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Abstract

Integrative analysis based on quantitative representation of whole slide images (WSIs) in a large 

histology cohort may provide predictive models of clinical outcome. On one hand, the efficiency 

and effectiveness of such representation is hindered as a result of large technical variations (e.g., 

fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present 

in a large cohort. On the other hand, perceptual interpretation/validation of important multivariate 

phenotypic signatures are often difficult due to the loss of visual information during feature 

transformation in hyperspace. To address these issues, we propose a novel approach for integrative 

analysis based on cellular morphometric context, which is a robust representation of WSI, with the 

emphasis on tumor architecture and tumor heterogeneity, built upon cellular level morphometric 

features within the spatial pyramid matching (SPM) framework. The proposed approach is applied 

to The Cancer Genome Atlas (TCGA) lower grade glioma (LGG) cohort, where experimental 

results (i) reveal several clinically relevant cellular morphometric types, which enables both 

perceptual interpretation/validation and further investigation through gene set enrichment analysis; 

and (ii) indicate the significantly increased survival rates in one of the cellular morphometric 

context subtypes derived from the cellular morphometric context.
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1 Introduction

Histology sections provide wealth of information about the tissue architecture that contains 

multiple cell types at different states of cell cycles. These sections are often stained with 

hematoxylin and eosin (H&E) stains, which label DNA (e.g., nuclei) and protein contents, 

respectively, in various shades of color. Morphometric abberations in tumor architecture 

often lead to disease progression, and it is desirable to quantify indices associated with these 

abberations since they can be tested against the clinical outcome, e.g., survival, response to 

therapy.

For the quantitative analysis of the H&E stained sections, several excellent reviews can be 

found in [8, 7]. Fundamentally, the trend has been based either on nuclear segmentation and 

corresponding morphometric representation, or patch-based representation of the histology 

sections that aids in clinical association. The major challenge for tissue morphometric 

representation is the large amounts of technical and biological variations in the data. To 

overcome this problem, recent studies have focused on either fine tuning human engineered 

features [1, 11, 12, 4], or applying automatic feature learning [9, 16, 15, 20, 5, 19], for 

robust representation and characterization.

Even though there are inter- and intra- observer variations [6], a trained pathologist always 

uses rich content (e.g., various cell types, cellular organization, cell state and health), in 

context, to characterize tumor architecture and heterogeneity for the assessment of disease 

state. Motivated by the works of [13, 18], we encode cellular morphometric signatures 

within the spatial pyramid matching (SPM) framework for robust representation (i.e., 

cellular morphometric context) of WSIs in a large cohort with the emphasis on tumor 

architecture and tumor heterogeneity, based on which an integrative analysis pipeline is 

constructed for the association of celllular morphometric context with clinical outcomes and 

molecular data, with the potential in hypothesis generation regarding the imaging 

biomarkers for personalized diagnosis or treatment. The proposed approach is applied to the 

TCGA LGG cohort, where experimental results (i) reveal several clinically relevant cellular 

morphometric types, which enables both perceptual interpretation/validation and further 

investigation through gene set enrichment analysis; and (ii) indicate the significantly 

increased survival rates in one of the cellular morphometric context subtypes derived from 

the cellular morphometric context.

2 Approaches

The proposed approach starts with the construction of cellular morphometric types and 

cellular morphometric context, followed by integrative analysis with both clinical and 

molecular data. Specifically, the nuclear segmentation method in [4] was adopted given its 

demonstrated robustness in the presence of biological and technical variations, where the 

corresponding nuclear morphometric descriptors are described in [3], and the constructed 

cellular morphometric context representations are released on our website 1.

1http://bmihub.org/project/tcgalggcellularmorphcontext

Han et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bmihub.org/project/tcgalggcellularmorphcontext


2.1 Construction of Cellular Morphometric Types and Cellular Morphometric Context

For a set of WSIs and corresponding nuclear segmentation results, let M be the total number 

of segmented nuclei; N be the number of morphometric descriptors extracted from each 

segmented nucleus, e.g. nuclear size, and nuclear intensity; and X be the set of 

morphometric descriptors for all segmented nuclei, where X = [x1, …, xM]⊤ ∈ ℝM×N. The 

construction of cellular morphometric types and cellular morphometric context are described 

as follows,

1. Construct cellular morphometric types (D), where D = [d1,…, dK]⊤ are 

the K cellular morphometric types to be learned by the following 

optimization:

(1)

where Z = [z1, …, zM]⊤ indicates the assignment of the cellular 

morphometric type, card(zm) is a cardinality constraint enforcing only one 

nonzero element of zm, zm ≥ 0 is a non-negative constraint on the elements 

of zm, and |zm| is the L1-norm of zm. During training, Equation 1 is 

optimized with respect to both Z and D; In the coding phase, for a new set 

of X, the learned D is applied, and Equation 1 is optimized with respect to 

Z only.

2. Construct cellular morphometric context vis SPM. This is done by 

repeatedly subdividing an image and computing the histograms of 

different cellular morphometric types over the resulting subregions. As a 

result, the spatial histogram, H, is formed by concatenating the 

appropriately weighted histograms of all cellular morphome tric types at 

all resolutions. For more details about SPM, please refer to [13].

In our experiment, K is fixed to be 64. Meanwhile, given the fact that each patient may 

contain multiple WSIs, SPM is applied at a single scale for the convenient construction of 

cellular morphometric context as well as the integrative analysis at patient level, where both 

cellular morphometric types and the subtypes of cellular morphometric context are 

associated with clinical outcomes, and molecular information.

2.2 Integrative Analysis

The construction of cellular morphometric context at patient level in a large cohort enables 

the integrative analysis with both clinical and molecular information, which contains the 

components as follows,

1. Identification of cellular morphometric subtypes/clusters: consensus 

clustering [14] is performed for identifying subtypes/clusters across 

patients. The input of consensus clustering are the cellular morphometric 

context at the patient level. Consensus clustering aggregates consensus 
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across multiple runs for a base clustering algorithm. Moreover, it provides 

a visualization tool to explore the number of clusters in the data, as well as 

assessing the stability of the discovered clusters.

2. Survival analysis: Cox proportional hazards (PH) regression model is used 

for survival analysis.

3. Enrichment analysis: Fisher’s exact test is used for the enrichment analysis 

between cellular morphometric context subtypes and genomic subtypes.

4. Genomic association: linear models are used for assessing differential 

expression of genes between subtypes of cellular morphometric context, 

and the correlation between genes and cellular morphometric types.

3 Experiments and Discussion

The proposed approach has been applied on the TCGA LGG cohort, including 215 WSIs 

from 209 patients, where the clinical annotation of 203 patients are available. For the quality 

control purpose, background and border portions of each whole slide image were detected 

and removed from the analysis.

3.1 Phenotypic Visualization and Integrative Analysis of Cellular Morphometric Types

The TCGA LGG cohort consists of ∼ 80 million segmented nuclear regions, from which 2 

million were randomly selected for construction of cellular morphometric types. As 

described in Section 2, the cellular morphometric context representation for each patient is a 

64-dimensional vector, where each dimension represents the normalized frequency of a 

specific cellular morphometric type appearing in the WSIs of the patient. Initial integrative 

analysis is performed by linking individual cellular morpho-metric types to clinical 

outcomes and molecular data. Each cellular morphometric type is chosen as the predictor 

variable in the Cox proportional hazards (PH) regression model together with the age 

variable. For each cellular morphometric type, the frequency is further correlated with gene 

expression values across all patients. Top-ranked genes of positive correlation and negative 

correlation, respectively, are imported into the MSigDB [17] for gene set enrichment 

analysis. Tab. 1 summarizes cellular morpho-metric types that best predict the survival 

distribution, and the corresponding enriched gene sets. Fig. 1 shows the top-ranked examples 

for these cellular morphemetric types.

As shown in Tab. 1, 8 out of 64 cellular morphometric types are clinically relevant to 

survival with FDR adjusted p-value < 0.01. The first four cellular morphometric types in 

Fig. 1 have a hazard ratio> 1, indicating that a higher frequency of these cellular 

morphometric types may lead to a worse prognosis. A common phenotypic property of these 

cellular morphometric types is the loss of chromatin content in the nuclear regions, which 

may be associated with poor prognosis of lower grade glioma. The last four cellular 

morphometric types in Fig. 1 all have a hazard ratio< 1, indicating that a higher frequency of 

these cellular morphometric types may lead to a better prognosis.
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Tab. 1 also indicates the enrichment of genes up-regulated in response to IFNG in cellular 

morphometric types #28, #29 and #52. In the glioma microenvironment, tumor cells and 

local T cells produce abnormally low levels of IFNG. IFNG activates transcription of genes 

that offer potentials in the treatment of brain tumors by increasing tumor immunogenicity, 

disrupting proliferative mechanisms, and inhibiting tumor angiogenesis [10]. The 

observations of IFNG as a positive survival factor confirm the prognostic effect of these 

cellular morphometric types: #28 (negative correlation and worse prognosis); #29 and #52 

(positive correlation and better prognosis). Other interesting observations include that three 

cellular morphometric types with better prognosis are enriched with genes up-regulated by 
IL6 via STAT3, and two cellular morphometric types with better prognosis are enriched with 

genes regulated by NF-kB in response to TNF and genes up-regulated in response to 
TGFB1, respectively.

3.2 Subtyping and Integrative Analysis of Cellular Morphometric Context

Hierarchical clustering was adopted as the clustering algorithm for consensus clustering, 

which is implemented via R Bioconductor ConsensusClusterPlus package with χ2 distance 

as the distance function. The procedure was run for 500 iterations with a sampling rate of 

0.8 on 203 patients, and the corresponding consensus clustering matrices with 2 to 9 clusters 

are shown in Fig. 2, where the matrices with 2 to 5 clusters reveal different levels of 

similarity among patients and matrices with 6 to 9 clusters provide little further information. 

Thus, we use the five-cluster result for integrative analysis with clinical outcomes and 

genomic signatures, where, due to insufficient patients in subtypes #1 (1 patient) and #2 (2 

patients), we focus on the remaining three subtypes.

Fig. 3(a) shows the Kaplan-Meier survival plot for three major subtypes of the five-cluster 

consensus clustering result. The log-rank test p-value of 2.82e−5 indicates that the difference 

between survival times of subtype #5 patients and subtypes #3&#4 patients is statistically 

significant. The integration of genome-wide data from multiple platforms uncovered three 

molecular classes of lower-grade gliomas that were best represented by IDH and 1p/19q 

status: wild-type IDH, IDH mutation with 1p/19q codeletion, and IDH mutation without 

1p/19q codeletion [2]. Further Fisher's exact test reveals no enrichment between the cellular 

morphometric subtypes and these molecular subtypes. On the other hand, differential 

expressed genes between subtype #5 and subtypes #3&#4 (Fig. 3(b)), indicate enrichment of 

genes that mediate programmed cell death (apoptosis) by activation of caspases, and genes 

defining epithelial-mesenchymal transition, as in wound healing, fibrosis and metastasis (via 

MSigDB).

4 Conclusion and future work

In this paper, we encode cellular morphometric signatures within the SPM framework for 

robust representation (i.e., cellular morphometric context) of WSIs in a large cohort at 

patient level, based on which an integrative analysis pipeline is constructed for the 

association of celllular morphometric context with clinical outcomes and molecular data. 

The integrative analysis, performed on TCGA LGG cohort, reveals clinically relevant 

cellular morphometric types and morphometric context subtypes, and the corresponding 
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enriched gene sets. We believe that the proposed approach has the potential to contribute to 

hypothesis generation regarding the imaging biomarkers for personalized diagnosis or 

treatment, which will be further validated on independent cohort.
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Fig. 1. 
Top-ranked examples for cellular morphometric types that best predict the survival 

distribution, as shown in Tab. 1. Each example is an image patch of 101 × 101 pixels 

centered by the retrieved cell marked with the green dot. The first four cellular 

morphometric types (hazard ratio> 1) indicate a worse prognosis and the last four cellular 

morphometric types (hazard ratio< 1) indicates a protective effect. Note, this figure is best 

viewed in color at 400% zoom-in.
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Fig. 2. 
Consensus clustering matrices and corresponding consensus CDFs of 203 TCGA patients 

with LGG for cluster number of N = 2 to N = 9 based on cellular morphometric context.
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Fig. 3. 
(a) Kaplan-Meier plot for three major subtypes associated with patient survival, where 

subtypes #3 (53 patients) #4 (65 patients) and #5 (82 patients) correspond to the three major 

subtypes from top-left to bottom-right, respectively, in Fig. 2 (N = 5). (b) Top genes that are 

differently expressed between the subtype #5 and subtypes #3&#4.
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Table 1

Top cellular morphometric types for predicting the survival distribution based on the Cox proportional hazards 

(PH) regression model, and the corresponding enriched gene sets with respect to genes that best correlate the 

frequency of the cellular morphometric type appearing in the WSIs of the patient, positively or negatively. 

Hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions with a unit difference of an 

explanatory variable, and higher HR indicates higher hazard of death.

Type p-value q-value Hazard ratio Enriched gene sets

worse prognosis

#5 7.25e−4 7.73e−3 3.47e4

#28 2.05e−5 4.37e−4 9.32e3 Negatively correlated with: genes up-regulated in response to IFNG; genes up-regulated in 
response to alpha interferon proteins

#39 8.57e−7 2.74e−5 5.07e3 Positively correlated with: genes encoding proteins involved in oxidative phos-phorylation; 
genes up-regulated during unfolded protein response, a cellular stress response related to the 
endoplasmic reticulum; genes involved in DNA repair
Negatively correlated with: genes involved in the G2/M checkpoint, as in progression through 
the cell division cycle; genes important for mitotic spindle assembly; genes defining response 
to androgens; genes up-regulated by activation of the PI3K/AKT/mTOR pathway

#43 1.57e−9 1.00e−7 9.40e3 Negatively correlated with: genes up-regulated by activation of Notch signaling

better prognosis

#29 3.01e−4 3.85e−3 1.74e−8 Positively correlated with: genes up-regulated by IL6 via STAT3; genes defining inflammatory 
response; genes up-regulated in response to IFNG; genes regulated by NF-kB in response to 
TNF; genes up-regulated in response to TGFB1; genes up-regulated in response to alpha 
interferon proteins; genes involved in DNA repair; genes mediating programmed cell death 
(apoptosis) by activation of caspases; genes up-regulated through activation of mTORC1 
complex; genes involved in p53 pathways and networks

#31 1.23e−4 1.96e−3 5.49e−12 Positively correlated with: genes encoding components of the complement system, which is 
part of the innate immune system; genes up-regulated by KRAS activation; genes up-regulated 
by IL6 via STAT3

#46 1.17e−3 9.84e−3 1.07e−8 Positively correlated with: a subgroup of genes regulated by MYC; genes defining response to 
androgens; genes involved in DNA repair; genes encoding cell cycle related targets of E2F 
transcription factors

#52 1.23e−3 9.84e−3 6.86e−11 Positively correlated with: genes up-regulated during transplant rejection; genes up-regulated 
during formation of blood vessels; genes up-regulated in response to IFNG; genes regulated 
by NF-kB in response to TNF; genes up-regulated in response to TGFB1; genes up-regulated 
by IL6 via STAT3; genes mediating programmed cell death (apoptosis) by activation of 
caspases
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