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ABSTRACT OF THE DISSERTATION 
 

Neural and computational underpinnings of serial dependence 

 

by 

 

Timothy C. Sheehan 

 

Neurosciences with Specialization in Computational Neurosciences 

University of California San Diego, 2023 

Professor John Serences, Chair 

 
 

 Human perception and behavior are shaped by past experiences. Neural 

representations are constrained to utilize statistical regularities to encode the world efficiently 

while decision making should utilize heuristics to optimize the use of uncertain information. 

Recently, there has been heightened interest in serial dependence – a feature-specific 

attraction towards previously seen stimuli – to better understand these distinct objectives. 

Serial dependence differs from the more familiar perceptual adaptation effects as it is 

attractive, can be induced by weak stimuli, and can persist for 10s of seconds. Accounts 
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explaining serial dependence have varied greatly, with some positing a low-level perceptual 

phenomenon and others positing a post-perceptual origin operating during decision-making. 

That said, most existing studies did not separate the influence of previous stimuli, decisions, 

and motor actions so directly comparing possible mechanisms is challenging. We first 

examined the neural underpinning of serial dependence by having participants complete a 

delayed orientation discrimination task while measuring brain activity with functional 

magnetic resonance imaging (fMRI, Chapter 1). While behavioral responses indicated an 

attraction towards the previous stimulus, orientation-specific activation patterns in visual 

cortex exhibited a repulsive bias. We reconciled these apparently divergent findings with an 

ideal-observer model in which readout from perceptual areas during decision-making 

accounts for the attractive biases. We next developed a technique to distinguish stimulus from 

response generated biases using a simulated observer (Chapter 2). Utilizing this approach, we 

consistently found that reports were attracted towards previously reported – as opposed to 

previously presented – stimuli in an orientation report task. Finally, we sought to 

experimentally disentangle the role of sensory, decisional, and motor contributions to serial 

dependence (Chapter 3). Through a series of experiments, we found that attraction operates on 

a perceptual level, unrelated to attention or decisions, as well as on a decisional level, 

unrelated to motor or sensory experiences. We develop a model in which serial dependence is 

not the result of processing at a single stage. Instead, all levels of processing are influenced by 

a canonical prior for stability to optimize the efficiency of neural circuits that contribute to 

different cognitive operations. 
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GENERAL INTRODUCTION 
Serial Dependence General 

 Serial dependence is the attraction of perceptual reports towards items seen in the recent 

past. This attraction is feature tuned (e.g. stronger for more similar items) and has been found for 

a wide range of features including orientation, numerosity, and faces (Cicchini et al., 2014; 

Fischer and Whitney, 2014; Liberman et al., 2014). Serial dependence is generally found to be 

stronger for noisier stimuli including internally generated noise during memory maintenance 

(Papadimitriou et al., 2015; Bliss et al., 2017; Manassi et al., 2018) and can persist across long 

inter-trial intervals and across several intervening trials (Fischer and Whitney, 2014). This is all 

in stark contrast to repulsive effects which tend to require long, powerful inducers (typically 5-

20s) and can occur from stimuli that are not even consciously perceived, pointing to a low level 

sensory origin (He and MacLeod, 2001).  

 Compared with other history dependent perceptual biases, feature tuned serial 

dependence was identified and described very late with the first accounts emerging in 2014 

(Cicchini et al., 2014; Fischer and Whitney, 2014). This is in stark contrast to other perceptual 

biases such as the oblique effect (Jastrow, 1892), the waterfall illusion (Addams, 1834), or the 

McCollough effect (McCollough, 1965) which were all characterized in one-shot experiments 

before computational psychology. The failure to identify serial biases for so long is not because 

they are particularly weak effects, in fact they are often much stronger than repulsive effects and 

can be on the order of 3 times the just noticeable difference between stimuli (Fischer and 

Whitney, 2014). Instead, the failure to identify such effects for so long likely derives from the 

fact that only emerge for stimuli with high levels of uncertainty, requiring many trials and serial 

task designs to reliably extract bias estimates. Here, I will provide a brief overview of the current 
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understandings and debates in the serial dependence literature. I will describe existing findings 

relating to the behavioral and neural origins of serial dependence before examining existing 

theoretical models for the cause and potential functional advantage of these biases.  

Behavior 

 Serial dependence is typically studied by having participants complete a series of 

perceptual judgements in a row. The bias is then quantified by sorting trials based on the relative 

orientation of the previous stimulus (Δθ) and examining response errors. This is most commonly 

achieved by utilizing a continuous report paradigm, but 2 alternative forced choice (2AFC) 

paradigms have also been utilized (Fischer and Whitney, 2014; Cicchini et al., 2017; Cicchini 

and Burr, 2018; Fritsche and de Lange, 2019). The inducing stimulus can be a stimulus that has 

been previously judged or passively viewed; in the same or different location as the target 

stimulus; and within a single trial or a stimulus from a preceding trial (Fornaciai and Park, 2018; 

Fritsche and de Lange, 2019). Serial dependence is an extraordinarily general phenomenon, 

having been observed across a wide range of visual features including (and to just name a few): 

emotion, variance, color, and spatial location (Bliss et al., 2017; Barbosa and Compte, 2018; 

Liberman et al., 2018; Suárez-Pinilla et al., 2018); across modality (Neto and Bartels, 2021; 

Zhang and Luo, 2023); and even species (Papadimitriou et al., 2015, 2016; Akrami et al., 2018). 

Thus, serial dependence may be viewed as a universal phenomenon shaping perception rather 

than a curious illusion emerging under rare circumstances. 

Attention 

A critical early finding related to the role of attention. In a sequential report task with eight 

stimuli presented on a ring, one was pre-cued on each trial (Fischer and Whitney, 2014). 

Participants were significantly attracted towards the previously attended stimulus regardless of 
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its relative location to the current stimulus but showed a weak (non-significant) repulsion from 

unattended stimuli in the same location. Similar results have been found regardless of spatial 

position with only attended stimuli inducing attractive biases, and those biases being stronger 

when stimuli share additional trails such as color or presentation order (Fischer et al., 2020). 

Interestingly, when an orthogonal feature is attended on the previous item (e.g. size vs. 

orientation), the resulting bias is reduced for that trial but stronger for the 2-back item (Fritsche 

and de Lange, 2019). Together, this suggests that serial dependence operates between features in 

the attentional field rather than simply on all stimuli that are encoded. That said, other groups 

have found attraction to task irrelevant items, but only over very short time periods (Fornaciai 

and Park, 2018).  

Timescale 

The timescale of serial dependence is highly variable with some studies producing an 

attractive bias extending back several trials to 50+ trials (Fischer and Whitney, 2014; Collins, 

2020), while others only observe a bias for a single judgement (Fritsche et al., 2020). In the latter 

case, it was also observed that stimuli presented further back in time consistently induced a 

repulsive bias suggesting an interplay between a strong but short lived attractive bias being 

subsumed by a weaker but longer lasting adaptation (Fritsche et al., 2020). This phenomenon 

seems to be mostly determined by time-elapsed rather than intervening trials encountered as the 

same trends hold (attractive biases weakening and becoming repulsive) with longer inter-trial 

intervals (Papadimitriou et al., 2015; Bliss et al., 2017). On the level of single trials, studies 

utilizing spatial working memory consistently find stronger serial dependence with increasing 

delay periods (Papadimitriou et al., 2016; Bliss et al., 2017). In these studies, serial dependence 

does not emerge at all for very short delays, suggesting a critical role of working memory. An 
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alternative account, however, is that delay period is only critical in that it weakens perceptual 

representations. This claim is supported by a study that found serial attraction emerges on no-

delay trials only when a backward mask was introduced in a spatial memory task (Manassi et al., 

2018). 

Uncertainty 

 One of the most reliable findings related to serial dependence is its correlation with 

uncertainty. Biases are consistently stronger on trials with greater uncertainty determined by 

either spatial frequency, orientation (oblique vs. cardinal), internal noise (measured through 

fMRI decoding), or delay period duration (Bliss et al., 2017; Cicchini and Burr, 2018; van 

Bergen and Jehee, 2019). Owing to publication selectivity, the lack of studies demonstrating 

attractive biases for high contrast stimuli without long delays is also telling. This relation to 

sensory uncertainty offers a strong hint that serial dependence is related to potentially optimal 

integration of sensory information to stabilize perception and minimize noise (Burr and Cicchini, 

2014; Kiyonaga et al., 2017; Cicchini and Burr, 2018; van Bergen and Jehee, 2019).  

 

Origins of serial dependence 

 Perhaps the most debated question relating to serial dependence is where it emerges. 

Many studies have shown that serial dependence can emerge towards a previously seen stimulus 

even if it is not reported and that it can bias the judgement of simultaneous comparisons (Fischer 

and Whitney, 2014; Liberman et al., 2014; Cicchini et al., 2017; Manassi et al., 2018). These 

findings suggest that serial dependence is a perceptual phenomenon likely arising from changes 

in sensory encoding. In contrast, more recent studies have asserted an alternative view, that serial 

dependence operates on decisions with attraction occurring between successive responses, not 
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the stimulus per se (Pascucci et al., 2019; Moon and Kwon, 2022). This account is supported by 

a failure to observe attractive biases (and a finding of weak repulsion) when previously attended 

stimuli weren’t reported. It is unclear why the different sets of experiments came to such distinct 

conclusions, but it seems to be mediated by stimulus uncertainty with more “decisional” based 

findings generally having more easily perceivable stimuli. Adding to this confusion, even in 

papers claiming largely perceptual level effects, re-analyses suggest that the attractive bias could 

instead be related to the previous report (Sadil et al., 2021) although further work in this area is 

needed. One recent study utilizing both spatial and temporal biases may shed some light on this 

debate, suggesting that influences from past trials may be fed from a late decisional stage to an 

early perceptual one (Cicchini et al., 2021).  

Neural underpinning 

 The origin of serial dependence has also been examined using neuroscientific methods, 

although progress in this area has been limited until very recently. Neuroimaging studies in 

humans offered conflicting findings, with one study finding an attractive behavioral bias was 

reflected in early visual cortex while another finding repulsive adaptation signals in visual cortex 

and attractive signals in dorsomedial right prefrontal cortex (dmPFC), bilateral intraparietal 

sulcus (IPS), and other non-sensory areas (Schwiedrzik et al., 2014; St. John-Saaltink et al., 

2016). Unfortunately, neither of these studies utilized a paradigm reveling typical behavioral 

serial dependence with the first study utilizing only two orthogonal stimuli such that the resulting 

effect was indistinguishable from a motor or decisional response bias, while the second showed 

an attractive effect towards the previous response without feature tuning.  

 Later work in primates showed a strong and consistent behavioral effect of serial 

dependence on a spatial memory guided saccade task while recording units in FEF 
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(Papadimitriou et al., 2016). Paradoxically, they observed a repulsive bias from the previous 

stimulus and proposed a model whereby attention shifts receptive fields to optimally encode the 

current stimulus but changes slowly. The mismatch between the average tuning properties, and 

the responses on a given trial result in repulsion for a fixed decoder. Other studies have used a 

less direct approach. Van Bergen & Jehee, 2019 used the uncertainty (rather than the mean) of 

sensory representations to show that serial dependence was greater when sensory noise was 

higher on the current than the previous trial, consistent with Bayesian accounts (van Bergen and 

Jehee, 2019). Work combining human EEG and primate single unit recordings found 

representations of the previous stimulus were reactivated shortly before the next stimulus 

(Barbosa et al., 2020). This finding has been found in other EEG experiments and suggests that 

reactivation of activity silent memory may give rise to these biases (Bae and Luck, 2019; Luo 

and Collins, 2023). Lastly, a study of a highly related “contraction bias” in rat auditory 

processing revealed an active store of history information in posterior parietal cortex (PPC) that 

was causally related to history effects (they disappeared when PPC was optogenetically silenced) 

(Akrami et al., 2018).  

Conceptual models 

 Perhaps more interesting is not the individual findings but the attempts at contextualizing 

why these effects might emerge in the first place. On the algorithmic level, several proposals 

have emerged relating to activity dependent plasticity or shifts in attentional fields. The most 

simple proposal is a stimulus specific gain in early sensory circuits, in other words anti- 

adaptation (Fischer and Whitney, 2014). Such a proposal would be supported by prior research 

into iconic memory and visual persistence which finds visual representations can outlive their 

physical presence, particularly for briefly presented stimuli (Coltheart, 1980; Benucci et al., 
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2009) but those effects seem to be much too short lived and low-level to apply in most serial 

dependence paradigms. Additionally, while the sensory gain model is parsimonious, it seems to 

be largely inconsistent with neural studies of the phenomenon (Hajonides et al., 2023). An 

alternative proposal is tied to activity dependent plasticity. Representing a stimulus at any stage 

of sensory processing can elicit activity dependent plasticity changes that could strengthen 

connections and lower activation energies (e.g. through Ca++ loading in presynaptic terminals 

(Zucker and Regehr, 2002)) tuned to the previously encoded stimulus. A simulated network 

featuring activity dependent plasticity was able to recreate many of the timescale dependent 

effects of serial dependence (Bliss and D’Esposito, 2017). Related work extended this model to 

bump attractor circuits for working memory maintenance in PFC supported by activity patterns 

recorded from non-human primates (Barbosa et al., 2020). Lastly, an account on shifting 

receptive fields in later areas due to slowly fluctuating attention from the previous trial was 

found to account for both repulsive FEF activity and attractive behavior towards previous 

saccade targets (Papadimitriou et al., 2016). 

 On a computational level, a lot has been made of the critical role of sensory uncertainty 

on serial dependence effects. This finding fits nicely with more general Bayesian accounts of 

perception. When one is less sure about incoming sensory information (e.g. due to occlusions or 

noise) they should rely more on prior information (Kiyonaga et al., 2017). Well the optimal prior 

is hard to derive, analyses of natural videos has found that features such as orientation are highly 

stable across time (Dong and Atick, 1995). Thus, multiplying stimulus likelihood by a prior 

centered on the previous stimulus should lead to optimal performance and predict larger biases 

when under grater uncertainty (van Bergen and Jehee, 2019). In line with this, one study found 

response biases were larger when sensory uncertainty, decoded from V1 was larger on the 
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current trial than the previous (van Bergen and Jehee, 2019). The full Bayesian model leaves 

open the question of how a prior would be instantiated and stored, and in which scenarios such 

an undertaking would be metabolically worth it. Others have suggested a simpler but largely 

equivalent Kalman filter model that averages consecutive stimuli but only when they are similar. 

This averaging can reduce sensory noise even when stimuli are not correlated across time (Burr 

and Cicchini, 2014; Cicchini and Burr, 2018). Thus, there are many potential explanations for the 

serial dependence effect deriving from the biophysical properties of circuits tasked with 

maintaining memories to a more computational objective of minimizing uncertainty in a noisy 

world. 

Closing 

 In this dissertation I attempt to shed light on the neural and computational underpinnings 

of serial dependence. In Chapter 1, I examined biases in the visual cortex of observers who 

perform an orientation memory task in a scanner. Participants exhibited a robust attractive bias 

towards past stimuli and were also more precise when consecutive stimuli were similar.  Next., I 

built a decoder to predict what orientation was presented on each trial and examined the errors of 

that decoder to assess how stimulus history shaped neural representations of the stimuli. Contrary 

to expectations, I observed a robust repulsive bias from past stimuli that extensive modeling 

revealed to be unrelated to hemodynamic artifacts. I built an observer model to account for these 

conflicting results. While the neural repulsion was well explained by a gain-based adaptation 

model, a post-perceptual readout scheme that itself was shaped by task history led to a behavioral 

output that was attractive. This model explained changes in response variance it was not trained 

on, providing a strong external validation. More generally, this work suggests that it may be 

optimal to encode stimulus changes (maximizing the dimensionality of bandwidth limited 
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sensory areas) while later areas smooth encoded information across time. This chapter is a 

reprint of published work and our central findings have since been replicated in a study utilizing 

MEG based decoding (Sheehan and Serences, 2022; Hajonides et al., 2023). 

 In chapter 2, I explored the origins of serial dependence and whether they are better 

explained by the previous stimulus or the previous response. As noted earlier, it is an area of 

strong debate in the serial dependence literature whether biases arise at a perceptual or decisional 

level. Here, I focus first on methodological concerns relating to context independent biases and 

how they can introduce artifacts into certain analyses. I demonstrate that by correcting these 

artifactual biases, we can reliably capture infer whether the source of the bias is the pervious 

stimulus or the previous response. Importantly, this study rigorously tests a method for 

distinguishing correlated sources of serial dependence and suggests that certain noise conditions 

may obscure serial dependence effects in many cases due to the competing impact of repulsive 

adaptation and attractive serial dependence. We applied these techniques to an orientation 

working memory experiment and found that an attractive bias towards the previous stimulus was 

completely mediated by an attraction towards the previous response. This chapter has been 

released as a pre-print (Sheehan and Serences, 2023). 

 Finally, in chapter 3 I explore the role of stimulus and response experimentally. Across a 

series of 5 experiments, I disentangle the role of visual experience, attention, and motor action to 

triangulate the origins of serial dependence. I introduced a novel paradigm where spatial working 

memory is tested for both physical and imagined (compass coordinates) stimuli and manipulate 

how responses are made by eliminating motor and visual components associated with stimulus 

representation. We first find that serial dependence is largely indifferent to stimulus encoding 

format and tracks perceptual reports, not the stimulus. This data is consistent with a decisional 



10 

 

level attraction. However, we also find that attraction is significantly stronger for physical over 

imagined stimuli suggesting feedforward sensory activity also contributes to the observed serial 

dependence. Lastly, we find biases for imagined stimuli persist for substantially longer relative 

to low-level stimuli, pointing to distinct circuits driving the attraction. Together we find data that 

is neither wholly consistent with a perceptual or a decisional level origin of the bias. To account 

for this disparity, we propose a “many stages” model of serial dependence whereby it can, and 

typically does, emerge from biases at several levels of sensory processing. This chapter is under 

preparation for submission. 
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Chapter 1 Attractive serial dependence 

overcomes repulsive neuronal adaptation 
 

Abstract 

Sensory responses and behavior are strongly shaped by stimulus history. For instance, 

perceptual reports are sometimes biased towards previously viewed stimuli (serial dependence). 

While behavioral studies have pointed to both perceptual and post-perceptual origins of this 

phenomenon, neural data that could elucidate where these biases emerge is limited. We recorded 

fMRI responses while human participants (male and female) performed a delayed orientation 

discrimination task. While behavioral reports were attracted to the previous stimulus, response 

patterns in visual cortex were repelled. We reconciled these opposing neural and behavioral 

biases using a model where both sensory encoding and readout are shaped by stimulus history. 

First, neural adaptation reduces redundancy at encoding and leads to the repulsive biases that we 

observed in visual cortex. Second, our modeling work suggest that serial dependence is induced 

by readout mechanisms that account for adaptation in visual cortex. According to this account, 

the visual system can simultaneously improve efficiency via adaptation while still optimizing 

behavior based on the temporal structure of natural stimuli.  
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Introduction 

Natural stimuli are known to have strong statistical dependencies across both space and 

time, such as a prevalence of vertical and horizontal (cardinal) orientations and a higher 

probability of small orientation changes in given spatial region over short time intervals (Dong 

and Atick, 1995; Felsen et al., 2005; Girshick et al., 2011; van Bergen and Jehee, 2019a). These 

regularities can be leveraged to improve the efficiency and accuracy of visual information 

processing. For example, regularities can yield attenuated neural responses to frequently 

occurring stimuli in early visual cortex (adaptation), reducing metabolic cost and redundancy in 

neural codes (Dragoi et al., 2001, 2002; Benucci et al., 2013; Patterson et al., 2014; Fritsche et 

al., 2022). At readout, regularities might support the formation of Bayesian priors that can be 

used to bias decision-making in favor of higher probability stimuli (Stocker and Simoncelli, 

2006; Cicchini et al., 2014; Wei and Stocker, 2015). While the effects of stimulus history on 

sensory coding and behavior have been studied extensively, it is unclear how changes in sensory 

coding shape behavior. 

 Adaptation increases coding efficiency by modulating sensory tuning properties as a 

function of the recent past. For instance, reducing the gain of neurons tuned to a recently seen 

adapting stimulus reduces the temporal autocorrelation of activity when similar stimuli are 

presented sequentially, improving the overall efficiency of sensory codes (Clifford et al., 2000; 

Dragoi et al., 2000; Durant et al., 2007; Barlow, 2012; Benucci et al., 2013). Importantly, 

adapted representations early in the processing stream (e.g. in LGN) are inherited by later visual 

areas meaning the changes in coding properties could in turn shape decision making (Gardner et 

al., 2005; Dhruv and Carandini, 2014; Patterson et al., 2014). Although adaptation increases 

coding efficiency, it comes at a cost to perceptual fidelity as adaptation can lead to repulsion 
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away from the adapting stimulus for features such as orientation and motion direction (He and 

MacLeod, 2001; Moradi et al., 2005; Dekel and Sagi, 2015). For example, after continuously 

viewing and adapting to motion in one direction, stationary objects will appear to be moving in 

the opposite direction (i.e., current perceptual representations are repelled away from recent 

percepts). However, this potentially deleterious aftereffect is accompanied by better 

discriminability around the adapting stimulus, which may be more important than absolute 

fidelity from a fitness perspective (Phinney et al., 1997; Clifford et al., 2001; Abbonizio et al., 

2002; Durant et al., 2007).  

In contrast to the repulsive perceptual biases typically associated with neural adaptation, 

perceptual reports are sometimes attracted to recently presented items – a phenomenon termed 

“serial dependence”.  Studies utilizing low contrast oriented stimuli suggest serial dependence 

can be perceptual in nature as it operates before a peripheral tilt illusion, impacts the perception 

of simultaneously presented items, biases perceptual reports even when no probe is presented, 

and does not require a working memory delay (Fischer and Whitney, 2014; Cicchini et al., 2017, 

2021; Manassi et al., 2018; Murai and Whitney, 2021). This perceptual account could arise from 

activity changes in early visual cortex, consistent with a fMRI study which measured early 

sensory biases that match ‘attractive’ behavioral reports (St. John-Saaltink et al., 2016). This 

neural finding, however, is challenging to interpret as consecutive trials were always the same or 

orthogonal orientations which, by definition, cannot distinguish attractive from repulsive biases. 

Related studies decoding past stimuli from EEG activity do not measure how current stimulus 

representations are biased, precluding a connection to behavioral biases (Fornaciai and Park, 

2018; Bae and Luck, 2019; Bae, 2021).  
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Counter to studies reporting a perceptual locus of serial dependence which utilized brief 

or low contrast stimuli, other behavioral studies utilizing high contrast spatial stimuli have found 

that serial dependence does not emerge immediately but instead emerges only, and increases 

with, a working memory maintenance period (Papadimitriou et al., 2015; Bliss et al., 2017; Stein 

et al., 2020). This observation suggests that serial dependence could be implemented by a later 

readout or memory maintenance circuit (Papadimitriou et al., 2015; Bliss and D’Esposito, 2017; 

Pascucci et al., 2019; Barbosa et al., 2020). There is evidence that such a readout mechanism is 

Bayesian, as the influence of the “prior” (the previous stimulus) is larger when sensory 

representations are less precise due to either external or internal noise (Cicchini et al., 2018; van 

Bergen and Jehee, 2019a). Thus, the existing behavioral evidence suggests that serial 

dependence can operate both on perceptual and working memory representations (Papadimitriou 

et al., 2015; Cicchini et al., 2017; Kiyonaga et al., 2017). It is open question how and where past 

trial information interacts with incoming sensory and memory representations. 

To determine what role visual cortex plays in driving serial dependence, we applied 

multivariate fMRI decoding techniques to data collected while subjects performed a delayed 

orientation discrimination task (Figure 1-1A). We replicated classic serial dependence findings 

where behavioral reports were attracted to the orientation of the previous stimulus. However, this 

attractive behavioral bias was not accompanied by attractive biases in visual cortex, as predicted 

by early sensory models of serial dependence. Rather, we observed repulsive biases in early 

visual cortex that were consistent with adaptation. We then examined several possible read-out 

mechanisms and found that only decoding schemes that account for adaptation can reconcile the 

neural and behavioral biases found in our data. More generally, these results explain a 

mechanism where the visual system can reduce energy usage without sacrificing precision by 
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optimizing sensory coding and behavioral readout relative to the temporal structure of natural 

environments.  

Results 

Behavior 

  To probe the behavioral effects of serial dependence, we designed a delayed 

discrimination task where participants judged whether a bar was tilted clockwise (CW) or 

counterclockwise (CCW) relative to the orientation of a remembered grating (Figure 1-1A). We 

first report the results from a behavior-only study (n=47) followed by an analysis of neural 

activity for a cohort completing the same task in the fMRI scanner (n=6). Task difficulty was 

adjusted for each participant by changing the magnitude of the probe offset (𝛿θ) from the 

remembered grating and was titrated to achieve a mean accuracy of ~70% (accuracy 

69.8±0.82%, 𝛿θ: 4.61±0.27°; all reported values mean ±1SEM unless otherwise noted). Fixing 

subjects at this intermediate accuracy level helped to avoid floor/ceiling effects and improved 

our sensitivity to detect perceptual biases while keeping participants motivated.  
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Figure 1-1 Behavior.  

A: Task Schematic. An orientated stimulus is followed by a probe bar that is rotated <15° from the stimulus. 

Participants judged whether the bar was CW or CCW relative to the stimulus in a binary discrimination 

task. B: Response bias: % of responses that were CCW as a function of Δθ=θn-1-θn (± SEM across 

participants). C: Behavioral bias, green: average model-estimated bias as a function of Δθ (± SEM across 

participants); gray: average DoG fit to raw participant responses sorted by Δθ (± 1SEM across participants). 

D: Response accuracy as a function of Δθ. E: Responses are significantly more accurate for |Δθ|<30°. F: 

Behavioral σ as a function of Δθ. G: Behavioral variance is significantly less for |Δθ|<30°. Note that in 

computing variance we ‘flip’ the sign of errors following CCW inducing trials to avoid conflating bias with 

variance (see Methods) H: Bias is positively correlated with variance across participants. ***, p<.001. 

 

To quantify the pattern of behavioral responses, we modelled the data as the product of a 

noisy encoding process described by a Gaussian distribution centered on the presented 

orientation with standard deviation σ and bias μ. Optimal values for σ and μ were found by 

maximizing the likelihood of responses for probes of varying rotational offsets from the 

remembered stimulus, thus converting pooled binary responses into variance and bias measured 

in degrees (see Response Bias, Figure 1-6). This allowed us to measure precision for individual 

participants and also allowed us to measure how responses were biased as a function of the 
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orientation difference between the remembered gratings on consecutive trials Δθ = θn-1 - θn, an 

assay of serial dependence.  

 Responses were robustly biased towards the previous stimulus (Fig 1C, green curve), 

which we quantified by fitting a Derivative-of-Gaussian (DoG) function to the raw response data 

for each participant (gray curve; amplitude: 4.53°±0.42°, t(46) = 7.8, p = 5.9*10-10, one sample t-

test; full width at half max (FWHM): 42.9°±1.8°, see Serial Dependence). The magnitude and 

shape of serial dependence is consistent with previous reports (Fischer and Whitney, 2014; 

Fritsche et al., 2017). This bias is not an artifact of our parameterization as the same pattern is 

observable in the raw proportion of CCW responses (Fig 1B). Note that as participants are 

reporting the orientation of the probe relative to the grating stimulus, a greater proportion of 

reports that the probe was CCW corresponds to a CW shift in the perception of the grating.   

We next examined how response precision (σ) varied as a function of Δθ and found that 

responses were more precise around small trial-to-trial orientation changes (Fig 1F), again 

consistent with previous reports (Cicchini and Burr, 2018). We quantified this difference in 

precision by splitting trials into ‘close’ and ‘far’ bins (greater than or less than 30° separation) 

and confirmed that responses following ‘close’ stimuli were more precise (t(46)=-3.72, 

p=0.0003, paired 1-tailed t-test, Figure 1-1G , see Response Precision). Note that the choice of 

30° was arbitrary, but all threshold values between 20° and 40° yielded significant (p<.05) 

results. As with bias, this variance result was not an artifact of our parameterization as raw 

accuracy showed a similar pattern such that responses were more accurate following close 

stimuli (t(46)=3.66, p=.0003, Figure 1-1D-E). We additionally confirmed that our finding of 

reduced bias around small changes in orientation is not driven by a higher proportion of 

‘cardinal’ orientations (here defined as being ±22.5° of 0 or 90°) as the proportion of cardinal 
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orientations did not differ between close and far bins of Δθ (mean % cardinal close: 50.6±0.5%, 

far: 50.2±0.3%, t(46)=0.9, p=0.39, paired t-test). 

 Previous work has shown that serial dependence is greater when stimulus contrast is 

lower (Manassi et al., 2018) and when internal representations of orientation are weaker due to 

stimulus independent fluctuations in encoding fidelity (van Bergen and Jehee, 2019a). We tested 

a Bayesian interpretation of these findings by asking whether less precise individuals are more 

reliant on prior expectations and therefore more biased. Consistent with this account, we found a 

positive correlation between DoG amplitude and σ (Figure 1-1H, r(45)=0.52, p=.0001, 1-tailed 

Pearson’s correlation). This relationship was not dependent on our response parameterization as 

we report found similar relationships between DoG amplitude and both accuracy (r=-0.41, 

Pearson correlation, p<.005) and average task difficulty 𝛿θ (r=.44, p<.005).  

 A subset of participants completed a version of the experiment with inhomogeneities in 

their stimulus sequences (such that consecutive orientations were more likely to be between 

±22.5 and 67.5° from the previous stimulus). We repeated all of the above analyses excluding 

these participants and found all of our findings were qualitatively unchanged (Figure 1-7).  

Stimulus history effects in visual cortex 

To examine the influence of stimulus history on orientation-selective response patterns in 

early visual cortex, six participants completed between 748 and 884 trials (mean 838.7) of the 

task in the fMRI scanner over the course of four, two-hour sessions (average accuracy of 67.7% 

±0.4% with an average probe offset, 𝛿θ, of 3.65°). As with the behavior-only cohort, behavioral 

reports in these participants showed strong attractive serial dependence (Figure 1-2A, green) that 

was significantly greater than 0 when parameterized with a DoG function 

(amplitude=3.50°±0.27°, t(5)=11.93, p=.00004; FWHM=35.9°±2.34°, Figure 1-2A black dotted 



19 

 

line). This bias was not significantly modulated by inter-trial interval, delay period, or an 

interaction between the two factors (all p-values > 0.5, mixed linear model grouping by 

participant). Similar to the behavioral cohort, we found that variance was generally lower around 

small values of Δθ. We quantified variance in the same manner as the behavioral cohort (flipping 

responses to match biases and down-sampling the larger group) and found that responses were 

more precise following close (<30°) relative to far stimuli (>30°, t(5) = -9.96, p=0.00009, 1-

tailed paired t-test, Figure 1-2B). This pattern was significant (p<0.05) for thresholds between 

20° and 40°. A subset of these participants completed some sessions where consecutive stimuli 

were not strictly independent as they were more likely to be between ±22.5 and 67.5° from the 

previous stimulus (see Methods, Behavioral Discrimination Task, 4 out of 6 subjects had 

between 357-408 trials that were non independent accounting for between 40-50% of their trials 

and 32% of all trials completed). However, we replicated all of our main analysis excluding 

these sessions and found that our conclusion remained unchanged with the exception that our 

finding of reduced variance trended in the same direction but no longer reached significance 

(Figure 1-8).   
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Figure 1-2 Behavioral and Neural Bias.  

A: Left-axis, Behavioral serial dependence. Shaded green: average model-estimated bias as a function of 

Δθ (± SEM across participants); dotted black line: average DoG fit to raw participant responses sorted by 

Δθ. Right-axis, variance. Purple shaded line: model-estimated variance as a function of Δθ (± SEM across 

participants). B: Behavioral σ is significantly less for |Δθ|<30°. C: Decoded orientation was significantly 

greater than chance when indexed with circular correlation for all ROIs examined. Error bars indicate ±SEM 

across participants. Dots show data from individual participants. D: Decoding performance across time for 

a subset of ROIs. Vertical red line indicates time point used in most analysis. E: Decoding performance 

across time for a decoder trained on a separate sensory localization task. F: Performance of task decoder 

trained and tested on identity of previous stimulus across all ROIs. G: Left-axis, decoding bias. Shaded 

yellow line: decoded bias (μcirc of decoding errors) sorted by Δθ (± SEM across participants); dotted black 

line: average DoG fit to raw decoding errors sorted by Δθ. Right-axis, decoded σcirc. Shaded gray line: 

average decoding variance (σcirc) as a function of Δθ (± SEM across participants). Note that σcirc can range 

from [0, inf] and has no units. H: Decoded variance is significantly greater for |Δθ|<30° I: Decoded errors 

are significantly repulsive when parameterized with a DoG in all ROIs. *, p<.05; **, p<.01; ***, p<.001. 
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To characterize activity in early visual areas, independent retinotopic mapping runs were 

completed by each subject to identify regions of interest (ROIs) consisting of: V1, V2, V3, 

V3AB, hV4, and intraparietal sulcus area IPS0. In addition, a separate localizer task was used to 

sub-select the voxels that were most selective for the spatial position and orientation of the 

stimuli used in our task (see Voxel Selection).  

To examine how visual representations are affected by stimulus history, we trained a 

decoder on the orientation of the sample stimulus on each trial based on BOLD activation 

patterns in each ROI. We used the vector mean of the output of an inverted encoding model 

(IEM) as a single trial measure of orientation using a leave-one-run-out cross-validation across 

sets of 68 consecutive trials (4 blocks of 17 trials) that had orientations pseudo randomly 

distributed across all 180° of orientation space (see Orientation Decoding for details). We first 

quantified single-trial decoding performance using circular correlation (rcirc) between the 

decoder-estimated orientations and the actual presented orientations and found that all ROIs had 

significant orientation information (Figure 1-2C). Our ability to decode extended for the duration 

of the trial, peaking around 12s after stimulus presentation (Figure 1-2D). This memory signal 

seems to be largely in a ‘sensory code’ as a decoder trained on a separate localizer task where 

participants viewed stimuli without holding them in memory achieved similar performance over 

a similar timescale (see fMRI Localizer Task, Figure 1-2E). Thus, visual ROIs showed robust 

orientation information that could be decoded across the duration of the trial. For all analyses not 

shown across time, we used the average of four TRs (spanning 4.8-8.0s) following stimulus 

presentation to minimize the influence of the probe stimulus (which came up ≥6s into the trial 

and thus should have a negligible influence on activity in the 4.8-8.0s window after accounting 

for hemodynamic delay, see Figure 1-5A).   
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We are interested in the how the identity of the previous stimulus influences 

representations of the current stimulus, akin to previous EEG studies that have demonstrated the 

ability to decode the previous stimulus during the current trial (Bae and Luck, 2019). We 

performed a similar analysis by training and testing our task decoder on the identity of the 

previous stimulus using the same time-points as the current trial decoder. This decoder was able 

to achieve above chance decoding in all ROIs examined indicating trial history information is 

present in the activity patterns (Figure 1-2F). As a control analysis, we attempted but were 

unable to decode the identity of the next stimulus using the same procedure (Figure 1-8).  The 

performance of the memory decoder for the previous stimulus peaked around 6s after stimulus 

presentation but remained above chance throughout the delay period (Figure 1-9A). Notably, we 

were generally unable to decode the identity of the previous stimulus using our decoder trained 

on a localizer task suggesting representations of past trial stimuli are not in a ‘sensory code’ 

(Figure 1-9B). 

The high SNR of the BOLD decoder additionally allowed us to examine residual errors 

on individual trials. When measuring the bias (circular mean, 𝜇 𝑐𝑖𝑟𝑐 , 𝑠𝑒𝑒 Neural Bias) of these 

decoding errors as a function of stimulus history (Δθ), we observed a strong repulsive bias 

reflecting neural adaptation (V3, Figure 1-2G yellow). This bias was significant when quantified 

with a DoG (amplitude=-14.5°±2.9°, t(5)=-3.56, p=.0029; FWHM=52.2°±2.94°, Fig 2G black 

dotted-line), and all ROIs had a significantly negative amplitude (p<.01, Figure 1-2I).  Critically, 

this bias was present across all TRs for both the task and localizer decoders and was visible in 

the bias curve computed for each individual participant (Figure 1-9).  In addition to the model-

based analysis of responses in visual cortex, we also performed a model-free assessment of the 

dimensionality of activation patterns conditioned on the prior stimulus. Consistent with our main 
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analysis, responses following close stimuli have a higher dimensionality than responses 

following far stimuli. This suggests that changes due to neural adaptation should assist pattern 

separation regardless of stimulus identity (see Dimensionality Analysis, Figure 1-10).  

We also examined how the precision of neural representations changed as a function of 

stimulus history. In sharp contrast to behavior, σ𝑐𝑖𝑟𝑐  exhibited a monotonic trend such that 

neural decoding was least precise when the previous stimulus was similar (Figure 1-2G, gray 

curve, see Neural Variance ). We quantified this difference in sensory uncertainty in a similar 

manner to the behavioral data and found that variance in the sensory representations was 

significantly greater following a similar stimulus (<30°, t(5)=72.4, p=4.8*10^-9, paired 1-tailed 

t-test, V3, Fig 2H). This pattern was significant (p<.05) in all ROIs except IPS0 (Figure 1-11A). 

The results did not change qualitatively when we utilized vector length as a proxy for decoding 

precision derived directly from our channel estimates (Figure 1-11C-D), or when we used other 

thresholds between 20° and 40°. The repulsion of sensory representations and the corresponding 

reduction in decoding precision around the previous orientation is consistent with neural 

adaptation where recently active units are attenuated, thus leading to lower SNR responses in 

visual cortex.  

Accounting for the Timecourse of the Hemodynamic Response Function 

We considered whether the repulsive adaptation we observed in visual cortex could be 

explained by residual undershoot of the hemodynamic response function (HRF) from the 

previous stimulus. To address this concern, we directly modeled the evoked response in each 

voxel to the stimulus and probe using a deconvolution approach and used a parameterization of 

the resulting filter (double gamma function) to model the stimulus evoked response on each trial 

(see kernel based decoding). Notably the stimulus response has an undershoot that extends up to 
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25s following stimulus presentation (see Figure 1-3A for an example voxel and 

parameterization). Estimating responses using this filter on individual trials and using the 

resulting weights to train a decoder removes the linear contribution of previous stimulus/ probe 

presentations (Dale, 1999; Glover, 1999). Any bias in the resulting decoder should thus be due to 

changes in BOLD activity driven by neuronal activity rather than a hemodynamic artifact. We 

repeated all analyses after correcting for the shape of the HRF, and while the resulting decoder 

was less precise than one trained on the time course data (eg. V3 rcirc=0.19±.07 versus 0.32±0.08 

with time course decoder), it was still significantly predictive across all visual ROIs (ps<.05) 

except IPS0. Despite the noisier decoding, we still observed a significant repulsive bias in all 

visual ROIs that matched the pattern found when decoding the raw BOLD timecourse (Figure 1-

3B).  
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Figure 1-3 Influence of BOLD specific biases on repulsive bias.  

A: average V1 HRF through deconvolution for stimulus and probe. Average best fit double gamma function 

overlaid in dotted lines. B: (left) Bias curves from decoder trained on response patterns from deconvolved 

double-gamma functions (± SEM across participants). Here excluding hV4 and IPS0 for clarity. (right) bias 

quantified with a DoG function across ROIs. C: Bias across time including only trials with an ISI of at least 

17.5s. X-axis reflects minimum time from previous stimulus. Repulsion significant in all ROIs at 32s. D: 

Bias as a function of various relative orientations for V1 and V3 (± SEM across participants). E: Bias across 

early visual ROIs for N-1, -2, -3. Color scheme same as C. N+1 control analysis to ensure effects not driven 

by some unknown structure in stimulus sequence.  F: Behavioral bias for various relative orientations. N-1 

data same as data presented in Fig 2. *, p<.05, **, p<.01, ***, p<.001. 

 

To further understand whether the time course of our task could lead to artifacts, we also 

simulated responses to our task using tuned voxels that were modeled after the task sequence and 
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estimated HRFs observed in our experiment (see supplementary modeling section, Figure 1-12). 

These simulations show that repulsive biases like the ones we observed with both our time 

course and deconvolution-based decoders are only possible when the underlying tuning of voxels 

is adapted by past stimuli/responses.  

We additionally examined the time-course of the bias. Significant repulsive biases were 

observable through the duration of the trial, in all early visual ROIs (Figure 1-9). As the 

undershoot portion of the HRF extended to ~25s, we examined the bias relative to the time of the 

presentation of the previous stimulus. We included only trials with an inter-stimulus interval 

(ISI) greater than the median of 17.5s and plotted bias as a function of the minimum time from 

the previous stimulus (Figure 1-3C). Notably bias was still significantly repulsive for 30s 

following the previous stimulus presentation in all early visual ROIs, further shrinking the 

possibility that our biases are driven by the slow timecourse of the HRF (Figure 1-3C, last time 

point). Finally, we examined how far back previous stimuli shape early visual representations. 

We examined the influence of not just the N-1 stimulus, but N-2 and N-3 stimuli as well, 

corresponding to median ISIs of 35.1 and 52.5s respectively (Figure 1-3D-E). As any influence 

of these more distant stimuli should be diminished relative to N-1, we maximized our sensitivity 

by taking the average decoded representation from 4-12s. While the control N+1 stimulus 

showed no impact on decoded orientation as expected, we continued to see biases that are 

significantly repulsive through the N-3 stimulus in V1 and V2 (Figure 1-3E). These neural biases 

were surprisingly persistent and are in line with recent studies which have found adaptation 

signatures extending 22s in mouse visual cortex spiking activity (Fritsche et al., 2022). It is not 

clear why our effects persist even longer, but it is likely driven in part by the long ISIs, resulting 

in fewer intervening stimuli compared to the paradigm utilized in (Fritsche et al., 2022).  We 
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separately extended our analysis of behavioral biases and found no significant effect of trials 

except for N-1, although biases were trending towards being repulsive for N-2 and N-3 reflecting 

the pattern reported in (Fritsche et al., 2020) (Figure 1-3F). Together these analyses suggest that 

our observed biases are driven by adaptation in the underlying neural population and provide 

additional evidence that behavior is not directly linked to early visual representations. 

Encoder-Decoder Model 

We observed an attractive bias and low variability around the current stimulus feature in 

behavior, and a repulsive bias and high variability around the current feature in the fMRI 

decoding data. Thus, the patterns of bias and variability observed in the behavioral data are 

opposite to the patterns of bias and variability observed in visual cortex. To better understand 

these opposing effects, we reasoned that representations in early visual cortex do not directly 

drive behavior but instead are read out by later cortical regions that determine the correct 

response given the task (Crick and Koch, 1995; Grunewald et al., 2002; Gold and Shadlen, 2007; 

Siegle et al., 2021). In this construction, the decoded orientations from visual cortex represent 

only the beginning of a complex information processing stream that, in our task, culminates with 

the participant making a speeded button press response. Thus, we devised a two-stage encoder-

decoder model to describe observations in both early visual cortex and in behavior (see 

modeling).  

The encoding stage consists of cells with uniformly spaced von Mises tuning curves 

whose amplitude is adapted by the identity of the previous stimulus (𝜃𝑛−1, Figure 1-4A). The 

decoding stage reads out this activity using one of three strategies (Fig 4B). The unaware 

decoder assumes no adaptation has taken place and results in stimulus likelihoods 𝑝(𝑚|𝜃) that 

are repelled from the previous stimulus (Figure 1-4C, yellow, where m is the population activity 
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at the encoding stage). This adaptation-naïve decoder is a previously hypothesized mechanism 

for behavioral adaptation (Seriès et al., 2009) and likely captures the process that gives rise to the 

repulsive bias we observe in visual cortex using a fMRI decoder that is agnostic to stimulus 

history (Figure 1-2G). Alternatively, the aware decoder (Figure 1-4C, green) has perfect 

knowledge of the current state of adaptation and can thus account for and ‘un-do’ biases 

introduced during encoding. Finally, the over-aware decoder knows the identity of the previous 

stimulus but over-estimates the amount of gain modulation that takes place, resulting in a net 

attraction to the previous stimulus (Figure 1-4C, red). We additionally built off of previous work 

showing stimuli are generally stable across time by implementing a prior of temporal contiguity 

(van Bergen and Jehee, 2019a). In our implementation, a Bayesian prior centered on the previous 

stimulus (Figure 1-4C, black) is multiplied by the decoded likelihood to get a Bayesian posterior 

(Figure 1-4C, bottom). We applied this prior of temporal contiguity to both the aware decoder as 

well as the unaware decoder to test the importance of awareness at decoding. We did not apply a 

prior to the over-aware model to balance the number of free parameters between the various 

decoders and to see if the over-aware model could achieve attractive serial dependence without a 

Bayesian prior (Figure 1-4, S1 Table).  
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Figure 1-4 Encoder-Decoder model schematic.  

A: Encoding. Units with von Mises tuning curves encodes incoming stimuli. The gain of individual units 

undergoes adaptation such that their activity is reduced as a function of their distance from the previous 

stimulus. B: Decoding. This activity is then read out using a scheme that assumes one of three adaptation 

profiles. The unaware decoder assumes no adaptation has taken place, the aware decoder assumes the true 

amount of adaptation while the over-aware decoder over-estimates the amount of adaptation (note center 

tuning curves dip lower than the minimum gain line from encoding). C: Example stimulus decoding. Top: 

The resulting likelihood function for the unaware readout (dotted yellow line) has its representation for the 

current trial (θn=-30°) biased away from the previous stimulus (θn-1=0°). The aware readout (dotted green 

line) is not biased, while the over-aware readout is biased towards the previous stimulus.  These likelihood 

functions can be multiplied by a prior of stimulus contiguity (solid black line) to get a Bayesian posterior 

(bottom) where Bayes-unaware and Bayes-aware representations are shifted towards the previous stimulus. 
Tick marks indicate maximum likelihood or decoded orientation. D: Summary of models and free 

parameters being fit to both BOLD decoder errors and behavioral bias 
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For each participant, we fit the encoder-decoder model in two steps (Figure 1-4D). All 

model fitting was performed using the same cross-validation groups as our BOLD decoder and 

each stage had two free parameters that were fit using grid-search and gradient descent 

techniques. We first report results from the encoding stage of the model. The gain applied at 

encoding was adjusted to minimize the residual sum of squared errors (RSS) between the output 

of the unaware decoder and the residual errors of our BOLD decoder. The unaware readout of 

the adapted encoding process (Figure 1-5A, yellow) provided a good fit to the average decoding 

errors obtained with the BOLD decoder (Figure 1-5A, black outline, ρ=0.99) and across 

individual participants (Figure 1-13A, ranges: ρ= [0.84,0.98]). The unaware readout provided a 

better fit to the outputs of our neural decoder than the null alternative of the presented orientation 

(t(5)=3.41, p=.01) because it captured a significant proportion of the variance in decoding errors 

as a function of Δθ (t(5)=7.5, p=.0007). This analysis demonstrates that our adaptation model 

does a reasonable job of recovering our empirical decoding data (both of which use a decoder 

unaware of sensory history). 
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Figure 1-5 Model performance bias.  

A-C Neural/Behavioral Bias, D-G Neural/Behavioral Variance.   A: Unaware decoder (yellow) provides a 

good fit to neural bias (black outline). Decoded variance decreases monotonically with distance from 

previous stimulus. (± SEM across participants). B: Perceptual bias (black outline) was well fit by the Bayes-

aware and over-aware models but not the Bayes-Unaware model (± SEM across participants). C: Participant 

responses were significantly more likely under aware models. D: Behavioral variance had a similar shape 

and magnitude to Bayes-aware and over-aware model fits. Bayes-unaware model output was much less 

precise and had a different form. E: Distribution of empirically predicted response errors (black line) and 

simulated model fits for an example participant. F: The unaware model’s error distribution had significantly 

higher Jenson-Shannon Divergence from BOLD decoder than either aware model. G: Visualization of all 

uncertainties split as a function of close and far stimuli. Note that the Bayes-unaware model had an average 

uncertainty that was on average 6x that of perception. *, p<.05; **, p<.01; ***, p<.001. 

 

We next considered three readout schemes of this adapted population to maximize the 

likelihood of our behavioral responses (Figure 1-5B). The Bayes-aware decoder is consistent 

with previous Bayesian accounts of serial dependence (van Bergen and Jehee, 2019a), but 

additionally asserts that Bayesian inference occurs after encoding and that readout must account 
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for adaptation. Alternatively, the Bayes-unaware decoder tests whether this awareness is 

necessary to achieve attractive serial dependence. Both aware models achieved biases that were 

significantly more likely than the unaware model (t(5)=6.53, p=.001, Bayes-aware; t(5)=6.6, 

p=.001, over-aware, t-test on log-likelihood, Figure 1-5C) but were indistinguishable from each 

other (p=.36). Thus, both aware models were able to explain the response biases while the 

unaware model did a relatively poor job, suggesting some awareness of the adapted state is 

necessary.  

Finally, we examined the variance of our decoders to see if this mapped onto our 

empirically observed variance. As model coefficients were fit independent of observed variance, 

correspondence between model performance and BOLD/behavioral data would provide 

convergent support for the best model. While the models were trained using noiseless activity at 

encoding, we simulated responses using Poisson rates to induce response variability. We 

simulated 1000 trials from each cross-validated fit and pooled the model outputs. We first 

confirmed that the variance of the unaware decoder was highest following small changes of Δθ 

(Figure 1-5A, gray; Figure 1-5G t(5)=3.93, p=.005, paired 1-tailed t-test <30° vs >30°) matching 

the output of our neural decoder (Figure 1-2G) and providing additional support for gain 

adaptation causing the observed repulsion in the fMRI data. Next, we compared the different 

decoders and found that, matching real behavioral responses, all three decoders were more 

precise following small values of Δθ (Figure 1-5G, Bayes-unaware, t(5)=2.25, p=.037; Bayes-

aware t(5)=1.90, p=.058; and over-aware t(5)=5.43, p=.001). While the pattern of the Bayes-

unaware variance matched behavior, it’s overall variance was much higher than our behavioral 

data such that it diverged from the behavioral data significantly more than either of the aware 

models (Figure 1-5E-G; ps<.005, paired t-test comparing Jenson-Shannon divergence of error 
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distributions). Together, the variance data provides additional evidence in favor of adaptation 

driving the repulsive biases that were observed in the BOLD data and awareness of the current 

state of adaptation being a requisite condition for the observed attractive serial dependence. More 

generally, this model has notable advantages that can lead to enhanced discrimination, reduced 

energy usage, and improved discrimination in naturalistic conditions over a static labeled-line 

representation.  

Discussion 

In this study, we sought to understand the neural underpinning of attractive serial 

dependence, and how changes in tuning properties at encoding shape behavior. Based on 

previous behavioral and neural studies, we expected to observe attractive biases in line with 

observed behavior and decoding from early visual areas (St. John-Saaltink et al., 2016). Instead, 

we found that representations were significantly repelled from the previous stimulus starting in 

primary visual cortex and continuing through IPS0 (Figure 1-2I). This repulsion is consistent 

with bottom up adaptation beginning either at or before V1 and cascading up the visual hierarchy 

(Dhruv and Carandini, 2014; Patterson et al., 2014; Fritsche et al., 2022). As repulsive biases are 

in the opposite direction as behavioral biases, we built a model to link these conflicting patterns. 

The critical new insight revealed by the model is that only readout schemes that account for 

adaptation can explain the attractive behavioral bias observed in our paradigm. More generally, 

our BOLD data argue against an early sensory origin of serial dependence for orientation and 

instead suggest that serial dependence is driven by post-perceptual or mnemonic circuits 

(Pascucci et al., 2019; Barbosa et al., 2020). However, because we used a paradigm that required 

working memory, our results may not generalize to other situations in which serial dependence is 

observed even in the absence of a memory delay (Fischer and Whitney, 2014; Cicchini et al., 
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2017; Collins, 2020; Murai and Whitney, 2021). Thus, future work is needed to better understand 

the role of sensory representations in paradigms with low contrast stimuli, that do not require a 

memory delay period, and that utilize other features besides orientation. 

There have been many prior studies arguing for either a perceptual or post-perceptual 

origin of serial dependence. Some behavioral studies have found that serial dependence emerges 

almost immediately after the offset of a stimulus, pointing to an early perceptual origin of the 

effect (Fischer and Whitney, 2014; Cicchini et al., 2017, 2018, 2021). One study additionally 

demonstrated that attraction to the previous stimulus seems to occur before the ‘tilt-illusion’ 

driven by concurrently presented flanking stimuli (Cicchini et al., 2021). If history biases indeed 

operate before spatial context, this could point to a distinct assimilative mechanism for serial 

dependence in early visual processing which may only emerge under low stimulus drive. As our 

experiment always utilizes a working memory delay, it is unclear if the bias towards past stimuli 

is driven by a change in their perception of the stimulus itself or instead somehow biases their 

comparison with the probe stimulus only after the working memory maintenance period. 

Others have found that serial dependence is repulsive at very short delays and only 

becomes attractive when items are held for an extended time in working memory (Papadimitriou 

et al., 2015; Bliss et al., 2017). This apparent discrepancy was reconciled by (Manassi et al., 

2018), who showed that attractive biases disappear without a working memory delay, unless the 

stimuli are rendered at a very low contrast. This observation suggests that serial dependence may 

emerge immediately when high sensory uncertainty is induced by low contrast stimuli, and it 

may emerge later if high sensory uncertainty is induced by extended working memory delay 

periods. It is curious that unlike some spatial working memory studies (Papadimitriou et al., 

2015; Bliss et al., 2017; Stein et al., 2020), we did not find that behavioral biases increased with 
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delay time. One possible explanation is that this phenomenon is actually unique to spatial 

working memory due to either a more consistent increase in sensory uncertainty of spatial 

location due to eye movements or a separate mechanism of memory maintenance that becomes 

more susceptible to proactive interference relative to orientation memories. Separately, as our 

stimuli were presented at the fovea (unlike spatial paradigms) they are encoded by a larger 

population and thus may be less susceptible to degradation across time. 

Evidence for an early sensory origin of serial dependence comes from an fMRI study 

with low contrast stimuli and a short (500 ms) delay period which reported that both behavioral 

responses and V1 representations were more precise following a matching stimulus (St. John-

Saaltink et al., 2016). This departure from our own finding could be driven by the stimuli that 

were rendered to have a very high uncertainty. Past work studying adaptation in non-human 

primates found repulsive patterns following long (4s and 40s) but attractive patterns following 

short (0.4s) stimulus presentations suggesting stimulus duration may have a large influence on 

how past stimuli shape future sensory processing (Patterson et al., 2013). That said, the stimuli 

used in the fMRI study of (St. John-Saaltink et al., 2016) were always one of two orthogonal 

orientations, which, given a circular feature space like orientation, precludes an assessment of 

attraction or repulsion. Furthermore, correct motor responses were directly yoked to the stimulus 

so any behavioral tendency to report seeing the same stimulus on successive trials could be due 

to motor priming rather than stimulus based serial dependence (e.g. a “stay” bias). Related work 

has shown the ability to decode the previous stimulus from EEG activity patterns (Fornaciai and 

Park, 2018; Bae and Luck, 2019; Bae, 2021) but it is important to note that our study also 

showed robust decoding of the previous stimulus that did not also correspond with an attractive 

bias in the neural representation of the current stimulus (Figures 1-2F-G and 1-9). This is 
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because the representations of current and past stimuli are not necessarily stored using the same 

code.  Thus, while previous neural studies have argued that serial dependence emerges in visual 

cortex, no study has demonstrated an attraction towards the previous stimulus dependent on 

feature similarity consistent with behavioral biases. Further work examining neural biases using 

low contrast stimuli will shed further light on a potential role of coding changes in sensory cortex 

driving serial dependence. 

In contrast to studies favoring an early sensory account – and more in line with the 

paradigm and findings reported in this manuscript – a single unit recording study in non-human 

primates used high contrast stimuli and a longer working memory delay (1.4-5.6s) 

(Papadimitriou et al., 2016). Under these conditions, neural responses in the Frontal Eye Fields 

(FEF) were repelled from the previously remembered location even though saccades were 

attracted to the previously remembered location. Given the tight link between the FEF and 

attentional control (Moore and Fallah, 2001; Schall, 2004; Moore and Zirnsak, 2017), the authors 

speculated that the observed neural repulsion was due to residual attentional shifts carrying over 

from the previous trial. However, our observation of repulsive biases starting in V1 and 

persisting across later visual areas suggests that bottom-up adaptation may be a viable alternative 

explanation (which the authors also acknowledged). Further support for this account comes from 

a recent MEG study showing that representations were repelled from past stimuli both within the 

current trial and from the previous trial (Hajonides et al., 2021). As in our study, this neural 

repulsion contrasts with attractive behavioral biases to the previous stimulus, suggesting sensory 

representations do not directly shape behavior even in simple sensory paradigms (Siegle et al., 

2021). Behavioral studies using similar high contrast orientation stimuli to our own have also 

shown that responses are attracted to past decisions and repelled from past stimuli, further 
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suggesting these attractive biases do not emerge in early sensory areas (Pascucci et al., 2019; 

Sadil et al., 2021; Moon and Kwon, 2022). Several modeling studies additionally suggest that 

serial biases are mediated by later readout circuits due to synaptic changes arising from persistent 

bump attractor dynamics as opposed to early sensory processing (Bliss and D’Esposito, 2017; 

Barbosa et al., 2020). Thus, in line with our findings: behavioral, neuronal, and modeling studies 

utilizing high contrast stimuli in working memory paradigms consistently point to attractive 

effects emerging in either memory or decision-making circuits and not early sensory areas. 

In line with classic accounts, adaptation in visual cortex should lead to a reduction in 

energy usage during encoding (Clifford et al., 2000). However the main advantage of adaptation 

may be to decorrelate inputs, thus enhancing the discriminability of incoming stimuli (Clifford et 

al., 2000, 2007) and even acting as a form of short term memory (Hu et al., 2021). An optimal 

processing stream may emphasize differences at encoding and only favor stability once a 

stimulus has been selected by attention for more extensive post-perceptual processing (Pascucci 

et al., 2019). This motif of pattern separation followed by pattern completion would not be 

unique to adaptive visual processing. Similar mechanisms have been proposed as a critical 

component of long term memory processing in the hippocampus and associative memory 

formation in the fly mushroom body (Cayco-Gajic and Silver, 2019). Thus, the biases introduced 

by adaptation may be beneficial in part because they expand the dimensionality of the 

representational space as we found in our recordings (Figure 1-10). 

We did not explicitly define how awareness of adaptation is implemented, but it is clear 

that both attention to and conscious awareness of the previous stimulus are necessary for serial 

dependence to occur (Fischer and Whitney, 2014; Kim et al., 2020). This is consistent with our 

model, and it suggests that some representation of information about stimulus history should be a 
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minimum requirement for an aware decoding scheme. The identity of the previous stimulus for 

spatial position and angle has been shown to be decodable from the spiking activity of single 

units in the frontal eye field (FEF) and posterior parietal cortex (PPC) as well as large-scale 

activity patterns in human EEG and MEG (Papadimitriou et al., 2016; Akrami et al., 2018; 

Fornaciai and Park, 2018; Bae and Luck, 2019; Bae, 2021; Hajonides et al., 2021). We 

additionally demonstrate that information about the previous trial is encoded in patterns of fMRI 

activity in human visual cortex (Figure 1-2F), but not in a sensory-like code (Figure 1-9A-B). 

These signals could potentially be represented concurrently with representations of the current 

stimulus in the same populations of sensory neurons but in orthogonal codes analogous to what 

has been found for sequentially encoded items in primate prefrontal cortex and human EEG 

(Wan et al., 2020; Xie et al., 2022). An alternate account holds that representations of stimulus 

history are maintained outside of early visual areas, consistent with findings from mouse parietal  

and primate prefrontal cortex (Akrami et al., 2018; Barbosa et al., 2020). This anatomical 

segregation could disambiguate incoming sensory drive from representations of stimulus history. 

Critically, optogenetically suppressing non-sensory representations of stimulus history 

eliminated history effects, thus providing strong support for some form of an aware readout 

mechanism (Akrami et al., 2018). 

 For the decoding stage of our model, we established that only readout schemes that are 

aware of adaptation can explain attractive serial dependence. The Bayes-aware model is an 

extension of previously proposed models that employ an explicit prior but that did not consider 

effects of adaptation at encoding (van Bergen and Jehee, 2019b). In contrast, the over-aware 

model is a novel account that can achieve similar performance without needing an explicit prior 

based on stimulus history. While model fit metrics did not readily distinguish one of these two 
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models as superior, the over-aware model may prove to be more flexible. For instance, one of 

our fMRI participants showed significant repulsion from far stimuli, an observation also reported 

by others (Bliss et al., 2017; Fritsche et al., 2017). While the over-aware model can fit this 

repulsive regime, the Bayes-aware model is incapable of generating repulsive patterns (compare 

models fits for subj #3, Figure 1-13). This limitation of a purely Bayesian account of serial 

dependence is also observable in prior work (Figure 1-6B in (van Bergen and Jehee, 2019b)). 

The over-aware model proposed in our study may instead be a special condition of a 

decoder with “fixed awareness” that is based on temporal transition probabilities in natural 

scenes that are steeply peaked around 0 (no change) over short time scales (Dong and Atick, 

1995; Felsen et al., 2005; van Bergen and Jehee, 2019b). Such a readout would correct for the 

most encountered levels of adaptation by accounting for the transition probabilities of stimuli 

while being ‘fixed’, or inflexible, when stimuli violate these expectations. This decoder could 

account for additional phenomena not directly assessed in the present study such as the tilt after-

effect (TAE). The TAE and other forms of (repulsive) behavioral adaptation are often ascribed to 

an unaware decoder (Seriès et al., 2009; Benucci et al., 2013) but might instead reflect levels of 

adaptation that exceed the fixed level of adaptation expected by a “fixed-aware” decoder due to 

long presentations or high contrast stimuli. This is supported by an apparent disconnect in the 

magnitude of repulsive biases between behavior and neural representations (Dragoi et al., 2001; 

He and MacLeod, 2001). In contrast, the fixed awareness decoder would lead to attractive biases 

(serial dependence) when stimuli create less bottom-up drive than expected (e.g., through brief 

presentations or low contrast items). This ‘fixed-aware’ decoder is consistent with previous 

findings of attractive biases disappearing or switching to repulsion when stimulus contrast or 

duration is increased (Fischer and Whitney, 2014; Manassi et al., 2018). This scheme could 
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extend to spatial adaptation such as the tilt-illusion where the joint probability of center and 

surround orientations being perfectly distinct would be vanishingly rare in natural scenes  (Howe 

and Purves, 2005; Schwartz et al., 2007, 2009).  

In this study, we extended previous descriptions of serial dependence by quantifying how 

both bias and variance are shaped by stimulus history. We report a robust pattern of perception 

being most precise following small changes in successive stimulus features (Figure 1-1F-G, 1-

2A-B). This relationship violates a proposed perceptual ‘law’  that bias is inversely proportional 

to the derivative of discrimination thresholds (Wei and Stocker, 2017). This account would assert 

that our attractive bias should come with a less precise representation following small changes 

(or a repulsive bias to account for our enhanced precision). We argue that serial dependence is 

not violating this law, but rather believe this is further evidence for delay dependent serial 

dependence being a post-sensory phenomenon. Neural representations exhibit repulsive biases, 

expanding the perceptual space and allowing greater discriminability (Figure 1-10). When these 

representations are read out by an aware decoder, the bias is undone but the enhanced 

discriminability remains (Figure  1-5D,G). 

Methods 

Participants 

 Behavioral study: 56 participants (male and female) were drawn from a subject pool of 

primarily undergraduate students at UC San Diego. All participants gave written consent to 

participate in the study in accordance with the UC San Diego IRB (approval number 180067) 

and were compensated either monetarily or with class credit. Of these 56 participants, 9 were 

removed from further analysis for completing less than 200 trials (2) or getting less than 60% of 
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trials correct (7). We included the remaining 47 participants who completed on average 421 

trials, range: [204, 988], in our lab over the course of 1 to 3 sessions.  

 fMRI study: 6 participants (3 female, mean age 24.6 ±0.92) participated in four, 2-hour 

scanning sessions. Each subject completed between 748 and 884 trials (mean 838.7). For two 

participants, one session had to be repeated due to technical difficulties that arose during 

scanning.  

Behavioral Discrimination Task 

 Participants in the behavior-only study completed the task on a desktop computer in a 

sound attenuated room. Subjects were seated with a chin rest to stabilize viewing 50 cm from a 

39 by 29 cm CRT monitor (1600x1200 px) with a visual angle of 42.6° (screen width). Each trial 

consisted of a full-field oriented grating (1000 ms) which had to be remembered across a delay 

period (3,500 ms) before a test. At test, the participant judged whether a line was slightly 

clockwise (CW) or counter-clockwise (CCW) relative to the remembered orientation (max 

response time window: 3,000ms, Figure 1-1A). The oriented grating consisted of a sine wave 

grating (spatial frequency 1.73 cycles/°, 0.8 Michelson contrast) multiplied by a ‘donut’ mask 

(outer diameter Ø=24.3°, inner Ø=1.73°). The stimulus was then convolved with a 2D Gaussian 

filter (1.16° kernel, SD = 0.58°) to minimize edge artifacts (Roth et al., 2018). Phase and 

orientation were randomized across trials, and the stimulus was phase-reversed every 250ms. 

After the offset of the oriented grating, a mask of filtered noise was presented for 500ms. The 

mask was generated by band passing white noise [low 0.22, high 0.87 cycles/°], multiplying by 

the same donut mask, and convolving with a 2D Gaussian filter (0.27° kernel, SD = 0.11°). The 

mask was phase reversed once after 250 ms.  A black fixation point (diameter .578°) was 

displayed throughout the extent of the block and turned white for 500 ms prior to stimulus onset 
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on each trial. The probe was a white line (width 0.03°, length 24.3°) masked by the same donut. 

Subjects indicated whether the probe line was CW or CCW from the remembered orientation by 

pressing one of two buttons (‘Q’, ’P’) with their left and right pointer fingers. The next trial 

started after a 1000ms inter trial interval (ITI). For some behavioral participants (n=9) delay and 

ITI were varied between 0.5-7.5s without notable effects on performance.  

 First, subjects completed a training block to ensure that they understood the task. Next, 

they completed a block of trials where difficulty was adjusted by changing the probe offset (𝛿θ) 

between the stimulus and probe to achieve 70% accuracy. This 𝛿θ was used in subsequent blocks 

and was adjusted on a per-block basis to keep performance at approximately 70%. Participants 

completed an average of 5.76±0.24 blocks [min = 3, max = 9]. Some participants completed the 

task with slight variations in the distribution and sequence of orientations presented. For 

completeness we include those details here. Note, however, we additionally report a set of 

control analyses in which we repeat all of our main analyses excluding blocks with binned 

stimuli and find no relevant difference in behavior. For most participants, stimuli were pseudo-

randomly distributed across the entire 180° space such that they were uniformly distributed 

across blocks of 64 trials (n=25). However, some participants saw stimuli that were binned (with 

some jitter) every 22.5° to purposefully avoid cardinal and oblique orientations (11.25°, 33.75°, 

56.25°, etc.) and the trial sequence was ordered so that a near oblique orientation was always 

followed by a near cardinal orientation (n=7). This was implemented to maximize our ability to 

observe serial dependencies in our binary response data as it is typically strongest around 

orientation changes of 20° and is more pronounced around oblique orientations (Cicchini and 

Burr, 2018). The remaining participants completed both blocks with uniform and blocks with 

binned stimuli (n=14). All participants were interviewed after the study and reported that stimuli 
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were non-predictable and that all orientations felt equally likely. For our main analysis we 

include all trials from all participants, irrespective of whether they participated in uniform 

blocks, binned blocks, or both.  

fMRI Discrimination Task 

In the scanner, participants completed the behavioral task outlined above with slight 

modifications. fMRI participants completed the task using a fiber-optic button box while viewing 

stimuli through a mirror projected onto a screen mounted inside of the bore. The screen was 24 

by 18 cm and was viewed at a distance of 47 cm (width: 28.6° visual angle; 1024x768 px native 

resolution). The stimulus timing was the same except that the sample-to-probe delay period was 

either 5, 7 or 9 s and the ITIs were uniformly spaced between 5s and 9s and shuffled pseudo-

randomly on each run of 17 trials. The oriented gratings had a spatial frequency of 1.27 cycles/°, 

outer Ø=21.2°, inner Ø=2.37° and were smoothed by a Gaussian filter (0.79° kernel, sd=0.79°). 

The noise patch (SF low 0.16, high 0.63 cycles/°) was also smoothed by a Gaussian filter (0.29° 

kernel, sd=0.11°). The probe stimulus was a white line (width = 0.03°).  

fMRI participants completed 44-52 blocks of 17 trials spread across 4, two-hour scanning 

sessions for a total of 748-884 trials. As in the behavior-only task described above, 4 out of 6 

fMRI subjects had some blocks of trials where the stimuli were binned in 22.5° increments and 

ordered in a non-independent manner (21-24 blocks/participant). However, all of the fMRI 

subjects also participated in blocks with a uniform distribution of orientations across the entire 

180° space (24-52 blocks/participant). For our main analysis we include all trials from all 

participants. However, as with the behavioral analyses, we also report control analyses in which 

we repeat all of our main analyses excluding blocks with non-random stimuli. 
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fMRI Localizer Task 

 Interleaved between the main task blocks, participants completed an independent 

localizer task used for voxel selection where they were presented with a sequence of grating 

stimuli at different orientations. Stimuli had a pseudo-randomly determined orientation that 

either matched the spatial location occupied by the donut stimuli used in our main task (outer 

diameter Ø=21.2°, inner diameter Ø=2.37°) or were a smaller foveal oriented Gabor 

corresponding to the ‘hole’ in the donut stimuli (diameter Ø=2.37°). Participants were instructed 

to attend to one of three features orthogonal to orientation depending on the block: detect a 

contrast change across the entire stimulus, detect a small grey blob appearing over part of the 

stimulus, or detect a small change in contrast at the fixation point. Each stimulus was presented 

for 6000 ms and was separated by an ITI ranging from 3-8s.  

Response Bias 

 Each trial consisted of a stimulus and a probe separated by a probe offset (𝛿θ) that was 

either positive (probe is CW of stimulus) or negative. We report degrees in a compass-based 

coordinate system such that 0° is vertical and orientation values increase moving CW (eg. 30° 

would point towards 1 o-clock).  Participants judged whether the probe was CW or CCW relative 

to the remembered orientation by making a binary response. To quantify the precision and the 

response bias, we fit participant responses with a Gaussian cumulative density function with 

parameters μ and σ corresponding to the bias (mean) and standard deviation of the distribution. 

The likelihood of a given distribution was determined by the area under the curve (AUC) of the 

distribution of CW (CCW) offsets between the stimulus and the probe (𝛿θ) on trials where the 

participant responded CW (CCW). In extreme cases, a very low standard deviation (σ) value 

with no bias would mean that all 𝛿θ would lie outside the distribution and the participant would 
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get every trial correct. A high negative bias (μ) value would mean that 𝛿θ would always lie CW 

relative to the distribution and the participant would respond CW on every trial. The best fitting 

parameters were found using a bounded minimization algorithm (limited memory BFGS) on the 

negative log likelihood of the resulting responses (excluded the small number of trials without a 

response) given the generated distribution (SciPy 1.0 Contributors et al., 2020). We included a 

constant 25% guess rate in all model fits to ensure the likelihood of any response could never be 

0 (critical for later modelling). While this was critical to fitting our model to raw data, the 

specific choice had no qualitative effect on our behavioral findings besides making the σ values 

smaller compared to having a 0% guess rate. By having a constant guess rate rather than varying 

it as a free parameter we were able to directly compare σ values across participants as a measure 

of performance.  

Serial Dependence  

To quantify the dependence of responses on previous stimuli, we analyzed response bias 

and variance as a function of the difference in orientation between the previous and current 

orientation (Δθ =  θ𝑛−1 – θ𝑛). We performed this analysis using a sliding window of 32°, such 

that a bias centered on 16° would include all trials with a  Δθ  in the range [0°, 32°]. 

We additionally fit a Derivative of Gaussian (DoG) function to parameterize the bias of 

participant responses. The DoG function is parameterized with an amplitude A and width w 

 𝑦 = 𝑥𝐴𝑤𝑐𝑒−(𝑤𝑥)
2
 [1] 

where 𝑐 = √2𝑒 is a normalization constant. For the purpose of fitting to our participant 

responses, x is Δθ and y corresponds to μ in our response model. For each participant we 

adjusted three parameters: A, w, and σ to maximize the likelihood of participant responses. We 
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report the magnitude of our fits as well as the resulting full width at half max (FWHM) estimated 

numerically. 

Response Precision 

 In addition to quantifying how responses were biased as a function of stimulus history, 

we also estimated how precise responses were depending on their unsigned distance from the 

previous stimulus (|Δθ|). When quantifying variance difference between close and far trials, we 

‘folded’ trials with Δθ < 0 so that the bias would generally point in the same direction and not 

artificially inflate our variance measure. Values from the bin with more samples (typically ‘far’) 

were resampled (31 repetitions) without replacement with the number of samples in the smaller 

bin and the median chosen to control for sample number differences.  

Scanning 

 fMRI task images were acquired over the course of four 2-hour sessions for each 

participant in a General Electric Discovery MR750 3.0T scanner at the UC San Diego Keck 

Center for Functional Magnetic Resonance Imaging. Functional echo-planar imaging (EPI) data 

were acquired using a Nova Medical 32-channel head coil (NMSC075-32- 3GE-MR750) and the 

Stanford Simultaneous Multi-Slice (SMS) EPI sequence (MUX EPI), with a multiband factor of 

8 and 9 axial slices per band (total slices 72; 2-mm3 isotropic; 0-mm gap; matrix 104 x 104; field 

of view 20.8 cm; TR/TE 800/35 ms; flip angle 52°; in-plane acceleration 1). Image 

reconstruction and un-aliasing was performed on cloud-based servers using reconstruction code 

from the Center for Neural Imaging at Stanford. The initial 16 repetition times (TRs) collected at 

sequence onset served as reference images required for the transformation from k-space to the 

image space. Two 17s runs traversing k-space using forward and reverse phase-encoding 

directions were collected in the middle of each scanning session and were used to correct for 
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distortions in EPI sequences using FSL top-up (FMRIB Software Library) for all runs in that 

session (Andersson et al., 2003; Jenkinson et al., 2012). Reconstructed data was motion corrected 

and aligned to a common image. Voxel data from each run was de-trended (8TR filter) and z-

scored. 

We also acquired one additional high-resolution anatomical scan for each subject (1 x 1 x 

1-mm3 voxel size; TR 8,136 ms; TE 3,172 ms; flip angle 8°; 172 slices; 1-mm slice gap; 

256x192-cm matrix size) during a separate retinotopic mapping session using an Invivo eight-

channel head coil. This scan produced higher quality contrast between gray and white matter and 

was used for segmentation, flattening, and visualizing retinotopic mapping data. The functional 

retinotopic mapping scanning was collected using the 32-channel coil described above and 

featured runs where participants viewed checkerboard gratings while responding to an 

orthogonal feature (transient contrast changes). Separate runs featured alternating vertical and 

horizontal bowtie stimuli; rotating wedges; and an expanding donut to generate retinotopic maps 

of the visual meridian, polar angle, and eccentricity respectively (Sprague and Serences, 2013). 

These images were processed using FreeSurfer and FSL functions and visual regions of interest 

(ROI) were manually drawn on surface reconstructions (for areas: V1-V3, V3AB, hV4, and 

IPS0). 

Voxel Selection 

 To include only voxels that showed selectivity for the location of the oriented grating 

stimulus used in our main experimental task, we used responses evoked during the independent 

localizer task (see fMRI Localizer Task). For all analyses we used TRs 5-11 (4-8.8s) following 

stimulus onset. First, voxels were selected based on their response to the spatial location of the 

grating stimulus by performing a t-test on the responses of each voxel evoked by the donut and 
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the donut-hole stimuli, selecting the 50% of the voxels most selective to the donut for a given 

ROI. Of the voxels that passed this cutoff, we then performed an ANOVA across 10° orientation 

bins and selected the 50% of voxels with the largest F-score thus retaining ~25% of the initial 

voxel pool. These selected voxels were used in all main analyses.  

Orientation Decoding 

 We performed orientation decoding by training an inverted encoding model (IEM) 

(Brouwer and Heeger, 2009) on BOLD activation patterns using a sliding temporal window of 4 

TRs. For most analyses we focused on a 3.2s (4 TR) window centered 6.4 s after stimulus 

presentation. We first designed an encoding model which assumes voxels are composed of 

populations of neurons with tuning functions centered on one of 8 orientations evenly tiling the 

180° space. The response of population i to stimulus θ is given by: 

 𝑐𝑖(𝜃) = max (0, 𝑐𝑜𝑠
5(𝜃 − 𝜔𝑖) ) 

 

[2] 

where 𝜔𝑖 is the center of the tuning function. The response of voxel j is defined as a weighted 

sum of these hypothetical populations: 

 

𝐵𝑗 = ∑𝑐𝑖𝑤𝑖

8

𝑖

  
[3] 

Or in matrix notation,  

 𝐵 = 𝐶𝑊 [4] 

Where B (trial x voxel) is the resulting BOLD activity, C (trial x channel) is the 

hypothetical population response, and W (channel x voxel) is the weight matrix. The weight 

matrix W is estimated as: 

 𝑊̂ = 𝐶−1𝐵 [5] 
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where 𝐶−1 (channel x trial) is the pseudo-inverse of C (implemented using the NumPy pinv 

function). We then estimated channel responses using the inverse of our estimated weight matrix: 

𝐶̂ = 𝐵𝑊̂−1 [6] 

 This channel response corresponds to a representation of orientation activity. To decode 

orientation, we took the inner product with a vector of the tuning curve centers in polar 

coordinates. The angle of the resulting vector was taken as the estimated orientation (𝜃̂) while 

the vector length was taken as a proxy for model certainty (𝑅̂). 

𝜃̂ = 𝑎𝑛𝑔𝑙𝑒(𝐶̂𝑒𝑖𝜔) [7] 

𝑅̂ = ‖𝐶̂𝑒𝑖𝜔‖ [8] 

The weight matrix of our model was estimated from a subset of our data and used to 

estimate orientation representations on a held-out portion of the task data. We used leave-1-

block-out cross-validation where each block was a set of 4 consecutive runs (64 trials). These 

blocks had orientations that were linearly spaced across the entire 180°, with a random phase 

offset for each block, to ensure a balanced training set. We performed an additional analysis 

training a model on all data from the localizer task and testing on the memory task. This model 

had lower SNR than models trained on the task but showed qualitatively similar results as our 

task trained neural decoder. 

Kernel Based Decoding 

Estimating average voxel HRFs through deconvolution 

 

 Because we are measuring the effects of previous stimuli on responses to the current 

stimulus, we did an additional analysis to quantify any influence of overlapping Hemodynamic 

Response Functions (HRF) that last for 20-30s (e.g. the “undershoot” that happens 
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approximately 8-18s post-stimulus; see Figure 1-3A). To account for overlapping HRFs, we used 

deconvolution to estimate the average univariate response separately in each voxel in each ROI 

by modeling the responses to both the stimulus and probe for 30 TRs (24s) post-stimulus (Dale, 

1999; Glover, 1999). We created a design matrix (rows x columns = total number of TRs x 30) 

with the first column containing ones corresponding to the onset TR of each stimulus (and zeros 

elsewhere). Subsequent columns were the same vector shifted forward in time by one TR. 

Following the same procedure, another design matrix was defined for the probe onset times. 

These matrices were stacked with a column of ones added for each run as a constant term, 

yielding a final design matrix X of dimensions (total number of TRs x (60+number of blocks)). 

We created a related matrix of voxel activity Y (total number of TRs x number of voxels) by 

concatenating responses in each voxel across blocks. We then estimated the HRF by performing 

least squares regression using the normal equation:  

ℎ = (𝑋𝑇𝑋)−1(𝑋𝑇𝑌). [9] 

The resulting weights corresponded to the average timecourse of the HRF evoked separately by 

the stimulus and the probe across all trials. We note that this HRF is estimated independent of the 

orientation of the presented stimuli as we wanted to use these estimates to then decode 

orientation dependent changes in activation patterns. For each voxel we then parameterized the 

HRF using a 6-parameter double gamma function using scipy.optimize.minimize so that we 

could use the voxel-specific HRF model in a GLM to estimate the response magnitude in each 

voxel on each trial. We excluded the 11% of voxels which failed to converge on a solution. 

Estimating trial-by-trial responses using parameterized voxel HRFs 

 

For each voxel, we then created a design matrix Xv (rows x columns = total number of 

TRs x (number of trials * 2 +number of blocks)) with each column a delta function centered at 
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the onset of the stimulus (or probe). We then regressed this matrix onto the (total # of TRs) 

vector Yv of voxel activity using equation 9. This resulted in a simultaneous estimation of the 

trial-by-trial magnitude of responses to each stimulus grating and each probe which was repeated 

for each voxel to allow voxel specific HRFs to be utilized in the creation of Xv. The resulting 

activity pattern associated with each stimulus was used in the same manner as the raw time 

course of the BOLD response to train and test an IEM, and the resulting estimates should be 

largely independent of linear contributions of previous stimuli (Dale, 1999). 

Neural Bias 

 To quantify how BOLD representations were biased by sensory history we computed the 

circular mean of decoding errors (θerror = wrap(θdecode – θstim)): 

 𝜇 𝑐𝑖𝑟𝑐 = 𝑎𝑛𝑔𝑙𝑒(𝑅⃗ ), [10] 

 

We estimated this bias using the same 32° sliding window as a function of Δθ used for 

visualizing response bias from participant responses. We additionally quantified the magnitude 

of the bias in decoding errors by fitting a DoG function to the raw decoding errors by minimizing 

the residual sum of squares (RSS) and reporting the amplitude term. 

Neural Variance 

 To quantify the variance of decoded orientations from visual areas, we computed the 

circular standard deviation on binned decoding errors: 

 
σ𝑐𝑖𝑟𝑐 = √−2 ln|𝑅⃗ |. 

[12] 

This was visualized using the same sliding window analysis as well as in reference to whether it 

was close or far from the previous stimulus.  

 𝑅⃗ =
1

𝑛𝑇𝑟𝑖𝑎𝑙𝑠
∑ 𝑒𝑖θ𝑒𝑟𝑟𝑜𝑟

𝑘𝑛𝑇𝑟𝑖𝑎𝑙𝑠
𝑘=0 . [11] 



52 

 

Dimensionality Analysis  

 To quantify how stimulus history shaped the structure of neural responses independent of 

neural tuning we utilized principal component analysis (PCA). For a given set of neural 

responses R (number of trials x number of voxels) we mean centered and performed eigenvalue 

decomposition on the (number of voxels x number of voxels) covariance matrix. Eigenvalues 

were sorted in descending order and our response matrix was projected into PCA space (for 

visualization purposes) by multiplying by the sorted eigenvectors.  

To compare dimensionality across conditions, we sub-set our data into trials following 

close (<30°) or far (>60°) trials and randomly sub selected trials from the larger group (without 

replacement) to equate trial numbers. We then performed PCA separately for each group and 

compared the relative proportion of total variance explained as the magnitude of the sorted 

eigenvalues. We quantified both the minimum number of components to reach at least 90% of 

the variance explained and also recorded the mean (AUC) of the variance curve.  

Modeling 

 We sought to develop a model that could explain both neural and behavioral biases as a 

function of stimulus history. For the fMRI data, we focused on explaining changes in encoding 

that could lead to the observed biases in the output of the BOLD decoder that was specifically 

designed to be ‘unaware’ of stimulus history. To explain the behavioral data, we assumed that a 

decoder would receive inputs from the same population of sensory neurons that we measured 

with fMRI and that the decoder would read out this information in a manner that gives rise to 

attractive serial dependence. We considered readout models that were either unaware, aware, or 

over-aware of adaptation and additionally applied a Bayesian inference stage, which integrates 

prior expectations of temporal stability, to the unaware and aware decoders (van Bergen and 
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Jehee, 2019a). We then compared performance between these competing models to see which 

could best explain our behavioral data.  

 Our full models consisted of two stages: an encoding stage where the gain of artificial 

neurons was changed as a function of the previous stimulus (adaptation) and a decoding stage 

where the readout from this adapted population was modified. The encoding population 

consisted of 100 neurons with von Mises tuning curves evenly tiling the 180° space. The 

expected unadapted population response is: 

 𝑅𝑒𝑠𝑝𝑁(𝜃𝑛) = 𝑅 𝛾𝑁𝑒
κ cos(Φ−θ𝑛)−1 [13] 

Where 𝛾𝑁 is the scalar 1 for constant gain without adaptation, Φ is the vector of tuning 

curve centers, 𝜃𝑛 is the orientation of the current stimulus, κ=1.0 is a constant controlling tuning 

width, and R is a general gain factor driving the average firing rate. We implemented sensory 

adaptation by adjusting the gain of tuning curves relative to the identity of the previous stimulus, 

𝜃𝑛−1 (Figure 1-4A, Gain Adaptation): 

 𝛾𝐴(𝜃𝑛−1) = 𝛾𝑁 − 𝑟𝑒𝑐𝑡(𝛾𝑚 cos
3(𝛾𝑠(Φ −𝜃𝑛−1)))  [14] 

Where 𝛾𝑚 is the magnitude of adaptation, 𝛾𝑠 scales the width of adaptation, and rect is 

the half-wave rectifying function. The responses of the adapted population thus depend on both 

the current and previous stimulus (Figrue 1-4A, Efficient Encoding): 

 𝑅𝑒𝑠𝑝𝐴(𝜃𝑛, 𝜃𝑛−1) = 𝑅 𝛾𝐴𝑒
κ cos(Φ−θn)−1 [15] 

Unaware decoder: We first considered a model in which an adapted orientation-encoding 

representation is being decoded by an unaware readout mechanism (Figure 1-4B). The 

likelihood of each orientation giving rise to the observed response profile across N neurons was 

estimated assuming activity was governed by a Poisson process: 
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𝑃𝑢𝑛𝑎𝑤𝑎𝑟𝑒( 𝑅𝑒𝑠𝑝𝐴|𝜃) = exp (∑log𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑅𝑒𝑠𝑝𝐴
𝑖 (𝜃); 𝑅𝑒𝑠𝑝𝑁

𝑖 (𝜃))

𝑁

𝑖=1

)  
[16] 

 
𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘; 𝜆) =  

𝜆𝑘𝑒−𝜆

𝑘!
 

 

[17] 

Where 𝑅𝑒𝑠𝑝𝑁
𝑖 (𝜃) is the expected response of the unadapted neuron i to stimulus θ and 

𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑘; 𝜆) is the probability of observing k spikes given an expected firing rate of λ. The 

decoded orientation is then the θ giving rise to the maximum likelihood (MLE). 

Aware decoder: In addition to the unaware decoder, we also evaluated the ability of a decoder 

that was aware of the current state of adaptation to explain behavior. The aware decoder differs 

from the unaware decoder in that its assumed activity level for each unit is modulated as a 

function of stimulus history: 

 𝑃𝑎𝑤𝑎𝑟𝑒( 𝑅𝑒𝑠𝑝𝐴|𝜃𝑛; 𝜃𝑛−1)

= exp (∑log 𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑅𝑒𝑠𝑝𝐴
𝑖 (𝜃𝑛, 𝜃𝑛−1), 𝑅𝑒𝑠𝑝𝐴

𝑖 (𝜃𝑛, 𝜃𝑛−1))

𝑁

𝑖=1

)  

 

[18] 

 Note that here the rate parameter 𝑘 ≡ 𝜆 ≡ 𝑅𝑒𝑠𝑝𝐴 such that the observed and expected 

values perfectly align with the presented orientation. 𝑃𝑎𝑤𝑎𝑟𝑒( 𝑅𝑒𝑠𝑝𝐴|𝜃𝑛; 𝜃𝑛−1) is dependent on 

sensory history and is non-biased. 

Over-Aware decoder: Our final decoding scheme we call the over-aware decoder. This model 

can test whether serial dependence can be achieved without an explicit stage of Bayesian 

inference introduced in the next section. The decoder has an assumed adaptation defined by a 

unique set of free parameters 𝛾𝑚2 𝑎𝑛𝑑 𝛾𝑠2 which shapes a separate gain adaptation: 
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 𝛾𝑂𝐴(𝜃𝑛−1) = 𝛾𝑁 − 𝑟𝑒𝑐𝑡(𝛾𝑚2 cos
3(𝛾𝑠2(Φ −𝜃𝑛−1)))  [19] 

which in turn shapes the response profile of RespOA in the same manner as RespA. The likelihood 

profile is then defined as: 

 

𝑃𝑜𝑣𝑒𝑟−𝑎𝑤𝑎𝑟𝑒( 𝑅𝑒𝑠𝑝𝐴|𝜃) = exp (∑log𝑃𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑅𝑒𝑠𝑝𝐴
𝑖 (𝜃); 𝑅𝑒𝑠𝑝𝑂𝐴

𝑖 (𝜃, 𝜃𝑛−1))

𝑁

𝑖=1

)  
[20] 

where our expected (assumed) rate 𝜆 is designated by RespOA. By having a larger assumed 

adaptation than implemented at encoding (through either 𝛾𝑚2 > 𝛾𝑚 or 𝛾𝑠2 > 𝛾𝑠) the net effect of 

the over-aware decoder should be behavioral attraction.  

Bayesian Inference: In addition, we explored the effect of applying an explicit Bayesian prior 

based on temporal contiguity to the likelihood functions derived from these different readout 

schemes. This type of prior has been previously used to explain behavioral biases without 

considering how encoding might also be affected by stimulus history (van Bergen and Jehee, 

2019a). Specifically, the prior is defined by the transition probability between consecutive 

stimuli and is defined as a mixture model of a circular Gaussian and a uniform distribution:  

 
𝑃𝑇(𝜃𝑛|𝜃𝑛−1) =  

1

𝑍
𝑒
−
𝑎𝑛𝑔𝑙𝑒(𝜃,𝜃𝑛−1)

2

2𝜓2
 
  

[21] 

 
𝑃𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝜃𝑛|𝜃𝑛−1) =  𝑃𝑆𝐴𝑀𝐸𝑃𝑇(𝜃|𝜃𝑛−1) +

1

2𝜋
(1 − 𝑃𝑆𝐴𝑀𝐸) 

[22] 

with PSAME set to 0.64 (as found empirically in (van Bergen and Jehee, 2019a)), Z as a 

normalization constant so PT integrates to 1, and ψ is a free parameter describing the variance of 

the transition distribution. This prior (Figure 1-4C, black line) is multiplied by the unaware 

likelihood (Figure 1-4C, yellow dashed-line): to get the posterior estimate of our Bayesian-

unaware decoder (Figure 1-4C, yellow solid-line): 

 𝑃𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛−𝑢𝑛𝑎𝑤𝑎𝑟𝑒( 𝜃𝑛|𝑅𝑒𝑠𝑝𝐴; 𝜃𝑛−1) = 𝑃𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝜃|𝜃𝑛−1)𝑃𝑢𝑛𝑎𝑤𝑎𝑟𝑒( 𝑅𝑒𝑠𝑝𝐴|𝜃𝑛) [23] 



56 

 

We can additionally examine a Bayesian-aware decoder by substituting its respective likelihood 

function. We did not examine a Bayesian-over-aware model so that all decoding models would 

have the same number of free parameters and so that we could directly evaluate the need for an 

explicit prior. 

Model Fitting: The encoding stage of the model has two free parameters and for each subject 

these parameters were optimized to minimize the residual sum of squares (RSS) between our 

measured fMRI decoding errors and the decoding errors of our unaware decoder. For simplicity 

we only fit our model to decoding errors from V3 as it had the highest SNR, but other early 

visual ROIs showed similar results. After fitting the encoding stage of the model, we then 

separately fit the three competing decoding models to best account for the behavioral data: 

Bayes-unaware, Bayes-aware, and over-aware (two free parameters each). The output of this 

readout stage was treated as the behavioral bias (μ) and the free parameters were optimized to 

maximize the likelihood of the observed responses (assuming constant standard deviation σ 

estimated empirically for each participant). For the purposes of fitting the model, the firing rates 

of the modelled neurons were deterministic (no noise process). Having noiseless activity had no 

effect on the expected bias (verified with additional simulations) and served to make model 

fitting more reliable and less computationally intensive. Both stages of the model were fit using 

the same cross-validation groups as our neural decoder. To ensure all models had a sufficient 

chance of achieving a good fit to behavioral data, we implemented a grid search sampling 30 

values along the range of each variable explored (900 locations total) followed by a local search 

algorithm (Nelder-Mead) around the most successful grid point. We found dense sampling of the 

initial parameter space was especially important for our Bayes-unaware model. 
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Model Evaluation: For bias of neural and behavioral responses, we evaluated the performance 

of the two stages of our model separately. These stages must be evaluated in a qualitatively 

different manner as the neural data gives us an orientation estimate for each trial while the 

behavioral data consists of binary responses. For the encoding stage, we quantified how well the 

output of our unaware decoder predicted the raw errors of our BOLD decoder using circular 

correlation. The performance of this model was contrasted with the true presented orientation 

which is analogous to the representation of an unadapted population. We additionally computed 

the variance of the neural decoding errors explained by the model bias (R2). For the decoding 

stage of our model, we compared the log-likelihood of observed responses for each model.  

We additionally estimated the variance of our models using neurons with rates generated 

by a Poisson process. The average bias was unaffected by allowing random fluctuations in 

activity, but the trial-to-trial variance increased. To get a stable estimate, we simulated 1000 

trials for each set of parameters estimated for a cross-validation loop for each participant and 

pooled these outputs. We compared the overall variance of our models to our single parameter 

estimate of participant precision using Jensen-Shannon divergence. We additionally examined 

relative precision of our model for close and far trials in the same manner as participant 

responses and decoding errors (Response Precision). 

Data/Code Availability 

 Processed BOLD and behavioral data as well as code necessary to reproduce all analysis 

in this study can be found here: 

https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4.     

  

https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4
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Supplemental Figures 

 
Figure 1-6 Response model.  

Encoding of stimulus is assumed to be a noisy process whereby the distribution of encoded orientations is 

described by a Gaussian pdf with mean μ and standard deviation σ. Dashed line is pdf and solid line is the 

cdf of encoding distribution. Note that participants are reporting the probes orientation relative to the 

stimulus so more frequent CCW responses would correspond to a CW perceptual bias. A: Example 

estimation curve with no bias and a very small σ. If the difficulty was set to 𝛿θ=6° (3 sd) than this participant 

would get essentially all (99.7%) trials correct. B: Estimation curve with a μ=-10, this participant would 

respond CW on almost every trial. C-D: Realistic encoding curves. To aid with fitting and to best describe 

responses, a constant guess rate of 25% was included in the response model fit to participant responses. C: 

An unbiased distribution with two theoretical stimuli on which the participant responded CW. The left 

response 𝛿θ=-6° is incorrect. D: A CCW biased distribution results in a higher likelihood for all CW 

responses. Data and code supporting this figure found here: 

https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4 
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Figure 1-7 A subset of behavior only participants completed a version of the experiment with 

inhomogeneities in their stimulus sequences (such that consecutive orientations were not independent).  

To confirm this manipulation did not drive any of our results, we repeated our behavioral analyses 

excluding participants with non-independent sequences leaving a cohort of n=25 with an average 

accuracy of 70.46±1.14° at an average 𝛿θ of 4.97±0.35°. A,D: This cohort still showed significant serial 

dependence (DoG amp =4.71±0.49, t(23) = 9.4, p=2.4*10-9; width 0.027±0.0019, FWHM 43.68±1.86°, 

B-C: and had responses that were more accurate (t(24)=3.14, p=.0023, E-F:  and precise following ‘close’ 

stimuli (t(24)=-3.54, p=0.0009, G: Lastly, bias and variance were still positively correlated across this 

cohort (r(22)=0.72, p=0.00003, H-J: Stimulus history effects are larger for worse performing subjects. H: 

Serial dependence was significantly greater for less precise participants (t(45)=-2.5, p=.012, unpaired t-

test comparing DoG Amplitude). I-J: Variance was modulated significantly by stimulus history (low-
performing: t(23)=3.9 p=.0007; high-performing t(22)=2.4, p=.02, one-sample t-tests), with a significant 

interaction between overall performance and the effect size (p=.017, mixed effects linear model).  
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Figure 1-8 A subset of fMRI participants completed some sessions where consecutive stimuli were not 

strictly independent.  

A: To confirm this structure was not driving our results, we repeated our main analyses excluding these 

sessions and found that responses were still strongly attracted to the previous stimulus (DoG Amp: 3.25± 

0.34, t(5)=8.85, p=1.53e-04; DoG FWHM: 36.1±2.9). B: We found that responses were no longer 

significantly more precise following small changes in orientation but were trending in the same direction 

as when including all sessions (t(5)=-1.55, p=.09). We additionally confirmed that our finding of reduced 

bias around small changes in orientation was not driven by the oblique effect in the same manner as the 

behavioral cohort (mean % cardinal close: 48.6±0.9%, far: 49.8±0.2%, t(5)=-1.0, p=0.36, paired t-test). C-

E: We further replicate our finding of neural repulsion and increased uncertainty following ‘close’ stimuli 

across all ROIs except IPS0. F: As a control analysis, we attempted but were unable to decode the identity 

of the next trial in any ROI when including all sequences. ns, not significant; *, p<.05; **, p<.01; ***, 

p<.001. 
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Figure 1-9 Impact of previous trial across time and individuals.  

A: Decoding of the previous stimulus dropped to chance around stimulus presentation before rebounding 

B: decoding using sensory localizer data was consistently at chance during N+1 trial suggesting information 

relating to past stimulus is not stored in a sensory code. C-D: Decoded biases across time for both decoders 

are consistently repulsive. E: Bias curves for individual participants using the memory decoder across rois 

(see legend) overlayed with behavioral biases (black). Neural and behavioral biases are consistently in 

opposite directions. Note that id#3 exhibits peripheral repulsion. 
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Figure 1-10 Dimensionality Analysis. 

To quantify the intrinsic dimensionality of neural representations and whether it changes following a ‘close’ 

stimulus, we performed principal component analyses (PCA) on the activity matrix (number of trials x 

number of voxels) of responses across different ROIs. A: we found that early principal components were 

correlated with the presented orientation, here presenting both individual trials as well as the average 

location for different orientation bins (large solid circles) for an example subject and ROI. B: we performed 

PCA separately for trials following ‘close’ and ‘far’ trials, being careful to subsample the number of trials 

in the larger group. We then sorted the eigenvalues and examined the proportion of variance explained as 

a function of the number of components included separately for each group. C: we found that it took 

significantly more components to explain 90% of the variance on the population activity following close 

versus far stimuli. This suggests that the representations in most visual areas occupy a higher dimensional 

space following close stimuli, but curiously not V1. Note that the total number of dimensions is shaped by 

the number of voxels included, so differences between subjects/ROIs should not be interpreted with how 

these data were processed. D: we additionally looked at the area under the variance curve to avoid any 

arbitrary effects of choosing 90% and found a similar effect (higher AUC implies lower dimensionality). 



69 

 

 
Figure 1-11 Decoded uncertainty as a function of Δθ across ROIs.  

A: σcirc of decoding errors is significantly greater for close (<30°) versus far (>30°) stimuli across early 

visual ROIs (see Neural Variance). Points and error bars are mean ±SEM across participants; gray lines 

depict individual participants. Error bars depict SEM across participants B: Sliding σcirc for V1-V3 shows 

a monotonic relationship (± SEM across participants). C-D: Same as A-B but measuring uncertainty directly 

measured from the single trial posterior (see eq. 8). Results are qualitatively very similar for both 

techniques. *, p<.05, **, p<.01, ***, p<.001. 
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Figure 1-12 Trial Simulation. 

To better understand how our experiment’s trial sequence could impact results, we simulated BOLD signals 

based on our empirically estimated HRFs and our trial sequences used in the task.  

We first created a population of 32 voxels with uniformly distributed von Mises tuning curves. Note that 

for the purposes of this simulation, we are effectively treating voxels as neurons instead of a summation of 

the metabolic demands of many neurons. This shortcut comes from experience simulating voxel activity 

and finding decoding results are unaffected by such a shortcut while making results a bit simpler to 

understand (and faster to generate). The responses of each voxel were estimated by first generating a design 

vector based on the stimulus presentation times of both the stimulus and probe for a given subject with the 

amplitude of the response based on the defined tuning curves. This vector was then convolved with an 

empirically estimated HRF (both the raw output and when parameterized with a double gamma function) 

randomly sampled from voxels of the same subject to get the estimated evoked response to both the stimulus 

and the probe. These two signals were then combined along with gaussian noise to simulate the voxel 

response (A).  

 Importantly, the tuning properties of these simulated voxels were unaffected by past stimuli so any 

biases found by applying our decoding techniques could reflect artifacts of our task design or analysis 

procedure. We additionally simulated BOLD responses with true adaptation in the underlying neural tuning. 

For simplicity we simply attenuated the response to the current trial by 40% of the response to the previous 

trial while keeping all other stages of our analysis the same.  

 We first applied a decoder across time to the epoched data and found a similar pattern to our 

empirical data with decoding performance following a parabolic shape before leveling off at some 

intermediate level, here utilizing HRFs from V3 voxels (B). This was true whether we used parameterized 

or raw HRFs and whether the simulation included adaptation. We next examined biases in our decoder as 

a function of stimulus history. With adaptation (red curves), decoded representation were systematically 

repelled from previous stimuli matching our empirical findings (C). Importantly, without adaptation the 

resulting bias was never repelled from the previous stimulus (blue curves). This suggests that the timing of 

our stimuli and the resulting evoked responses should not bias us towards seeing the repulsive results we 

report.  

 We finally implemented the regression-based estimation of BOLD responses as we did with our 

empirical data. As stated before, this technique should remove any linear contributions of past evoked 

responses to our estimate of the current trial’s response. When analyzing the resulting biases, we found that 

while the unadapted data showed no bias from the previous stimulus (as expected, despite added noise) the 

adapted response continued to show a repulsive bias (D). Data and code supporting this figure found here:  

This analysis demonstrates that 1) while our task design could lead to biases in decoded representations in 

the absence of any neural history effects, these effects tend to be in the opposite direction of our reported 

effects and 2) our use of HRF kernels to estimate trial responses is unbiased by across trial contamination 

and robustly recovers repulsive patterns in the presence of real neuronal adaptation at noise levels similar 

to our study.   
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Figure 1-13 Model fits for individual participants (same order as Fig 3).  

Solid lines correspond to empirical neural (yellow) or behavioral (green) bias; dashed lines correspond to 

model fits to BOLD decoding bias (Unaware model, A) or behavior (B-D). Model fits plotted are average 

of noiseless biases generated by models fit to each CV fold. Note that models are fit to raw data, not binned 

data presented here. Pearson’s correlations are reported above each fit between binned and model estimated 

bias 
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Table 1 Fit Parameters  

Cells correspond to parameters for proposed decoder. Items with bold values indicate free 

parameters adjusted to fit empirical data (± SEM across participants). 𝛾𝑚 controls the amplitude 

and  𝛾𝑠 controls the width of gain adaptation (Fig 4A). These parameters were fit by minimizing 

the residual sum of squared errors between the unaware decoder and the BOLD decoder output. 

𝛾𝑚2 𝑎𝑛𝑑 𝛾𝑠2 are the assumed adaptation parameters at decoding. These terms were either set to 

assume no adaptation (unaware), match the true amount of adaptation (aware) or are free 

parameters adjusted to maximize the likelihood of responses (over-aware, Fig 4B). Last, R 

adjusts the average Poisson firing rate and ψ controls the variance of the prior distribution (Fig 

4C). These parameters are adjusted for decoders using a Bayesian prior while R is set to the 

arbitrary value of 5 for non-Bayesian decoders (it has no effect on bias for non-Bayesian 

decoders). Increasing R increases the precision of the likelihood function and reduces the relative 

influence of the prior. Increasing ψ increases the range of Δθ over which the prior has an 

influence. Data and code supporting this table found here: 

https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4 
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Chapter 2 Distinguishing response from stimulus 

driven history biases 
 

Abstract 

Perception is shaped by past experience, both cumulative and contextual. Serial 

dependence reflects a contextual attractive bias to perceive or report the world as more stable 

than it truly is. As serial dependence has often been examined in continuous report or change 

detection tasks, it unclear whether attraction is towards the identity of the previous stimulus 

feature, or rather to the response made to indicate the perceived stimulus value on the previous 

trial. The physical and reported identities can be highly correlated depending on properties of the 

stimulus and task design. However, they are distinct values and dissociating them is important 

because it can reveal information about the role of sensory and non-sensory contributions to 

attractive biases. These alternative possibilities can be challenging to disentangle because 1) 

stimulus values and responses are typically strongly correlated and 2) measuring response biases 

using standard techniques can be confounded by context-independent biases such as cardinal 

bias for orientation (i.e. higher precision, but repelled, responses from vertical and horizontal 

orientations). Here we explore the issues and confounds related to measuring response biases 

using simulations. Under a range of conditions, we find that response-induced biases can be 

reliably distinguished from stimulus-induced biases and from confounds introduced by context-

independent biases. We then applied these approaches to a delayed report dataset (N=18) and 

found evidence for response over a stimulus driven history bias. This work demonstrates that 

stimulus and response driven history biases can be reliably dissociated and provides code to 

implement these analysis procedures.  
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Introduction 

 Perceptual reports can be shaped by past stimuli and actions - the visual system exploits 

this information to support efficient information processing. To this end, the visual system 

expends less energy processing expected stimuli and can rely on priors to facilitate processing of 

new sensory information (Oliver, 1952; Mumford, 1994; Olshausen and Field, 1996). However, 

even though these adaptive mechanisms support more efficient processing on average, they also 

lead to a collection of perceptual biases.  

For example, over developmental or evolutionary time scales perceptual processing has 

adapted to represent frequently encountered stimulus features such as vertical and horizontal 

orientations with greater precision than off-cardinal oblique orientations (the oblique effect).  

While this resource allocation supports more efficient processing in early visual cortex, it also 

gives rise to a phenomenon of cardinal bias where perceptual reports are repelled from vertical 

and horizontal orientations (Girshick et al., 2011; Wei and Stocker, 2015). Importantly, cardinal 

bias, as well as the oblique effect, are thought to be based on long-term exposure to natural 

image statistics and are highly stable across time (Henderson and Serences, 2021). Hence, we 

use the term context-independent biases to refer to this and related phenomena. 

In addition to these context-independent biases, dynamic perceptual biases can also 

emerge based on exposure to recent stimulus features. For instance, viewing a stable image 

feature for an extended period can lead to a suppressed neural response to that feature (Dragoi et 

al., 2000; Kohn and Movshon, 2004; Patterson et al., 2013). Given that stimuli are generally 

stable across time, these adaptation effects are also thought to contribute to efficient coding as 

fewer neural resources (i.e., spikes) are dedicated to processing expected stimulus features 

(Barlow, 1961; Felsen et al., 2005; Benucci et al., 2013). However, attenuated responses in 
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neurons tuned to the viewed stimulus can bias neural population response profiles away from the 

adapting stimulus. This neural repulsion is the likely source of perceptual repulsion effects seen 

in well-known phenomena such as the waterfall illusion or the tilt after-effect (Anstis et al., 

1998; He and MacLeod, 2001). 

Interestingly, and in contrast to typical adaptation-induced repulsive biases, the repetition 

of similar stimuli can sometimes lead to an attractive or assimilative bias known as hysteresis or 

serial dependence (Corbett et al., 2011; Chopin and Mamassian, 2012; Cicchini et al., 2014; 

Fischer and Whitney, 2014). Typically, attractive serial dependence emerges with briefly 

presented or near-threshold stimuli that are hard to perceive, as opposed to longer exposure to 

high contrast stimuli that usually leads to adaptation and perceptual repulsion (Chopin and 

Mamassian, 2012; Maus et al., 2013; Cicchini et al., 2017; Fritsche et al., 2017). These attractive 

biases can be explained by invoking a Bayesian prior for stimulus stability over short time scales 

(Cicchini and Burr, 2018; Pascucci et al., 2019; van Bergen and Jehee, 2019; Fritsche et al., 

2020). Given this prior for environmental stability, the precision of near-threshold stimuli can be 

improved by biasing reports towards recently viewed features (Cicchini and Burr, 2018; Fritsche 

et al., 2020; Sheehan and Serences, 2022). However, even though attractive biases are observed 

across a host of stimulus/task domains, their ultimate source is still debated. 

Here we address a set of key unanswered questions related to efficient information 

processing in the human visual system. First, do attractive serial dependence effects depend on 

the physical identity of recently seen features, or on the responses made to report the identity of 

recently seen stimuli? Second, how do attractive serial dependence effects interact with 

adaptation and context-independent factors like cardinal bias? Parceling out sensory and motor 
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contributions from these other perceptual biases is critical to better understanding the source of 

the effect because these factors all jointly contribute to measured perceptual reports. 

Disentangling sensory from motor/decisional contributions to attractive serial biases is 

particularly challenging because most studies of serial dependence have employed delayed recall 

paradigms where responses are highly correlated with the presented stimulus feature. For 

example, in a typical task a participant is instructed to report the orientation of a remembered 

orientation using a mouse pointer. Their response will ultimately be driven by the integration of 

sensory evidence on that trial, adaptation induced by previous stimuli, context-independent 

biases (e.g., cardinal bias), and random errors accumulating from other unmeasured sources. 

These will cause the response to deviate from the stimulus orientation but only by a few degrees 

such that even for a low performing participant, stimulus identity and the associated responses 

will still be highly correlated (rcirc=0.63, σ=21.4° for an example continuous report dataset which 

we analyze in more detail below). 

 Most studies of serial dependance have focused only on the influence of the previous 

stimulus and claim that it is the processing or perception of the physical stimulus that induces 

attractive biases (Fischer and Whitney, 2014; Cicchini et al., 2017; Cicchini and Burr, 2018; 

Manassi et al., 2018). However, the emerging consensus is not so straightforward. One recent 

study found evidence that responses are simultaneously repelled (due to adaptation) and attracted 

(due to the application of Bayesian priors) to past stimuli but at different timescales, leading to 

both attractive and repulsive effects (Fritsche et al., 2020). In contrast, other work suggests that it 

is the previous decision, not the stimulus per se, that leads to attractive serial biases (Pascucci et 

al., 2019).This finding is consistent with subsequent studies that have simultaneously modeled 

the influence of both the previous response and the previous stimulus and found that reports are 
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simultaneously attracted to previous responses and repelled from previous stimuli, providing an 

extra layer of distinction between the attractive and repulsive effects described by Fritsche and 

colleges (2020) (Sadil et al., 2021; Moon and Kwon, 2022). 

Trying to ascribe biases to past responses is further complicated by context-independent 

biases (e.g., cardinal bias) (Fritsche, 2016). When sorting trials as a function of the previous 

response (respN-1), the sorting variable (∆R = respN-1 - stimN) is dependent on the physical 

stimulus feature (stimN) in the presence of cardinal bias. This is in contrast to analyzing stimulus 

biases where (for an independent stimulus sequence) the sorting variable is independent of the 

physical stimulus identity ∆s=(stimN-1 - stimN)⊥stimN. As a result, any context-independent bias, 

such as repulsion from the cardinal axes, can lead to a dependence of respN on ∆R. This 

dependance may be why past studies have shown a spurious attraction to future or shuffled trial 

sequences – an observation that lacks a reasonable causal explanation (Pascucci et al., 2019). 

Thus, observing a spurious response bias to future or shuffled sequences raises the concern that 

any measured response bias (e.g., even towards the previous trial, ∆RN-1) could also be 

influenced by the same artifact. In Pascucci et al. (2019) and other studies that followed, this 

issue was addressed by subtracting the average context-independent bias from either participant 

responses or response errors. This method of correction is reasonable, but may actually be 

insufficient given other context-independent anisotropies (e.g., the oblique effect) as noted by 

others (Fritsche, 2016). Thus, to reconcile these seemingly paradoxical findings, an analytic 

framework is needed to successfully disentangle the relative contribution of perceptual, motor, 

adaptation, and context-independent factors. 

 To address these concerns, we created a model observer exhibiting either stimulus or 

response driven biases from the previous trial. For parsimony, we will only explore orientation 
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stimuli that feature cardinal biases along with the oblique effect in this study, but our approach 

should generalize to other stimulus types (e.g., spatial location, numerosity, pitch). We found 

that some techniques can reliably distinguish between stimulus and response biases across a 

range of conditions, but that care needs to be taken to correct for context-independent biases. We 

additionally apply these techniques to an orientation working memory dataset and demonstrate 

that the history biases observed are primarily attributable to past responses, not to the physical 

stimulus features. All data and code to implement and expand on these simulations, including 

power analyses and our analyses of an empirical dataset are available at: 

https://github.com/TimCSheehan/historyResponseModeling. 

Methods 

Generative Model 

 To better understand how different sources of bias will ultimately shape behavioral 

responses, we built a model designed to mimic response properties of human observers. First, we 

generated an independent and identically distributed (IID) stimulus sequence that uniformly 

sampled a circular 0-180° feature space (e.g. orientation space). When the sequence is encoded, 

Von Mises distributed perceptual variability is introduced such that the probability of perceiving 

a stimulus is governed by the following distribution: 

 

 
𝑝𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑚|𝜇, 𝑘)  =

𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(𝑚 − 𝜇))

2𝜋𝐼0(𝑘)
  [24] 

 

where k and μ are the precision and center of the von Mises distribution respectively, and m is 

the encoded orientation. I0(k) is the Bessel function of the first kind of order 0. We utilize two 
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types of encoding processes. The “biased encoder” features both the oblique effect, such that 

precision is higher around vertical and horizontal stimuli 

 

 𝜅𝑜𝑏𝑙𝑖𝑞𝑢𝑒  = 𝜅𝑏𝑎𝑠𝑒(1 +𝑐𝑜𝑠
2(2𝜃)) [25] 

 

where θ is the stimulus orientation spanning [0, π] and cardinal bias such that responses are 

biased away from the cardinal orientations 

 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙  = 𝜃 + 𝐴 ⋅ 𝑠𝑖𝑛(4𝜃) 

 

[26] 

where A=10 is the amplitude of the bias (see Figure 1, Cardinal Bias for a depiction of both 

functions). Note that both 𝜅𝑜𝑏𝑙𝑖𝑞𝑢𝑒  and 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙  have two peaks/cycle as the cosine function is 

squared for the oblique effect.  The second encoding model, termed the “uniform encoder”, has 

constant precision across feature space (κuniform=1.5⋅κbase, equalizing average precision) and is 

centered on the true stimulus value (𝜇 = θ). 

On each trial, a random draw from the probability distribution pencoding is used to generate 

a point stimulus estimate mn which is then used as μ in either the biased or the uniform encoding 

model. This μ parameter, along with the concentration parameter k of the von Mises distribution, 

generates a probability distribution function (PDF) that defines the stimulus likelihood function1. 

This likelihood is then multiplied by a Bayesian prior centered on either the previous stimulus 

(“stimulus bias”) or the previous response (“response bias”, Figure 2-1, Bayesian Inference). 

This prior is based on measurements of natural videos and is a mixture of a von Mises and a 

uniform distribution to account for both stable random changes across time (Felsen et al., 2005; 

 
1Note that here for simplicity we are equating the shape of the likelihood function, p(θ|m), with the posterior p(m|θ). 
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van Bergen and Jehee, 2019). The relative influence of stable and random changes is controlled 

by the parameter pstable such that 

 

 
𝑝𝑝𝑟𝑖𝑜𝑟(𝑚|𝜇, 𝑘, 𝑝𝑠𝑡𝑎𝑏𝑙𝑒)  = 𝑝𝑠𝑡𝑎𝑏𝑙𝑒

𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(𝑚 − 𝜇))

2𝜋𝐼0(𝑘)
 + (1 − 𝑝𝑠𝑡𝑎𝑏𝑙𝑒)

1

2𝜋
 [27] 

 

where 𝜇 is the stimulus or response on the previous trial and κ is constant (building on previous 

findings suggesting uncertainty on the previous trial does not appear to shape serial dependence 

in a Bayesian manner (Fritsche, 2016; Ceylan et al., 2021; Gallagher and Benton, 2022). The 

maximum value of the resulting posterior 

 

 𝑟𝑒𝑠𝑝𝑛 =   𝑎𝑟𝑔𝑚𝑎𝑥𝑚 (𝑝𝑝𝑟𝑖𝑜𝑟 ∙ 𝑝𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔) 

 

[28] 

is taken as the Bayes optimal single trial estimate of the stimulus (Figure 2-1, Bayesian 

Inference, sold line). We equate the output of the model with the “perceived” stimulus value that 

the participant would indicate with a behavioral response.  

Behavioral Analysis 

 Independent Bias Parameterization 

 To analyze the results from these different encoding and decoding processes, we sorted 

response errors as a function of the previous stimulus (∆S = stimN-1 - stimN) or as a function of 

the previous response (∆R = respN-1 - stimN). We visualized the resulting bias for each participant 

by taking a sliding circular mean of the errors as a function of ∆S or ∆R. To simulate typical trial 

counts of a psychophysics experiment, we ran experiments of 30 participants completing 360 
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trials each. The magnitudes of history biases were estimated by fitting a derivative of von Mises 

(DoVM) function:  

 

 𝑑𝑜𝑉𝑀(𝑥;  𝑎, 𝑤) = 𝑎 𝑤𝑠𝑖𝑛(𝑥) 𝑒𝑥𝑝(𝑤 𝑐𝑜𝑠(𝑥)) / (𝑧𝐼0(𝑤)) [29] 

 

with amplitude, a, and width, w  (Sadil et al., 2021). These parameters were fit to minimize the 

RSS errors when x corresponds to either ∆S or ∆R. z is a normalizing constant such that the 

amplitude, a, corresponds to the height of the resulting function. We additionally performed all 

analyses using the more commonly utilized derivative of Gaussian function and found similar 

results, but prefer the DoVM function as it is continuous at ±π. 

 Long-term Bias Correction  

Previous studies have attempted to account for any confounds introduced by context-

independent biases by subtracting out the average bias from either the responses (respN) or the 

errors (respN - stimN) (Fritsche, 2016; Pascucci et al., 2019; Sadil et al., 2021; Moon and Kwon, 

2022). We perform this correction by first fitting an n=6 parameter Fourier-like decomposition 

 

 
𝑓(𝜃; 𝑎1, . . . , 𝑎𝑁)  =∑ 𝑔(𝜃; 𝑛, 𝑎𝑛)

𝑁

𝑛=1
 [30] 

 
𝑔(𝜃; 𝑛, 𝑎𝑛) =  {

𝑠𝑖𝑛(𝜃𝑛);                𝑛 ≡ 𝑒𝑣𝑒𝑛

𝑐𝑜𝑠(𝜃(𝑛 + 1));  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [31] 

 

to subjects errors as a function of stimN and subtracting this function from either the responses 

(response correction: respresidual  = wrap(respN -f(stimN) )) or from the resulting errors (error 

correction: Eresidual = wrap(respN -f(stimN) -stimN)). Note that correcting responses additionally 
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influences the errors as they are calculated using the modified responses. When analyzing 

response biases, both corrections impact errors (y-axis) (as correcting responses also corrects 

errors) while response correction additionally impacts sorting of trials (x-axis). While these two 

forms of correction ultimately yield similar results, it is important to consider how response 

correction procedures change the interpretation of any resulting bias (see Discussion).  

One concern that arises with analyzing response biases, and a primary motivation for this 

study, is the presence of ‘spurious serial dependence’ whereby sorting responses as a function of 

∆R can give the appearance of attractive biases to the N+1 stimulus or after shuffling the 

stimulus sequence (Pascucci et al., 2019). As we do not expect the response on a future or 

random trial to influence our error on the current trial, the presence of such a bias is concerning 

and may suggest a bias measured relative to past/future stimuli is an artifact of the analysis 

procedure. To better understand this phenomenon, we additionally consider our errors relative to 

both the N+1 stimulus and relative to the N-1 stimulus of a shuffled trial sequence.  

Joint Bias Parameterization  

 Recent studies have simultaneously modeled the impact of the previous stimulus and 

previous response (Sadil et al., 2021; Moon and Kwon, 2022). We implemented this by 

parameterizing two DoVM functions modulated by ∆S and ∆R and optimized to minimize the 

residual SSEs. Specifically, we have two vectors ∆S and ∆R which are inputs to two DoVM 

functions. The resulting minimization function is  

 𝑚𝑖𝑛 ∑ (𝐸𝑖  −  𝐷𝑜𝑉𝑀(∆𝑆; 𝑎𝑠, 𝑤𝑠)  − 𝐷𝑜𝑉𝑀(∆𝑅; 𝑎𝑅, 𝑤𝑅))
2

∀𝑖
 [32] 

where Ei corresponds to the actual error, wrap(respi - stimi), on the ith trial.  
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Statistical Analyses 

When bias curves are visualized, we include the results of one-sample and paired two-

tailed t-tests without correction of the amplitudes of fit DoVM functions. 

 Power Analysis 

 We performed power analyses to estimate the probability of detecting a significant effect 

(α<.001) for an experiment conducted with n=30 participants and defined effect sizes and trial 

counts. For a given experiment, we present the probability of rejecting the null hypothesis that 

stimulus or response biases are significantly greater and in addition that the magnitudes of the 

two effects are different from one another.  

 



85 

 

 
Figure 2-1 Simulated observer model. 

Response Generation, on each trial a stimulus is encoded by a biased or unbiased encoder. The encoded 

representation is interpreted at the inference stage by introducing either a stimulus, response, or no prior 

for stability. The output from this stage is the response we analyze and used to bias future reports. Response 

Analysis, responses are first corrected (or not) for context-independent biases by fitting a Fourier-like 

function. We then analyze errors as a function of either the previous stimulus, response, or both. We perform 

additional control analyses by shuffling trial order or examining the influence of future responses. 

Additional controls 

Most experimentalists interested in studying serial dependence intentionally utilize 

stimulus sequences with a roughly uniform distribution of trial-by-trial stimulus transitions (e.g., 

P(∆S) is uniform). For a variety of factors including inadequate randomization due to low trial 

counts or the introduction of intentional structure into the distribution, this assumption is often 

violated to varying degrees (He et al., 2010; Chopin and Mamassian, 2012; Maus et al., 2013). 
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To determine how non-uniform stimulus sequences affect measurements of serial dependence, 

we additionally simulated an analysis pipeline using sequences that feature positive (+) and 

negative (-) autocorrelations. 

The fundamental concern that motivates including simulations with autocorrelated 

stimulus sequences is that studies attempting to reveal attractive biases to past stimuli or 

responses may instead only reveal artifacts of their analysis techniques where no biases are 

present. To assess these concerns, we additionally generate responses where neither stimulus or 

response serial dependence were implemented to provide a ground-truth case where no biases 

should be observed (see Figure 2-1, decoding).  

 To account for the possibility of a repulsive bias from the stimulus itself, for some 

experiments we inserted an additive DoVM repulsive bias centered on the previous stimulus with 

width 1 and variable amplitude.  

Psychophysical Study 

 18 participants completed between 192 and 488 (380 ± 15.2, mean ± SEM) trials of a 

delayed orientation report task. All participants provided informed consent, had normal or 

corrected to normal vision, and were compensated either in course credit or at a rate of $10/hour. 

Participants were instructed to fixate on a black fixation cue that was present at the center of the 

screen 0.5° (degrees of visual angle) and was visible throughout the entire experiment. The trial 

began with a 1500 ms ITI featuring only the fixation point. Then, two foveally presented 

oriented gratings subtending 1.5 to 23° degrees of visual angle were presented in succession 

separated by a 1000 ms inter-stimulus-interval (ISI). Each stimulus had a randomly oriented 

grating (2 cycles/°, 0.8 Michelson contrast) that was smoothed by a 2D Gaussian kernel with 

σ=0.5°. Each stimulus was presented for 1s and reversed phase every 125 ms. Each stimulus was 
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followed by a 250 ms filtered noise mask [flow=0.25, fhigh=1.0 cycles/°] that changed once after 

125 ms. After the second item, a retro cue (the numbers ‘1’ or ‘2’) indicated the target most 

likely to be probed (80% validity). On 1/6th of trials a neutral (‘X’) was presented in lieu of a 

retro cue (both items equally likely to be probed). The retro cue was followed by a blank delay 

period 2500 ms. Participants then controlled a black response dial (using the “ASDF” buttons on 

a standard QWERTY keyboard) and they were given between 500 and 5000 ms to match the 

orientation of the probed stimulus. After pressing the space bar to confirm their response or 

timing out, the dial disappeared, and feedback was provided for 2000 ms by displaying the 

unsigned error in degrees and turning the response dial green if participants were closer than 10° 

and red otherwise.  

Results 

 Serial Dependence Without Cardinal Bias 

 We first analyzed responses in a model without context-independent biases featuring 

either stimulus serial dependence, response serial dependence, or no serial dependence (columns 

Left, Center, Right respectively, Figure 2-2). For this simulation, and unless otherwise noted, we 

use κbase = 8 and therefore κuniform = 12. The first row shows biases relative to the previous 

stimulus and reveals that trials with true stimulus bias (Figure 2-2A) show a larger stimulus (∆S, 

black curve) relative to response (∆R, teal curve) bias. We additionally observed a larger 

response bias when the underlying source of the bias is towards the previous response (Figure 2-

2B). Together, this suggests that, in the absence of context-independent biases, the relative 

magnitudes of stimulus/response serial dependence is a good proxy for the dominant source of 

the bias.  
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Critically, the only artifactual bias occurs when examining ∆RN+1 when there was a 

genuine bias response bias (Figure 2-2E). This demonstrates that cardinal or other history 

independent biases are not necessary to observe artifacts in analyzing response biases in the 

presence of true response dependence and suggests that such an artifact is an indicator of a bona 

fide bias in the data. We explore why this N+1 artifact arises in the next section.  

The N+1 response bias artifact  

Ensuring that there is no bias toward future responses (i.e. the  N+1 trial) has been 

suggested as a valuable control when evaluating response biases (Pascucci et al., 2019). 

However, as noted above, we find an attractive bias when sorting trials by ∆RN+1 when there is a 

true response-based serial dependence effect. To understand why this bias occurs, we first 

identified an important distinction between sorting trials based on the past versus future 

response. Importantly, respN-1 is independent of stimN and accordingly P(∆RN-1) is uniform 

(Figure 2-3A). However, respN+1 is not independent of stimN because it is influenced by a prior 

centered on either stimN or respN (depending on the source of the bias) resulting in a highly non-

uniform distribution (Figure 2-3A, P(∆RN+1)). To explore why the ∆RN+1 spurious bias occurs, 

we considered two possible outcomes on the current trial, an error CW or CCW relative to the 

true stimulus. For the purposes of this visualization, we used the average absolute error of our 

unbiased observer, |𝐸|̅̅ ̅̅ = 7.8°. For observers exhibiting response-based history biases, these 

CW/CCW errors generate distinct priors (Figure 2-3B) that differentially shape future responses. 

These priors shift P(∆RN+1) towards the current response (Figure 2-3C). The difference in 

relative probabilities of the previous response error multiplied by the average response error 

(|𝐸|̅̅ ̅̅ ) perfectly captures the measured “spurious” response bias (Figure 2-3D, 2-2E). Thus, 

spurious biases measured by examining the influence of the N+1 response are expected if the 
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underlying source of the bias is a prior centered on the preceding response. Because of this, 

examining the N+1 influence is not a pragmatic control analysis and researchers should instead 

opt for a shuffled trial sequence which does not exhibit spurious biases when response biases are 

present in a dataset. 

 
Figure 2-2 Biases of simulated observed without context independent biases. 

Stimulus (black) and response (teal) bias curves for all response simulations. (Left, A,D,C) column 

corresponds to responses generated with an attraction towards past stimuli, (center, B,E,H) column features 

responses attracted towards past responses, and (right, C,F,I) column has no history biases. (Top, A-C) row 

computes ∆θ relative to previous trial, (middle, D-F) row computes ∆θ relative to future trial, and (bottom, 

G-I) row computes ∆θ relative to the previous trial after shuffling the stimulus order. Both A and B show 

significant attractive biases towards past stimuli and responses with larger attractive biases towards the 

underlying source of the bias. We additionally observe an attractive bias towards the future response E that 

is an artifact of our sorting procedure. *, p<.05; **; p<.01; ***, p<.01, Bonferroni corrected for 9 stimulus 
conditions; R, response bias significantly greater than stimulus bias, S, stimulus bias significantly greater 

than response bias. 
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Figure 2-3 The N+1 response bias artifact. 

A. P(RN-1), gray, is uniform but P(∆RN+1), magenta, shows an overrepresentation for small changes. 

Additionally shown is P(∆RN+1) for stimulus serial dependance (black trace). B. hypothetical priors 

following a misperception of the average magnitude for our model (7.8°) in the CW or CCW direction. C. 

P(∆RN+1) on trials with CW or CCW misperceptions are shifted relative to each other. This shifting does 

not occur when the bias source is the stimulus instead of response (black traces) D. The average 

(unsigned) error multiplied by the difference in the P(∆RN+1) for CW and CCW responses captures the 

measured spurious bias. 

 

Serial Dependence with Context Independent Biases 

 We next analyzed serial dependence after additionally including cardinal bias and the 

oblique effect at encoding. Both the precision κ and expected value μ were modulated by the 
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stimulus identity resulting in an encoding process that showed characteristic bias and variance 

patterns of cardinal bias and the oblique effect (Figure 2-1). The result of this biased encoding 

process was then modulated by the same Bayesian prior as used in the previous section. When 

analyzed, the resulting responses show an increased response bias and a substantial ‘spurious’ 

response bias in the absence of any history biases (Figure 2-4A-C) demonstrating that context-

independent cardinal biases can introduce an artifact as suggested previously (Fritsche, 2016; 

Pascucci et al., 2019). 

This confound is more concerning than the ∆RN+1 bias we found in the previous section 

because an attractive response bias is found even when no underlying serial dependence is 

present in the generated data (Figure 2-4C) or when trial order is shuffled (Figure 2-8A). 

Previous studies have tried to address this bias by regressing out the stimulus specific bias from 

either the errors or the responses. This has generally been achieved by fitting either a higher 

order polynomial or sinusoidal function to the raw data. For the purposes of this study, we 

utilized a 6-parameter Fourier like composition of sine/cosine functions of varying frequencies 

which is more flexible (see eq. 7). Our use of circular functions avoids edge effects found with 

polynomial fits. We fit this function to errors and subtracted the best-fit function to correct for 

these biases (Figure 2-4D, red dotted-line). This correction substantially reduces any trace of 

systematic biases (Figure 2-4D, green). We opt to correct errors, but not responses, as this allows 

∆RN-1 to reflect the relative location of the previous response. 
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Figure 2-4 Serial dependence in the presence of context independent biases. 

A-C. Response/stimulus biases computed using the raw errors results in a spurious response bias (see Fig 

S1 for all bias curves) D. Context-independent biases can be corrected for by fitting a model to responses 

such that the resulting residuals are not biased as a function of stimulus identity. The light green trace 

(rSD+) is the residuals when history dependent bias (serial dependance) is present when fitting the history 

independent bias model. E-G Response/stimulus biases computed using the residualized errors.  

 

 Correcting for context-independent biases in response errors appears to completely 

remove the presence of spurious biases and returns the relative magnitudes of biases to what is 

expected given their respective sources (Figure 2-4E-G, See Figure 2-8 for bias curves 

corresponding to shuffled and N+1 trials). This is critical as this regression-based approach is an 

effective way to correct for context-independent biases and ensure the presence of measured 

response history biases is not just an artifact. This correction process does nothing to account for 

differences in variability as a function of the stimulus (the oblique effect) but still removes any 

trace of artifactual responses in the shuffled condition. We separately analyzed the influence of 

autocorrelations in the sequence of stimuli presented and found no evidence that they introduce 

new artifacts (Figure 2-9). 
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Cardinal biases cause spurious response biases 

It is not surprising that introducing biased stimulus representations could introduce 

cofounds. In a general sense, this is because ErrorN is dependent on stimN and furthermore ∆R is 

no longer independent of the absolute stimulus value. Why this leads to spurious history biases is 

not particularly intuitive, so we provide a brief demonstration here. First we visualize the joint 

distribution P(StimN, ∆R) which shows the two variables are clearly not independent (Figure 2-

5A).  Note that we are not specifying which trial is the inducer (eg. N-1/ N+1) as this spurious 

bias is unchanged even after shuffling trial order. The conditional distributions P(StimN | ∆R) for 

two subsets of ∆R reveal how dramatically P(StimN) is interdependent on ∆R (Figure 2-5B). We 

can then approximate the predicted spurious bias as the dot product of the normalized rows of 

P(StimN, ∆R) with μcardinal (StimN) (Figure 2-5C, 2-4A) to get the expected bias  

𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝐵𝑖𝑎𝑠 (∆𝑅)  ≈ ∑ 𝑃(𝑆𝑡𝑖𝑚𝑁|∆𝑅) 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙(𝑆𝑡𝑖𝑚𝑁)
𝑆𝑡𝑖𝑚𝑁

  

(Figure 2-5D, black). This process captures the “spurious” response bias from the shuffled 

response distribution (Figure 2-5D, teal). Note that when sorting trials based on the previous 

stimulus instead of responses, P(StimN|∆S), is independent and does not give rise to spurious 

history bias.   
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Figure 2-5 Artifactual serial dependence due to context independent biases. 

A. The distribution of ∆R is not independent of StimN. B. We illustrate the distribution of StimN for the 

subsets of trials highlighted in (A). C. Expected error as a function of StimN. D. Response bias (teal± SEM) 

is captured by the product of P(StimN|∆R) and μ(Stim) (black).  

 

Simultaneous modeling of stimulus and response 

 Two recent studies have tried to disentangle the relative contributions of stimulus and 

response history biases (Sadil et al., 2021; Moon and Kwon, 2022). Using this approach, the two 

functions are fit simultaneously instead of fitting a single two parameter function separately to 

∆S and to ∆R. Theoretically, this should better disentangle the sources of the bias and the 

approach has revealed the surprising possibility that stimuli could simultaneously be repelled 

from the previous stimulus but have an even larger attraction to the previous response (Sadil et 
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al., 2021; Moon and Kwon, 2022). This approach is interesting but may be problematic as the 

two regressors are highly collinear, which poses a challenge for interpreting the fit parameters. 

We applied this approach to two simulated datasets, our full model featuring cardinal bias and 

correction for that bias, and a new model which introduces repulsion from the previous stimulus 

(see Methods, Joint Bias Parameterization). First, we visualized the average individual fits to 

our corrected errors (as presented in Figure 2-4C) and note that while our modeling approach 

correctly captures the predominant bias source, the non-causal source is still of a similar 

magnitude (Figure 2-6A, left). When we apply our joint fitting procedure to the same data, we 

are better able to capture the true underlying source of the bias (Figure 2-6A, right). To compare 

the effectiveness of these alternative approaches, we conducted a power analysis for detecting 

significant biases while varying trial counts and precision (see Methods). First, we note that our 

power to distinguish between stimulus and response biases was higher for low precision 

participants across model types (Figure 2-6B). Critically, however, we note that the independent 

model consistently detects a significant effect of the non-inducing feature (Figure 2-6B, top) 

while the joint model is much less likely to detect a significant non-causal effect (e.g., Figure 2-

6B, bottom, ∆S is close to 0% power for the joint model given true response serial dependance). 

This suggests the joint model is better powered to avoid Type II errors. See Figure 2-11 for a 

power analysis further broken down by trial count.  
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Figure 2-6 Simulated outputs of joint and independent model fits. 

A. Fit magnitudes for independent and joint model fits. B. Power analysis across a range of k values for 

independent and joint models. Power is the % chance at finding a significant effect with n=30 participants 

at α=.001.  ∆∆ refers to direct comparison of magnitude of ∆S and ∆R (paired t-test). C. Bias curves for an 

observer featuring stimulus repulsion, additional curves Figure S3. D. Joint fit is able to capture magnitudes 

and signs of true biases while independent model fails to separate the two. E. Power analysis reveals 

challenges in calculating bias magnitudes when the two competing forces are of approximately equal (0 

power for ∆R at k=8 for independent model. Expanded power analysis presented in Figure S4. 

 

 We next applied the same approach to an observer featuring repulsion from the previous 

stimulus implemented at encoding to determine how well the joint/independent models captured 

these opposing effects. This is challenging because stimulus repulsion acts to counteract the 

influence of response attraction (Figure 2-6C, Figure 2-10). We found the joint model was better 

able to capture the underlying bias source (Figure 2-6D) and generally had much better power at 

distinguishing between their influences across a range of conditions (Figure 2-6E, bottom, Figure 

2-11). This power analysis revealed an interesting phenomenon that may be common in the serial 

dependance field. For the independent model, particular values of k led to stimulus and response 
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biases that largely counteracted one another leading to 0% power (Figure 2-6E, top). 

Importantly, the joint model was able to reliably detect response biases over this same range 

(Figure 2-6E, bottom). This idea of opposing attractive and repulsive biases could suggest why 

null or weak results are common in studies of serial dependance and may provide a new avenue 

to analyze existing datasets. 

Application to Empirical Data 

We conclude by applying the techniques and principles developed above to an existing 

unpublished dataset. Participants (N=18, 6840 trials total) viewed a sequence of two oriented 

gratings presented foveally in succession and reported one of the stimuli by rotating a response 

dial with the keyboard after a 3.5s delay period. This experiment included partially valid retro-

cues, the full details of which are described in the Methods and schematized (Figure 2-7A, 

Figure 2-12A). We first noted that responses showed strong context-independent biases that were 

non-sinusoidal (Figure 2-7B, gray). We first attempted to fit context-independent biases using a 6 

parameter Fourier-like function as with our simulation, but found it was a poor match with large 

residuals (Figure 2-7B, light green). To fully capture the structure, we instead opted for a 12-

parameter version which achieved a much tighter fit and smaller residuals (Figure 2-7B, dark 

green). We then examined history biases non-parametrically for the N-1 trial with and without 

shuffling trial order. For the shuffled responses, the correction procedure removes a spurious 

response bias seen in the raw responses (Figure 2-7C, bottom). The In Order trials show strong 

stimulus- and response-based biases (Figure 2-7C, top). We next examined stimulus and 

response biases both separately and using a joint model. To improve our power, we bootstrapped 

responses by randomly resampling 360 trials with replacement for 1024 surrogate participants. 

Participants showed strong attractive biases when sorting by ∆SN-1 & ∆RN-1 (Figure 2-7D, left). 
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Critically our correction procedure removed the context-independent bias artifact (Figure 2-7C, 

bottom-right). Consistent with our previous simulations, we found that response biases were 

inflated for all analyses and are significantly greater than 0 after shuffling when we didn’t correct 

for context-independent biases (Figure 2-12C). When quantifying history biases independently, 

both stimulus and response biases were highly significant, but response biases were significantly 

stronger (Figure 2-7D, left, In Order). Importantly, we did not observe any stimulus or response 

biases for the shuffled trial sequence (Figure 2-7D, left, Shuffle). When we applied the joint 

fitting procedure, we found that only response bias was significantly greater than 0 suggesting 

that response biases are the dominant source of attractive biases in this data set. We thus 

demonstrate that our analysis procedure can be applied to empirical datasets and that 

simultaneously modeling biases can lead to insights otherwise hidden by traditional approaches. 
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Figure 2-7 Application of joint model to empirical data reveals strong evidence for biases centered on the 

previous response. 

A: simplified task schematic. Participants reported 1 of 2 foveally presented stimuli after a delay. 

B: Responses showed strong context-independent biases (gray). These were corrected by fitting a 

12-parameter Fourier based parameterization to the pooled errors (red) resulting in unbiased 

residuals (green). C: Top, N-1, both raw and corrected responses show larger biases when 

sorting by past responses than stimuli; bottom, shuffle, uncorrected responses show a spurious 

response bias after shuffling trial order (left) that is eliminated after context-independent 

correction (right). D: While the independent model suggests both stimulus and response biases, 

joint model reveals bias is driven by responses.  

 

Discussion 

The goal of this modeling work was to provide a comprehensive exploration of methods 

to dissociate stimulus and response biases in the presence of potentially confounding context-

independent biases such as cardinal bias. This work was motivated by an acute interest in 

analyzing response biases combined with a concern that any bias measured could be an artifact 
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of the analysis procedure. We first recap the lessons from our simulations and then discuss 

considerations that need to be made when analyzing such biases in empirical studies. Last, we 

briefly consider the psychological implications of our own empirical findings and recent related 

work.  

We first identified a spurious future bias that is found specifically when sorting by ∆RN+1 

(Figures 2-3). This bias is only observed in the presence of true response biases and is found in 

the absence of (or after correcting for) context-independent biases. This phenomenon is a 

signature of response biases and may be interpreted as evidence for previous responses rather 

than previous stimuli inducing a history bias (and notably this bias does not emerge under 

stimulus induced biases, Figure 2-2D). Importantly, there is no analogous spurious future bias 

after shuffling the trial order before assessing serial dependence (Figure 2-2H). Thus, the 

analysis of ∆RN+1 biases should primarily be used as a confirmatory step for the presence of 

response biases rather than a control for the influence of context-independent biases.  

More problematic are artifacts introduced by context-independent biases (e.g., cardinal 

bias). These can lead to a spurious attraction between shuffled responses (Figure 2-4C). In our 

simulations, the spurious response biases were eliminated after regressing out this bias (Figure 2-

4D, G). These biases emerge due to the influence of context-independent biases on all responses 

which is why shuffling does not remove them (Figure 2-5). When applying this correction 

procedure to our empirical dataset, the cardinal biases we observed were much steeper than the 

sine wave used in our simulation and necessitated additional higher frequency components to 

achieve truly unbiased residuals (Figure 2-7B). We increased the expressivity of our correction 

procedure until the errors sorted by StimN and ∆RShuffle were flat and unbiased (ultimately using a 

model with 12 free parameters). We were then confident that any response biases were genuine 
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and not an artifact. Here, we observed a response bias ∆RN-1 that was significantly larger than 

our stimulus bias ∆SN-1 (Figure 2-7D, Independent Fit).  

Lastly, we found promising results utilizing a joint modeling approach that was 

introduced in a pair of recent studies (Sadil et al., 2021; Moon and Kwon, 2022). Our analysis of 

simulated data showed that despite stimuli and responses being highly correlated, the joint 

approach was generally able to capture the true source of the bias (Figure 2-6 A, D). The 

reliability of this approach was greatly improved when participants were less precise and when 

there were greater trial counts per participant (Figure 2-6B, E, 2-11). Applying this approach to 

our empirical dataset revealed strong evidence for a history bias that originated from responses, 

not stimuli (Figure 2-7D, Joint Fit). Surprisingly, this response bias continued back many trials 

offering a new potential interpretation of past studies that have similarly long-acting biases 

(Figure 2-12) (Gekas et al., 2019; Fritsche et al., 2020). Our interpretation of this being a 

response driven bias is strengthened by the fact that other metrics, including the independent fits 

and the ∆RN+1 bias, all aligned closely with metrics observed for our response-driven simulated 

observer. Thus, simulated observers offer a valuable tool to infer the origin of biases given the 

outputs of the various metrics we have tested. 

 Throughout this manuscript, we present stimulus and response driven biases as if they are 

mutually exclusive. In reality, it is equally, if not more likely, that the inducing feature from the 

past is the perceived stimulus (rather than the response per se). This is supported by past work 

that has attempted to directly disambiguate perceived from reported orientations (Cicchini et al., 

2017) or work that has utilized change detection rather than continuous report paradigms 

(Fischer and Whitney, 2014; Fritsche et al., 2017; Sheehan and Serences, 2022). That said, others 

have shown that attraction is not generated unless a stimulus is reported and that attraction may 
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instead be towards the reported rather than perceived location (Pascucci et al., 2019; Sheehan et 

al., 2022). In any case, with continuous report paradigms we often don’t have any means of 

directly accessing the identity of the perceived stimulus and so we opt here to use the more 

general term of “response” throughout this paper as the behavioral response is typically the 

best/only proxy for the internal perceptual representation. Further disambiguating the physical 

act of responding (and the associated motor/decisional circuits) from the perception of the 

stimulus will require careful experimental designs or neural measures that can assess internal 

representations at different stages of information processing. Thus, finding a bias driven by past 

responses (rather than physical stimulus identity) as we did primarily suggests that attraction is 

toward a post-retinal representation or transformation of the stimulus. In retrospect this claim 

may seem obvious, as the brain has no access to the stimulus per se and will always be relying on 

internal representations that deviate from the original stimulus feature (Lettvin et al., 1959; 

Eggermont, 2007; György Buzsáki, 2019).  

Now that there are several studies showing strong evidence for response over stimulus 

driven effects (Sadil et al., 2021; Moon and Kwon, 2022), the goalposts have shifted to further 

disambiguate exactly which response related components are driving these effects. Change 

detection paradigms or generally un-correlating responses from perception offer promising 

avenues to explore this possibility further (Braun et al., 2018; Sheehan et al., 2022; Zhang and 

Luo, 2022). That said, we argue here that examining biases just as a function of the physical 

identity of the previous stimulus is ignoring the important role of other biases in shaping the 

perception of current and past stimuli and may lead to an under and mismatched measurement of 

the true underlying bias (Pascucci et al., 2019; Sadil et al., 2021). 
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 In the behavioral experiment we report here, there was no direct correlation between the 

final response and motor action as the probe was initialized in a random location and was 

controlled by button presses. Thus, we can likely rule out a purely motor origin for the attractive 

biases that we observed. The nidus of the attractive effect could instead be residual traces tied to 

memory maintenance, a distinct circuit directly tied to representing sensory history, or plausibly 

a sensory effect tied to the response or feedback signal presented at the end of the trial (Akrami 

et al., 2018; Barbosa et al., 2020). Only through additional experiments and analyses that control 

for these additional possible sources of perceptual biases can we further refine our understanding 

of these processes.  

 By demonstrating that the influence of context-independent biases can be reliably 

corrected for – while simultaneously highlighting the concerns raised if they are not – we hope to 

guide future endeavors to identify the true source of history biases. In our own experiment, we 

found strong evidence for an attractive bias centered on the previous response rather than the 

physical identity of the stimulus. We further found evidence for this attraction extending back 6 

trials and separate evidence for a repulsion from the physical identity of the stimulus for trials 2, 

3, 5 and 6 trials back. This pattern matches prior observations and supports the idea that the 

stimulus presentation leads to a repulsive bias at encoding while more high-level decisional 

representations impose a prior of stability (Pegors et al., 2015; Papadimitriou et al., 2016; Braun 

et al., 2018; Pascucci et al., 2019; Zhang and Alais, 2020; Sadil et al., 2021; Moon and Kwon, 

2022; Sheehan and Serences, 2022; Zhang and Luo, 2022). Such a framework additionally fits 

with general frameworks like efficient encoding and Bayesian inference seen in perception (Wei 

and Stocker, 2015) and pattern separation and completion seen in various networks across the 

brain (Cayco-Gajic and Silver, 2019). 
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Supplemental Materials 

 

 
Figure 2-8 Bias curves for N+1 and shuffled distribution for corrected (A) and uncorrected (B) errors 

from Figure 4. 
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Figure 2-9 Non-independent Stimulus Sequences.  

We simulated the analysis of observers where stimulus sequences were non-independent and exhibited 

strong positive (top left) or negative (bottom left) autocorrelations. Despite the presence of these strong 

stimulus autocorrelations, their presence alone does not introduce any additional artifacts into our analysis 

procedure. 
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Figure 2-10 All bias curves for observer with stimulus specific repulsion.  

Note that the left column is an observer that is both repelled at encoding and attracted at a later Bayesian 

integration stage (aligning with previously proposed models, Fritsche et al., 2020).  
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Figure 2-11 Expanded power analysis.  

Expanded power analysis for observers without (top) and with (bottom) stimulus repulsion at encoding. 

Here we split out observers based on the number of trials completed per observer. Power values correspond 

to α=.001 for an experiment run with 30 participants.  
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Figure 2-12 Expanded empirical analysis. 

A. Full task schematic from delayed report paradigm. A Probabilistic retro-cue (80%) valid was presented 

immediately after the second item followed by a 100% valid probe and an untimed continuous report task 

controlled via the keyboard. Probe location initialized to a random location on each trial. B. Expanded 

stimulus and response bias curves for corrected and uncorrected errors for different number of trials back 

and using shuffled distribution. C. Quantified bias fits for both independent (no outline) and joint (magenta 

outline) models. Correcting errors removes spurious biases in the shuffled distribution (right, shuffle). Joint 

model reveals attraction to reported stimulus going back several trials.  
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Chapter 3 Temporal dependencies across 

perception, decision, and action 
 

 

 

Abstract 

 Perceptual reports across a range of tasks are attracted towards recent stimulus features. 

This phenomenon is termed serial dependence and could arise from exposure to a natural world 

that changes slowly over time. Thus, adopting a prior of temporal stability – and allowing recent 

events to bias the processing of current events – might provide a powerful mechanism to 

improve the fidelity of information processing (particularly under high uncertainty). Efforts to 

identify the origin of serial dependance have shown that stimulus strength, attention, working 

memory, and motor responses all impact the magnitude of serial biases. Thus, rather than a 

single mechanism, serial dependence may arise due to a canonical prior for stability present 

across distinct circuits that collectively support different cognitive functions. To test this 

hypothesis, we systematically manipulated visual stimulation, attention, task relevance, and 

motor output in a series of working memory experiments. In addition to a standard spatial 

working memory task, we also used a novel “compass” task that used abstract, semantic cues to 

indicate the remembered location, critically allowing us to disambiguate memory items from 

physical environment features. We found robust and generalizable attractive biases towards past 

responses regardless of visual stimulation, as well as biases towards unreported or attended 

stimuli. Additionally, the strength and timescale of biases depended on whether they were 

encoded visually or semantically. Across 4 experiments, we found evidence for concurrent biases 

that are both visual and decisional in nature. Our results suggest that biases for temporal stability 
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are not restricted to one level such as early sensory processing. Instead, these biases are likely 

present at multiple levels of the stimulus-response loop, where they act at different timescales to 

support domain-specific cognitive operations. 
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Introduction 

 Serial dependence is the phenomenon whereby perceptual reports are attracted towards 

past sensory experiences or actions. This bias allows perception to better match the statistics of 

naturally occurring stimuli which tend to be stable across time (and timescales) (Dong & Atick, 

1995; Felsen et al., 2005; van Bergen & Jehee, 2019). Thus, leveraging the stability of sensory 

inputs to continuously inform information processing may reduce noise and increase overall 

efficiency (Cicchini & Burr, 2018; Fischer & Whitney, 2014; Kiyonaga et al., 2017; Sheehan & 

Serences, 2022). Unlike repulsive effects such as the waterfall illusion or surround tilt illusion, 

which are generally well explained by stimulus specific adaptation and divisive normalization 

respectively (Benucci et al., 2013; Clifford, 2014; Schwartz et al., 2009), a consensus on the 

origins of serial dependence is still lacking.  

 Identifying the mechanism(s) that support serial dependence is challenging because the 

phenomenon is observed in many domains and is mediated by a host of cognitive factors: serial 

dependence arises when processing both low-level and complex features  (Fischer & Whitney, 

2014; Suárez-Pinilla et al., 2018), in multiple sensory domains (Fornaciai & Park, 2019; Zhang 

& Luo, 2023), and even when processing semantic or social knowledge (Collins, 2022). This 

ubiquity across stimulus and cognitive domains has also led to apparent contradictions in the 

literature. For instance, while serial dependence effects seem to emerge immediately after 

stimulus presentation in some studies (Cicchini et al., 2017; Fischer & Whitney, 2014; Manassi 

et al., 2018), serial dependence only emerges after a memory delay in others (Bliss et al., 2017; 

Papadimitriou et al., 2015),. These seemingly contradictory findings might be explained by 

relatively subtle changes to stimulus properties or task design. For example, when using low 
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contrast stimuli that induce high degrees of perceptual uncertainty, existing data suggest that 

changes in sensory processing are akin to anti-adaptation (Fischer & Whitney, 2014) and 

resemble ‘visual persistence’ effects that might contribute to attraction. On the other hand, for 

high contrast stimuli that minimize perceptual uncertainty, data suggest that serial dependence is 

more closely tied to activity-dependent plasticity in memory circuits (Barbosa et al., 2020; Bliss 

& D’Esposito, 2017) or to shifts in attentional gain (Papadimitriou et al., 2016).  

  In addition to the influence of sensory uncertainty and memory maintenance, the relative 

contribution of other factors has also been debated. For instance, some work suggests that serial 

dependence is largely due to changes in perceptual processing (Collins, 2020; Fischer & 

Whitney, 2014; Fornaciai & Park, 2018; Liberman et al., 2014; Murai & Whitney, 2021; Suárez-

Pinilla et al., 2018) whereas others suggest a decision or response-level account (Ceylan et al., 

2021; Feigin et al., 2021; Moon & Kwon, 2022; Pascucci et al., 2019; Zhang & Alais, 2020) see 

also (Cicchini et al., 2021). Similarly, although attention has been shown to enhance serial 

dependance (Bae & Luck, 2020; Fischer & Whitney, 2014; Fritsche & de Lange, 2019; 

Makovski & Jiang, 2008; Suárez-Pinilla et al., 2018), attractive biases have also been observed 

for passively viewed or even task irrelevant features (Fornaciai & Park, 2018; Murai & Whitney, 

2021). Lastly, the neural basis of serial dependence are under debate with different studies 

pointing to sensory (Ranieri et al., 2022), association (Akrami et al., 2018), working memory 

(Barbosa et al., 2020), motor (Neto & Bartels, 2021), executive (Schwiedrzik et al., 2014), or 

more generally post perceptual (Hajonides et al., 2023; Papadimitriou et al., 2016; Sheehan & 

Serences, 2022) origins. 

Thus, many attempts have been made to understand how serial dependencies arise with a 

focus on identifying a specific level of the processing stream and which factors do or not matter 



117 

 

for a specific experimental paradigm. Rather than explaining how a single process could give 

rise to all of these observations, here we explore the possibility that serial dependence is a 

canonical feature of information processing across perceptual and cognitive domains. Natural 

visual experience is quite stable across time, and these statistical dependencies are internalized 

from the earliest stages of development (Blakemore & Cooper, 1970; Dong & Atick, 1995; 

Felsen et al., 2005; Mayer, 1977; van Bergen & Jehee, 2019). Additionally, long term behavioral 

goals require the application of self-directed attention and working memory to further stabilize 

and hold constant neural representations of relevant features. Thus, internal representations of the 

world are apt to be even more stable than the outside world. In addition to perceptual and 

mnemonic processing, motor responses also exhibit a high degree of stability: even the simplest 

mobile organisms show a preference for stability in heading direction (e.g. Levy flights) to 

optimize foraging patterns given limited prior information (Deneubourg et al., 1990; Hays et al., 

2011) for ants and jellyfish respectively. Therefore, organisms have a preference and fitness 

pressure towards stability at the levels of sensation, internal experience, and action. Temporal 

dependencies are a natural feature of neural information processing, arising from local properties 

such as tonic firing, short term synaptic plasticity, and recurrent feedback across areas. Serial 

dependence may be the result of these underlying mechanisms operating at multiple levels of 

processing (Bliss & D’Esposito, 2017; Burr & Cicchini, 2014; Urai & Donner, 2022; Zhang & 

Luo, 2023). 

 We sought to formalize this framework of stability being a universal property across 

several levels of processing. As experimenters, we typically only have access to the stimuli and 

the responses made by the individual (Figure 3-1, Observed States). Thus, to properly model all 

cognitive steps utilized in a typical perceptual-report task (Figure 3-1, Internal States) a 
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challenging inference problem is created. A stimulus is encoded by sensory circuits and relayed 

to executive areas which hold contextual information (e.g., task objectives) and direct future 

actions. Depending on task demands, this stimulus information may need to be held in memory 

and converted to a useful representation or plan baked on task contingencies. Finally, 

participants make some sort of motor response which may require integrating new sensory 

information with existing representations of task variables. Thus, any effects of sensory history 

could emerge from any of these prospective levels of information processing (recursive arrows, 

Figure 3-1, Internal States) unless task manipulations specifically target a given level of 

processing. 

 
Figure 3-1 Inverse problem of behavioral inference.  

As researchers interested in the internal workings of perception and decision making, we can devise 

experiments to present stimuli to participants and observe their responses. While such an approach is 

powerful, the observed states are quite limited with respect to the levels of internal states. For example, for 

a given perceptual report task, a participant’s behavior will likely draw on their encoding of the stimulus 

through sensory circuits, maintaining and restructuring of this sensory signal to a task relevant format, and 

planning and executing the appropriate response to achieve good performance. This processing stream will 

utilize many conceptual levels of processing including “sensory”, “executive”, and “motor”. In the context 

of measuring serial dependence, it is possible that autocorrelations across responses could arise from any 

of these levels unless task designs carefully control around this.  
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The goal of our modeling framework is to better understand which processes are likely to 

contribute to an observed serial bias. To do so, we examined serial biases using a novel paradigm 

that mixes typical low-level stimuli with abstract representations. This allowed us to disentangle 

biases that could emerge from low-level encoding from those requiring a less direct mapping to 

target feature. We found that serial dependencies occur for stimuli encoded with semantic cues 

ruling out a purely sensory origin of the effects, but also found effects are stronger for low-level 

features suggesting a contribution of sensory factors as well. We separately examined the role of 

past actions/reports and again found that while attraction was driven largely by the previous 

report, history effects were still detectable in some cases when no report was made, or the 

inducing stimulus was task irrelevant. Last, we found that history effects for more abstract 

stimuli have a longer time constant, a sensible consequence of biases emerging at multiple levels 

of the sensory-response loop. In sum, we take these findings as evidence that serial biases 

emerge from integration at many stages across the processing stream and conflicting findings 

may share a conceptual motivation but not a neural instantiation. 

Results 

We devised a “compass” working memory task that allowed us to disentangle the role of 

bottom-up sensory drive from the feature being remembered and reported. Put simply, if serial 

dependence exclusively relied on actions occurring at encoding, then one should not see 

attractive biases operating on stimuli encoded through wholly different processes. On standard 

“dot” trials, participants encoded and reported the location of a briefly presented black dot. In 

this condition there was a direct correspondence between stimulus and reported feature. On 

semantic “compass” trials, the to-be-remembered location was indicated by one of 16 possible 

abbreviations corresponding to a direction on a compass rose (Figure 3-2A). The compass 
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stimulus corresponds to an abstract representation of the relevant feature – a spatial location – 

that has no physical relationship with the target location. By including stimuli that must be 

encoded and processed in vastly different ways but ultimately map onto the same 

representational space (physical location on a ring) we aimed to better identify components 

giving rise to serial dependencies. For example, if serial dependencies are only observable 

between “dot” trials, this would argue that low level sensory encoding is a necessary component 

for serial biases. Alternatively, if there were no discernible differences in serial dependencies 

between the stimulus types, then this would suggest that only overlap in decisions or response 

plans is relevant. Across five experiments, we manipulated stimulus type, task timing, and the 

method of report. We found evidence consistent with both sensory and non-sensory contributions 

to serial dependence and argue that serial dependence can emerge at many levels of the stimulus-

response loop. 

Measuring serial dependence 

We first examined classic serial dependence effects in our dataset, determined by how the 

identity of past stimuli impacted responses on future trials. To examine serial dependence, we 

quantified errors on the current trial as a function of the previous stimulus (Δθ=θn-1 - θn). In 

experiment 1, participants (n=19) completed 8.46±1.9 blocks of 96 trials. On each trial, the color 

of the compass cue indicated whether the “dot” location (red) or “compass” coordinates (white) 

should be reported after the delay (Figure 3-1A). Consistent with prior work, we found that 

spatial memory reports were attracted towards previously encoded spatial positions (Figure 3-1B, 

light blue) (Bliss et al., 2017; Papadimitriou et al., 2015). This attraction was well parameterized 

by a derivative of Von Mises function (DoVM, see Methods) and had an amplitude that was 

significantly greater than 0 (amp=1.75±0.327, t(18)=5.35, p=3.633e-05).  
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Serial dependence for semantic stimuli and across stimulus types 

We next examined reports of “compass” stimuli. Overall accuracy was not different 

between the two stimulus types and responses were significantly more precise and quicker 

around cardinal directions (North, South, East, West) (Figure 3-7C-D). Responses also showed 

large stable biases as a function of target angle (generally repulsion from these cardinal 

directions) that differed between stimulus type but were consistent across individuals (Figure 3-

7A). As we are primarily interested in quantifying how short-term history impacts responses, we 

fit a Fourier-like function to the distribution of errors made by each participant as a function of 

stimulus type and direction. All analyses are performed on the residualized errors (Figure 3-7B).  

We observed a significant attractive serial dependence between consecutive compass 

trials suggesting serial biases do not only operate on purely sensory driven representations 

(amp=0.798±0.271 t=2.95, p=0.008296, Figure 3-2C). A separate cohort completed the same 

task but with compass and dot trials separated by blocks rather than determined by a change in 

the color of the compass cue (Experiment 1b “blocked”). Under these conditions, we continued 

to observe an attractive bias for both dot (amp=1.48±0.18, t(12)=8.03, p<1E-5) and compass 

(amp=1.13±0.19, t(12)=5.97, p<1E-4, Fig 3-8) stimuli. Next, we asked whether there was 

significant serial dependence across stimulus types (dot, compass). While attraction has been 

found between stimuli of different visual types (eg. orientation of a Gabor vs. the symmetry line 

in a dot array, (Ceylan et al., 2021)) they have generally not been found when the attended 

feature is of a different class altogether (eg. orientation vs. size, (Fritsche & de Lange, 2019); but 

see (Van der Burg et al., 2021) ). Here, the visual encoding of our two stimulus classes (dot and 

compass) has absolutely no cross correspondence (as the compass must be processed 

semantically) but the imagined locations occupy the same space. Despite the differences in 
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sensory processing, we observed robust serial attraction between both cross stimulus sequences 

(Dot->Compass, amp=1.13±0.233, t(18)=4.85  p=0.0001114 and Compass->Dot, 

amp:1.94±0.222, t(18)=8.75  p=4.343e-08, Figure 3-2B-D). A mixed effects linear model 

revealed a significant effect of the current trial type such that the dot stimuli exhibited larger 

biases (coefficient = 1.14±0.38, p=.003, Figure 3-2D) with no effect of the previous stimulus 

type or interaction between the two. Thus, it seems that serial dependence can be observed 

towards recently attended features regardless of the manner in which they are encoded but tend 

to be stronger for stimuli that directly indicate the encoded feature rather than require semantic 

processing.  
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Figure 3-2 Serial dependence tracks previous responses.  

A. Experiment 1 & 1b task schematic. Participants are presented with two stimuli on each trial: a concrete 

“dot” stimulus where the dot corresponds to the target location and a semantic “compass” stimulus were 

coordinates indicate the target location. Trial type is indicated by the color of the compass coordinates and 

were intermixed (Expt. 1) or blocked (Expt. 1b). After a delay, responses were made using a joystick on a 

videogame controller. B. Average bias on “dot” trials as a function of the previous of the previous angle 

shows clear serial dependence. Shading indicate SEM across participants. C. Same as B for “compass trials. 

D. Raw errors were parameterized on a single trial level and showed significant attractive biases in every 

condition. Biases elicited on “dot” trials were significantly stronger however. Error bars correspond to 

SEM. E. Average bias curve collapsing across all current and previous trial types (dot and compass) 

following “standard” responses. F. Average bias curve following “random” responses sorting trials by the 

relative angle of both the stimulus (gray) or the new target location (red). Responses show a strong attraction 

towards the previously reported location but not the previously encoded stimulus. G. Average bias curves 

following “flip” responses. Strong bias is seen by the previously reported location (teal) but not the 

originally encoded location (gray). 
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Serial dependence driven by previous response 

 In experiment 1, on 1/3rd of trials participants were presented with a cue at the end of the 

delay period that instructed them to not report the stimulus presented. Instead, they were to 

report either a location rotated 180° from the target location (“flip” trials) or disregard the 

remembered stimulus and instead move the response cursor to a new faintly illuminated location 

(direction independent of remembered location, “random” trials, Figure 3-2F-G). Only a single 

non-standard response cue (either ‘flip’ or ‘random’) was included in a given block of trials to 

reduce task complexity. Participants were slightly less accurate on (p<1e-5, Figure 3-9A) and 

slower on “flip” trials (p=<1e-6, Figure 3-9B).  

 This manipulation allows us to determine if the attraction towards the previously reported 

stimulus is driven by processes related to the encoding and maintenance of the target, or instead 

processes related to the the act of reporting it. As such, we evaluated the degree to which 

attractive biases depended on the previously remembered stimulus or on the report made. For 

simplicity, we only analyze trials where the current trial required a veridical response (e.g., not a 

“flip” or “random” trial and note that the ordering of trial type is independent of past stimuli). To 

maximize power, we collapse across all current and previous trial types (dot/compass) to get a 

single serial dependence measure following these different manipulations. Following standard 

responses, the previous stimulus and target location are equivalent and we observe an attractive 

serial dependence as reported previously (Figure 3-2E, amp=1.31±.13, t(17)=9.7, p=1.4E-

8).  Following “random” trials participants did not show a significant attraction towards the 

previous stimulus (amp =0.10±0.28, p=.73) and instead showed a significant attraction towards 

the new probed location (amp=1.36±0.20, t(17)=6.68, p=.0000029, Figure 3-2F). We observed a 

similar behavior on “flip” trials where participants were attracted towards the previous target 
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location (1.76±0.26, t(17)=6.68, p=.0000029) but not towards the previously encoded stimulus (-

0.44±0.3, p=.18, Figure 3-2G). 

 These findings are surprising in light of previous stimulus-response manipulations which 

found attraction centered on the previous stimulus, not response when they were 

dissociated(Cicchini et al., 2017). However, they generally fit with work suggesting it is previous 

decisions (rather than the previously remembered item) that drives serial biases (Pascucci et al., 

2019). Even when the stimulus is used in a transformed state (as in flip trials), the remembered 

location does not seem to induce any residual attractive bias (Figure 3-2F, gray). One 

interpretation of this result is that any serial bias towards the previously remembered stimulus is 

completely mediated by that memory being utilized during the previous response. 

 It is somewhat surprising that the “random” response is able to elicit an attractive bias. 

This condition is reminiscent of the 0s delay condition in previous studies (Bliss et al., 2017; 

Manassi et al., 2018)  and work showing negligible impact of the previous delay period  

(Papadimitriou et al., 2015). However, this “random” condition in the present task doesn’t 

require the inducing trial to utilize working or iconic memory as the target remains on the screen 

for the entire response period, leaving the potential drivers of the induced effect to either 

seeing/attending to the response/target or the act of manipulating the response controls. We next 

sought to determine the role of these respective components by manipulating the method of 

response and visual experience during the reporting period.  

Serial dependence across response type 

 In experiment 1, serial dependence clearly tracked the reported location. This bias could 

be driven by a high-level representations of decisions, or alternatively be related to the specific 

motor actions taken (path of thumb) or the visual experience during the response itself.  Prior 
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work has largely shown a dissociation between attractive serial dependence effects and motor 

responses, but these approaches have almost exclusively been in a 2AFC design where the 

standard response was already unrelated to stimulus identify per se (Feigin et al., 2021; Zhang & 

Alais, 2020; Zhang & Luo, 2023). We ran a follow up study to see if we could identify which 

components of the previous response gave rise to the attractive bias while maintaining the 

fundamental structure of our task. In experiment 2, the correlation between motor action and 

reported stimulus was abolished by utilizing a separate response mechanism with a random 

starting point (Figure 3-3A). Under these conditions serial dependance persists regardless of the 

current or previous stimulus type (Figure 3-3A-C, all amplitudes p<.05), suggesting a minimal 

role for pure motor hysteresis. In experiment 3, the stimulus was not reported but rather 

compared with a probe stimulus (CW/CCW judgment, Figure 3-3D, Figure S4C). We continued 

to observe attractive serial dependence on dot trials (Figure 3-3E, p<.005) but there was no 

significant effect on compass trials (Figure 3-3F, p>.05). However, when we collapsed across 

previous stimulus types, we did observe a significant attractive effect of compass trials (p=0.013) 

suggesting that - as in experiment 1 - the effect is smaller but not abolished for the semantically 

encoded compass stimuli. Notably, we also observed motor biases irrespective of the previous 

stimulus identity that were overall repulsive but also exhibited a “win-stay lose-switch” tendency 

(note that stimulus non-specific feedback was provided, see Methods) often seen in 2AFC 

designs (Figure 3-10E, (Abrahamyan et al., 2016; Akrami et al., 2018)). Together, experiments 

2-3 demonstrate that the attractive effects towards the previous response cannot be reduced to 

either the motor action alone. Thus, biases likely operate on a more general representation of the 

previous decision irrespective of the method of report. 
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 We separately examined the role of the visual experience of the response. While previous 

studies have typically tried to make the method of response divergent from the remembered 

stimulus, there is still typically substantial overlap in the feature of interest (e.g., orientation, 

(Ceylan et al., 2021)) or more generally between the visual experiences of the response per se. 

Thus, many effects attributed to the previous stimulus could easily also be explained by the 

visual experience of the response (which is highly correlated). To better control for this aspect, 

we sought to remove any potential visual confounds from our response period. Specifically, 

while the compass stimulus did not have a visual correlation with the target location, the 

response mechanism in experiments 1-2 (and experiment 3 to a lesser degree) elicited visual 

stimulation similar to the presentation of a dot stimulus. To avoid this factor, in experiment 4 we 

trained participants on using a response joystick without seeing their response on the screen 

(Figure 3-3G). Under these conditions we observed significant serial dependence in the compass 

followed by dot trial condition (Figure 3-3H, p=.001) but not in the other conditions (but note 

that attractive effects for compass stimuli do emerge from trials further back, Figure 3-12). Thus, 

the attractive effects we observe towards the previous stimulus cannot be solely attributed to 

motor activity (experiments 2&3), past memory maintenance (experiment 1, “random” 

response), or even visual experience (experiment 4, following compass stimuli). Notably 

however, across experiments attraction was significantly stronger on “dot” than “compass” trials 

(Figure S5, t(89)=2.82, p=0.006) potentially signaling sensory drive could still be a contributing 

factor.  

 Our analysis additionally revealed some notable effects worth reporting. First, in 

Experiment 2 we observed an attractive bias towards the starting location of the probe. Note that 

this bias was tuned (only attraction was seen when the starting position was within 90°) and that 
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participants were required to move the dial before advancing (Figure 3-10A, p=.0002). This bias 

could be a general ‘laziness’ tendency to under-rotate the probe, but more likely reflects a subtle 

visually induced bias towards the response probe onset. In experiment 3 we additionally 

observed a motor/response bias with participants reflecting a trend to alternate responses 

regardless of the current stimulus offset (β=-0.037±0.013, p=.006, Figure 3-10E). Participants 

were provided feedback after each response (correct/incorrect) and we additionally observed a 

“win-stay lose-switch” tendency (β=0.043±0.015, p=.005, (Abrahamyan et al., 2016; Akrami et 

al., 2018)). Thus, we found a coexistence of an attractive bias towards previously remembered 

stimuli with a repulsive bias towards past responses. Lastly, in both Experiments 2&3 we 

observed larger effects on trials with longer delays for dot but not compass stimuli (Figure 3-10 

B,D). This finding matches previous findings for spatial working memory (Bliss et al., 2017; 

Papadimitriou et al., 2015) and suggests a role for either sensory uncertainty at the end of the 

trial or memory maintenance circuits in mediating our observed biases, at least for dot trials.  

 In sum, our results so far have been largely consistent with a “decisional level” bias as 

proposed in an account by Pascucci et al., 2019 with separate evidence that sensory and/or 

memory circuits play an important role. That said, we have yet to examine if any additional 

biases persist towards stimuli that were not attended or reported. 
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Figure 3-3 Serial dependence across response type.  

A. Experiment 2 task schematic. Experiment 2 utilized a response using timed keyboard presses rather than 

a joystick such that motor action was no longer directly correlated with response. B-C. Bias curves for serial 

dependence across conditions. Shading indicates SEM across participants. All cross conditions are 

significant when parameterizing amplitude with a DoVM function. D: Experiment 3 task schematic. 

Participants judge whether a response probe is CW or CCW relative to the presented stimulus. This design 

eliminates any motor correlation with the target stimulus. E. Average % CCW responses as a function of 

the relative angle of the previous stimulus for “dot” trials. These bias curves suggest a significant attractive 

bias when parameterized. F. Same as E but for “compass” trials. No significant attractive bias was found in 

these two conditions. G. Task Schematic Experiment 4. Participants used a joystick to report the previous 

stimulus but were unable to see the response dot while they were responding. H. Participants exhibited clear 

attraction to previous “dot” stimuli but only following “compass” trials. I. Participants showed no attractive 

biases on “compass trials. 
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Biases towards unreported stimuli 

 In experiments 1-4, we show robust attraction towards the previous stimulus largely 

independent of how it was encoded or reported. When we disentangled the stimulus from the 

response experimentally or manipulated how the response was made, we consistently found an 

attraction towards whatever stimulus was reported. This is true even if the stimulus was never 

associated with a visual experience correlated with the stimulus (as in experiment 4 following 

compass trials). We followed up by asking whether we could observe any attraction to past 

stimuli when they were not explicitly attended or reported.  

 We first examined trials following “drop” trials. Experiments 2-4 featured drop trials on 

20-33% of trials where the fixation point turned red at the end of the delay period. On these trials 

participants simply pressed a button to advance to the next trial (Figure 3-4A). We observed an 

attractive bias towards the previous stimulus following dot stimuli in Experiment 1b (p=.008, 

Figure 3-4B-C) but notably not following compass stimuli or in any other experiment. Note that 

owing to low trial counts/ subject for drop trials, for analyzing trials following drop trials we 

utilize a bootstrap approach pooling across participants (see Methods). It is worth noting that the 

drop condition in Experiment 1b was a much simpler design than our other tasks such that on dot 

blocks, participants could immediately prepare their motor plan towards the dot location. Thus, 

the presence of an attractive bias in this condition without a previous response could likely be 

related to movement preparation.  Conversely, we observed a repulsive bias from unreported dot 

stimuli in experiment 4 in which no motor preparations could be made as the target stimulus was 

not known until the end of the delay period (Figure 3-4B,D). Thus, we find attraction towards a 

previously unreported stimulus only when a straightforward motor plan can be made early in the 
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trial and there are no intervening actions suggesting attractive biases even in the absence of 

responses may be related to response preparation.  

 

 
Figure 3-4 Serial dependence towards unreported stimuli.  

A-D The influence of unreported stimuli from the previous trial (“drop” trails). A. Schematic of what 

participants see at the end of the delay on drop trials. They must press A or SPACE to advance to the next 

trial and are discouraged from making any movement by a warning message. B. Average biases across 

experiment and pervious stimulus type. Values are from bootstrapped participants and errorbars correspond 

to the 95 percentiles of bootstrapped distribution. C. Significant attraction was observed towards previously 

dropped dot stimuli in Expt. 1b. D. Significant repulsion was observed towards previously dropped dot 

stimuli in Expt. 4. E-H The influence of unreported stimuli within a trial. E. Schematic indicating “dummy” 

stimuli on “dot” and “compass” trials respectively. F. Average biases relative to dummy stimuli for “dot” 

or “compass” trials. Note that for green bars, the reported stimulus is “compass” and the inducing stimulus 

is “dot”. Significant attractive biases are seen for compass trials both in Expt. 1 and when collapsing across 

Expts. 1-2 while repulsive biases are seen in Expt. 3. G. Bias curves for dummy stimuli in Expt. 1. H. Bias 

curves for dummy stimuli in Expt. 4. 

 We next examined a control present in all our experiments meant to match visual input 

across trials. On each trial in addition to the target stimulus, there was an unattended item (either 

the dot location on “Compass” trials, or vice versa) that was ignored on either a block 

(experiment 1b) or trial basis (experiments 1,2-4, Figure 3-2A, Figure 3-4E). These unattended 

“dummy” stimuli were neither attended not reported and so offer a useful marker on what 



132 

 

elements are sufficient or necessary to trigger an attractive bias. We first examined the influence 

of “dummy” stimuli on the current trial. 

In experiment 1 we observed a significant attraction on compass trials to the unattended 

dot stimulus (amp = 0.82 ± 0.27, t(18)=3.0, p=.008) but apparently no impact of the unattended 

compass cue on dot trials (-0.08 ± 0.14, p=0.6, Figure 3-4F-G). This suggests that unattended 

and unreported stimuli can induce attractive biases in an automatic fashion. We found similar 

effects when pooling across experiments 1-2 (Figure 3-4F, t(60)=3.2, p=.002). This suggests that 

perceptual reports can be automatically biased towards past visual experiences even when those 

items are task irrelevant and encoded in a different format from. 

Interestingly, in experiment 4 the target item was not cued until the end of the delay 

period such that both stimuli had to be held in memory. Under this condition, we observed 

repulsion of the items from each other (dot amp = -0.54 ± 0.31, t(28) = 1.74, p=0.09; compass 

amp = -1.13 ± 0.23, t(28)=4.91 p=.0004, Figure 3-4H). Thus, in stark opposition to serial biases, 

attention seems to prevent inter-item biases within a trial. More generally, we find while 

attractive biases towards unreported or unattended items are substantially weaker and less 

reliable than reported items on the previous trial, they are significantly more pronounced for low-

level dot stimuli (relative to compass coordinates). This suggests that low level properties may 

be critical for some components of attractive serial dependence.  

Semantic and spatial history traces have distinct time-constants 

 Up until now we have only examined the impact of the immediately preceding (N-1) 

stimulus. Past work has shown that history effects can extend back several trials and in some 

instances lead to repulsion from more distant stimuli (Braun et al., 2018; Collins, 2020; Fischer 

& Whitney, 2014; Fritsche et al., 2020). We extended our analysis of history effects back many 
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trials across all our studies and noted a consistent trend. Sensory dot stimuli showed a strong 

attractive bias on the first trial followed by a repulsive bias extending back several trials (Figure 

3-5D). By contrast, the bias on compass trials is typically smaller on the first trial (Figure 3-5A, 

p=.007) but extends back much further in time (Figure 3-5B-D, p=.000095). To improve power, 

we additionally examined the collective influence of trials 2-5 back and observed a graded effect 

influenced by the stimulus type (Figure 3-5E). The same trend is observed across individual 

experiments (Figure 3-12). Thus, it appears that both the largest attractive (N-1) and largest 

repulsive (N=-2 through -5) biases are found when utilizing low-level sensory stimuli.  

Finally, we examined the impact of this expanded history bias on both uncued (dummy) 

and unreported (drop) stimuli. We found in both cases that unreported dot stimuli elicited robust 

repulsive biases exclusively on other dot stimuli (uncued: Figure 3-5F, t(76)=-4.01, p=.0001 and 

drop: Figure 3-5G,  t(76)=-3.78, p=.0003). This suggests the repulsive bias observed following 

distant is related to an automatic form of perceptual adaptation that is driven by low-level 

sensory representations. 
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Figure 3-5 Timescales of serial dependence.  

A. Serial dependence pooled across all tasks for all combinations of current and previous stimulus type for 

the immediately preceding (n-back=1) trial. B. Same as A for n-back=3. C. Same as A-B but pooling across 

NB=2-5. D. Bias amplitude across all task conditions for trials 1 through 6 back. Dots size above lines 

indicates 2-tailed significance test. E. Response bias pooling across NB=2-5 for all conditions. Repulsive 

biases are seen between dot trials while attractive biases are seen between compass trials. F. Same as D but 

previously uncued “dummy” stimuli. Dot-> dot stimuli show a significant repulsive bias. Note that for this 

panel only we have adjusted our color scheme such that the colors correspond to the previously unreported 

stimulus. G. Same as E-F but for previously attended but unreported stimuli on dot trials. 

Discussion 

 We examined serial dependence across a range of stimulus types and response 

conditions. We found ample evidence supporting a bias operating at a post-perceptual or 

decisional level. First, serial dependence persisted regardless of whether the stimulus was 
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encoded in a visual (dot) or semantic (compass) manner or if consecutive stimuli were of the 

same type. In addition, we found that attraction primarily followed the previous response rather 

than the previously encoded and remembered location (Figure 3-2 F-G). This response-driven 

attraction was observed regardless of motor (Figure 3-3A-F) or visual (Figure 3-3 D-I) 

correspondence between stimuli and response. Thus, a principal finding of our study is that serial 

biases emerge from a decisional level representation of task relevant information that are not 

solely attributable to low-level sensory or motor components (Braun et al., 2018; Feigin et al., 

2021; Moon & Kwon, 2022; Pascucci et al., 2019; Urai & Donner, 2022; Zhang & Alais, 2020; 

Zhang & Luo, 2023). 

That said, we also find evidence for a critical role of low-level stimulus properties. Most 

centrally, “dot” trials – where a stimulus was physically present – are more biased by past stimuli 

than “compass trials” both within and across tasks (average Δamp = 0.56 ± 0.20, t(89)=2.823, 

p=0.0059, Figure 3-3, 3-11). This is not explained by a change in overall uncertainty between the 

two stimulus classes (Figure 3-7C) and instead suggests part of the attractive bias we observe is 

implemented during the feedforward sweep of sensory encoding. Dot stimuli additionally induce 

long lasting repulsive sensory adaptation (Figure 3-5E). Interestingly, this bias appears to be 

automatic as it is equally present following uncued or “dropped” stimuli on previous trials 

(Figure 3-5F-G), matching previous findings (Pascucci et al., 2019) and aligning with the related 

finding that repulsive peripheral bumps were not impacted by attention (Fritsche & de Lange, 

2019). Thus, the stronger (N-1) attractive bias seen on dot trials is additionally overcoming this 

repulsive tendency (note the difference between N-1 compass->dot and dot->dot trials, Figure 3-

5D). In addition, we observe within trial attraction to unattended dot stimuli, suggesting low-

level stimulation at encoding, regardless of attention, can shape perceptual reports in our 
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paradigm. By contrast, compass stimuli exhibit long lasting attractive biases and are minimally 

impacted by the repulsive effects of past stimuli. Thus, in addition to the presence of decisional 

level biases, we also see strong evidence for short lived attractive biases emerging as the result of 

sensory encoding of low-level features (Fornaciai & Park, 2018; Liberman et al., 2014, 2014; 

Manassi et al., 2018). 

 
Figure 3-6: Conceptual model.  

Prior studies have generally attributed serial dependence effects to either sensory (purple) or post-sensory 

functions (eg. decisions or working memory maintenance, yellow). In either case, history information 

somehow feeds into processing at the level. In the many stages account, we instead propose that history 

integration occurs across several levels of information processing with signs and magnitudes of biases at 

different stages depending on timing, uncertainty and other task contingencies. 

Thus, these data collectively support the hypothesis that serial dependance, as typically 

measured in the lab, arises from multiple interacting levels of the stimulus-response loop (Figure 

3-6). Such an account is consistent with the findings in our study as well as the diversity of 

findings in other neural and behavioral studies of serial dependence. Notably, prior work has 

disentangled the influence of previous stimuli, choices, and responses and found simultaneous 

contributions of all elements (Braun et al., 2018; Zhang & Luo, 2023). It follows that different 
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conditions will elicit varying forms of biases. For instance, the uncertainty associated with a dot 

stimulus will emerge from both encoding, memory maintenance, and the response and thus serial 

dependencies (or less ‘intentional’ neural bleed over; Luekmann et al., 2016) are apt to operate at 

both levels. Separately, on compass trials uncertainty is more likely to emerge at a decisional 

stage and thus history biases are likely to act at a later in the processing stream. Under more 

general circumstances, the relative amounts of stimulus, choice, and motor uncertainty could 

influence representational hysteresis at each stage and in turn impact responses and measured 

biases in non-additive ways.  

A related but distinct account was recently proposed by Cicchini and colleges (Cicchini 

et al., 2021). In their paradigm, they measured both attractive serial dependence across stimuli 

and repulsive biases due to the surround tilt illusion. Critically, they found that biases introduced 

by spatial context influenced how the present stimulus influenced future responses, but this same 

spatial context did not influence serial biases on the current trial. They thus argued that serial 

dependencies were induced spatial context was incorporated and then fed-back to influence 

representations at an early stage on subsequent trials. This account is consistent with our findings 

of attraction generally tracking previous perceptual reports rather than just the previously seen 

dot stimulus (Figure 3-2 F-G, Figure 3-3). However, it is not obvious how an early bias would 

operate on compass stimuli. One possibility is that compass coordinates are recoded into a 

sensory format during our task and that this sensory representation supports biases on subsequent 

trials. This type of recoding from an abstract-to-sensory format has recently been found in the 

context of long-term associative memory tasks (Sutterer et al., 2019; Vo et al., 2022) . It is also 

consistent with our findings of inter-trial interference between stimulus types, including from 

compass stimuli when they are attended (Figure 3-4F, Expt. 4). That said, this recoding would 
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require much slower feedback induced activity in sensory cortex and would completely miss the 

feedforward sweep which could be critical for inducing these biases. This difference in how 

stimuli are encoded into sensory representations may explain the relative difference in bias 

strength between dot and compass stimuli. Critically, while the proposed decisional to sensory 

account of serial dependence is consistent with many of our findings, it is unable to account for 

the larger biases seen for longer delay periods (Figure 3-10 B,D; (Bliss et al., 2017; 

Papadimitriou et al., 2015) Bliss et al. 2016; Papadimitriou et al., 2015)) nor the failure of 

observed biases following drop trials in most experiments. To do so, one must also consider 

history biases that act on post sensory representations. 

We are not the first group to propose that different serial dependence findings arise from 

distinct mechanisms. Early work in this area readily noted that the ubiquity of attractive effects 

implied a general mechanism, perhaps fundamental to all neural processing (Burr & Cicchini, 

2014; Fritsche & de Lange, 2019; Kiyonaga et al., 2017). That said, most models of serial 

dependence rely on action at a single level of information processing. The notable exceptions are 

models assuming repulsive adaptation is implemented at encoding and attractive biases are due 

Bayesian integration at a later stage (Moon & Kwon, 2022; Pascucci et al., 2019; Sheehan & 

Serences, 2022) see also (Papadimitriou et al., 2016) but here still, assimilative biases are only 

implemented at a single, later stage. In contrast, our “many stages” model explicitly assumes that 

stability priors may be present at all stages of information processing – depending on 

stimulus/behavioral requirements – and that any observed serial dependance will thus arise from 

biases implemented at multiple stages.  

One assumption of our proposed model is that assimilative biases can operate on stimulus 

representations at an early sensory stage. While in line with some behavioral data, neural 
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evidence is generally lacking, particularly at the time scales over which behavioral serial 

dependence is observed. Notably, visual persistence has been shown to show concurrent 

attractive biases in both perception (Di Lollo & Dixon, 1988) and early visual areas (Benucci et 

al., 2009; Coltheart, 1980; Duysens et al., 1985) but these effects have been shown to only 

persist for hundreds of milliseconds, 2 orders of magnitude shorter than typical serial dependence 

effects. Instead, the most consistent findings to emerge are those showing a reinstantiation of the 

previous stimulus with the emergence of the current trial (Bae & Luck, 2019; Ranieri et al., 

2022; Zhang & Luo, 2023), but notably in an inverted or orthogonal code relative to the currently 

encoded stimulus (Hajonides et al., 2023; Luo & Collins, 2023). Thus, it may be that perceptual 

serial dependence affects are instead due to sensory readout (Sheehan & Serences, 2022) either 

utilizing the lingering sensory representation of the previous stimulus (Zhang & Luo, 2023) or a 

separate store that encodes stimulus-specific information as a function of trial history (Akrami et 

al., 2018). 

In addition to sensory and decision-level biases, motor biases have been shown to be 

present in perceptual report or judgment tasks. Interestingly, these follows typically follow a 

repulsive pattern (Pape & Siegel, 2016; Zhang & Alais, 2020; Zhang & Luo, 2023) but with 

large variability across participants (Urai & Donner, 2022) and occasionally more complex 

dynamics such as “win-stay, lose-switch” (Abrahamyan et al., 2016; Akrami et al., 2018; 

Lueckmann et al., 2018). While most of these studies have utilized a 2AFC design, a challenging 

coincident timing task showed participants a tendency to respond too slowly following slow 

trials and vice versa (Neto & Bartels, 2021). Critically, applying TMS to a motor area (but not a 

visual area or vertex) between trials significantly reduced inter-trial dependency, pointing to a 

direct role of motor cortex and inter-trial dependencies. Related work has even found a direct 
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mechanism for motor response alternation (beta rebound) that seems to track motor biases even 

on a single trial level (Pape & Siegel, 2016; Urai & Donner, 2022). Thus, we may have 

substantially more and more consistent evidence for direct neural instantiation of motor biases 

than ones operating at perceptual or decisional levels suggesting it may be a very important 

pathway for maintaining stable behavior across time.  

In this study we propose that serial dependence arises due to general priors for temporal 

stability across perception, choices, and motor actions. Across a series of experiments, our 

results are inconsistent with a single origin of serial dependence and instead suggest that it 

emerges from multiple sources (e.g. sensory and decisional). We secondarily found that the 

timescales of serial dependence differ depending on the stimulus type, suggesting longer 

timescale (and presumably later) representations play a larger role for semantic over visually 

encoded stimuli. 

Methods 

Experimental Design, General 

 All participants received informed consent as to the scope of the study and were 

compensated monetarily for their participation as approved by the UC San Diego IRB (approval 

number 180067). Experiments were performed in dim private rooms with participants seated 

with a chin rest to stabilize viewing 50 cm from a 39 by 29 cm CRT monitor (1600 × 1200 px) 

with a visual angle of 42.6° (screen width). Participants completed experiments over the course 

of 1-3 90-minute sessions. 

 In all experiments, participants were required to remember and report on the angle of an 

encoded stimulus. This stimulus could either be a spatial cue, a black circle (0.75 degrees of 

visual angle, dva) presented at the target location, or a semantic cue, 1-3 letter string presented at 
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fixation corresponding to 1 of 16 possible compass coordinates {‘N’, ‘NNE’, ‘NE’, …, ‘NNW’} 

(Figure 3-2A). Participants were cued as to which stimulus was relevant on a trial or block basis. 

Responses were made in a continuous report fashion by moving a dot along a ring to match the 

remembered stimulus using either a joystick or the keyboard. Both dot stimuli and responses 

were centered on an imaginary circle with a diameter of 18 dva.  

All participants completed practice blocks of the experiment with various aids to make 

the task easier (e.g., fewer conditions, shorter delay period) until they reached a performance 

criterion (generally <10° |error|). Trials from these practice blocks were not subsequently 

analyzed. We excluded participants from subsequent analysis if they completed <200 trials or 

had an average unsigned error of >25° (except in experiment 3 which had a 2AFC design).  

Experiment 1 

 In experiment 1, participants (n=22, Figure 3-2A) were exogenously cued to the relevant 

feature by the color of the compass stimulus at encoding (500ms, red= attend dot, white = attend 

compass). After a delay period (3500 ms) they used the left joystick on a video game controller 

(Xbox 360) to report the target feature of the attended stimulus (untimed) and pressed “A” to 

advance to the next trial. To minimize the role of hysteresis in the position of the joystick 

between trials, the next trial would not initiate until the joystick was moved back to the center. 

The task was completed in blocks of 96 trials, 2 participants only completed two blocks and 1 

participant had an average error exceeding our threshold and were excluded from subsequent 

analyses. The remaining n=19 participants completed 8.46±1.9 [6, 12] blocks of trials. 

 On 1/3rd of trials participants were cued to not report the remembered stimulus but either 

a new, random location faintly illuminated (‘random”) or rotated 180° from the target stimulus 
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(“flip”). The type of response was indicated by the color of the fixation cue at the end of the 

delay period and was restricted to only a single type of drop trial for a given block of trials.  

Experiment 1b 

 Experiment 1b (n=14) was a simpler version of experiment 1 where dot/compass trials 

were presented in a blocked manner (64 trials/block). Additionally, for 9 participants we had 

participants withhold responses on 25% of trials (“drop”) with participants simply pressed “A” to 

advance. One participant was excluded from future analysis as their average error was >20° and 

one was excluded for completing <200 trials leaving a total n=12 who completed 10.8±5.3 [4, 

20] blocks of trials. 

Experiment 2 

 Experiment 2 (n=33, Figure 3-3A) was similar to experiment 1 except 1) delay time 

varied across trials (2000 or 5000ms), 2) ITI varied across trials (1000 or 4000ms)  3) responses 

were made using the keyboard to rotate a dot randomly positioned on a ring, and 4) For a subset 

of participants (n=17) on ~20% of (“drop”) trials participants were not presented with a probe 

stimulus but instead were instructed to choose either report randomly when the fixation point 

turned red. The response dot was controlled using the ASDF keys which rotated the dot 

CW/CCW with course and fine adjustment. Due to a bug in the code, delay times were not 

randomized but rather alternated across trials (2000 ms always followed by 5000ms) for some 

(XX) sessions (% of total trials). Because of this, any analysis of the role of current and previous 

trial delay time is partially co-dependent. Four participants were excluded for having an average 

error >25° leaving a total n=29. 
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Experiment 3 

 Experiment 3 (n=21, Figure 3-3D) had a similar encoding period to experiments 1-2. 

Like experiment 2, delay (2000 of 5000ms] and ITI (1000 or 2000ms) duration varied randomly 

across trials. At the end of the delay period, participants were presented with a 2AC probe, a thin 

white line (length 3.6 dva) was presented between within 12° CW/CCW of the remembered 

location and participants reported whether that line was CW/CCW using a button press (“P”-

CCW, “Q”-CW). The average offset was adjusted for each participant to target (80% accuracy, 

0.79 ± 0.01 achieved). For each participant, 3 different offset values were used that were closer 

and further than the thresholded offset. On ~10% of all trials, participants were not presented 

with a probe stimulus but instead were instructed to choose press either report button randomly 

when the fixation point turned red. Feedback was given following every response by turning the 

fixation point green (correct) or red (incorrect) for 250ms before initiating the inter trial interval. 

Experiment 4 

 Experiment 4 (n=29, Figure 3-3G) was similar to experiment 1 with but the relevant 

stimulus being revealed at the end of the delay period with a post-cue. The fixation point would 

change one of two colors (yellow/purple) at the end of the initial delay period (3500ms) 

indicating whether the compass or dot stimulus should be reported. Participants would then 

report the target stimulus using the joystick. Critically, responses in this version were blind such 

that they had to use a remembered correspondence between the joystick and the response 

location. Participants had to reach threshold performance (<15° error) before advancing to the 

main experiment and additionally had their response be made ‘visible’ approximately every 10 

trials to minimize drift. 
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Removing systematic biases 

 Responses for both stimulus types exhibited systematic biases which we did not want to 

shape our measures of history bias or overall performance. We thus fit a 12-parameter Fourier 

like function to each participants errors separately for our two stimulus conditions (dot and 

compass) and performed subsequent analyses on the residualized errors. We have previously 

described a similar procedure for residualizing errors from an orientation report task (Sheehan & 

Serences, 2023) and include the equation here:  

𝑓(𝜃; 𝑎1, . . . , 𝑎𝑁)  =∑ 𝑔(𝜃; 𝑛, 𝑎𝑛)
𝑁

𝑛=1
 [33] 

  

𝑔(𝜃; 𝑛, 𝑎𝑛) =  

{
 
 

 
 𝑠𝑖𝑛 (

1

2
𝜃𝑛) ;                𝑛 ≡ 𝑒𝑣𝑒𝑛

𝑐𝑜𝑠 (
1

2
𝜃(𝑛 + 1)) ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [34] 

 

where 𝜃 corresponds to the presented angle for a given trial in radians [-π, π]. 

Quantifying serial dependence  

 To measure the magnitude, shape and assess the significance of serial biases, we 

parameterized participants errors as function of the relative angle between the current trial’s 

stimulus and an inducer. This inducer is typically a previously reported stimulus, eg. ΔθN-1 = θN-1 

- θN where θN-1 corresponds to the presented stimulus on the previous trial. In this way, positive 

values of Δθ correspond to inducers that are CW relative to the current stimulus being reported, 

matching convention. Note that for all operations on circular variables, we imply that resulting 

angles are wrapped between [-π, π] radians. We can separately examine the impact of other 

inducers including other stimuli further back in time θN-x, previous response targets when they 
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differed from previous stimuli (eg. following “random” or flip trials), stimuli that were attended 

but not reported, and distracting “dummy” stimuli on presented on the same trial. In any case we 

examined serial dependence in two manners. In the first, we took a sliding circular mean 

(window ±32°) of errors as a function of the relative angle of the inducing stimulus. This sliding 

mean was used exclusively for visualization purposes. We separately fit a derivative of von 

Mises function (DoVM) to parameterize the shape and magnitude of any observed bias. The 

basic form of the DoVM function is:  

 𝑑𝑜𝑉𝑀(𝑥;  𝑎, 𝑤) = 𝑎 𝑤𝑠𝑖𝑛(𝑥) 𝑒𝑥𝑝(𝑤 𝑐𝑜𝑠(𝑥)) / (𝑧𝐼0(𝑤)) [35] 

 

with amplitude, a, width, w, and where x corresponds to the relative orientation of the reference 

stimulus, Δθ (Sadil et al., 2021). z is a normalizing constant such that the amplitude, a, 

corresponds to the height of the resulting function. 

 As many of our participants seemed to exhibit systematic biases (e.g. on average 

responding CCW relative to the true stimulus value), we included an extra offset parameter to 

better model response errors. Thus, our final model of errors has 3 free parameters and is: 

 

𝐸̂ = 𝑓(𝑥; 𝑎, 𝑤, 𝑜𝑓𝑓𝑠𝑒𝑡) = 𝑑𝑜𝑉𝑀(𝑥; 𝑎, 𝑤) + 𝑜𝑓𝑓𝑠𝑒𝑡  [36] 

 

Optimal parameters were estimated using a bounded minimization algorithm 

(scipy.optimize.minimize), restricting amplitude ([-15°,15°], initial=0), precision ([.1, 5], 

initial=1), and offset ([-10°,10°], initial=0). This initialization was consistently able to converge 

to a solution.  
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This procedure was modified for experiment 3 which utilized a 2AFC rather than a 

continuous report design. Here we coded the responses to -1 for CW responses and +1 for CCW 

responses. As reports indicate the perceived relative angle of the probe stimulus, a more positive 

overall value would correspond to a CW shift in the perception of the original stimulus. We then 

fit a modified DoVM function to try and estimate the average proportion of CW/CCW responses 

with the bounds of amplitude (±0.5) and offset (±0.1) adjusted to fit reasonable ranges for 

response biases. We multiplied the resulting amplitude coefficient by 100 to get report any serial 

dependence as a % bias. 

 For analyzing biases across multiple previous trials, we concatenate the errors and 

relative orientation differences for each offset included and then fit our DoVM model in the 

same manner. 

Statistics 

 For most analyses, and whenever not specified otherwise, we fit models to subsets of 

trials within individual participants. When measuring serial dependence or other subject specific 

measures, we exclude trials on which no response was made (drop trials) or where the unsigned 

error was >30°. As we were primarily interested in quantifying the strength and general presence 

of serial dependence, we evaluated the fit amplitudes for a given condition using 1 sample 2-

tailed t-tests on the fit amplitude parameters. To ensure observed effects were not an artifact of 

our task design or analysis procedure we repeated the same analyses after shuffling trial order. 

 For analyzing responses follow drop-trials (which have low trial counts) or data from 

experiment 3 (2AFC design) our ability to accurately fit models to individual participants was 

severely limited. To combat this limitation, we pooled trials across participants are performed a 

bootstrapped analysis where we randomly resampled all trials with replacement 1000 times and 
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used the resulting distribution to estimate p-values non-parametrically. For a given bootstrapped 

distribution, the 2x the lower proportion of trials above or below zero corresponds to the 2-tailed 

p-value. We repeated this procedure using shuffled trial orders to ensure our results were not an 

artifact of our analysis procedure. 

 All statistical tests are 2-tailed t-tests unless otherwise specified. We do not correct for 

multiple comparisons when we simultaneously display tests across experiments as such an 

approach would be drastically more conservative in estimating effect sizes than is the norm in 

this literature. When we fit linear models with multiple factors (as we do for examining the 

influence of both the current and previous stimulus type on bias amplitude, as well as for 

examining the influence of delay period across stimulus type in experiment 3, we used a mixed 

effects linear model including subject ID as a random factor). We report the coefficient and p-

values for the factors of interest. 
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Supplementary Figures 

 

 
Figure 3-7 Context independent biases 

A. Stable biases associated with compass (green) and dot (blue) stimuli respectively. The biases show a 

strong dissociation across stimulus type. Shading is SEM across participants, pooling data across all 

experiments. B. Residuals of a correction procedure for the two stimulus types. C. Similar changes in 

response precision as a function of stimulus angle is observed across stimulus types with participants more 

accurate around cardinal axes. D. Responses on compass trials are much slower on compass trials. Within 

compass reports, responses were fastest for cardinal coordinates (eg. N), slower for secondary coordinates 

(eg. NE), and slowest for tertiary coordinates (eg. NNE).  
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Figure 3-8 Response biases for Experiment 1b.  

Left and Central panels show biases for dot and compass trials respectively. Right panel shows biases are 

significantly attractive in both conditions. 
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Figure 3-9 Performance and RT across response type.  

A. Participants were slightly less accurate for “flip” relative to standard reports. Participant was very low 

for “random” responses and this is a good estimate of the floor of motor error. B. Response were 

significantly slower for “flip” relative to standard reports.  
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Figure 3-10 Supplemental analyses for experiments 2 and 3.  

A-B Expt. 2, C-E Expt. 3. A. Response are significantly attracted to the start point of the response dial but 

only within ±90°. B. Bias was generally stronger for long delay trials for dot but not compass trials. Note 

that we use a 1-tailed test for this comparison. C. Average psychometric curves across participants for both 

stimulus types. The curve is notably steeper for dot over compass stimuli. D. Bias was significantly stronger 

on long delay trails for dot but not compass trials. Bootstrap test for comparing means. E. Response biases 

in Expt. 3. Splitting responses based on previous response regardless of the stimulus offset shows a general 

propensity to switch responses across trials. 
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Figure 3-11  Bias towards the previous (N-back=1) stimulus across experiments and conditions.  
A. Effects split out for experiments 1, 1b, 2 and 4. B. Effects combing data across all continuous report 

experiments and reveals a global effect of dot trials exhibiting larger serial dependence. Error bars are SEM. 

C. Same for % responses in Expt. 3. Error bars are 95 percentiles of bootstrapped distribution.  
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Figure 3-12 DoVM amplitude across condition and reference trial for each individual experiment. Patterns 

are generally consistent with our pooled analyses. 
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GENERAL CONCLUSION 
This work examined the underpinnings of serial dependence through behavioral, neural, 

and in-silico models. Early work on serial dependence was largely focused on the central role of 

low-level vision and the effects of stimulus position and feature similarity. While this work is 

certainly important, our work has highlighted the more high-level and invariant nature of this 

bias. First in chapter 1, we reported the novel finding that attractive serial dependence can occur 

even when early sensory representations are dominated by repulsive adaptation. Thus, while 

attractive biases at encoding could play a role under some conditions, it is not a necessary 

condition. We further proposed a few competing models including one where adaptation occurs 

at encoding but is accounted for in post-sensory readout. A novel idea arising from this model is 

that serial dependence occurs in spite of – rather than instead of – neural adaptation.  

In Chapter 2 we further explored the implications of the competing forces of repulsive 

and attractive biases in serial dependence. In simulations, we found that under many conditions 

attractive and repulsive biases cancel each other out perhaps explaining the great diversity of 

serial dependence findings, including the role of individual differences. Finally, we applied a 

technique we verified with simulations to disentangle stimulus vs. response driven biases in a 

delayed report task. Here, consistent with the post-perceptual account in chapter 1, we found 

consistent evidence for an attraction towards previous responses, not stimuli.  

In chapter 3, we applied more experimental techniques to determine the source of the 

serial dependence. While we found strong evidence for a decisional/response centered bias, we 

also found examples of low-level stimulus driven biases in the same responses. We reconcile this 

and our other findings by proposing a more general account of serial dependence arising from a 

canonical function for stability across many stages of information processing. Such biases may 
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only arise under a small range of experimental conditions for each level of information 

processing, leading to often competing interactions across layers.  
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