UC San Diego UC San Diego Previously Published Works

Title

New potent and selective polyfluoroalkyl ketone inhibitors of GVIA calcium-independent phospholipase A2

Permalink <https://escholarship.org/uc/item/0ts8b695>

Journal Bioorganic & Medicinal Chemistry, 21(18)

ISSN 0968-0896

Authors

Magrioti, Victoria Nikolaou, Aikaterini Smyrniotou, Annetta [et al.](https://escholarship.org/uc/item/0ts8b695#author)

Publication Date

2013-09-01

DOI

10.1016/j.bmc.2013.07.010

Peer reviewed

NIH Public Access

Author Manuscript

Bioorg Med Chem. Author manuscript; available in PMC 2014 September 15.

Published in final edited form as:

Bioorg Med Chem. 2013 September 15; 21(18): . doi:10.1016/j.bmc.2013.07.010.

New potent and selective polyfluoroalkyl ketone inhibitors of GVIA calcium-independent phospholipase A2

Victoria Magriotia, **Aikaterini Nikolaou**a, **Annetta Smyrniotou**b, **Ishita Shah**c,d, **Violetta Constantinou-Kokotou**b, **Edward A. Dennis**c,d,*, and **George Kokotos**a,*

aLaboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece

^bChemical Laboratories, Agricultural University of Athens, Athens 11855, Greece

^cDepartment of Chemistry and Biochemistry, School of Medicine, MC 0601, University of California, San Diego, La Jolla, CA 92093-0601, USA

^dDepartment of Pharmacology, School of Medicine, MC 0601, University of California, San Diego, La Jolla, CA 92093-0601, USA

Abstract

Group VIA calcium-independent phospholipase A_2 (GVIA iPLA₂) has recently emerged as an important pharmaceutical target. Selective and potent GVIA $iPLA_2$ inhibitors can be used to study its role in various neurological disorders. In the current work, we explore the significance of the introduction of a substituent in previously reported potent GVIA iPLA₂ inhibitors. $1,1,1,2,2$ -Pentafluoro-7-(4-methoxyphenyl)heptan-3-one (GK187) is the most potent and selective GVIA $iPLA_2$ inhibitor ever reported with a $X_I(50)$ value of 0.0001, and with no significant inhibition against GIVA cPLA $_2$ or GV sPLA $_2$. We also compare the inhibition of two difluoromethyl ketones on GVIA iPLA₂, GIVA cPLA₂, and GV sPLA₂.

Keywords

Phospholipase A₂; Inhibitor; GVIA iPLA₂; Polyfluoroalkyl ketone; Pentafluoroethyl ketones

1. Introduction

Phospholipases A_2 are the enzymes that hydrolyse the ester bond of phospholipids at the sn-2 position releasing free fatty acids and lysophospholipids.¹ Both of the products of this hydrolysis may generate second messengers that play significant pharmacological roles, and especially when the released free fatty acid is arachidonic acid. The $PLA₂$ superfamily currently consists of 16 different groups and various subgroups.² Three of the most important types of PLA_{2} s that can be found in human tissues are the secreted (such as GIIA and GV sPLA₂), the cytosolic GIVA cPLA₂ and the calcium-independent GVIA iPLA₂.

Supplementary data

^{© 2013} Elsevier Ltd. All rights reserved.

^{*}Corresponding authors. Tel.: +1 858 534 3055; fax: +1 858 534 7390 (E.A.D.); tel.: +30 210 727 4462; fax: +30 210 727 4761 (G.K.). edennis@ucsd.edu (E.A. Dennis), gkokotos@chem.uoa.gr (G. Kokotos).

Supplementary data (the synthesis and characterization data of all the intermediates) associated with this article can be found, in the online version, at [http://dx.doi.org/10.1016/j.bmc.2013.07.010.](http://dx.doi.org/10.1016/j.bmc.2013.07.010)

 $GIVA$ cPLA₂ is considered to be a proinflammatory enzyme that is the rate-limiting provider of arachidonic acid and lysophospholipids. 3 GIVA cPLA₂ is regulated by intracellular calcium, and calcium binding to the C2 domain of GIVA $PLA₂$ can activate the enzyme, resulting in the localization of the enzyme to the phospholipid membrane.^{4,5} Furthermore, the activity of sPLA₂s has been suggested to be dependent on or linked to the activity of cPLA₂.^{6–8}

GVIA iPLA₂ is a phospholipase A_2 that can be characterized by its calcium-independent activity. It was purified and characterized from macrophages in 1994⁹ and it functions through a catalytic serine at the active site in a patatin-like α/β-hydrolase domain. It is a 752 amino acid protein with a molecular mass of 85 kDa that contains eight ankyrin repeats and a catalytic domain.^{10–12} Both intracellular enzymes GIVA cPLA₂ and GVIA iPLA₂ share the same catalytic mechanism utilizing a serine residue as the nucleophile, while the active site serine of GVIA iPLA₂ lies within a lipase consensus sequence (Gly-X-Ser519-X-Gly) on top of the catalytic domain.² GVIA iPLA₂ is known to be a homeostatic enzyme involved in basal metabolism within the cell.^{13–19} Several studies also suggest that GVIA iPLA₂ plays significant roles in numerous cell types, although they may differ from cell to cell. Recent review articles discuss the role of GVIA iPLA₂ in signaling and pathological conditions (e.g., diabetes, Barth syndrome, ischemia and cancer).^{20–27}

Various GVIA iPLA₂ inhibitor classes have been discussed in recent review articles.^{2,28–30} The first reported GVIA iPLA₂ inhibitors were the trifluoromethyl ketones,³¹ tricarbonyls³² and methyl fluorophosphonates³³ of fatty acids, such as arachidonic acid. They were not very potent, nor selective inhibitors, while the methyl fluorophosphonates were also irreversible. Most recently, cardiolipin was found to inhibit $iPLA_2$ and $cPLA_2$ activity towards PC in vitro.³⁴

Bromoenol lactone (BEL, Fig. 1) was considered to be a selective, irreversible GVIA iPLA₂ inhibitor and was used to study potential biological functions of GVIA iPLA₂.^{13,31} The inactivation mechanism of GVIA iPLA $_2$ by BEL has been studied by Turk and coworkers.³⁵ It is likely that this inhibitor affects multiple enzymes and should be used with appropriate caution when studying potential roles of GVIA $iPLA_2$.

The development of selective inhibitors for the three main human PLA_2 enzymes is of paramount importance. Our groups have previously synthesized and assayed a series of polyfluoroalkyl ketones for their activity on GIVA cPLA₂, GVIA iPLA₂, and GVs- PLA_2 .^{36,37} When compared to a trifluoromethyl ketone, it was found that the corresponding pentafluoroethyl ketone favored selective GVIA iPLA₂ inhibition. FKGK11 (Fig. 1) was found to be a selective GVIA iPLA₂ inhibitor, while FKGK18 (Fig. 1) was identified as the most potent GVIA PLA₂ inhibitor yet reported.³⁷ Selective PLA₂ inhibitors may contribute to the clarification of the role of each PLA_2 class in various disorders. Using the selective GVIA iPLA₂ inhibitor FKGK11, a selective GIVA cPLA₂ inhibitor, and a pan-PLA₂ inhibitor, the role of the various classes of PLA_2 in an animal model of multiple sclerosis, EAE, was studied.³⁸ According to the results of that study, GIVA cPLA₂ plays a role in the onset of the disease, while GVIA iPLA₂ plays a key role in both the onset and the progression of the disease. Therefore, it appears that GVIA iPLA2 is a target enzyme for the development of novel therapies for multiple sclerosis.38 Furthermore, in a very recent article, the inhibition mechanism of GVIA iPLA2 by a fluoroketone ligand was examined using a combination of deuterium exchange mass spectrometry (DXMS) and molecular dynamics (MD), while models for $iPLA_2$ were built by homology with the known structure of patatin. 39 The discovery of the precise binding mode of fluoroketone ligands to iPLA₂ should greatly improve our ability to design new inhibitors with higher potency and selectivity.

Based on previous results, we have explored further this family of GVIA iPLA2 inhibitors and herein we describe our most recent results.

2. Results and discussion

2.1. Design of inhibitors

The design of the novel polyfluoroalkyl ketones was based on the optimization of the activity and selectivity of $iPLA_2$ inhibitors that we have presented in previous work, such as FKGK11 and FKGK18 (Fig. 1).^{36,37} Having established that the best linker between a polyfluoroalkyl ketone and an aromatic ring is a chain of four methylene groups, we introduced in the aromatic ring different substituents and studied the effect of these substituents on the affinity towards GVIA $iPLA_2$ as well as the selectivity towards GVIA $iPLA_2$ when compared to GIVA cPLA₂ and GV sPLA₂ activity. Several substituents were introduced in para position, such as a fluorine atom, a methoxy group, a phenyl group, and a trifluoromethyl group. Also, the isomer of the most potent $iPLA_2$ inhibitor FKGK18 was prepared, where the naphthyl group was attached to the linker at the 1-position.

Furthermore, compounds **12** and **13** were synthesized as the structurally restricted analogues of the inhibitor FKGK11 to determine the effect that the second phenyl group would have on the activity of the inhibitor.

Finally, two difluoromethyl ketones were prepared that resembled the structure of inhibitor FKGK11 in order to identify the effect that different number of fluorine atoms would have on the activity of polyfluoroalkyl ketones.

The inhibition studies showed high activity and selectivity for compounds **5d** and **6d** that had a methoxy group at *para* position. Thus, we prepared another series of substituted polyfluoroalkyl ketones bearing one or two methoxy groups in different positions of the phenyl or in the naphthalene group to see the effect on inhibition and selectivity.

2.2. Synthesis of inhibitors

For the synthesis of trifluomethyl and pentafluoroethyl ketones **5a**–**j** and **6a**–**j**, a Wadsworth–Horner–Emmons olefination reaction of the corresponding commercially available substituted aromatic aldehydes **1a**–**j** with triethyl phosphonocrotonate yielded the usaturated esters **2a**–**j** (Scheme 1). Hydrogenation with 10% Pd/C gave esters **3a**–**j**, followed by saponification to afford acids **4a**–**j**.

After treating compounds **4a**–**j** with oxalyl chloride, the corresponding chlorides were treated with trifluoroacetic or pentafluoropropionic anhydride and pyridine to yield trifluoromethyl ketones **5a**–**j** and pentafluoropropyl ketones **6a**–**j**. In the case of heptafluorobutyl ketone **7a**, the corresponding chloride was treated with heptafluorobutyric anhydride and pyridine.

For the synthesis of trifluomethyl and pentafluoroethyl ketones **12** and **13**, a Wittig olefination reaction between aldehyde **8** and methyl (triphenylphosphanylidene)acetate yielded usaturated ester **9** (Scheme 2). Catalytic hydrogenation, followed by saponification gave compound **11**. Ketones **12** and **13** were prepared similarly as described above.

The difluoromethyl ketones were prepared from bromides **14a** and **14b**, after being treated with magnesium, and the corresponding Grignard reagents were slowly added to ethyl difluoroacetate at −78 °C to yield ketones **16a** and **16b** (Scheme 3).

2.3. In vitro inhibition of GIIA sPLA2, GIVA cPLA2 and GVIA iPLA²

All synthesized inhibitors were tested for inhibition of human GIVA cPLA₂, GVIA iPLA₂ and GV sPLA₂ using previously described mixed micelle-based assays.⁴⁰⁻⁴² The inhibition results are presented in Table 1, either as percent inhibition or as $X_I(50)$ values. At first, the percent of inhibition for each PLA₂ enzyme at 0.091 mole fraction of each inhibitor was determined; and, then the *X*^I (50) values were measured for compounds that displayed greater than 95% inhibition. The $X_I(50)$ is the mole fraction of the inhibitor in the total substrate interface required to inhibit the enzyme by 50%.

The isomer of the most potent $iPLA_2$ inhibitor FKGK18, compound 5a seems to be a 9times weaker inhibitor towards GVIA $iPLA_2$, while there is no significant selectivity towards GIVA cPLA₂. Interestingly enough, the pentafluoro and heptafluoro ketone analogues **6a** and **7a** are even weaker iPLA₂ inhibitors. The methoxy group in position 6 of the naphthalene group also seems to lower the inhibitory potency of FKGK18 in compounds **5f** and **6f**.

Compounds **5b**–**e** and **6b**–**e** were prepared as substituted analogues of FKGK11. Most of these compounds presented excellent $iPLA_2$ inhibition, with the exception of compounds $5e$ and **6e**, which were 13-fold and ninefold weaker towards iPLA₂ than FKGK11. It was interesting though that trifluoromethyl ketone **5e**, 6-(biphenyl-4-yl)-1,1,1-trifluorohexan-2 one (GK174), seemed to be a more potent inhibitor towards GIVA cPLA₂ than for GVIA iPLA2. Compounds **5b** (GK176) and **5c** (GK178) proved to be as potent as FKGK18, and compound 5c showed even better selectivity when compared to GIVA cPLA₂ and GV sPLA2. The most potent inhibitors proved to be compounds **5d** (1,1,1-trifluoro-6-(4 methoxyphenyl)hexan-2-one, GK177) and **6d** (1,1,1,2,2-pentafluoro-7-(4 methoxyphenyl)heptan-3-one, GK187) bearing a methoxy group at the *para* position of the phenyl substituent. They both present *X*_I(50) values of 0.0001 and they are much more selective to GVIA iPLA₂ when compared to GIVA cPLA₂ and GV sPLA₂.

Taking into consideration these results, we prepared and tested in vitro a series of other polyfluoroalkyl ketones bearing one or two methoxy groups in different positions of the phenyl group, in order to find even more potent and selective GVIA iPLA₂ inhibitors. However, compounds **5g**–**j** and **6g**–**j** lost the potency that inhibitors **5d** and **6d** presented. The most potent of this group were compounds **5j** and **6j**, bearing a dioxolane ring on the phenyl group.

The structurally restricted analogues of inhibitor FKGK11 **12** and **13** did not give optimum potency; instead they were weak, yet selective, $iPLA₂$ inhibitors.

Finally, the two difluoromethyl ketones **16a** and **16b** that are analogues of FKGK11 presented good selectivity, but low activity, towards GVIA $iPLA_2$ when compared with GIVA $cPLA_2$ and GV $sPLA_2$.

3. Conclusion

In the present study, we identified six fluoroketones (**5b**, **5c**, **5d**, **6b**, **6c**, and **6d**) that are very potent inhibitors of GVIA iPLA $_2$. All of them are more potent than the previous lead inhibitor FKGK11, which has been successfully used in animal models of neurological disorders,38 but compounds **5d** and **6d** are also more potent than the most potent iPLA² inhibitor FKGK18 in the literature. Especially, compound **6d** (GK187) is the most potent, but also the most selective $iPLA_2$ inhibitor presented, since it shows less that 25% inhibition against GIVA cPLA₂ and 32.8% against GV sPLA₂ at 0.091 mol fraction.

In conclusion, a series of potent GVIA iPLA2 inhibitors was developed. The introduction of a methoxy group at the *para* position of the phenyl group of the lead compound FKGK11 resulted in the most potent GVIA iPLA₂ inhibitor ever reported $(X_I(50) = 0.0001)$. By the use of these inhibitors in studies in animal models, the role of GVIA $iPLA_2$ in inflammatory conditions or neurological diseases may be further explored. Since GVIA iPLA2 has emerged as a novel target for drug discovery, the identification of potent and selective $iPLA₂$ inhibitors is of paramount importance.

4. Experimental section

4.1. General

Melting points were determined on a Buchi 530 apparatus and are uncorrected. Nuclear magnetic resonance spectra were obtained on a Varian Mercury spectrometer $({}^{1}H$ NMR recorded at 200 MHz, 13C NMR recorded at 50 MHz, 19F NMR recorded at 188 MHz) and were recorded in chloroform (CDCl₃), using CHCl₃ residual peak as the $_1$ H internal reference (7.27 ppm); and the central peak of CDCl₃ at 77.0 ppm for ¹³C NMR. All ¹⁹F NMR chemical shifts were referenced to $CFCl₃$ (0.0 ppm). Thin layer chromatography (TLC) plates (silica gel 60 F_{254}) and silica gel 60 (230–400 mesh) for flash column chromatography were purchased from Merck. Visualization of spots was effected with UV light and/or phosphomolybdic acid, in EtOH stain. Tetrahydrofuran, toluene, and $Et₂O$ were dried by standard procedures and stored over molecular sieves or Na. All other solvents and chemicals were reagent grade and used without further purification. All the products gave satisfactory elemental analysis results.

4.2. Chemistry

4.2.1. Synthesis of trifluoromethyl ketones—Oxalyl chloride (1.5 mL, 3 mmol) and *N*,*N*-dimethylformamide (40 μL) were added to a solution of carboxylic acid **4a**–**j** or **11** (1 mmol) in dry dichloromethane (40 mL). After 2 h stirring at room temperature, the solvent and excess reagent were evaporated under reduced pressure and the residue was dissolved in dry dichloromethane (10 mL). Pyridine (0.64 mL, 8 mmol) and trifluoroacetic anhydride (0.85 mL, 6 mmol) were added dropwise to this solution at 0° C consecutively. After stirring at 0 °C for 30 min and at room temperature for 1.5 h, the reaction mixture was cooled again at 0 °C and water (2 mL) was added dropwise. After stirring for 30 min at 0 °C and another 30 min at room temperature, the reaction mixture was diluted with dichloromethane (10 mL). The organic phase was then washed with brine and dried (Na_2SO_4) . The solvent was evaporated under reduced pressure, and the residual oil was purified by flash column chromatography [EtOAc–petroleum ether (bp 40–60 °C) 5/95 to 1/9].

4.2.1.1. 1,1,1-Trifluoro-6-(naphthalen-1-yl)hexan-2-one (5a): Yield 26%; Yellow oil; 1H NMR (200 MHz, CDCl₃): δ 8.10–7.30 (m, 7H, arom), 3.13 (t, 2H, CH₂, *J* = 5.8 Hz), 2.77 (t, 2H, CH₂, $J = 5.8$ Hz), 1.86–1.79 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.39 (q, CO, *J* = 35 Hz), 137.62, 133.87, 131.66, 128.82, 126.78, 125.98, 125.83, 125.49, 123.55, 115.51 (q, CF₃, $J = 290$ Hz), 36.20, 32.67, 29.71, 22.36; ¹⁹F NMR (188 MHz, CDCl₃): δ −79.7 (CF₃); MS (ESI) *m/z* (%): 279.2 ([M–H]⁻, 100); Anal. Calcd for C₁₆H₁₅F₃O: C, 68.56; H, 5.39. Found: C, 68.47; H, 5.42.

4.2.1.2. 1,1,1-Trifluoro-6-(4-fluorophenyl)hexan-2-one (5b): Yield 38%; Colorless oil; 1H NMR (200 MHz, CDCl₃): δ 7.17–6.93 (m, 4H, arom), 2.74 (t, 2H, CH₂, *J* = 6.6 Hz), 2.63 (t, 2H, CH₂, $J = 7.2$ Hz), 1.80–1.56 (m, 4H, CH₂CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.3 $(q, CO, J = 45 \text{ Hz})$, 161.3 (d, C-F, $J = 242 \text{ Hz}$), 137.2, 129.6 (d, $J = 8 \text{ Hz}$), 115.5 (q, CF₃, $J =$ 291 Hz), 115.1 (d, $J = 21$ Hz), 36.1, 34.6, 30.5, 21.8; ¹⁹F NMR (188 MHz, CDCl₃): δ -79.8

(CF₃), −118.0 (F); MS (ESI) m/z (%): 247.2 ([M–H]⁻, 85); Anal. Calcd for C₁₂H₁₂F₄O: C, 58.07; H, 4.87. Found: C, 58.16; H, 4.85.

4.2.1.3. 1,1,1-Trifluoro-6-(4-(trifluoromethyl)phenyl)hexan-2-one (5c): Yield 16%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 7.53 (d, 2H, arom, *J* = 8.0 Hz), 7.27 (d, 2H, arom, $J = 8.0$ Hz), 2.71 (t, 4H, CH $_2$, $J = 7.0$ Hz), 1.78–1.60 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.4 (t, CO, J = 35 Hz), 145.9, 132.6, 128.2, 125.6, 124.5 (q, CF₃, J = 270 Hz), δ 115.8 (q, CF₃, $J = 290$ Hz), 36.2, 35.5, 30.3, 22.1; ¹⁹F NMR (188 MHz, CDCl₃): δ −62.8 (CF3), −79.8 (CF3); MS (ESI) *m*/*z* (%): 297.1 ([M–H]−, 100); Anal. Calcd for $C_{13}H_{12}F_6O$: C, 52.36; H, 4.06. Found: C, 52.48; H, 4.01.

4.2.1.4. 1,1,1-Trifluoro-6-(4-methoxyphenyl)hexan-2-one (5d)43,44: Yield 40%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 7.09 (d, 2H, arom, *J* = 8.6 Hz), 6.83 (d, 2H, arom, *J* = 8.6 Hz), 3.79 (s, 3H, OCH3), 2.74 (t, 2H, CH2, *J* = 6.6 Hz), 2.68 (t, 2H, CH2, *J* = 6.8 Hz), 1.80–1.60 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.4 (q, CO, *J* = 34 Hz), 157.8, 133.6, 129.9, 115.5 (q, CF3, *J* = 290 Hz), 113.7, 55.2, 36.2, 34.5, 30.6, 21.9; 19F NMR (188 MHz, CDCl3): δ −79.8 (CF3). MS (ESI) *m*/*z* (%): 259.2 ([M–H]−, 100); Anal. Calcd for $C_{13}H_{15}F_3O_2$: C, 60.00; H, 5.81. Found: C, 60.11; H, 5.76.

4.2.1.5. 6-(Biphenyl-4-yl)-1,1,1-trifluorohexan-2-one (5e): Yield 39%; Yellowish oil; 1H NMR (200 MHz, CDCl₃): δ 7.70–7.20 (m, 9H, arom), 2.80–2.60 (m, 4H, CH₂), 1.90–1.60 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.4 (q, CO, *J* = 35 Hz), 140.9, 140.7, 138.9, 128.9, 128.8, 128.7, 127.2, 127.1, 127.0, 126.9, 115.5 (q, CF₃, *J* = 290 Hz), 36.2, 35.1, 30.4, 22.0; 19F NMR (188 MHz, CDCl3): δ −79.7 (CF3); MS (ESI) *m*/*z* (%): 305.2 ([M–H]−, 100); Anal. Calcd for C₁₈H₁₇F₃O: C, 70.58; H, 5.59. Found: C, 70.69; H, 5.54.

4.2.1.6. 1,1,1-Trifluoro-6-(6-methoxynaphthalen-2-yl)hexan-2-one (5f): Yield 53%; Yellow solid; mp 51–53 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.70 (d, 2H, arom, $J = 8.2$ Hz), 7.55 (s, 1H, arom), 7.30 (d, 1H, arom, *J* = 8.0 Hz), 7.16 (d, 1H, arom, *J* = 8.2 Hz), 7.14 (s, 1H, arom), 3.92 (s, 3H, OCH₃), 2.90–2.55 (m, 4H, CH₂), 1.90–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.4 (q, CO, *J* = 35 Hz), 157.2, 136.7, 133.0, 129.0, 128.8, 127.6, 126.8, 126.2, 118.7, 115.5 (q, CF₃, *J* = 290 Hz), 105.5, 55.2, 36.1, 35.3, 30.3, 21.9; 19F NMR (188 MHz, CDCl3): δ −79.7 (CF3); MS (ESI) *m*/*z* (%): 309.3 ([M–H]−, 100); Anal. Calcd for C₁₇H₁₇F₃O₂: C, 65.80; H, 5.52. Found: C, 65.88; H, 5.48.

4.2.1.7. 6-(2,4-Dimethoxyphenyl)-1,1,1-trifluorohexan-2-one (5g): Yield 16%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 7.02 (d, 1H, arom, *J* = 7.2 Hz), 6.45 (s, 1H, arom), 6.42 (d, 1H, arom, *J* = 7.2 Hz), 3.80 (s, 6H, OCH3), 2.75 (t, 2H, CH2, *J* = 6.6 Hz), 2.58 (t, 2H, CH₂, $J = 6.8$ Hz), 1.80–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.6 (g, CO, $J =$ 35 Hz), 159.2, 158.2, 129.9, 122.4, 115.5 (q, CF3, *J* = 291 Hz), 103.7, 98.4, 55.3, 55.2, 36.2, 29.1, 29.0, 21.9; 19F NMR (188 MHz, CDCl3): δ −79.7 (CF3); MS (ESI) *m*/*z* (%): 289.3 ([M–H]−, 100); Anal. Calcd for C14H17F3O3: C, 57.93; H, 5.90. Found: C, 57.87; H, 5.92.

4.2.1.8. 6-(3,4-Dimethoxyphenyl)-1,1,1-trifluorohexan-2-one (5h): Yield 26%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 6.90–6.50 (m, 3H, arom), 3.83 (s, 3H, OCH₃), 3.81 (s, 3H, OCH3), 2.70 (t, 2H, CH2, *J* = 5.8 Hz), 2.55 (t, 2H, CH2, *J* = 7.0 Hz), 1.85–1.40 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.3 (q, CO, *J* = 35 Hz), 148.7, 147.1, 134.1, 120.0, 115.4 (q, CF₃, *J* = 291 Hz), 111.4, 111.0, 55.7, 55.6, 36.1, 35.0, 30.5, 21.8; ¹⁹F NMR (188 MHz, CDCl3): δ −79.8 (CF3); MS (ESI) *m*/*z* (%): 289.1 ([M–H]−, 100); Anal. Calcd for $C_{14}H_{17}F_3O_3$: C, 57.93; H, 5.90. Found: C, 57.82; H, 5.94.

4.2.1.9. 1,1,1-Trifluoro-6-(2-methoxyphenyl)hexan-2-one (5i): Yield 29%; Yellowish oil; ¹H NMR (200 MHz, CDCl₃): δ 7.30–7.05 (m, 2H, arom), 6.95–6.75 (m, 2H, arom), 3.82 $(s, 3H, OCH_3)$, 2.82–2.54 (m, 4H, CH₂), 1.83–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.6 (g, CO, $J = 35$ Hz), 157.3, 130.0, 129.8, 127.1, 120.3, 115.5 (g, CF₃, $J =$ 291 Hz), 110.1, 55.1, 36.1, 29.6, 28.8, 22.0; ¹⁹F NMR (188 MHz, CDCl₃): δ -79.9 (CF₃). MS (ESI) m/z (%): 259.2 ([M–H]⁻, 100); Anal. Calcd for C₁₃H₁₅F₃O₂: C, 60.00; H, 5.81. Found: C, 59.87; H, 5.87.

4.2.1.10. 6-(Benzo[*d***][1,3]dioxol-5-yl)-1,1,1-trifluorohexan-2-one (5j):** Yield 70%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 6.82–6.42 (m, 3H, arom), 5.92 (s, 2H, OCH₂O), 2.73 (t. 2H, CH₂, *J* = 6.6 Hz), 2.57 (t, 2H, CH₂, *J* = 6.6 Hz), 1.90–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 191.4 (q, CO, *J* = 35 Hz), 147.6, 145.7, 135.4, 121.0, 115.5 (q, CF₃, *J* = 291 Hz), 108.7, 108.1, 100.7, 36.1, 35.1, 30.6, 21.8; ¹⁹F NMR (188 MHz, CDCl₃): δ-79.8 (CF₃); MS (ESI) m/z (%): 273.4 ([M+H]⁺, 100); Anal. Calcd for C₁₄H₁₅F₃O₂: C, 61.76; H, 5.55. Found: C, 61.87; H, 5.49.

4.2.1.11. 4-(Biphenyl-2-yl)-1,1,1-trifluorobutan-2-one (12): Yield 67%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 7.60–7.10 (m, 9H, arom), 3.04 (t, 2H, CH₂, *J* = 7.0 Hz), 2.83 (t, 2H, CH₂, $J = 7.0$ Hz); ¹³C NMR (50 MHz, CDCl₃): δ 190.5 (q, CO, $J = 35$ Hz), 142.0, 141.1, 136.6, 130.4, 128.4, 127.7, 127.2, 126.7, 115.4 (q, CF₃, *J* = 291 Hz), 37.3, 26.0; ¹⁹F NMR (188 MHz, CDCl₃): δ-79.7 (CF₃). MS (ESI) *m*/*z* (%): 277.2 ([M-H][−], 100); Anal. Calcd for $C_{16}H_{13}F_{3}O$: C, 69.06; H, 4.71. Found: C, 69.15; H, 4.68.

4.2.2. Synthesis of pentafluoroethyl ketones—The synthesis of pentafluoroethyl ketones was carried out following the procedure described above for trifluoromethyl ketones, except that pentafluoropropionic anhydride was used instead of trifluoroacetic anhydride. The products were purified by flash column chromatography [EtOAc–petroleum ether (bp 40–60 °C) 5/95 to 1/9].

4.2.2.1. 1,1,1,2,2-Pentafluoro-7-(naphthalen-1-yl)heptan-3-one (6a): Yield 65%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 8.06–7.32 (m, 7H, arom), 3.13 (t, 2H, CH₂, *J* = 7.2 Hz), 2.81 (t, 2H, CH₂, $J = 7.0$ Hz), 1.86–1.80 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 194.2 (t, CO, *J* = 27 Hz), 137.6, 133.9, 131.7, 128.8, 126.8, 126.0, 125.8, 125.5, 123.5, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 109.5 (tq, CF₂, $J_1 = 265$ Hz, $J_2 = 38$ Hz), 37.2, 32.7, 29.7, 22.3; 19F NMR (188 MHz, CDCl3): δ −82.3 (CF3), −123.7 (CF2); MS (ESI) *m*/*z* (%): 329.2 ([M–H]⁻, 100); Anal. Calcd for C₁₇H₁₅F₅O: C, 61.82; H, 4.58. Found: C, 61.87; H, 4.55.

4.2.2.2. 1,1,1,2,2-Pentafluoro-7-(4-fluorophenyl)heptan-3-one (6b): Yield 53%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 7.20–7.00 (m, 2H, arom), 6.98–6.80 (m, 2H, arom), 2.78 (t, 2H, CH₂, $J = 6.8$ Hz), 2.62 (t, 2H, CH₂, $J = 7.0$ Hz), 1.82–1.60 (m, 4H, CH₂); ¹³C NMR $(50 \text{ MHz}, \text{CDCl}_3)$: δ 194.2 (t, CO, *J* = 24 Hz), 161.3 (d, C-F, *J* = 242 Hz), 137.2, 129.6 (d, *J* $= 8$ Hz), 115.1 (d, $J = 21$ Hz), 122.0–100.0 (m, CF₂, CF₃), 37.1, 34.7, 30.5, 21.8; ¹⁹F NMR (188 MHz, CDCl3): δ −82.3 (CF3), −118.0 (F), −123.8 (CF2); MS (ESI) *m*/*z* (%): 297.1 ([M–H][−], 100); Anal. Calcd for C₁₃H₁₂F₆O: C, 52.36; H, 4.06. Found: C, 52.42; H, 4.03.

4.2.2.3. 1,1,1,2,2-Pentafluoro-7-(4-(trifluoromethyl)phenyl)heptan-3-one (6c): Yield 65%; Yellow oil; 1H NMR (200 MHz, CDCl3): δ 7.57 (d, 2H, arom, *J* = 5.2 Hz), 7.31 (d, 2H, arom, $J = 5.2$ Hz), 2.81 (t, 2H, CH₂, $J = 4.4$ Hz), 2.74 (t, 2H, CH₂, $J = 4.4$ Hz), 1.80– 1.66 (m, 4H, CH2); 13C NMR (50 MHz, CDCl3): δ 194.1 (t, CO, *J* = 27 Hz), 145.7, 132.4, 129.3, 128.6, 128.0, 125.3 (q, C-CF₃, $J = 4$ Hz), 121.6, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 109.5 (tq, CF₂, *J*₁ = 265 Hz, *J*₂ = 38 Hz), 37.1, 35.4, 30.0, 21.8; ¹⁹F NMR (188 MHz,

CDCl3): δ −62.8 (CF3), −82.4 (CF3), −123.8 (CF2); MS (ESI) *m*/*z* (%): 347.1 ([M–H]−, 95); Anal. Calcd for $C_{14}H_{12}F_8O$: C, 48.29; H, 3.47. Found: C, 48.38; H, 3.43.

4.2.2.4. 1,1,1,2,2-Pentafluoro-7-(4-methoxyphenyl)heptan-3-one (6d): Yield 31%; Colorless oil; ¹H NMR (200 MHz, CDCl₃): δ 7.12 (d, 2H, arom, *J* = 5.6 Hz), 6.87 (d, 2H, arom, $J = 5.8$ Hz), 3.83 (s, 3H, OCH₃), 2.79 (t, 2H, CH₂, $J = 6.6$ Hz), 2.62 (t, 2H, CH₂, $J =$ 6.8 Hz), 1.79–1.61 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 194.3 (t, CO, *J* = 27 Hz), 157.8, 133.7, 129.2, 113.8, 122.0–100.0 (m, CF₂, CF₃), 55.2, 37.2, 34.6, 30.6; ¹⁹F NMR (188 MHz, CDCl3): δ −82.3 (CF3), −123.8 (CF2); MS (ESI) *m*/*z* (%): 309.2 ([M–H]−, 72); Anal. Calcd for $C_{14}H_{15}F_5O_2$: C, 54.20; H, 4.87. Found: C, 54.32; H, 4.84.

4.2.2.5. 7-(Biphenyl-4-yl)-1,1,1,2,2-pentafluoroheptan-3-one (6e): Yield 63%; Yellow low mp solid; mp 32–34 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.80–7.20 (m, 9H, arom), 2.83 (t, 2H, CH₂, $J = 6.8$ Hz), 2.73 (t, 2H, CH₂, $J = 7.0$ Hz), 1.95–1.60 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl3): δ 194.2 (t, CO, *J* = 27 Hz), 141.0, 140.7, 138.9, 128.8, 128.7, 127.1, 127.0, 126.9, 126.4, 125.7, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 106.9 (tq, CF₂, $J_1 =$ 265 Hz, $J_2 = 38$ Hz), 37.1, 35.1, 30.3, 21.9; ¹⁹F NMR (188 MHz, CDCl₃): δ -82.3 (CF₃), −123.7 (CF2); MS (ESI) *m*/*z* (%): 355.2 ([M–H]−, 100); Anal. Calcd for C19H17F5O: C, 64.04; H, 4.81. Found: C, 64.16; H, 4.78.

4.2.2.6. 1,1,1,2,2-Pentafluoro-7-(6-methoxynaphthalen-2-yl)heptan-3-one (6f): Yield 60%; Yellow solid; mp 42–44 °C; ¹H NMR (200 MHz, CDCl₃): δ 7.69 (d, 2H, arom, $J = 8.8$ Hz), 7.54 (s, 1H, arom), 7.28 (d, 1H, arom, *J* = 9.4 Hz), 7.15 (d, 1H, arom, *J* = 8.2 Hz), 7.13 (s, 1H, arom), 3.91 (s, 3H, OCH₃), 2.95–2.60 (m, 4H, CH₂), 1.90–1.60 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl3): δ 194.2 (t, CO, *J* = 27 Hz), 157.2, 136.7, 133.0, 129.0, 128.9, 127.6, 126.8, 126.3, 118.8, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 106.9 (tq, CF₂, $J_1 =$ 265 Hz, J_2 = 38 Hz), 105.6, 55.2, 37.2, 35.4, 30.3, 21.9; ¹⁹F NMR (188 MHz, CDCl₃): δ −82.3 (CF3), −123.8 (CF2); MS (ESI) *m*/*z* (%): 359.3 ([M–H]−, 100); Anal. Calcd for $C_{18}H_{17}F_5O_2$: C, 60.00; H, 4.76. Found: C, 60.17; H, 4.71.

4.2.2.7. 7-(2,4-Dimethoxyphenyl)-1,1,1,2,2-pentafluoroheptan-3-one (6g): Yield 52%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 6.99 (d, 1H, arom, *J* = 7.8 Hz), 6.42 (s, 1H, arom), 6.40 (d, 1H, arom, $J = 7.8$ Hz), 3.77 (s, 6H, OCH₃), 2.76 (t, 2H, CH₂, $J = 6.4$ Hz), 2.55 (t, 2H, CH₂, $J = 7.0$ Hz), 1.78–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 194.4 (t, CO, $J = 26$ Hz), 159.2, 158.2, 129.9, 122.4, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 106.9 (tq, CF₂, $J_1 = 266$ Hz, $J_2 = 38$ Hz), 103.7, 98.4, 55.3, 55.1, 37.2, 29.0, 22.6, 21.9; 19F NMR (188 MHz, CDCl3): δ −82.3 (CF3), −123.8 (CF2); MS (ESI) *m*/*z* (%): 339.3 ([M–H]⁻, 100); Anal. Calcd for C₁₅H₁₇F₅O₃: C, 52.94; H, 5.04. Found: C, 52.87; H, 5.07.

4.2.2.8. 7-(3,4-Dimethoxyphenyl)-1,1,1,2,2-pentafluoroheptan-3-one (6h): Yield 48%; Yellowish oil; ¹H NMR (200 MHz, CDCl₃): δ 6.90–6.60 (m, 3H, arom), 3.88 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 2.78 (t, 2H, CH₂, *J* = 5.4 Hz), 2.59 (t, 2H, CH₂, *J* = 6.4 Hz), 1.90–1.42 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 194.2 (t, CO, *J* = 26 Hz), 148.8, 147.2, 134.2, 120.1, 117.8 (qt, CF₃, *J*₁ = 285 Hz, *J*₂ = 34 Hz), 111.5, 111.1, 106.8 (tq, CF₂, $J_1 = 265$ Hz, $J_2 = 38$ Hz), 55.8, 55.7, 37.1, 35.0, 30.5, 21.8; ¹⁹F NMR (188 MHz, CDCl₃): δ −82.4 (CF3), −123.8 (CF2); MS (ESI) *m*/*z* (%): 339.3 ([M–H]−, 100); Anal. Calcd for C_1 ₅H₁₇F₅O₃: C, 52.94; H, 5.04. Found: C, 52.87; H, 5.09.

4.2.2.9. 1,1,1,2,2-Pentafluoro-7-(2-methoxyphenyl)heptan-3-one (6i): Yield 32%; Yellowish oil; ¹H NMR (200 MHz, CDCl₃): δ 7.35–7.05 (m, 2H, arom), 6.95–6.75 (m, 2H, arom), 3.81 (s, 3H, OCH₃), 2.78 (t, 2H, CH₂, $J = 6.6$ Hz), 2.63 (t, 2H, CH₂, $J = 6.6$ Hz), 1.90–1.50 (m, 4H, CH2); 13C NMR (50 MHz, CDCl3): δ 194.4 (t, CO, *J* = 26 Hz), 157.3,

130.0, 129.8, 127.2, 120.4, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 110.2, 109.5 (tq, CF₂, $J_1 = 265$ Hz, $J_2 = 38$ Hz), 55.1, 37.2, 29.6, 28.8, 21.9; ¹⁹F NMR (188 MHz, CDCl₃): δ -82.4 (CF₃), −123.8 (CF₂); MS (ESI) *m/z* (%): 309.1 ([M–H]⁻, 85); Anal. Calcd for C₁₄H₁₅F₅O₂: C, 54.20; H, 4.87. Found: C, 54.29; H, 4.84.

4.2.2.10. 7-(Benzo[d][1,3]dioxol-5-yl)-1,1,1,2,2-pentafluoroheptan-3-one (6j): Yield 67%; Yellow oil; ¹H NMR (200 MHz, CDCl₃): δ 6.90–6.50 (m, 3H, arom), 5.92 (s, 2H, OCH2O), 2.78 (t, 2H, CH2, *J* = 5.8 Hz), 2.57 (t, 2H, CH2, *J* = 7.0 Hz), 1.85–1.50 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 194.2 (t, CO, *J* = 26 Hz), 147.6, 145.7, 135.4, 121.0, 117.8 (qt, CF₃, $J_1 = 285$ Hz, $J_2 = 34$ Hz), 108.7, 106.9 (tq, CF₂, $J_1 = 265$ Hz, $J_2 = 38$ Hz), 100.8, 37.1, 35.2, 30.6, 21.7; ¹⁹F NMR (188 MHz, CDCl₃): δ -82.4 (CF₃), -123.8 (CF₂); MS (ESI) m/z (%): 323.2 ([M+H]⁺, 100); Anal. Calcd for C₁₅H₁₅F₅O₂: C, 55.90; H, 4.69. Found: C, 55.98; H, 4.65.

4.2.2.11. 5-(Biphenyl-2-yl)-1,1,1,2,2-pentafluoropentan-3-one (13): Yield 48%;

Yellowish oil; ¹H NMR (200 MHz, CDCl₃): δ7.70–7.10 (m, 9H, arom), 3.03 (t, 2H, CH₂, *J* $= 7.0$ Hz), 2.85 (t, 2H, CH₂, *J* = 7.0 Hz); ¹³C NMR (50 MHz, CDCl₃): δ 193.4 (t, CO, *J* = 26 Hz), 142.0, 141.1, 136.6, 130.4, 129.1, 128.9, 128.4, 126.7, 117.7 (qt, CF₃, $J_1 = 285$ Hz, J_2) $= 34$ Hz), 106.8 (tq, CF₂, $J_1 = 265$ Hz, $J_2 = 38$ Hz), 38.4 (CH₂), 26.0 (CH₂); ¹⁹F NMR (188 MHz, CDCl₃): δ −82.4 (CF₃), −123.9 (CF₂); MS (ESI) *m*/*z* (%): 327.2 ([M–H]⁻, 100); Anal. Calcd for $C_{17}H_{13}F_5O$: C, 62.20; H, 3.99. Found: C, 62.29; H, 3.95.

4.2.3. 1,1,1,2,2,3,3-Heptafluoro-8-(naphthalen-1-yl)octan-4-one (7a)—The

synthesis of heptafluoropropyl ketone **7a** was carried out following the procedure described above for trifluoromethyl ketones, except that heptafluorobutanoic anhydride was used instead of trifluoroacetic anhydride. The product was purified by flash column chromatography [EtOAc–petroleum ether (bp 40–60 °C) 5/95]. Yield 54%; Yellow low mp solid; mp 31–32 °C; ¹H NMR (200 MHz, CDCl₃): δ 8.06–7.33 (m, 7H, arom), 3.14 (t, 2H, CH₂, $J = 7.2$ Hz), 2.82 (t, 2H, CH₂, $J = 7.0$ Hz), 1.86–1.80 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 193.9 (t, CO, *J* = 26 Hz), 137.6, 133.9, 130.0–102.5 (m, CF₂, CF₃), 128.8, 126.8, 126.0, 125.8, 125.5, 123.5, 37.8, 32.7, 29.6, 22.4; 19F NMR (188 MHz, CDCl3): ^δ −81.05 (CF3), −121.56 (CF2), −127.08 (CF2); MS (ESI) *m*/*z* (%): 379.1 ([M–H]−, 100); Anal. Calcd for C₁₈H₁₅F₇O: C, 56.85; H, 3.98. Found: C, 56.72; H, 4.03.

4.2.4. Synthesis of difluoromethyl ketones—To a stirring mixture of magnesium (24 mg, 1 mmol) and iodine in dry Et₂O (1 mL), a solution of bromide **14a** or **14b** (1 mmol) in dry Et₂O (9 mL) was added dropwise under N₂ atmosphere. Once the Grignard reagent was formed, it was added dropwise to a cooled (−78 °C) solution of ethyl difluoroacetate (62 mg, 0.5 mmol) in dry ether (0.5 mL). The reaction mixture was stirred at −78 °C for 45 min and then was quenched with 1 N HCl. The aqueous layer was extracted with ether (3×25 mL) and the combined organic layers were washed with brine, dried $(Na₂SO₄)$ and the solvent was evaporated in vacuo. The product was purified by flash column chromatography [EtOAc–petroleum ether (bp 40–60 °C) 5/95].

4.2.4.1. 1,1-Difluoro-5-phenylpentan-2-one (16a): Yield 56%; Colorless oil; 1H NMR (200 MHz, CDCl3): δ 7.40–7.10 (m, 5H, CH), 5.66 (t, 1H, CHF2, *J* = 54.0 Hz), 2.77–2.55 (m, 4H, CH₂), 1.99 (quintet, 2H, CH₂, $J = 8.0$ Hz); ¹³C NMR (50 MHz, CDCl₃): δ 199.6 (t, CO, $J = 26.0$ Hz), 140.9, 128.5, 128.4, 126.1, 109.8 (d, CHF₂, $J = 250$ Hz), 35.2, 34.7, 23.8; ¹⁹F NMR (188 MHz, CDCl₃): δ –127.4 (d, CHF₂, *J* = 54.5 Hz); MS (ESI) m/z (%): 197.1 ([M–H]−, 100); Anal. Calcd for C11H12F2O: C, 66.66; H, 6.10. Found: C, 66.78; H, 6.06.

4.2.5. 1,1-Difluoro-6-phenylhexan-2-one (16b)45—Yield 45%; Colorless oil; 1H NMR (200 MHz, CDCl₃): δ 7.37–7.07 (m, 5H, CH), 5.66 (t, 1H, CHF₂, *J* = 54 Hz), 2.78– 2.52 (m, 4H, CH₂), 1.81–1.58 (m, 4H, CH₂); ¹³C NMR (50 MHz, CDCl₃): δ 199.7 (t, CO, *J* $= 26$ Hz), 140.2, 128.3, 125.8, 109.8 (d, CHF₂, $J = 251$ Hz), 35.8, 35.5, 30.6, 21.9; ¹⁹F NMR (188 MHz, CDCl3): δ −127.4 (d, CHF2, *J* = 54.5 Hz); MS (ESI) *m*/*z* (%): 211.2 ([M–H]−, 100); Anal. Calcd for C₁₂H₁₄F₂O: C, 67.91; H, 6.65. Found: C, 67.82; H, 6.69.

4.3. In vitro PLA2 assays

The activity of cPLA₂, iPLA₂ and sPLA₂ were determined using modified Dole Assay.⁴⁰⁻⁴² The buffer and substrate conditions were optimized for each enzyme assay as follows: (i) GIVA cPLA₂ substrate mixed-micelles were composed of 400 μ M Triton X-100, 97 μ M PAPC, 1.8 μ M ¹⁴C-labeled PAPC, and 3 μ M PIP₂ in 100 mM HEPES buffer, pH 7.5, with 90 μM CaCl₂, 2 mMDTT, and 0.1 mg/ml BSA; (ii) GVIA iPLA₂ substrate mixed-micelles were composed of 400 μM Triton X-100, 98.3 μM PAPC, and 1.7 μM ¹⁴C-labeled PAPC in buffer containing 100 mM HEPES, pH 7.5, 2 mM ATP, and 4 mM DTT; (iii) GV sPLA₂ substrate mixed-micelles were composed of 400 μM Triton X-100, 98.3 μM PAPC, and 1.7 μ M ¹⁴C-labeled PAPC in buffer containing 50 mMTris, pH 8.0, and 5 mM CaCl₂.

Initial screening of compounds at 0.091 mole fraction inhibitor in mixed-micelles was carried out. Compounds displaying 25% or less inhibition of the assays were considered to have no inhibitory affect (designated N.D.). We report average percent inhibition for compounds displaying less than 95% enzyme inhibition. If the percent inhibition was greater than 95%, we determined its $X_I(50)$ by plotting percent inhibition versus inhibitor mole fraction (typically 7 concentrations between 0.00091 and 0.091 mole fraction). Inhibition curves were modeled in Graphpad Prism 5.0 using nonlinear regression targeted at symmetrical sigmoidal curves based on plots of % inhibition versus log (inhibitor concentration), to calculate the reported $X_I(50)$ and associated error values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the European Social Fund and National Resources Herakleitos II (A.S.) and by NIH Grant GM20501 (E.A.D.).

References and notes

- 1. Burke JE, Dennis EA. Cardiovasc Drugs Ther. 2009; 23:45.
- 2. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Chem Rev. 2011; 111:6130. [PubMed: 21910409]
- 3. Ghosh M, Tucker DE, Burchett SA, Leslie CC. Prog Lipid Res. 2006; 45:487. [PubMed: 16814865]
- 4. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL. Cell. 1991; 65:1043. [PubMed: 1904318]
- 5. Kramer RM, Roberts EF, Manetta J, Putnam JE. J Biol Chem. 1991; 266:5268. [PubMed: 2002059]
- 6. Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG, Gelb MH. J Biol Chem. 2004; 279:25024. [PubMed: 15007070]
- 7. Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ, Arm JP. J Biol Chem. 2004; 279:16488. [PubMed: 14761945]
- 8. Shirai Y, Balsinde J, Dennis EA. Biochim Biophys Acta. 2005; 1735:119. [PubMed: 15967714]
- 9. Ackermann EJ, Kempner ES, Dennis EA. J Biol Chem. 1994; 269:9227. [PubMed: 8132660]

- 10. Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J, Jones SS. J Biol Chem. 1997; 272:8567. [PubMed: 9079687]
- 11. Balboa MA, Balsinde J, Jones SS, Dennis EA. J Biol Chem. 1997; 272:8576. [PubMed: 9079688]
- 12. Sedgwick SG, Smerdon SJ. Trends Biochem Sci. 1999; 24:311. [PubMed: 10431175]
- 13. Balsinde J, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA. Proc Natl Acad Sci USA. 1995; 92:8527. [PubMed: 7667324]
- 14. Balsinde J, Balboa MA, Dennis EA. J Biol Chem. 1997; 272:29317. [PubMed: 9361012]
- 15. Balsinde J, Dennis EA. J Biol Chem. 1997; 272:16069. [PubMed: 9195897]
- 16. Ramanadham S, Hsu FF, Bohrer A, Ma Z, Turk J. J Biol Chem. 1999; 274:13915. [PubMed: 10318801]
- 17. Birbes H, Drevet S, Pageaux JF, Lagarde M, Laugier C. Eur J Biochem. 2000; 267:7118. [PubMed: 11106423]
- 18. Ma Z, Bohrer A, Wohltmann M, Ramanadham S, Hsu FF, Turk J. Lipids. 2001; 36:689. [PubMed: 11521967]
- 19. Ma Z, Ramanadham S, Wohltmann M, Bohrer A, Hsu FF, Turk J. J Biol Chem. 2001; 276:13198. [PubMed: 11278673]
- 20. Balsinde J, Balboa MA. Cell Signalling. 2005; 17:1052. [PubMed: 15993747]
- 21. Balsinde J, Perez R, Balboa MA. Biochim Biophys Acta. 2006; 1761:1344. [PubMed: 16962822]
- 22. Zachman DK, Chicco AJ, McCune SA, Murphy RC, Moore RL, Sparagna GC. J Lipid Res. 2010; 51:525. [PubMed: 19741254]
- 23. Lei X, Barbour SE, Ramanadham S. Biochimie. 2010; 92:627. [PubMed: 20083151]
- 24. Hooks SB, Cummings BS. Biochem Pharmacol. 2008; 76:1059. [PubMed: 18775417]
- 25. Wilkins WP, Barbour SE. Curr Drug Targets. 2008; 9:683. [PubMed: 18691015]
- 26. Jenkins CM, Cedars A, Gross RW. Cardiovasc Res. 2009; 82:240. [PubMed: 19074824]
- 27. Cao J, Burke JE, Dennis EA. J Biol Chem. 2013; 288:1806. [PubMed: 23209293]
- 28. Magrioti V, Kokotos G. Anti-Inflammatory Anti-Allergy Agents Med Chem. 2006; 5:189.
- 29. Magrioti V, Kokotos G. Expert Opin Ther Pat. 2010; 20:1. [PubMed: 20021282]
- 30. Magrioti V, Kokotos G. Expert Opin Ther Pat. 2013; 23:333. [PubMed: 23294257]
- 31. Ackermann EJ, Conde-Frieboes K, Dennis EA. J Biol Chem. 1995; 270:445. [PubMed: 7814408]
- 32. Conde-Frieboes K, Reynolds LJ, Lio Y, Hale M, Wasserman HH, Dennis EA. J Am Chem Soc. 1996; 118:5519.
- 33. Lio YC, Reynolds LJ, Balsinde J, Dennis EA. Biochim Biophys Acta. 1996; 1302:55. [PubMed: 8695655]
- 34. Hsu YH, Dumlao DS, Cao J, Dennis EA. PLoS One. 2013; 8:e59267. [PubMed: 23533611]
- 35. Song H, Ramanadham S, Bao S, Hsu FF, Turk J. Biochemistry. 2006; 45:1061. [PubMed: 16411783]
- 36. Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, Dennis EA, Kokotos G. J Med Chem. 2008; 51:8027. [PubMed: 19053783]
- 37. Kokotos G, Hsu YH, Burke JE, Baskakis C, Kokotos CG, Magrioti V, Dennis EA. J Med Chem. 2010; 53:3602. [PubMed: 20369880]
- 38. Kalyvas A, Baskakis C, Magrioti V, Constantinou-Kokotou V, Stephens D, Lpez-Vales R, Lu JQ, Yong VW, Dennis EA, Kokotos G, David S. Brain. 2009; 132:1221. [PubMed: 19218359]
- 39. Hsu YH, Bucher D, Cao J, Li S, Yang SW, Kokotos G, Woods VL, McCammon JA, Dennis EA. J Am Chem Soc. 2013; 135:1330. [PubMed: 23256506]
- 40. Stephens D, Barbayianni E, Constantinou-Kokotou V, Peristeraki A, Six DA, Cooper J, Harkewicz R, Deems RA, Dennis EA, Kokotos G. J Med Chem. 2006; 49:2821. [PubMed: 16640343]
- 41. Six DA, Barbayianni E, Loukas V, Constantinou-Kokotou V, Hadjipavlou-Litina D, Stephens D, Wong AC, Magrioti V, Moutevelis-Minakakis P, Baker S, Dennis EA, Kokotos G. J Med Chem. 2007; 50:4222. [PubMed: 17672443]
- 42. Kokotos G, Six DA, Loukas V, Smith T, Constantinou-Kokotou V, Hadjipavlou-Litina D, Kotsovolou S, Chiou A, Beltzner CC, Dennis EA. J Med Chem. 2004; 47:3615. [PubMed: 15214789]

43. Makriyannis, A.; Nikas, SP.; Alapafuja, SO.; Shukla, VG. WO Patent 2008/013963. p. A2

44. Makriyannis, A.; Nikas, SP.; Alapafuja, SO.; Shukla, VG. WO Patent 2009/052319. p. A1

45. Ichikawa J, Sonoda T, Kobayashi H. Tetrahedron Lett. 1989; 30:5437.

FKGK18

Figure 1. Some known iPLA₂ inhibitors.

Scheme 1.

Reagents and conditions: (a) $C_2H_5OOCCH=CHCH_2P(=O)(OC_2H_5)_2$, LiOH, THF, reflux; (b) H_2 , 10% Pd/C, EtOH; (c) NaOH 1 N, EtOH; (d) $(COCl)_2$, DMF, CH₂Cl₂; (e) pyridine, $(CF_3CO)_2O$, CH_2Cl_2 , $0 °C$ to rt; (f) pyridine, $(CF_3CF_2CO)_2O$, CH_2Cl_2 , $0 °C$ to rt; (g) pyridine, $(CF_3CF_2CF_2CO)_2O$, CH_2Cl_2 , $0 °C$ to rt.

Scheme 2.

Reagents and conditions: (a) $CH_3OOCCH=PPh_3$, dry THF; (b) H_2 , 10% Pd/C, MeOH; (c) NaOH 1 N, MeOH; (d) $(COCl)_2$, DMF, CH_2Cl_2 ; (e) pyridine, $(CF_3CO)_2O$, CH_2Cl_2 , $0^\circ C$ to rt; (f) pyridine, $(\text{CF}_3\text{CF}_2\text{CO})_2\text{O}$, CH_2Cl_2 , 0 °C to rt.

Scheme 3.

Reagents and conditions: (a) Mg, dry Et₂O; (b) CHF₂COOEt, dry Et₂O, -78 °C.

Table 1

Inhibition of PLA2 by fluoroketones*^a*

 a ^{a}
Average percent inhibition and standard error (*n* = 3) are reported for each compound at 0.091 mol fraction. *X*_I(50) values were determined for inhibitors with greater than 95% inhibition. N.D. signifies compounds with less than 25% inhibition (or no detectable inhibition).