (t)

[
IX(SX) cos(φI(S)(t)) + IY (SY ) sin(φI(S)(t))

]
(9)

whereθ(t) andφ(t) in Eq. (6) - Eq. (9) are the angles which relate the principal axis system

(PAS) of the various interactions inHsys to the laboratory frame defined by the Zeeman axis. The

angles,θ(t) andφ(t), are shown to be time-dependent in order to take into account the possibility
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of mechanical rotation of the sample. Under mechanical rotation at a frequencyωr about an

axis which makes an angle ofθr with respect to the Zeeman field, the spatial factors inHsys,

ωInt(θ(t), φ(t)), transform as

ωInt(θ(t), φ(t)) =
2∑

m=−2

d2
m,0(θr) exp(−imωrt)ω

m
Int(θrot.fr, φrot.fr) (10)

whered2
m,0(θr) is the reduced Wigner-rotation matrix element, andωm

Int(θrot.fr, φrot.fr) represents

the spatial part ofHInt in the rotor frame. For example, the explicit form of eitherωij
D(θij(t)) or

ωj
D(θjS(t)) is:

ωD(θ(t)) = ωD
3 cos2(θ(t))− 1

2

=
1

4

(
3 cos2(θrot.fr)− 1

) (
3 cos2(θr)− 1

)
+

3

4
sin2(θrot.fr) sin2(θr) sin(2[ωrt + φrot.fr])

+
3

4
sin(2θrot.fr) sin(2θr) sin(ωrt + φrot.fr) (11)

As can be seen from Eq. (11),ωD(θ(t)) will contain terms proportional both tosin2(θrot.fr) and

cos2(θrot.fr). In the following, the subscriptsrot.fr will be dropped, and all angles,θ andφ, will

be written in the rotor frame.

The basic ideas behind HETIE follow from the HOMIE method17. As in the HOMIE exper-

iments, rotor-synchronized multiple-pulse sequences are used in order to create certain average

Hamiltonians18,19 which the system evolves under in order to obtain isotropic dipolar spectra. The

necessary Hamiltonians used in HETIE are (up to an overall constant)

H =
∑

j

(
kωj

D

3 cos2(θjS)− 1

2
+

Jj

2
k

′
)

Ij
X2SZ (12)

HEVO =
∑

j

gωj
D sin2(θjS)

(
exp(i2φjS)Ij

+ + exp(−i2φjS)Ij
−
)
2SZ (13)

HDET
±1 =

∑
j

fωj
D sin(2θjS)

(
exp(±iφjS)Ij

+ + exp(∓iφjS)Ij
−
)
2SZ (14)

The pulse sequences which generateH, HEVO, andHDET
±1 are given in the next section. Since the

heteronuclear couplings between theI spins commute, and the homonuclear interactions between

the I spins are assumed to have been removed, the evolution for eachI spin can be calculated

independently from one another.
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Starting withρ(0) =
∑

j ajI
j
Z , evolution underH for a timet gives

ρ(t) = exp(−itH)ρ(0) exp(itH)

=
∑

j

aj

[
Ij
Z cos (k(θjS)t)− 2SZIj

Y sin (k(θjS)t)
]

=
∑

j

aj

[
ρj

0(t) + ρj
1(t)

]
(15)

where

ρj
0 = Ij

Z cos (k(θjS)t) (16)

ρj
1 = −2SZIj

Y sin (k(θjS)t) (17)

wherek(θjS) = kωj
D(3 cos2(θjS) − 1)/2 + Jjk

′
/2. Each of the pathways,ρ0 andρ1, can be

distinguished by their rotational property under a z-rotation, and each pathway will be considered

separately, which is depicted in Figure 3. Evolution for a timeτ underHEVO gives the following:

ρ0(t, τ) = exp
(
−iτHEVO

)
ρ0(t) exp

(
iτHEVO

)
=

∑
j

ajI
j
Z cos (k(θjS)t) cos (2g(θjS)τ)

−2ajSZIj
Y cos (k(θjS)t) sin (2g(θjS)τ) cos(2φjS)

−2ajSZIj
X cos (k(θjS)t) sin (2g(θjS)τ) sin(2φjS) (18)

ρ1(t, τ) = exp
(
−iτHEVO

)
ρ1(t) exp

(
iτHEVO

)
=

∑
j

−aj2SZIj
Y sin (k(θjS)t) [cos2 (g(θjS)τ)− sin2 (g(θjS)τ) cos(4φjS)]

+ aj2SZIj
X sin (k(θjS)t) sin2 (g(θjS)τ) sin(4φjS)

− ajI
j
Z sin (k(θjS)) sin (2g(θjS)τ) cos(2φjS) (19)

whereg(θjS) = gωj
D sin2(θjS). After application ofHEVO, the terms proportional toI± are re-

moved by phase-cycling, leaving only the z-components of the density matrix. As before, the

z-magnetization at the end ofHEVO is given by

〈IZ(t, τ)〉0 = Tr (ρ0(t, τ)IZ)

=
∑

j

aj cos (k(θjS)t) cos (2g(θjS)τ) (20)

〈IZ(t, τ)〉1 = Tr (ρ1(t, τ)IZ)

=
∑

j

aj sin (k(θjS)t) sin (2g(θjS)τ) cos(2φjS) (21)
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TheθjS dependence in both Eq. (20) and Eq. (21) could be cancelled if

3

2
kt = ±2gτ (22)

Besides the trivial case (k = g = 0), both of these equations cannot be satisfied simultaneously so

only half of the signal can be made isotropic. However, if theφjS dependence of Eq. (21) were

absent, Eq. (20) and Eq. (21) could be added or subtracted to givecos(k(θjS)t) cos(2g(θjS)τ) ±

sin(k(θjS)t) sin(2g(θjS)τ) = cos(k(θjS)t∓ 2g(θjS)τ), where the anisotropic portion of the signal

can be removed [Eq. (22)].

TheφjS dependence in Eq. (21) can be removed by evolution under the Hamiltonians,HDET
±1

given in Eq. (14). The pathway originating fromρ0 evolves for a timeτDET underHDET
1 . Next a

filter is applied that only allows single-quantum coherences through as shown in Fig. 3. Finally

HDET
1 is applied again for a timeτDET, the z-component of magnetization is measured to give the

corresponding signal of

S0 = Tr [IZρ0(t, τ, τDET)]

= −
∑

j

aj cos(k(θjS)t) cos(2g(θjS)τ) sin2(2f(θjS)τDET) (23)

wheref(θjS) = fωj
D sin(2θjS). Along the pathway originating fromρ1, the system first evolves

for a timeτDET underHDET
1 . Again a filter is applied that only allows single-quantum coherences

through as shown in Fig. 3. Finally,HDET
−1 (instead ofHDET

1 ) is applied for a timeτDET, and the

z-component of magnetization is measured to give

S1 = Tr [IZρ1(t, τ, τDET)]

=
∑

j

aj sin(k(θjS)t) sin(2g(θjS)τ) sin2(2f(θjS)τDET) cos2(2φjS) (24)

Assuming theφjS angles are uniformly distributed over the interval[0, 2π] for eachθjS, Eq. (23)

and Eq. (24) can be combined after powder averaging overφ as follows:

1

6π

∫ 2π

0

dφ (S0 ± 2S1) = −
∑

j

ajCj(τDET) [cos(k(θjS)t± 2g(θjS)τ)] (25)

Eq. (25) requires only one of the solutions to Eq. (22) to be satisfied, thus completely removing

the anisotropic portion of the signal. The corresponding signal intensities for spinj, ajCj(τDET),
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are given by

ajCj(τDET) =
aj

3

[
1

2

∫ π

0

dθjS sin(θjS) sin2
(
2fωj

D sin(2θjS)τDET

)]
=

aj

6

[
1 +

∞∑
n=−∞

J2n(Zj)

16n2 − 1

]
(26)

whereZj = 4fωj
DτDET, andJ2n are spherical bessel functions. The signal intensity is a maximum

whenZj ≈ 3.8 with C ≈ 0.24aj, andC → aj/6 asZj →∞.

III. PULSE SEQUENCES

There exist two additional challenges in implementing the requisite Hamiltonians for the

HETIE experiments over that of the HOMIE experiments. First of all, the homonuclear dipole-

dipole interactions between theI spins (and theS spins if there is more than one present) must be

removed, since the above theory deals only with a set of noninteractingI spins coupled to a single

S spin. The second requirement is that the chemical shift anisotropy (CSA) of theI spins must

also be removed. Since the heteronuclear dipolar coupling and the CSA of theI spins both have

second-rank spatial components and are linear in the spin operatorIZ , they can only be separately

manipulated by also applying pulses on theS spin.

Although there exist numerous ways to produce the necessary Hamiltonians for the HETIE

method, one set of rotor-synchronized pulse sequences is shown in Fig. 4. These sequences rep-

resents a hybrid of theRNν
n sequences20 with theCN ν

n sequences21. The details of the sequences

are given in Appendix A. The zeroth-order average Hamiltonians18 for the sequences shown in

Figure 4 areH [Fig. 4(A)], HEVO [Fig. 4(B)], HDET
+1 [Fig. 4(C)], andHDET

−1 [Fig. 4(D)]. It worth

pointing out that theπ-pulse applied to theS spin is necessary in order to retain the heteronuclear

coupling but to remove the CSA and chemical shift of theI spins.

For the case whenωI
RF = (15/2)ωr, the zeroth-order average Hamiltonian for the sequence

shown in Fig. 4(A) is given byH [Eq. (12)], withk andk′ given by

k′ =
4

3π

k =
4

3π

3 cos2(θr)− 1

2

= k̄
3 cos2(θr)− 1

2
(27)
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For ωEVO
RF = (27/4)ωr, the sequence shown in Fig. 4(B) generates a zeroth-order Hamiltonian

given byHEVO [Eq. (13)], withg given by

g = cos
(π

4
− π

2
ζEVO

)
cos (πζEVO)

sin2(θr)

2π [4ζ2
EVO − 1]

= ḡ sin2(θr) (28)

whereζEVO = ωr/ω
EVO
RF .

Finally, for ωDET
RF = (15/2)ωr, the sequences shown in Figures 4(C) and 4(D), produce zeroth-

order Hamiltonians given respectively byHDET
1 andHDET

−1 [Eq. (14)], withf given by

f =
cos

(
π
4

)
sin(2θr) cos

(
π
4
− π

4
ζDET

)
cos

(
π
2
ζDET

)
π [ζ2

DET − 1]

= f̄ sin(2θr) (29)

Note that in order to create the samef̄ dependence in bothHDET
−1 as inHDET

1 , the order of the

composite180◦ pulses had to be switched, as shown in Fig. 4(D).

To simplify the experiment, a solution can be found for a single rotor axis. Under this condition,

the evolution must satisfy∣∣∣∣ ωD

t + τ

(
k̄t

(3 cos2(θr)− 1)

2

(3 cos2(θ)− 1)

2
± 2ḡτ sin2(θr) sin2(θ)

)∣∣∣∣
=

∣∣∣∣ kωDt

(t + τ)

∣∣∣∣ = σωD (30)

Whenθr 6= 0◦, t andτ must both be a multiple of the rotor period. In addition,HDET
±1 must be

nonzero at the given rotor axis, which means solutions near90◦ and0◦ must be discarded due to

thesin(2θr) dependence in Eq. (29). From Eq. (30), the rotor angle,θr, that the sample must be

spun at in order to remove the anisotropy is given by

θr = arccos

√
3k̄t± 8ḡτ

9k̄t± 8ḡτ

 (31)

IV. EXPERIMENT

An experimental implementation of HETIE was tested on a natural abundance sample of fer-

rocene (Fe(C5H5)2) which was doped with 2% by weight cobaltocene (Co(C5H5)2) in order to

shorten the T1 relaxtion time of the ferrocene protons from 60 s to 1 s. The sample was prepared
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by melting the two compounds together, and the resulting mixture was ground to a powder and

packed into a 4 mm MAS rotor. The experiment was performed at a1H resonance frequency of

300.986 MHz, exactly on resonance for the protons of ferrocene. Fort = τ , and using the se-

quences shown in Fig. 4, a rotor angle ofθr = 73.9◦ was used [Eq. (31)]. The angle was set

externally to 73.9◦ ± 0.2◦ with the use of a protractor and a long rod which was exactly coaxial

with the spinning axis. The1H spectrum obtained under the conditions of the HETIE experiment

is shown in Figure 5. The1H linewidth is 5.6 kHz and is clearly not isotropic due to the1H-1H

dipolar couplings and the1H CSA which are only scaled when spinning at 15 kHz atθr = 73.9◦.

The spectrometer used in these experiments was an Infinity-plus spectrometer (Varian Inc.,

Palo Alto, CA). A Chemagnetics (now Varian Inc., Palo Alto, CA) 4mm Apex-HX MAS probe

was used. The RF amplitudes for the sequence were calibrated by finding the maximum intensity

of the requiredπ
2
-pulse on proton. Theπ-pulse on13C was calibrated using cross-polarization

and observing where the cross-polarized signal’s phase was inverted after the application of a

fixed π-pulse. The pulse sequence was rotor synchronized by controlling the spinning speed at

ωr/(2π) = 15 kHz±3 Hz.

One of the difficulties with implementing the HETIE sequence was keeping the requirements

of RF and rotor synchronization within experimental limitations. The specific experimental limi-

tations that had to be dealt with were the fact that the probe could only spin the sample up to 20

kHz, and the maximum achievable RF power wasωRF/(2π)= 150 kHz. In the experiments used in

the HETIE sequence, the spinning speed usually set the ceiling for the maximum RF power used

in the experiment. Although an RF power of 150 kHz could be produced, the RF pulse quality

diminished with increasing RF power. For this reason, better performance was often achieved at

RF powers of approximately 100 kHz, which was the RF used in the HETIE experiments below.

V. RESULTS AND DISCUSSION

The sequences shown in Fig. 4 fort = τ yields a scaling factor ofσ = 0.0817 [Eq. (30)].

Although ferrocene is an ideal sample due to the scaled dipolar couplings and high molecular

symmetry, there exist more than 30 different structures in the Cambridge Structure Database with

C-H bond lengths varying in the range of 0.99 to 1.1Å. We have restricted our analysis of the

bond lengths to more modern neutron diffraction studies where the diffraction method has a bet-

ter chance of detecting the proton positions. In an attempt to predict the expected values for the

11



observed scaled couplings, the bond lengths were taken from the neutron structure with the best

experimental parameters22. In these studies, the complex Cp motions were taken into account in

the diffraction analysis. This analysis gave a variable interpretation of the carbon-proton internu-

clear distances (standard deviation = 0.02Å) for room temperature samples of ferrocene. We used

the structure found in the Cambridge Structure Database (CSD ref.#FEROCE29) which reports

C-H distances of 1.04, 2.18, and 3.28Å within the Cp ring. In addition to the work by Brock

et al.22, there has been much discussion on the proper interpretation of the ferrocene diffraction

data23, and we hope that NMR might be able to provide some additional insight.

The only C-H couplings considered are those located within the Cp ring of the ferrocene, since

the other protons are much farther away with couplings reduced by the fast motion of the Cp ring.

The ring motion also affects the observable couplings since the motional timescale is much greater

than that of the coupling strengths; the molecular motion scales the observed couplings by a factor

P2[cos(θ)], whereθ is the angle between the C-H vector and the axis of fast motion. For the case

of rotation about the Cp axis, the observed couplings are scaled byP2[cos(90◦)] = −1/2.

It is important to consider the uncertainties in the C-H distance when comparing the theoretical

and experimental dipolar coupling results. Using the neutron diffraction data22 and the associated

standard deviation from the different analyses of the same diffraction data, we expect the unique

observed dipolar couplings of room temperature ferrocene between a single13C on the ring and

the protons as scaled by the HETIE experiment to be 1026±232, 111.5±12, 33±2.4 Hz. The

error in these scaled couplings may seem quite large; however, the1
r3 dependence of the coupling

amplifies errors at small distances.

These scaled coupling values are determined from the ideal scaling factor,σ = 0.0817, which

lacks any inclusion of interactions or higher-order terms in the average Hamiltonian which might

degrade the performance of the sequence in addition to possible pulse and phase errors. Exact

numerical simulations were performed on a three spin,I2S system, where only the two closest

protons to the13C in the Cp ring were considered. The simulations shown in Fig. 7 were per-

formed with a weak homonuclear interaction (A) without and (B) with a proton CSA. As is shown

in Figure 7(A), the peaks are isotropic and at the correct frequencies (as determined from the scal-

ing factor,σ = 0.0817). It should be noted that since the spectral range is determined by the

spinning speed divided by the number of evolution units per dwell (15/8 kHz), the largest C-H

coupling is actually under-sampled and is effectively folded in from the edges of the spectrum.

This is an unfortunate artifact; however it is necessary given our maximum RF restrictions and
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spinning speeds. Smaller couplings, which are expected to be of greatest interest for structure

determinations, will typically be within the spectral window given by the current experimental

constraints.

Figure 7(B) shows the results of a simulation on a more realistic sample with non-zero Euler

angles relating the axes of the interactions, as well as a 5 kHz CSA on each of the protons. Fig.

7(B) indicates that the weaker coupling peaks are virtually unaffected while the larger coupling

peaks have some additional broadening which we attribute to a higher-order cross-term in the av-

erage Hamiltonian between the CSA and the heteronuclear dipolar coupling, since the underlying

heteronuclear dipolar coupling is significantly larger. The CSA values used in Fig. 7(B) is in ex-

cess of what has previously been seen for the CSA of protons in ferrocene24 with a∆σ(= σ‖−σ⊥)

of -6.5±0.1 ppm. In addition, further numerical simulations using typical values for heteronuclear

scalar J couplings showed that the signal is not sensitive to J couplings, even with the inclusion of

the CSA.

Finally, Figure 8 shows a comparison between (A) an ideal simulation and (B) the actual ex-

perimental signal. The first thing to note is that the spectrum of Figure 8 (B) is a power spectrum

(|f(ω)|2) which is necessary to facilitate the comparison with the simulation, since the signal to

noise was quite low. Secondly, there appears to be a large zero peak in the experimental spectrum

which has been truncated so that the peaks of interest are more clearly displayed. The origin of

this peak is somewhat uncertain; however we suspect that it is related to the signal decay caused

by the accumulation of pulse and phase errors, but this requires further investigation.

The largest coupling peaks in the experimental spectrum appear to be close to the correct fre-

quencies (minus the spectral folding) at 1090± 10 Hz, which corresponds to a bond distance of

1.019 ± 0.003Å. The next largest coupling peaks occur at 147± 10 Hz, which correspond to a

distance of1.99 ± 0.041Å, which is different from the neutron diffraction distance of2.18Å as

shown in Figure 8. The smallest C-H coupling peak can not be observed unless the large zero

peak is deconvolved, which is shown in Fig. 9. The peaks roughly occur at 31.5±15 Hz, which

corresponds to a distance of3.52 ± 0.60Å, which is within the range of the neutron diffraction

distance of3.28Å.

The HETIE method can provide a valuable complement to existing methods in solid-state struc-

ture determination. Consider determining the structure of anI3S system as shown in Figure 10.

The HETIE method provides information about the heteronuclear bond distances in a powdered

sample (D1S, D2S, and D3S in Figure 10). If either the angles between the various heteronu-
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clear dipolar vectors could be determined (θ12, θ23, θ13) or the homonuclear distances (D12, D13,

D23), then the structure of the system would be determined. Determining all the homonuclear dis-

tances for an abundant spin species such as1H is problematic in solids, since extracting the dipolar

couplings becomes almost impossible due to the increasing spectral complexity with increasing

number of I spins. However, there exists a variety of methods which in principle could provide the

angles between the heteronuclear dipolar vectors by performing either dipole-dipole correlation

experiments or dipole-CSA correlations25–27. In addition, coupling the HETIE method with Dy-

namic Angle Spinning (DAS) techniques28 can not only improve the scaling factorσ of the HETIE

experiment, but also correlations between the isotropic heteronuclear couplings and the isotropic

chemical shifts could be obtained (Appendix B). In the future, application of HETIE along with

these correlation techniques may help to solve structural problems in the solid-state which are not

amenable to current methodologies.

VI. CONCLUSIONS

A new methodology, HETeronuclear Isotropic Evolution (HETIE), was presented which pro-

duces isotropic proton-detected local-field spectra of powdered samples. HETIE works by remov-

ing the anisotropic portion of the heteronuclear dipolar coupling frequency by having the system

evolve under carefully designed Hamiltonians and evolution pathways. In this paper, HETIE was

shown both theoretically and experimentally to produce linear, isotropic, proton-detected local

field spectra. The heteronuclear coupling values as determined by the HETIE experiment on a

ferrocene sample actually agree quite well with the ‘known structure’, given the uncertainties in

the interpretation of ferrocene diffraction studies. Thus far we have made only a single study, but

with additional refinement of the HETIE sequence, we anticipate this method may yield valuable

structural insight into many solid-state systems.
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APPENDIX A: PULSE SEQUENCE DETAILS

The Hamiltonian for anINS under mechanical rotation and RF irradiation is given by

Hsys = HII(t) + HIS(t) + HI(t) + HS(t) + HI
RF (t)

= HINT (t) + HI
RF (t) (A1)

where the equations and forms for the various terms inHsys are given in Eqs. (6)-(9). The basic

Hamiltonians needed for the HETIE method require finding a particularHI
RF (t) such that the spin

system appears to evolve, in some averaged sense, underH [Eq. (12)],HEVO [Eq. (13)], andHDET
±

[Eq. (14)]. Transforming into an interaction frame defined byHI
RF (t), the propagator,U(t1, t0),

can be written as

U(t1, t0) = T exp

(
−i

∫ t1

t0

dt
′
Hsys(t

′)

)
= V (t1, t0)T exp

(
−i

∫ t1

t0

dt′ĤINT(t′)

)
(A2)

whereT is the Dyson time ordering operator and

V (t1, t0) = T exp

(
−i

∫ t1

t0

dt′HI
RF (t′)

)
(A3)

ĤINT(t) = V †(t, t0) [HII(t) + HIS(t) + HI(t) + HS(t)] V (t, t0) (A4)

For short enough times, the propagator in Eq. (A2) can be approximated as

U(t1, t0) = V (t1, t0) exp
(
−itH

)
(A5)
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wheret = t1 − t0, andH is the average Hamiltonian18 over the time intervalt. H is given by

H =
∞∑

n=0

H
(n)

(A6)

whereH
(n)

is the nth order average Hamiltonian. The zeroth- (H
(0)

) and first-order(H
(1)

) average

Hamiltonians are explicitly given by

H
(0)

=
1

t

∫ t1

t0

dt
′
ĤINT(t

′
) (A7)

H
(1)

= − i
2t

∫ t1

t0

∫ t
′

t0

dt
′
dt

′′
[
ĤINT(t

′
), ĤINT(t

′′
)
]

(A8)

In the following, the aim will be to create zeroth-order average Hamiltonians,H
(0)

, which are

equal toH, HEVO, andHDET
±1 .

The set of pulse sequences that were used to createH, HEVO, andHDET
±1 while removing both

the CSA and homonuclear dipolar interactions are shown in Fig. 4. Each of these pulse sequences

are composed of small blocks given by

[(π/2)X − (π/2)Y − (π/2)X ]φ [(π/2)Y − (π/2)X − (π/2)Y ]φ1
(A9)

The sequence in Eq. (A9) has the advantage of being able to remove the homonuclear dipolar

coupling between theI spins29. The propagator for the block in Eq. (A9) can be approximated by

U(t) ≈ exp (−2i[φ1 − φ]IZ) exp(−itcycH
(0)

) (A10)

wheretcyc = [3π/(ωRF )] is the total time for the block of pulses, andH
(0)

is the zeroth-order

average Hamiltonian over the timetcyc, calculated using Eq. (A7).H
(0)

can be written as

H
(0)

=
∑

r

∑
n

∑
m

m∑
k=−m

n∑
p=−n

bm,n
k,p Ar

m,kT
r
n,p (A11)

whereAr
m,k are spatial tensors of rankm, andT r

n,p are spin tensors or rankn in theI space (i.e.,

bothIZ andIZSZ are first rank tensors in theI space, whereas3I i
ZIj

Z − ~I i · ~Ij is a second rank

tensor in theI space). The sum overr denotes different terms inH
(0)

with the same values for

k, p, m, andn (for example,ω1
CSAA1

2,0I
1
Z andωS1

D AS1
2,0I

1
ZSZ each havek = 0, p = 0, m = 2, and

n = 1).

The coefficients,b2,1
k,±1 (in front of terms likeIj

± andIj
±SZ) are given by

b2,1
k,±1 = −d2

k,0(θr)v
3
2
k exp(∓iφ) exp

(
±i

π

4

) (
exp(∓i[φ− φ1])v

3
k − 1

)
× cos

(
π

4
∓ πkζ

4

)
cos

(
πkζ

2

)
2

3π[(kζ)2 − 1]
(A12)
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whered2
k,0(θr) is the reduced Wigner matrix element,θr is the angle that the rotor axis makes with

respect to the Zeeman field,η = ωr/ωRF , andvk = exp[i(kζπ)/2]. The coefficientsb2,2
k,±1 (in front

of terms likeI i
ZIj

± + I i
±Ij

Z) are given by

b2,2
k,±1 = 2d2

k,0(θr) exp(∓iφ)v
3
2
k exp

(
∓i

π

4

) [
v3

k exp(∓i[φ− φ1]) + 1
]

× cos

(
π

4
± πkζ

2

)
cos

(
πkζ

4

)
1

π [4− (kζ)2]
(A13)

Note that whenv3
k exp(±i[φ−φ1]) = 1, b2,1

k,±1 = 0 while b2,2
k,±1 6= 0, and whenv3

k exp(±i[φ−φ1]) =

−1, b2,1
k,±1 6= 0 while b2,2

k,±1 = 0. This is due to the fact that the units[(π/2)X(π/2)Y (π/2)X ] and

[(π/2)Y (π/2)X(π/2)Y ] act like composite180◦ pulse (with an additional Z rotation). Under a180◦

X pulse,I± → I∓, while I i
ZIj

± + I i
±Ij

Z → −(I i
ZIj

∓ + I i
∓Ij

Z), hence the ability of these sequences

to distinguish between odd and even ranked spin tensors. This is part of the basis for theRNη
ν

sequences which have been used extensively in solid-state NMR20. Note also thatb0,1
0,k = b2,1

0,k = 0

for k = 0,±1, andb2,0
0,0 = 0, so that these sequences are also compensated for isotropic chemical

shifts and theT ij
2,0 component of the homonuclear dipolar interaction in the RF interaction frame.

The extra Z rotation of phase∆ = 2[φ1 − φ] in Eq. (A10) propagates throughout the sequence

by repeatedly applying the basic unit while the sample is being mechanically rotated. Defining the

operator for a rotation of an angleφ about thêz-axis asPZ(φ) = exp [−iφIZ ], the propagator over

N applications of the basic unit is given by

U(Nτcyc, 0) = T
N∏

w=1

PZ(∆) exp
(
−iτcycH

(0)

w

)
(A14)

whereH
(0)

w is the zeroth-order average Hamiltonian over the wth application of the sequence in

Eq. (A9). Since the sample is being mechanically rotated during the pulse sequence,H
(0)

w is

not equal toH
(0)

in Eq. (A11), since the coefficients of the spatial tensors inHINT(t) are time-

dependent [Eq. (10)] and the length of the pulse sequence in Eq. (A9) is in general not equal to a

multiple of the rotor period.H
(0)

w is given by

H
(0)

w =
∑

r

∑
n

∑
m

m∑
k=−m

n∑
p=−n

bm,n
k,p (νk)

w−1Ar
m,kT

r
n,p (A15)

whereνk = exp(ikωrτcyc) with τcyc being the time of the given pulse sequence (in the case of Eq.

(A9), τcyc = 3π/ωRF ).

If N∆ = 2πq whereq is some integer, an average Hamiltonian for the whole propagator,
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U(Nτcyc, 0) in Eq. (A14), can be calculated as follows:

U(Nτcyc, 0) ≈ PZ (N∆) T
N∏

w=1

exp
[
−iτcycP

†
Z ([w − 1]∆) H

(0)

w PZ ([w − 1]∆)
]

≈ exp

(
−iNτcycH̃

(0)
)

(A16)

whereH̃
(0)

is the zeroth-order average Hamiltonian over the whole sequence, which is given by

H̃
(0)

=
1

Nτcyc

N∑
w=1

τcycP
†
Z ([w − 1]∆) H

(0)

w P ([w − 1]∆)

=
∑

r

∑
n

∑
m

m∑
k=−m

n∑
p=−n

Ar
m,kT

r
n,p

[
1

N

N−1∑
w=0

exp (iw[p∆ + kωrτcyc])

]
(A17)

For ∆ = 2πν/N andωrτcyc = 2πη/N , only those terms of the formAr
m,kT

r
n,p with k andp

satisfying

kη + pν = NZ (A18)

whereZ is an integer, will be present to lowest order, since

1

N

N−1∑
k=0

exp

(
i
2πQ

N

)
= 1 (A19)

if Q = NZ with Z an integer and equals zero in all other cases. This is basis for theCNη
ν

sequences21,30.

The first-half of the sequence (before the180◦ pulse on theS spin) in Figure 4(A) is comprised

of two blocks of pulses of the form given in Eq. (A9) withφ = π andφ1 = 0, which are phase

shifted by90◦ from each other. This unit is then repeated five times which makes, according to Eq.

(A18), the whole sequence formally equivalent toC52
0 whenωRF = (15/2)ωr. In this case, only

those terms of the formAr
m,0T

r
n,p will contribute toH̃

(0)

. As discussed earlier, for sequences of

the form of Eq. (A9), the coefficientsbm,n
0,0 for terms of the formAr

m,0T
r
n,0 are zero and thus do not

contribute toH̃
(0)

. Additionally, because of the concatenation of two sequences which are phase

shifted byπ/2 from each other, terms of the formAr
m,0T

r
2,±2 will cancel and thus not contribute to

H̃
(0)

. Finally sinceexp(−i(φ1 − φ)) = −1, terms of the formAr
m,0T

r
2,±1 also will not contribute

[Eq. (A13)], leaving only terms of only of the formAr
m,0T

r
1,±1 to contribute toH̃

(0)

[Eq. (A12)],

which includes terms arising from both the CSA (I±) and heteronuclear couplings (I±SZ). In
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order to distinguish between these two contributions, the sequence is repeated again with all the

phases of the pulses shifted by180◦ in addition to applying a180◦ pulse to theS spin. This has the

effect of refocussing the CSA terms but keeping the heteronuclear coupling terms. Such a pulse

sequence motif is used in all the sequences shown in Figure 4. The average Hamiltonian for the

sequence in Figure 4(A) isH [Eq. (12)].

The sequence shown in Figure 4(B) is formally equivalent to aC92
5 sequence whenωRF =

(27/4)ωr, which again lets through terms of the formAr
2,±2T

r
n,±1 from Eq. (A18) (the terms of

the formAr
m,0T

r
n,0 do not contribute due to the basic pulse blocks [Eq. (A9)]). Due to Eq. (A12)

and Eq. (A13), only terms of the formAr
2,±2T

r
1,±1 contribute. The average Hamiltonian for the

sequence in Figure 4(B) isHEVO [Eq. (13)].

Finally, the sequences shown in Figure 4(C) [formally equivalent toC52
8] and 4(D) [formally

equivalent toC52
12] generate average HamiltoniansHDET

1 andHDET
−1 respectively whenωRF =

(15/2)ωr. Both sequencesC52
8 andC52

12 let through terms of the formAr
m,0T

r
n,0 [Eq. (A18)], but

the basic blocks [Eq. (A9)] prevent such terms from contributing toH̃
(0)

. Using Eq. (A18), the

sequence in Fig. 4(C) also lets through terms of the formAr
2,±2T

r
2,±2 (which are removed removed

by concatenating two pulse sequence blocks which are phase shifted by90◦ relative to each other)

andAr
2,±1T

r
n,±1. Due to Eq. (A12) and Eq. (A13), only terms of the formAr

2,±1T
r
1,±1 contribute

to H̃
(0)

. Using Eq. (A18), the sequence in Fig. 4(D) lets through terms of the formAr
2,±2T

r
2,∓2

(which are removed removed by concatenating two pulse sequence blocks which are phase shifted

by 90◦ relative to each other) andAr
2,±1T

r
n,∓1. Due to Eq. (A12) and Eq. (A13), only terms of

the formAr
2,±1T

r
1,∓1 contribute toH̃

(0)

. Note that the order of the two composite180◦ pulses are

switched in the sequence in Figure 4(D) relative to those in Figure 4(C). This is to ensure that the

scaling factorf [Eq. (29)] is the same for both sequences.

APPENDIX B: IDEAL HETIE SEQUENCE WITH OPTIMAL SCALING FACTOR σ

In trying to obtain the maximal scaling factorσ, all sequences used to generate the various

Hamiltonians (H, HEVO, andHDET
± ) are assumed to be comprised of delta pulses (i.e., unlimited

RF power can be used). Additionally, the sample is allowed to switch between different rotor

angles during the course of the experiment. The optimal sequences to produceH andHEVO for a

singleIS spin system will now be presented.
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While spinning the sample atθr = 0◦ for a total timet = 4Nt”, the sequence

(π/2)I
π/2 −

(
t” − (π)I

0(π)S
0 − 2t” − (π)I

π(π)S
π − t”

)N − (π/2)I
3π/2 (B1)

produces an average Hamiltonian,H, with k = k′ = 1 [Eq. (12)].

HEVO [Eq. (13)] can be created by a variety of rotor-synchronized RF pulse sequences, each

resulting in a different scaling factor,g. A maximal scaling can be achieved forg by applying N,

phase-incremented, rotor-synchronized units, with the kth unit given by

[(π/2)0 − τd − (π/2)π]φk
(B2)

whereτd = 2π/(ωrN) andφk = 4π/N . The sequence in Eq. (B2) is then repeated with an extra

π phase shifted added to the pulses and is sandwiched between two180◦ pulses on theS spin.

This helps to refocus the CSA terms while keeping the heteronuclear couplings to lowest order.

Spinning the rotor at an angleθr and applying the above sequence creates an average Hamiltonian

given byHEVO with g given by

g =
3N sin2(θr)

32π
sin

(
2π

N

)
(B3)

The factorg is maximal forθr = 90◦. The total time required to createHEVO using the sequence

described in Eq. (B2) isτ = 2mπ/ωr, wherem is some integer due to the fact thatHEVO must be

created over some integer multiple of rotor periods. In the limit thatN →∞, Eq. (B3) shows that

g → 3/16 for θr = 90◦.

With the above optimal sequences, the question of how to obtain the maximum dipolar scaling,

σ, for a single IS spin pair can now be addressed. Consider the following sequence: the sample

first rotates alongθr = 0◦ for a timet while the the sequence in Eq. (B1) is applied. The axis of

rotation is then changed toθr = 90◦ while the sequence in Eq. (B2) is applied (withN → ∞)

for a timeτ , which is some multiple of a rotor period. From Eq. (22), the anisotropic component

of the heteronuclear dipole interaction can be removed whent = +4gτ/3. The axis of rotation

is then changed to the magic-angle,θr = cos−1(1/
√

3), for application ofHDET
±1 . Note that at

the magic-angle, high-resolution chemical shift spectra can be obtained, so a possible chemical-

shift/heteronuclear coupling correlation experiment can be performed. Usingg = 3/16 gives

τ = 4t and gives a dipolar scaling factor,σ, of

σωD =
ωD

t + τ

(
t

2
(3 cos2(θ)− 1) + 2gτ sin2(θ)

)
=

ωD

5
(B4)
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which is the theoretical maximum scaling factor for creating the zero-field Hamiltonian for a

heteronuclear spin pair.

The above result is purely hypothetical since the limitN → ∞ is not realistic. In addition,

for a system ofI spins coupled to a singleS spin, the obtainable scaling factor is reduced due

to any homonuclear decoupling method used since some of the experiment has to be performed

away from the magic angle. It can be imagined that an extremely large RF is used to decouple the

I spins from each other on a faster time scale than that used to createH, HEVO, andHDET. In this

scenario, the scaling factor would be reduced by at least a factor of1/
√

3, since that is the largest

scaling factor for any pure multiple-pulse decoupling sequence.
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4000 2000 0 -2000 -4000

(A)

(B)

(Hz)

FIG. 1: Simulated spectra for a heteronuclear dipole coupled spin system under (A) high-field and (B) zero-

field conditions. A dipolar coupling ofωD/(2π) = 2000 Hz was used. (A) Pake pattern for a heteronuclear

spin system, where the distribution in frequencies is due to the anisotropy ofHHF
D in Eq. (1). (B) The

zero-field consists of three sharp lines at frequencies at 0 Hz and±3000 Hz.
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 Hz

2000 1000 0 -1000 -2000
 Hz

2000 1000 0 -1000 -2000
 Hz

2000 1000 0 -1000 -2000

(A) (B)

(C) (D)

2000 1000 0 -1000 -2000
 Hz

FIG. 2: Comparison of zero-field proton-detected local field spectroscopy with high-field proton-detected

local field spectroscopy for two sets of couplings. In (A) and (B),ωS1
D /(2π) = 300 Hz andωS1

D /(2π) = 700

Hz in (C) and (D).ωS2
D /(2π) = 1000 Hz in all cases. The zero-field Hamiltonian [Eq. (4)] was used in

(A) and (C), and the spectra corresponding to the evolution of the totalI magnetization, with intensity in

arbitrary units (A.U.). In (B) and (D), a high-field Hamiltonian,H = 2ω1−2
D I1

ZI2
Z + 2ω1−3

D I1
ZI3

Z , for a

single crystallite orientation (θL = 0◦) was used to calculate the evolution of transverse magnetization of

theI spins.
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ρ(0)

ρo(t)

ρ
1

(t)

U(t)

UE V O(τ) ρo(t,τ)

ρ1(t,τ)

S Q

S Q

UDE T(τd)
Z

  S Q

UDE T(τd)
Z

  S Q

1

1

UDE T(τd)1

UDE T(τd)−1

Z

Z

S Q

S Q

FIG. 3: The basic procedure in order to obtain isotropic proton-detected local field spectra. An initial

density matrix,ρ(0) =
∑

j ajI
j
Z evolves underH [Eq. (12)] to give a z-magnetization (Z) term,(ρ0),

and single-quantum (SQ) term, (ρ1). Both of these terms then evolve underHEVO [Eq. (13)], and only

the z-components are kept. Next, evolution occurs fromρ0(t, τ) andρ1(t, τ) underHDET
1 [Eq. (14)] into

SQ coherence. The SQ coherences are then converted back into z-magnetization for detection, using either

HDET
1 for the pathway originating fromρ0 or HDET

−1 for the pathway originating fromρ1.
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FIG. 4: Basic pulse sequences used to createH,HEVO,HDET
±1 needed for HETIE. (A)The pulse sequence

which creates H [Eq. (12)] to lowest order and the corresponding propagator U(t).ωRF = (15/2)ωr, and

the total time step for propagator U(t) ist = 8π/ωr. (B) The pulse sequence which createsHEVO [Eq. (13)]

to lowest order and the corresponding propagator,UEVO(τ), with ωRF = (27/4)ωr andτ = 8π/ωr. (C)

and (D) are the pulse sequences and corresponding propagators forHDET
1 andHDET

−1 [Eq. (14)] respectively

with ωRF = (15/2)ωr.
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FeCp2
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FIG. 5: 300.986 MHz1H NMR spectrum of FeCp2 spinning 15 kHz atθr =73.9◦
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Z-filter Z-filter

t τ τDET τDET

FIG. 6: Actual experiments performed for the demonstration of HETIE methodology to obtain isotropic

proton-detected local-field spectra. The pulse sequence, along with the corresponding phase cycle, is pre-

sented. Definitions ofU,UEVO, andUDET
±1 are given in Fig. 4, which include the series of180◦ pulses which

are not explicitly shown in this figure. The points int1 are parameterized by2n + m, n = {0, 1, 2, ...}

andm = 1 for odd numbered points andm = 0 for even numbered points. For the above experiment,

t = τ = (2n + m) ∗ 16π/ωr. The first four experiments correspond to evolution alongρ0 in Fig. 3. The

last four experiments correspond to evolution alongρ1 in Fig. 3. The last four experiments have to be

performed twice as required from Eq. (25).
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FIG. 7: Simulation of the performance of the HETIE pulse sequence (Figure 6) using the SIMPSON

program31. The heteronuclear dipolar couplings ofω12
D /(2π) = 13.425 kHz andω13

D /(2π) = 1.458 kHz

were used in both simulations, and a homonuclear dipolar coupling ofω23
D /(2π) = 1 kHz was used. (A)

Ideal CH2 spin system in the absence of CSA. (B) non-ideal spin system with the CSA of 5 kHz for each

proton.
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HH

H
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FIG. 8: HETIE experiment and simulation comparison for FeCp2. (A) The simulation uses the couplings

as determined from diffraction studies22. (B) The experimental power spectrum was acquired at 300MHz.

θr = 73.9◦ andωr/(2π) = 15 kHz.
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FIG. 9: HETIE experiment and simulation comparison for FeCp2. (A) The simulation is the same as in

Figure 8. (B) Thedeconvolvedexperimental power spectrum was acquired at 300MHz.θr = 73.9◦ and

ωr/(2π) = 15 kHz.
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FIG. 10: AnI3S system. HETIE, in principle, can determine D1S, D2S, and D3S. In order to fully deter-

mine the structure, either the relative angles (θ12, θ13, andθ23) or the homonuclear distances (D12, D13, and

D23) need to be determined.
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