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NMR STUDIES OF ORIENTED MOLECULES 

Steven Williams Sinton 

Abstract 

The properties of liquid crystalline mesophases have been of 

continuing interest in physics and chemistry since the discovery of these 

novel compounds. Recently, nuclear magnetic resonance (NMR) spectroscopy 

has been extensively used to probe the microscopic nature of liquid 

crystal samples. The NMR spectra contain information which is sensitive 

to internal molecular parameters and reflect the anisotropic potential 

in which the molecules reorient. Fast diffusion and rotational motion 

remove the effects of couplings between molecules. 

In this work, deuterium and proton magnetic resonance are used in 

experiments on a number of compounds which either form liquid crystal 

mesophases themselves or are dissolved in a liquid crystal solvent. The 

nature of the information available from the spectra and limitations 

imposed by assumptions necessary in their analyses are discussed. The 

new technique of proton multiple quantum NMR is employed as a means to 

simplify complicated spectra without the need for selective isotopic 

substitution. In a multiple quantum experiment, the change of the total 

magnetic quantum number, M, associated with observed spectral lines may 

be any integer allowed by the number of coupled spins; e.g., 6M = 0, ±1, 

••• ,±N for N coupled spin-1/2 nucleL This experiment also retains the 

higher sensitivity and precision in structural information available from 

proton NMR compared with other nuclei. The theory of non-selective 

multiple quantum NMR is briefly reviewed. Experimental examples with 

benzene dissolved in a liquid crystal are used to demonstrate several 
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outcomes of the theory. Possible complications in the analysis of spin 

echo spectra when chemical shifts and heteronuclear couplings are present 

in a strongly coupled spin system are discussed. 

Experimental studies include proton and deuterium single quantum 

(6M = ~1) and proton multiple-quantum spectra of several molecules which 

contain the biphenyl moiety. The number of multiple quantum transitions 

in the spectrum can be easily predicted from simple symmetry arguments 

for para-substituted biphenyl. These predictions and the extraordinary 

simplicity of parts of the multiple quantum spectrum allow unambiguous 

line assignments and tests of simple models to be made in the analysis. 

4-Cyano-4'-n-pentyl-d11-biphenyl (5CB-d11) is studied as a pure 

compound in the nematic phase. Assignments of the proton decoupled 

deuterium single quantum spectrum of the alkyl chain are made to obtain 
. 

the chain order parameters and dipolar couplings. These are found to be 

in close agreement with previously reported results. The undecoupled 

and deuterium decoupled proton multiple quantum NMR spectra are analyzed 

for the aromatic core order tensor and structural parameters. A number 

of models for the effective symmetry of the biphenyl group .in 5CB-d11 

are tested against the experimental spectra. Most of the features are 

reproduced by the simplest model and possible causes of additional struc-

ture in the spectra are discussed. The dihedral angle, defined by the 

planes containing the rings of the biphenyl group, is found to be 30 ~ 2° 

for 5CB-d
11

• Experiments are also described for 4,4'.-d2-biphenyl, 4,4'..:. 

dibromo-biphenyl, and unsubstituted biphenyl. Complete descriptions are 

given of the NMR spectrometer and computer programs used to obtain and 

analyze these spectra. 
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Chapter 1 

Fundamentals 

1.1 Introductory Remarks 

It is usual to begin a discussion of experiments which employ a 

spectroscopic technique with a description of the basic interactions 

involved and their relation to quantities of interest. In this work, 

the spectroscopy of nuclear magnetic resonance (NMR) is used to study 

anisotropic molecular ordering, structure and internal motion in liquid 

crystals. The two major areas to be considered are the use of NMR (1) 

as a tool to probe the chemical nature of the compounds and (2) in the 

ongoing investigation of basic spectroscopic physics. For this work, 

the first part is found in the sensitivity of nuclear magnetic resonance 

to the interaction. between the individual dipole moments of nuclei. This 

phenomenon is in turn important in elucidating internuclear distances and 

ordering in condensed matter, particularly liquid crystals. The second 

area, that of understanding a new spectroscopic process, is found in the 

development of a technique known as multiple quantum NMR spectroscopy. 

The usefulness of this technique in our work lies in the tremendous aid 

in spectral assignment possible from a multiple quantum experiment. 

Several aspects of theory and experiment for multiple quantum NMR 

spectroscopy and its application to liquid crystals and solutions of 

small molecules dissolved in liquid crystals are described in the fol

lowing chapters. The next few sections of this chapter present the basic 

interactions important in liquid crystal NMR and a brief description of 

the properties of multiple quantum transitions with reference to the 

energy level diagram. Chapter 2 gives a detailed description of the 
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information available in the NMR spectrum of an ordered medium such as a 

liquid crystal. The limitations of this approach are also discussed. 

Chapter 3 describes the basic multiple quantum experiment. A review of 

density matrix formalism is held offuntil then. The rotational proper-

ties of the multiple quantum density matrix are explored with experimen-

tal examples of benzene partially ordered in a liquid crystal solution. 

Chapter 4 presents a specific example of multiple quantum NMR of biphenyl 

groups which demonstrates some of the principles developed in earlier 

chapters. Finally, a complete description of one of the two 180 MHz 

Fourier transform spectrometers used for all experiments is found in 

Chapter 5. The Appendices contain the details of computer programs used 

for calculations and data preparation and complete listings of each. 

1.2 The Nuclear.Spin Hamiltonian 

Usually, the strongest nuclear spin interaction present for a sample 

in a high magnetic field is the Zeeman interaction. Classically, the 

energy of this interaction (for a single spin) is 

++ 
E = -~·H (1.1) 

+ + 
where ~ is the magnetic moment of the nucleus and H is the large static 

field. The moment arises from the intrinsic angular momentum of the 

electrically charged nucleus; hence the term spin. Quantum mechanically, 

+ 
this energy is related to the angular momentum operator I through 

Equation (1.2). 

+ + 
~ = yhi, 

where h is Plank's constant divided by 2n. 

(1. 2) 
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~2 ~ 
It is well known that I and one of the components of I may have 

simultaneous eigenvalues for the wavefunction of the spin [1]. The total 

~2 
angular momentum is hi(I+l) where I is the eigenvalue of I • By con-

~ ~2 
vention, Iz is the component of I taken to commute with I • The eigen-

values of I are the (2I+ 1) values mh where m =·I, I-1, ••• -I+l,-1. z 
~ 

Taking the magnetic field to be H = (O,O,H0) gives 

(1.3) 

The constant y is known as the gyromagnetic ratio and its value is 

tabulated for every nucleus of interest in NMR. It is not the purpose 

of this work to measure y and so the important interactions are perturba-

tions of the Zeeman energy given in Equation (1.3). 

Before proceeding with a discussion of these interactions, it is 

worthwhile to point out some of the important consequences of Equation 

(1.3). The quantization of the z axis component of angular momentum in 

the static field, described by the operator Iz and having discrete values 

mh, means that the energies are bounded by the (2I + 1) values of m. The 

result is that the density matrix approach is particularly useful in the 

description of pulsed NMR experiments. 

Although the measurement of the energy level diagram for single 

nuclei when I~ 1 provides information from quadrupole perturbations to 

Equation (1.3), it is often more useful to consider a collection of 

nuclei. For our purposes, a collection of interacting protons is 

relevant. For N such spin ~ nuclei, the total z component of angular 

momentum is described by the quantum number M = L mi. Here the sum runs 
i 

over all nuclei which together are sufficient to describe the energy 

level diagram of the system. There are N + 1 possible unique values of M 
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from U = +N/2 to M = -N/2 differing by 1. N There are a total of 2 states 

for the entire N spin ~ system. The energy differences among states for 

a particular value of M (termed a Zeeman manifold) are determined by the 

perturbative Hamiltonians described below. 

1.2.1 The Zeeman Hamiltonian 

The Zeeman interaction has already been given for a single spin in 

Equation (1.3). For anN spin system, setting h = 1 and measuring 

energies in frequency units, the general Zeeman Hamiltonian is written 

Hz = -Ho I yiizi' (1.4) 
i 

= -w L Izi' 0 i 

= -w I 0 z' 

where w
0 

is the angular Larmor frequency (w0 = 27Tv 0). At magnetic field 

strengths of about 42 kG, v
0 

is approximately 185 MHz for protons. 

1.2.2 Radio Frequency Hamiltonian 

The interaction of nuclear spins with an externally applied radio 

frequency magnetic field is quite similar to the Zeeman term above. 

Assuming this field to be oscillating along the x axis of the laboratory 

frame, the r.f. Hamiltonian becomes 

= -H1 (t)cos(wt + cHt}} L yii .• 
i X~ 

I = L I is the operator for the x component of the spin angular 
x i xi 

momentum. H
1

(t) is the time dependent field amplitude oscillating at 

frequency w with phase ~(t). The usual approach at this point is to 

(1.5) 

transform to an interaction frame known as the rotating frame [2]. This 

is accomplished by the following equation: 

4 



where the exponential operator is defined by [2,3] 

e 
-iwtl z 2 

~ 1 - iwtl + (wt) I 2 
z . 2 z 

3 
i(wt) I 3 

6 z + • • • • 

The transformation of Equation (1.6) effectively removes the time de-

pendence of the frequency part of the cosine term in Equation (1.5). 

The result is given in Equation (1. 8) (dropping terms oscillating at 

higher frequencies [4]). 

-w
1
(t)[I cos~(t) +I sin~(t)]. 

X . y 

(1.6) 

(1. 7) 

(1.8) 

In this equation w
1

(t) ~ yH
1

(t) is the r.f. field amplitude in angular 

frequency units. The occurrence of the operators I and I in Equation 
X y 

(1.8) comes about from the definition of the exponential operator and 

commutation properties of the angular momentum operators [3,5]. 

If we also transform observable quantities, such as the Zeeman in-

teraction to this rotating frame, the spin system will appear to evolve 

as though it were observed from a frame rotating about the z axis at 

angular velocity w (hence the name). When the transformation is applied 

to the Zeeman Hamiltonian Equation (1.4) the result is 

-6wi • z 
(1. 9) 

The factor 6w is called the offset. Throughout this work, the rotating 

frame transformation will be assumed and the superscript R dropped. 

The remaining interactions described below all take the form of 

spatial and spin tensor products [6]. The spatial tensors involving 

just one spin are the chemical shift and quadrupolar tensors. The scalar 
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(or spin-spin) and dipolar (or direct) tensors involve the interaction 

of spins with magnetic fields generated by their neighbors. All are 
\ 

second rank tensors which may be described in a cartesian or spherical 

basis [7,8]. Under different conditions, each of these tensor inter-

actions can be reduced in rank or removed by "averaging". As an example, 

the anisotropic chemical shift interaction, the dipolar interaction and 

the quadrupolar interaction are all unobservable in non-viscous liquid 

samples. This comes about from rapid, isotropic motion of the spins 

attached to tumbling molecules. By rapid it is meant that the motion 

is fast on the time scale of the interactions and by isotropic it is 

meant that the average over all possible orientations for the spatial 

part of the tensor is zero. 

Besides the use of an isotropic liquid, there exists a number of 

ways for selectively averaging the interactions below. Since the 

Hamiltonian for each consists of a product of spatial and spin terms, 

this averaging may be done in either coordinate or spin space. These 

selective techniques are fully described elsewhere [6] and are only in-

directly relevant to an understanding of this work. The isotropic and, 

for liquid crystals, anisotropic averaging of spatial quantities pro-

vided by nature are very important in our experiments and will be 

described briefly here and in more detail in latter chapters. 

In the equations of the next few sections, the second rank inter-

action tensors are written in a cartesian coordinate system basis with 

axes X, Y, Z. Thus, they may be expressed as 3x3 matrices and the 

Hamiltonians become scalar products of these with spin ope~a-tor vectors 

such as i = (I ,I ,I ) and S = (S ,S ,S ). The X, Y, Z system is fixed 
X y Z X y Z 

in space. If we take the Z axis to be along the main field direction, 

then the subscripts on tensor elements below refer to components observed 



in the laboratory frame. To describe the interaction tensors in some 

other coordinate system, such as one fixed in the molecules, requires 

transformations of the spatial part of the Hamiltonian as covered in 

Chapter 2 and detailed elsewhere [7,8]. 

There will always exist some coordinate system in which a spatial 

interaction tensor is diagonal. In general, this principle axis system 

"(PAS) will not be the same for different interactions. Often, one writes 

each of the Hamiltonians below in a PAS and then the tensor elements are 

the principle components of the interaction. In this case, the trans-

formation required to relate the Hamiltonian to an NMR spectrum is from the 

PAS to lab frame. Depending on the natureof the sample, the PAS compo-

nents of the tensor may be found from lab frame measurements. For a 

sample consisting of a single crystal, rotation plots of the frequencies 
. 

measured from the spectrum reveal the principle components [14,15]. If 

the sample is a polycrystalline solid, then a "powder pattern" line shape 

will result. An example is the well known asynnnetric chemical shift 

powder pattern observed for many samples {14]. In the following chapters, 

whenever the Hamiltonian refers to a particular coordinate system, that 

system will be identified. We will always state the nature of any co-

ordinate transformations performed. 

In considering the perturbations to HZ below, reference is made to 

the secular part of the Hamiltonian. This refers to the usual truncation 

of some parts of the total Hamiltonian to those terms which commute with 

I • This approximation is valid for all cases in this work as non-com
z 

muting parts of the quadrupolar, dipolar, spin-spin, and chemical shift 

interactions are all small compared to the Zeeman term (the "high field 

approximation"). 
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1.2.3 The Quadrupolar Hamiltonian 

When a nucleus with spin I<!::. 1 is present at a site with non-zero 

electric field gradients, the total energy depends on its orientation. 

This is expressed by the quadrupolar Hamiltonian in Equation (1.10). 

eO -+ -+ 
HQ = 6I(2I-l) I·~·I (1.10) 

Q is called the quadrupole moment of the nucleus and is related to the 

quadrupole term of a multipole expansion for the charge distribution of 

the nucleus. The tensor Y 
a2v ~ 

= aaae for a,B = X, Y, Z. 

is the field gradient tensor with elements 

That ~ is traceless and symmetric can be 

f L 1 , · ~2v -- o, d h f h i 1 seen rom ap ace s equat~on v an t e symmetry o t e part a 

derivatives, VaB = v
8
a. For a collection of spins, it can be shown [9] 

that Equation (1.10) becomes 

eQi XYZ i 3 -+ 2 
HQ =I 6I <2I l) I v 8 £-2 <I .I8 .+I8 .I .) - o 8 <I.) J. 

i i i- aB a a~ ~ ~ a1 a ~ 
(l.lla) 

Truncating Equation (l.lla) to the secular terms gives 

(l.llb) 

i 2 2 2 
HQ =I 4I (i~ l) {[3I . -I. (I. +1)] + n(I . -I i)}. i i i~ · Z1 1 ~ X~ y 

(l.llc) 

i In Equation (1.11) the quantity Q is the quadrupole moment of nucleus i. 

In Equation (l.llc) the gradient eq = VZZ and the asymmetry parameter 

(VXX-VYY) 
n = V have been introduced. Usually, the electric field gradient 

zz 
is axially symmetric (or nearly so) and n is taken to be zero. That the 

quadrupolar Hamiltonian vanishes for nuclei with spin I = ~ can be seen 
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from a consideration of the expectation value of the spin part of HQ, 

i.e., 

<3!2 - I(I+l)> = 0. z 

1.2.4 The Dipolar Hamiltonian 

The energy of the interaction of spins with the local field caused 

by the dipole moments of' neighboring nuclei is given classically by [10], 

(1.12) 

which results in the quantum mechanical Hamiltonian (in frequency units) 

(1.13) 

In Equation (1.13) the dipolar interaction tensor, Rik, is traceless 

+ + 
and synnnetric and Ii, Sk are the spin angular momentum operators for spins 

ik yiyk 
elements of Q are - --

3
-- (3e e - o ) where e , e 

..... r p q pq p q 
ik 

i and k. The 

+ 
(p,q = X,Y,Z) are direction cosines for the internuclear vector rik. If 

the two spins i and k are of the same species (y i = yk) then, truncating 

ik 
~ to the secular terms (terms which commute with Hz) and noting that R 
is axially synnnetric [11] makes Equation (1.13) become (with the Z axis 

along the main field) 

~ = + (1.14a) 

= + (1.14b) 

where 
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= -

In Equation (1.15) the angle eikZ is between the internuclear vector 

-+ 

(1.15) 

rik and the laboratory z axis. For Equation (1.14) we have introduced 

the well known raising and lowering (or "ladder") operators: 

I+k = Ixk + iiyk (1.16a) 

I_k = I - ii xk yk (1.16b) 

i = r-1. 

For liquid crystal samples we will see that the angular part of Equation 

(1.15), averaged over all molecular orientational possibilities, becomes 

ik what is known as.the ordering tensor [12]. The Dzz of Equation (1.15) 

is in a space fixed axis system. For liquid crystals, transformation to 

a .molecular .axis system will be required. For an isotropic liquid (or a 

gas), <3cos
2
eikZ- 1> vanishes and dipolar interactions are not observed. 

We note here that there exists effectively two definitions of the coupling 

teasor Dik in the literature. These definitions differ only in the use 
::::::: 

of P2 (cose) or 2P2 (cose) for the angular portion of Equation (1.15) where 

P2 (cos6) is the second legendre polynomial. We will consistently use 

ik 
the larger of the two forms of D and attempt to make note of any 

::::::: 

conversions required to relate couplings to literature values. 

When the spins i and k are different nuclear species, then the 

secular part of Equation (1.13) becomes 

~= I 
i<k 

Dik I S 
ZZ zi sk" (1.17) 
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1.2.5 The Indirect Spin-Spin Hamiltonian 

The interaction of Equation (1.12) is the "through space" or direct 

energy of spins in the magnetic field of neighbors. In addition, there 

is a "through bonds" or indirect interaction in which a nucleus feels 

the presence of its neighbors via the interactions each has with the 

electrons making up their common chemical bonds. This is given by 

\ + ik 7 
L Ii·:l •::Sk. 

j<k ...... 
(1.18) 

Although the form of HJ is similar to ~ given in Equation (1.13), 

ik ik several differences exist. Whereas R is traceless, ~ is not, and 

the isotropic average, 

(1.19) 

is the quantity measured as· the "scalar" coupling in high resolution NMR 

ik of liquid samples. Also, ~ may have an antisymmetric component, but 

this cannot be measured in NMR [13]. The total indirect spin-spin 

Hamiltonian, for like spins i and k, may be written 

where Equation (1.19) has been used. Equation (1. 20b) is sometimes 

rewritten in the forms 

H = J 

(1.20a) 

(1. 20b) 

(1. 20c) 

11 



aniso · ik 
The quantity Jik above is usually much smaller than Dzz• Because 

it multiplies spin operators in the same form as the dipolar Hamiltonian, 

Janiso is sometimes referred to as the pseudo-dipolar coupling. For 
ik 

aniso ik liquid crystals Jik cannot be measured independently of DZZ by NMR, 

but may be estimated from theory or from a model for the D~~ values. 

1.2.6 The Chemical Shift Hamiltonian 

The chemical shift interaction in nuclear magnetic resonance arises 

from the screening affect the electrons surrounding a nucleus have on 

the external mag~etic field it experiences. Methods exist for calculating 

or estimating its value theoretically but will not be required in this 

work. The chemical shift Hamiltonian is presented here partly for con~ 

sistency, but also because an important consideration for multiple 

quantum NMR as a high resolution technique has its origin in the "inter-

ference" of the chemical shift and dipolar Hamiltonians. 

The chemical shift takes the form of a product of the second rank 

+ + 
tensor ~, the first rank spin operator vector I, and H (once again taking 

Z to be along the main field), 

\ + + 
H = L y I •Q •H cs i i ,..., 

(1.21) 

i i where crZZ is the ZZ component of the tensor ~ for spin i. Often, the 
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i 
product yiHO is included in crzz so that Hcs 

i spin-spin coupling, cr is not traceless and 
::=::: 

= ~ cr~Zrzi" As with the 
i 

crzz may contain an aniso-

tropic component: 

where 

... i.so = .!. Tr.(oi) 
v:L 3 ::1:: -Oi. 

1.2.7 Summary of the Spin Hamiltonian 

Collecting all the interactions written above into the total spin 

Hamiltonian, we have 

(1.22) 

In the rotating frame and under the high field approximation: 

(1.23a) 

- w1 (t)[cos(~(t))I + sin(~(t))I] 
. . X y 

Equation (1.23a) is sometimes written 

(1.23b) 

13 



i 
+ ~ eqQ {[ 2 · + 2 2 } f 4Ii (2Ii -1) 3Izi- Ii (Ii + 1)] n (!xi- Iyi) 

It is often assumed that the asymmetry parameter for the quadrupolar 

Hamiltonian is small, i.e., that this tensor is axially symmetric. For 

alkyl deuterons, the case of interest here, n is about .01 and this is 

a good assumption. If we also assume that the anisotropic parts of the 

chemical shift and spin-spin couplings are negligible, Equation (1.23b) 

becomes 

H = -~!.Ill + L oil . - w1 (t)[cos{<jl{t))I + sin(<jl{t))I ] 
Z i Zl. X y 

(1.23c) 

where the definitions of the isotropic chemical shift and scalar coupling 

have been used. Often, the ZZ subscript on the dipolar term is dropped 

and the coupling is denoted simply as Dik" This will be adopted hereto

fore except when the distinction of a particular component of the dipolar 

tensor is required. 

All the NMR measurements analyzed in this work were taken with 

liquid crystal samples in a nematic mesophase. As we shall see, a liquid 

crystal is like a polycrystalline sample of rigid molecules in some 

respects but quite different in others. For one, the relation between 
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known or desired quantities of the molecules and the NMR spectrum is 

complicated by the need to average over a number of inter and intra

molecular motions. Generally, the "ordering tensor" elements. or 

"motional constants" are introduced to describe the average orientation 

of molecules with respect to some laboratory axis system. The elements 

of such an order tensor are actually the results of various transforma

tions required to give the lab frame components of Equation (1.23c). We 

shall show how the symmetry properties of a uniaxial nematic liquid 

crystal reduce the number of elements required in the order tensor. 

Molecular symmetry will also become important in this consideration. 

1.3 The Energy Level Diagram for Liquid Crystals 

In Equation (1.23) we have written out the Hamiltonian for a collec

tion of N spins •• In a non-dilute solid sample, N will be very large and, 

in general, none of the individual allowed transitions will be resolved. 

The usual approaches in this case include isotopic dilution or selective 

averaging to remove the largest contributions to line broadening. With 

liquid crystals (and molecules dissolved in a liquid crystal solution) 

nature does a good deal of averaging of the quadrupole and dipole terms 

to yield a spectrum with structure. 

Liquid crystalline mesophases are generally characterized by some 

degree of long range order [16-18]. There are several types of meso

phases which occur for thermotropic liquid crystals. Two of these are 

shown schematically in Figure 1.1. For the nematic mesophase, the long 

range order consists of an angular correlation of the long axes of the 

molecules. The preferred direction of these long axes is described by a 

unit vector called the "director". Smectic phases have a similar align

ment of the director but in addition order into layers as shown in 
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a) Nematic 

1\ ' ,,,, ~\I IV,, \1 v \ 

nt 
b) Smectic A J 

Figure 1.1 

\\II till Ill\ II I \If I 111\/ll/lll/llltl 

I/11\HI\111 1 IIIII/ \1 \\IIIII II 1111111\ 

llllllfl/11111111111 1111 I 1 II\ IIlii III I 
XBL 818-1765 

Pictorial representation of the two common thermotropic liquid 

crystal phases. Liquid crystal molecules are viewed as rod-like particles 

whose long axes are preferentially aligned with respect to the crystal 

director, n. In a), a nematic phase is depicted in which there is only 

this angular correlation of molecular long axes. In b), a smectic A 

phase is shown. In addition to an angular correlation, one translational 

degree of freedom for the center of mass of each molecule is correlated 

with the ensemble. Molecules then become ordered in planes as shown. 
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Figure 1.1. There is rotational symmetry about the director in the 

nematic phase which means that it is uniaxial. All of the NMR spectra 

taken in this work are in the nematic or isotropic phase and so further 

discussion will be directed to these phases. 

When there are no external constraints on a nematic liquid crystal, 

the long axes of individual molecules and the director are not always 

colinear but fluctuate in.relative orientation. The long range order 

extends over domains of many molecules ( 10
6
). This order only consists 

of angular correlations with complete freedom of translational diffusion 

for the molecules (at least on the NMR time scale). When the nematic 

crystal is placed in a sufficiently high magnetic field, the director 

becomes aligned along the field direction. This is a result of the 

anisotropy of the magnetic susceptibility. The free energy for this 

interaction is [18] 

2 2 
F = -flxH0 (3cos cx-1)/6, (1. 24) 

where 

is the susceptibility anisotropy. The angle ex is between the director 

+ and H
0

. For nematics studied in this work (and indeed most thermotropics), 

fix is positive which means the minimum free energy contribution occurs 

+ 
with the director along H

0
• For liquid crystals, this contribution is 

significant when compared to the thermal energy and so the director be-

+ 
comes aligned along H0 • 

When a small molecule is dissolved in a nematic solution it experi-

ences the local potential of the liquid crystal matrix. If the molecule 

17 



is not completely symmetric itself, then clearly it will also seek a 

minimum free energy situation in which it orients with respect to the 

director. Unlike an isotropically tumbling molecule, interactions such 

as the quadrupolar and dipolar Hamiltonians will be present. Because the 

molecule is free to diffuse, intermolecular interactions are averaged 

away and the NMR spectrUm displays only the intramolecular couplings. 

Even for a molecule which is highly symmetric, for example, a molecule 

with tetrahedral symmetry, dipolar and quadrupolar couplings have been 

observed in the NMR spectrum [19,20]. The exact mechanism for the 

ordering in this case is a matter of debate in the literature [21-23]. 

A generalized picture of the nuclear spin energy level diagram is 

shown in Figure 1.2. For the liquid crystal case the number of inter-

acting spins, N, refers to those of each molecule in the ensemble. The 
. 

major splittings shown are from the Zeeman interaction. Each set of 

states with a common total magnetic quantum number, M, is termed a 

Zeeman manifold. Without the perturbations of HQ' ~' HJ, and Hcs' the 

states of one Zeeman manifold are degenerate. If the N nuclei are all 

spin~ (e.g., protons) then the total number of states is 2N and each 

manifold contains N!/(N/2-M)!(N/2+M)! states. The extreme energy states 

correspond to the situations in which all spins are aligned with or 

against the external field. There are a total of N+l manifolds and, 

if N is odd, the M = 0 manifold does not exist. 

1.4 Multiple Quantum Transitions in NMR 

The "golden rule" of time-dependent perturbation theory states the 

probability per unit time that a perturbation V induces a transition from 

state s to state k is given by [24] 
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Figure 1.2 

M = _tl 
2 

N --+1 2 

0 

N --2 
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N 

-i 
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XBL 7710-10022 

Energy level diagram for the spin Hamiltonian of a general system 

of N coupled spins each with spin quantum number ~. The total magnetic 

quantum number, M, is the sum of the Zeeman Hamiltonian quantum numbers 

~~ for each spin, and the large splittings are from the interaction 

energy of this Hamiltonian. Smaller splittings within each group of 

states with the same value of M arise from other spin interaction terms 

in the total Hamiltonian. A transition from state i to j represents a 

change in M of ~M = N-3. If N is odd, the group of states for M = 0 

doesn't exist. 
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(1. 25) 

where pf is the density of states for the final (unperturbed) states. 

Referring to Figure 1.2 justifies the usual use of a delta function for 

p f in NMR [ 25 ] • 

In NMR, we apply a perturbation to a sample at equilibrium by ir-

radiating it with the escillating magnetic field of the probe coil. Thus 

the perturbation takes the form of the r. f. Hamil ton ian (Eq. (1. 8)). The 

transition element is then j<kji ls>l
2 

for the r.f. field along the x 
X 

axis. The matrix elements can be evaluated in the usually spin product 

basis set (a's and S's) to yield the familiar selection rule that the 

change in the total magnetic quantum number is one· (t.M= ~1) for allowed 

transitions. The intensity of these transitions is proportional to 

Equation (1.25) is from a first order treatment of perturbation 

theory. It was realized some years ago that higher order effects would 

cause multiple quantum (t.M~ 0) transitions [26-28]. These non-linear 

effects were first demonstrated in the continuous wave observation of 

double quantum transitions in ethanol [29]. The technique has been used 

in the elucidation of spectral assignment of liquids [27]. 

The development of multiple quantum c.w. NMR was hampered by the 

technical difficulties associated with creating and observing this non-

linear phenomenon. In addition, the strong r.f. fields required perturb 

the spin system in a manner that must be theoretically accounted for. 

The advent of pulsed Fourier transform techniques allowed the development 

of multiple quantum NMR without these problems. Theoretically, rather 

than dealing with photon absorption and emission processes, the FT 
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multiple quantum experiment can be described in terms of coherences and 

formulated with the density matrix. This approach will be covered in 

Chapter 3. The basics of the development of MQNMR is a rich subject and 

has been dealt with in an excellent review by Bodenhausen [30]. 

Referring to Figure 1.2, some of the terminology which will be used 

throughout this work can be defined. A multiple quantum "order" refers 

to all those transitions for which M changes by some integer. Thus, the 

zero quantum, one quantum, two quantum, ••• , N quantum orders refer to 

transitions for which M = 0, :t"l, ±2, ••• , ±N, respectively. Usually, 

the term single quantum will be used to mean the "normal" NMR spectrum 

although occasionally the one quantum order of a multiple quantum experi-

ment may be meant. The only major differences between the two for this 

work will be in how the spectrum was obtained and thus the relative in-

tensities of the.single quantum lines. 

Finally, a few words about the number of transitions expected for 

each order and the information content of. the higher orders. The number 

of states in each Zeeman manifold is 

( 
N ) = 

~-M 

N! (1. 26) 

where the common symbol for the binomial coefficient has been used. 

Thus, except for the zero quantum order and assuming no molecular sym-

metry, the number of p quantum transitions is given by 

:~: (:) (~) , p= 1, 2, ••• , N (1.27) 

This is equivalent to the following expression [31]. 



. ( 2N) # p quantum transitions = , p ~ 0 
N-p, 

(1.28a) 

Also, for the zero quantum transition, 

. 1 [(2N) Number zero quantum transitions = 2 N (1.28b) 

Using Sterling's approximation and an expansion for in (1 + x), for large 

N Equation (1.28a) can be approximated as 

2 
-p /N 

e ' p = 1, 2, ••• ,N. (1.29) 

Thus we see that the number of transitions expected from a set of coupled 

spins with no symmetry has a Gaussian distribution with order. 

The extreme states shown in Figure 1.2 have a special property. 

The bilinearity of spin operators in the dipolar, quadrupolar and spin-

spin Hamiltonians given in Section 1.2 means that these states will only 

experience the sum of these interactions for all spins. For example, 

for N protons the extremes states correspond to all spins in either the 

a or the B state. The dipolar Hamiltonian matrix elements are 

<a (1) ••• a (N) 111> I a (1) ••• a (N) > = <B (1) ..• B (N) ll1, IS (1) .•• B (N) > = 

The chemical shift and Zeeman Hamiltonians are linear in spin operators 

and so a flip of all spins corresponds to a change in sign of the matrix 

elements. These matrix elements are 

<a{l) •.• a(N) 1Hz+ H Ia(!) ••• a(N)> cs 

= -<B{l) ••• B(N)IHz+H IB(l) ••• B{N)> cs 

1 N 
= -

2 
(Nllw - L cr . ) • 

i 1 

22 



As a consequence, the N quantum transition contains information only on 

the Zeeman offset 6w and the sum of chemical shifts: 

6~ N = 
-+--
2 2 

N 
~- E_N = N6w- L cri. 

2 2 i 

(1. 30) 

Equation (1.30) makes the important statement that complete removal of 

the dipolar interaction·is effective in the observation of theN quantum 

transition. Thus the N quantum spectrum is similar to that obtained 

from the multiple pulse selective averaging technique known as WAHUHA 

[32] without reducing the chemical shift interaction. 

To obtain information on the dipolar and spin-spin couplings, one 

has to consider the transitions of order less than N. In an anisotropi-

cally ordered sample, there are N(N-1)/2 dipolar couplings, N(N-1)/2 

spin-spin couplil'lgs and N chemical shifts. Assuming that all lines are 

resolved, the (N-1) quantum spectrum gives N frequencies and N(N-1) are 

obtained from the (N-1) order. Thus, these orders generally contain 

enough transitions to solve for all dipolar and spin-spin couplings and 

chemical shifts• These and other counting arguments are presented in 

more detail elsewhere [33]. 

Of course, all the above arguments apply to a general spin system 

with no symmetry. Usually, molecules of interest will belong to a point 

group with more than one irreducible representation [34]. Each Zeeman 

manifold is factored into states of different irreducible representations. 

As we shall show, ultimately the multiple quantum coherences produced 

and detected in the experiments obey the symmetry selection rules for 

normal single quantum NMR. The well known result from group theory is 

that allowed transitions are those involving only states within the same 
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irreducible representation [35]. This is a result of the totally sym-

metric nature of the magnetic dipole transition operators of NMR [36]. 

The symmetry selection rule is written as 

<ijVjj> = 0 unless 

where the usual symbols representing the irreducible representations of 

ji>, V and jj> are used. Taking I , which is of the A representation, 
X 

as the transition operator for NMR, the symmetry selection rule is given 

by the statement above. 

The effect of molecular symmetry is two sided. On the one hand, 

the selection rule stated above reduces the number of transitions in each 

order and hence the available information. However, the number of unique 

couplings required to solve for is also reduced by symmetry. There is 

no general way to predict how many orders will have to be used for a 

specific molecule without considering synnnetry. For each case, the per-

mutational point group relevant to the spins will have to be considered. 

The results of the group theory for the cases of interest in this work 

are presented in the following chapters. It is interesting to note that 

there are counting schemes which make use of the behavior of some states 

under point group symmetry elements to predict the number of lines 

expected in the higher order spectra [37]. 

We have seen that the number of transitions corresponding to the p 

quantum order decreases asp increases (p = I~Mj). This comes about 

because the higher order transitions probe the Zeeman manifolds with the 

fewest number of states. The spread of energy shifts caused by perturba-

tions to HZ is roughly the same for each manifold and so the higher orde'r 
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spectra contain splittings similar to the single quantum in magnitude. 

The result is more resolved spectra the higher the order observed. For 

the experiments of this work, the nature of the quantitative information 

relevant to molecular structure that is available in the high quantum 

orders is identical to the single quantum spectrum. However, from 

Equation (1.28) it is readily seen that the single quantum spectrum may 

contain a tremendous amount of redundancy of this information for large 

spin systems. The multiple quantum experiment has the effect of sampling 

the single quantum spectral information and presenting the data in an 

accessible manner (i.e., in the form of resolved transitions). As we 

shall demonstrate in Chapters 3 and 4, the high quantum spectra, together 

·with a consideration of molecular symmetry, will elucidate the dependence 

of transition frequencies. on the molecular parameters of interest. 
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Chapter 2 

NMR Using Liquid Crystals 

In this chapter, we present some details of the theory for NMR 

experiments with liquid crystals. The results here also pertain to 

solutes partially ordered in a liquid crystal solution. All the liquid 

crystal samples studied are thermotropic nematogens with positive magne

tic susceptibilities. Thus, the director is taken to be parallel to 

the static field direction and the laboratory z axis. 

Alkyl and aromatic quadrupole moments for deuterium are -160-180 kHz 

and deuterium spectra from isotopically labeled nematogens are typically 

about 50 kHz wide. The scaling, as we show below, is due to the imper

fect ordering of molecules in the matrix. The typical strength of the 

dipolar interaction for protons is 100 Hz to 10 kHz yielding a spectral 

width of ~10-100 kHz. Chemical shift values and scalar couplings are 

usually about the same size as their isotropic values. Indeed, they are 

quite often fixed at the latter during spectral analysis. 

For asymmetric molecules as solutes in a nematic sample, proton 

linewidths are typically a few hertz wide. This means, with a small 

number of coupled spins or high enough molecular symmetry, most transi~ 

tions will be resolved in the single quantum spectrum and an analysis 

may be possible. As an example, consider the highly symmetric six spin 

system for the proton spectrum of benzene dissolved in a nematogen. This 

is shown in Figure 2.1. The top trace is the benzene spectrum taken 

with a single pulse Fourier transform experiment under conditions of 

moderate field homogeneity. The center trace was produced by applying a 

two dimensional spin echo sequence [38]. Use of the spin echo technique 
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Figure 2.1 

Proton NHR spectra of benzene dissolved in a nematic liquid crystal. 

The top trace was obtained from a single pulse FT NUR experiment under 

conditions of moderate field homogeneity (-.5 ppm). The middle trace 

demonstrates the enhanced resolution obtainable when a two-dimensional 

spin echo pulse sequence is used. A theoretical stick spectrum is shown 

at the bottom. 
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has removed line broadening due to magnetic field inhomogeneity. Also 

shown in the figure is a theoretical stick spectrum fitting the experi

mental frequencies. Because there are no chemical shift differences, 

the spectrum appears symmetric about its center. With complete resolu

tion of all lines as shown in the center trace, all dipolar and scalar 

couplings can be determined. Perhaps the most complicated spectrum 

studied to date by single quantum NMR is that from the 10 spin spectrum 

of partially oriented crtho toluene [46]. 

As we shall see in Chapter 4, the proton spectrum of a pure liquid 

crystal is generally not as well resolved as benzene. Without isotopic 

substitution the number of protons per molecule is large and, with the 

higher degree of ordering, individual transition linewidths are greater 

than for solutes. The result is a large number of overlapping lines in 

the spectrum. Without a sufficient number of fully resolved peaks, the 

proton spectrum is usually intractable and no analysis may be possible. 

Deuterium NMR of labeled liquid crystals has been somewhat success

ful in yielding quantitative information on ordering [39-44]. For 

example, methylene deuterons on an alkoxy or alkyl chain segment of a 

liquid crystal will give a resolved doublet [43]. Linewidths may be 

approximately 0.1 to 1 kHZ, but splittings are 10 to 100 kHz. If the 

chain were allowed only to exist in an all trans configuration, all the 

methylene resonances would be related simply and contain the same infor

mation about ordering. Usually, one can assign individual resonances to 

specific segments [43] and it is possible to learn about conformational 

statistics. Dipolar splittings can be observed in a spectrum but are 

usually small due to the small deuterium dipole moment. Proton spectra 

are much richer in structure [39] than their·deuterium analogs. In 
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addition, higher sensitivity and greater precision of structural informa-

tion make proton NMR of liquid crystals attractive. Alkyl chain solutes 

partially oriented in a nematic liquid crystal have been studied by 

multiple quantum NMR [45]. 

Before going on to discuss the method of obtaining structure and 

ordering information from liquid crystal spectra, we pause now to review 

rotations of cartesian and spherical tensors. The results of the next 

section are relevant to the definition of an order tensor for a nematic 

sample and also apply to the spin tensor portion of the interaction 

Hamiltonians described in Chapter 1. 

2.1 Coordinate Transformations for Tensors 

The mathematical details of coordinate transformations for tensors 

are covered in a number of texts [7,8]. We give here only a brief summary 

of the results necessary for our purposes. The eq~tions below will be 

useful for coordinate transformations of both the order tensor and the 

irreducible tensor representations of the spin Hamiltonians. 

2.1.1 Cartesian Basis 

In Chapter 1 we have given the interaction tensors in cartesian co-

ordinates. To perform a rotation of tensor A, 

A A A 
XX xy XZ 

(2.1) 11 = 
~ 

A A A yx yy yz 

A A A zx zy zz 

R 
to ~ , we apply the transformation matrix i' 

(2 0 2) 
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If A is real, as in the case of the.interaction Hamiltonians of Chapter 
~ 

1 Rt = R-1 • The usual convention is to break the transformation up into , ~ ~ 

rotations about cartesian axes with Euler angles n =a, B, y [8]. The 

rotations are as follows. Rotate by angle a about the z axis to the 

intermediate frame x', y', z'. Rotate about y' by angle B to the frame 

x", y", z". Finally, rotate about z" by angle y to the transformed axis 

system x"' , y"' , z"' • The complete rotation matrix is given by Equation 

(2.3). 

sinacosBcosy+cosasiny 

30 

( 

cosacosBcosy-sinasiny 

R = -cosacos8siny-sinacosy 
~ 

-sinacosBsiny+cosacosy 

-sin8cosy) 

-sinBsiny (2 .3) 

cosasinB sinasinB cosB 

2.1.2 Spherical Basis 

In the previous section, we have written the second rank tensor A in 

cartesian coordinates for Equation (2.1). An alternate approach, and one. 

convenient when considering several rotations of tensors, is to express A 
~ 

in a spherical basis. One can then make use of the properties of ir-

reducible spherical tensors to simplify calculations. Irreducible tensor 

methods and rotational properties of tensor operators are subjects 

covered in several texts, for example those by Rose [8] and Silver [7]. 

Only the results necessary for our analysis will be reviewed here. 

Each of the interaction Hamiltonians of Chapter 1 can be written in 

the form.of a scalar product of tensors: 

-+ -+ 
where X and Y are first rank tensors (vectors) and A is second rank. 

~ 

(2.4) 



To use a spherical basis instead of the cartesian basis of Equation (2.4), 

we make use of the scalar product of two irreducible tensors with compo

nents Ak and Tk 
q q' 

k 

l: (2. 5) 
q=-k 

In Equation (2. 5), the integer k 2! 0 is the rank and each tensor has 

(2k+l) elements specified by q = -k, -k+l, ••• , +k. In general, the 

Hamiltonian can be written as contributions from zero, first, and second 

rank tensors so that Equation (2.4) becomes 

2 k 
H= l l (2 .6) 

k=O q=-k 

We must now relate the irreducible tensors of Equation (2.5) to the 

cartesian components in Equation (2.4). In terms of the cartesian 
. 

components · (T , T , T . ) , we can write the elements of the first rank ir-
. X y Z 

reducible spherical tensor as 

Tl = T 
0 z 

(2.7a) 

1 +c1 //2)(T +iT), T+l = x- y . (2. 7b) 

and similarly . 

Al = A 
0 z 

(2.8a) 

1 +(1 /fi)(A + iA ) A+l = x- y 
(2.8b) 

To find the elements of a second rank irreducible tensor, we make 

use of the product rule for two commuting tensors of rank k' and k": 
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Tk,ij = {Tk', i X Tk",j} 
q :::::: :::::: 

r C(k'k"k q' q-q')Tk' ,i 
k" . 

= T ,J (2.8) 
q' 

' , q' q-q' 

where the C coefficients are the Clebsch-Gordon coefficients. In 

Equation (2.8), we have introduced the superscript~ i and j to indicate 

the tensors involve different parts of the system. For example, in the 

dipolar Hamiltonian, i and j refer to a particular nuclear pair. 

Multiplying the first rank tensors of Equation (2.7b) gives the 

result [47]: 

TO,ij 1 [Tl'iTl,j ~,iTl,j + Tl,iTl,j] (2.9) =-
0 13 +1 -1 0 0 -1 +1 

Tl,ij 
+1 

= _!_ [Tl, iTl ,j 
13 +1 0 

_ Tl ,iTl,j] 
0 +1 

Tl,ij 
0 

= _!_ [Tl, iTl ,j 
12 +1 -1 

Tl,iTl'j] 
-1 +1 

Tl,ij 1 [Tl'iTl,j Tl,iTl'j] =-
-1 12 -1 0 . 0 -1 

T2,ij = Tl'iTl,j 
+2 +1 +1 

T2,ij 1 [Tl'iTi,j + Tl,iTl'j] =-+1 12 +1 0 0 +1 

T2,ij 
0 

= _!_ [Tl, iTl ,j 
16 +1 -1 

+ 2Tl'iTl,j 
0 0 

+ Tl'iTl'j] 
-1 +1 

T2,ij 
-1 

= _!_ [ Tl , iTl, j 
12 -1 0 

+ Tl'iTl'j] 
0 -1 

T2,ij = Tl'iTl,j. 
-2 -1 -1 

2 ij Similarly, for the tensor A ' in terms of the cartesian components 
:::::: 
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of Equation (2.1) we find, from the product of first rank tensors (see 

Equation (2.8)), 

AO,ij = -l Tr(Aij) 1 (Aij + Aij + Aij) = 0 13 ~ 3 XX yy zz 

Al,ij 1 [Aij - Aij + i(Aij - Aij)] = -2 +1 . zx xz zy yz 

Al,ij = - _1_ [Aij - Aij] 0 . 12 xy yx 

Al,ij 1 [Aij - Aij i(Aij - Aij)] = -2 --1 zx xz zy yz 

A2,ij 1 [Aij - Aij + i(Aij + Aij)] =-+2 2 XX yy xy yx 

A2,ij = +1 

A2,ij = 
-1 

1 [Aij -2 xz 
+ Aij + i(Aij + Aij)] 

zx yz zy 

As an example particularly useful for our purposes, consider the 

(2.10) 

dipolar Hamiltonians for like spins i and j. From Chapter 1, the ele

ments of the dipolar tensor Dij are 
~ 

(2.11) 

The dipolar Hamiltonian may be considered as a scalar product of two 

second rank tensors. The elements in Equation (2.11) make up one tensor 

+ + 
and, combining the spin operators, Ii and Ij, we have the other. Re-

calling that Dij is traceless and symmetric, we get for the components 
~ 
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of the two tensors, 

AO,ij = Al,ij = 0 0 . 0,+1 

A2,ij 
0 

= ..1_ Dij 
16 zz 

A2,ij = + (Dij + iDij) 
+1 xz - yz 

A2,ij = .! (Dij - Dij + 2iDij) 
+2 2 XX yy- xy 

T2,ij = _!_ [2Iiij + i j 
0 16 0 0 I+li-1 + 

T2,ij 1 . . i j -- [I~ IJ + IOI+l] +1 - If +1 0 

T2,ij 
-1 

= _!_ [Ii Ij + 
12 -1 0 

Iiij ] 
0 -1 

T2,ij i j = I+li+l +2 

T2,ij = Ii Ij 
-2 -1 -1 

In Equation (2.13) the first rank spin operators 

I!l = - :Z (Ixi + iiyi) 

i 1 
I_l = + /2 (Ixi - iiyi) 
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(2.12) 

i j 
I_li+l] . (2.13) 

(2.14a) 

(2.14b). 

(2.14c) 

have been introduced. From Equation (2.11), the spatial elements can be 

R. related to the spherical harmonics Y by 
m 



A2,ij 
q = -

y.y.h 
16 l. J 

3 
r .. 

l.J 

(2 .15) 

If Equations (2.12) and (2.13) are combined according to Equation (2.6), 

we obtain the full dipolar Hamiltonian. Finally, we note that the sec-

ular truncation of HD is equivalent to keeping those terms in the pro-

2 2 ducts A T corresponding to q = 0. This is a result of the commutation 
q -q 

relations of the angular momentum operators and irreducible tensor opera-

tors [47]: 
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(2.16a) 

k 
qT • 

q 
(2.16b) 

Now that we can write Hamiltonians in terms of irreducible tensor 

operators, we turn to the question of rotations. Xhe coordinate trans-

formation of an irreducible spherical tensor is given by 

k where the D , (n) are elements of the Wigner rotation matrix and n = 
q q 

(2 .17) 

(a,6,y) is the set of Euler angles for the rotation. Properties of the 

Wigner rotation matrix, together with a description of how to calculate 

k 
the elements Dq'q(n) can be found in the texts by Silver and Rose. 

2.2 Order Parameters 

We can now proceed to discuss the situation of an ensemble of aniso-

tropically ordered molecules such as found in a liquid crystal. If only 

rigid molecules are considered, the Hamiltonian will contain an average 

over the orientation probability distribution of the ensemble. If a 



number of conformations are possible for each molecule, then the 

Hamiltonian will also have to reflect an average over these, each 

weighted by a conformational probability. The probability distribution 

for orientations is then a function of the conformational states of the 

molecul'es. Roughly speaking, this takes into account the possibility 

that each conformation may orient differently. Approximations, based 

on arguments for the relative time scales for reorientation of the entire 

molecule and conformational changes, are often introduced to reduce the 

number of parameters required to describe the ordering of the ensemble. 

For the time being we will ignore such time scale arguments and assume a 

conformationally dependent probability distribution for ordering. Later, 

after introducing the Saupe order tensor, the question of separation of 

averaging for reorientation and conformational change will be re-examined. 

The problems with time scale arguments will be addressed and the approach 

for choosing a molecular axis system will be discu~sed. 

2.2.1 Coordinate Transformations for Liquid Crystal Interactions 

In Equation (2.6) we give the Hamiltonian as a scalar product of ir-

reducible tensors. This equation is valid for a rigid molecule (or a 

k non-rigid molecule in a single conformation) where the tensors T , 
::::::: 

k describing the spin portion of H, and A , describing the spatial part, 
::::::: 

are related to some space fixed axis system. More rigorously, for an 

ensemble of non-rigid molecules, we must include the contribution from 

each conformati"n as expressed below. 

2 k 
H = r r 

k=O s=-k 
(2.18) 
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In Equation (2.18), the subscript n specifies a particular conformation 

with probability of occurring F • We have used the superscript L to 
n 

indicate that we measure the spectrum in the lab frame. For the most 

general case, four coordinate systems and three transformations have to 

be considered to relate the microscopic molecular properties to lab frame 

tensor components. The axis systems and rotations are shown schematically 

below. 

[ 

PAS 

(X,Y,Z) 

M 

(x,y,z) 

where the rotations involved are: 

(1) n . Rotate from Principle . n fixed system (M). 

' (2) n . Rotate .from M to the . n 

(3) n": Rotate from D to the 

n Jn" . ---+ 
(x',y',z') n 

L 
(x",y",z") 

Axis System (PAS) to a molecule 

director axis system (D). 

lab frame (L) • • 

Rotations (1) and (2) with Euler angles (a , 8 , y) and (a', 8' y') n n n n n' n ' 

respectively, have to be done for all allowed conformations. The results 

are collected with the appropriate weights F and the final rotation, 
n 

n", performed. 

Starting with the interaction Hamiltonian in the principle axis 

system, the rotations for the spatial portion of H are: 

a) from PAS to M 

b) from M to D 

k 

r 
q=-k 

(2.19a) 

(2.19b) 
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c) from D to L 

(2.19c) 

. k 
The spin operators, T , are invariant to these rotations with spa

s 

tial Euler angles. Combining Equations(2.19) and (2.18) we have for the 

interaction Hamiltonian 

I (2.20) 
nqp 

where the superscript L on the spin operators has been dropped for 

brevity. Equation (2.20) is valid for a.single orientation of the mole-

cule fixed axis system relative to the director frame. Actually, there 

is a distribution of orientations described by the function P(Q'). This 
n 

function is usually expanded in terms of the generalized spherical 

harmonics [48] 

P(Q') 
n 

= (2k~l). I ck (n) 0k (Q ') 
B'IT llV llV llV n 

(2.21) 

In Equation (2.21), we have 

formation by the symbol n. 

explicitly indicated the dependence on con

The Ck (n) are independent of Q' (but not of 
~ . n 

the conformation) and are known as the generalized order parameters or 

"motional constants" [49]. The average of the rotation matrix relating 

molecular and director frames is then 

<Dk (Q' )> 
qr n =I P(Qn') Dk (Q')dQ'. qr n n 

Making use of the relation for conjugates of the Dk(Q), 

(2.22) 

(2. 23) 



and the orthogonality of the Wigner rotation matrices, we have 

<Dk (Q')> = 
qr n 

We finally get for the general (averaged) interaction Hamiltonian 

l 
npq 

(2. 24) 

(2.25) 

We can begin to make reductions in the complexity of Equation (2.25). 

First, the interactions most important to the study of liquid crystal NMR 

are of rank two (e.g., dipolar and quadrupolar). Also, the usual high 

field approximation allows us to neglect terms for s i: 0. The result is 

H = T2 l D2 (Q") l F (-l)l-q c2 (n) 
0 rO n -q-r r nq 

(2.26) 

Thus we see that there are 25 (complex) order parameters (for 

q = -2, -1, 0, 1, 2 and r = -2, -1, 0, 1, 2) required to describe the 

ordering for every allowed conformation. Henceforth, we will replace the 

final summation over p in Equation (2.26) with the tensor components in 

the molecule fixed axis system, (A!)M, and leave off the superscript M. 

This seems reasonable for the dipolar interaction where we can choose a 

molecule fixed axis system according to symmetry to reduce the number of 

order parameters. The dipolar interaction in its PAS is given by 

Dij ~ (ri.)-3 and, applying the rotation of Equation (2.19a), we arrive 
aa J 

at Dij given in Chapter 1 and Equation (2.11). 
::::s 

If we now consider the symmetry of a uniaxial nematic liquid crystal 

we can reduce the number of order parameters required. The uniaxial 
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nature of the phase means that P(Q') (and the spectrum) are invariant 

to rotations about z' of the director frame by angle y'. Thus, r = 0 and 

we only have five order parameters for each conformation. The first 

-rotation matrix of Equation (2.26) then reduces to D~0 (0, 8", 0) where 

8" is the angle between the director frame z' axis and the magnetic 

field. Nematic mesogens order nearly perfectly so that 8" = 0. This 

may be a poor approximation if used for smectic phases with large tilt 

angles [48]. With these uniaxial properties, Equation (2.26) becomes 

(2.27) 

2.2.2 The Saupe Order Tensor 

An alternate description of order for a uniaxial liquid crystal is 

offered by Saupe [SO]. In the high field approximation an NMR 

experiment measures the component of the Hamiltonian parallel to the 

main field. Considering Just a single conformation in an ensemble of 

rigid molecules for now, the transformation of a second rank interaction 

tensor from lab frame to molecule fixed axis system is given by 

(2.28) 

~ is the lab frame component of~ parallel to the field (z" direction). 

In Equation (2.28) the elements of a traceless, symmetric tensor S have 
:::::: 

been introduced, 

1 
Sa 0 = - <31 1 - 15 > 

P 2 a S aS 
(2o29) 

where 1a' 1
8 

are the direction cosines between the molecule fixed axes 

a,B and the field direction. In Equation (2.29), the angle brackets imply 

an average over an orientational distribution function similar to that .in 

40 
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the last section. Equation (2.28) may be rewritten 

~ = Aiso + ~ ~z S A 
3 L cxB cxB.' · cx8 

(2.30) 

where 

A iso : !. Tr (A) = 1
3 

(A + A + A ) 
3 ~ XX yy ZZ 

(2.31) 

is the isotropic average of the tensor. Re-introducing the dependence 

n on conformation n, the elements of S may be related to the motional 
~ 

constants of the last section by 

2 . 1 2 
= <D00 (n~)> = 2 <3cos a~- 1> 

13 2 =--<sin B'cos2cx'> 2 n n 

= l3 <sin2a'sin2cx'> 2 · n n 

13 = -- <sinS' cosB 'co sex'> 2 · n n n 

13 =-- <sinB'cosB'sincx'> 2 n n n 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

(2.32e) 

n 
As an example of the use of S , the contribution to the lab frame 

~ 

th dipolar coupling between spins i and j from the n conformation can be 

written: 



= - _Y.,..i~y"""'j'-h-
2 . 3 

41T (ri.) 
J n 

n 2 
{S (3cos ei. - 1) zz JZ n 

n n 2 2 + (S - S )(cos eij -cos eij ) 
~ " x yn 

n n 
+ 4S (cosei. coseij ) + 4S (cosei. cosei. ) xy J x y n xz J x J z n 

+ 4Sn (cosei. cose.j ) }, yz JY ~ z n 
(2.33) 

where coseijp' p = x,y,z are the projections onto the molecule fixed axes 

of a unit vector pointing from nucleus i to j and rij is the internuclear 

distance. 

From the form of Equation (2.32) it is clear that the number of order 

parameters actually affecting the spectrum will be determined by molecular 

symmetry and the choice of molecular axes. The number of order parameters 

required for different molecular point groups is g~ven elsewhere [51]. 

For example, the rigid molecule benzene, with n
6 

symmetry for the proton 

spins and the z axis chosen along the six-fold axis, requires only S • zz 

l-le find it convenient tq use Equation (2.33) when actually calculating 

coupling constants in Chapter 4. 

Now, using the probability for the occurrence of conformation n, F , 
n 

the lab frame measurement can be written as 

(2.34) 

2.3 The Influence of Internal MOtions on MOlecular Ordering 

In the last section we have demonstrated that, for molecules with no 

symmetry experiencing the ordering potential of a uniaxial liquid crystal, 
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the NMR spectrum will be sensitive to five independent order parameters 

for each conformation, weighted by conformational probabilities. Only a 

few assumptions have been made in arriving at this result. First, the 

correlation times for all types of molecular motion, including intra-

molecular vibration and rotation as well as reorientation, are assumed 

to be short compared to the inverse of the largest contribution to the 

interaction tensor involved. This is certainly a good approximation for 

NMR of liquid crystals. Reorientational correlation times for liquid 

crystals are usually shorter than a nanosecond. In contrast, quadru-

polar and dipolar interactions for common nuclei observed in NMR are 

6 -1 typically 10 to 10 . sec Thus, the Hamiltonian reflects an average 

over intramolecular and reorientational motions. 

The second assumption implicit in Equation (2.27) and (2.34) in-

valves the manner in which the conformational average is treated. The 

use of a summation over conformational states impl~es that molecules 

exist for some time in well defined configurations which rapidly inter-

convert. This may be reasonable when the potential barriers involved 

are high and only states at the minima are appreciably populated. If 

this is not the case then, in principle, the summation over conforma-

tions may be replaced with an integration over a continuous motion or an 

ensemble average of quantum mechanical states. The summation is also 

usable, though perhaps not physically meaningful, when a continuum of 

conformational possibilities are related thro~gh molecular symmetry. 

This point will be discussed when considering oriented biphenyl groups 

in Chapter 4. 

The most general approach in spectral analysis makes use of Equation 

(2.27) or (2.34) which contain only the approximations already mentioned. 
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The motional averaging in Equation (2.34) may be rewritten as 

<S A > 
aS aS int,mole' (2.35) 

where the complete averaging includes both internal motion (int) and 

motion which reorients the entire molecule (mole). In an attempt to 

reduce the number of·parameters in a model used to analyze a spectrum, 

further approximations to Equation (2-~35) are often made. A separation 

of the averaging of S and A is sometimes assumed based on arguments for 
' ~ ~ 

the relative time scales for reorienting and internal motions [18]. Two 

extremes may be considered. The time for which a molecule is correlated 

with a particular orientation n' relative to the director is denoted 

T 
1 

. The conformational states are characterized by a correlation time mo e 

Tint· In the first extreme conformational changes occur faster than a 

molecule can reorient (T. << T ). A single o~der tensor should then 1.nt mole 

describe the average orientation for all conformations: 

<S > <A > . 
aS mole aS int 

(2. 36) 

The distribution function, P(r2'), is then independent of conformation. 

This implies that the intermolecular potential determining orientations 

only depends on n' [52]. In the other relative time scale extreme 

(T << T ) when a molecule changes its conformational state, it is mole int ' 

highly probable that it will completely reorient before undergoing another 

change of conformation. For this case, each conformation must be de-

n scribed by a separate order tensor~ as in Equation (2.34). The inter~ 

mediate situation, for which T. t- T 1 , corresponds to replacing the 1.n mo e 

discrete summations of Equation (2.27) and (2.34) with a treatment for 

continuous internal motion. 
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In an approach similar to the assumption Ti << T 1 , the average nt mo e 

of Equation (2.35) is separated by assuming a non-rigid molecule is 

composed of rigid subunits with relative rotations making up the con-

formational changes [54]. Each rigid subunit i is described by its own 

order tensor, S(i). If the relative timescales allow a separation of 
~ 

internal and reorientational averaging, then the S(i) will be related to 
~ . 

a single S for the entire molecule. Otherwise, the S(i) will be 
~ ~ 

independent. 

There seems to be no body of well founded experimental evidence to 

support the simplifying assumption T. << T • 
~nt mole For large amplitude 

motions resulting in geometrically dissimilar configurations it is 

reasonable that the orientation distribution function P(n') will be at 

least weakly dependent on internal coordinates. Indeed, there are many 

examples in the literature in which the spectrum of non-rigid molecules 

cannot be adequately explained by assuming a single order tensor inde-

pendent of conformation ({52-55] and references therein). In some cases 

it has been found that observed quadrupolar and dipolar splittings in 

the spectra of pure liquid crystals can only be explained by assuming a 

conformationally dependentS {54]. Although it would seem that P(n') 
~ 

should be only weakly dependent on ground state vibrational modes of 

molecules, even this assumption may not be appropriate when analyzing a 

high resolution spectrum of oriented solute molecules. Emsley, et al. 

[52] and Burnell, et al. [53] have suggested that the anisotropic 

couplings observed from tetrahedral molecules dissolved in nematic 

phases may be explained by a correlation between molecular orientation 

and asymmetric vibrational modes. 
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Thus it would appear that one must always use the more complicated 

averaging procedure in Equation (1.35) to relate ~ to ~· This will 

present difficUlties unless an adequate model exists to give the con

formational probabilities. If, instead, these are to be determined from 

an experiment, then drastic simplifications or assumptions may have to 

be used concerning molecular structure. It has been suggested that a 

possible approach is to carefully choose the molecule fixed axis system 

to effectively "decouple'.' internal motions and reorientation [55]. In 

some cases this amounts to finding the principle axis system for ~· 

Choosing the molecule axis system in this manner may be difficult if the 

conformations are not related by syrmnetry. The case of biphenyl discussed 

in Chapter 4 demonstrates this approach. 
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Chapter 3 

Multiple Quantum NMR 

3.1 Introduction 

This chapter covers the basic theory of multiple quantum NMR. Most 

of the theoretical development of this technique is found elsewhere [31, 

38,56-66,69]. No attempt is made to give a complete description of all 

aspects of multiple quantum spectroscopy.· However, details given here 

are sufficient to understand all multiple quantum spectra presented in 

this and the next chapter. The radio frequency pulses used are suffi

ciently broadband to excite all allowed transitions of the spin systems 

studies. Aside from specific creation and detection of even quantum 

(~M = 0, :J:2, :J:4 ••• ) or odd quantum (~M = :J:l, :J:3, :J:5, ••. ) transitions- a 

result of the bilinear spin coupling Hamiltonians - all pulse sequences 

used are non-selective. Selective sequences, which produce enhanced 

signals for specific multiple quantum orders, are the subject of separate 

work [64,66,69,33]~ 

As an example of multiple quantum NMR, we again consider benzene 

partially ordered in a nematic liquid crystalline solution. A non

selective proton multiple quantum spectrum of benzene in Eastman Kodak 

liquid crystal #15320 is shown in Figure 3.1. All orders, from zero 

quantum transitions to the six quantum, are present. Each order is 

composed of a group of lines separated from neighboring orders and ex

tending from zero quantum on the left to six quantum on the right. The 

method of separating transitions by order (time proportional phase incre

mentation) is given below. 
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0 141W 

Figure 3.1 

Partially Oriented Benzene 
Non-selective Multiple Quantum Spectrum 

241W 541W 641W 

XBL 818-1766 

Non-selective proton multiple quantum spectrum of benzene oriented 

in the nematic phase of a liquid crystal solution. Only one half of the 

total spectrum, which is symmetric about its center, is shown. Multiple 

quantum transitions are separated according to Mt by the time propor

tional phase incrementation technique. The central two and four quantum 

lines (at 2~w and 4~w, respectively) have been truncated in height. The 

spectral width shown is 50 kHz. 
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The width of each order in Figure 3.1 is equivalent to the single 

quantum bandwidth and the one quantum region of that figure may be 

compared (except for intensities) with Figure 2.1. The expected reduc-

tion of transition density with higher orders is seen in Figure 3.1. 

For example, there is only a single pair of five quantum lines. The 

origins of these and other transitions are understood from the spin 

energy level diagram shown in Figure 3.2. The permutation symmetry of 

benzene proton spin functions is isomorphous with the n6 point group 

leading to eight irreducible representations. (Benzene also has an 

inversion 'center making the full point group n6h. Inversion symmetry 

only becomes important in the zero quantum spectrum.) The five quantum 

analysis of this spectrum becomes completely trivial if we assume the 

benzene ring has a perfectly hexagonal shape. The dipolar coupling 

constants are then geometrically related by 

D =313D =8D ortho meta para 

The coupling D th is uniquely determined by the five quantum splitting or o 

which can be shown to be independent of scalar couplings. Assuming 

anisotropic indirect spin-spin couplings to be negligible, the relation 

is then 

1 (D ) = Five Quantum Splitting 
2 ortho 3.7649 

If we assume the scalar couplings are equivalent to their isotropic 

values, then all couplings are completely determined except for the 

relative signs of Dij and Jij" An attempt to fit the spectrum with 
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XBL 816-10412 

Figure 3.2 

Benzene spin energy level diagram. The total magnetic quantum 

number for the six proton spins, M, is shown on the left hand edge. 

States -are classified according to the eight irreducible representations 

of the o6 point group. Multiple quantum transitions are only allowed 

between states in the same representation. 
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D h > 0 was unsuccessful and so it is concluded that dipolar couplings ort o 

are negative. If we choose a molecule fixed axis system with the z axis 

along the six-fold symmetry axis, and x, y axes in the ring plane, then 

by Equation (2.33) 

D or tho 
1 

s zz a:----
2 3 

r or tho 

The proportionality is entirely determined by nuclear properties (yproton) 
0 

and the choice of units. If the usual value of r th = 2.482 A for . or o 

benzene is assumed, then the five quantum spectrum gives us the (averaged) 

order parameter S 
zz 

3.2 Theory. 

This section will cover thebasic theory for non-selective multiple 

quantum NMR experiments. A brief review of the density matrix is first 

given and the most general multiple quantum pulse sequence described. 

The rotational properties of the multiple quantum propagator with even 

and odd quantum intensity dependence on pulse sequence parameters are 

discussed. Methods for separating orders based on properties of the 

multiple quantum propagator under radio frequency phase shifts are also 

reviewed. Experimental examples with benzene in a nematic liquid crystal 

demonstrate several outcomes of the theory. 

3.2.1 The Density Matrix 

It was mentioned in Chapter 1 that the finite numbe·r of states and 

bound energies of a coupled nuclear spin system make the density matrix 

approach {3,68] particularly useful in pulsed NMR theory. We review here 

the density matrix formalism as it applies in later calculations. 
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The wavefunctions {w} which are solutions to the quantum mechanical 

Schrodinger equation may be expanded in a complete (orthonormal) basis 

{cp} as 

(3.1) 

In general, the expansion coefficients, {C}, are complex numbers (i.e., 

they may be written with a magnitude and phase). If we have an ensemble 

of systems all in the same state wk' then the expectation value of some 

observable quantity is 

(3. 2) 

where 0 is a quantum mechanical operator. For a collection of states, 

each occurring with a probability pk' the ensemble averaged expectation 

value is 

<0> = I pk <wklolwk>' (3.3) 
k 

= L I L pkc~kckj <<Piloi<Pj>' 
k i j 

I I * <<Pilolcpj>; = cicj 
i j 

where the bars denote the ensemble average. -*-The coefficients cicj are 

the elements of an ensemble averaged "density matrix" given in the 

following equation: 
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(£).i 
""' J 

(3.4) 

All of the theory in this chapter assumes an ensemble averaged density 

matrix and so the bar is left off g. Equation (3.3) may be rewritten as 

<Q> = I I P.i <4> !ole~> > (3. 5) 
j i J i j 

= I I P.io .. = Tr(~), 
j i ,] ~J 

where the definition of the trace of a matrix has been used. The "density 

matrix operator" is written 

(3. 6) 

~Vhen the energy of a system is determined by a Hamiltonian H, the 

density matrix evolves in time according to its "~uation of motion" 

d h-- p(t) = -i[H,p(t)]. at (3.7a) 

For our calculations, energies are expressed in frequency units and h is 

set to one in what follows. The general solution to Equation (3.7a) is 

(t) -iHt (O) iHt p = e p e , (3.7b) 

for a time-independent Hamiltonian. When the Hamiltonian is time-

dependent, a time-ordered integration over the duration. t in the expon-

entia! will be required. This treatment is implicit in the rotating 

frame form of the radio frequency Hamiltonian, Equation (1.8). Evolution 

of a density matrix operator in the presence of a time-dependent 

Hamiltonian is handled mathematically with average hamiltonian theory [6]. 
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For a system in.thermal equilibrium with its surroundings, g is 

diagonal. In this case, the coefficients lc. 12 correspond to the prob
~ 

ability of finding the ensemble in state ~. , i.e. , they are populations. 
~ 

In order for & to have non-zero off-diagonal elements, the coefficients 

* C.kck. must survive the ensemble average of Equation (3.3). This implies 
~ J ' 

there exists a definite phase relation among states of the ensemble. 

Thus, off-diagonal elements of g represent a coherent superposition of 

the states {~}. The off-diagonal elements are termed coherences. 

The probabilities in Equation (3.6) are given by a statistical 

distribution of energies at equilibrium 

exp (-E./kT) 
~ 

L exp(-E/kT) 
i 

(3.8) 

where k is Boltzmann's constant and T the temperature. Thus, the thermal 

equilibrium density matrix operator is given by 

= exp(-H/kT) 
Tr(exp(-H/kT)) 

with the exponential defined by 

exp(-H/kT) = 1 - J!.. + .!_ (H) (H) 
kT 2 (kT)2 

(3. 9) 

. . . . (3.10) 

In the high field approximation in which the Zeeman interaction is the 

largest contribution to H, the equilibrium density matrix operator is 

expanded 

peq = 1- Siz + ... , (3.11) 

and the constant S is defined as 
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S = (yH0/kT)/Tr(exp{-H/kT)). 

Since the unit operator in Equation (3.11) commutes with all operators in 

H, it is often neglected to yield the reduced density matrix 

= -SI 
z 

which has been truncated to the first term. In a high field and at most 

temperatures encountered in NMR, S is small and higher order terms are 

negligible (the high temperature approximation). 

3.2.2 The Basic Multiple Quantum Experiment 

The most general pulse sequence used for generating and observing 

multiple quantum coherence in proton NMR is shown in Figure 3.3. The 

basic three pulse sequence in Figure 3.3a consists of pulses with rela-

tive radio frequency phases q,. and rotation angles e. (9. = w
1

t ) . The 
. ~ • ~ ~ pi 

NMR signal S(T;t1 ,t2) as a function of the time parameters T, t 1 , and t 2 

is detected during t 2 • Using phase sensitive detection (see Chapter 5), 

two contributions are separated into two spectrometer "channels" cor-

responding to detection of oscillating field components along the rota-

ting frame x and y axes. These are related to the expectation values 

<Ix> and <Iy>. The choices of values for parameters T, t 1 , t 2 , ei, cf>i 

are determined by the spin system under investigation and which transi-

tions are desired. The affect of each is discussed below. 

Figure 3.3b shows a pulse sequence which is actually used in the 

theory below. The experiment is more symmetric from the standpoint of 

density matrix evolution if we imagine we observe a signal proportional 

to <Iz>. This is effected by placing a fourth pulse, P4 (e4 , ¢>4), to 

transfer magnetization back along the z axis. The experiments themselves 
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Multiple Quantum 
Pulse Sequence 

P1 (8pcp1) p2 (82'cp2) p3 (83, cp3) 
I S(r;t1 ,t2) 

I I I 
I 

o) 
Po 

I 
I <Ix>, < Iy> 
I 

t" t, t2 

p3 (83, cp3) p4 (84 ,cp4) 

b) I I <Iz> 

c) I u I I v I· <iz> 

t" t I r' t2 = ( t 2 - t"~ 

Figure 3.3 XBL818-4148 

The simplest pulse sequence used for generating and detecting mul

tiple quantum coherences in NMR. a) The first two pulses (P1 and P2) 

create coherences which evolve freely fo'r' time t 1 • These "invisible" 

coherences are then detected during t 2 by the action of a third pulse 

(P3 , the ''mixing" pulse). The two dimensional signal, S(T;t1 ,t2), is a 

function of the parameter T. b) A fourth pulse, P4 , is included in the 

theory and <Iz> calculated fram the density matrix. c) A generalization 

of the sequence in b) in which the preparation propagator is U(T) and the 

detection propagator is V(T'). In the experiment of a), only one point 

in t 2 at T' is collected for each value of t 1 • 
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do not contain this last pulse because of the requirement for observation 

of magnetization oscillating transverse to the main field. 

Figure 3.3c illustrates a conceptualization of multiple quantum 

experiments which is used below. The signal written in terms of para-

meters in Figure 3.3a is familiar in the general field of two-dimensional 

Fourier transform spectroscopy [56]. We instead use parameters of Figure 

3.3c in expressions for the signal S('r;t
1

,T') in equations below (•' = t
2
). 

As we show below, this allows a convenient mathematical treatment of 

density matrix evolution. 

The sequence of Figure 3.3c may be viewed as consisting of three 

parts. The multiple quantum coherences are generated during a "prepara-

tion" period labeled U. In terms of parameters in Figure 3.3, the 

propagator for this period is given by 

(3 .12) 

..... 
In Equation (3.12), I is the spin angular momentum operator and n1 , n2 

are unit vectors in the rotating frame x, y plane,defined by the relative 

r.f. phases 4>
1

, 4> 2 • The Hamiltonian is given by H. Multiple quantum 

coherences are then allowed to evolve freely during the "evolution" 

period of duration t
1

• No NMR signal is detected from these coherences 

during t
1

• This is because evolution of a coherent superposition of 

states involved in a multiple quantum transition does not correspond to 

magnetic dipole radiation. Because of this, it is necessary to transfer 

multiple quantum coherences back into single quantum coherences which we 

can detect. This is accomplished during the "detection" period labeled 

V in Figure 3.3c. The propagator for this period, of duration T', may 

be written 
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(3.13) 

~n ~~alogy with Equation (3.12). In Figure 3.3c the parameter t
2 

has 

been set equal to T 1
• It has been shown that t 2 = T1 = T produces the 

maximum signal [66,67]. 

The signal is collected after the detection period and is a function 

of T, t 1 , and t 2 : S(T;t1 ,t2). The two-dimensional Fourier transform 

could then be applied to produce a two-dimensional spectrum S(T;w
1

,w2). 

A single quantum spectrum results from a slice in the w2 direction and 

the multiple quantum spectrum is found from a projection along w
1

. For 

experiments in this work it is sufficient to collect just the single 

' point at t 2 = T1 (t 2 = 0). This point represents the integral over the w2 

spectrum. Although some signal will be lost in w1 due to phase dif-

ferences among lines in w2 , the technical convenience of single point 

detection must be compared to the effort required'to compute the full 

2-D spectrum. For constant values of T, t 1 , and t 2 = T', application of 

the pulse sequence then yields a single data point. The entire sequence 

is then repeated with a new value of t 1 , the evolution time. Proceeding 

in this manner, a multiple quantum "free induction decay" is mapped out. 

Fourier transformation of the result as a function of t 1 produces a 

multiple quantum spectrum such as Figure 3.1. 

If we use Equation (3.7b) and (3.5), we can write the signal in 

terms of density matrix evolution as 

Tr(I p) 
z 
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Tr[v
ti V -iHtl t iHtl 

= z e Up 0u e ] , (3.14b) 

(3 .14c) 

with wkj the transition frequency (27T (vk- v j)). Fourier transformation 

with respect to t
1 

gives 

(3 .15a) 

(3 .15b) 

In the equations above, Po is the density matrix just prior to the first 

pulse. Often, but not always, we start the experiment with the equili-

brium density matrix, - SI , and, setting -S equal to one for now, z 

The matrix P is the preparation matrix and £ is the detection 
::::::: . ......... 

matrix. When T' = T and p = I , then n(T') = P(-T). 0 z ~ ::::= 

3.2.3 Properties of the Preparation Matrix 

We now consider the form of P for specific values of a. and 4>
1 
.• 

::::= 1 

For now we will assume that all chemical shifts are equal and so we can 

set a. = 0. In addition, quadrupolar and scalar couplings are excluded 
1 

from the Hamiltonian below but may be treated in a straightforward manner. 

From the results of Chapters 1 and 2, the spin Hamiltonian may be written 

H = -flwi z + 

or, in terms of spherical tensor components. 

H = -6w I Tl,k + 
k 0 I 

i<j 

(3.16a) 

(3.16b) 



where, from Equation (2 .13-2.15), 

A2,ij 
0 

(3.17a) 

(3.17b) 

(3.17c) 

All of the experimental pulse sequences can be written so that the 

first two pulses are at opposite phase, i.e., ~ = ~i; ~ = ~ 2 = ~ + rr, 

and rotate Iz by the same angle e1 = e2 = e. The propagator U may then 

be written 

u(e,~,'l") 
'± -+ A -i8L•ft -iHT i0I·n = e e e 

With ~ the phase shift relative to the rotating frame y axis, 

then, 

-+ 
i8 I· ft 

e 

U(8,~,T) 

i~I z 
= e 

i~I 

= e 

-i8I 
U(8,T) = e 

y 

z 

e 
i8I -i~I 

y z e 

-i~I 
U(8,T) z e 

-iHT i8I 
e e y 

(3.18a) 

(3.18b) 

Likewise, for the detection propagator (8
3

= e
4

: 8' and <!1
3

= <jl; <!1
4 

= ~+rr), 

i<jli -i<jli 
V(e',<jl,T') = e z V(e',T') e z 

-i8'I 
V(e',T') = e y -iHT 

e e 
i8'I 

y 

(3.19a) 

(3.19b) 
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As an example of the affect of phase, we consider what happens when the 

first two pulses are at some phase relative to the final pulses. This 

causes an order-dependent phase shift of the preparation matrix relative 

to detection. From Equation (3.18), (3.19) and (3.14) we find 

\ + t 1.. (U(6,$,T)I U (6,$,T)).k (V (6',$,T 1 )I V(6',$,T'))k.o(w-wk .. ) 
jk z J z J J 

(3.20) 

Equation (3.20) states that a shift in the phase of the radio frequency 

preparation pulses results in 6M = Mj - ~ times the phase shift for a 

multiple quantum line in the spectrum. This will have implications for 

the separation of orders and phase Fourier transformation techniques as 

discussed below, but for now we take 4> = 0. We now look at specific 

cases for the parameters of Figure 3.3. 

To calculate the affect of pulse angle e, we make use of transforma-

tion properties for spin operators. Again, we write the preparation 

propagator 

where 

U(6,T) 
-i6I -iHT = e Y e 

-iH 1 T = e 

-i6I i6I 
H' = e Y H e Y 

e 
i6I 

y 

(3. 21) 
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The effect of the rotation implied in Equation (3.21) can be calculated 

by a transformation with Euler angles (a,B,y) = (0,8,0). From Equation 

(2.17) and a definition of the Wigner rotation matrix, the rotated 

Hamiltonian H' is (H = Hz + 11>> 

H ' 1 t:J.w . . 1 1 = -6wcosar0 + /2 s1n8 [T+l- T _1 ] 

+ L A2,ij {.!. (3cos2a -l)T2 'ij 
i<j 0 2 0 

~ 
sin2a[r!iij- r:iij] + (3) 

8 

~ 
sin 2a rr!i ij + r:2 ij]} + (3) 

8 
(3.22a) 

or, replacing the Tk spin operators with spin angular momentum operators, · 
q 

H' = ~t:J.wcosei0 - 6
2w sine [I+l +I _1] 

L 1 2 i . + + 
+ 0ij{Z (3cos a~l)(3I IJ - I.· Ij) 

i<j 0 0 1 

+ c1> . i j 
+ ij (Ii Ij + Iiij ) ] 

2 sin28[(I+liO IOI+l) - -1 0 0 -1 

+ (3 ) · 2a[Ii Ij + Ii Ij ]} 
2 s 1n +1 +1 -1 -1 • (3.22b) 

The affect of the preparation matrix P may then be found by considering :::::: 

the expansion [3] 

P(T) (3.23) 

In what follows, we introduce definitions for the preparation 

matrix using different initial density matrix operators Po= I , I , I : 
Z X y 
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Pz U(S,T) t 
- I U (6,T) e z 

(3.24a) 

Px U(S,T) t 
- I U (8,T) e X 

(3.24b) 

pY U(S,T) t 
- I u (8,T) e y . (3. 24c) 

We now consider specific cases for ~· 

Case 1 

For this case, the preparation sequence is ; y,T, ; y (y means a 

pulse with phase 180° relative toy). Equation (3.22a) becomes 

H 
XX 

H -~ 
XX 

l Di. { + 12 (3I ii . 
· J Z ZJ i<j 

H = 1 . (1) 
xx - 2 Hzz + 4 l D.j(I+.I+. +I .I j). 

~ ~ J -~ -i<j 

(3.25) 

In Equation (3.25), subscripts on H have been introduced which refer to 

rotation of the bilinear dipolar Hamiltonian, i.e., H means H rotated 
XX ZZ 

by a 90° y pulse. 

2 Since H . only contains T operators with q = 0, +_2, it is a zero 
XX q 

quantum and two quantum operator. This is a direct consequence of the 

bilinear nature of H zz Linear operators, such as those contained in the 

chemical shift Hamiltonian, cannot create multiple quantum coherences by 

themselves. If the commutators in Equation (3.23) are evaluated, using 

z Equation (3.25) and setting Po = I , it is easily seen that P will only z w 
2 contain operators connecting states separated by~= 0 or6M even. 

Thus, this preparation sequence creates only even quantum coherences. 
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The expansion (3.2~) can be used to determine the dependence of each 

order on • when this time is short [33,67]. Zero quantum operators do 

not appear until the , 2 term. Other even n quantum operators first 

(n-1) appear in the • term. In most experiments, the higher quantum 

transitions are desired requiring the expansion to contain significant 

contributions from high order terms. This implies longer values of T 

for which the expansion will not converge fast. The explicit short 

time • power dependence approach is then replaced by the choice of a 

preparation time such that vn• ·~ 1 where vD is a measure of the "size" 

of ~ in Hertz. Experimental methods exist [69] for choosing values of 

• which are best for creating transitions of a certain order. 

Case 2 
7T 

a = 2; 6w = O; Po = IY. 

For this case, the propagator U will contain the same rotated 

Hamiltonian as before (Eq. 3.25). The preparation propagator now becomes 

-iH T 
pY = e xx 

7T 

2 

I 
y 

e 
iH T 

XX 

Again, using the expansion of Equation0.2~ this pro~agator can be shown 

to contain only odd quantum operators. The operator I may be written 
y 

as a combination of T!.1 operators. Recalling the col!DDutation relations 

in Equation (2.16b) we see that pY will contain products such as 
7T 

Tl'iTl,j Tl'iTl,jTl,k etc. 2 and so is entirely odd quantum in 
+1 0 ' -1 +1 +1 ' 

nature. The first term in Equation (3.23) with odd n quantum coherence 

n is the • term. The initial density matrix Po = I may be prepared by 
y 

proceeding the multiple quantum pulse sequence with an x phase pulse. 

With ~ = 0, the first y pulse then does nothing and may be omitted. An 

7T 7T 
odd quantum preparation sequence is then 2 x,<, 2 y. 
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Case 3 

2 i" 
Now the added terms in H' are the first order operators T+i 3 • 

Once again, considering the commutators in Equation (3.23) we see that 

Pz will contain all orders of multiple quantum operators, both even and 
1T 

4 odd. The T power dependence of these is somewhat different than the 

previous cases. For example, the first term with three quantum operators 

is the •
2 

term. For very short preparation times, the three quantum 

transitions will appear faster than if the odd quantum sequence of case 

2 is used. 

1T If we use a 2 pulse as the first pulse then the sequence may be 

written 

1T 1T- 1T 1T lT-2 y,T, 4 y = 4 y, 4 y,T, 4 y. 

In this case, the preparation matrix is 

(3.26) 

Both terms above contain even and odd quantum operators. 

So far we have considered just the preparation portion of Figure 

3.3c. As we said before, multiple quantum coherences evolving during t 1 

are unobservable and we have· to reconvert them to single quantum signal. 

The properties of the detection matrix in Equation (3.15) are essentially 

the same as the results above when T1 = T. Equation (3.15) states that 

g will have to contain operators for the coherences of interest if they 

are to be observed. For example, if the detection sequence of Figure 

1T 1T 
(3.3b) is 2 y,T, 2 1 then only even quantum transitions can be observed. 

The signal ultimately depends on the product of ~ and ~ and so we can 
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selectively prepare and detect either even quantum, odd quantum or both 

coherences in the experiment. This principle is demonstrated experi-

mentally below. 

In summary, we have shown that multiple quantum coherences can be 

prepared and detected by a number of simple sequences which are only 

selective in the sense that the rotated Hamiltonian (Eq. (3.22a)) and 
k . 

initial density matrix Po can be chosen to contain Tq terms where q is 

even, odd, or a mixture of both. The specific cases of ~ and ~ considered 

above are summarized here. 

Pz z Q pure even quantum 
ir' 1T 

(3.27a) 

2 2 

pY qY pure odd quantum 
rr' 1T 

(3 0 27b) 

2 2 

p:•x, Q:'x both even and odd quantum (3.27c) 

4 4 

We have only considered the case when the resonance offset dw is zero. 

The affect of the offset term in a Hamiltonian can be included straight-

forwardly. Now the preparation matrix is given by 

p = e 

P = e 

-i6I +i(-dwi + H . )T y z zz e e 
i6I -i6I -i (-dwi + H )T 

Y Po e Y e z zz e 

-iH' T 
XX exp{-idwTcos6I )exp(-idwTsin6I )exp(dwTcos6sin6I ) 

Z X y 

i6I 
y 

x Po exp(-dwTcos6sin6I )exp(idw-rsin6I )exp(idwTcos6I ) e y X Z 

+iH' T 
XX 

(3. 28) 
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For a general rotation angle of a, Equation (3.28) would be difficult to 

evaluate. From Equation (3.22a) it is obvious that an offset will result 

in the occurrence of both even and odd quantum coherences in ~· For the 

'IT 
trivial case of a = l' Equation (3.28) becomes (with Po = Iz) 

= cos6w• Pz - sin6w• pY 
'IT 'IT 

(3.29) 

2 2 

A similar expression obtains if Po= I and for Qz,y(Aw). If there are 
y 'IT 

no chemical shift differences, the spectrometer 2 niay be set so that 

Aw = 0. This condition cannot be met for all chemically shifted nuclei 

in a general spin system and so chemical shift differences will tend to 

mix even and odd coherences in the preparation. When chemical shifts 

are small compared to dipolar couplings, this affect will not be too 

severe. 

3.2.4 The Effect of Static Field Inhomogeneities/TPPI 

From a consideration of the energy level diagram for N coupled spin 

~ nuclei in Figure 1.2 and the form of the rotating frame Zeeman Hamil-

tonian, it can be seen that the affect of a resonance offset Aw is 

multiplicative in multiple quantum evolution. The n quantum coherences 

will evolve with an offset of n6w where Aw is the single quantum offset. 

The static field·that a sample experiences is not perfectly homogeneous 

and there will be a distribution of Aw's over the sample volume. The 

result is a familiar broadening of resonances in the spectrum whenever 

the distribution of field offsets is wider than the natural linewidth -

a situation which is often the case in proton liquid crystal spectroscopy. 

The n quantum coherence will be broadened by n times the single quantum 

inhomogeneity. Unless removed, this broadening would prohibit the 
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observation of high order multiple quantum spectra. 

Spin echoes of the Hahn type [70] are used to circumvent this prob-

lem. Placing a rr pulse in the center of t 1 will reverse evolution under 

linear terms in the Hamiltonian. Bilinear terms such as the dipolar 

Hamiltonian remain unaffected by this pulse. All evolution from terms 

with ~wl is refocussed at the end of the evolution period, thus removing z 

the field broadening. Each multiple quantum coherence then evolves with 

just the dipolar frequencies and all orders will overlap. In order to 

separate contributions to the spectrum from different orders, the method 

of time proportional phase incrementation (TPPI) [59,60,65] is used. 

The TPPI experiment is shown in Figure 3.4b. The first two pulses 

are at some relative phase <P and <P + rr with respect to the third and 

fourth. This phase is incremented each time t 1 is incremented by ~t1 , so 

that ~<P = (~w)(~t1 ) where here ~w is just a parameter. From Equation 

(3.20) we see that each multiple quantum line is pbase shifted by 

exp(-illli<jl) = exp(-i~MAwt1 ). The result is that the n quantum coherences 

appear to evolve with an effective offset of n~w. To ensure that all 

orders are contained in the frequency spectrum without fold back, the 

rr 
phase increment is set so that ~<P ~ N" This phase shift is usually a 

fraction of rr/2 so that the usual spectrometer quadrature phases are not 

adequate. A delay line phase shifter under digital control of the pulse 

programmer is used and is fully described in Chapter 5. 

3.2.5 Phase Fourier Transform Averaging 

Similar to TPPI, the method of phase Fourier transform (PFT) averaging 

may be used to separate multiple quantum orders [56,63]. Considering 

Equation (3.20) as a Fourier series in phase indicates that coherences 

can be separated in phase space according to Llli<jl. Coaddition of different_ 
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<Iz> 
XBL 8010-12245 

The time proportional phase incrementation pulse sequence. In a), 

the usual three pulse multiple quantum sequence is repeated with 90° 

pulses (v1tp = ~). b) TPPI pulse sequence. A spin echo pulse (180°) 

is placed in the middle of t 1 to remove inhomogeneous broadening in the 

evolution of multiple quantum coherences. The first two pulses are 

phase shifted by an angle ~ which is a linear function of the evolution 

time: ~ = ~wt1 • c) As in Figure 3.3c, the density matrix evolution is 

more symmetric if we imagine that there is an additional final pulse and 

we detect <I >. 
z 
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spectra with properly chosen preparation phases will allow the cancel-

lation of contributions to the total spectrum from all but a few orders. 

As an example, the even quantum orders may be selected over odd quantum 

by adding two spectra taken with preparation phases~ and~+ TI. The 

odd quantum signal changes sign whereas the even quantum shows a phase 

shift of zero and constructively adds. Extensions to other orders is 

straightforward. 

3.2.6 Intensities 

As we have seen, preparation and detection matrix elements, which 

determine the extent to which coherences appear in the multiple quantum 

signal, are a function of the times T and t 2 • Choosing t 2 = T 1 = T has 

proved adequate for our analysis. From Equation (3.15) it can be shown 

that the phases of different multiple quantum lines will not be the same. 

This causes loss of intensity in those orders where lines overlap but is 

not a problem in resolved higher order spectra. In principle, all lines 

will have the same phase if a time reversal sequence [72] is used during 

detection so that ~(T') = ~(-T). In practice, this is not necessary and 
~ ~ 

magnitude spectra are usually calculated to avoid having to phase correct 

individual lines. 

As discussed previously, for very short preparation times, not all 

coherences are created due to a strong power dependence on T. This is 

demonstrated experimentally in Figure 3.5. For the shortest preparation 

times, only the one quantum transitions are observed. As soon as T be~ 

comes on the order of .1 msec, all orders are observed to some intensity. 

As T is further increased, individual lines are seen to oscillate as 

expected from the forms of ~ and ~· We mentioned earlier that the sizes 

of couplings in ~ may be used as an estimate· of an appropriate value of 
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XBL 818-1772 

Figure 3.5 

Experimental demonstration of "ensemble" averaging used in ·lJIUltiple 

quantum NMR spectroscopy. The preparation time, T, is varied for the 

ten magnitude spectra shown at the top. This time is given in milli

seconds above each trace. For very short preparation times, only the 

lowest orders are observed. For longer values of T, individual lines 

oscillate in magnitude. The average of these ten spectra is shown at 

the bottom. 
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T for a.general spin system. Actually, transitions for all orders are 

observed in a fraction of this time for benzene. This is a result of 

molecular symmetry and the precise nature of P for benzene dipolar 
·::::::: 

couplings [ 66] • It is possible to map out the t dependence of P experi
:::::: 

mentally for any order [73,69]. For small spin systems, this allows 

one to choose values of T which produce greater average intensity in a 

particular order than an arbitrary choice of T might. 

To remove an intensity dependence on T in the final spectrum, 

several magnitude spectra from experiments with different preparation 

times may be averaged together. This is referred to as "ensemble" 

averaging and is shown for benzene in Figure 3.5. If a sufficient number 

of T values over a wide range are used then the average should approach 

some asymptotic intensity distribution. In a "statistical" limit one 

would assume that each transition occurs with equal probability in the 

averaged spectrum. As we have seen in Equation (i.29), for large spin 

systems, the number of transitions per order is in a Gaussian distribu-

tion. We then expect the statistical limit integrated intensity per 

order to fall off exponentially with n
2 

for n = j6Mj. This is shown in 

Figure 3.6 and is qualitatively correct for the benzene experiment. 

Such a distribution implies that high order multiple quantum spectra 

will be difficult to observe for large spin systems by non-selective 

techniques. When the spin system is an undiluted liquid crystal, a 

practical limit of about ten coupled protons is tractable by non-selective 

means. Dilute samples, of course, present further complications. 

It turns out that the statistical limit underestimates the intensity 

that will be found in some isolated high order transitions [66,67]. 

Figure 3.7 shows theoretical statistical and exact T average stick spectra 

72 



NMR n~Quantum Coherence in Benzene 

c 
H 

0 

Figure 3.6 

-

experimental • • 

2 4 
n (number of quanta) 

5 6 

XBL 781-6894 

Integrated intensity per order for benzene ensemble averaged 

multiple quantum experiment. The solid curve is one half of a Gaussian 

distribution normalized for N = 6. The experimental points indicate 

that this distribution is qualitatively correct for a large spin system. 
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a. All trans1tions weighted equally I 

b. Exact average (2000 values 
of <l 

Figure 3.7 

Oriented. Benzene 

Theoretical n-quantum spectra 

n=5 n=6 

XBL 8010-12692 

Theoretical n-quantum spectra for oriented benzene. a) In this 

"statistical" limit case, all transitions are assumed equally probable 

and so of equal intensity. b) The average of 2000 spectra calculated 

from exact values of preparation time, T. The intensities here are the 

result of detailed calculation· of density matrix evolution. 
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for benzene. The statistical spectrum was produced by weighting each 

allowed transition equally. Some degenerate transitions add to produce 

the lal:'gest lines. The exact T average spectrum of Figure 3.7b results 

from a computer calculation by Murdoch, et al. [66,67] from Equation 

(3.15) using experimentally obtained benzene couplings. In this spec-

trum, the high order transitions are, on the average, more intense than 

one quantum transitions. The six quantum line is the most intense single 

transition. This exact average fits the experimental spectrum of Figure 

3.1 more accurately in its intensity pattern than the statistical limit 

theory of Figure 3.7a. 

For computational purposes, it is convenient to remove the time 

dependence of preparation and detection matrices in Equation (3.15). 

With -r' = -r, integrating over -r, the result for the intensity magnitude 

of a single transition j-+ k, assuming an even quantum preparation matrix, 

may be written [66], 

<Is kl> j 1' [

terms involving] 
+ overlapping 

transitions 

The time independent elements BaS are defined by 

with 

=A .X aA k aJ a.., a 

(3. 30) 

(3.3la) 

(3.3lb) 

(3.3lc) 

(3.3ld) 
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In the equations above, !! is the Hamiltonian matrix and ~' ~ are 

the eigenvalue and eigenvector matrices, respectively. For the high 

qua~tum orders where transitions are resolved (all orders for benzene), 

the second term in Equation (3.30) may be dropped and the "ultimate" T 

averaged intensity is readily obtained. Equation (3.30) is easily 

modified to handle odd, or a mixture of even and odd, coherences. 

Programs have been written by Murdoch [67] which are capable of simula-

ting the exact or ultimate T averaged spectrum for molecules of up to 

eight protons. Theory spectra showing calculated intensities in this 

and the next chapter were obtained using these programs. 

In addition to symmetry selection rules restricting allowed transi-

tions to the irreducible representations of the molecular point group, 

there are further symmetry affects forbidding some zero quantum transi-

tions. When the permutation group contains the inversion element (center 

of symmetry), some states will exhibit either gerade (even) or ungerade 

(odd) behavior under inversion. When the Hamiltonian is purely bilinear 

(chemical shifts and offset terms equal to zero) and the number of.spins 

is even, states in the M = 0 Zeeman manifold may not be connected in zero 

quantum coherences by the preparation matrix in a multiple quantum experi-

ment [66]. Similar to the inversion symmetry element, M = 0 states will 

be even or odd under the operator which flips all spins. If H is purely 

bilinear, this operator anticommutes with P!12 if the preparation se-

'II' 'II' -
quence is 2 ~' T, 2 ~. The result is that only states of opposite 

parity under the spin-flip operator are connected in zero quantum co-

herences. 
'II' 

When the preparation sequence involves other than 2 pulses, 

so that P may be written as a combination of P: and P~ as in Equation 

(3.26), then the spin-flip operator no longer anticommutes with coherence 

preparation and no inversion selection rules for zero quantum transitions 

are imposed. 
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Figure 3.8 shows an expanded trace of the zero quantum region of 

Figure 3.1. Ninety degree pulses were used in preparation and detection 

4> 4> . 
and so they lna.y be written as Prr/ 2 and Qrr/ 2 , respectively. The stick 

spectrum underneath the experimental trace contains line positions of 

all theoretical zero quantum resonances disregarding spin inversion 

symmetry. Markers beneath this stick spectrum show lines which should 

not appear by the spin inversion selection.rule stated above. Although 

not all allowed transitions are resolved, most are observed to some 

intensitywhile the forbidden transitions are indeed missing. 

Zero quantum transitions are unaffected by field inhomogeneity [63]. 

If the multiple quantum experiment is performed in strong field gradients 

and with norr. pulses, then only zero quantum resonances will be narrow 

enough to be observed. This provides a convenient method for zero 

quantum selection. Selecting zero quantum transitions in this manner 

TT rr- rr 
and using the sequence 2 4>, -r, 4 4>, t 1 , 4 4>, T; sample, the spectrum of 

Tr 
Figure 3.9 is obtained. The use of 4 pulses has resulted in the appear-

ance of almost all zero quantum lines. Although exact intensities are 

not shown in Figure 3.9, the missing B1 transitions are normally only 

weakly allowed [71]. 

3.3 Even/Odd Quanttun Experiments; Benzene 

What follows are experimental examples demonstrating several out-

comes of the theory in Section 3.2. Most of these experiments include 

rr pulses at T/2 in the preparation and at (t2 = T')/2 in detection periods 

to eliminate the effects of field inhomogeneities and to ensure the on-

resonance condition. Linewidths are only a few hertz because of an 

additional echo rr pulse in the evolution period. Transitions are separ-

ated according to order ~M by using the TPPI technique. The TPPI phase 
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Benzene Zero Quantum Spectrum 

Preparation: 

Detection: 

IIIII I I I IIIII I II 
I I I I I I 

XBL 818-1770 

Figure 3.8 

Benzene zero quantum spectrum. This is an expanded trace of the 

zero quantum region of Figure 3.1. The preparation and detection 

pulses are all w/2 pulses. In this case, spin inversion anti-commutes 

with P and Q and only transitions between states of opposite parity 

are allowed. Transitions forbidden by inversion symmetry and their 

representations are indicated beneath the theoretical stick spectrum. 
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Benzene Zero Quantum Spectrum 

Preparation: 

Detection: 

IIIII II I IIIII I r 1 
XBL 818-1769 

Figure 3.9 

Benzene zero quantum spectrum. This spectrum was obtained using 

the sequence rr/2"', T, rr/4~, t 1 , rr/4"', T. Spin inversion selection rules 

do not forbid any M .. 0 transitions with this sequence. Missing transi

tions are of B1 symmetry which are only weakly allowed. Only zero quantum 

transitions are observed in a field which was purposely made inhomogeneous. 
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shift used was 29.5°. This places the six quantum spectrum just below 

the Nyquist frequency. All spectra were taken from a single sample of 

""'30%_ (by mole) benzene in Eastman liquid crystal 1115320. The solution 

was nematic at room temperature. Sample environment in the probe was 

temperature regulated to within ~.l°C (see Chapter 5 for a description 

of the probe). Generally, 8K words in the Fourier transform are suffi-

cient to resolve most peaks,although, at the sampling rates used, the 

multiple quantum interferogram does not completely decay. Only one half 

of the frequency spectrum, which displays reflection symmetry about the 

DC component, is shown in each of the figures. The two halves of each 

spectrum were co-added in a manner which enhances the symmetry about the 

center of each order and improves signal-to-noise slightly. All spectra 

are mag-Aitude plots. By Equation (3.20), the TPPI phase, cj>{t
1
), can be 

removed from~ and g. The equations below are written with cj>(t1 ) = 0 

as though the preparation phase is coincident witn the rotating frame y 

axis as in Figure 3.4a. This causes no loss of generality in the analysis. 

3.3.1 Pure Even Quantum Spectrum 

Figure 3.10 shows a benzene spectrum containing only the even quantum 

orders. The sequence of Figure 3.4b was used with the addition of rr 

pulses midway in the preparation and detection periods. The signal 

S(T;t
1
,t

2
) was polarized into one channel of the spectrometer quadruature 

(phase sensitive) detector. Observation in the other channel corresponds 

to the detection matrix ~ and a signal « to 
1T 

<I >(w) + 

2 

(3. 32) 
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0 

Figure 3.10 

Partially Oriented Benzene 

Even Quantum Spectrum 

2~W 4~W 6~W 

XBL 818-1768 

Benzene even quantum experiment. The pulse sequence used prepares 

only even quantum coherences. This is demonstrated by a complete lack 

of one, three, or five quantum lines. Orders are separated by the TPPI 

technique. The signal was polarized to one channel of the phase 

sensitive detector. 
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The odd quantum detection qY does not connect states prep~red by Pz 
TI TI 

which is even quantum. 2 2 

3.3.2 Pure Odd Quantum Spectrum 

The benzene spectrum shown in Figure 3.11 demonstrates that, in 

analogy to a pure even quantum experiment, it is possible to detect only 

odd quantum orders. This is accomplished with the sequence (omitting 

TI . TI TI TI 
pulses for clarity) 2 4>, T, 2 (4> +2), t 1 , 2 y, t 2 ; sample, where 4> is 

the TPPI phase. As usual, t 2 = T' = T in this experiment. The prepara

tion and detection matrices are then pY and qY for observation of signal 
1T TI 

~ <I >. As with the pure even quantum2experiffient, the signal can be 
y 

entirely polarized in one spectrometer channel. The signal ~<I > is 
X 

then (with the TPPI <t>(t1 ) = 0) 

<I > (w) 
X 

and will be zero in analogy with the arguments for Equation (3.32). 

3.3.3 Breaking Even/Odd Symmetry 

(3. 33) 

It is quite often the case that both even and odd high order mul-

tiple quantum spectra are desired for spectral analysis. It then becomes 

necessary to remove the even or odd quantum nature of preparation and 

detection matrices to avoid repeating the experiment to get all orders. 

This may be accomplished in a number of ways. 

A resonance offset is one approach which, from Equation (3.29), 

mixes even and odd quantum preparation (and detection) operators. Using 

1T 
the sequence 2 y, 

becomes (dropping 

TI - TI 
T, 2 y, tl' 2 y, t2 = T; 

TI 
the subscript 2 on P and 

sample, the complex signal 

Q terms) 
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l~W 

Figure 3.11 

Partially Oriented Benzene 
Odd Quantum Spectrum 

3~W 5~W 

XBL 818-1767 

Benzene odd quantum experiment. The pulse sequence used prepared 

only odd quantum coherences. There is no intensity from zero, two, 

four, or six quantum transitions. The signal was polarized to one 

channel of the spectrometer detector and TPPI was used to separate orders. 
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<I >(w) ~ <I >(w) + i <I >(w) 
X X y 

+ i[cos 2t.wTP;kQ~j - sin2t.wTP~kQ~j + cost.wTsint.wT(P;kQ~j - P~kQ~j)]} 
(3.34) 

The zy and yz cross terms have been included in Equation (3.34) for 

completeness but do not contribute to the signal. Thus, both channels 

contain signal from even and odd quantum coherences. For any arbitrary 

value of t.wT, the signal energy, «j<I+>j 2 , will not necessarily be the 

same as pure even or odd quantum experiments yield but, when "ensemble" 

averaged over T this energy partitions equally among even and odd orders, 

with the total the same as either of the pure coherence experiments. 

This method of removing even quantum selection was used to produce the 

spectrum of Figure 3.1. 

Making use of Equation (3.26)we can also produce a spectrum with all 

orders by setting the second pulse in a standard preparation sequence to 

1T a 4 pulse. The TPPI sequence is then (again, leaving out the 1T pulses 

1T 1T - 1T 
which keep t.w = 0) 2 ~' T, 4 ~' t 1/2, 1T, t 1 /2, 4 y, T; sample. Now 

detection of signal from all coherences is possible. Once again, the T 

dependence of intensities is different than the pure even or odd quantum 

experiments. An average of experiments for a sufficient range of values 

for T will exhibit the total signal distributed among all orders. 

We can combine two of the experiments above to both create all orders 

and simultaneously selectively polarize the signal into the quadrature 

channels. 1T 1T -
This is accomplished with the TPPI sequence 2 ~' T, 4 ~' t 1/2, 

1T 
1T, t 1/2, 2 y, T; sample, with t.w-= 0. (In practice, 1T pulses are once 

again inserted in preparation and detection to ensure that t.w = 0). Now~ 
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the two components of the complex signal become (with ~(t1 ) = 0 as usual) 

<I > 
X 

..!_ \' Z X Z = r.: L (P + P ).k(Q )k.o(w-wk.) 
v2 J.k 1T 1T J 1T J J 

4 4 2 

<I>=..!_ L (Pz +Px)jk(QY)k.o(w-wk.) 
y 12 J.k 1T 1T . 1T J J 

4 4 2 

(3.35a) 

(3.35b) 

The preparation sequence, as before, produces all orders of coherence. 

If all chemical shifts are equal, the detection matrices for <I > and 
X 

<I > are solely even and odd quantum, respectively. Thus, the even 
y 

quantum coherences will only be detectable·in one channel and the odd 

quantum in the other, if the spectrometer reference phase is properly 

adjusted. In a spectrum averaged over values of T, the intensity will 

once again be evenly distributed among even and odd channels,with the 

total the same as a pure even or odd quantum experiment. 

Figure 3.12 shows the spectra that are obtait1.ed when the two channels 

of the above experiment are separately Fourier transformed. The spec-

trometer reference delay was carefully adjusted so that the two components 

of signal in Equation (3.35) correspond to the quadrature detection chan-

nels. The transform of one channel gives a spectrum with only even orders 

while the spectrum from the other channel exhibits only odd. This experi-

ment combined even/odd selectivity with phase Fourier transform tech-

niques. Two multiple quantum free induction decays with preparation 

1T 1T- 1T- 1T 
sequences 2 ~' T, 4 ~ and 2 ~' T, 4 ~were acquired. The channels con-

taining even orders were added and those containing odd were subtracted. 

In this way, small amounts of bleed-through signals were removed. The 

multiple quantum sampling rate (~t1 ) has been increased by about a factor 

of two without interference between orders. 
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a) 

b) 

.11..1 .I 

0 

Figure 3.12 

Benzene Non- selective Multiple Quantum 

with 

Phase Sensitive Separation of Coherences 

Odd Quantum 

Sy CX<Iy> 

Even Quantum 

I J. .I l l 

XBL 818-1771 

Benzene non-selective multiple quantum NMR spectra. This experiment 

combines the theoretical results leading to the spectra of Figures 3.10 

and 3 .11. All orders of coherence are prepared but odd orders are de

tected.out of phase by 90° with respect to even orders. Fourier trans

formation of the y channel signal, S , leads to the odd quantum spectrum 
y 

of a) while the even quantum orders are obtained from S in b). 
X 
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3.4 The Effect of Chemical Shifts 

Up till now, we have ignored the chemical shift Hamiltonian in our 

analysis of the multiple quantum density matrix. This proves adequate 

when considering molecules such as benzene in which all chemical shifts 

are equal. In this case, we can take the chemical shifts as zero by 

redefining the rotating frame frequency w. Most molecules of interest 

will not have chemically equivalent spins and so for the density analysis 

matrix to be useful we must consider the effect of H cs 

When coupled nuclei are chemically inequivalent, two effects will 

arise in a multiple quantum experiment. First, the preparation and de-

tection matrices are different from the examples we have considered in 

the previous sections. The pure even or odd quantum preparation matrix 

is a consequence of the bilinear Hamiltonian HJ + l1l when offset and 

chemical shift terms are absent. H can be included in a straightcs 

forward manner in the expressions for P and .Q [33f. The result is that 
~ ,.... 

even and odd coherences appear in the same preparation matrix. Thus 

chemical shifts remove selectivity of even or odd quantum orders in a 

manner similar to a resonance offset (the latter, however, is under con-

trol of the experimenter). As previously mentioned, if chemical shifts 

are small compared to the couplings then a preparation matrix may still 

contain predominantly even or odd quantum coherences. 

As a second effect, the chemical shifts will cause multiple quantum 

coherences to evolve with relative frequency offsets during t 1 • In 

principle, this evolution could remain unperturbed by r.f. pulses and 

chemical shifts measured in the final spectrum. A problem arises when 

TPPI is used to retain homogeneously broadened lines while removing in-

homogeneous broadening with the formation of a spin echo. A ~ pulse 
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centered in the evolution period (Fig. 3.4c) is used to create the echo 

by refocusing linear terms in the Hamlitonian which commute with HJ and 

11>· This pulse will also cause a transfer of coherence between multiple 

quantum transitions which produces additional lines in the final spectrum. 

The problem here is very similar to the measurement of relaxation para-

meters -in strongly coupled isotropic systems [74]. The origin of addi-

tional lines and an estimation of their affect on spectral analysis is 

the subject of the remainder of this section. 

Before going on to a determination of the signal when H is present, 
cs 

we first review a simple AB spin-!~ system as an example [77]. Normally, 

when chemical shifts are absent, the composite two-spin states may be 

classified as three triplets and one singlet under spin exchange. There 

are four allowed transitions among the triplet states all of which are 

degenerate ~Jhen H = HJ and 0 AB, the dipolar coupling, is zero. lfuen the 

Hamiltonian instead contains ~ and JAB = 0, two ~generate transitions 

produce one line at +(3/4)0 and the other two appear at ...:(3/4)0. When a 

chemical shift is introduced, the M = 0 triplet and singlet states are 

mixed in the actual eigenstates. This partially removes the transition 

degeneracy to produce new lines in the spectrum. Whenever the coupling 

(J or D) is small compared to the shift difference o = ~(a A- a B) the 

Hamiltonian terms HJ and 11> ~an be truncated to that portion which com

mutes with H and the spectrum is termed first order [79]. Figure 3.13 
cs 

shows theoretical AB spectra when the total Hamiltonian is H + HJ or cs 

H + EL and for varying ratios of the bilinear coupling to chemical cs --u 
shift difference. The left hand stick spectrum in part b represents the 

familiar isotropic first order spectrum in which J << 2o. In an anise-

tropically ordered sample such as a liquid crystal, the dipolar coupling 

0 is usually much larger than 2o. This situation is depicted on the 
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ISOTROPIC ANISOTROPIC 

(a) 

J =0 0=0 

I I I I 
J << 28 O<< 28 

(C) , r-J~ 
J-28 0-28 

(d) 

I 

J »28 0>>28 

(e) 

8=0 

XBL8110·6660 

Figure 3.13 

Theoretical stick spectra fer an AB twe spin-1/2 system. The case 

of an isotropic sample is shown at the left (DAB= 0). The anisotropic 

case is on the right where, for convenience, TAB•O. Individual spectra 

in parts a through e are for varying ratios of the relevant coupling to 

t5 = l/2(aA- aB). The usual (first order) isotropic case is shown in b. 

The usual anisotropic spectrum is shown in d. 
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right hand side of part e. For purely structural analysis, we may wish 

to ignore or remove the chemical shift and reduce the number of para-

·. mete~s required to fit the spectrum. When chemical shifts differences 

are small compared to Dij 's, we will see below that a single ~ pulse 

removes H from single quantum and multiple quantum coherence evolution, cs 

to first order. Small additional lines appear in single quantum or 

multiple quantum spin echo spectra due to coherence transfers caused by 

the ~ pulse. It is our aim in this section to describe this phenomenon 

and estimate the magnitude of line shifts and intensities for simple 

spin systems. Analogies may then be drawn for more complicated systems. 

We approach this problem by considering a simple two dimensional FT 

NMR experiment shown in Figure 3.14. This sequence is familiar in two 

dimensional spin echo spectroscopy [75] and is equivalent to that used 

to obtain the middle spectrum of Figure 2.1. The time domain is separa-

ted into two sections: t 1 is the usual evolution period after the 

density matrix is prepared by the first ~/2 pulse and t 2 here corresponds 

to t 2 ' in Figure 3.3c. We wish to calculate the effect of the~ pulse 

at t 1/2 when chemical shifts are present. The general two dimensional 

signal is then given by (assuming a y rr/2 pulse and x ~ pulse) 

where the propagator for a rr x pulse is given by [75] 

II = exp(+irri ) 
X 

N 
= (2i)N II (I )k. 

k=l X 

(3.36) 

(3.37a) 

(3.37b) 

90 



91 

TT/2 .,. 
I 
I 

u, H2 
I u3 I 
I 
I 
I 

j.---t,/2 ·I~ t,l 2 ·I'C t2 .. 
XBL 8110-6662 

Figure 3.14 

Pulse sequence used for two dimensional spin echo spectroscopy. 

The evolution period, t 1 , contains a 1r pulse in its center. Hamiltonians 

in the three periods are denoted H1 , H2, and H3• In a strongly coupled 

system of chemically inequivalent spins, the 1r pulse will cause addi

tional lines to appear in the w1 spectrum from coherence transfers. 



Equation (3.37b) is obtained from an expansion of the exponent in Equation 

(3.37a) and using Ix = E(I)k where (Ix)k is an operator for a single 

nucleus [75]. ~ve have assumed that the 1T pulse non-selectively excites 

all N nuclei. 

For our purposes it is sufficient to consider only the case when all 

three Hamiltonians are equal: H1 = H2 = H3 = H. l.fuen H contains only 

the Zeeman offset and bilinear terms, 

("3. 38) 

we may evaluate Equation (3.36) easily by inserting the identity operator 

appropriately. The result is 

where 

Sx(t1 ,t2) ~ Tr{Ixexp(-iH3 t2 )exp(-~Ht1/2) 

x exp(-iHRt
1

/2)Ixexp(iHRt
1
/2) 

x exp{iHt1/2)exp(iH3t 2)} 

(3.39) 

(3.40) 

(3.41) 

Bilinear terms in H are unaffected by the 1T pulse. Because all terms in 

H are mutually commuting, we find that the offset term is removed from 

the evolution, as expected in light of the discussion on TPPI. 

The difficulties alluded to above arise when a chemical shift 

Hamiltonian is present and the total Hamiltonian is 

(3.42) 
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Hcs does not commute with Bu or HJ when not all cri are equal. l~en the. 

sample is isotropic and J couplings small compared to relative chemical 

shift differences (a first order spectrum), HJ can be truncated to that 

part which commutes with H and a ~ pulse will again remove chemical cs 

·shift evolution from t 1 • Holecules may sometimes contain large J 

couplings and when anisotropically ordered in a liquid crystal, D 

couplings are usually as large as or greater than chemical shift dif-

. ferences. The chemical shift Hamiltonian may be written as two terms 

H 1 L [ (cr. - cr. )(I - I ) + (cr. + cr. ) (I . + I ) ] = 2(N-l) cs i<j -~ J zi zj ~ J z. z. 
~ J 

H 
1 L [(\,(I -I ) + T ij (Iz. + Iz.)] = (N-1) cs i<j J zi zj 

~ J 

where 

As art example, the commutator of H and H_ is evaluated as cs lJ 

(3.34a) 

(3.43b) 

(3.44a) 

(3.44b) 

(3. 45) 

As an approach to evaluating Equation (3.40) when chemical shifts 

are present, one may expand the exponentials containing H with the well-

known Zassenhaus formula [3] 

exp (A+ B) = exp (A)exp(B)exp ( [A,B] /2)exp ( [B, [A,B]] /3) + [A, [A,B]] /6) ... 

(3.46) 

and use perturbation or average hamiltonian theory. However, products 
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. 2 2 
such as o .. D .. , o .. Di., D .. o .. ; ••• , etc. occur and the expansion will 

~J ~J ~J . J ~J ~J 

not converge unless t 1 /2 is small. Hultiple rr pulses in t 1 may be used 

to scale or remove higher order terms in the average hamiltonian. [59] 

As another approach, Equation (3.40) may be evaluated directly in a basis 

set which diagonalizes the Hamiltonian. Evaluating the matrix elements 

directly yields [75] 

(3 .47) 

where 

(3.48) 

and 

=H .. -H .. s 

~~ JJ 

The matrix elements of IT are easily evaluated. In the simple 

product basis set, from Equation (3.37b) 

(IT) . 
mn 

N = i 0 N , 
m(2 -n+ 1) 

(3.49) 

where the usual definition of the Kronecker delta is used: 

o N = 1 for m = · 2N -n + 1 
m(2~-n+l) 

= 0 otherwise. 

In the eigenstate basis set, IT is given by 

(SITts)ij = L st IT s =(iN) L s* s 
mn im mn nj m mi (2N-m+ l)j 

(3.50) 



where S is the eigenvector matrix. Now, S is block diagonalized by total 
~ ~ 

Zeeman quantum number so that t.~R. = ~- MR. = 0 for the element SkR.. We 

may then find the change in M for IT in this basis set as follows. The 

total Zeeman quantum number for state i is given by 

N 
Mi = ki - z (3.51) 

where k. is the number of spins "up" (i.e., number of a.'s). Thus, from 
~ 

Equation (3.50) and t.M . = 
m~ 

but 

so, finally 

t.M N 
(2 -m+ l)j 

= 0, 

MN 
2 -m+l 

k N = N- k n' 
2 -n+ 1 

= 2k - N = i = -2M. 
J 

(3.52) 

for (ll)ij in system basis set. Equation (3.52) will prove useful when 

considering a TPPI multiple quantum experiment. It may be shown [75] 

that the intensity coefficients for the signal, Equation (3.48), obey 

the following index permutation properties. 

(3.53) 

Before going on to the multiple quantum case, we first consideran 

AB spin system as a simple example which illustrates the effect of the n 
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pulse in the two frequency doma~ns. Two dimensional Fourier transforma-

tion of Equation (3.47) gives (neglecting relaxation effects) 

(3.54) 

in which wijkR. = (wij - wkR.) /2. The w2 spectrum will contain the usually 

allowed single quantum spectrum with intensities different from those 

obtained from a single pulse experiment. The spectrum projected along 

the w1 axis will show new lines whose intensity depends on the extent to 

which simple product states are mixed by both the couplings and chemical 

shifts. A. Kumar, et al. have evaluated the intensities and frequencies 

for an AB system with JAB, DAB and oAB all non-zero (76]. The results 

are presented for convenience in Table 3.1. The quantities used in that 

. table are defined as follows. 

oAB = o = .!_ (cr - cr ) - 2 A B 

D = DAB,J =JAB 

[(J- .!_ D)2 
~ 

c = + 4o 2 ] 2 

2o/C,sin2e 1 cos26 = = (J - 2 D)/C. 

It should be noted that DAB here is defined as twice the quantity used 

by Kumar, ~ al. 

The intensities in Table 3.1 will vary depending on the ratio of 

couplings and of each coupling to the chemical shift difference, o. For 

the case we are interested in - liquid crystal systems - D is usually 
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Table 3.1 

Frequencies and Intensities for the 2D Spin Echo Spectrum 
of an AB System 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

w2 
(relative to T)a 

~ (J+D) - ~ D 

. ~ (J+D) - ~ D 

~ (J+D) + ~ C 

- .!. (J+D) + .!. C 
2 2 

- .!. (J+D) + .!. C 
2 2 

- ~ (J+D) - ~ C 

.,. ~. (J+D) - ~ C 

wl 
(relative to 0) 

1 1 - (J+D) -- D 
2 2 

~ (J+D) 

. ~ (J+D) + ~ C 

~ (J+D) 

- ~ (J+D) + ~ D 

1 - 2 (J+D) 

- ~ (J+D) - ~ D 

1 -- (J+D) 2 

Intensity 

(l+sin29)sin29 

2 cos 29 

-(l-sin29)sin29 

2 cos 29 

(l+sin29)sin29 

2 cos 29 

-(l-sin29)sin29 

2 cos 29 
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much larger than both J and o. Figure 3.15 shows the w
1 

spectra calcu

lated from Table 3.1 for two extreme cases. The isotropic, first order 

case is characterized by D = 0 and J << 2o and is shown in Figure 3.15a. 

The chemical shift is removed to first order and the major lines repre-

sent the symmetrical J splitting centered about w1 = 0. Figure 3.15b 

gives the expected spectrum for the case when D >> 2o and, for conven-

ience, J has been taken as zero. Again, the chemical shift is removed 

to first order and the major lines appear where they would be expected 

in w2 had o been rigorously zero. These lines are shifted from their 

. 2o2 
position when o = 0 by approx1mately -o- . The additional lines resulting 

1 from coherence transfers induced by the n pulse are found at ~ 2 D and 

are of low intensity when D >> 2o. 1 The small lines at ~ 4 Dare from 

transitions which become allowed when the chemical shift mixes the triplet 

and singlet two-spin wavefunctions. They also appear in w2 centered 

1 
about T = 2 (crA +crB). 

We now turn to the TPPI experiment of Figure 3.4c. We wish to deter-

mine the nature of any new lines which may result from a n pulse when 

the spin system has non-equivalent nuclei. For the experiments in this 

f 
work, only the single point at t

2 
= 0 (T' = T) is collected for each of t 1 

and only a one dimensional transform is calculated. The signal may be 

written in a manner similar to Equation (3.47) and the transform with 

respect to t 1 calculated to give 

(3.55) 

where 

(3.56) 
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(a) 

(b) 

Figure 3.15 

I +- J-8 2 

I . --0 
2 

I --0 4 

I I --J 0 -J 
2 2 

J << 28 

0 

O>> 28 
J=O 

--+ 
w 

+j_J+8 I 
2 

XBLSII0-6663 

Spin echo spectra of an AB spin-1/2 system in the w1 direction 

from the two dimensional sequence of Figure 3.14. The chemical shift 

is removed to first order by the echo so that line positions are approxi

mately those shown. a) The result for a first order isotropic system. 

b) A strongly coupled anisotropic system. TAB has been set to zero 

for convenience. 
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As we have seen in previous sections, the preparation and detection 

matrices may contain all orders of coherence in a non-selective experi-

~ent, he?ce t.Mij' 6~ = +N,+N-l, ••• ,....;N+l,-N. We may use Equation (3.52) 

to show that a ~ x pulse will only transfer coherence between pairs of 

states separated by the same t.M. For Zijk~' 

t.Mij = +n. - ' 
n = N, N-1 , • e • ., e • 

-· 

t.Mjk = 2M., 
J 

hence 

Thus, the ~ pulse will not cause a transfer of coherence between multiple 

quantum orders. The intensity coefficient, Zijkt; is impossible to cal

culate without an exact knowledge of the system Hamiltonian. Even with 

model coupling constants and chemical shifts, Zijk~ may be difficult to 

estimate in a large spin system. A program has been written by J. 

Murdoch [67] capable of simulating the exact T averaged intensities for 

a general system of up to eight spins when a ~ pulse is present during 

the evolution period. MOdel calculations using this program on AB, AB2 

and more complicated spin systems [78] indicate that relative intensities 

follow a pattern similar to the single quantum experiment described in 

this section. Additional lines caused by the ~ pulse are generally small 

when 2~ij << Dij" Those transitions arising from states only weakly 

mixed by the chemical shift are, as expected, only weakly pumped by the 

non-selective two pulse preparation. Absolute intensities, averaged over 
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T, relative to an identical spin system but with chemical shifts zero, 

are somewhat different. 

3.5 Conclusion 

In this chapter we have outlined the theory of the simplest, non.::. 

selective multiple quantum experiments including the time proportional 

phase incrementation technique for retaining homogeneous linewidths 

with complete separation of orders. We have indicated the nature of 

increased resolution in the higher orders and have also argued the 

limitations due to a Gaussian distribution of integrated intensities. 

A brief presentation of the inherent even quantum transition nature 

arising from a bilinear spin pumping operator in multiple quantum pre

paration and detection has also been given. Several methods for 

observing even, odd or all transitions are demonstrated with experi

mental examples in benzene. Finally, the extent uf distortions in the 

spectrum caused by a 1r pulse in the evolution period of a TPPI sequence 

when chemical shift differences are present has been discussed. Selective 

preparation and detection for enhanced signal intensities in high 

quantum spectra have not been discussed. 
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Chapter 4 

Experimental Studies of Molecules with Internal Motion: Biphenyl 

4.1 Introduction 

We have stated several times so far that the aim of acquiring NMR 

spectra of oriented molecules in a liquid crystal phase is to learn 

something about molecular structure, conformational statistics, and 

anisotropic ordering. In Chapter 1 we saw that part of this information 

comes from couplings in the dipolar Hamiltonian. The object is then to 

determine Dij's from frequency measurements taken from the spectrum. If 

the molecule is rigid (or vibrational effects can be accounted for) and 

contains a small number of coupled spins or sufficiently high symmetry, 

this task may be simple. Analytical expressions may exist relating 

transition frequencies to parameters of interest and line assignments 

may possibly be made unambiguously. We have seen, however, that as the 

number of spins is increased, or when the molecule exhibits less simpli

fying symmetry elements, the single quantum spectrum rapidly becomes 

intractable. Each transition frequency is a complicated linear combina

tion of parameters of the Hamiltonian and transition density becomes so 

high that individual lines are no longer resolved. Even if sufficient 

independent and resolved lines exist to determine the problem, the sheer 

number of possible initial line assignments which each produce an 

acceptable fit,may make an analysis difficult. 

The approach of multiple quantum NMR then appears to offer a signif

icant advantage by producing high order subspectra which contain con

siderably fewer transitions then the single quantum spectrum. Often, 

these transition frequencies are simply related to dipolar couplings 
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making the whole process of analysis more straightforward. When there 

are few well resolved transitions, only a few line assignment possi

bilities will need to be considered. 

Once couplings are uniquely determined from either a single quantum 

or multiple quantum spectrum, it remains to interpret these in terms of 

one or several possible molecular models. For dipolar couplings, the 

model must include both the geometric parameters and order parameters. 

If it is assumed that the molecule is completely rigid, then a classical 

model of geometry will allow us to interpret the results in terms of 

bond angles and lengths. Vibrations and perhaps other motions will 

always be present, however, and strictly speaking, must be included in 

our model. We will, in general, distinguish between two types of motion, 

although this does not imply they should always be treated independently. 

The first includes small amplitude vibrations which are usually treated 

as harmonic and cause slight corrections to each rrij" Harmonic vibra

tions are handled through a normal mode analysis which has been·developed 

for the case of anisotropically ordered molecules by Lucas [87]. -The 

theoretical and computational approaches have been reviewed by Sykora, 

~ al. [88]. 

The second type of internal motion which we identify is so-called 

"large amplitude" vibrations or torsions. Examples have already been 

cited and Emsley and Lindon devote an entire chapter to the subject [18]. 

Included in this are free rotor-like motions of a subunit of a large 

molecule, a molecule which jumps or tunnels between conformations, and 

pseudo-rotation such as that occurring in many cyclic compounds. This 

chapter reports results for a simple case of large amplitude internal 

motion which occurs in the biphenyl moiety. The phenyl rings are able to 
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rotate about the axis which contains the C-C iriter-ring linkage. The 

angle between two planes, each of which is defined by the carbon atoms· 

of one ring, is referred to as the dihedral angle and is denoted as ~. 

If the potential contains a minimum, the angle at that minimum is de-

fined as ~ • Biphenyl was chosen because it represents a very simple 
m 

type of motion in a potential which is periodic and one dimensional. 

MOlecules studied in this work which contain the biphenyl unit are shown 

in Figure 4.1. The biphenyls para-substituted (4, 4' locations) with 

halogen or deuterium atoms were studied as solutes dissolved in a liquid 

crystal. The cyano and alkyl chain substituted biphenyl, 4-cyano-4 '-n-

pentyl-d11-biphenyl (5CB-d11) is a pure liquid crystal which was studied 

in its nematic phase. We also present the single quantum deuterium 

spectrum of the alkyl chain of this molecule in the following sections. 

4.1.1 Background: Structural Studies of Biphenyls 

The biphenyl unit is quite prevalent in organic molecules and 

naturally serves as a choice for theoretical and experimental studies. 

Theoretical work has centered on the use of molecular orbital calculations 

to model the internal geometry and potential as a function of dihedral 

angle [80-84]. Early experiments were conducted on X-ray analysis of 

solid biphenyl [86] and electron diffraction measurements in the gas 

phase [85]. Unsubstituted biphenyl is believed to be planar in the solid 

and to occur with a dihedral angle of about 42° in the gas phase. 

Theoretical calculations confirm these measurements and attempt to model 

the potential to rotation of the rings by the inclusion of several con-

tributions. These contributions are either of two types: conjugation 

and non-bonded interactions. Conjugation includes all electronic effects 

which tend to bring the ring planes together and reduce ~. Non-bonded 
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I 
R=R = Cl, Br, 0, H 

I 
R= C5 D11 , R = CN· 

XBL 8110-6661 

Figure 4.1 

MOlecules studied by single and multiple quantum NMR. The 

symmetrically substituted biphenyls (4,4'-dichloro-:,4,4'-dibromo-, 

and 4,4'-d2-biphenyl) and unsubstituted biphenyl were studied as 

salutes in liquid crystal solutions. The alkyl cyanobiphenyl, 

5CB-d11 , is a pure liquid crystal studied in the nematic phase. 
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interactions include steric hindrance, bond deformation, and intermolec-

ular interactions which may raise the total potential at either ~ = 0 

or~= goo. The combination of these two general types of interactions 

make up the total potential which determines the preferred dihedral 

angle ~ • Thus, it is reasonable that biphenyl should be planar in the 
m 

solid where intermolecular interactions dominate, and at some angle :s:90° 

when they are absent, as in the gas phase. The theoretical form of the 

potential varies depending on whether bond deformations,which are a 

function of ~ are allowed [81-83]. 

Although the value of ~ at the potential minimum arrived at by 

several authors closely agree, relative heights of the barrier to rota-

tion at ~ = 0 and ~ = goo vary depending on the calculation approach. 

Dewar, et al. [83] and Fischer-Hjalmars [81] calculate a slightly lower 

barrier for ~ at goo while Casalone; et al. [82], who include bond 

deformation in their model, find that the barrier 'is lower at ~ = 0°. 

The magnitude of both barriers, at~= 0° and goo, generally falls 

between 2 and 5 kcal/mole. 

Since these early investigations, biphenyl has been studied in a 

number of varied forms and conditions. Recent studies include Penning 

ionization from pure biphenyl adsorbed onto a clean metal surface (8g] 

and a wealth of magnetic resonance results (gs-gg] on substituted bi-

phenyls. A brief review of the current magnetic resonance results for 

halogenated biphenyls in liquid crystals is given in the next section. 

4.1.2 Substituted Biphenyls in Liquid Crystals 

The literature contains many examples of molecules dissolved in 

liquid crystals which exhibit a simple 4-fold periodic potential charac-

terized by a single "dihedral" angle. Examples include studies of the 
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bipyridyls and bithiophenes [90-94] and substituted biphenyls [95-99]. 

The bipyridyl ,[93] and bipy:rimidine [94] studies are quite similar to the 

bip~~nyl problem. For 2,2'-bithiophene, one can imagine an internal 

rotational barrier sufficiently large to cause slow interconversion 

between true cis and trans isomers. In the models used to analyze the 

spectra, an attempt is made to deduce population ratios for these two 

isomers [91,92]. The problem is somewhat underdetermined unless enough 

assumptions are made to determine the ratio. 

There have been a number of studies published on biphenyl solutes 

in liquid crystals. These all involve some substitution; pure (c12H10) 

biphenyl spectra have not been published. Substitution patterns are 

almost invariably symmetric with respect to the c2 operation along the 

para axis linking the two phenyl rings. This choice of symmetry is con

venient because, as we shall show; only three of the possible five 

independent order parameters are necessary in the analysis. Further 

symmetry reduces this number to two. 

In all of the biphenyl studies, a value for the dihedral angle is 

found. This result varies depending on the nature of the substitutions 

and method of analysis. For highly substituted molecules, there are not 

enough couplings to simultaneously determine all order parameters, bond 

lengths and angles, and all terms in the inter-ring potential. Thus, it 

is desirable to limit the number of substituents, an approach which, of 

course, increases the number of single quantum transitions. The least 

substituted molecules studied have two para-substituents such as in the 

case of 4,4'-dichlorobiphenyl [96]. This pattern of substitution does 

not reduce the sensitivity in the spectrum to the dihedral angle since a 

coupling involving nuclei in the 4,4' (para) positions will not depend on 

107 



~. Perhaps the most extensive study of the internal rotational degree 

of freedom has been carried out by Field, et al. [97,98]. This group 

has studied the dihedral angle obtained from NMR measurements in liquid 

crystals as a function of substituents which are ortho to the inter-ring 

linkage. Although many assumptions are made, a clear correlation is 

demonstrated between ~ and the van der Waals radii of these substituents 

suggesting that the major contribution in the non-bonded interaction 

portion of the·potential is from steric hindrance. 

The primary example of a biphenyl group studied·in this work is that 

found in 5CB-d11 (see Fig. 4.1), which is a pure nematic liquid crystal. 

The cyanobiphenyls have received considerable attention in a variety of 

studies which are briefly reviewed below. 

4.1.3 Alkylcyanobiphenyls 

The homologous series of 4-cyano-4'-n-alkyl~biphenyls have been 

studied by a number of spectroscopic techniques including X-ray [100], 

deuterium [101-102] and proton [103,104] NMR, infrared [lOS] and," more 

recently, dielectric relaxation [106,107]. This series contains alkyl 

chains ranging from butyl to cetyl and exhibits many of the non-chiral, 

thermotropic mesophases among its members. The shorter length molecules 

(e.g., SCB) exhibit only a nematic phase between crystalline and iso

tropic, while longer chain members of the series can be induced to form 

smectic phases. For practical applications, the alkyl cyanobiphenyls 

have a remarkable stability and high dielectric anisotropy making some 

of them ideal for electric field display devices. 

In large part due to the cyano group, each molecule has a large 

dipole moment. The X-ray studies [100] have indicated an antiparallel 

head-to-tail arrangement in the nematic and isotropic phases of 
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pentylcyanobiphenyl (SCB) and heptylcyanobiphenyl (7CB). In this ar

rangement, molecular dipole moments alternate in direction between 

molecules over a large domain, thus giving the most energetically 

favorable situation. It has been suggested from the results for SCB 

that local end-to-end structure between opposing molecules occurs with 

a spacing of 1.4 times the molecular length [100]. 

Deuterium NMR studies of SCB, 7CB and 8CB have focussed on the 

ordering of the deuterated alkyl chain. Results indicate a variety of 

conformational possibilities exist for the chain. In this Chapter, 

the deuterium spectrum of the chain of 5CB-d
11 

will be compared with 

previous studies. The proton single quantum spectrum of the unsubsti

tuted nematic liquid crystal might be expected to be completely unre~ 

solved because of the large number of spins and high degree of ordering. 

As a result, proton spectra have only been analyzed for SCB [103,104] 

when one section of the molecule is substituted w~th deuterium. An 

analysis of the single quantum, deuterium decoupled proton spectrum of 

4-cyano-4'-pentyl-d
11

-2',3',5',6'-d4-biphenyl [103] yielded a partial 

estimate of the order tensor elements for the aromatic core and the 

structure of the cyano substituted ring. A multiple quantum NMR study 

by Sinton and Pines [104] has yielded a preliminary analysis of the 

biphenyl group structure. The experimental results of the latter work 

and a more· thorough analysis of the spectrum will be presented in this 

chapter. 

To gain an appreciation of the complexity present in the proton spin 

system of 5CB-a11 , consider Figure 4.2. This figure shows the single 

quantum proton spectrum of the liquid crystal in the nematic phase and 

under conditions of moderate field homogeneity. With the degree of 
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C5D11 <t>2 CN 
Single Quantum NMR spectrum 

I· ·I 
5 KHz 

XBL 806-10472 

Figure 4.2 

Single quantumproton spectrum of 5CB-d11 • Double quantum deuterium 

decoupling was used to remove couplings to the alkyl deuterons. The 

separately measured inhomogeneous proton H2o line width was ~.os ppm. 

Temperature of the sample was regulated at 26.0°C. The total width 

shown is 50 kHz. 
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resolution in this spectrum, very little useful structure exists. 

Although a higher resolution experiment, such as a two dimensional spin 

echo experiment, should yield some improvement, the spectrum would 

remain difficult to analyze. Because of slow molecular fluctuations 

and the high degree of ordering in the room temperature nematic phase, 

each transition is fairly broad (~200Hz). Symmetry considerations alone 

predict over 3000 allowed single quantum transitions in a band width of 

-50 kHz. (Of course, the actual number of observable transitions will 

be less due to degeneracies and to low intensity for some.) The single 

quantum spectrum obviously contains many overlapping transitions. 

The proton multiple quantum spectrum of the same liquid crystal is 

shown in Figure 4.3. The reduction in transition density with increasing 

multiple quantum order, as for benzene in Chapter 3, is apparent. All 

orders are present with sufficient signal-to-noise to allow an analysis. 

Each order is contained in a widthabout that of the single quantum spec

trum of Figure 4.2 for a total width shown of 500 kHz. Before going on 

to detail an analysis of this spectrum, in the next section we will 

describe the symmetry properties of a biphenyl group and indicate how 

the high order multiple quantum transitions reflect this symmetry. 

4.2 Biphenyl Symmetry Models 

In determining the point group of para-substituted biphenyl, four 

basic models must be considered. 1) Free rotation of the rings where 

the potential as a function of ~ is a constant. 2) Only one static con

formation with angle ~ between the rings is allowed, or the molecule 

interconverts between conformations with angles ~· This model may be 

considered for the cases when the two rings are either equivalent (iden

tical substituents and geometries) or inequivalent. 3) The rings are 
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C5D11 912CN 

Multiple Quantum NMR Spectrum 

XBL 808·10941 

Figure 4.3 

Pro.ton multiple quantum NMR spectrum of 5CB-d11 • The 

multiple quantum subspectra are separated according to the order 

of the transitions. The change in magnetic quantum number, AM, 

is indicated beneath the subspectra. Only one half of the sym

metric zero and eight quantum regions are shown. The full width 

shown in 500 kHz. No deuterium decoupling irradiation was used. 
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entirely equivalent and the molecule interconverts between the four 

equally probable conformations at dihedral angles :tcf> and 'IT ± cj> (see Fig. 

4.4). 4) The rings are inequivalent but the four conformations of case 

3) are present. Each of these models may be modified in the manner in 

which dipolar couplings are averaged over internal motions. Harmonic 

vibrational corrections may be added by a normal mode analysis and 

couplings may also be averaged over the torsional motion about cj>. 

The first model - that of free rotation - is generally ruled out by 

experimental results. The permutation group of the proton spins for a 

single conformation of a para~substituted biphenyl with equivalent rings 

is isomorphous with o
2

• Free rotation effectively increases the sym

metry to o2h. The resulting reduction in allowed transitions is not 

commensurate with experimental results [94]. This appears reasonable 

since a finite barrier is predicted by theory. This barrier, however, is 

not expected to be large enough as cj> goes through·90° to prevent inter

conversion to the other two symmetry related conformations. All four 

conformations are depicted in Figure 4.4. If the biphenyl group changes 

between these four conformations fast compared to the inverse of the 

couplings which are a function of cj> -a reasonable assumption again con

sidering the magnitude of the barriers - then this motion will effective

ly create two new reflection planes. In all examples found in the liter

ature to date, only models which include an average of all four symmetry 

related conformations of Figure 4.4 adequately fit the oriented NMR data. 

Thus, we will focus on models 3) and 4) above. The difference between 

these concerns whether the phenyl rings are equivalent or not. If they 

are, implying that the para-substituents are either the same or do not 

perturb ring structure or motion differently, then there must exist a 

113 



Equivalent Conformations of Biphenyl 

(c) ' 7T +4> 
I 

Figure 4.4 

(b) 

(d) 
\ 

rr- cp 
I 

XBL8110-6677 

Four equivalent conformations of biphenyl for dihedral angles 

~ and w ± ~. The molecule is assumed to change between these 

conformations at a rate which is fast compared to the inverse of 

couplings which are a function of ~. This motion creates two 

effective mirror planes perpendicular to the page and containing the 

dotted lines. 
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symmetry element which exchanges them. Otherwise there will be fewer 

irreducible representations in the molecular point group. 

These two possible symmetries are shown in Figure 4.5 along with 

the numbering of protons which will be adopted for the rest of this 

chapter and coordinate systems chosen for calculating the Oij 's. The 

higher symmetry case, in which para-substituents are the same (X) and 

the rings are equivalent,is shownon the left. When the rings are in-

equivalent as in the case of different substituents (X,Y), the right 

hand side of Figure 4.5 is applicable. 

4.2.1 Equivalent Rings: o
4 

Point Group 

When determining the point group applicable .to a spin Hamiltonian, 

it is the permutation symmetry of nuclear spins which defines the group 

symmetry elements [34]. The permutation symmetry group of a symmetrically 

para-substituted biphenyl (exchanging .between the four conformations of 

Figure 4.4) is isomorphous with the o4 point group. The character table 

for this group, along with a definition of the symmetry elements is given 

in Table 4.1. Each ring has an effective c2 axis of its own (flip ring 

about molecular long axis without flipping other ring) due to equal con

formational probabilities. These are denoted C~ and C~ in Table 4.1. 

In addition, both rings may simultaneously flip - a c2 operation for the 

whole molecule, ~· For the space coordinates, there are two c2 axes 

perpendicular to the axis containing the inter-ring linkage. These 

operations combined with the ring c2 elements result in spin symmetry 

elements denoted as R. This element means effectively "exchange the 

rings". A B A 
Two elements in one class, R2 and R2 , refer to operation by c2 

or C~ before the exchange, respectively. The other class (R~B, R) is 

simply an exchange of rings. 
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Ring B 
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Figure 4.5 
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X 
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5 

Biphenyl Symmetry 

02 
Coord. System 2 

4 

-z 

3 2 

7 6 

8 5 

Rino B 

Ring A 

Rino A 

XBL 817-10851 

Two possible symmetries for a para-substituted biphenyl. On the 

left, the para-substituents are equivalent (X) and the effective average 

permutation symmetry for the numbered protons is D4• With different 

substituents (X andY), the point group is n2• Coordinate system #1 for 

n4 lies between the rings with x and y axes bisecting the inter-ring 

angles. Coordinate system #2 for n2 lies in ring B with the x axis in 

the ring plane for all ~. The projections defining the direction of 

positive ~ are seen looking down the z axis onto the xy plane. 
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Table 4.1 

n4 Point Group Character Table for Symmetry Elements of Symmetrically 
Para-substituted Biphenyl 

2 I " a) E 2c4 c2.= c4 2c2 2c2 

b) E A B ~B (R,R~B) (~,C~) (R2,R2) 2 

c) (12345678) (56784321) (43218765) (56781234) (43215678) 
(87651234) (87654321) (12348765) 

A 
1 1 1 1 1 1 

A2 1 1 1 -1 -1 

Bl 1 -1 1 1 -1 

B2 1 -1 1 -1 1 

E 2 0 -2 0. 0 

a) . . n4 symmetry elements for space variables for an object of this 
po~nt group. 

b)D4 permutation elements for symmetric para-substituted biphenyl 
(see text). 

c)Permutation elements according to n~mbering of Figure 4.5. 
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The resultirtg energy level diagram for n
4 

symmetry is shown in 

Figure 4.6. From this, the predicted number of transitions for each 

multiple quantum order is given in Table 4.2. These predictions take 

into account the double degeneracy of the E symmetry transitions but not 

of other possible degeneracies for the lower orders. It has been shown 

that the number of symmetry allowed transitions in the high order spectra 

may be predicted without a complete reduction of the entire Hamiltonian 

[33]. Since the Hamiltonian matrix only has nonzero elements Hik for 

6Mik = 0 (i.e., it is block diagonal by Zeeman quantum number), we only 

have to consider blocks for the highest value of M when predicting the 

high order transitions. In particular, the N-1 transitions only connect 

totally symmetric (i\) states. A familiar property of this representa

tion is that the "symmetrized" basis states (linear combinations of 

product states) are invariant to all group symmetry operations. We can 

N write down the ~· symmetrized states for the M = i(2- 1) manifold easily 

by noting that they must be linear combinations of those simple product 

states which convert into one another under group operations. The 

M = ±<~-1) simple product states are those for. which all but one of the 

spins are in a single orientation (a or 6 for spins-1/2). By identifying 

the number of these states which are not related by any of the symmetry 

N 
operations, we can determine dimensions of the ~, M = ±<2- 1) manifolds. 

Returning to the specific example of a n4 symmetry biphenyl group, 

we see that.there are only two proton sites, those ortho and meta to 

the substituents, which cannot be exchanged by any of the operations in 

the character table (Table 4.1). We immediately predict that there will 

be only four symmetry allowed transitions in the seven quantum spectrum, 

consisting of two doublets. If we ignore chemical shifts (they are 
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Symmetrically Para-substituted Biphenyl 

04 Point Group Energy Level Diagram 

M A1 A2 81 82 E 
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-3 

-2 

-1 

0 
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2 

3 

4 

2 2 2X2 

7 1 3 5 2X6 

10 4 4 10 2X14 

15 5 7 1 1 2X16 

10 4 4 10 2X14 . 

7 1 3 5 2X6 

2 2 2X2 

1 

XBL 8110-7191 

Figure 4.6 

Spin energy level diagram for a symmetrically para-substituted 

biphenyl (D4 symmetry). The six irreducible representations are 

given at the top. The E representation is doubly degenerate. 

Values for the total magnetic quantum number, M, are shown along 

the left hand side. Numbers inside the table are dimensions of 

Zeeman submatrices occurring in each representation. 
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Table 4.2 

Predicted Number of Transitions in the Multiple Quantum Spectrum of a 
Symmetrically Para-substituted Biphenyl 

n-Quantum Order II Transitions a 

8 1 

7 4 

6 14 

4 

4 

2 X 4 

21 total unique 
transitions 

5 68 

20 

2 X 24 

92 total unique 
transitions 

4 286 total 

3 628 total 

2 1142 total 

1 1580 total 

Symmetry 

Al 

Al ( 2 doublets) 

~ ( 7 doublets) 

Al (triplet) 

B2 (triplet) 

E (triplet) 

A
1 

(34 doublets) 

B2 (10 doublets) 

E (12 doublets) 

a For 8, 7, 6, 5 quantum a breakdown by symmetry is given and 
only the number of unique transitions given in totals (ignoring acci
dental degeneracies). The double degeneracy of the E representation 
is not counted in any of the totals. 
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removed by a TPPI 1T pulse) then each doublet will appear centered about 

7~w in a non-selective spectrum of all orders. We may also write down 

the M = !3 ~ symmetrized states. They are schematically represented in 

Figure 4.7. One consists of a combination of simple product states with 

the unique spin ortho to substituents and the other contains the meta 

unique spin. 

One can proceed in this manner for the N-2 quantum spectrum by 

identifying unique combinations of two "labeled" spins •. Now representa

tions other than A1 must be considered. Counting schemes have been pro

posed [33] which unify this approach and are applicable to a variety of 

cases when molecules exhibit internal motion. For the lower order 

spectra, Hamiltonian submatrix dimensions are large and this approach 

becomes difficult. However, a rigorous group theory application will 

allow transition number predictions to be made. 

4.2.2 Inequivalent Rings: n2 Point Group 

The character table defining symmetry elements for the case when 

the biphenyl rings are inequivalent (right side of Fig. 4.5) is given in 

Table 4.3. The permutation elements are similar to the n4 case except 

for the lack of a ring exchange (R) operation. The resulting energy 

level diagram is shown in Figure 4.8. Numbers of transitions may be 

predicted in the manner of the last section with the results given in 

Table 4.4. There are now four unique proton sites and twice as many 

high order transitions compared with the n
4 

symmetry model. 

From this analysis, the symmetry of the molecule should be evident 

from the seven and six quantum spectra. If we see more than two doublets 

in the seven quantum spectrum, we know immediately that the rings cannot 

be equivalent. If more than four doublets should appear then some 
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Symmetrically Para-substituted Biphenyl 

M = ± 3 Symmetrized A 1 States 

X X 

(a) + + + 

X X X 

X X X 

(b) + +· + 

X X 

X 

X8L8110-6678 

Figure 4.7 

Schematic representation of symmetrized M = ~3 ~· states for a 

biphenyl having D4 symmetry. The proton spin labeled with a dot is 

in a quantum state (a or S) opposite to that of the other seven 

spins. Each symmetrized state a) and b) is a linear combination of 

simple product states for the proton spins. These two symmetrized 

states make up a 2 x 2 matrix which must be diagonalized to yield 

true eigenstates of the Hamiltonian. 
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Table 4.3 

D2 Point Group Character Table for Symmetry Elements of 
Asymnietrically Para-Substituted Biphenyl 

a) E cz 
2 

cy 
2 

ex 
2 

b) E CAB 
2 

CA 
2 

CB 
2 

c) (12345678) (43218765) (43215678) (12348765) 

Al 1 1 1 1 

Bl 1 1 -1 -1 

B2 1 -1 1 -1 

B3 1 -1 -1 1 

a) o2 symmetry elements for space variables of an object 
of this point group. 

b) o2 permutation elements for asymmetrically para~ 
substituted biphenyl. 

c) Permutation elements according.to numbering of 
Figure 4.5. 
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Asymmetrically Para-substituted Biphenyl 

D Point Group Energy Level Diagram 
2 . 

M 

-4 1 

-3 4 2 2 

-2 12 4 6 6 

-1 20 8 14 14 

0 26 12 16 16 

1 20 8 14 14 

2 12 4 6 6 

3 4 2 2 

4 1 
XBL 8110-7192 

Figure 4.8 

Spin energy level diagram for an asymmetrically para-sub

stituted biphenyl (D2 symmetry). The four irreducible represen

tations are shown along the top and values of the total magnetic 

quantum number are given on the left hand side. Numbers within 

the table are submatrix dimensions for each representation and 

different values of M. 
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Table 4.4 

Predicted Number of Transitions fn the Multiple Quantum Spectrum of an 
Asymmetrically Para-substituted Biphenyl 

rt Quantum Order II Transitions a Symmetry 

8 1 Al 

7 8 Al ( 4 doublets) 

6 24 Al (12 doublets) 

24 Al ( 6 triplets) 

4 B 2 (triplet) 

4 B3 (triplet) 

41 total unique 
transitions 

5 136 Al (68 doublets) 

24 B2 (12 doublets) 

24 B3 (12 doublets) 

184 total unique 
transitions 

4 556 total 

3 1256 total 

2 2256 total 

1 3160 total 

a For 8, 7, 6, 5 quantum, a breakdown by symmetry is shown 
and only the number of unique transitions given in totals 
(ignoring accidental degeneracies). 
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assumption, e.g., about the phase or purity of the liquid crystal, must 

be invalid. Without exact knowledge of the couplings, we cannot pre-

diet where all of the additional lines from a symmetry lower than n4 

should appear. However, if the rings are only slightly different, then 

E symmetry lines of the D4 point group are expected to split into two 

closely spaced lines. Roughly speaking, this is a reflection of the 

doubly degenerate E representation of the n4. point group "splitting" into 

the B2 and B3 representations of n2 • In a similar sense, the~ repre

sentation of n2 can be viewed as a combination of the states in ~ and 

B2 of n4 • The states of A2 and B1 in the n4 group condense to form B1 

of. n2 • Unlike the E representation however, this situation cannot neces

sarily be expected to produce a simple splitting of n4 lines. Thus, if 

the distortions breaking the symmetry are only slight, we can expect a 

number of overlapping, unresolved transitions due to near degeneracies 

and perhaps a few additional resolved lines. 

4.2.3 Order Parameters 

We determine the number of order parameters necessary to describe a 

spectrum by considering effects of molecular symmetry on the definitions 

in Equation (2.32). We find it convenient to use Equation (2.33) for 

the dipolar couplings requiring the Saupe cartesian order parameters. 

We demonstrated in Chapter 2 that, in general, we require five order 

parameters for each allowed conformation of molecules oriented in a uni-

axial phase. ·The c
2 

operation about the long axis of the biphenyl group 

implies-that the orientational distribution function describing a trans-

formation from a molecule fixed axis system to director frame must also 

have c2 symmetry about this axis. We chose the z molecular axis to be 

along this c2 axis for both n2 and n4 cases and find that S and S xz yz 

must be zero. 
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At this point the two symmetry cases differ. The additional ring 

exchange symmetryof the n4 model implies that there should only be two 

independent order parameters. Thus, we should be able to easily find the 

molecular fixed axis system in which the order tensor is diagonal. Such 

an axis set is conveniently chosen with its origin along the c~c inter-

ring bridge as depicted on the left hand side of Figure 4.5. The x axis 

then bisects the dihedral angle for·all values of !jl. They axis is then 

perpendicular to the effective reflection plane containing z and caused 

by the rapid interconversion between conformations. We will refer to 

this set of axes as coordinate system #1 here and in the Appendix. The 

independent order parameters are then the diagonal elements S and 
zz 

(S -S ). Because these are insensitive to the conformational state of 
. XX yy 

the molecule, a single order tensor suffices to calculate Dij 's and an 

average over the four conformations implies averaging just the geometric 

quantities according to Equation (2.36). 

The less symmetric -D2 case requires one independent off-diagonal 

element in S. We define the molecular fixed axis system for this case 
:::::1 

to have its origin in one of the rings (see Fig. 4.5). The x axis lies 

in the plane of this ring and the y axis is perpendicular to it. The 

non-zero order parameters in this axis system - coordinate system #2 are 

then S , (S - S ) and S We see from Equation (2.32c) that the 
ZZ XX yy xy · 

S for different conformations are related by a sign. Thus, 
xy 
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(4 .1) 

Averaged dipolar couplings can then be calculated for this case from 

three independent numbers and a relative sign in the order tensor and 

again we find that biphenyl does not present complications in the 

analysis due to its internal motion as described in Chapter 2. 



4.2.4 Parameters 

Assuming J couplings do not change when a molecule is dissolved in 

liquid crystals, we may use values obtained from isotropic measurements 

when analyzing a spectrum from an oriented phase. This is common prac- ·· 

tice reported in the literature and, with the small values of J .. 
1J 

compared to D .. , seems justified in most cases. Since the spectra are 
1J 

usually obtained by the TPPI technique, we also assume that the chemical 

shifts are removed and set them to zero. We will have to consider the 

extent to which lines are shifted by this technique in the manner des-

cribed in Chapter 3. Fortunately, computer programs have been written 

in this laboratory [67] which allow modeling of spectra when chemical 

shifts are non-zero and so estimates to be made of line shift magnitudes. 

If we assume the biphenyl has n4 symmetry, then there are seven 

unique dipolar couplings to determine from the spectrum. Four of these 

are intra-ring couplings which are the same for ba.th rings. The remain-

ing three are sensitive to the dihedral angle and inter-ring distances. 

Assuming nothing about the structures of the molecule, then there are 

seven molecular parameters which must be determined from these couplings: 
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S (S - S ) zz' xx yy 
(4.2) 

where r 260 is the distance between protons two and six when ~ = 0. 



To determine something about the potential, some of the quantities 

in Equation (4.2) will have to be fixed. In an analysis of a single 

quantum spectrum of 4,4'-dichlorobiphenyl, Niederberger, et al. [96] 

fixed r14 ~ The four intra-ring couplings then determine ring structure 

and order parameters. The remaining three couplings were used to find 

r 260 , ~ and one piece of information about the potential. This analysis 

initially assumed an average only over the four static conformations of 

Figure 4.4. A more sophisticated average over vibrational or torsional 

motions requires further structural and order parameter assumptions. The 

inclusion of an average over the torsional motion in which ~ changes 

cause only a slight improvement in the overall fit for the case of 

4,4'-dichlorobiphenyl [96]. 

When the para-substituents on a biphenyl unit are not .the same, the 

n2 symmetry means there are 12 unique dipolar couplings. The 11 molec

ular parameters to determine from these are 

r12 :/: r56' 

rl4 :/: r58' 

r23 :/: r67' 

r260' 

~; 
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s zz' (S - S ) , s . (4. 3) 
XX yy xy 

All of these, plus something about the potentia~may be determined from 

experimental couplings. Further reasonable assumptions may be made to 

simplify the complexity of the problem. 



Clearly we cannot simultaneously vary all of these parameters to 

obtain a fit without some sort of iterative approach. The details of 

the least squares approach used in this work are found in the Appendix. 

We can, however, vary only one parameter while all others are fixed to 

get some idea of the sensitivity splittings in the spectrum have to 

this parameter. This can be done in a systematic manner to determine 

which lines will direct convergence and to help identify possible line 

assignment difficulties. Program BIPH4PARA (see appendix) was written 

to accomplish this for the six and seven quantum ~ symmetry transitions 

from input parameters of Equation (4.2) and (4.3). When o4 symmetry is 

assumed, a standard set of geometric parameters, based on a phenyl 

skeleton identical to that of benzene and with r 260 = 1.818 A, is used. 
0 

This corresponds to a C-C inter-ring bridge length of 1.50 A, 
0 0 

rCH = 1.082 A, rcc = 1.400 A, and a C-C-H angle of 120°. This standard 

set of parameters is given in Table 4.5. 

Figure 4.9 shows the variation of six quantum A1 symmetry transition 

frequencies with dihedral angle cp. Only one half of the symmetrical 

spectrum which woUld appear at 66w in a non-selective multiple quantum 

experiment is shown. The order parameters found for 5CB-d11 from an 

analysis of the spectrum in Figure 4.2 and assuming o4 symmetry [104] 

were used. This analysis yielded a value for the dihedral angle (see 

below) which is labeled in Figure 4.9. Two features to note in this 

figure are the high sensitivity of some transitions to cp in the region 

of best fit and that some transitions pass through near degeneracy for 

some values of cp. Figure 4.10 shows a similar dependence on cp for two 

members of the four seven-quantum transitions. 
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Table 4.5 

· · · Standard Geometry for D 
4 

Symmetry Biphenyl 

0 

r12 = r34 = r56 = r78 = 2.482 A 

0 

rl4 = r23 = r58 = r67 = 4 .299• A 

0 

r 260 = 1.818 A 
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XBL 8111-12391 

Variation of six quantum .~ symmetry transition frequencies 

for a symmetrically substituted biphenyl with dihedral angle ~. 

One half of the symmetric spectrum calculated from n4 dipolar couplings 

for each of 45 values of ~ from 0 to 88° is shown. The frequency scale 

shown is relative to the center of the six quantum spectrum. Structure 

and order parameters used in the calculation are those in Table 4.5 and 

Szz = 0.568, (Sxx- Syy) = 0.057. 
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Variation of seven quantum transition intensities with ~ from 

0 to 88° for a symmetrically para-substituted biphenyl. Only one 

half of the symmetric spectrum for each value of ~ is shown. 

Structure and order parameters are the same as for Figure 4.9. 
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With the long axis of the molecule chosen as the z axis, one would 

expect S to be the dominant order parameter and transitions to exhibit zz 

a linear dependence on this parameter when all others are held constant. 

This is found for s~x quantum lines as shown in Figure 4.11. Here S zz 

is varied from -0.5 to +0.95. The transition frequency dependence on 

(S - S ) over the same range with S held constant is shown in 
XX yy ZZ 

Figure 4.12. The dependence is weaker as expected. However, all lines 

but one vary in a positive sense with a pair of transitions crossing at 

(S - S ) = +0.15. Clearly, this order parameter may not be neglected 
XX yy 

in any model calculation. Similar trends for the seven quantum lines 

are found. 
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We can also look at the sensitivity of a spectrum to changes in inter-

nuclear distances. Single couplings should be strongly affected due to 

.:..3 
the (r .. ) dependence. However, the high order transition frequencies 

~J 

are actually the results of linear combinations or couplings and so will 

be less sensitive to changes in particular distances. As examples, the 

seven quantum n4 transitions are shown as functions of r 12 , r 260 , and 

r 14 in Figures 4.13, 4.14, and 4.15, respectively. All other parameters 

are fixed as these distances vary. Strong dependences are shown on r 12 

and r 260 but not on r 14 • This last distance affects intra-ring geometry 

significantly but inter-ring parameters only slightly. 

The program is also capable of producing ~ representation transi

tion frequencies for a n2 biphenyl symmetry. The six and seven quantum 

transitions as a function of ~ are shown in Figure 4.16 and 4.17 

respectively. For these plots, the ring B geometry was fixed to the 

benzene parameters of Table 4.5. For the other ring (A), r 23 was set to 
0 0 

4.100 A and r 14 to 4.299 A. The order parameters·were chosen to be 
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Variation of six quantum ~· symmetry transition frequencies 

with the order parameter Szz and assuming o4 symmetry for an eight 

spin-1/2 substituted biphenyl. S ranges from -0.5 to 1.0. Other zz 
parameters are the same as for Figure 4.9 and with 4» = 32°. Only 

one half a spectrum symmetric about the center of the order for 

each value of S is shown. zz 
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XBL 8111-12387 

Variation of six quantum A1 symmetry transition frequencies 

with the order parameter (S - S ) which ranges from -0.5 to 1.0. 
XX yy 

Other parameters are the same as Figure 4.1l,with S = 0.6. Only zz 
one half of the spectrum for each value of (S - S ) is shown. 

XX . yy 
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Variation of seven qUantum transition frequencies of a sym

metrically para-substituted biphenyl with internuclear distance 
0 

r 12 • The range of r 12 is 2.0 to 3.0 A in 

parameters are the same as Figure 4.9 with 

= 0.057 and~= 32°. Only one half of the 

of r 12 is shown. 

0 

steps of 0.025 A. Other 

S = 0. 568, (S - S ) 
ZZ XX yy 

spectrum at each value 
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Variation of seven quantum transition frequencies with r 260 
for a n4 symmetry para-:ubstituted biphenyl; The distance r 260 
ranges from 1.5 to 2.0 A in steps of 0.025 A. Other parameters 

0 

are the same as Figure 4.13 with r 12 = 2.482 A. Only one half of 

the spectrum at each value of r 260 is shown. 
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Figure 4.15 

Variation of seven quantum transition frequencies with inter-
o 

nuclear distance r 14 • This parameter ranges from 4.0 to 5.0 A in 
0 

steps of 0.025 A. Other parameters are the same as for the pre-
o 0 

vious two figures with r 260 = 1.818 A and r 12 = 2.482 A. n4 s~ 

metry for the biphenyl is assumed. Only one half of each spectrum 

is shown. 
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Figure 4.16 

Variation of 

an asymmetrically 

six quantum ~ symmetry transition frequencies of 

para-substituted biphenyl with dihedral angle ' 

The from 0 to 90°. same structural parameters for the n4 symmetry 

calculations of the preceding figures were used with a slight dis-
o 

tortion of r 23 • 4.100 A which changes the symmetry to n2• The 

order parameters were 

s 
xy 

= 0.03. Only one 

set at S zz = 0.6, (S - S ') • 0.03, and 
XX yy 

half of each spectrum is shown. 
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Variation of seven quantum transition frequencies for an 

asyumetrically substituted biphenyl (D2 point group) with dihedral 

angle ~. Other parameters are the same as in Figure 4.16. Only 

one half of the spectrum at each value of ~ is shown. 
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S = 0.6, (S - S ) = 0.03 and S = 0.03 and, as before, r 260 = 
ZZ XX yy xy 

0 

1.818 A. The overall picture is similar to that for the n
4 

case except 

now several sets of transitions collapse to near degeneracy in the six 

quantum spectrum (see Fig. 4.16). This occurs close to a value of ~ 

obtained for 5CB-d
11 

[104] (see below). 

Next, we investigate the behavior of six and seven quantum transi-

tions as molecular synnnetry moves from n2 through n4 and back to n2• If 

one ring is distorted relative to the other and this distortion is changed 

so that the rings eventually become equivalent, we should see the number 

of transitions change. This is shown for one half of the six and seven 

quantum spectra in Figure 4.18 and 4.19, respectively. The distortion 
0 

chosen was in r 23 for ring A. This distance ranges from 4.275 to 4.325 A 
0 

in steps of 0.001 A for the plots of Figures 4.18 and 4.19. The order 

tensor for coordinate system 112 was calculated so that it becomes diagonal 

if transformed to coordinate system #1 (~ = 32°). ·Thus, when r 23 = 
0 

4.300 A, it is equal to r 14 , r
67

, and r 58 , so the synnnetry is n4 • As 

seen in Figures 4.18 and 4.19, line frequencies do not vary much but 

transitions unique to n2 symmetry simply disappear on either side of the 

n4 region. Because there are effectively only two independent order 

parameters used, this particular distortion only mildly perturbs the 

couplings from a n4 symmetry. Ultimate T averages (see Chapt. 3) confirm 

that lines unique to n2 symmetry in Figures 4.18 and 4.19 are of very 

low intensity relative to those in the n4 symmetry region. 

As a final example, we consider a case when there are three truly 

independent order parameters. For this calculation, the rings had equi-
0 

valently distorted geometries with r 14 = r 58 = 4.500 A, r 23 = r 67 = 
0 

4.000 A, ~ = 32° and with the rest of the parameters as in Table 4.5. 
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Figure 4.18 

Variation of six quantum ~ symmetry transition frequencies 

with internuclear distance r2r This parameter ranges from 4.275 
0 0 

to 4.325 A in steps of 0.001 • When r23 = 4.300 A the effective 

symmetry is D4. On either side of this point the effective sym-

me try is D2 as evidenced by the increased ntDDber of transitions. 

Ultimate T averaged intensities for those lines unique to the D2 
symmetry cases are small relative to other lines for this particu-

lar symmetry-changing distortion. 
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Figure 4.19 

Variation of seven quantum transition frequencies with inter-

nuclear distances r23" The range of this parameter is from 4.275 
0 0 

to 4.325 A in steps of 0.001 A. Other parameters are the same as 

in Figure 4.18. There are four pairs of transitions when the 

effective symmetry is n2 and only two pairs when the symmetry is 

D4. Only one half of the spectrum at each value of r 23 is shown. 



Figure 4.20 shows the six quantum transition frequencies as a function 

of S which ranges from -0.20 to +0.20 in steps of 0.01. The variation xy 

of Sxy was designed so that a n4 symmetry became effective where labeled 

in the figure. Now transition frequencies do indeed change significantly 

and some lines merge to a degenerate frequency at the point where o
4 

symmetry is effective. 

We could proceed in this manner to determine the many different 

parameter dependences high order transitions exhibit. We have already 

seen some general trends and discussed symmetry changes above. Small 

symmetry breaking distortions cause some additional lines of low inten-

sity and splittings from near degeneracy at the expected n4 symmetry 

frequencies. This approach of single parameter variation is limited, 

however, and an iterative technique which simultaneously varies several 

parameters is required to fit a spectrum. 

4.3 Results: 4-Cyano-4'-n-pentyl-d11-biphenyl 

The procedure of Gray and Mosley [108] with a slight modification 

reported elsewhere [104] was used to synthesize 5CB-d11 • Transition 

temperatures were measured with a polarizing microscope and found to be 

TC-N = 23°C and TN-I= 31°C. Isotopic purity was estimated at 98%. A 

sample of about 400 mg was sealed under vacuum in a 6 mm o.d. glass tube. 

A double tuned NMR probe was used for double resonance experiments while 

a single tuned probe was used when heteronuclear decoupling was absent. 

Probe circuits are described in Chapter 5. 

The single quantum proton spectrum has already been presented in 

Figure 4.2. Deuterium double quantum decoupling [109] removed deuterium-

proton dipolar couplings. With its lack of resolution, no analysis of 

the spectrum was attempted. Deuterium single quantum and proton multiple 

quantum spectra are presented below. 
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Figure 4.20 

Variation of six quantum ~ symmetry transitions of para-

substituted biphenyl with order parameter S ranging from -0.2 to xy 
+0.2. Other parameters are set at their values for D4 symmetry at 

the point labeled in Figure 4.18. The off-diagonal order parameter 

causes an effective D2 symmetry for the biphenyl couplings except 

at the one point labeled for S = 0.02. At this point, the order xy 
tensor is diagonalized by transforming from coordinate system #2 

to #1 (see Fig. 4.5). 
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4.3.1 Deuterated Chain Spectrum 

A single quantum, proton decoupled deuterium spectrum of 5CB-d
11 

in the nematic phase at 25.1°C is shown in Figure 4.21. The total 

width shown in 75 kHz. Five major doublets with line widths between 

300 and 700 Hz are observed. Each doublet is symmetrically centered 

about the resonance offset. This doublet structure is expected from 

anisotropically ordered spin-1 nuclei and arises from the quadrupole 

coupling of each chain segment, scaled by the order tensor [39]. 

Smaller splittings of some of the lines are from dipolar couplings 

between deuterons on the same carbon. 

An expanded trace of the right hand half of Figure 4.21 is shown in 

Figure 4.22. Each member of a quadrupolar doublet is numbered for 

identification below. We wish to assign peaks in this spectrum to 

specific chain segments. The quadrupolar doublet splitting for a single 

segment may be written as [102] 

i 3 · 3 2 1 ni 2 2 
l!.v =- q~ {S <(- Jl. - -2) + -2 (JI.azi- Jl.bzi)> q 2 CD zz 2 azi 

(4. 4) 
i 

+ .!. (S - S ) < ( n 2 - n 2 ) + .!J. ( n 2 - n 2 + n 2 n 2 ) >} 
2 xx yy "'cxi "'cyi 3 "'axi "'ayi · "'byi- "'bxi • 

This equation implicitly assumes that a single order tensor, independent 

of the conformational state of the molecule, describes the spectral 

transitions. i i Here qCD and n are the characteristic quadrupolar coupling 

constant and asymmetry parameter defined in Chapter 1 for a C-D bond in 

segment i of the chain. The Jl.abi are direction cosines between a C-D 

bond fixed axis system (abc) and the molecular fixed axis system in 

which the order tensor is diagonal. For C-D bonds, n is generally small 

i (-0.01) and qCD is about 168 kHz for most cn2 and cn3 groups. Neglecting 
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5CB- dll 
Nematic Phase Deuterium Spectrum 

kHz XBL 8111-12405 

Figure 4.21 

Deuterium NMR spectrum of 5CB-d11 in the nematic phase at 

25.1°C. Each pair of lines centered on 0 Hz results from the 

quadrupolar interaction tensor for the deuterons on one of the 

chain carbons. Smaller splittings of each line arise from dipolar 

interactions between spins on the same carbon. Couplings to the 

aromatic portion of the molecule have been removed by high power 

proton decoupling. 
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Figure 4.22 

5CB-d 11 
Deuterium Spectrum 

2 -
3 

kHz 
37.5 

XBL 8111-12410 

Expanded trace of the upper half of Figure 4.21 for the deuterium 

NMR spectrum of 5CB-d11 in the nematic phase. Quadrupolar satellite 

lines are numbered for reference in the text. 
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terms with n and assuming that (S - S ) is small, we define an effecxx yy 

tive order parameter for each segment and the doublet splitting from 

segment i is given simply as 

where 

S <1 R.2 - .!.> 
zz 2 azi 2 · 

(4. 5) 

(4. 6) 

Some peaks in Figure 4.22 may be assigned easily. The cn
3 

group 

should give the most intense signal and, because of its position in the 

chain, experience the greatest amount of motion from the many conforma-

tional possibilities of the chain. Hence the largest peak with the 

smallest 6v , peak #5, is assigned to the methyl group. Likewise, the 
q 

peak with the largest splitting and, thus, greatest order parameter by 
. 

Equation (4.5), is assigned to the cn2 group attached to the phenyl ring. 

This is #1 in Figure 4.22. Other assignments are more tentative, but 

it is expected that segment order parameters and so 6vi will vary mono-
q 

tonically with segment position. From recent T1 measurements, Emsley, 

et al. [110] have proposed that this is indeed true except for peaks #2 

and #3 which they assign to methylenes 3 and 2, respectively, counting 

out from the ring. The cause of this unexpected behavior is quadrupolar 

splittings has not been explained. 

We can determine the dipolar couplings within several segments from 

the additional structure of some lines of Figure 4.22. Luz, et al. [43, 

44] have worked out the transition frequencies and intensities expected 

from isolated groups of two and three equivalent deuterons. They have 

shown that.the relative signs of dipolar (D) and quadrupolar couplings 

and the magnitude of D may be determined from cn2 and cn
3 

resonances. 
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The theory predicts that each component of a quadrupolar doublet from a 

CD2 group will be split into a triplet of intensities 2:3:1 and frequen-

. 3 1 3 
c1es 2 D, - 2 D, - 2 D relative to v t 

q 
the quadrupole frequency relative 

to the Zeeman offset (Llv = 2v ). 
q q 

Figure 4.23 shows an expanded trace of line Ill of Figure 4.22. If 

we assume the triplet frequencies are not shifted significantly by homo-

geneous broadening, then the experimental spectrum gives a value for 2D. 

In previous studies of deuterated nematogert alkyl chains in which a 

methylene triplet was resolved it was found that a fit to experiment 

could only be made when quadrupolar and dipolar couplings were assumed to be 

of opposite sign [44]. i Taking qeD as positive, a value of -281 Hz is 

obtained for the CD2 dipolar coupling of the first segment in 5CB-d
11

• 

This agrees favorably with values obtained by Boden, et al. [102] for 

8CB deuterated in the alkyl chain. The trace of part B'in Figure 4.23 

shows the theory stick spectrum broadened, by a Gau~sian function to match 

the linewidth of experiment. This confirms that the major transition 

, frequencies of the triplet shift very little with broadening. The homo-

geneous linewidth is a result of small random fluctuations in the direc-

tor and small couplings to deuterons on adjacent segments. In a similar 

manner, the dipolar coupling for the methylene of line 112 in Figure 4.22 

is determined to be approximately -201 Hz. 

The theory for an isolated methyl group predicts that each member 

of the quadrupolar doublet will be further split into a septet of inten-

1 1 5 
sities 3:8:3:1:7:3:2 and frequencies 3D, lD, 2 D, - 2 D, -lD, -2D, - 2 D 

relative to v • Again, a fit to experiment is obtained when the coup-
q 

lings are of opposite sign. An expanded trace of the methyl resonance of 

Figure 4.22 is shown in Figure 4.24 along with theoretical stick and 



A 

8 

c -20 + 

XBL 8110-7072 

Figure 4.23 

Part A shows an expanded trace of peak #1 of Figure 4.22 which is 

assigned to the first methylene unit of the alkyl chain in 5CB-d11 • B 

and C are a theoretical fit to the experiment with the deuterium dipolar 

coupling reported in the text. C shows the stick spectrum for two 

equivalent deuterons while B shows the theoretical spectrum broadened 

with a Gaussian function to match.the·experiment in A. 
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1.0 kHz 

A 

8 

c 
XBL 8110-7071 

Figure 4.24 

Expanded trace of peak #5 in Figure 4.22. A is the experimental 

line which is assigned to the chain methyl group deuterons of SCB-d11 • 

B and C are a theoretical fit using the dipolar coupling reported in 

the text. C is the stick spectrum predicted for three equivalent 

deuterons and B has been broadened by a Gaussian function to ~tch the 

linewidth of A. 
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Gaussian broadened spectra. The major peaks in the stick spectrum are 

separated by 2D artd, again assuming homogeneous broadening shifts these 

only slightly, a value for the methyl dipolar coupling of -128Hz is 

determined. 

We now estimate the order parameters for each segment from Equation 

(4.5). For those lines of Figure 4.21 with unresolved dipolar struc

ture, 6vi was estimated from peak positions alone. Where some resolved 
q 

i i dipolar structure exists, 6v was calculated from the position of v 
q q 

in the multiplet structure. The results are given in Table 4.6 along 

with a comparison with results obtained at a higher temperature by Emsley, 

et al. [101] for the same liquid crystal. The ratio of order parameters 

is nearly independent of segment number for these two sets of data. 

This would seem to indicate that the assumption of a single, conforma-

tionally independent order parameter for each chain segment is qualita-

tively correct. However, an extensive temperature dependence study of 

deuterium spectra from similar liquid crystals by Boden, et al. [102] 

indicated that, for the models chosen, individual methylene order para-

meters could not be simply related to a single molecular order tensor. 

Furthermore, the temperature dependence of the ratios 6vi/6vk could not 
q q 

be explained by assuming different conformations order equivalently and 

that the order tensor may be averaged independent of conformation. 

As a final point, we note that a crude estimate of S is possible zz 

from the order parameter for the first chain segment. From Equation 

(4.6), we have 

(4. 7) 
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Table 4.6 

Chain Segment Order Parameters from the 
Deuterium NMR Spectrum of 5CB-d11 

[scolc 

Line /Ia !J.v 
b This workd Ref [lOl]e Ratio 

-:q- --

1 55.0 0.218 0.185 0.848 

2 40.8 0.162 0.134 0.829 

3 38.3 0.152 0.125 0.823 

4 27.7 0.110 0.090 0.820 

/ 
\ 5 20.0 0.080 0.065 0.818 

a See Figure 4.22. 

b Quadrupolar splitting in kHz. Calculated relative 
to dipolar structure peaks when resolved. 

c Only the magnitude of the order parameter can be 
determined. 

d Spectrum taken at 25.1°C. 

e Spectrum taken at 31°C. 



We assume the order tensor is diagonal in a frame whose z axis coincides 

with that of Figure 4.5. With a value of 109.5° for the C-C-D bond 

1 
angle from the phenyl ring to methylene deuteron, and SCD from Table 

4.6, we find Is I ~ 0.66. zz 

4.3.2 Proton Multiple Quantum Spectrum 

Figure 4.3 shows the proton multiple quantum spectrum of 5CB-d
11 

in 

the nematic phase at a regulated temperature of 26.0°C. A non-selective 

TPPI pulse sequence was used with the signal intensity distributed 

among all orders due to a resonance offset and field inhomogeneity 

during the preparation and detection periods. The TPPI phase increment 

used was 22.5° and 6t
1 

was 1.0 usee. No deuterium decoupling irradiation 

was applied. A total of six multiple quantum interferograms were col-

lected for values of T ranging from 0.4 to 1.4 msec and varying by 0.2 

msec. Each had 16384 data points in both phase sensitive channels. For 

each T, the channels were separately Fourier transformed (32 K points), 

and the magnitude spectra averaged together. The spectra from different 

values of T were then averaged together to give the result shown in Figure 

4.3. With this choice of parameters, the frequency resolution is 30.5 

Hz/point. Linewidths are not the same for all lines with values ranging 

from about 150 to 210 Hz. 

4.3.3 Analysis of the Proton Multiple Quantum Spectrum Assuming n
4 

Point 
Group Symmetry 

In a preliminary analysis [104], a set of couplings were derived 

from this spectrum assuming n4 symmetry for the biphenyl group and using 

only selected five, six, and seven quantum lines. A total of 24 unique 

line assignments were made among these orders and an iterative fit per-

formed by the least squares program MQITER described in the Appendix. 
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The final RMS error of the fit was 26.4 Hz. The resulting seven dipolar 

couplings are reported in Table 4.7. It should be noted that the defini-

tion of the dipolar coupling used in this thesis differs by a factor of 

two from that used in Table 1 of Sinton, et al. [104]. Also, the 

numbering in Table 4.7 is consistent with Figure 4.5. The theoretical 

line positions obtained for the six and seven quantum spectra are shown 

in Figure 4.25 along with expanded traces of these regions from Figure 

4.3. 

As a first attempt to analyze these couplings in terms of order 

parameters and structure, it was assumed that each ring has perfect hexa-

genal structure defined by the parameters of Table 4.5 [104]. Using co-

ordinate system Ill of Figure 4.5, we see from Equation (B.4a) in the 

Appendix that o12 is given simply as 

s zz 
-3-
rl2 

and we obtain a value of 0.568 + 0.001 for S zz The only two remaining 

parameters to determine are (S - S ) and ¢. In the original analysis 
XX yy 

[104], each of these was varied while holding the other constant to find 

a local minimum at (S - S ) = 0.057 + 0.002 and <P = 32 + 1°. The 
XX yy 

reported errors were estimated from the shape of the RMS deviation curve 

for the computed couplings close to this minimum and may not be entirely 

realistic. The order parameters agree well with those reported by Emsley, 

et al. [103] for 5CB-d
15

, considering the difference in temperature at 

which their values were obtained. 

We can use a least squares treatment to fit calculated to experimen-

tal couplings when several of the parameters of Equation (4.2) are 
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Table 4.7 

Experimental Coupling Constants for 4-Cyano-4'-n-pentyl
d11-biphenyl Assuming o4 Biphenyl Syounetry 

Proton Dipolar Couplings a Proton Scalar Couplings 
(Hz) (Hz) 

0
12 -8956 + 3 Jl2 8.0 

013 94 + 4 Jl3 0.0 -

014 760 + 6 Jl4 2.0 -
015 -294 + 4 Jl5 0.0 

016 -729 +·4 Jl6 
. 0.0 

023 780 + 5 J23 2.0 

026 -3481 + 5 J26 0.0 -

a Errors have been estimated from RMS fit of the 
iteration and procedure given in Appendix A. 

b Assumed values. 

b 
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a) 6 QUANTUM REGION 

II I II II I II II I II 

b) 1 QUANTUM REGION 

XBL 808-10943 

Figure 4.25 

Six and seven quantum regions of the proton multiple 

quantum spectrum of 5CB-d11 (see Fig. 4.3). Each trace 

shows a total width of 62.5 kHz. The frequency markers 

below each experimental trace show the best fit calcu

lated spectrum assuming a n4 symmetry for the biphenyl 

group and resulting in the couplings of Table 4.7. The 

central line in the center of the seven quantum spectrum 

is a result of pulse imperfections and lack of decoupling 

in the experiment. 
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allowed to vary independently. Program BIPH5PARA was written for this 

purpose and is described fully in the Appendix. Iterations in which all 

seven parameters of Equation (4.2) were varied independently failed to 

converge to a final fit. Several couplings depend strongly on a number 

of these parameters and so may cause an early divergence unless the 

initial parameters are fairly close to a minimum RMS deviation from 

experimental couplings. We have seen in Figure 4.15 that six quantum 
0 

transitions vary little with r 14 and so this distance was fixed at 4.299 A. 

BIPH5PARA was used to fit the remaining parameters with a final R}tS de-

viation for the calculated couplings of 10.1 Hz, somewhat lower than the 

original two parameter fit [104]. The results are listed in Table 4.8. 

The most striking aspect of this fit is the large increase of r 260 

and decrease in ~ from the values for the benzene ring geometry fit re-

ported using Table 4.5. · Allowing r 260 to increase would be expected to 

cause ~ to decrease as the steric hindrance between protons ortho to the 

ring bridge is lessened. The distance r 260 has been determined in the 

solid and gas phases by X-ray and electron diffraction measurements [80, 
0 

85-86]. Typically, a value of about 1.8 A was found with a spread of 

about 10%. The value in Table 4.8 is then somewhat larger than might be 

expected. 

In considering the possible causes for this unusually large ring 

separation, we might suspect the lack of vibrational averaging of calcu-

lated couplings. The parameters of Table 4.8 were derived from a model 

which does not include an average of couplings over small amplitude vibra-

tiona! excursions of the nuclei. Thus, the distances reported are not 

necessarily their equilibrium values. In their analysis of the proton 

spectrum of 5CB-d15 (alkyl chain and adjacent ring deuterated), Emsley 
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Table 4.8 

Biphenyl Structure and Order Parameters for 5CB-d
11 Determined with Assumption of D4 Symmetrya 

Internuclear Distances 
0 

(A) 

r12 2.47 + 0.02 -

rl4 4.299b 

r23 4.27 + 0.03 -

r260 1.98 + 0.03 -

Dihedral Angle (degrees) 

~ 30.4 + 0.2 
'~'m 

. c 
Order Parameters 

s 0.565 + 0.010 zz 

(s -s ) 0.011 + o.oo1 
XX yy 

a Errors estimated by methods described in 
Appendix A. 

b Fixed at assumed value. 

c For coordinate system #1 of Figure 4.5. 
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and co-workers found that the inclusion of vibrational averaging signi-

ficantly affected their results [103]. To model the vibrations of the 

liquid crystal rings, this group used the normal mode analysis of 4,4'.::. 

bipyridyl as an approximation. Only three independent numbers could be 

determined from this spectrum and so it was not possible to derive values 

for all the parameters required to describe the ring structure. Infra-

red spectra of 5CB-d11 have been reported [105], but no normal mode 

analysis has been carried out. Thus, no vibrational averaging has been 

included in any analysis reported here. 

In addition to averaging the couplings over small amplitude vibra-

tions, the effect of a continuous torsional motion of the rings about $ 

might be required. Rigorously, this would require a solution to the 

quantum mechanical. Schrodinger equation. The potential for the motion 

can be approximated as an expansion in a Fourier series by [112] 

~ v2k 
V(<jl) = L - 2- (1- cos2k<jl) 

k=l 
(4.8) 

Obviously, there are not enough couplings to determine all of the para-

meters of Equation (4.3) and more than a few of the coefficients of 

Equation (4.8). Assumptions about the structure or reasonable values 

for the first few coefficients in V(<jl) and neglect of higher order terms 

is required. The Schrodinger equation could then be written in a form 

having solutions in terms of Mathieu functions [112]. In a much simpler 

approach used for 4,4'-bipyridyl [93] and 4,4'-dichlorobiphenyl [96], the 

probability distribution function for <jl was assumed to be a Boltzmann 

distribution. In both studies, only small changes in the averaged 

couplings were found. The magnitude of the corrections for 5CB-d11 
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estimated from these results would be below the level of precision in the 

couplings determined from the available resolution in the spectrum. In 

the studies cited above, it was assumed that the order tensor is inde-

pendent of ~ and so may be removed from the averaging of couplings as 

discussed in Chapter 2. This assumption might affect the final value 

obtained for~ and so be invalid for 5CB-d11 . Without a knowledge of a 

possible dependence on ~ for S, not averaging the couplings over the in
~ 

ternal rotation can not be eliminated as a possible source of error in 

any final fit. 

Figure 4.25 shows the resulting theoretical line frequencies for 

the six and seven quantum transitions. We also calculated the magnitude 

of exact T averaged signal intensities for the five, six, and seven 

quantum spectra. The computer program mentioned in Chapter 3 and written 

by J. Murdoch was used with the couplings of Table 4.7. The results are 

shown in Figures 4.26, 4.27 and 4.28. The fits of intensity patterns to 

the experimental spectra are fairly close but differences do exist. 

These differences are most likely due to the exclusion of chemical shifts 

and heteronuclear couplings with the chain deuterons from the calculation. 

As we saw in Chapter 3, when chemical shifts are present in a strongly 

coupled spin system, the ~ pulse used for a 2D spin echo experiment will 

change the intensity coefficient for each line in the spectrum relative 

to its free evolution intensity coefficient. The extent of the change is 

determined by the relative sizes of the linear chemical shift Hamiltonian, 

which is partially refocussed by the action of the ~ pulse, and the 

bilinear coupling Hamiltonian, which is unaffected by it. In the absence 

of deuterium Larmor frequency r.f. pulses, the Hamiltonian for proton-

deuteron couplings causes a density matrix evolution for the proton spins 
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a) 

c) 

Figure 4.26 

Five Quantum Spectrum 
D 4 Symmetry Model 

XBL 8111-12404 

Five quantum spectral fit assuming n4 symmetry for the 

biphenyl group in 5CB-d11 • In a) the experimental spectrum 

for the five quantum region of Figure 4.3 is shown on an 

expanded scale. Total frequency width shown is 62.5 kHz. 

b) and c) show the theoretical spectra calculated from the best 

fit couplings of Table 4.7 with intensities from exact dynamical 

calculations of the density matrix using values of the prepara

tion time from the experiment. In b) the spectrum has been 
broadened to match the linewidth of the experimental transitions. 
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a) 

b) 

c) 

Figure 4.27 

Six Quantum Spectrum 
04 Symmetry Model 

XBL 8111-12400 

Six quantum spectral fit assuming o4 symmetry for the biphenyl 

group in SCB-d11 • a) Expanded trace from Figure 4.3. Total width 

shown is 44189 Hz. b) and c) show the theoretical fit with inten

sities calculated from exact dynamics of the density matrix using 

values for the preparation time from the experiment. The 

broadened linewidth in b) matches that of the experimental lines 

in a). 
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a) 

b) 

c) 

Figure 4.28 

Seven Quantum Spectrum 
04 Symmetry Model 

XBL 8111-12401 

Seven quantum spectral fit assuming n4 synunetry for the biphenyl 

group in 5CB-d11 • a) Expanded trace of experimental seven quantum 

region with a total width of 31982 Hz. The central line is due to 

pulse imperfections in the experiment. The intensities of b) and c) 

are from exact dynamical density matrix calculations. The 

broadening in b) matches the linewidths of the outer transitions in a). 
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similar to their chemical shift Hamiltonian. The evolution from these 

heteronuclear couplings is not entirely refocussed by a single proton 'IT 

pulse and will cause intensity distortions in the same manner as the 

chemical shifts. Thus, because no deuterium decoupling was used in this 

experiment and with the presence of proton chemical shifts, intensities 

calculated from just proton homonuclear couplings are not expected to 

match the experimental spectrum exactly. However, these homonuclear 

couplings certainly dominate the spin Hamiltonian for 5CB-d11 and so a 

qualitative fit is found in Figures 4.26, 4.27, and 4.28. The extent to 

which couplings are precisely determined in the theoretical model also 

affects the quality of the intensity fit. 

4.3.4 Additional Structure in the Proton Multiple Quantum Spectrum of 
5CB-d11 

It has been noted that some of the splittings in the high order pro-

ton spectra of 5CB-d11 cannot be explained on the~basis of this simple 

o4 symmetry approach [104]. For example, close inspection of the seven 

quantum spectrum in Figure 4.25b indicates that the inner pair of lines 

is split into two pairs. Also, only one of the lines in a closely 

spaced doublet of the six quantum spectrum fits the theoretical transi-

tions. These lines were not assigned in the simulation and so are not 

reflected in the RMS error reported above. 

There are several possible sources of this added structure to con-

sider. For example, we demonstrated in Chapter 3 that the presence of 

chemical shifts in a two-dimensional spin echo experiment will cause 

additional lines to appear in the w1 spectrum. In a similar manner, 

heteronuclear couplings may cause splittings of transitions or new lines 

to appear when a ~ pulse is used. Finally, since the pentyl and cyano 

groups are certainly not equivalent, a o2 symmetry model may be required 

to explain the high order spectra of 5CB-d11 • 
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4.3.4.1 Estimation of the Effect of Chemical .Shifts 

We can confidently ignore chemical shifts as the cause of a closely 

spaced pair of lines in the seven quantum spectrum. To see how this is 

so, we consider a much simpler spin system for convenience in computation. 

If the permutation group for the couplings of a three spin system has c
2 

symmetry, then the inclusion of a chemical shift difference between the 

two spins exchanged by the c2 operation and the third spin does not 

change this permutation group [79]. Such a spin system is classified as 

AB2 • For a three spin-1/2 AB2 system, the eigenstates are classified as 

either symmetric or antisymmetric under exchange of the B spins. The 

dimensions of the Zeeman manifolds of the symmetric states for M = -3/2, 

-1/2, 1/2, 3/2 are 1, 2, 2, 1, respectively. There are only two anti

symmetric states, one each for M = -1/2 and 1/2. The six symmetric 

states form a system similar to the M = ~4 and M = ~3 manifolds of the 

D 4 symmetrized energy level diagram of Figure 4. 6: Like an AB2 system, 

inclusion of the chemical shift Hamiltonian for a para-substituted bi

phenyl does not change the symmetry from D4 or D2• The n4 point group 

M = +3 spin functions, schematically represented in Figure 4.7, are 

symmetric under exchange of the labeled ortho or para sites, similar 

to the AB2 system states described above. For an AB2 oriented system, 

we predict two transitions in the two quantum spectrum obtained without 

an evolution period 1T pulse. This is analogous to the seven quantum 

predictions for the n4 point group eight spin system given in Table 4.2. 

Thus, along with the results of Section 3.4, we can use a simple AB2 

system to model the behavior of a seven quantum spin echo spectrum of a 

n4 symmetry biphenyl. Analytical expressions for the oriented AB2 energy 

levels can be obtained from the solution for the single quantum spectrum 

gi vey by Ems ley, e t al. [ 111] • 
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Figure 4.29 shows theoretical two quantum spectra for an AB
2 

system 

in which the chemical shift difference, oAB' is small compared to the di

polar couplings. The intensities are an average for 2000 values of T 

from 0.05 to 100 msec. Figure 4.29a shows the four line spectrum expec

ted when no spin echo rr pulse is used during the evolution period. 

Figure 4.29b shows the resulting two quantum spectrum when a rr pulse is 

used to refocus the chemical shift and inhomogeneous evolution. The 

equations of Section 3.4 and the computer program described there were 

used to calculate both the frequencies and intensities for Figure 4.29. 

The chemical shift is removed by the rr pulse and small new lines appear 

centered between transitions on either side of the two quantum resonance 

offset (0 Hz in Fig. 4.29). The largest transitions, at frequencies 

shifted only slightly from those predicted when oAB = 0, are not split by 

the action of the rr pulse (see Fig. 4.29b). 

A similar situation is found in the seven qwtntum spectrum of 5CB-d11 • 

Computer calculations using the couplings of Table 4.7 and a reasonable 

range of values for the chemical shift difference between ortho and meta 

protons confirm this behavior. Additional lines from coherence transfers 

caused by the rr pulse are indeed centered at the average of the transition 

frequencies on either side of 7~w. The exact T averaged relative inten

sities of these additional lines is small and they cannot be observed in 

the seven quantUm spectrum of Figure 4.25b. This trend is also found in 

the lower order spectra. We conclude that a non-zero chemical shift dif

ference is not the cause of lines that cannot be explained by a n4 s~ 

metry model in the six and seven quantum spectra. The calculations also 

support the neglect of a chemical shift parameter in the analysis of 

transition frequencies in the TPPI echo spectrum. A single rr pulse should 
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a) 

b) 

II 

Figure 4.29 

AB2 Two Quantum Spectra 

I 
0 

II 

XBL 8111-12385 

Calculated two quantum spectra for an anisotropically ordered AB2 
spin-1/2 system. Each spectrum is an average for 2000 values of the 

multiple quantum preparation time T. a) Predicted spectrum when the 

chemical shift difference is not refocused by the application of a rr 

pulse. b) When a rr pulse is used, the frequency shifts relative to 0 

caused by the chemical shift are removed and new lines with low inten

sities are predicted centered about the average of the major lines. 

Parameters used in the calculation are (in Hz) DAB = 1000, DBB = 250, 

JAB = 10, ~A= 100, and ~B = 0. 
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be adequate to remove the chemical shift evolution unless the shift dif

ferences for ring protons in 5CB-d11 are inordinately large. 

4.3.4.2 The Effects of Heteronuclear Couplings 

Heteronuclear couplings between the ring and chain spins may also 

complicate the spectrum when a single ~ pulse is used during multiple 

quantum evolution. For certain special symmetries, a ~ pulse can be 

shown to decouple a single deuteron from several strongly coupled pro

tons in the w
1 

spectrum of a two-dimensional experiment l-lith an oriented 

sample [110]. A partial decoupling of the chain deuterons will occur 

for the proton TPPI experiment of 5CB-d11 but remaining heteronuclear 

dipolar structure could possibly exist on the proton transition line

shapes. The ~ pulse may reduce this structure to the point that it 

cannot be resolved in the fairly wide lines of Figure 4.3. An estimate 

of the exact line shape is difficult without a knowledge of the couplings 

involved. Using standard bond lengths and angles ·we can estimate the 

largest possible static dipolar coupling between a deuteron on the first 

chain methylene and a proton ortho. to the chain-ring bond to be on the 

order of a few kilohertz. The actual coupling will be greatly reduced by 

s zz < 1.0 and internal molecular motions. In fact, the power require-

ments for deuterium double quantum decoupling of the single quantum pro-

ton spectrum imply that this coupling is on the order of a few hundred 

hertz (see below). The seven quantum transitions of 5CB-d11 at 26°C 

occur at about 4 and 10 kHz relative to the center of the order and are 

sensitive to sums of a number of the proton-proton couplings. Thus, the 

magnitude of the heteronuclear coupling partially refocused by the ~ 

pulse is much smaller than the characteristic evolution frequencies in 

this order and a lack of deuterium decoupling in the experiment may not 
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be responsible for the added structure not explained by a simple o
4 

symmetry model. However, these crude estimates do not allow us to unequi

vocally adopt this conclusion. Heteronuclear couplings can be scaled 

even further by the use of multiple w pulses during t
1 

[59] or elimina

ted completely by a number of decoupling schemes. An attempt to decouple 

the chain deuterons from the proton multiple quantum spectrum of 5CB-d
11 

by using deuterium double quantum transitions is described below. 

4.3.4.3 D2 Symmetry MOdel 

Finally, the effects of inequivalently distorted rings and a non

zero, off-diagonal element in the order tensor, which cause an effective 

D2 symmetry for the protons in 5CB-d11 , were considered. Several sets 

of initial parameters were used for iterations in which the twelve unique 

dipolar couplings were allowed to vary independently. The final RMS 

error reported above for the o4 symmetry iteration (26.4 Hz) is already 

below the digital resolution in the spectrum of Figure 4.3. Several 

attempts using initial o2 couplings produced final fits somewhat better 

than this. However, the limited precision from the spectrum makes it 

difficult to judge which of these represents a better model for the bi

phenyl group in 5CB-d
11 

than the one discussed above. We saw earlier 

that if the distortions from o4 symmetry are not too severe, in addition 

to some new transitions, there will be many near degeneracies which would 

not be resolved in the linewidths of a spectrum such as that of Figure 

4.3. Thus the amount of new information. in the high order spectra 

available to distinguish n2 from o4 couplings may not be sufficient. 

The number of parameters to obtain from nearly the same amount of infor

mation has increased significantly. 
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Many different sets of initial couplings modeled by assuming slight 

distortions in the rings and a finite value for S were used in attempts xy 

to fit the five, six, and seven quantum spectra of 5CB-d
11

• These n
2 

symmetry iterations exhibit general trends in the final parameters de-

rived-. Ther14 , r 23 , r 58 , and r 67 parameters usually change signifi

cantly from those found in the n4 symmetry fit. As an example, the best 

fit couplings for an iteration using the same 24 line assignments as the 

n4 calculation described above, but allowing the 12 sets of couplings 

which are unique for n2 symmetry to vary independently, are given in 

Table 4.9. The final RMS error of the fit from this iteration is 13.5 Hz. 

All the couplings have changed significantly from the n4 couplings in 

Table 4.7. In particular, the couplings with the largest errors, n
14

, 

n23 , n67 , n58 , are considerably different. Theoretical stick spectra 

for the five, six, and seven quantum regions, along with the experimental 

· traces, are shown· in Figures 4. 30, 4. 31, and . 4 • 32. • 

Least squares iterations using program BIPH5PARA and varying all 

eleven of the n2 molecular parameters of Equation (4.3) independently 

failed to converge to a final fit. We then assumed the value of one of 

these parameters. Two cases are considered here, with the results given 

in Table 4.10. The final RMS deviations of calculated from experimental 

couplings was 6 Hz for both cases. In case A, r 260 was fixed at the 
0 

value found for biphenyl from X-ray studies, i.e., r 260 = 1.818 A. All 

the parameters have changed significantly from those found with a n4 

model. The largest errors among the rij 's occur for those pairs of 

nuclei whose dipolar couplings are poorly determined (cf. Table 4.9). 

The distortions from a benzene geometry for the phenyl rings implied by 

these results are quite severe and do not seem realistic. Typical 
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Table 4.9 

Experimental Coupling Constants for 5CB-d11 Assuming 
n2 Symmetry 

Proton Dipolar Couplings a Proton Scalar Couplings 
(Hz) (Hz) 

D12 -8920 + 6 Jl2 8.0 

Dl3 144 + 8 Jl3 0.0 -
Dl4 926 + 9 Jl4 2.0 -
DlS -299 + 4 J15 0.0 -
D16 -817 + 6 Jl6 0.0 

D23 581 + 14 J23 2.0 -
D25 -719 + 5 J25 0.0 -
D26 -3441 + 4 J26 0.0 -
D56 -9000 + 4 J56 8.0 -
D57 139 + 4 J57 0.0 .... 

D58 635 + 9 Js8 2.0 -
D67 915 + 10 J67 2.0 -

b 

a From iteration of 5, 6, 7 quantum lines. Errors 
estimated by method given in Appendix. 

b Assumed values. 
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Figure 4.30 

Five Quantum Spectrum 
o2 Symmetry Model 

XBL 8111-12407 

Five quantum spectrum of 5CB-d11 plotted with a total width of 

62.5 kHz. Beneath the experimental trace is shown a stick spectrum 

calculated from the best fit couplings of Table 4.9, assuming a n2 
symmetry for the biphenyl group. Line heights for the theory are 

based on frequency degeneracies only. 
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Six Quantum Spectrum 
o

2 
Symmetry Model 

II II II II~ II II Ill IIIII~ I II II II 
XBL 8111-12408 

Figure·4.31 

Six quantum spectrum of 5CB-d11 plotted with a total width of 

44189 Hz. Beneath the experimental trace is shown a stick spectrum 

calculated from the best fit couplings of Table 4.9 assuming a n2 
symmetry for the biphenyl group. All theoretical lines areof unit 

height. 
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I I 

Figure 4.32 

Seven Quantum Spectrum 
0

2 
Symmetry Model 

II II 
XBL 8111-12409 

Seven quantum spectrum of 5CB-d11 plotted with a total width of 

31982 Hz. Beneath the experimental trace is shown a stick spectrum 

calculated from the best fit couplings of Table 4.9 assuming a o2 
symmetry for the biphenyl group. The theoretical lines are all given 

unit height. The central line in the experimental spectrum is a 

result of pulse imperfections and the use of a n pulse without 

deuterium decoupling during multiple quantum evolution. 
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Table 4.10 

Best Fit Structures and Order Parameters for 
a 5CB-d11 Determined from Couplings of Table 4.9 

r12 

rl4 

r23 

r56' 

r58 

r67 

r260 

s zz 

CASE A CASE B 
0 

Internuclear Distances (A) 

2.32 + 0.05 2.453 + 0.003 -
3.88 + 0.09 4.11 + 0.03 -
4.54 + 0.09 4.81 + 0.03 - -
2.32 + 0.04 2.456 + 0.003 -
4.41 + 0.17 4.67 + 0.10 - -
3.90 + 0.13 4.14 + 0.06 - -
1.818c 1.93 + 0.04 -

Order Parameters b 

·0.48 + 0.03 0.565c 

(s -s )O.n2 + o.o2 
XX yy -

0.03 + 0.02 

s 
xy. 

a 

0.007+0.007 0.008 + 0.008 

Dihedral Angle (degrees) 

28.9 + 0.5 28.9 ± 0.5 

Errors estimated by methods in 
Appendix A. 

b For coordinate system #2 of Figure 
4.5. 

c Fixed at assumed value. 
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distortions in internucle~r distances found from NMR studies of solutes 

in liquid crystals are on the order of a few percent. The largest distor-

tion from the benzene values in Table 4.10 for case A occurs for r
14 

and 

is nearly 10 percent. 

The value of S for case A in Table 4.10, using coordinate system zz 

#2, has changed significantly from that obtained using the n4 symmetry 

model given in Table 4.8. Since the z axes of the two axis systems for 

n2 and n4 symmetries are parallel, these are expected to be the same. 

Thus, for case B, S was fixed at the value obtain for the n4 model 
' zz 

while the other parameters were varied to obtain the best fit values 

given in Table 4 .10. Several of the r •. values are reasonably close to 
1J 

those obtained using the D4 ·model and have smaller error limits than for 

case A. However, the distortions implied by values for r 14 , r 23 , r 58 , 

and r 67 still seem unreasonable. The remaining parameters are found to 

be essentially the same as for case A. Whether t~e results in Table 

4.10 for case A or case B more accurately fits the actual parameters 

for 5CB-d11 cannot be determined from our analysis. 

We have computed exact T averaged theoretical intensities from the 

n2 symmetry couplings of Table 4.9. The results for the six and seven 

quantum spectra are shown in Figures 4.33 and 4.34, respectively. The 

intensity patterns do not seem to reproduce the general features of the 

experimental spectra as well as the n4 model intensities of Figures 

4.27 and 4.28. 

The closeness of the fit for lines shown in Figures 4.30, 4.31, and 

4.32, and the RMS error for the spectral simulation reported above may 

be somewhat misleading. Only transitions which are predicted from a n4 

model were used in the initial assignment. Additional lines in the 

experimental six and seven quantum s,pectra, which are assumed here to be 
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a) 

b) 

Figure 4.33 

Six Quantum Transition Intensities 
Exact T Average 

. ·-.,:--..... 
XBL 8111-12403 

Theoretical six quantum spectra calculated from the D2 symmetry 

couplings of Table 4.9. The intensities here are the result of an 

exact calculation of the multiple quantum signal averaged from the 

same values of the preparation time T as those used in the experiment 

producing the spectrum of 5CB-d11 in Figure 4.3. Both a) and b) are 

plotted with the same width as Figure 4.31 and the broadening in a) 

is designed to match the experimental linewidth in that figure. 
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a) 

b) 

Figure 4.34 

Seven Quantum Transition Intensities 
Exact T Average 

A \.. A 

. 1 .l I I 

XBL 8111-12402 

Theoretical seven quantum spectra calculated from the n2 symmetry 

couplings ef Table 4.9. As for Figure 4.33 the intensities are the 

result of an exact calculations using the same values of T as for the 

experimental spectrum in Figure 4.3. Both a) and b) are plotted with 

the same width as Figure 4.32 and the broadening in a) is designed to 

match the experimental linewidth in that figure. 
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the result of symmetry lowering distortions, do not fit the theory spec

trum as well as other transitions. When the two previously unassigned 

transitions of the six and seven quantum regions are included in the 

iteration, a final fit is obtained but with a significantly larger RMS. 

error of about 60 Hz. The largest contributions to this error come from 

assignments for these additional lines. When the resulting couplings 

are interpreted for order parameters and structural quantities, distor

tions similar to those of Table 4.10 are found but with larger error 

limits. 

In addition to real structural distortions as an explanation for an 

effective n2 symmetry in the biphenyl group of 5CB-d11 , we investigated 

the possibility that the rings move inequivalently. This seems to be 

not entirely unreasonable as.one ring has attached to it the light, 

unrestricting cyano group while the other moves relative to the bulky 

alkyl chain which presents steric hindrance due ro the adjacent methylene 

group. A fit to the spectrum was obtained starting with the ring para

meters from the n4 symmetry analysis (Table 4.8) and varying all 12 n2 

couplings. The iteration was then repeated, allowing only the ring A 

(see Fig. 4.5) and inter-ring couplings to vary. Both models achieved 

adequate fits to the experimental five, six, and seven quantum spectra 

with the final RMS errors (-20 Hz) within the digital resolution of the 

Fourier transformed spectrum. When the resulting couplings were inter

preted in terms of a model in which the rings are equivalently distorted 

but move inequivalently, only moderately close fits for the calculated 

couplings could be obtained. A fairly close fit (RMS = 18 Hz) was 

obtained from the set of 12 independent experimental couplings but then 

only when ring distortions were re-introduced. The resulting values for 

the internuclear distances resembled those of Table 4.10. 
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Several such models were tried, all with similar results. Adequate 

final fits for calculated couplings could only be obtained when inequi

valent ring distortions were allowed. These results do not entirely 

preclude the possibility that the effective D2 symmetry is due primarily 

to inequivalent ring motions as only the product of the order tensor 

with molecular parameters is obtained from the dipolar couplings. In 

addition, the probability distribution for the chain conformations will 

certainly affect the way the whole molecule orders and the proton spec

trum from the biphenyl group is indirectly affected in a complicated 

manner that can not be entirely determined from the available spectral 

information in Figure 4.3. As a final note we point out that, in their 

analysis of the proton spectrum of 5CB-d15 , Emsley and co-workers also 

found exceptional distortions in r 14 and r 23 [103]. Due to the limited 

number of couplings which could be obtained from their spectrum, 

independent values for both parameters could not be found. 

4.3.5 Deuterium Decoupling Experiments 

There are many possible schemes available for decoupling of the 

proton spectrum of Figure 4.3. The choice is directed primarily by the 

same considerations as a normal single quantum spectrum. Double quantum 

deuterium decoupling was chosen because the r.f. power requirements are 

significantly less than for decopuling via single quantum transitions 

[109]. It was found that only a few kHz of deuterium r.f. field was re

quired to decouple the single quantum spectrum with the result shown in 

Figure 4.2. This seems reasonable based on estimates for the largest 

heteronuclear coupling between ring protons and the first chain methylene 

deuterons. The deuterium r.f. field, w1 , required to decouple a deuteron 
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with quadrupolar splitting wQ from a heteronucleus via double quantum 

transitions is given by [109] 

where wD is the dipolar coupling expressed in angular frequency units. 

The decoupling requirements cited above are then consistent with an 

vD of a few hundred hertz. 

The multiple quantum spectrum was decoupled by applying deuterium 

irradiation at the center of the quadrupolar spectrum of Figure 4.21. 

The result is shown in Figure 4.35. There is a significant loss in 

signal-to-noise for this spectrum compared with Figure 4.3 which may be 

a result of two factors. First, the long deuterium pulse required to 

obtain each point in the multiple quantum signal may cause significant 

temperature gradients in the sample. This was reflected in the spec

trum by a larger linewidth for transitions further from the centers of 

each order. This effect was partially circumvented by the use of 

smaller samples and longer delays between shots, as described in Chapter 

5. The second cause for a lower signal-to-noise was the finite iso

lation of the spectrometer receiver from the high power deuterium trans

mitter. Even with good isolation of the probe circuits and the use of 

a narrow band filter before the receiver, several millivolts of deuterium 

r.f. at the receiver was difficult to avoid. This partially saturated 

the broadband preamp of the receiver causing the observed loss in 

signal-to-noise. This effect was most critical in the higher order 

regions of the spectrum where the integrated signal intensity is lower 

as we saw in Chapter 3. These problems complicated obtaining a spectrum 

with adequate signal-to-noise in the high quantum regions in a reasonable 
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c5o11 ; 2cN 

Decoupled Proton Multiple Quantum NMR Spectrum 

I 
0 

XBL 8111-12406 

Figure 4.35 

Deuterium decoupled proton multiple quantum spectrum of 5CB-d11 
at 28.9°C. The spectrum is an average of six spectra obtained for 

six different values of T from 0.2 to 1.2 msec with the same non

selective pulse sequence used to obtain the spectrum of Figure 4.3. 

Lines in the five, six, and seven quantum regions were used to obtain 

the couplings of Table 4.11. The total width shown is 500 kHz. 
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amount of overall acquisition time. Instrumental instabilities during 

decoupling experiments may also increase the two-dimensional "t
1 

noise" 

present as a result of fluctuations in the prepared density matrix [69]. 

The spectrum of Figure 4.35 is the result of an average from six 

values of T ranging from 0.2 to 1.2 msec in increments of 0.2 msec. 

Most of the experimental parameters were the same as for the undecoupled 

spectrum of Figure 4.3 except that the temperature was regulated at a 

slightly higher value of 28. 9°C. The length of the multiple quantur.1 t
1 

signal was 16 K points in both phase sensitive channels for each T and 

32 K complex Fourier transforms were calculated. Figure 4.35 shows the 

resulting averaged magnitude spectrum. Linewidths are somewhat narrower 

than in the undecoupled spectrum with a typical value being 120 Hz. 

4.3.5.1 n4 Symmetry Model Analysis of Decoupled Multiple Quantum Spectrum 

The poor signal-to-noise of the higher order spectral regions of 

Figure 4.35 makes an analysis more difficult than for an undecoupled 

spectrum. Nonetheless, a total of 13 lines were assigned in the five, 

six, and seven quantum regions for an iterative fit assuming n4 symmetry 

couplings. The results are given in Table 4.11. The final RMS error of 

the fit for these lines was 21.2 Hz. The small number of lines which 

could be assigned in these orders leads to large error limits on the 

couplings. in Table 4.11. As with the undecoupled spectrum, chemical 

shifts have been ignored in the analysis of this spin echo spectrum. 

The computed exact T averaged line intensities for the six quantum 

transitions are shown along with an expanded trace of the six quantum 

region in Figure 4.36. Obviously, the fit is only marginally adequate. 

Broadening due to temperature gradients may be the cause of the lines 

with the greatest predicted intensity appearing with in fact the lowest 

intensity in the experimental spectrum. 
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XBL 8111-12399 

Figure 4.36 

a) Expanded trace of the six quantum region of Figure 4.35. 

Total width shown is 44189 Hz. The central line is truncated in 

height. b) Theoretical spectrum calculated from the couplings 

of Table 4.11. Intensities are from an exact calculation using 

the same values of T as in the experiment. 
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Table 4.11 

Experimental Coupling Constants from the Deuterium 
Decoupled Proton Multiple Quantum Spectrum of 5CB-d

11 Assuming D4 Symmetry 

Proton Dipolar Couplings a Proton Scalar Couplings b 

(Hz) (Hz) 

D12 -7818 + 7 Jl2 8.0 

Dl3 88 + 8 Jl3 0.0 -
Dl4 577 + 20 Jl4 2.0 

Dl5 -226 + 10 Jl5 . 0.0 -

Dl6 -653 + 6 Jl6 0.0 -

D23 719 + 12 J23 2.0 -
D26 -3057 + 11 J26 0.0 -

a Errors have been estimated from the RMS error of the 
iteration and the procedure given in Appendix A. 

b Assumed values. 
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Despite the large error limits for the couplings of Table 4.11, a 

least squares analysis in terms of the parameters of Equation (4.2) for 

n
4 

symmetry converged to a close fit. The final RMS deviation of calcu

lated to observed dipolar couplings was only 3 Hz. The results are 

reported in Table 4.12. As with the n4 model fit for the undecoupled 
0 

spectrum of Figure 4.3, r 14 was held constant at the value 4.299 A for 

this calculation. Although the value of r 260 is more in line with the 
0 

value for biphenyl (1.818 A) than the analysis of the undecoupled spec-

trum., ring distortion implied by r 12 and r 23 is quite severe. In addi

tion, the value of <fl has increased. It is not expected that a tempera
m 

ture increase of only 3° alone should cause such a change in <fl • Perhaps 
m 

the inclusion of vibrational or torsional averaging in the model would 

bring the two results more in line. 

4.3.5.2 D2 Symmetry Model Analysis for Decoupled Spectrum 
. 

Attempts to derive twelve unique n2 symmetry dipolar couplings from 

just the 13 lines assigned in the higher order regions failed. The 

problem is only barely determined and so convergence may depend strongly 

on the closeness of the initially guessed couplings. If the iteration 

is started with the n4 couplings of Table 4.11 then the RMS fit is 

already below the resolution in the Fourier transform spectrum, and so 

further improvement is unlikely. A more complete analysis may be pos-

sible when transition assignments in orders below the five quantum are 

included. For example, the decoupled spectrum shows a number of nearly 

resolved lines in the three and four quantum regions (see Fig. 4.35) 

which could be used. Such an analysis was not attempted in this work. 
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Table 4.12 

Biphenyl Structure and Order Parameters for 5CB-d11 Determined from Couplings of Table 4.11 and Assuming 
D4 Symm.etrya 

0 

Internuclear Distances (A) 

2.36 + 0.03 

4.299b 

4.00 + 0.10 

1.82 + 0.05 

Dihedral Angle 

~ 31.6 + 0.2° '~'m 

c Order Parameters 

s zz 0.43 + 0.01 

(s -s ) o.o6 + 0.02 
XX yy 

a Errors estimated by methods of Appendix A. 

b Fixed at assumed value. 

c For coordinate system #1 of Figure 4.5. 
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4.3.6 Conclusions on Results for 5CB-d
11 

As an example of the use of multiple quantum mm, the spectra of 

5CB-d11 demonstrate the utility of the approach. The higher order regions 

.of the spectrum clearly show a greater simplicity than the single quantum 

spectrum. Line assignments can· be made unambiguously when these orders 

are compared with spectra simulated from physically reasonable parameters. 

The symmetry characteristics of the biphenyl group are very simply re

lated to the number of transitions which occur in the six and seven 

quantum spectra. 

On the other hand, 5CB-d11 as an example demonstrates some of the 

limitations in the analysis of NMR spectra of oriented molecules. These 

limitations are present in both single quantum and multiple quantum NMR 

and are a result of the complexity of relationships between molecular 

structure and transition frequencies and not on the particular technique 

used to obtain the spectrum. For 5CB-d11 , the linewidths ultimately 

limit the level of precision available for couplings. Deuterium de

coupling seems to reduce linewidths by at most only a factor of about 

two from the spin echo linewidths. This limit on the precision of 

couplings prevents an analysis refined beyond those presented in this 

work. 

Of all the models which were used to explain the undecoupled five, 

six and seven quantum spectra of 5CB-d11 , the one which approximates 

the biphenyl proton symmetry as a n4 point group system seems the most 

reasonable. The order parameters derived from the proton spectrum are 

in line with estimates from the single quantum deuterium spectrum of 

the alkyl chain and those obtained for 5CB-d15 [103]. The best fit 

molecular parameters of Table 4.8 for this model agree closely with 
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-ray and electron diffraction data for the internuclear distances of 

biphenyl, considering that no vibrational corrections have been applied. 

Theoretical transition frequencies calculated from this model fit most 

of the lines resolved in the higher orders with the RMS deviation well 

within the resolution of the Fourier transform. The calculated exact T 

averaged transition intensities yield a qualitative fit to the experi

ment as shown in Figures 4.26, 4.27, and 4.28. 

In contrast to this n4 symmetry model, several models assuming an 

effective n2 permutation symmetry for the biphenyl spins .in 5CB-d11 

yield molecular parameters which reflect large distortions in the phenyl 

rings. Because the transitions which are predicted by the n4 model 

already fit the simulated spectrum within the available resolution, 

further slight improvements from the use of n2.symmetry models do not 

allow an unequivocal choice for the best model. We have also seen that 

very slight symmetry breaking distortions perturb•the spectrum in a 

manner resulting in a paucity of additional information with which we 

must determine the increased number of parameters of the lower symmetry 

model. Transitions in the high order spectra which are not predicted 

by a n4 symmetry model are not as closely fit by the n2 symmetry models 

considered here as other transitions. 

We have tried to model the high order spectra of SCB-d11 by consider

ing cases where there are real structural differences between the rings 

or the rings experience inequivalent mobilities while undergoing inter

nal motions. The data do not allow us to exclude the latter possibility, 

but seem to require real structural deformat!ons of the rings to achieve 

the closest fits. In addition, we have considered the effects of proton 

chemical shifts and heteronuclear couplings on the multiple quantum spin 
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echo spectrum. We have presented arguments which demonstrate that 

chemical shifts are not responsible for the additional structure in the 

six and seven quantum regions. However, we are unable to do the same 

with absolute certainty for heteronuclear couplings between ring protons 

and chain deuterons. Deuterium decoupling experiments were not entirely 

conclusive in resolving this issue because of the lower signal-to-noise 

of the high order decoupled spectra. 

Finally, we comment on the reliability of results from the various 

models used. At first, it may seem disturbing that several models 

achieved close fits with the spectrum but yielded internuclear distances 

which differ by amounts greater than their error limits. This, in part, 

reflects the fact that the errors are propagated directly from the degree 

of fit only for those lines assigned in the spectrum. Resolved lines in 

lower order spectra may also be assigned and perhaps would change the 

. overall fit obtained. Particular care must be taken to consider those 

experimental lines which are poorly matched by the theory, such as in 

the six and seven quantum spectra of 5CB-d11 • In addition, systematic 

errors caused by the neglect of vibrational and torsional averaging of 

calculated couplings is not included in the error limits reported in 

this chapter. Inclusion of these contributions to the errors would tend 

to bring the results of the various models into closer agreement. 

The best results in terms of reasonable values for bond angles and 

distances appears to be found in the n4 symmetry model. For the value 

of the dihedral angle derived, almost all models closely agree. This 

is understandable considering the strong dependence qn 4> for the six and 

seven quantum transitions i1;1 the neighborhood where the best fit values 

are found. From our results, we can confidently give a value of 30 + 2° 

to the dihedral angle of the biphenyl group of 5CB-d11 • 
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4.4 Experimental Examples of Biphenyl Solutes 

Of the other molecules shown in Figure 4.1 we will briefly present 

the results for 4,4'-dibromobiphenyl, 4,4'-d2-biphenyl and pure biphenyl 

dissolved in liquid crystal nematic phases. 

4.4.1 4,4'-d2-biphenyl and 4,4'-dibromobiphenyl 

The single quantum echo spectra of 4,4'-d2-biphenyl dissolved in 

Eastman Kodak L.C. #15320 and 4,4'-dibromobiphenyl in 4-ethoxybenzyl-

idene-4'-n-butylaniline (EBBA) are shown in Figures 4.37 and 4.38, 

respectively. Linewidths are narrower in both cases than for 5CB-d
11 

as a result of more reorientational freedom for the solutes. As a 

result, there should be adequate resolution in a well averaged single 

quantum spectrum to allow an analysis without resorting to a multiple 

quantum experiment, although the latter would of course, allow unambig-

uous line assignments to be made in higher orders. Deuterium decoupling 
. 

for 4,4'-d2-biphenyl could be easily achieved by frequency modulated 

irradiation or double quantum decoupling. The deuterium spectrum should 

yield an independent measure of one of the order parameters for compar-

ison with the results of the proton spectrum. A TPPI multiple quantum 

spectrum of 4,4'-d2-biphenyl is shown in Figure 4.39 and demonstrates 

the expected loss of signal-to-noise for a solute compared to a pure 

liquid crystal. 

4.4.2 Unsubstituted Biphenyl 

An analysis of the NMR spectrum of unsubstituted biphenyl dissolved 

in a liquid crystal has not been published before. Additional couplings 

to the para hydrogens, which are absent when these positions are sub-

stituted, are insensitive to the dihedral angle and the potential deter-

mining it. They will, however, add many more parameters from which the 
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Figure 4.37 

Oriented 4,4'-d 2 - Biphenyl 

Single Quantum Echo Spectrum 

XBL 8111-12425 

Single quantum proton spin echo spectrum of 4,4'-d2-biphenyl dissolved 

in the nematic phase of a liquid crystal at 30°C. The total width 

shown is 16.67 kHz. No deuterium decoupling irradiation was used. 
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Figure 4.38 

Oriented 4,4'-Dibromobiphenyl 
Single Quantum Echo Spectrum 

XBL 8111-12427 

Single quantum proton spin echo spectrum of 4,4'-Br2-biphenyl 

dissolved in the nematic phase of a liquid crystal at 65°C. The total 

width shown is 31.5 kHz. The central portion of the spectrum has been 

truncated in height. 
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Oriented 4,4'- d
2

-Biphenyl 

Proton Multiple Quantum NMR Spectrum 

XBL 8111-12424 

Figure 4.39 

Proton multiple quantum TPPI spectrum of 4,4'-d2-biphenyl at 30°C. 

An even quantum pulse sequence was used with preparation and detection 

times of 6 msec. Total width shown is 125 kHz. Most of the intensity 

is found in the zero and two quantum regions. No deuterium decoupling 

irradiation was used. 
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order tensor and ring structure may be obtained. Also, the resulting 

structure would be determined in the absence of perturbing affects of 

substituents. 

The single quantum spectrum is tremendously complex even though 

some resolved structure exists. An even quantum TPPI echo spectrum is 

shown in Figure 4.40. There is little intensity in the highest orders 

as would be expected on the basis of the approximate statistical 

arguments for the intensity distribution given in Chapter 3. Extensive 

averaging would be required to produce sufficient signal-to-noise in, 

say, the six and eight quantum regions to allow an analysis. Alternately, 

this molecule is a reasonable candidate for the selective excitation 

techniques briefly mentioned at the start of Chapter 3. 

4.5 Conclusion 

Clearly, we have achieved some of our goals in this chapter. We 

have given examples with various substituted biphenyl molecules which 

illucidate the strengths and limitations of non-selective multiple 

quantum NMR. The case of SCB-d11 shows how both deuterium single 

quantum and proton multiple quantum spectroscopy can be used in liquid 

crystals and compares the nature of information obtained from quadru

polar and dipolar interactions. Proton spectra are particularly desirable 

because of the higher precision for structural information and greater 

sensitivity available as a result of the larger gyromagnetic ratio. We 

have seen that a very simple model is capable of simulating most of the 

features of the high order spectra of SCB-d11• Transition frequencies 

in these spectra are only indirectly sensitive to the true order para

meters for the entire molecule with its myriad of conformational 
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possibilities. Additional couplings to the alkyl chain, perhaps with 

13 a C spin-1/2, would prove useful by adding features in the spectrum 

sensitive to the chain motions. Techniques which are extensions of 

the basic, non-selective multiple quantum experiments described here, 

such as heteronuclear multiple quantum NMR [113], could be used to 

increase the amount and variety of information available to determine 

molecular parameters. 
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Oriented Biphenyl 
Even Quantum NMR Spectrum 

XBL 8111-12426 

Figure 4.40 

Proton even quantum TPPI spectrum of unsubstituted biphenyl dissolved 

in the nematic phase of a liquid crystal at 44°C. A total of four shots 

were averaged and the preparation time used was 4.0 msec. Total width 

plotted is 100kHz. The single ten quantum transition is visible at the· 

right hand side of the spectrum. 
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Chapter 5 

Spectrometer 

The experimental work described here was performed on two high field 

NMR spectrometers which are largely equivalent in their design and oper-

ation. Both are home-built, 180 MHz, pulsed Fourier Transform spectre-

meters capable of a variety of experiments in solids and liquids using 

1 13 2 H, C and H resonance. Because most of the work was done on one of 

the two and this spectrometer has been modified during the course of 

experiments, a thorough description of its design follows. 

5.1 Magnet 

The magnet is a persistent superconducting solenoid made- by Bruker 

Instruments and operating at a field of approximately 42.5 kG. The room 

temperature bore of its dewar has a diameter of 3~ inches. The Larmor 

frequencies for the nuclei commonly observed at this field are: 

1H 185.04 MHz 

13c 46.52 MHz 

2H 28.40 MHz 

In addition to the main solenoid there are three superconducting, 

linear gradient coils for shimming the field homogeneity. One is along 

the main field axis and the other two are orthogonal and in the trans-

verse plane. These are normally left in a persistent mode during experi-

menta. Within the bore there is a set of home-built, room temperature 

coils producing ten linear and higher order gradients. Using these coils 

and the superconducting coils field homogeneities less than 1 PPM over a 



3 1 em region are easily obtained. The resulting field is extremely stable 

so that no field/frequency lock is necessary • 

. 5.2 Low Power R.F. Section ... -- - --·-··-- ---· 

A schematic diagram of the radio frequency electronics is shown in 

Figure 5.1. This figure shows the arrangement on the low frequency side 

for 13c resonance; removal of the doubler and changing the X synthesizer 

2 setting converts this channel to H resonance. All frequencies are 

supplied by two synthesizers: a Hewlett-Packard Model 3320A for the 

13 2 low frequency side (set at 3.26 MHz for C and 8.40 MHz for H), and a 

PTS Model 160 for the proton side. The rear panel output of the PTS 

synthesizer internal reference (10 MHz) is used to lock the HP synthe-

sizer, generate the intermediate frequency (i.f.), and drive the pulse 

programmer clock. 

Frequency generation for each channel is detailed more in Figure 

5.2. The output of the HP synthesizer (front panel setting plus 20 MHz) 

is used di+ectly for 2H or doubled for 13c. Switching and phase control 

for routing to the low frequency transmitter is done at this frequency. 

A local oscillator (L 0. i) frequency is generated by combination of this 

r. f. with the i. f. frequency. This L 0. is used in the low frequency 

receiver when 13c or 2H observation is required. The 30 MHz i.f. 

frequency for both channels is generated by tripling the 10 MHz refer-

ence of the PTS synthesizer. Besides being used in the low frequency 

t.O. generation, this i.f. is routed to the phase sensitive detectors 

and the .r.f. generation for the high frequency (proton) channel. 

Unlike the low frequency channel, pulse and phase control for the 

proton channel is done at the i.f. frequency. The front panel output of 

the PTS synthesizer at 155 MHZ is used directly as the t.O. frequency for 
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Figure 5.1 

30 

NUCLEAR MAGNETIC RESONANCE SPECTROMETER 

46.~ 

TTL FROM PP-..+ 

rsc.•H 
PULSE 46 

AND 
PHASE 

CONTROL 

3D 

11C OBSERVE 

'H OBSERVE 

'H 
PULSE 

AND 
PHASE 

CONTROL 

30 MHZ 
IF STRIP 

X MITT 

PHASE 
SENSITIVE 
DE~OR 

AUDIO 
FILTERS 

!REF I 

CARBON,DEUTERIUIII 
HIGH POWER 

PROBE AND 
RECEIVER 

CIRCUIT 

24Ft 

o• 
TO HSA 

go• TO HSA 

24Ft 

PROTON 
HIGH POWER 

PROBE AND 
RECEIVER 

CIRCUIT 

XBL 815-9495 

Block diagram of 180 MHz pulsed FT NMR spectrometer. Two nuclear 

frequency channels are shown. The proton frequency generation is based 

on a 155 MHz t.o. synthesizer output. The X frequency generation, shown 

here for carbon, is based on the r.f. output of the X synthesizer. Both 

channels make use of the 30 MHz i. f. reference which is also used in 

the phase sensitive detector. See text for a complete description. 
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20-50 MHz 

Input From Syn/Doubler 

Tripier 

10 MHz 30 
From Syn B.P. 

-
30 MHZ 

From 1H Quadrature 

155 MHz 

From IH Syn 

Figure 5.2 

6F Multiplier 

-12V 

30 

155 

-12V 

20-50 Output 
.--------e To 13c Quadrature 

50-80 50-80 Output 
~~~---------e 

To RCVR 

1-----------e 30 Output 
To 1H Quadrature 

185 185 Output 
t---e 

To Power Preamp 

XBL 814-9175 

Block diagram of 180 MHz NMR spectrometer 6F Multiplier. The X 

channel r.f. is used directly in quadrature pulse generation and is 

mixed with the 30 MHz i.f. to produce the receiver t.o. frequency. 

This i.f. is produced by clipping the 10 MHz reference with shorting 

crossed diodes and filtering for the third harmonic. The generation 

of the proton r.f. pulses from t.o. signal and i.f. pulses is also 

shown. 
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the proton channel. The 30 MHz pulse output is mixed up to the nuclear 

frequency by combination with this t.O. frequency. This is then amplified 

and routed to the high power transmitters and probe. The 155 MHz ~.0. 

is also directed to the proton receiver where it is combined with the 

nuclear signal. 

The pulse and phase generation (quadrature detection) for the low 

frequency channel is detailed in Figure 5.3. Switching is done at the 

r.f. used for sample irradiation. Two orthogonal phases are generated 

as the r.f. is passed through a hybrid. One phase is selected and a 

pulse is generated by a TTL controlled r.f. switch. A variable attenu

ator with 1 db increments is used to trim the pulse amplitude. For 

improved isolation, another r.f. switch in series is used before final 

amplification and transmission to the probe. The design of the r.f. 

switches used here and in the proton quadrature is shown in Figure 5.4. 

A TTL trigger is received and used to drive two Summit 571 r.f. gates in 

series. This circuit generally provides 30 to 40 db of isolation. 

Although the experiments in this work require only one phase at the 

low frequency for decoupling, four quadrature phases (X, X, Y, and Y) are 

generally required at the proton frequency. In addition, techniques 

such as time proportional phase incrementation (TPPI) require finer 

control of some of the phases and an ability to rapidly and reproducibly 

change between them under TTL control from the pulse programmer. A 

schematic diagram of the proton quadrature generation is shown in Figure 

5.5. 

The 30 MHz. i. f. signal is first split to two lines. One line is 

passed through a delay line phase shifter (Daico Model 100D0898) under 

TTL control of the pulse programmer. This is then further split and 
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13c ,2H . Pulse and Phase Generation 

R.F. Input 

(
46.5 MHz1 
28.4MHzj 

Figure 5.3 

Hybrid 

P.P. 

1 X 

R.F. Switch 

y 

t 
P.P. 

TO 
t----tAttenuator 1----- X MIT 

XBL 814-9174 

Block diagram of X channel quadrature pulse generation for 180 MHz 

NMR spectrometer. Switching is done directly at the nuclear frequency 

to avoid possible leak through of an R..o. frequency. The attenuator 

is settable in 1 db steps. 
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TTL 
Pulse 
Input 

Figure 5.4 

51 

+5 

Dual RF Switch 

+5 

9 

9 

14 

+5 RF IN let---_. 

RF OUT 
r----fe)( Pulse) 

SUMMIT 
571 

SUMMIT 
571 

XBL 817-10850 

Dual r.f. switch for 180 MHz NMR spectrometer. TTL control pulses 

are input at the BNC connections and received by a quad OR buffer. The 

high and low outputs of the N8T09 drivers are used to bias a diode 

bridge which opens the r.f. gates. Two gates in series are used to 

produce ~80 db of isolation when the switch is "off". 
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30MHz 

TTL 

+ 
DIGITALLY 

CONTROLLED 
8 BIT 

4> SHIFTER 

.__ ___ -I HYBRID 

Figure 5.5 

PROTON QUADRATURE, PHASE AND AMPLITUDE ADJUST 

v 

XBL 8111-12423 

Block diagram of proton quadrature pulse generation for 180 MHz 

NMR spectrometer. With no delay chosen for the 8 bit phase shifter, 

the four lines are mutually orthogonal (X, X, Y, Y). For arbitrary 

delay, the first two lines are still 180° relative to one another 

(~, ~) but at some other phase relative to the second two lines. The 

adjustment attenuators are continuously variable from 0 to 20 db and 

the phase delay adjusters vary from 0° to 90°. 
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passed through phase delay adjusters (Merrimac Model PSS-2-30) and vari

able attenuators (Merrimac Model ARS-1, 0-20 db). The result is two r.f. 

lines 180° in phase with respect to one another but at an arbitrary phase 

relative to the second line of the initial power splitter. This second 

line is passed through a hybrid to give two more lines (Y and Y) with a 

180° relative phase. Only amplitude control of the Y line is required 

for complete fine tuning.of the four lines. After switching (dual r.f. 

switch, Figure 5.4) the outputs are recombined, amplified, and adjusted 

by a final attenuator with 1 db increments before conversion to the 

nuclear frequency and final transmission. 

The 8 bit phase shifter is schematically represented in Figure 5.6. 

This unit consists of a series of delay lines which are switched in and 

out of line by TTL controlled gates. The total phase shift produced is 

the sum of the delays chosen. The precision of this phase shifter is 

2~/256 and the accuracy of phase shifts checked w1th a vector impedance 

meter is within +2° for an arbitrary phase shift. The VSWR of the unit 

is dependent on the phase setting and this results in an amplitude vari

ation on the order of a few percent. This generally is not a problem if 

there is saturation of some amplification element down path of the phase 

shifter. Because of narrow band filtering in the r.f. circuitry, a 

phase shift is not effective until about 2 ~sec after a change has been 

made in the 8 bit control word. This control word is generated by a 

digital controller shown in Figure 5.7. The 8 bit word sent to the Daico 

phase shifter is chosen from a number of sources input to a set of 

parallel multiplexers. The data sources include a front panel setting, 

a single latched byte from a computer interface or a FIFO output loaded 

from the computer, and a wrap around adding circuit used for phase incre

menting as in the TPPI experiments. 
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Figure 5.6 

Schematic diagram of r.f. phase shifter. Phase shifts which are 

a multiple of 2~/256 are caused by switching the various delay lines 

in the path of the i.f. signal. The eight bit TTL control word is 

supplied by the circuit shown in Figure 5.7. 
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Figure 5.7 

Pho•• Sftlft•• Conttot Looic 

tNCIIIIIIIENT SET SWITCHES 
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•• 

TO 
PHASE 

SHIFTEfll 

MANUAL 
SET 

SWITCHES 

FRONT 
PANEL 

XBL 815-9496 

Circuit diagram for control logic supplying the eight bit word 

for the r.f. pulse shifter shown in Figure 5.6. 
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All mixers used in the low power r.f. section are high level, 

double balanced Anzac Model MD-143, Mini-Circuits ZAD-2, ZAD-1-1 or 

Hewlett Packard Model 10514A. All power dividers and combiners are 

either Anzac Model DV-50, Mini-Circuits ZSC-2-1, Anzac Model DS-312 

(Four-Way), or Merrimac PD-20-50. Hybrids are Merrimac Model QH-1-30, 

Anzac Model JH-126, Anzac Model JH-125, or Y.lini-Circuits ZSCQ-2. Low 

power amplifiers are Anzac !-1odel AM102 (-10 db) and Anzac Model AU105 

(~20 db). All voltages (+5V, ±12V, +24V) are supplied by regulated 

power supplies and are further regulated by i.e. circuits at each 

component box. 

5.3 High Power R.F. Section 

Once the switching and r.f. generation has been accomplished, pulses. 

are routed to the power preamp for amplification, secondary switching for 

isolation, and filtering before transmitting to the probe. This is shown 

in Figure 5.8. The 24, 25 and 53 db amplifiers are, respectively, 

Radiation Devices Models BBA-1-PB, BBA-1-PBM, and BBA-1-PM. The buffer 

amplifier for the proton channel is a 5 watt power amp from RF Power 

Labs Model M305-5. 

A variety of power transmitters are available. For decoupling or 

pulses, the proton frequency is delivered as is to a cavity tuned Class 

C [114] transmitter with a 4CX250-B tetrode tube (2.5 kV plate, 130 V 

bias, and 500 V screen). Alternately, the buffer amplifier is bypassed 

and an Amplifier Research Model lOOL Class A amplifier is used. Both 

arrangements are capable of producing 100 to 200 watts depending on 

input amplitude, tuning parameters, input attenuation, etc. 

13 2 
Similarly, several transmitters are available for C and H. Two 

Class C Millen type transmitters employing RCA 3E829 tubes are used, 
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Figure 5.8 
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XBL 817-10853 

Block diagram showing final amplification, switching, and filtering 

before r.f. pulses are sent to high power transmitters. The output of 

this section is designed to provide enough power to drive and saturate 

the Class C transmitters described in the text. For use with the Class 

A transmitter for protons, the final buffer amplifier is removed and 

the output trimmed to ~1 V. 
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13 2 
one tuned for C and one for H. Typically, 200 watts can be produced. 

In addition for higher power applications, a Drake Hodel L-7 driven by a 

EN! 350L will provide on the order of a kilowatt. 

With a single coil probe design, care must be taken to protect the 

receiver preamplifier from the high power pulses. The circuit generally 

used is shown in Figure 5.9. Crossed diode pairs are used to block 

transmitter noise at levels ~0.6 V. A quarter wave line at the obser-

vation wavelength with crossed diodes to ground protects the receiver. 

Occasionally, an additional quarter wave line and diodes are used for 

further protection. Typically, there is less than 1 V (peak to peak) 

of a distorted wave form leaking to the preamp during a pulse. A band 

pass filter is used between the probe and quarter wave line to improve 

rejection of the decoupling frequency when present. 

·s.4 Probes 

Several home built probes were used in this work. Each probe used 

was chosen for particular characteristics which optimize signal-to.= 

noise, high power decoupling and minimum sample heating. 

The general resonance circuits used are shown in Figure 5.10. For 

experiments requiring only observation of the proton frequency with no 

decoupling, a simple, tunable resonance circuit was used. The tuning 

capacitor is a home-bui~t unit consisting of an inner cylindrical con-

ductor and an outer bell separated by a teflon dielectric. Matching 

capacitance of several silver mica or ceramic capacitors are placed in 

parallel. The sample coil is made from 18 or 20 gauge copper wire 

wrapped to form a solenoid of 5-7 turns with a diameter of 6 mm and 

about 1 em long. With 200 watts of r.f. power and a probe Q - 100, 

rotating fields of 10-20 G can be generated. 



Transmitter 

Figure 5.9 

Probe/Receiver Circuit 

Crossed 
diode pairs 

Crossed 
diode 
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Filter 

... -----o;-------IRecelver 

Probe 
connection 

XBL 814-9172 

Probe and receiver connection to high power transmitter. Trans

mission diode pairs (IN 914) are used to block transmitter noise and 

protect the receiver preamp from high power pulses. The A/4 line is 

a quarter of the wavelength being observed. 
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(a) SINGLE-TUNED PROBE 
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H Transmitter, 
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Figure 5.10 

Probe circuits for NMR spectroscopy. 

a) Single tuned circuit. Tuning is done with the variable cap 

in series with the sample coil. The second capacitor is adjusted to 

achieve impedance matching with the transmitter and receiver. 

b) Double tuned circuit. Both low and high frequencies tune 
H with the same coil. The proton wavelength is A • 
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For double resonance experiments, an additional tuned circuit at 

the decoupler frequency is present. The double resonance probe must be 

capable of producing large r.f. fields at both frequencies, while detec-

ting the microvolt-sized nuclear signal during decoupling. ·This implies 

good isolation between the two circuits. In addition, sample heating 

due to resistive losses in the coil are a problem when working with an 

ordered sample such as a liquid crystal. 

Some of the double resonance experiments were performed on a two-

coil probe. In this design, the deuterium resonance circuit is similar 

to the proton (Fig. 5.10a) except for capacitative values and a coil of 

saddle Helmholtz geometry. The saddle-shaped deuterium Helmholtz coil 

is mounted orthogonal to the proton solenoid and outside of the latter. 

This arrangement provides good isolation (30-40 db) and the distance of 

the decoupler coil from the sample avoids thermal contact. Dielectric 

losses in the sample itself can still be a problem. Typically, 20 G of 

rotating field can be achieved for 
2
H decoupling, the main limitation 

being arcing at some point in the probe. This was found to be adequate 

for some of the experiments in this work. 

When more decoupling field is required, a double-tuned, single coil 

arrangement (Fig. 5.10b) is necessary [115]. Most of the elements in 

this probe are similar to the single resonance circuit. High and low 

impedance points for the proton frequency are present on either side of 

the sample coil and are effected with the use of quarter wave lines: 

one grounded and one open. The use of a single solenoid coil for both 

2 
high and low frequency improves decoupling by allowing for greater H 

fields (40-50 G) and equivalent r.f. homogeneity over the sample for 

both channels. It was found, however, that sample heating during 
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decoupling was more problematic than with the Helmholtz coil due to the 

closer proximity of the coil to the sample. This was avoided by using 

a smaller sample with teflon spacers to hold it along the axis of the 

solenoid. The resulting reduction of the filling factor lowered the 

signal-to-noise somewhat. Although it has been claimed [116] that the 

efficiency, defined as the fraction of transmitter power that is 

delivered to the sample coil, will be significantly less for the high 

frequency side of a double-tuned probe of this design compared with a 

signal resonance circuit, it was found that, in general, 90° pulse times 

were nearly equivalent for the probes used in this work. 

Because the anisotropic ordering of a thermotropic liquid crystal 

is dependent on temperature, careful control of the temperature of the 

sample environment is required. The probes used in this work are 

equipped with an evacuated glass dewar which surrounds the immediate 

region of the sample coil. Radio frequency power·is passed into this 

region by leads through the KEL-F or teflon support on which tuning 

elements are mounted. The temperature is measured by a single copper= 

constantin thermocouple junction -1 em from the sample coil. The tem

perature is read by a Noric digital thermometer. Rough temperature 

regulation is achieved by passing air or N2 through the sample region 

via an evacuated transfer line which is also the support rod for the 

probe. For temperatures above the ambient gas temperature, the gas is 

first heated by passing it through an element with up to 100 watts of 

regulated power. Colder temperatures are achieved by first bubbling 

house N2 through liquid N2 , or passing air through a copper tube im

mersed in ice water. The temperature read by the digital thermometer 

is sampled periodically and compared against a preset value. If the 

temperature drops below-this value, a small auxiliary heater (-30 watts) 
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in the probe transfer line is turned on. This heater is disabled during 

a pulse sequence and data acquisition to avoid noise pick-up. With this 

arrangement, the temperature sample of the environment can be regulated 

to +O.l°C over a range from -120° to +150°C. 

5.5 Receiver Section 

A high sensitivity NMR spectrometer must be able to detect the 

microvolt-level nuclear signals typically present and be designed so 

that the noise figure of the preamplifier determines receiver noise 

contributions. In addition, quadrature phase sensitive detection is 

employed to provide maximum signal-to-noise and for those experiments 

where the signal is not linearly polarized. 

5.5.1 Preamplifier and IF Gain 

The preamplifier sectionsof both the high and low frequency channels 

operate in a similar manner. For carbon and deut~rium detection, the 

preamplifier (Miteg Model AU-IB-005M) provides about 35 db gain of the 

nuclear signaL After filtering, this is mixed with the R..O. using a 

Hewlett-Packard model 10514A mixer to produce the 30 MHz receiver i.f. 

signal. The major difference in the proton receiver is the use of a 

preamplifier with ~so db of gain and a Mini Circuits Model ZAD-1-1 mixer. 

Typically full receiver recovery follows 20 ~sec after an r.f. pulse at 

the observation frequency. 

Either receiver i.f. is routed to an i.f. strip amplifier (RHG Model 

EVT3010) with a band pass of 10 MHz. This unit provides 20 db of fixed 

plus 50 db of variable gain. This amplifier is nominally linear but 

must be calibrated when relaxation measurements are taken. 
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5.5.2 Phase Sensitive Detector/Audio Filters 

Phase sensitive detection of the receiver i.f. signal is accomp

lished as follows (see Fig. 5.11). The 30 MHz spectrometer reference 

is first passed through a variable delay line and then split by a 

quadrature hybrid. Both channels are passed through mixers,along with 

the i.f. strip output which has been divided with no phase difference. 

The audio output is filtered by variable low pass filters (see Fig. 5.12) 

and sent to the digitizers. The relative phase of the spectrometer 

and signal is adjusted by the reference delay line. 

5.6 Digitizers 

The ±1 V phase detected signal channels are sent to the High Speed 

Acquisition system for digitizing and memory storage (see Fig. 5.13). 

The signals are first gained to ±10 V by a small audio amplifier (AM101A). 

On a "START" pulse the signal is sampled by a Datel Model SHM-2 sample

and-hold and converted to 10 bits of data by a Datel Uodel ADC-Gl0B4C 

analog-to-digital converter. Total conversion time is 1 ~sec. There is 

an equivalent circuit for each phase channel. The START pulse is gen

erated and the data read by an interface attached to the spectrometer 

computer (Data General Nova 820). Successive data points (complex) are 

placed directly into the computer's memory as they are converted via the 

DMA. The interface can acquire up to 2048 complex data points with a 

dwell time of ~3 ~sec. This provides adequate spectral breadth for all 

experiments in this work. The acquisition interface was built by 

Spectrometer Data Systems and has been modified to allow data collection 

from a single trigger pulse for an entire FID or from trigger pulses for 

each point in a FID. All data collection is synchronous with the pulse 

programmer clock. 
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Phase sensitive detector. Heterodyne detection method is employed. 

The i.f. signal is divided with no phase difference and the reference is 

. split into 0° and 90° lines. These are mixed to give two audio channels. 

HSA means High Speed Acquisition. 
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affects filter roll-off characteristics. 
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Figure 5.13 

Data Acquisition circuit for 185 MHz NMR Spectrometer. 

Each channel of phase detected signal is converted to 10 bits of 

data. Conversion time is 1 ~sec. 
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5.7 Pulse Programmer 

The nature of the pulsed NMR experiments described in this work 

require a programmable unit to generate pulse gating and delays for the 

sequences used. The pulse programmer employed in this spectrometer is 

microprocessor based and contains its own memory and home-written soft

ware. This software (micro-code) allows pulse programs of up to 64 

simple steps to be entered and executed. Each step can be an operation 

such as variable.definition and incrementing, comparison of variables 

and branching, etc. Based on the pulse program instructions, the micro

processor outputs a sequence of timing words to either a RAM or FIFO 

memory. These timing words are clocked out by gating hardware which is 

based on the 10 MHz reference output of the proton synthesizer. Thus 

pulses and delays are settable in 0.1 ~sec units and quite complicated 

sequences can be programmed. The microprocessor communicates with the 

spectrometer computer via the EIA interface of th~ system console. The 

design and operation of this pulse programmer are described in more 

detail elsewhere [ 45 ] • 

5.8 Computer 

A dedicated minicomputer is used to direct the operations of the 

spectrometer. Data acquisition, data manipulation and peripheral control 

are all handled by specialized hardware and software. 

5.8.1 Hardware 

The spectrometer minicomputer is a Data General Nova 820 with a 16 

bit word length and 32 K words of core memory. Mass storage is on a 

Data General 6045 hard disk subsystem with 10 Mbyte capacity. Data back 

up and storage is aided by a Data General 6030 single density floppy 

drive with 315 kbytes of storage capacity. Besides CPU, TTY, I/0, 
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Disk I/O and memory boards, several interfaces handling data display and 

x-y plotting, data acquisition and miscellaneous peripheral control 

reside in the main frame. 

5.8.2 Software 

To handle the many different operations of the spectrometer which 

are under computer control, a large program was written [117] mostly in 

FORTRAN with some subroutines in assembly language. This program 

comprises an independent, stand-alone operating system. Computer memory 

is partitioned by the software into well defined regions as shown in 

Figure 5.14. Most of the memory is devoted to data, allowing rapid 

acquisition and manipulation of digitized signals. The entire program 

cannot fit into the remaining memory and so is divided into a series of 

overlays which are swapped to memory from disk as needed. 

This operatingsystem consists of 60 commands which direct data 
. 

acquisition and display, Fourier transformation, phase correction, and a 

variety of other operations. Commands are given simple names and accept 

parameters when executed. Commands may either be executed individually 

from the console or as a sequence from a previously defined string 

stored on disk (known as a MACRO). MACRO command strings except variables 

which are passed to the commands at execution time and MACRO's may be 

nested in almost any way desired. This arrangement allows unattended 

direction of a complicated experiment which is defined beforehand. Data 

is stored in a large archive on the hard disk system and later moved 

to floppy disk for long term storage. 

In addition to the spectrometer operating program, several routines 

were written for specialized data manipulations. Among these is a series 

of programs which facilitate the calculation of a large, floating-point 

disk Fourier transform. These are described in Appendix C. This was 
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The hatched region is used for communications with the pulse 

programmer. 
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required in the work on liquid crystals because the computer word size 

(16 bit) and core memory size (32 K) limits the length of a Fourier 

transform that can be calculated by the spectrometer software to 8192 

complex points. The disk based programs allow a spectrum of up to 

64 K words (complex) to be calculated with no overflow. 

5.9 Conclusion 

In this chapter one of the two NMR spectrometers used in all experi-

ments reported in this work has been described. The basic circuitry of 

the spectrometer consists of a low power r.f. section in which pulses 

are generated with well defined phases relative to the spectrometer. 

reference. All pulse and delay timing is choreographed by a sophisti-

cated, microprocessor-based pulse programmer. Pulses are amplified, 

converted to the nuclear frequency of interest, arid transmitted to the 

sample probe. Two designs of tuned resonance circuits are used in the .. 
probes: a single coil for each resonance used or a single coil, double 

tuned probe. Each design offers some advantages over the other; the 

choice of probe was dictated by the considerations of signal~to-noise, 

sample heating and decoupling power requirements. 

The dedicated minicomputer system with specialized software used 

with the spectrometer is also described in this chapter. This arrange-

ment offers a great deal of flexibility in the types of experiments that 

can be performed. The ability to construct chains of simple commands 

as MACRO strings allows for automation of experiments once initial para-

meters are set. The High Speed Acquisition system employed is suffi-

ciently fast for solid state experiments and adaptable to high resolution 

for liquid crystal and liquid samples. Magnetic field homogeneity is 



obtained with a set of room temperature shim coils in addition to 

superconducting gradient coils. Finally, a low noise figure pre

amplifier followed by variable gain i.f. stage and phase sensitive 

detection yield the best arrangement from the standpoint of 

signal-to-noise. 
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APPENDIX A 

Spectral Simulation and Iteration Programs 

This appendix describes the simulation and iteration programs 

(MQITSET and MQITER) used to fit the multiple quantum spectra discussed 

in Chapters 3 and 4. Both programs and their subroutines are written 

in FORTRAN IV and execute on a DEC VAX/VMS 11/780 computer. All the 

file I/O statements are specific for that computer but may be modified 

to run on virtually any medium or large scale computer. The VAX system 

has 1.5 ~lbytes of virtual memory and so program MQITER dimensions large 

arrays which allow it to handle up to 10 coupled spins. 

In the following sections, the theory of linear least squares para

meter adjustment is briefly reviewed and its application to NMR spectral 

fitting discussed. In Section A.2.3, a description of program flow for 

MQITER is given. Finally an example, partially oriented benzene, is 

presented to demonstrate the basic operation of MQITER. 

A.l MQITSET 

MQITSET is a program used to collect data required for the execu

tion of MQITER. The latter program is non-interactive and acquires all 

of its necessary data from file MQITER.DAT. MQITSET asks a series of 

questions and, based on the responses, collects coupling constants and 

creates the data file. In this manner, several data files can be 

created while the actual simulations and iterations are done in the 

background without interaction from a terminal. 
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A.2 MQITER 

MQITER is the basic simulation and iteration program used for spec-

tral fitting. For spectral simulation, input consists of the dipolar 

and scalar couplings. From these couplings the homonuclear, spin-1/2 

Hamiltonian matrix is set up in a single product basis set. Chemical 

shifts and rotating frame offset are assumed to be zero. This is then 

subjected to a diagonalization routine employing the Jacobi rotation 

technique. Finally, the transition frequencies expected in the multiple 

quantum spectrum are calculated. This is done by first classifying 

eigenstate vectors by symmetry representation and then choosing all 

possible transitions within each representation. 

Once an initial simulation has been done, experimental frequencies 

can be assigned to those calculated. The calculated frequencies are 

identified by a number given them in the simulation. With these as 

input, the program is run again and a linear leas~ squares variation 

is used to refine the couplings and produce a new spectrum with a minimum 

RMS deviation from the experimental lines. The method of least squares 

variation is essentially the same as that used by Castellano and 

Bothner-By in their program LAOCN3 (see Ref. [118,119] and references 

therein). The next section will discuss the theory of these iterative 

calculations. 

A.2.1 Least Squares Spectral Analysis 

If a set of experimental measurements have been made, {m.}, cor
~ 

responding to a set of theoretical quantities, {~} and it is necessary 

to find the parameters, {p }, which determine the K 's from known q . -1< 

quantities, i.e., 

(A.l) 
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then the method of least squares is appropriate. In this method, it is 

desired to minimize the quantity 

R, 

I <~~>2, 
k=l 

(A.2) 

where ~~ = ~ - ~· In matrix notation we require 

a (t.mT~m) = 0, 
dp. ~ :::: 

J 

(A.3) 

for all the parameters j = 1, ••• , q. In order to obtain a solution for 

Equation (A.3), ~is expanded in a Taylor series about some initial 

(0) 
parameters g . 

(O) q a (O) 
~ = ~ + L -a- <~> (O) <P3· - P3· >' 

j=l pj p 

= ~(0) +~~.g. 

(A.4) 

In Equation (A.4) it has been assumed that only small changes in para-

meters are to be considered and so terms with higher derivatives of M 
~ 

are insignificant. If we use as the vector of residuals the difference 

between the measured quantities and the zero order term of Equation (A.4), 

~~ = m- ~<o>, (A.5) 

then the minimization problem becomes, 

(A.6) 

which may be rewritten as 

(A. 7) 

231 



If M is a linear function of the parameters, then Equation (A.7) is the 
~ 

solution which gives the form of the function in Equation (A.l). This 

is what has been assumed in going from Equation (A.6) to Equation (A.7), 

i.e., that~ is not a function of the parameters. For the case of spec-

tral fitting in NMR where the measured quantities are transition 

frequencies, their dependence on coupling constants is, in general, not 

linear [118]. Thus, the parameters will have to be varied to approach 

the situation stated by Equation (A.7). The usual procedure is to solve 

the "normal equations," 

(A. 8) 

to give corrections to the parameters which are used to calculate a new 

~(i). It can be shown that, as long as the changes to the parameters 

are kept small so that the "linearization" approximation is valid, this 

method may converge to some set of final parameter·s g {f) representing a 

local minimum of residuals [120]. 

The question of uniqueness of the solution g(f) must then be taken 

up. It is possible that the convergence will be to a local minimum on 

the surface of parameter space which is oneamong several or even an 

infinite locus of solutions. l..Jhere the convergence ends up will be 

determined by the "closeness" of the initial parameters (i.e., the mag-

nitude of the initial RMS error) and the assignments of the measured 

quantities, {mi}. The Castellano/Bothner-By method requires a reasonably 

good choice of initial parameters and line assignments [119]. Generally, 

when the number of lines assigned does not greatly exceed the number of 

parameters varied, an improper line assignment will result in no conver-

gence at all. Several different line assignments may be tried to isolate 
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those which do converge. For single quantum NMR spectra of a molecule 

with a large number of interacting nuclei, the number of different line 

assignments possible which fit within some range of the initial simula

tion becomes too great to allow a full least squares iteration of each. 

With the increased resolution and spectral simplicity inherent in high 

quantum spectra, the number of reasonable line assignments is greatly 

reduced. In a similar sense a variety of initial parameters may be 

used to probe the space of possible solutions. The advantages of using 

multiple quantum spectra in choosing initial parameters arise when a 

choice can be made between several different coupling constant models 

which predict different multiple quantum spectra. 

For either a multiple quantum or a single quantum case, the uniqueness 

of a solution ·may depend on molecular symmetry. For example, it has been·.· 

shown that two and three spin systems analyzed from line frequencies 

alone yield several or evenan infinite number of solutions [121]. 

Unique solutions only become possible when intensity information is in

cluded. For a general spin system without s)11!111letry, the direct and in

direct couplings and the chemical shifts may all be determined uniquely 

except for the relative sign of the couplings with respect to shifts and 

for a permutation of the nuclei [122]. The ambiguity in numbering of 

nuclei is removed with the addition of molecular symmetry which also 

reduces the number of parameters required tosolve for. In addition, when 

some of the parameters are assumed, the number of possible solutions is 

reduced. Thus, the uniqueness of a soiution derived from the Castellano/ 

Borthner-By method depends on how well the initial model fits an experi

ment and how many parameters in the model may be kept stationary. 
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Returning to Equation (A.8), it may now be seen what is required 

in the program MQITER. The measured quantities from a multiple quantum 

spectrum are the line frequencies, 

(A.9) 

the parameters are the direct and indirect coupling constants (chemical 

shifts are assumed to be equal) and the derivative matrix is 

elF. 
1 

(~) ij = Clp. • 
J 

Equation (A.9) is evaluated by considering the eigenstates of the 

Hamiltonian for the initi·al parameters and the line assignments made 

from the spectrum. The derivatives of Equation (A.lO) are found by 

differentiating the Hamiltonian in the simple product basis set: 

aF. [n n J 1 n m 
Clp j = Clp j - Clp j 

t a~ 
+AS
~ ~ Clp. 

J 

(A.lO) 

(A.lla) 

(A.llb) 
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In reaching Equation (A.llb), the orthonormality of the eigenvectors has 

been used. The left hand derivative matrix in Equation (A.llb) is dia-

gonal and so we need only consider the diagonal elements of the right 

hand matrices. Those elements cancel in the last two terms and so 

(A.l2) 

Equation (A.l2) states that the derivatives for V in the normal equations 
~ 

can be found by differentiating the Hamiltonian and then applying the 

same transformation used to diagonalize it to yield the eigenstate .deriv-

atives. The differentiation of the Hamiltonian in the simple product 

basis is trivial since Hik = Ecipj and the eigenvectors required by 

Equation (A.l2) are found at each cycle of the iteration. 

Once the derivatives in Equation (A.l2) are calculated, the normal 

equations may be solved according to Equation (A.8) to yield corrections 

to the parameters. The initial parameters are adjusted by these amounts 

and the next cycle of the iteration is started. In·each cycle, the RMS 

. deviation of the calculated lines and assigned frequencies is computed 

(Eq. (A.3)). If this RMS deviation does not change by more than one 

percent on going from one cycle to the next, then the definition of con-

vergence has been reached and the final parameters used in a spectral 

simulation. Figure A.l shows the overall procedure used in multiple 

quantum spectral fitting. 

A.2.2 Error Analysis 

The errors present in the digital resolution of a multiple quantum 

spectrum can be propagated to parameter errors by the usual techniques. 

It can be shown [118] that for the case where the standard deviations of 
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each frequency measurement are the same, the variance-covariance matrix 

for the parameters derived from Equation (A.8) is given by the coeffi-

cients of the normal equations: 

(A.l3) 

Diagonal elements of C give individual errors in each parameter (cr. 2) 
~ 1 

and off-diagonal elements give the covariances defined by 

where the angle brackets define an expectation value. In general, the 

parameters used for iteration are not independent and so the covariances 

are expected to be significant. As in the original program LAOCN3, the 

matrix in Equation (A.l3) is diagonalized to give parameter errors for 

linear combinations of parameters forming a principle axis system in 

"error space". This may be of use in identifying those linearly inde-

pendent combinations of parameters which define the system better. In 

addition, this locates the maximum and minimum errors possible for the 

parameters. In Equation (A.l3) the variance cr
2

, assumed equal for all 

lines used in the fitting, may be assumed from the final fit as [118] 

2 t a = (AM AM) / (k - q) 
~ ~ 

(A.l5) 

where k is the number of assigned lines and q is the number of parameters. 

The propagation of errors from the refined parameters determined 

from MQITER to quantities such as bond angles and distances must also be 

considered. If the derivatives defining the relationship of the desired 

quantities, ~' with respect to the variables ~ are known, then the 

propagation of errors is expressed as 
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(A.l6) 

,12 is the matrix of deri va ti ves, ay
1
. I ax. , and C , C are the variance-

-- k. ~ ~ 

covariance matrices. Such a propagation of parameter errors will become 

important in the discussion of the program BIPH5PARA (Appendix B). 

A.2.3 Program Description/MQITER 

The listing for the iteration program MQITER is given in Appendix D. 

What follows is a brief description of the programs operations and sub-

routines. Table A.I gives a listing of the subroutines used and Table 

A.II a listing of the major matrices required. This listing is of a 

version designed to handle up to ten spins. Not all multiple quantum 

spectra may need to be calculated since line assignments may only be 

taken from the highest quantum transitions. If this is the case, the 

program allows for the exclusion of those parts of the Hamilto.nian not 

necessary. The Hamiltonian is first set up in th~ simple product basis 

set in block diagonal form [118]. If a complete zero quantum or one 

quantum spectrum is desired then every submatrix must be set up in this 

basis set and then diagonalized. If this is the case, then the largest 

spin system possible with the array dimensions given in Table A.II is 

eight spins-~. MQITER is capable of calculating higher multiple quantum 

orders for greater than eight spins. As an example, if the five quantum 

is desired, none of the transitions involve the submatrix with M = 0 and 

its diagonalization may be omitted. This eliminates the need to dia-

gonalize a 70 x 70 matr.ix and so computational time is decreased consider-

ably. Some multiple quantum transitions for orders lower than five may 

still be found but those spectra will be incomplete. Variable MAXMAT 

holds the dimension o.f the largest Zeeman submatrix which is allowed. 

In this manner, part of the total multiple quantum spectrum can be 



Table A. I 

Subroutines and Functions Used by MQITER 

Subroutine or Function 
Name 

1) LINORD 

2) CNTOUT 

3) HAMILS 

4) CONDIT 

5) ERRIT 

6) NORMAL 

7) MINV 

8) CORREC 

9) GENSYM 

10) EIG2 

11) EOUT 

12) MQ2DIFF 

13) NUMSRT 

14) UNTRANS 

15) READMS 

16) WRITMS 

17) US'WAP 

18) SYMSET 

19) FRQOUT 

20) MAT 

21) MATVEC 

Called 
From 

MQITER 

MQITER 

MQITER 

MQITER 

MQITER. 

MQITER· 

MQITER 

MQITER 

MQITER 

MQITER 
HAMILS 

MQITER 
HAMILS 

MQITER 

HAMILS 

HAMILS 
US'WAP 

MQITER 
HAMILS 
SYMSET 
US'WAP 

USWAP 

HAMIL5 

MQ2DIFF 

MQ2DIFF 

All routines 

All routines 

Purpose 

Orders line assignments 

Outputs coupling constants 

Sets up Hamiltonian 

Sets up equations of condition 

Calculates RMS error 

Sets up normal equations 

Inverts a matrix 

Corrects initial parameters 

Rearranges symmetric matrix 

Diagonalizes a real symmetric 
matrix 

. 
Outputs energies 

Calculates allowed MQ spectra 

Calculates SP states 

Performs a unitary transforma
tion 

File I/0 

File I/O 

Rearranges Eigenvectors 

Calculates symmetry representa
tions 

Outputs frequencies 

Array index functions 

Array index functions 
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Array Name 

D 

CJ 

LST 

NO 

NSP 

NSM 

EN 

IPARAM 

DLMB 

MQIT 

LASS 

EXPER 

DC 

B 

v 

BV 

WORK 

Table A.II 

Major Arrays Used in MQITER 

Size 

(28) 

(28) 

(2,1024) 

(11) 

(11) 

(11) 

(256) 

(28,15) 

(256,28) 

(2,10) 

(230) 

(230) 

(230,28) 

(230) ~ 
(784) 

(28) ~ 
(4900) 

Purpose 

Dipolar coupling constants 

Scalar coupling constants 

SP states and quantum numbers 

Binomial coefficients 

Sum of binomial coefficients 

Sum of allowed sub-matrix 
dimensions 

Energies 

Parameters 

Derivatives of eigenvalues 

Multiple quantum orders 

Experimental line assignments 

Experimental frequencies 

Matrix of derivatives 

Miscellaneous work matrices 
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calculated for nine and ten protons. The lowest orders for which all 

allowed transitions may be found are zero quantum for eight protons or 

less, seven quantum for nine protons and eight quantum when the molecule 

contains ten protons. 

The program starts by opening three files; two are scratch files 

which will contain eigenvector matrices and one is the data file 

MQITER.DAT produced by MQITSET. The initial data is read in and certain 

array elements are determined~ Variable N is the number of spins, LOWORD 

the lowest order transitions for which a complete spectrum is desired 

and ITER is the iteration control variable. Next, the couplings are 

read in (either from a previous data file with the same name as CASE or 

from MQITER.DAT) and output by subroutine CNTOUT. If this is an iterative 

calculation, the line assignments are also read in. Subroutine LINORD 

arranges them by order and line number for later calculation. Next, the 

parameters to be varied are read. A total of 28 ~rameter sets are 

allowed. With most molecules of interest, symmetry dictates that some 

parameters must be kept ,equal during the iteration [118]. As an example, 

for benze~~' all the orphp couplings are equal and this forms one para

meter set. A total of __ l~,.parameters are allowed per parameter set. The 

method of specifying which dipolar or scalar coupling is meant by each 

. parameter is described in· the output of program MQITSET. 

The iteration loop· takes up the next eleven statements. Subroutine 

·" HAMIL5, described below, is,:called to set up and diagonalize the Hamil-

tonian matrix and find.:.~he. derivative of this matrix with respect to 

. __ ,,r,··, ·each of the paramet·~rs.:-_c:IfriTER is zero, then the program just skips to 

the part which simulat~s the multiple quantum spectrum. Otherwise, sub

routine CONDIT is used:_to calculate the equations of condition. ERRIT 

finds the.current RMS error and returns variable NEXIT which determines 
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if convergence has been reached. Subroutine NORMAL sets up the normal 

equations according to Equation (A.8). MINV, a routine similar to a 

subroutine from an IBM subroutine package [123], inverts the normal 

equations coefficient matrix. Finally, CORREC applies the computed 

corrections to the parameters. ITER is then incremented for the next 

cycle. 

Once convergence has been reached or too many cycles have occurred, 

flow proceeds to the error analysis section. The matrix of coefficients 

to the normal equations is first output. The inverse of this matrix is 

proportional to the parameter variance-covariance matrix according to 

Equation (A.l3). Then, as described in Section A.2.2, this matrix is 

diagonalized by EIG2 (described below) and the eigenvectors, the standard 

errors of these "eigen parameters'' and their probable errors are output. 

Finally, subroutine MQ2DIFF (see below) is used to simulate the multiple 

quantum spectrum from the refined parameter value&. 

Subroutine HAMILS is used to set up the Hamiltonian in a simple 

product basis set. The operation of this routine is based in large part 

on the methods developed by J. Murdoch [67 ]. The 2N simple product 

states are actually the integers from zero to 2N-l in which each bit 

represents one nucleus. The numbering of these "nuclei" follows that of 

the dipolar and scalar couplings used. A zero for a particular bit rep

resents one of the two spin-!l states (a or S) and a one means the other 

state. Thus, checking the value of a particular bit determines the spin 

state of that nucleus. For example, with four spins, a simple product 

state aSaS is represented by the integer 5 (0101 binary). Using these 

"spin states" the Hamiltonian is found in this basis set by "operating" 

on the states to determine which couplings contribute to each matrix 
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element. Both the on-diagonal and off-diagonal elements are calculated 

in this manner. Only the submatrices for each total magnetic quantum 

number are calculated, all other elements being zero. HAMIL5 uses a 

definition of dipolar couplings twice that of Reference [18]. 

After each submatrix of the Hamiltonian in the simple product basis 

set is calculated, it must be diagonalized to give eigenstates and eigen-

vectors. If this is the first cycle in an iteration, or if no iteration 

is desired, this is done immediately by EIG2. For an intermediate stage 

in the iteration, the Hamiltonian is first subjected to the transformation 

~~n) = ~~n-1) ~(n) ~(n-1) • (A.l7) 

·In Equation (A.l7), the subscripts indicate the cycle number. If the 

parameters have not changed much on going from cycle (n-1) to cycle (n), 

' then using the method of Equation (A.l7) will produce matrix M(n) which 

should be approximately diagonal. Subjecting this transformed matrix 

to the Jacobi method should require fewer rotations to reach a completely 

diagonal form. In addition, using Equation (A.l7) at every cycle will 

help preserve the order of the eigenstates. 

The subroutine EIG2 produces a diagonal matrix from a real symmetric 

one by the Jacobi rotation technique [124]. In this approach, the 

largest off-diagonal element is chosen as a pivotal element about which 

an orthogonal rotation is done. The angle of rotation is chosen so that 

this largest off-diagonal element is made to vanish. Orthogonal trans-

formations of this type are repeated until no off-diagonal element is 

larger than a threshold. The unit matrix is also rotated by the same 

angle for each transformation. It can be shown that the product of the 

orthogonal matrices for each rotation is the required eigenvector matrix 

[118]. 



As mentioned above, it is necessary to keep the eigenstates in the 

same order as in the initial diagonalization. This is important to main-

tain the fit to experiment because the eigenstates will no longer be in 

the proper order for line assignments and will cause an erroneous diver-

gence [125]. Such a situation is partly avoided in MQITER. Subroutine 

HAMIL5 calls USWAP which calculates the sum of squared deviations 

according to 

2 
6 .. 
~J 

If none of the eigenvectors have changed position then the minimum ele-

ments of matrix 6 will be along its diagonal. If one of the off-diagonal 
~ 

elements in a particular row is the minimum value of that row, then the 

eigenstates and eigenvectors are swapped accordingly. This procedure 

should maintain the line assignments and avoid divergence due to the 
. 

method of diagonalization. This rearrangement of the eigenvalue sequence 

is particularly common when the dimension of the submatrix is large and 

it contains several degenerate states. 

Subroutine MQ2DIFF is used to calculate the multiple quantum spec-

trum from final parameters. As with the other parts of the program, 

MQ2DIFF will calculate incomplete multiple quantum spectra when not all 

submatrices of the Hamiltonian have.been diagonalized~ Since there is 

no offset term in the Hamiltonian computed by HAMIL5, transition fre-

quencies for each order are calculated relative to the centers of the 

orders. HAMIL5 also assumes that all chemical shifts are zero and so 

each o~der is symmetric about its center. MQ2DIFF only outputs one half 

of the symmetric spectrum. After the presentation of the spectrum with 

identifying line numbers and transition states, the frequencies of one 

244 



half of each order are presented as a descending list of positive 

numbers. MQ2DIFF attempts to identify degenerate transitions in this 

list. The eigenstates may also be scanned for degeneracies to help 

locate doubly degenerate symmetry representations. 

Subroutine SYMSET is called by MQ2DIFF to classify eigenstates by 

their symmetry relations. The calculation is based on the group theory 

result stated in the following.equations. 

If l<r.IA1 1r.>l 2 
:F o, 

l. J 

then r. = r .. 
l. J 

(A.l9) 

In Equation (A.l9), the r symbols refer to the irreducible symmetry re-

presentations of states i and j. For NMR single quantum transitions, 

negiecting symmetry breaking relaxation effects, the magnetic dipole 

transition operators are totallysymmetric (i.e., ~l representatio~) 

[ 36 ] • Equation (A.l9) states that to find states of the same irreduci-

ble symmetry representation, the transition element 

must be found and compared to. zero. Instead of I , a more convenient . X 

operator to use in SYMSET based on the form of the simple product states 

is I • SYMSET loops through all eigenstates and calculates the appro-

priate matrix element from the expansion of these in terms of simple 

product states with the eigenvectors from HAMIL5 as coefficients. The 

resulting matrix elements are compared to a threshold level and if found 

greater than this level the corresponding states are labelled as belong-

ing to the same irreducible representation. In this manner, all states 

are classified by representation. An alternative to the approach of 
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calculating each matrix element individually is to set up the transition 

operator in the simple product basis and then transform it using the 

eigenvector matrix. 

When not all submatrices have been included in the calculations of 

HAMIL5, matrix elements of I_ alone are not sufficient to determine all 

the symmetry relations among eigenstates. The missing submatrix is 

"bridged" by computing matrix elements of In where n-1 is the number of 

submatrices missing. This allows symmetry representations for states 

below the missing Zeeman manifold to be connected to those above. 

However, calculations show [126] that matrix elements of In for states 

within the same representation may vanish and so this method may omit 

allowed transitions. The best possible calculation, without expressing 

the point group of the molecule in the Hamiltonian [127] is to use the 

single quantum operator I_. 

Once the representations have been determined", MQ2DIFF outputs all 

the. symmetry allowed transitions for the multiple quantum orders of inter

est. This presentation carries none of the information concerning inten

sities as they are dependent on experimental parameters as described in 

the previous chapters. Also output by the program are the eigenstates 

organized by the symmetry representations found by SYMSET. In this 

list, states labelled as representation #1 are those for which no non

zero matrix elements were located. States. of representation #2 are the 

totally symmetric (~) states. The extreme Zeeman states are always 

found in this representation. The relationship of the other represen

tations to the actual point group irreducible representations must be 

made by examination of the dimensions of each Zeeman manifold. 
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A.2.4 Program Example: Benzene 

As an example of the operation of MQITER, consider the case of 

benzene oriented in a liquid crystal as in previous chapters. The high 

order transitions produce very simple spectra and the line splitting of 

the sole five quantum pair is sufficient to determine the entire spectrum 

when hexagonal ring geometry and scalar couplings are assumed. Because 

of this, it is not necessary to use HQITER to iterate to a solution for 

the benzene spectrum. However, it is a well understood and characterized 

spectrum and so a convenient example to choose. This particular example 

is for the fit of one calculated spectrum to that of another and so the 

parameter errors are extremely small. The use of MQITER with actual 

experimental lines assignments also produces a very good fit with the 

parameter errors found to be well within the bounds expected on the basis 

of the digital resolution of the_ Fourier transform spectrum. 

An initial run is necessary to give line numb~rs for assignment to 

the "experimental" spectrum. In the second run, the line assignments 

come from another simulation with a different set of couplings which 

represents this "experimental" spectrum. As seen in the RMS error calcu

lation, the initial fit is already fairly close. Both D~s and J's were 

varied in the iteration, the parameter sets corresponding to ortho, meta, 

and para couplings. During the cycles, states are swapped by the method 

described in the previous section. Note that only degenerate states are 

affected by this swapping implying that, even without this check, con

vergence would be obtained because the RMS error would still decrease. 

The final parameter errors reported are indeed very small. After the 

refined parameters are output, the variance -covariance matrix and the 

eigenvectors from its diagonalization are given. This eigenvector matrix 
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is not completely diagonal indicating strong mixing of the parameters. 

This is to be expected for the dipolar coupling parameters due to their 

dependence mentioned above, but in addition, each eigenvector shows 

significant mixing of dipolar and scalar couplings •. Even though no 

anisotropic (or "pseudo-dipolar") contribution from Jij is included in 

the Hamiltonian, this eigenvector matrix shows that the D .. 's and J .. 's 
~J ~J 

are not linearly independent. 

After the simulation is performed and the frequencies output, a 

listing of degeneracies found among the eigenstates is given. Following 

this, the syrmnetry classifications of eigenstates is shown. The cor-

respondence between these classes and the point group representations is: 

representation #1, A2 state; representation #2, ~ states; representation 

a b . · a b 
#3, E2 ' · states; represent~tion #4, B1 states; representation #5, E1 ' 

states; representation #6, B2 states. 
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A.2.5 Computer Output for Benzene Example 
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Tf'IPI'l~J ~cc:t 4-NCY-1S81 16:o62:1@ 2@ P&fe 2 
C.lSI beu1U 

bf!1'1f!De Uerauoa eza111ple :~ - .. -· -· .. . - ... ' . -

DC 1 2 = -1311.1111 
J( 1 2 = e. ef/HJ~ 

J)( 1 ~ :: -2~8 1911 .. 
J( 1 3 = 1.1881 

t' 1 4 :: -162. !1211!1(' 
J ( 1 4. 1.58118 

D! 1 ~ -25fl .1~88 
Jf 1 ~ 1. 'h"0U 

J)f 1 € -1388 ee0P 
J~ 1 6 6.2111188 

I; I 2 ~ -= -130i.~2'~'" 
J( 2 :3 6 ee0e 

D 2 .. -2~C!I.1foil8 
J! ~ 4 :: 1. ~'?.r~~· 

Dt 2 ~ -1€2.~000 
J• 2 !" 0.5011'0 

I' 2 e .. 2!1! 1S~te 
J' 2 e 1.000"' 

D" 3 4 •. -1~81.0808 
J' 3 4 = 6.0k'J{ll 

J)( 3 ~ -250 1911 
J( 3. ~ t.lllfl 

t' ~ e .. -1e2.~P.,? 

J! 3 e 1.5188 

D• "· !" -1381.8111 
J( " ! s 6.fiV"'V 

1:( " e -258 1981 
Jr " e 1.118ft 

tr ~ e • -1318.1888 
J( 5 e· = 8 •••• 

TOT!t II Cl lUQ INT!IID ~ 32 



T"'Pf"QJ.L0Gi1 ~-NOY-1981 16;~2:1S.2e 

LINI .lSSIGN .. IN'l'S !'01 'l'BI 2 OOAN'l'Uf' SPIC'l'IUI'! 

LIN! M IIPIIIMIN!.lL liiQOINCT 
- - - ---------------------------------

1 1!56!5.@818 
2 411~.9EH .. 2332.2108 ... 

2~ 22!53.7411 
2:! 22!53.7411 
2~ ~!5!5.74~8 

2e !5!55.7401 
2~ 1629.1:518 .· 
2S 1629.1:518 
~7 @89.7101 
~~ -5~~.7408 
u 2423.02:;'8 
~f 69!5.E4fi:l 
~~ 1:521. :e0e 
? :5:5U. ez·~1 

4-NOV-1981 US :42:18 28 

LIN! ASSIGN..,INTS !'OR T!l ~ QU.lN~~ SPICTIU"' 

TINF II !XPIIII'!!N'l'.li li!QOINCI 

2 ~261-~@l-1 
4 182? .1481 
6 4794.E999 

2~ 1383.1!01 
2E= 21~3-E99e 
2£ 1313.8!!1HJ .... .... 2143.!:!999 
~e -ete.0711 
:5? 1'733.1011 
~s -39.e6ll 
€4 2019 .11/JII 
72 1314.62H 
?? 1:514.f201iJ 

TMPI"CB •cca 4-NOY-1S81 16:42:1S.2E 

LINI ASSIGN~INTS lOI 'l'BI 4 QOAN'l'U~ SPICTIO ... 

riNI II IIPJRI .. IN'l'.li liiQUINCT 

1 
2 
4 

'l',.P~CJ rcc:;1 

1!58!5.SU'1 
41tt.98H 
2332.2111 

~-NOY-1881 16:42:18.28 

LINI ASSIGNMIN'l'S lOB T!l ~ QUANTUM SPIC'l'IUM 

IINJ II IXP!IIMIN!.li liiQUINCt 

1 
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'l'MPMCl! ICG;1 4 NCY-1981 18 t2:18 2E 

PltOGRlP' P'QIUI - 5!11'1' OF I!IIU'Ifl C.IICOUTIONS. 

ITIR .. 'l'ION II 1 I Pf S UIOI • '74.313 
SUPP!t S'l'l'l'IS : e I !5 
SWAP~ID S'l'i'l'!S 17 I 12 

ITIRITION II 2 R 1'1 S IRIOR • e. eu 
SUPPU S'l' 1 TIS : !5 t e 
SVAPPID S'l'i'l'!S · 12 1 17 
SV APPit S'l"AT!S ~e . ~~ 

ITIU'UON II 3· ! ~ s llt!OR • e .ee7 
SUPPI'D S'l'i'l'!S · 17 • 12 
SVAPPit S'f!'l'IS ~0 ~~ 
SVAPPir S'l'ATIS ~ !5t • t9 
SVAPPID S'l' AT IS e!5 • 58 

I'l'IP IT ION II • P. 1'1 s IRROR .. r.ze? 

PARA"'!'!!R !!'!' II 1 

D12 
t2~ 
lJ~4 
D4: 
I!:e 
t1e 

P lP.A "'iTF.R SIT II 2. 

I1:5 
D24 
D:3.:. 
ue 
D15 
D26 

PAP.t"iTl.!l SI'I It :5 

D14 
D2: 
:C36 

PARAI"FT~R Sl'! II • 
J12 
J23 
J34 
Jt!: 
J~6 
J1e 

PlP.AM!TlB SIT II !5 

J1~ 
J2t 
J3: 
J46 
Jl!! 
J28 

PI.RA"ITIB ~1'1' , 8 

Jlt 
J2!5 
J38 
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T"'P"'QI.LOCH1 oi·NOY-ts81 UJ:U:18.28 Fese 11 

IIJINit ~ABA"ITIRS 

D( 1 2'• ,. -12~9-91<6e 
J( 1 2 9 .99'78 

D( 1 3 = -242.~e~1 
J( 1 3' "' 5.813~ 

DC 1 4 '-1~.5822 
J( 1 4 = 1.eee~ 

D( 1. ~ -242.58~1 
J( 1. ~ "' 5.183! 

rc 1 e = -12~9.9948 
J( 1 € ., 9.9978 

Di 2 :! ,. -12!9.994e 
JC 2 3 ,. 9.9979 

DC 2 4 -242 52'51 
J' 2 4 .. 5.1£13! 

D' 2 : = 1:7 :e-22 
J' 2 C' 1.eess 

D' 2 6 -242.5f!1 
Jf 2 e ... ~ 0e'3: 

DC 3 4 ,. -12~9-994! 
J' 3 4 9.997~ 

t' :! : = -242.~"~1 
J I :5 !! 5.113~ 

D• 3. e -1!:'7.5122 
J( 3 E .., 1 ere!! 

DC 4 ~ = -12~9.9948 
J( 4 ! 9.99'78 

J:' 4 e ,. 242 er~t 
J( 4 € ~ !5 II!~ 

~( ! e ... -12!:9.914! 
J( ! e = 9 99'78 



TI"PMCE ICG:1 4: NOV-1~81 16 42:18.28 fa~e 12 

f"J.TIII CJ COJJJICUNTS lOR TBI NORMAl. !QUUICNS 
C!llCRI IIAGONAtiZA!tON) 

1l " 1~131-02 -8 119·U-82 -II! 1S87I-8<:: ., 1S16l-03 wt .1311141-03 

2; -e 1194:!-12 8.3664:!-82 -".2985i-83 -0.1i74:i-03 -0.4:772l-0~ 

3) -e 1!:UJ71-12 -0.291~1-13 Ill 9:-331-~2 -e.s£4:3i-0~ -~t.1E1Si-0c 

4 e 19161-8~ -8 .1974: F-83 -~ 8~4:3I-e3 0.3069i-02 -0.H17i.-02 

"' '! 1311!41 Z:3 -0 4?721-03 -e 1~181-02 -~ 1417.i:-02 ~.;:17!;u;-w:.: ~ 

s " 238!51-83 -e .23281-82 ~ 1E72I-0~ -e 2E131-02 11:.1~9!:1i-02 

IIGINYAlUIS OF NORMAL IQUAfiONS PUTIII 

237 698 181 2U 521.~!:11; 

fMPf'IC:l! lCGa 4:-NOY-1&81 16:4:2:18.28 

111011 li CTCIS ANt ST!ND!Rt DIVIATICNS Cl IIGINJ!SIS P!Rlf'llfiRS 

I ~391 I 4:817 lo2337 8.4:94:2 1.3315 8.2619 
S~lNtAII IIBOR ~ 0 0~8 

-I ~39!5 e 7284: -8.8781 -e.!51te e.~t!56 -1.105? 
STAND!ID llliOI = •• 11101 

e <::394: e.et7B r.su2 -8.~t6e -2.2167 -e .11740. 
S 'UNDAID DPOB = I 1181 

I 71~1 -8.194:4: -8.1!31 ·-~"' 8.3623 1.15!:7 
S'UNDAili DBOI • 8 l'l8 

I U531! -1 3371 0.1821 -1 1712 1/J.?t.lB -1.4Y?2 
STANDARD 111011 = t.IH 

e ~39l -I?. 33!5f 111.1321 -8.381!! 2.2612 e.ees.111 
S'!ANDAID DJtOB a 8 11111 

Tf'IPf'!C! ICG;1 4:-NOY-1&81 18·4:2:18 28 

PIOJ!JII IRIOIS CF IIGIN!ASIS Plll!f"ITII SITS 

1 
2 
3 
4 

6 

(11 ... 8 
e.eiP 
1.111 
1.111 
e.eer 
8.111 

" 2~ee1-0~ 

-0.l3,=i-02 

~ .1E7H-03 

-0.2ti13l-02 

~.1e~=&-e.: 

f6.6!:22i-1112 

1111:! .31!:i 

Fage 1~ 

\ 
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'l'"'PMC! lCG;1 4-NOJ-1981 18 42:18.28 

JiliNit FNTIGifS 

IN' 1 :io -2348 6201 

J'N' ~n = -1126 1215 
r~ .. 23 .2~69 ... 
IN' 4• = -1336 491~ 
I'H H = -565 8!27 
n: e = ·565.E827 
J:t4( 7\ • -1128 121ol 

!Nf e) = -792 e'83 
:r~- ~ = 17~6 .357~ 
iN 1 = -16 U16 
IN' 11\ -= 1817 7768 
n· 12 -67t.~eee 
~~ 1~ = -616 :534~ 
IN 14l = 671 6273 
[t-; 1~ = 1fJ17.7761 
I._, lf = 176 9272 
p.r 1?' :: -678 ~@@9 
r~ 1: 748 .7:56? 
~~· 16 = 176 9272 
EN 2e1 = -616 :53~2 
Pi 21 = ?~e 7:56? 
IN! c~, :: -~93 3796 

FNi :?:!l -= -648 6532 
Pi 2-1 :: 912.9626 IN ~~ • 111'7.7784 
n• 2~ :: -14 S649 EN' ~8. = 6'71.6282 
PI- 215 I : -521 oi@40 IN· ~7\ = -8~8-:5344 
n· 27 1121 .2es= 
IN c:, = 2oi46 2722 IN( ~e .. 23.2589 
Itt' 2S; = 1127 629~ IN ~S' • ..;1338.oiS16 
H' ='~ :: 1127 6:511 IN' 62) "' -1128 1218 
EN' :!1 = -21 747:1' IN' 61' = -565.8826 
IN -.~· '-" . = -578 3e31 1111' E2' • -1126 1281 
P.l .... -578.3E32 IN( e~, = -565-8!28 L'-

IN :!4 = 1121 2e53 
H' ... , 

--= 583 0870 IN 64' .. -2348.6211 .... 
I:'-' 3e 513.01170 
r~- ::!'7 = 1974 li!77 
EN' 'IC::\ ,__ = 417 8770 
u .. ~ 

':: -548.6663 
~~' 4 = 1178 4E~~ 
!Nf 41 1 = .. 78772 
EN 42 = -548.666~ 

IN' 4:! = -7S2.8V93 
l-4' 44\ = 1756 3~77 
!'! 4!' :: -593.:see1 
I•-• 4E • -18 UU! 
IN' 47 1 = 178 9273 
H 4f :: -8'7ft.~891 
I••' .. 4S • '748 7~9 
IN: ~el • 181'7.7768 
n ~1 = 178.9273 
~~·· !I~ • -818 334 ., 
I !It' ~~) = -871 -4!1QI 
Ill. !'4. .. '748 .'7389 
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THPHOJ ICC:t 4:-NOf-1 !r81 16:42 :te .2e Pa1e 1? 

1 OUAN'""' SP!C'l'!UH CltCUU'UCN 

!IN~ • liiQUIN~t '!Z) 'II.lNSITION ST.ITIS Sti"H 

-·----- --------------------------------------------------~-----

IOWIJI OtTJN'l'UH II = 3 . UPPII QUAN'ftlH , . 2 ' 
2 23'71.8'7'71 3-) 1 2 

LCWIR Otl~N'!'UI" II = 2 UPPIR QUAN'fU..- II •. 1 

10 2!43.89E~ 11-.· 2 3 
12 589.'7E61 13-> 2 3 
14 2143 .E96'7 15 > 4: 3 
1!: 1:513.04'7'7 16-.; 2 3 
lEI 1313.04'76 1S-> 2 3 
15 !'V-9.'7@6~ 2e > 2 3 
?2 -eee.ee!!2 e-, 111 2 .. 
2~ 1'7:5:5.111116 9-) 3 2 
H -:5S.6ee~ 10 > 'a ~ .. 
4:5 218£1.11£1£1 a-> 4 4: 
:s -114:.5161 12 -> = 5 
€1 -1Z4:.50S2 17 > !: e 
e2 1:514:.€194 1£1-> ~ 5 
6! 1314:.6194 21 > : 5 

LCWIP Ot!JN'!'t'" II : 1 UPl'IB QUAN'l'U 101 II • ~ 

9E 1ss!! ??es 24-. E 2 
1~1 261.324:3 26-) c 2 
1 2 322S • .3E:"6 :c:e-~ c £ 
11~ -@4::3.:594:£1 24-;. !; 2 
12ft -227'7. E4:16 26-> 9 2 
1~2 se9.9UE :2E ) lli 4: 
1:3E S29.3'74:2 24-, 1., 2 
141 -~1!:.1'724 26 > 10 2 
B2 24E2.se~e 2E > u: 2 
1P:! 119.@~:5E 2!j-/ 11 3 
·s4· 119 .8!:41 30-> 11 3 
lEE -1~E8.1~92 ~2 ) 11 3 
te7 -1 ~~e .1592 ~3-> 11 3 
16S -~14:.'7690 :35-> 11 3 
1'7i -!:a.7e9~ ~6-) 11 3 
1£11 1'751.'7'743 27-~ 12 5 
l2E 1'791.'7'74:1 34-) 12 5 
192 12''7!.36~? ~e-> 1c 5 
19:! 121.822! :39-> 12 5 
15~ 18'7@.3688 41-) 12 5 
19E 121.~22:! 42-) 12 ~ 
2i113 174:3.9e4:2 29-) ~~ 3 
2fJ4 1'743.984:6 38-) 13 3 
~ e 4!.9!14 ~2-) 13 3 
2~'7 4:5.9513 33-~ 1~ 3 
215 1115.34:16 3!!-) 13 3 
:a!1 1119.34:14 36-) 13 3 
21'7 -1312.2!1! 23-) u 4: 
219 -688.5923 25=) 1' ~ 

231 1382.4:!f! 3'7 > u • 'e3 9!51.712e 2Y-;.. 1e 3 
264 9!!1.'7129 :51-) 16 3 



257 

!MPHCJ tCGil 4·NOJ-U81 18 U:18.2e hge tc 

268 -747.3114 32-> lf 3 
~e? -747.3184 33-) 1e 3 
269 328.171@ :!!5-) 1e 3 -. ' / - 271 328.1'197 36-) 16 3 
~.:1 372.~488 27-> tc ~ 
~0[1 :572.!4£18 34-> 1e 5 
312 -341.8597 :58-> 1E 5 
:!1:5 -1297.48:50 35!1-) 1E ~ 
:!1~ -348.~595 U-> 18 5 
:!16 -1297.41:52 42-> 18 5 
:!94 t77t.e6et 40-) 22 ts 



!f'IPMQI LOG;1 

JRIQ (BZ' 

4-NOY-1981 18 :<62: 18 .2@ 

tiGINIRACY ------- ------------~__, ____ -CII'CD-~~ 

32~9 eef8 t 
24E2 ee3e 1 
2371 877~ 1 
22?7 8416 1 
2143 896~ 2 
281@ 11@8 1 
17S1 7743 2 
1771 ee~ 1 
1743 9842 2 
17~3 1Z8e 1 
1fS~ 7719 1 
1~ee 1~92 2 
1~14 6194 2 
1312 288~ 1 
1~13 ~47~ 2 
13e2 480~ 1 
12S7 403' 2 
1119 3416 2 
1~1e 36~7 2 
s~e ?a2e 2 
929 3742 l 
E43 394F 1 
e1e ee52 1 
747 3184 2 
€E9 914@ 1 
eee 5923 1 
514 769~ 2 
~~9 7E6~ ~ 

~e~ e?24 1 
372 54EE 2 
~4e e~97 2 
328 1798 2 
2S1 3243 1 
121 822~ 2 
1e9 e~3a 2 
114 6061 2 
4~ 9~14 2 
~9 eee~ 1 

TOTAL M UNIQUE IREQ • 3E 
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1't1Pt1QI tcc;t '-NCT-1e81 18:,2:18.2! fa1e 21! 

2 QU!N!Ut1 SPIC1'1Ut1 C!tCUI!!lON 

- .. ·' ~~··"" ·' liN! II JIIQUIIC! (IZ) 'II!NS I 'II ON ST!!IS · · Sif"t1 - .. ,., ~ .... 

----------------------~-----------------------------------------
IOWIR QUJNTUP" II ·~ 3 ; UPPII QU!N'fUM , ~ 1 

1 1565.8119 a-> 1 2 
2 ue4.9'7'7~ 9-} 1 2 
3 2332.28@~ 11-/ 1 2 

LOtFR QUJN'!UI'I II 2 UPPII QUANTUM II • lit 

22 22~3. 7~E!2 29-} 2 3 
2~ 22!53.7!587 38-> 2 3 
2~ 55!5.7374 32-> 2 3 
2e ~~~. 737:! :33-> 2 3 
2! 1629.127E 35-> 2 3 
29 1629.127, 36-> 2 3 
37 e~9.71~? 24-} 3 2 
39 -54,.7489 26-; .. 2 .. 
41 2423.8154 28-> 3 ::: 
~e 69~.S3E3 23-> 4 4 
5e 1321.!52€5 2!5-) 4 4 
7P. 3318.5991 37-} 4 4 
ev 16!'7.1882 27-} e 5 
e7 1ee1 .1eee 34-) e 5 
P1 973.7597 3E-> 5 5 
92 17.2164 39-> ~ !: 
94 97~~7!599 41-> 5 5 
s~ 17.2162 42->. 5 5 

LCWIR OU#.NTUP" II = 1 OPPII OUJN'fUP" II • -1 

13€ -e.etcu 43-> e 2 
137 2539.1661 44-} e 2 
139 766.3967 4ts-> e 2 
151 -2539.1 ese 43-> 9 2 
1!':2 8.8882 44-} 9 2 
154 -1772.7159t 46-> w 2 
166 -766.39E" 43-> 11 2 
~67 1772.769:! ~-> 10 2 
lES ~-"10.., 46-} u 2 
18~ -841.@4@@ 47-) 11 3 
1!E e.eeea 5B-) 11 3 
1@9 -e4e.e,e7 51-> 11 3 
191 -16M.1111 !2-> 11 3 
193 1.8114 55-> 11 3 
19~ -183,.1114 e7-> 11 3 
211 -8.1884 4e-> 12 5 
282 U19.22!57 49-) 12 5 
2tf -r. 0IW'2 ~3-> Ul ~ 
217 1419.22~7 !54-> 12 f) 

21~ 793.2618 47-) 13 3 
~1!! 1834.1113 ~e-> 1~ 3 
219 . 793.2618 !51-> 1~ 3 
221 I.HI~ ~2-) 13 3 
223 U534.111f ~S-> 13 3 
~2e ••• 111 !5'7-> 1:! 3 
2~9 1.1119 !6-) 14 ' 



'fHPHCl! tCG;1 4-NCf-1581 18 42:1& .2e 

261 8.8111 -1'7-) lE 
~83 S4t.e4&e ~•-> 1e 

'·· 264 1.1111' 51-> lE 
28!! -'793.2812 !:2-> 16 
~ee 840.8492 !:5-) lE 
2'71 -'7S3.2ete e?-> 1e 
2~1 -1419.2258 "e-> 1e 
c92 P.0102 49-) 1E 
c9E -1419.22~7 53-> 1e 
297 1.1812 54:-) 1E 
~·e: -0.11~2 4~-> ~i 

Tf"PHQB LCG;1 

JRIO (HZ~ 

4-NOJ-1981 18:4:2:16.2E 

I:IGINIIACY -----·--- -- -... ---~------.---------------
4 F 4 S'7'7!5 1 
3~11 !5981 1 
2E~9 1681 1 
2-123 11!54 1 
23~2 288! 1 
22~3 7512 2 
17?2 '789~ 1 
16E'7 16!2 2 
18~4: 1111 2 
1E29 12'76 2 
1~e~ e119 1 
1419 22!5'7 . 2 
1~c1 ~2e~ 1 

Y'73 '759'7 2 · 
eE9 7857 1 
84'- 84!! 2 
7S3 2e1a 2 
'7E6 3~'7 1 
sse e3e~ 1 
5E! '7~'74 2 
544 '74~9 1 

1'7 2184 2 
I 0111 1~ 

TOTAl • UNIQUI FIIQ = 2~ 

260 

Pe,e 21 

3 
3 

-- 3 
3 
3 
3 
c:; .. 
5 
5 
5 
8 
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'l'I'IP~C:S ICG;1 4-NCf-1981 16 42:18.2! 

3 OU&NTDI'I SPIC'l'IUI'I C&ICUI&tiCN 

IINI II J'IIOUIIC! 'HZ) 'l'I&NSI'l'ION StA'l'IS S!l"l'l 

------------------------------------------------------------------------------8 
LOwiR OUJNTUI'I II = 3 ; 

2 
4 
6 

LOWlR. OUH:~u,.- II " 2 

2~ 
2e 
2S 
:!e 
3:5 
~.: .. ~. 
3€ 
~7 

:3S 
€4 
71 
72 
7€ 
?7 

Tf'!PfiC:P ICG;1 

UPPII OU&NTUI'I II • I 

3261.!5828 a-> 
1827.1361 2€-> 
4754.8926 2S-> 

UPPI!.QUAN!UP4 II • -1 

1:51:5.8477 47-> 
2143.89'72 ee-> 
130:5.?ol79 E1 > 
589.786~ :2-> 

2143.e97e :5-) 
:e9.7!61 E?-> 

-!f/J6.16~2 ol3-> 
17:53.11/JIS ol4 ·> 

:3S.669~ 46-) 
288£1.119€ :e-;. 
-104.6164 46-> 
1314. e19e 49 > 
-114.51€:! :3-... 
1314.6156 !:4-) 

4 NOf-1581 16 42:1E.2E 

!)IGINIJ&CT - -·---·------------------- --------
4?S4 !926 1 
3261 ~!2E 1 
2143 !9'72 2 
201! 1196 1 
1@2'7 1:561 1 
1'7:!3 1"P! 1 
1:!14 6196 2 
1:313 147'7 2 
ee6 e6!2 1 
~19 7!6! 2 
114 6164 2 
~~ 66!! 1 

'l'OU1' II ONIOUI JIIQ a 12 

1 
1 
1 

2 
2 
2 
2 
2 
2 
3 
3 .. .. 
4 

= • -: 
c:. -

2 
2 
2 

3 
3 
3 
3 
3 
3 
2 
'2 
2 
4 
5 
: 
5 
5 
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'l'I'!PP'ICJ tCGa 4-NOY-1581 16:.Z:18 28 fage 2~ 

4 OUANTDP1 SPIC'l'RUP1 CAICUIAtiCN 

LINt II liiQUINCY !!Z i TIANSITION ST&'l'iS - SYMP1 

----------------------- --------------- -----------------~--------------· 
LOWIB QO&NTU~ # = 3 ; OPPEl QUAN'l'U~ II • -1 

1 15e~.eue 43-:> 
2 4104.9'7@8 44-> 
4 2332.218!! 46-) 

LOWIP. QUANTUM II = 2 UPPJI QUAN'l'U" II • -~ 

1e -8.818~ ee-) 
28 8.8884 62··> 
22 e.0e00 !:S-> 
2S -e.e881 !:9-> 
~7 8.8181 61-> 
~9 -e. ee~a e3 > 

TI'!PMCB LCGi1 

JBJO (BZ 

4 ·NOY-1981 16:42:18.28 

tiGINIIACY 
------------------------------------------------

4114 9'7@fJ 
23~2 2?.@!1 
1~e5 eu~ 

I 811!! 

'l'C'l'AI II UNIQUI lRJQ • 

'l'I'!PMQll LCGa 

1 
1 
1 
6 

5 OUANTUP1 SPIC'l'RU" CAtCUIA'l'ICN 

1 
1 
1 

2 
2 .. .. 
4 
t .. -

LINI II liiQUINCY '!Z) TIANSI'l'ION S'l'&'l'IS 

tOWEl QUANTUM II • 3 ; UPPII QUAI'l'U" t • -2 

1 23'11.8.,.,1 ~8-) 1 

2 
2 
2 

3 
3 
2 
4 
5 
5 

Fage 2€ 

Page 2? 

2 
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'l'I"PMCB ICG;t 

0 QUANTUM SPIC!IU" CAICUU!ICN 

UNI II ftiOUINCT '!Z) 'l'IANSI'l'ION S'l'U'IS· · .. SYP'" 

----------------------------------------·--------------------------------------
QUANTU.- If 2 

OUANTUP' II 1 

1e 2!539 .U5!5! 9.-> e 2 
1'7 '766.396'7 11-) e 2 
:5~ -17'72.769i: 10-) s 2 
se -1E3oi.111~ 13-; 11 3 
~s -e~8.E<i£18 16-) 11 3 
52 -e.u. e•ee 19 > 11 3 
f~ -163oi.1112 21-.; 11 3 
71 1US.2255 18-) 12 .. ... 
74 H19.22~~ 21 ) 12 c ... 
7'7 163oi.118E 15-> 1~ 3 
7~ ?93.261'7 1t:i-) 1~ 3 
E1 ?93.261? 19-) 1~ 3 
u~ -?53.261~ 20-> 1€ 3 

QUANTUM , 

1L2 62~-68@2 2!-) r't c .. • 1:54 2ea .?ell! 37-> 2:5 • 
lH -143 •• 4467 26-) 24 2 
14:! 1533.3097 2E-> H 2 
1ES 19~9.11172€ ~7->·25 4 
1'76 296'7 .'7563 ~E > ~6 2 
2::1 -713.~eee :5E·> 2'7 5 
202 -16€9.9!51@ 39-) 27 5 
29.14 -713.~8@4 U·) 2'7 5 
~ ~ -16E9.9!!2:' ~2-) 27 5 
22111 1.81£14 3"-) 21:i 3 
222 -1698.812& 32-> 2S 3 
t:2~ -169E.~12S 33- > Hi .3 
~2e -€24.6227 ~!5-> 2~ 3 
22! -62~.6228 36-> ~s 3 
~~4 -1698.~133 ~2-> ~le 3 
?3!! -1€9@.01~3 ~3-;.. :!1 3 
?.3'7 -62oi.6231 35-> :!8 3 
~3~ -624.6232 36-) :!i 3 
25@ UJ'73.39f1 ~!5-> :!2 3 
2~9 11'73.3981 36-) 32 3 
~ 1 -S!l6.!!<i33 :59-) :!E ~ 
~14 -9!!6.5<i35 ~2-> :!@ 5 
~ft6 9e6.5<i35 ~1-> 39 5 

OUAN'I'l'fi' II -1 

311 2539.1E61 H-> 43 2 
:!13 '768.396'7 ~6-> <i3 2 
~26 -1 7'72. '7883 ~6-> u 2 
:!e3 !oil.!<i95 ~·-.> t7 3 
~6~ -'783.2613 52-> 4"1 3 
~6e 84'.!482 f5 > t"1 3 
:!"1t -'753.261'7 !5"1-> t? 3 



!f•PI'!QB LOG; 1 

3?'1 
~8 
:!83 
~8e 
:!E!9 
~94 
403 

QUANTUM II -2 

1U8.2281 
U11.2281 

-1U8.2288 
-841.848~ 

-1834.1118 
-1834.1112 
1e34.Ut~ 

~ ·NOY-1581 16:~:18.2e 

4i-) 48 
S.-> 48 
~3-) fi 
!ll-> ~~ 
e2-> ett 
~7·> ~e 
e!l-> ~2 

'rMPMQB.LOG;t 

lRIO (HZ~ 

~-NOY-1981 18:~:18.28 

I:IGINIUCY 
-----------------------------------------

29€?' ?'~83 1 
2e14 1e1e 1 
2~~9 1S!le 2 
1SE9 ~?'26 1 
17?'2 ?'698 2 
165E! 8129 4 
16€9 s~1e· 2 
1€~4 111~ 4 
1e~3 319?' 1 
14~4 448?' 1 
1419 225~ 4 
1873 3911 2 
9~8 ~433 2 
E41 848~ ~ 
7~3 261?' . 2 
7€6 3967 2 
?'13 48@6 2 
62~ 6882 1 
€24 622?' 4 

e eee4 1 

TOTAL • ONIQUI lBIQ • 28 
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!MPMC! ICG;1 4-NCf-1981 18 42:18.2@ ,.,. ~2 
INIIGt DIGINII!Ct CALCVLJ!ION. . . 

IN! 1 = -234! 82i'l1 
Ill( 2' -1128.121! 
IN, 3 23.2!89 
Ill' 4 -1~38 •• 91! 

...... 
= 

Ill! !51 -!8!.8827 
IN 6 -!56!5.!1827 IS DIGINIIA!l VITI ST!TI • e 
INC 7: -1128.12fl IS DIGINIIJTI 4ITB ST!Ti • 2 
Ill( @~ "" -782.@183 
IN'. 9 17!56.3!574 
IN{ 1 ~· . -18.4116 
IN{ 11 ~ 1117.7761 
IN\ 12 -67!.48@8 
INI 13 : -616.334!! 
IN( 14l 6'71.8273 
IN' 1!' 1117.7761 IS DIGINII!tl VITI ~T!TI • 11 
J:N( 16 = 176.9272 
IN· 171 -e7e.4!!9 IS riGI~IRATI WITH STAT! # 12 
IN 1E 742.7367 
IN' 19 176.9272 IS tiGI~IHJTI WIT! ST!Tl • 16 
IN 28' -E16.3342 IS tiGI~IBJTI WITB STAT! II 1~ 
EN 21 74!.7367 IS DIGihiRJTI WIT! STATE ,. 1S 
IN' .:2! -~9~.3799 
IN; 231 -e48.6!32 
EN 24 - 912.9626 
IN ~ .. 

C~ = -14 9649 
IN 261 -521.4!148 
IN 27 1121.2855 
IN' :ce 244E.2722 
IN c9' - 1127.629~ 
IN ~~ 1127.6311 
IN' ~1 -21 .. 747e 
IN' ~2' -57£.3!31 
IN :!:5 -~7e .:5E32 IS t!GI~IRATI WIT! STJTI • .32 
IN ~· 1121.28~3 IS IIGINI!J~I 41TH STAT! ~ :C? 
IN! ... ' 51~ 8878 ... _ 
IN :!6 ee3 .1178 IS DIGINIIJTI WIT! ST!Ti • "1:1' .. _ 
IN ~7 : 1974.1077 
IN~ :!E l 417.8771 
IN -.:o ... _ 

-s.e .8863 
IN' "! u7e .48~e 
IN' 41' 417 8772 IS :CIGI!\IUTI WITB STATI II .. -.. c: 
IN 42 -~·~ .866!5 IS DIGI~IBATI WIT! STATi • :59 
IN' 43 -7@2.!0!3 
IN~ 441 . 17!5E.3!577 
IN 4!: -es3.3811 
IN' 46 -18 .• 116 
INC 471 . 17E 9273 
IN 4! -67t.4en 
IN' 49 74! .7389 
INI !:81 1117 7768 
IN: !'1 176.9273 IS ~IGihiiA!l VITI STAT! • 4? 
IN' ~2~ = -616.3MP 
INI e:s' -e?l -6!81 IS DIGI~IIATI fi!B S!A!l I te 
n ~'4 7te .7389 IS DiGI~IIJ!I WITB STATI • 49 
IN' !~ 0: 1~'17.7784 IS IIGI~IIJ!I WI!B S!A!l • ~e 
Ill' ~!' E71 82!2 
IN 7 -6US.3M-i IS DIOINIIA11 VI!I ST!!l • !2 
IN !E 2!!.2!589 
IN' ~9\ -1!!3e.4918 
IN 68 -1128.1211 
Ill( e1 = -!58!5.8828 ' INf e2, 1128.1211 IS DIOI~IIA!I 11!1 S!A!I • 61 IN. e3\ . -!58!5 .8@28 IS DIGINJij!l VI!I S!A!I • 81 IN 84 -2368.8211 



TMPP'OI LCC;t 4-NOY-16!1 18:42:18.2t 

S!~MITRY CLASSIJICA!ION Cl IICINS!A!IS. 

STAT!S C7 IIPI!SIN!ATIOI * 1 
rN· ~~· - -21.'4'r 

TOTAt NUMIIR OJ STA!!S • 1 

STA'IIS 
IN~ 1) = 
INf 3l 
IN e 
IN• 9 = 
IN' 18 l 
iN 24 ., 
EN' :?8 = 
IN! :?~' 
IN 4~ 
IN· 44 = 
IN' ~e' 
IN =~ 
IN' €4 

Ol IIPIISENTATION * 2 
-2:54@ .82f.1 

23.2569 
-782.81f3 
17!!€.35,4 
-1e .·Ute 
912.9828 

-·~21.484.? 
244€2,22 
-7@2 .81@3 
17~6 3~'' 
-1e ·Ute 
2:5.2569 

2:!4=.82P1 

~O~A! NUMJIB OJ STAT!S • 1:! 

IN' 
IN( 
IN 
!N 
IN! 
IN 
IN: 
IN 

STA 'IIS 
2 ,, 

11 ... \ 
.. _ 
15 
19 
20\ 

IN. :'S 
IN. :!•: 
IN· :!2' -
IN· ~~ 
IN I :!~ 
IN( 
IN 
EN 
IN' 
IN•. 
IN~ !'~ 
lNf ~l -
iN 
IN' 

Ol RIPB!SINTATION # :5 
-1128.12'-~ 
-112e .1210 
1fl17.,,8, 
-616.:534! 
tel? 7761 
176.92'2 
178.9272 

-€1€.3342 
1127.829S 
1127.8301 
-571 3£131 
-e7fl.3e32 
!:0~ Q',,~ 

!:0~ 81?8 
176.92'73 

1 t'1 '7. 7769 
17e.s273 

-616.3348 
1~17 7764 
-e1e.3344 

-1128.1218 
1128.12P.t 

!OTA! NUMJII 01 STATIS • 22 

IN( 
Ill ( 
lN 
IN' 
11· 
IN 
Itt' 

STA'!'!S 
4 

14 l 
23 

Ol IIPIFSINTATION 
-1~~8.4915 

!'11 8273 
-8tl.8532 

14.9849 
19,4.11'' 

8'1.152E2 
-1338.4818 

, 4 

!O!Al NUMJII Ol STATIS • 7 
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'f"P"Q! LOGi1 t-NOY-1i81 18:t2:18.28 ,.,. 3f 

S'fJ!IS OJ IIPIISIN!ifiON , !5 
IN ~ -~!5.8827 
JNf 8 = -~8~.8827 
IN( 12' ~671.t888 
IN: 17 " -671.t8@9 
IN' ta ~ = 74E.'738'7 
IN( 21) '7t!.7387 
IN~ 'Z7 1121.285!5 
IN' ~4! 1121.28!53 
IN( :!8 l tl'7 .87'71 
!N( :!9 -!548.8883 
IN 1 41 : 41'7.8'1'12 
IN ( t2 ~ ~ -~@.666!5 

IN • 48 -671 •• 891 
INC 49 • 74@.'1389 
IN( !!3) -€71.4898 
!N ~4 74@.7389 
IN' e1· -58~.8828 
IN' E3' -!56!5.8@2@ 

TO'fJL NU"JIR OJ STATIS • 18 

ST!TIS Ol I!,II!IN~A'fiON • 6 
IN' 22' -!59:!.3'799 
IN. 41 117!.t855 
INC 4!! = -~9:!.38V1 

10TAI NU"JII OJ STAT!S • :5 
lORTUN STOP 

PININU'IS jcb ur1111r"'ted et 4 NCV-1981 1e·42:1e.1e 

'Accour.t1rc 1rtormet1oD: 
Jutte !'ed I ·o e ouu 
raec t I ·c court· 

'72 
2:!8 
404 

Feak vork1DI set s11e: 2lllit 
tft 

Pate taul ts: 
Il psed ':PU time: e H: £11: 12 .97 

Feak virtual ~1ze: 
~OUDted volumes: 
!lapsed ume. " e r~e~1e:12.1: 
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APPENDIX B 

Programs to Calculate Biphenyl Dipolar Couplings 

The proton dipole-dipole couplings of a biphenyl group with either 

D2 or D4 symmetry are calculated with programs BIPH4PARA or BIPH5PARA. 

Program BIPH4PARA calculates couplings for any particular set of molec-

ular parameters. This program will also increment one of the para-. 

meters to produce a series of couplings. Program BIPHSPARA computes a 

least-squares fit of the calculated couplings to a set of experimental 

couplings which are given as part of the input. Both progranis calculate 

the A1 symmetry lines allowed in the six and seven quantum transitions. 

BIPH4PARA writes these line frequencies to a disk file which is later 

used to produce variation plots like these shown in Chapter 4. 

The following sections outline the coupling constant calculation 

and give a brief description of each program. 

B.l Dipolar Couplings for Biphenyl 

The form of the coupling constant equations is essentially the same 

when either D2 or D4 symmetry is assumed. The more general case is the 

one with less symmetry: the D2 point group. This is the symmetry 

assumed in the equations below. The D4 couplings are derived by first 

transforming the order tensor from coordinate system #1 (see Fig. 4.5) 

and then proceeding with the equations for D2 symmetry. This trans

formation may be written as 

(B.l) 

where S(l) and S(Z) refer to the order tensors in molecular coordinate 
~ =:::= 

system #1 and #2 r~spectively. The transformation matrix R is given in 
~ 
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Equation (2.3). For the transformation required, angle a= ~/2 and 

S = y = 0. The non-zero order parameters in coordinate system 112 in 

terms of coordinate system 111, are then 

(S(2)- 5(2)) = (S(l)- S(l)) (cos 2<P/2- sin2<P/2) (B.2a) 
XX yy XX yy 

s(2) = cs<l)- s(l)) cos4>/2sin4>/2 (B.2b) xy XX yy 

5(2) = s(l) (B.2c) zz zz 

The equations for the coupling constants are given below. Since co-

ordinate system 112 is used throughout, the superscript 2 is dropped. 

These equations all contain the average couplings for conformations, with 

:t"<P· The numbering is according to Figure (4.5). The following defini-

tions are used in the coupling constant equations. The internuclear 

distances when the dihedral angle <P is zero are denote as r 260 , r 150 , 

r
160

, and r
250

• The angles a,S,y,y',o, and o' are given by the 

following trigonometric relations. 

sina 
r67-r23 

= 
2r260 

(B.3a) 

sin6 
r58-rl4 

= 2rl50 
(B.3b) 

siny 
rl4-r67 

= 2rl60 
(B.3c) 

siny' 
r58-r23 

= 2r250 
(B.3d) 

sino 
rl4-r23 

= 
2rl2 

(B.3e) 

sino' 
r58-r67 

= 
2r56 

(B.3f) 

269 



270 

Finally, with the constant related to nuclear properties, 

2 2 
K = -yph/4rr , the coupling constants are given below. For Ring A: 

(B.4a) 

(B. 4b) 

D -D ._!i 
(

r )3 
23 - 14 r

23 
(B. 4 c) 

K 2 
D13 = - 3- [Szz (3cos e13z -1) + (Sxx- Syy) 

rl3 

x sin
2e13z(cos2q,- sin2q,) (B.4d) 

For Ring B: 

K 2 2 
D56 = - 3- [Szz (3cos o '-1) + (Sxx- Syy)sin o'] 

r56 
(B.Sa) 

K n5- 8 = - 3- [ <s - s ) -s 1 
XX yy ZZ 

r58 
(B.Sb) 

D - D (r58)3 
67 - 58 r

67 
(B.Sc) 

(B.Sd) 

where 

cose13z 
r

1
·2coso 

= 
rl3 

cose57 z 
r 56coso' 

= 
r57 



For inter-ring couplings, the full equation for Oij in terms of 

internuclear distances, order parameters and direction cosines (Eq. 2.3) 

must be used as they do not reduce simply as with the intra-rirgcouplings • 

. The cosines of the angles e.. defining internuclear vectors in the 
~JCl 

molecular axis frame are calculated from the trigonometric relations in 

Equation (B.3) and the r .. values. These are then used in Equation (2.3) 
~J 

to obtain inter-ring couplings. These inter-ring couplings are for an 

average of the conformations with dihedral angles +<j>. To calculate the 

four-conformation average (+<!>, -<P, TI+<j>, TI-<j>) the following equations are 

used. 

i515 018 045 0
48 

015+018 
(B.6a) = = = = 2 

i516 017 546 = i547 = 
016+017 

(B.6b) = = 2 

026 i527 536 037 

026+027 
(B.6c) = = = - 2 • 

i525 i528 535 
5

38 

025+028 
(B.6d) = = = = 2 

B.2 Program BIPH4PARA 

Program BIPH4PARA calculates biphenyl dipolar couplings from 

Equation (B.4-6). For o4 symmetry, the input parameters are r 12 , r 14 , 

r 23 , r 260 (distance r 26 at <P = 0), s~;), (S~)- S~)), and angle q,. 

Since the second ring (Ring B) is,equivalent to the first, its geometric 

parameters are set equal to those above. For n2 symmetry, the added 

parameters required as input are r 67 , 

required for coordinate system #2 are 

r
58

, and r
56

• The order parameters 

s<2> (s(2)-s(2)) and s(2). The 
ZZ ' XX YY ' xy 

calculation of couplings is done in coordinate system two regardless of 

which symmetry is assumed and, for o4 , the order tensor is first trans

formed according to Equation (B.2). 
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After calculating the D .. 's, BIPH4PARA sets up the Hamiltonian 
l.J 

(assuming no offset and chemical shift terms) in the simple product basis 

set for the submatrices with magnetic quantum numbers M = :t4, :!:3, and +2 .. 

These submatrices are then diagonalized. The totally symmetric CAr) 

eigenstates are identified as follows. The coefficients of each eigen-

vector from the diagonalization are summed. It can be shown that this 

sum will vanish unless the state is of~ symmetry [ 34 ]. A
1 

symmetry 

states found in this manner are labelled and printed out. From this 

symmetry determination, the ~ symmetry transitions expected in the six 

and seven quantum regions are calculated. 

BIPH4PARA will perform the coupling constant and frequency calcu-

lations for a series of parameters by incrementing one of them over a 

given range. Two files are created containing the six and seven quantum 

~ spectra calculated for each set of couplings. These may later be 

plotted by another program. This is the method used to produce the 

variation plots shown in Chapter 4. 

B.3 Program BIPH5PARA 

This program performs the same coupling constant and A1 subspectra 

calculations as BIPH4PARA. Instead of varying just one parameter, any 

or all parameters for either symmetry case can be varied in a least 

squares fit of the calculated couplings to experimental ones given as 

input. The intermediate couplings are not printed and the ~ subspectra 

simulation is only done at the completion of the iterative process. 

The least squares iterative procedure used to fit the couplings is 

essentially the same as that for program MQITER and most if the discus-

sion given in Appendix A applies to BIPH5PARA as well. The method of 

calculation for the derivatives of the Dij's with respect to order 
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parameters and geometric quantities is noteworthy. Rather than giving 

the derivatives from Equation (B.4-6) explicitly, they are estimated as 

a change in the Dij 's with a one percent change in the parameter: 

where 

In Equation (B.8) 

pk and D~. is the 
1J 

(B. 7) 

(B.8) 

0;. is the coupling constant calculated with parameter 
1J 

constant with pk + I6Pkl. This is the method of 

estimating derivatives adopted in the more general program SHAPE written 

by Diehl and Bosiger [128]. 
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APPENDIX C 

Disk Based Fourier Transform Programs 

The core memory capacity of the Data General Nova 820 computer used 

for operating the spectrometer described in Chapter 5 allows the calcu-

lation of a Fourier transform of up to 8192 points (complex). For the 

typical linewidths and spectral range required in a non-selective multiple 

quantum experiment on a large spin system, this is not of adequate length. 

As an example, considering the spectra presented in Chapter 4, the trans-

form size required (32k) already equals the memory available, leaving no 

room for the executable program. As a solution, a set of programs were 

written to allow the calculation of the transform in pieces·performing 

phase shifts and transpositions on the intermediate result. This 

appendix describes the algorithm used, discusses the possible errors 
. 

induced by the calculation, and presents a description of the programs. 

C.l Disk Based FFT Algorithm 

(The description presented here follows closely that given in Ref. [129].) 

The discrete Fourier transform of a time series d(j) may be written 

N1-l 

D (k) = L d (j ) ~ k (C.l) 
j=O 

where d(j) is N1 points long, D(k), the transform, is N2 points long, and 

k = 0,1, ••• ,N2-l. (C.2) 

We assume 



(C.3) 

where c0 is the amount of core storage available to hold a fraction of 

d(j). We then write d(j) in composite indices 

j = jo + jl co 

(C.4) 

Likewise, D(k) may be indexed, 

(C.S) 

Rewriting Equation (C.l) with these indices gives 

(C.6) 

Expanding the exponential factor and noting that ~· = 1, Equation (C.6) 

reduces to 

(C. 7) 

For the case where c2 = C, and using the notation 
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Equation (C.7) becomes 

with 

W = exp (i21T /N), 

co-l j k r w o o 
j =0 0 

0 

(C.8a) 

(C.8b) 

(C.8c) 

(C.9a) 

(C.9b) 

(C.9c) 

(C. 9d) 

Equation (C.9) shows that if we first doc0 ~1-point Fourier transforms 

of d(j 0 ,j1 ), phase shift each section of the result according to Equation 

(C.9c), and finally do a c0-point Fourier transform, we will obtain the 

desired frequency spectrum. 

If Equation (C.9) is written in matrix form, we can readily see 

what is required of computer calculations. First, the program must 

Fourier transform the columns of the input matrix d: 
:::1:1 

(C.lO) 
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Next, the matrix A is phase shifted according to Equation (C.9c) and the 
~ 

transpose of this matrix is Fourier transformed to complete the calcu-

lations: 

T 
~ = ~~. (C.ll) 

Matrix RT is written to the output file to facilitate later calculations 

and display. 

C.2 Errors 

For the acquisition system employed in the spectrometer, data is 

represented and stored as fixed point (integer) numbers in the range 

:t-32767 (only 10 bits are actually digitized). It has been shown [130] 

that an upper bound to the ratio of the RMS error to that of the root 

mean squared value of the result for the Cooley-Tukey FFT algorithm is 

RMS(error) 
RMS(result) 

2(M+3) /22-B (0. Jr) 
= --~~----~~~~~----~ 

RMS(initial timefunction) (C.l2) 

In Equation (C.l2), the number of points in the transform is N =2M and 

B is the number of bits for single precision integer arithmetic (B = 15 

for a 16 bit-word computer operating in twos complement mode). For an 

8 K, complex FFT on a Nova 820, the numerator on the right side of 

Equation (1.12) evaluated to 2.34 x 10-3• This is generally sufficiently 

small to be ignored. The ratio of Equation (C.l2) increases as IN and, 

even for the transform size required in the multiple quantum experiments, 

it is not considered to contribute to errors in the analysis. 

The factors contributing to Equation (C.l2) are i) the propagation 

of errors present in the input time series, ii) errors induced by the 

mathematical requirements of the FFT algorithm and iii) the necessity to 

scale the transform calculation occasionally intermediate to the final 
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result. This last contribution also arises because the RMS value of the 

intermediate result in the FFT algorithm increases from one cycle to the 

next [130]. This tendency for the RMS magnitude of the spectrum to in

crease during the FFT calculation effects the programming approach 

significantly. If· the entire calculation were to be performed on 

integers, provisions would have to be made to detect overflow during 

both transforms and the phase shifting of Equation (C.9c). With trans

form lengths above 16 K, the typical methods of bit shifting to scale 

the calculations during overflow is no longer adequate. The highest 

intensity lines become small with the many divisions by two and, for the 

usual cases where the full dynamic range available from the acquisition 

is desired, low intensity lines are completely lost. 

The solution to this problem and one that removes the contribution 

to Equation (C.l2) from scaling is to perform all computations in 

floating point arithmetic. In addition, using fldating point numbers 

removes errors associated with multiplication and addition. Errors in 

intensity and frequency determinations from the final spectrum are then 

almost completely a result of errors propagated from the experimental 

time series. 

C.3 Programs 

Besides the programs DSKFFT, DSKFTl, and DSKFT2 which do the actual 

transformation, several other programs are necessary to produce tau

averaged spectra such as those presented in Chapter 4. CONVERT takes 

the original integer data and converts it to floating point representation. 

DSKSCL, DSKMAG, DSKBASE and DSKBADD are used to scale, take magnitudes, 

baseline correct and co-add the data and calculated spectra. Finally, 
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RETSPC is designed to re-convert the floating point spectrum to integers 

by truncation. 

These programs were written specifically for the Data General 

commercial operating system RDOS but could be modified to run on almost 

any mini- or micro-computer. A memory size of 32 K words and a moderate 

amount of disk storage are required. Calculations of a 32 K Fourier 

transform on the NOVA system described in Chapter 5 requires about 

one-half .hour. The operation of all the disk programs is described in 

more detail elsewhere [117]. Because these programs are quite lengthy, 

a listing (-80 pages) is not given here. Copies may be obtained from 

the author upon request. 
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c 
c 
c 
c 
c 
c 
c 

c 

MQI'l'SI'!' 

SITS UP D&!l JOI PIOU'II 

CU!PUT litl IS "OI!II.~Af 

1~te~er mq1tf10),1para~(1!J,tlcntl 
ir.te&er t1tle(72),case(,8),mqo(10) 
real 4('5',cJ('~ 
loglcrl. rns 

data mqlt 10•-1 I, 1para~ I 1!•~ /, title I 72•8 I 
data d 1 '5•8.11, cJ I '5*e.e 
data crs~ I •~•e I 

iu e 
ma.rparp=1! 
mu11r.=230 

c tbis sectior opers up appropriate tile and sets up 
c ir.1t1al cl~ta 
c 

c 

c 

c 

trpe 1 1 
accept 1V.2, case 
vr1t~(1,103' case 

flcr.tl =1!1 
trpe 1et4 
~t ratsfiu\) tlcntl•1 

c dct~ 1n1t1al1zat1on section 
c 

c 

trpe 11~ 
· ccept 106, t1 tle 
wr1tef1,1e7l t11le 

2 t7Pe 1il! 
"ccept •. 11 
1 t · r ge 1 . ucl n 1 e . H l go to 3 
trpe 41117 
go to 2 

3 loworcl•f. 
ttfc eq 9) lovorcl•7 
1f 1 r .~q 18 lovorcl•S 
r"'l=r-1 · 
tcp=a•nl'l112 
trpe 2 1. n,lovorcl 
accept •. lovort 
it c .eq 9 .ancl. lovorcl ·lt. 7) lovorcl•7 
ttfa .Pq 10 .encl. lovorcl .lt. 6) lovort•S 

aer-.e 
tJpe 2P3 
1 t reu C iu l i 1ter•1 
wr1tef1,•) t,lovorcl,lter,tlcntl 
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c the next sect1oa haD4les 1apat of the coapl1DC corstatts 
c 

c 

1t tleatl .eq. 1 10 to 281 

tne 2V! 
.lr•1 
4 o 1H 1 =1 , 111111 
1p1•1•1 
do 1fJI J ~1p1,11 
trpe 206. 1-J 
accept • t(t! 

. trpe 2ee, 1,: 
~ccept •. cj \ k' 
k•.lr·'1 

1168 &:ODUDUe 

clo 19 1 '1,aep 
1e~ writeft,•) tC1l 

do tee 1'1,acp 
168 vr1te<1.•l ej(1' 

c if iter = 1 the~ enter the 1111e as~lgament 
c do! ta 
c 

c 

2~0 1f'1ter eq 0) go to 5ee 

r.v11 r.e: 1 

171 
19-' 

ro rcl =V. 
type 3211 
~ccept •. n1 
tne 3: • 
lf. cot ransC1u!) nvl1ae•0 
if nvline .aP. 1 go to 180 
tne 3e3 
accept •. Dcr4 
t1Pe 3 ! 
accept • (m~lt(1), 1•1,torcl) 
lf:tlCIItl .eq. I go to 188 
vr1teC1.•) D1,aor4,Dwl1De 
~~ avl1re .eq. 8) go to 19~ 
wrue·t.•l (mqtt.1), 1=1.1~' 
trpe ;s:·7 
clo 198 1 ·1,ror4 
tJpe 3Pe. Mq1tC1 
do 17~ J=1.~EJllr 
tJpe 388 
accept •. lau•,trq 
vr1tefl.*) lDWII,trq 
1f'ltum e~. 8) so to 191 
~.:onunue 
cor.Ur.u• 

c data 1nput for parameter sets 
c 

1&~ trpe t03 
accept •, DOS 
write( 1.• \ aos 
tne tl5 
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c 
c 
c 

do 3H i =1ollOS 
4o 290 J•1.~azparp 

2we iparar~Jl•l 
trpe 4118, i 
4c 3ee J•1.•nperp 

341· tJpe 3e9 
accept •. ip 
1t(ip lt. 991 go to 3'' 
tne 40'7 
go to 340 

34' itfip .eq. ,., go to 3~~ 
ipara~~t(Jl•tp 

35" conUilVe 
3~~ ~r1tef1.40B) (tpara~~tlJ), J=1,~~tazparp\ 
31110 coutrue 

500 tne U9 
14 bi rr•0 
ifrJarsC1u)) 14'b1rr•1 
type 502 
"ccept • .r.mqo 
wr~tell,•) idb1rr,nmqo 
1t·nmqr .le. 01 go to '2~ 
trpe 5V3 
accept •.(~o(i), 1•1,nmqo) 
wr1te(1.*' (~~tqo(t , 1•1,nmqol 

4'~ trpe ~v~ 
thr -ra 

45· 

1161 
1 
1 

ht2 
1-.3 
104 

1 
h~ 
UIE 
11it7 
h·S 
2U 

1 
c 
3 
4 

~ 
6 

213 
~· ~ 
2"6 
216E 

if 71nsCiu'' thr=-1.0 
1f thr eq. -1.0. go to 4Se 
tne 506 
accept •. thr 

vr1tel1,•) tt:r 

closelur!t•81) 

fo~at( ,1z,'Program MQITSIT',./ 
.1r,'DPta collecttoa tor program ~QITII.'//, 
lz 'What is the case 11ame (data tile name) tor tots run?') 
format' 4fla1' 
torml't 11 x ,40e1) 
fo~at(lz,'Has this case been hartled before vito',/, 
1z 'the sa~e data file? ',$) 
format 1T,'Inter a case title (u~ to '72 chAr):') 
to~u f72a1) 
fo~at(1z,'72e1 1 
fo~,t(/,lz,'!ow maar spias ia thts case? ',$) 
tort~~at' ,lz,'Jor ',12,' spins, the lowest orcler for',,, 
1z.'which a co•plete frequeac7 ~alculat10D ts poss1,le',/, 
1z 'is the ',12,' quaat~ spectrum. Other orters',/, 
lz.'mar be calculte4 but will be m1ss1n~ some allowed',,, 
1z.'traDs1t1oas.',/, 
lz 'Inter the lowest or4er tor wttcb a complete trequ••c,,',/, 
1z 'calculatlor is 4es1re& ',$) 
fo~atC1z,'Is thU an UeraUYe rua'l ',$) 
tormetC/.1z,'lnter the coupltag coast&Dts (1D lz) •• ,',/1) 
to~ai( 11z,'D(',12,',',12,') • ',$) 
format(12z,'J(',i2,',',i2,') • ',$) 
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3t 1 
3e3 

1 
314 

1 
3 • 

.. _ 
3"'7 

1 
2 
3 
4 

3.:.8 
3"Y 
483 

1 
485 

1 
--0 2 

3 
4 
5 
6 

4 .. 6 
4167 
4""E 
4a~& 

1 
502 

l 
503 

1 
5C5 

1 
5dS . 

c 
c 
c 
c 

.ro~at(/1x,'!ow ••a7 1terat1Ye CJC\eS are to be allowed? ',$) 
to~et( 1z,'tlae esslsDmeat laput. '• 
1% 11ow ~~~7 o,.ers eoatela 11De esslgameats7 'o$) _ 
for~J~at(1s,"Is tillS • an set .of Uae asUcJuneus',h::,, 
1z.'tor thls case?',$~ 
tor~~~at(1,., "IDter these orters: ',$) 
to~at( 1z,'1tter the prom~t, eDter the llne Dumbers tro~',/, 
1z.'tbe slmuletloD &Del the ezperlmeDt&l trequencles',/, 
1z 'ass1~De4 to them (eDter each palr wltb e C!). 1 zero',/, 
lz 'tor a lite Dumber terminates 1Dput. 1 total of 230',/, 
1z.'l1Des are allowed.'//) 
tormat(/' Line assisameats tor the ',12,' quantum spectrum:'/) 
to rill at C • » ' , $) 
tor~~~et(/1z,'Pera•eter set laput.',/, 
tx.'F.ow ~ar7 para~eter sets are there? ',$) 
romat(/1z,'1tter the pro•pt, eater each of the parameters',,, 
tx 'ln a set lach enter7 should. be a two 4~g1t Dumber',/, 
1z,'correspom41Dg to the nuclei 1 &Del J coupled.',/, 
1z '(1 aero meaDs nucleus tea aad. the lower aumber aucleus',,, 
1x 'is the first 41sit 1D the pair.)',/, 
lx.'Pos1t1Ye numbers refer to D''s ard Degat1Ye aumbers' ,/, 
1z 'refer to J''s',//~ 
!o~et(1x,'Prrameter.set 11 ',12,1) 
format~ ' Sa7 what?' ) 
form;. t r 151<l ~ 
to !"TT''a t '11., 'llo JOU wish tc 1nclucle a search tcr cloubl;r', 
· de~enerate', , · e1gerstates 1D freq calculat1ot7 ',$} 
ro~rt(1 7 ,'P.ow m£C7 orclers d.o JOU want calcualte47',/, 
lx '' -1 l'l'ears all orclers) ', $) 
fo!"'llatf1x,'Inter the orclers 70u want 1n the order',/, 
1x 't~e:r are tc be calculated: ',$) 
format(lx,'Is the default value (1.0e-4) of the tbresnola' ,/, 
1x. 'tor allowed frequencies to b~ used.~',$) 
rcmatf1x, '!rter the threshold. to be used. (posithe number) • 

$ 

end of program 

step 
er.cl 
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C PIOCUI'I MQI 'fll 
c 
C VU VMS filS ION. 
c 
c 
C !liS PROCI1" SIMULA!IS fBI MULTIPLI QUANTUM NMi SPIC!IO" ICI UP 
C !0 18 COUPLID SPINS 1/2. !BI PICCIJ~ CAN IITBil SI~Ptl SI~UIA!I 
C !BI SPIC!IUM FIOM CIYIN COUPLING CONSTANTS OB I!IIATI ON A SIT 
C CJ INITIAL PARA~ITIIS TO PIT AN IIPIII~IN!AL SflCTIUM. 
c 
C lOR UP TO liCIT SPINS T!I IN!Iil SPICTBDM (ALL f'IQ OBtiiSl CAh 
C il CAICUIA!!D JOI NINI SEINS !BI SIVJN QOJN!O~ SPICTBD~ ANt 
C A!OYF Ali COMPLITI. lC! !IN SPINS TBI tOWlST CCMPtiTI SPICTBD~ 
C IS !HI liCHT OOANTUM SPIC!iOM. IOiiR OIDIBS TBAN THISl Ali 
C FOSSI!ti. JUT NOT ALL IICINSTA!IS ANI f!IQUINCIIS Ali CAlCOlATi~ 
c 
c 
c 
C Il I!ll=tl JUST !Hi SII'IUU!ION IS DONI. 
C IJ IT!R C! e T~l PBOCIA" IS ITiiATING ON INPUT PARAMITiiS. 
C A !OTAI Cl NI ITIIA!IONS Witt !i PBIJOB~ID II CCNVIIGINCI 
C IS NO! RIJC!ID PIBST. CONVIIGINCI IS !IACBID WB&~ THI il!JTIVi 
C ~IRCIN! CHANGE IN THI l ~.S. IRRCR CJ THi iiT ElTwliN THlOit 
C A~t IXPIIIMINTJL SP!CTBJ JC! SOCCISSIJI ITlBJTIONS IS IISS TBAN 
C CN! ~IRCINT. 
c 
c 

c 

c 

c 

ri"'INSION SIGM.l(28',PIOJII(21!i 
IN~IGIB t(2S' M(2El,TITti(72),ftCNTL,CASI(f2J 
IN!!CI! If'IQOf11),IIINtf?' 

cow~ON I CFILI I ISC.FLIND IlP 
co~~ON CSTJT! N,LST~2,1i24),NfJ(11),~SM(11), 

1 NSP(ll ,I"UI"JT,NST ' 

CC"""'ON U4:~). CJ(f~ ), IN (2~6 ~,Ifill ,NOS, IFUA1'!(2@, 1: J, 
1 rt~J(2~6.2e· ,I"QIT(2,11',L&SS(2~1 ,IIFIR(23~i. 
2 IC'230.2!),!(238 .J(7Sf),BV(2e!,!OII(fSe~) 

I~UIT.&IIMCI CSICMA,Jf),(PICJIB,D 

C CPIN SCIJ.!CH DJTJ FILES 

c 

IS C-:3 
CPIN'U~IT•I3.TYP!:'SCIATC!',ACCISS•'!IIICT',INiiiALSIZ1•1, 

1 II'!'IND~IZI•l.R!CORDS IZI•l,liiCORDTTPl• 'II liD', 
2 ASSOCI.&TJTA!IJ!II=IPP) 

CP!N UNIT•M. !YPI= 'SCUTC! ',ACCISS•'DIRIC!', IttUUtsiU•1, 
1 IX~JNrSIZI•1.BICORtSIZI•l,iiCCRDTYPi='JIIII'. 
2 JSSOCIATfYAIIAJII•IlP2) 

C RIA~ IN CON!ICt YAil!JIJS ANt PlllOII" INITIAL CJtCDlATIONS. 
iiADf1.• N,LOIOID,lTII,JtCN!l 
111•1fl"IIIJ.I!J 
IIIPAIPS=1~ 
NM1•N-1 
N?l•N+1 

c 
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C CAtCtftA!I JINOMUL COilliCIII!S, UJ) ISP 
N0'11•1 

c 

NSP(l )-:1 
tO 21 J=1,1 
JP1•J+1 
JJ) N+l-J 
Nl JP1'=(NI(J'*JJ) /J 

2 NS~(JP1l•NSP(J'+Ne(JP1) 

C IITII~INI KliMAT. NSM, NS!. NJitJ, JIINJ) 
NT-NP1-LOVOJU: 

c 

IJ (MOJHN,2) - MOJ)(tOWOID,c)) .IC. I· NT=NT+l 
NT N!/2 
1"!1~!!=1 
ro 12 J=1,NT 
f'IA!MA'l'=MUI(NtiJ ,!"!AlMA'!' 

12 I"J'"'M!'l'=MAII(N"'J•IOVOII:! ,MAIMJ'l') 
NS!~2 . 
Nlit!=fl 
NSf'lf1:=1 
K-=1 
ro 13 J=-2,N 
Il Nt"(J! .GT MAXP'AT·· GC TC 1:! 
1[:!•1 
NSMCK ~NS~CI-1 +NI'J 
NST-=NST•Nf(J l 
FIINtCI-l)=NtfJ)*NI(J) 
Nliti:NJ'ILI+1 

13 CC ~''l'INl'l 
NSP'(~•1):NSM(Il+1 

t\C,•N*NMl/2 
C ;JAI: IN COUPLING CONSTANTS 

Il JLCN'l'tl 4:.5,4: 

c 

4 :PIN 1UNI!•02.NAMI•ClSI,TYPi='CLI') 
RIAI:'2 *) (J)II), 1'1,NCP' 
PIADI2,* (~Jf(l, I•t,NCP) 
GC 'l'C 111! 

~ R!ADC1,•) (~(J), J=1,NCP) 
niAD;t.• (CJlJ', J•1,NCP) 
IC 8 J=1 NCP 
r c:) =lH J' 4:. e 

6 CJ J =CJ(J'/4:.1 
CPIN 1UNIT•f2,NAMI•CASJ,TYP1•'NIW') 
tRI1'1(2,*) (J)(I), I•l,NCP) 
-II!!C2,*' (CJ(I • I=l,NCP 

1 CJIL CN'l'CU!(J),CJ,N) 

JI~N'!'I=-1 
Il ITII JQ. 2· GO !0 !! 

C RIA~ IN IIPIIIf'IINTAt tiNIS 
5!AJ) 1,* NI,NOIJ),NVLINI 
ro 31 I•Llfl 

c 

1"0 IT f 1 • I '•-1 
31 f'IQITC2.I •I 

IC 1~ 1•1,231 
!ASSfii=I 

1~ II~!R(I =1.1 

H!JP!I-1 
Il NWLINI .10. I CO '1'0 37 
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c 

BIAtft,•> CPtQU'(t,I), I•1,11i!) 
IC 3!5 I•1,NOJtD 

27 IIADCt,• LNU",fJtQ 
If LNO" .LJ. 8: GO !0 3~ 
I&SS(N!IPII)•lNO" 
II~IICNIIPII'=liQ 
~OI!(2 I -HOI!(2.1'+1 
NUPJI=NIIPII+l 
Il N!IPII .GI. 231' GO TO !2 
GC TO 27 

35 CONTINtJI 
32 CALL LINOID(NOJtD . 

C WBITI MOIT,t&SS,IIPII TC DISI Jill 
UIT!(2,•~ ((~QU:Z,t), I•1,2), K•l,tt· 
WRIT!f2,•) (tASS'I', 1•1,2~8) 
-WITJ(2,•) (IIPI!(t), t~l,c!l) 
GO TO 3@ 

c 
C niAD IN CLD LINI ASSIGNMIN~S 

c 

37 BIAD!2,• ( (~QI!( I,l', 1:1.2), I 1,10 · 
~lfttf2,•l (LASS(I , 1•1,23el 
RI!D(2,•1 (FlP!!!t), 1=1,2~1) 
rc 39 JC-=1,11 

39 NI1PIR=NIIPER-MOIT(2,JC :· 
3e NIXPIB~NIIPIB-1 

~!ITI16,72~' NIIPIR 

C WBITi IINI ASSIGN~INTS TO CUTrUT 
c 

c 

IF N~LINI .NI e GO TO ~ee 
NCI't=l 
to 36fl I=1,11 

3er II "CITll,Il .NI. -1 NORD=NOBI•l 
3e!5 t=fll 

tO 3e8 JC•1,NCID 
WIIT!f6.739' ~OIT~1,JC' 
J-=I"QITf2,JC) 
ro 371 I=1,J 
t=lt-1 
WRITI(S,7~1) IASS'I),IIPIRCI) 

!71 cor:TINUI 
3=1' CC~!INOI 

C BEAD IN PA!A"ITIR SIT DATA 
BlAt · 1 . • ~ NOS 

c 
c 

!lUll •' ((IPA!APHI,J), J·1,NPUPS), I•1,NOS) 
dtTIC6,7~1 · 

C INT!Jt I!IJtA!IYI tOOP. 
ff CAlL HAMIL!5 

II I'!'IJI !Q e } GO !0 !511 
c 
C li!S! SQUAllS IOOTII!S 
c 

C&:t COIDI! 
CAIL IRII!(IIl,NI,NIII!,NIIPIR) 
CA!t NOIMAL(NIIPII) 
If NIII! .IQ. I~ GO !O ~~~ 
CJtL MINYCY,NOS,DI!,L,M· 
II"J:I! JQ. I I) WII!I(!,7~W) 
CALL COIRIC 
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c 
c 

I'fll•l'flll+1 
co !0 ~~ 
IND OJ' U'IIA'fiON LOOP 

CUTPU! llliNID Plllf'II!IIS 
tO tl7 I=1,NOS 
1RiTI( e, 728) I 
IC te~ J•1,NP1RPS 
lt=IPJltlf'I(I,J' 
ltCU'f=UJS Cll 
IJ'I) t11,tl7,413 
tBITI(6,737t IOU! 
GC !0 til~ 
~!ITI(6,738) IOU! 
CONTI NUl 
CCNTINUI 
•RITI(6,731) 
CALL CNTOUT(D,CJ,N' 

C IIRCB ANAlYSIS. 
c 
c CUTPUT CCJrF· OJ NCB~AL IOUATICNS 
c D~-TBA~S • DC ••C-1' 

rc 471 I=1,7E4 
471 WCRI 1 I'=V(I) 

CALL f'IINV(VOPI,NOS,DiT,L,f'l 
If tiT · IQ. I V) VBI'l'l (e. 7~9 ). 
•BI'!J(S,7~1) 
!0 4~9 NS=l,NOS 
n·:v= r NS · 1 l•NCS 
IBICI=IICW+NOS 
ILO-=IL04+1 
II NOS-1t) 416,41e,417 

41€ •RITI(6,7~2) NS,{VOII(I), I=IICV IBIGB) 
GO TO ·41S 

417 •RIT! 16,7e3' NS,r~ORI(It I•IIO~ IHIGII 
4i.'9 CO~TINUI 

CALL GINSYM(V,NOS 
SIG~!(1 =f(1• 
If ~OS IQ. 1' GO TO t21 
CALL IIG2(Y,~OII,SIGI'IA,I,NCS,I: 
WRIT1(6,?~4) 
li NOS-1t) ~16.~16,~17 

~16 BITI(6,?~~' (SIG~(I', I•l,NCSl 
GC TO t22 

~1? ~!Itlfe,7~6) (SIG~l(I), I•l,NCS) 
42f INL=NIXPII 

FN~S=NOS 
t!l~(II1•111•JNL) (lNL-JNOS) 
IO t:!~ J•l,NOS 

4:!5 fi~!Jli(J••I.r 
'RI'U(6,7M) 
ICOt~ti-1 
IC t~e NS•l,NCS 
fi2YSQIT'Dif SIGI'Il(NS)) 
IN Dl• I COLI'III•NOS 
IBIGB•INti+NOS 
IlCV•INDI+l 
aRI'fl16,732' ('IOII(I • I=ILOW,I!IGI) 
Wll'fl(6,73~· 112 
IO 44! J•l,JIOS 

44ft PROJIICNS'•PIOUI~NS ·+(WOII(INDI+J>•112l-2 
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c 
c 

ICCt,..N•ICOt"N+l 
CON'UNUI 
tO tel J•l,NOS 
PICJII' J f•f.8'7t!!-sOI!{PJOJII( J l) 
-HI!IfE,7~~) {J,PIOIII{J), J•l,NCS) 
-.aiTI!8,738 1 

Cltt ICU!(N,,..AI"AT,IN,N01 

C ClLCULA'U lLLOWID I'IQ LINIS 
c 

c 

~~~ BIAD(l,* IDIIII.N~O 
IJ NMQO tl. e · GO TO e!t.: 
RIAD(1,*) (I~QO(I), I•l,N"CC) 

=~e ~IAD(1,* f!! 
Cllt M02rill'TBI,I~IIII.N"CC,I"0C) 
CICU(UNI1'•11} 
CLCSI (UNIT•I2 
CI· S!fUNI!•I~ · 
STOP 

4L1 !OB"AT'4e!t) 
4~2 JCR~AT'1B1,101,' CAS!:',SI 41!111 
701 JOH~AT·7211. 
7•~ JCE~AT!I1fX,72A1,'/) 
724 FORMAT(' TOT!! • OJ J!lQ I~iiBID •',!4, ) 
72E ;o.RMAT 1 •• • PUAMIT!a s n • ·, 12. > 
729 !CH .. JT(/, 

l' !I! DI!I.RMINANT OJ ~ATIII iO JI INTIBTID IS ZIRO Ill', ) 
730 IO~~AT~1!1,/,' IIJINED PAIAMITIRS • .',/1 
73~ !C~~~Tf~X,<~AX 1 14.NOSl)JE.4~ 
n3 JO~MATf1P1, , ' PRO!U!I !IUiCRS OJ IIClNJASIS ', 

l'PlRA!'I!TlR SITS .• • ', 1 /, 

2(~!,12 ex.Ftt.3· ~ 
734 JOR~AT(1!1, ,' IRROI TICTORS AND STANDARD tiVIATICNS ' 

1. 'Cl FIGENbASIS PAP.AMITERS •• ,',1) 
73~ !C3MA~'1)1.'ST!N~~iD IRROI • ',lE ~} 
736 !OP~AT 1 1!1, ,' I!JINID !NIEGIIS • ,', 
737 FOBM!Tt' J',I2 
738 iOR~AT(' ~',12· 
73~ FOPMATf1!1, ,' IINI ASSICN~!NTS JCI TBJ ',!2, 

1' QUA~TU~ SPICTIU".',//5l,'LINI •'.111,'IlPi!IMENtAL lliQUENC!' 
1 I 1~,46('-'J,/• 

74i JOPMA!'~l.I •• 141,112 4) 
741 JO~MAT{1P1,1, 

1' FP.~GRA~ ~QITIR- START Ol ITIIATifi CALCULATIONS.',//} 
7~1 JCP.,..lTf1Bl, ' ~ATIII 01 COiiiiCliNTS lOI !II NOB~-I~UATICNS' 

1, ' ; JilOII DUGONALIZATIOII • • 'Ill 
7~2 lCa~At(2I,I2,') ',<NOS)I(MIN(12, 126;NCS))).~/) 
753 !OB~J!f21,I2,") ',1ti9.~,;.<NCS-1•>JS.~,) 
7!., I011MA! 1 I .21, '!IGINYALUIS 01 NCIMAL IQUlfiONS MAUll • • • 'I) 
7e~ !CI!!I"ATf8I, <NCS>F<MIN (12, fH6/NCS!) > .~/) 
7~6 JOBMAT'el,ltfg,~, ,(NOS-1• 19.~ l 

IND 
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c 
c 
c 
c 

·C 
c 
c 
c 

c 

c 

1 
£ 

.:, _ _-.. 

SOJROOTINI tlNCIDCNORD) 

!HIS SUJROU!lNI OIDIIS !II tiNI ASSIGNfiNTS Of IIPIIIMINTAI 
liNIS !!A! All INPUT 110M '!'!I !!T lOB AN I!iiATIYl ION. 

CO~MON t'•5),CJ(.~),IN(2e6l,ITIBtNOS,IPAIAM(28,1~), 
II~!C2~f,2~),MOIT(2,18),1ASS(2~0J,IIPIR(230), 
tC: 2~11 .2C:: 1 ,J ( 238', f(78<6 l,JY (28), WORI ("901) 

INtiJ=0 
tO 111'8 I•l.NORD 
~t:"'~ITf~,l) 
IJINI It. 1) GO TO 99 
Nt!'11=NL-1 
IC ~~ J•1,NLH1 
JP' J•INll!l 
JP1=J+1 
IO 4~ I•JPl.Nl 
II"! !·IND!l 
Ii ·!.ASS C Jf'4 ~ • Ll. LASS (1:1'4:) GO TO <65 
IT =LI.SS ( JM) 
IASS(J~)~IASS(I~ 1 

uss;KI"' -LT 
II=IXPJ'R'J!'1) 
!JPIR(J~l=IIP!R{IP') 
:r;~nr ~ ... •IX 

"-~ CCf\~INtJI 
5itl CCN'!INUI 
9& IN~EI=IND!X+MQIT(2,I 
1 L k. CCNTI Nt.li 

U'IURN 
IN! 
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c 
c 
c 

SU!BCUiiNI CNTOUT(AJ1,AI2,N) 

C COTPUTS COUPLING CONSTANTS TO tPB. 
c 
c 

c 

!I~INSION AI1(1),AR2f1) 

!IIP't,..N-1 
I•t 
IC 30 1•1,NI'I1 
IPl=I•t 
IO 3" J•IPt,N 
IOO~=ARl(l) •.4.0 
CJOOT=AR2(I' • 4~1 
WRITif6,731) I,J,IOOT,I,J,CJOOT 

~16 !=1•1 

731 !OP.111!T(' D( ',I2, ', ',12, 'i = ',!'1:2.4,/ 
1 , • J ( ' , I 2 , • , ' , I 2 , ' ) • ' , 112. 4 , I I ) 

R!TORN 
INt 
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c 
c 
c -:- :-:. c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 
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SUJIOU!INI HAMIL~ 

fll·fMS fJISION. 

~liS PJOGIA" S!'I'S UP AND C!tLS 101 ftl. DUGONALIU'flON Of 'fBI 
1111-I~DUC'fiON IAHlt'fONIAN OJ AN N SPIN 1/2 StS'fl~ (N IISS !iAN 11). 
C~tT DIPOLAJ AND SCALAR COUPliNG CONS'flN'fS lii.INCtUtl* IN 
!BI HAHit'fONUN. !11 SU!ICU'flNi IS CAILID It MQI'l'll. 
JISn CAlCUtl~lD IS Til I'IA'l'RII CJ DliiTATIYIS OJ 111 
iiGi~VAtUIS ~IT! IISPICT !0 !HI PliAMlTIIS iiiNG ITIIATID 
UPCN !HIS IS HA'l'IU DLI'll. . 

SUiROU!INfS CAillD ARI NOMSJT, IIG2, UN!IlN, ANt ~.&TID 
AlSC C~tliD JII RIADHS AND VJI!HS 

Il~INSION !(2~S~l,S(~gee:,S'f(.90£) 
INTIGIR NUHJ(2,102~),IS!(7e),ISP(11),11tiP(2),JLIND(7) 

COP"MON I ClJLl I ISC,J'tJND.IrP 
CO .. I"!ON CSTATJ N,tsT(2,1124 ),NI(11) ,NSM(ll), 

1 NSP(11'.~1J~~'f,NST 

CC"'HON I: ( ~5) • CJ ( 4~) ,IN ( 256), I'l'II,NOS , IPAR.ll'l ( 28,1 E) , 
1 tLMB 256.2El,MQI'f(2,10 ,IASS(2~01,IIPIR(230), 
2 IC!2~~ 2~l,J(23P',V(78~).JV(2SJ,WORI(.901) 

iOUIVAII~CI (VORI,ST),(B(1),DC(1,1)),(5(1),tC(1,12)) 

N"CA.RPS•1~ 
Nl"l=N-1 
NSUTI=2,..N 
NC~=N111fiiM112 

If ITIR .IO. f\ GO TO 31 
IO 2! I=l.NOS 
!I ~11 ( 1 , l ) •I . 0 
~0 24 J=1,NPARPS 
K=I"'AR~~'J,Jl 
IJI!"• 10.15,10 

1~ rt~~~l.l •Dtf'lB(1,II+1.0 
24 CCNTINUI . 
15 IIM!INST,I}•DlP"B(l,I) 
2: CONTINUI 
31 l"CP=t 1 

IO 35 I=l,NCP 
3t tC?:ECP•I:(Il+CJ(I' 

IN'l'•!C~ 
lN' NST ~•ICP 

37 1"5~(!1 ... 1 
CALl NUMSRT(NUMB,N,NS!A'l'l) 
JS1Cl,l)~NUMJ(l,NSTA!l) 
ts:I2.1•=NU~B(2,NSTAT1' 
1S!:l.NS!AT!l•NUM!(1,1) 
IST(~,NST1TI)•NUMJ(2 9 1) 
;:n-1 

n 0 
C ~AIN LOOP 

c 
IC 1'-'0 JS•1,Nf"l 
INt 0 

IS ~-N JS 



c 

c 

11=1 
to te J•l,NS!lfl 
IJ' 1NOM!(2,.J) .fll. IS) GO !C 4t 
II 11-tl 
111•111•1 
If' II ti. MUMl'l' l IS'l' (II) •fiUM! U,.J) 
ISTCl,III)•fiU~J(I,J) 
tSTi2,RI'•IS 

41; CONTINl'l 
IJ !U G'!'. MAIMl'I) GO TO Ul 
Il IJ•l 

f"ST=II 
1"1" f"ST•I"ST 

4! 1M" ' 

to ee l"'=l,f"ST 
IC e~ L•t,l" 
IM t~+l 
11 L .Nt Ml GO TO 60 

C IIAGONAl ll!I"!NTS 
P'S!{"'l 

c 

ro ~P !=l,N 
ISPII;=-l 
nr~zs:C!) .A.,r f"SI) .Ni. 0) ISP(I)=l 
I"Sit.,!"SK•2 

~ .· CCNTINUI . 
Jl( !"' '=0 I& 
I!'IND .~I. 0 1 GO TO 56 
iCK ·~ ., 
!C 55 I=l,Nf"l 
IPl-.I·l 
IC ~~ J=IPl,N 
U U•1 
?. : LM =R < LHI•C I: in '•CJ c n' >•ISPC J l•ISP( 1 > 

u CC~'!'INUI 
GC '!0 P0 

t6 !0 59 I=l,NPARPS 
!:=P!P.AM'INr.I l 
n (! 5? .ee.~7 

t7 ICPl=IABS(l/10' 
IJ'ICP1 10. 01 ICP1•10 
ICP2,.,f"ODCUJS.(I) ,11) 
IfiiCP2 .IO. 11 ICP2•11 

~~ ~(11" =E(!Ml+ISP(ICP11•ISP(ICF~) 
GC '!0 F0 

C CJJ DIAGONAL lLIMIN'l'S. 
e~ Jw~t 

JSP=Ill 
nCL"' ·~ " 
I"Sl=l 
to ?e x.,.t,N 
Il''IST(l) .AND. f"SI) ~ fiST(M) .ANt. 1'151)) 70,7~,71t. 

7~ .iSP·JSP•l 
IJLIP(JI •I 
JW-.2 

7~ I"S!:MSI•2 
IF JSP .NE. 2' GO TO 6~ 
!~=f2•N-IFtiPf1) :•(IJLIPC1t-1)/2- 1JtiP(1)+1JLIP(2) 
IJ~INI: NI. 0) GO TO 77 
~(Lf" r -D(I~'•2.~•CJ(I5' 
GC '!'C ev 
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83 

e~ 
ee 

c 
. £10 
c 
c 

c 
c 

F7 
c 

SeE 

c 
&1 

. tO 9~ I=lfNPlRPS 
-I•IP.&I.&M NJ),I' 

IJCI 10 8) ;o to 80 
ICP1•U.JS (1: :18) 
llliCPl .IQ. 8 1 ICP1•18 
ICP2•~CDCI.&JS(I),10) 
IJ<ICP2 10. 8) ICP2•10 
!6 C2•N-ICP1l•(ICP1-1}/2- ICP1 + ICP2 
IJfiS NI. ~~~GO ~0 9~ 
IJ(I} @3,!8,£15 
8(LI'I'cB(LMl+2.0 
GC TC 9~ 
B(lf")•BCIM)-1 8 
CO~TINUI 

CON'l'INUI 

IJ(I'l'II tl. 1 .AND. INt .10. 8) GO !0 87 
U'i IND .NI. 8 '· GO TO 91 
CAlL RIADMS ( IJ, IS C ,S ,lLI ND , IlP) 
ROUG! tiAGONAIIZATION 
CALL UN'l'RAN(P.,S,MS'l',ST\ 

CALL IIG2(E,S,IN,MS'l'0,f"ST,ITIR) 

CALL ~RITMSfiF,ISC,S,FLIND,IFPl 
IJ'ITIR LI. e1 GC TO 9@ 
If ITIR .NI. 1' GC TO 988 
CAll WRITMS(If.ISC+l,S,lLINt,IiP: 
CO '!C 97 
:ALL USi!P(ST,S,EN,MST,MST~.IF) 
GO '!'C 97 

CA!I UNTRAN(!,S.~ST,ST' 
IC 9 · 1•1 ,"'!ST 
II •'"'U r I .I) 
tL~BI~ST0+l,I~D'=H(II) 
INt:It.:!+t 
IJ 1 INt II. NOS) GO TO 4~ 
""ST~=MSTe+MST 
CCNTINUI 
IJ 1 ITIR NI. 0) RITURN 
•RIHfe.4:02' 
CALL I~U!CN,I'IA71'1AT,!N,N~i 
Bi";URN 

!ORMAT!1~1,/,' ENlRGIIS CBZ) •.• '/) 
!t4t 
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c 
c -- c 

c 
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SUJIOUTINI NUMSITCNUMJ,N,Nh) 

.. : " '!UUt.&!IS !II NUMJII 01 ON IS IN fBI !I NAil IIPIISlii'U'f ION CJ IN'l' &GIIS ';"' 

II~INSION NUMJf2,NN) 
IC 28 J•1,NN 
JJ J-1 . 
NU~!ft.J •JJ 
Ill 
LL'0 
IC 1l' I•1,N 
IJtfJJ AND. II) Ni. 8) 1I•1I+1 
KI'-2*H 

h CC~TINUI 
NU~!(2 ,J '•II 

2~ CONTINUE 

Jll'rUJIN 
lND 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 

c 

c 

SUBIOUTINI IIC2(B,S,EN,MS!~,N,IT11) 

SUliPROCIAM IIGIN - YIISION "2 

296 

t!IS SUJBOV!INI DIACONALIZIS AN N BT N STMMETBIC MATIII B ~y T!1 
JACOBI MJTBOD. TBI UPPII TIIANCULAI ll~MiNTS OJ B (H(l,J)? J .GI. I) 
AI! INTEBID COLUMN-VIS! IN A 1-D AllAY. TBI SUJBCUtlNI COtPUTS 1BI 
IIG!NV!t~IS IN THI VICTOR IN. TBI TR&NSlOBMATION ~&Till IS 
CUTPOT IN VICTOR S (B • s•~-ti&C•S-INV). DEPINtlNG ON TBI VAIUI OJ 
TTU, S IS llTP.IJt SIT IQUAL TO TB! OUT MATBII 01 Lift AS INPUT 
WIT~ SUCCISIVI JACOJI ROTATIONS !I:ING P1ULTIPLllt INTC IT. 

~~~ SUBPCUTINI IS ADAPTit IRO~ SUJRCUTINI •IIGIN" IN TBl IJ~ 
SYSTI~13Sf SCI!NTI1IC SUBIOUTINI PACKAGE. 

II~rNSICN B(l ,S(tl,IN(t· 
CN=N 
R.ANG1=1 1!-E 
I1CITIR-1l 18,18,25 

h IJ·'=' 
ro 20 J=t,N 
I:O 2&' Iet,N 
IJ=IJ .. l 
S(IJ)=0 e 

20 If I .EQ. J' S(tJ:=t.e 

25 !NCR"'=~ e 
lC 30 J=2,N 
J""l=J-1 
!0 30 I=l,J!"'1 
IJ !":A 'I I I .J \ 

~l 'N:RI"'=~NCR"' + H(IJl•E(IJJ 
ANCR~=SORT(2.0•ANORM) 
IF; !NOH" . L'!'. RANGEl GO '!'0 12~ 
INCR"'I=ANOR!"' • RANG! I ON 
IN!-~ 
T?.R..,ANOR~ 

4~ ~BR~!F.R ON 

~~ ro te~ H•2,N 
I"P-1•!"-1 
to tee t=l,I"Mt 
~~ f'I!T:l.M) 
IJ'.AJS:B(LI")) .IT. T!R) CO TC 100 

IN:t-=1 
!I 111ATCI,I) 
1"!'1-""AT'Io!.l"' 
IUJeP. '"'~ l-EC It l 
IJftiJI IO. 0.0) DIJI=1.01-30 
AA ~.f•ATAN(2.8•H(LM 1 /Dlfl 
SINA=SIN fA! l 
COS.A.,.CCS 'U) 
SINA2:SIU•SINA 
COSA2•COS!•COSA 

to '1~ , ... 1,N 
IJf!-t· 61,7V.,62 

61 !I ~AT'I.I) 
KH !"!AT I.H~ 
GC TC S! 

62 IJ'!-M' €3,70,64 



c 

c 

(; 

63 IL,MAT t,ll 
IP'I•t-!'1' 11 M) 
CC TO e~ 

64 It-MAT.! t ,II 
IM,.~!'l'fP'I.I} 

65 BB COSA•I(II) - SINA•B(IM) 
!(IP'I •StN.t•B(Itl + COU•R(IP'I) 
E(Il •FE 

7e CCNTINOI 

ss~2 ~•StNA•COSA~(tM) 
BB CCSA2•B(Lt) + SINA~H(I'1M) - SS 
B(~M =SINA2•B(tt' • COSAZ*~(M~l • SS 
lfLL•=EE 
B(!~':-DIYJ•SINA•COSA + B(lM)•(CCSA2- SINA2) 

IF' IND . EO lrl GO TO 120 
u::-0 
CC TO '!l 

14!., . 
c 

IF THR .c,~ !NOR~l' GO TO 40 

IC 1~~ I.,1,N 125 

130 
c 

II MAT I.I' 
J=I•MST1 
JN · ,n-:!r n> 
CONTINOi 

lil TURN 
!ND 
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c 
c 

... . c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

SUJROUTINI UN!R&Nl&,U,N,S!l 

iBIS SUJBOUTINE C&LCUL&!IS !II UNITARY TIANSlOB~&TION . 
'U-AIIJCIN! )•&• (U) fOR TBI SPICUt C.lSI VBili A IS IUL S'fl"'l"li~ < . 
iBIC AND U-&DJOINT•U-TIANSFOSI. 

RJSUlT IITURNit IN A 
N IS TVI DIMENSION OJ A,U ANt NSQ•N••2. 
STCRAG! f'ODI OJ MATIICIS IS SINGLi SUBSCIIPT JiCTOR VITI! ONI.Y 
UPPIR TBIANGll !AIJ OJ A STOB!t. 

ST IS A •OBI MATRIX. 

ti~INSION STf1',A(1),U(1' 

NSO-:N•N 
IC 1CII IS'l•1,NSQ 

1~ STiiST •P.0 

C fORM PRODUCT AU AND STORI IN ST 
IC e,_: II:X1•1.N 

c 

IO !5~ IDX2•1,N 
IN~ -"!&TV lC ( IDI1, IDI2, N ·, 
IC ~17- I=l,N 
IJ'ItXl-I) 30,20,20 

20 IN2=~AT(I,IDX1 1 

GC TO '=~ 
3~ ~~~:MA!fiDI1,I) 
4~ IN1·"1A~ViC(I,IrX2.N) 

ST IN3 =ST(IN3l + A(IN~I•U(IN1l 
5~ CC~'!INUI 

C 10R~ PF.OIUCT U-TR&NSPOSE•ST AND STOB! IN A 
rc 10e It:U=l ,N 

c 
c 

IC 100 IDX2=IDX1.N 
IN1=~A!flDX1,IrJ2 
!(IN1)=0 0 
ro 1~0 I"'l.N 
IN~="'!!VlC(I,ItX2,N) 
IN~=~A~V!C(I,ItXl,N} 
A(INl ·=A•IN1 •U(IN3)•ST(IN2l 

h.IC CONTINUE 

UTU!IN 
lNt 
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SUliJIOU'f INI CONDIT 
c 
C Ul/fPfS YIISION. 
c 
C 1HIS SUJIOVfiNI !ORPfS !II IQUJTICNS Cl CONDI1ION JOB A tlAST 
C SOU&!IS ITIIA!Ifl ItT or lN liPIIIPfiNTlL SPICTJUPf TO T!lCRT. 
C CUAN~I11!S CAlCUIA!ID IN !!IS SU!PBOGR!Pf ARI SDM(PAB!IAL IiBIV. 
C C1 ND(I' V.I.T. PliAMITIB P(Jl) AND (NO(OBS)- ND(CA!C)) WBlBl 
C ~El NU'S All rJIOUINCIIS (II!BIR IIPIIIMINTAt 01 TElOIITlC&L) 
C AND 1!T PABAMITIRS P A't !!I INITIAl PARAMITIIS JliNG ITliATlt 
C UPON. T~t SOH IS IITUJNID (IN COPfHON) IN ARRAY DC AND !BI 
C ''RISitUUS" ARE ltTDINit Itt ABUT !. 
c 
c 
C TBIS SDBBOU!INI IS PfODILID llTIR TBAT_ FOUND IN THI 
C F~OCRAM "t!OCOCN3." 
c 
c 
c 

c 

c 

c 

c 

INTIGIP. CIDIR,UIS,DHL,DMD 

COMMON I CST#TI I N,tSTC2,1024),N0(11J,NSH(11), 
l NSP( 11) if'IAIMAT ,NST 

CO""I'!ON r'4!! l ,CJC4!) ,IN (.2~6 1 ,ITIB,NOS, IPAR.l1'1(2e,1~), 
l II~!'2~€.2@),MOIT(2,10l,LASS(2~e),IJPiR(230), 
~ :c 23~.2~',JI230',V(784),BV(2E 1 ,WORI(49001 

~Pl-N+l 

u" 
IC 3e0 ICRD=1,N 
NL ~OI':<2,IC!D' 
:RIIR=""OIT(l,IORtl 
If'CBtiR .IQ. -1) GO TO 40~ 

C lOCP OVIR Zil~A~ SUBMATRICIS 
II~I"e 
KZl-1 
IC 2 'I" IZ•1,N 
II"CRt!R .IQ. 0 !MD. IZ .10. 1) GO TO 200 
I!' IIZ•ORDiR l .GT. NP1. GO TO 2~0 . 

C SUB~~T~II ti~lNSIONS 

::~T-=N0fJZ) 
t,..!J N0:tz•ORI:ER' 
II'r~t li. ""AIMAT) GO TG 134 
KZ1-=U1•1 
GO 70 2(110 

134 Il 't!'!tl . GT. "'AlHAT) GO TC 2e0 
U2"-1 
tO 1~6 I~t,ORDIR 
II'N:·ttz Il .Ll. ~AII"'lT} GC TC 1~6 
!Z2.,U2•1 

1~5 CO'iTI~UE 

C tr.-::p 0\'ili lOWER IIGINSTATIS 
US-£ 
tr:tz -~i. 1' LIS•NS~(IZ-tz1) 
H'r:!l-=1',..1 
II'ORDfR .IQ. 8) NTOP•NTOP-1 
tO Ute J•l.N'l'OP 



lJS•LIS+1 

C ICOP OVIP. UPPU IIGINST.t'l'IS 
U!S•NSMCIZ-EZ2+0RDIB' 
NU•1 
IJ(ORIIII .NJ. 8) GO 'fO 13~ 
NU·J ... 1 
tiS•OIS+J 

135 tO 95 JST•NU,DMU 
UtS=UIS+l 

C UNI NtfMEIB COUNTIR 
IINJ=1IN!+1 

c 

c 

c 

UI:-:U 
tO e:~ NC•1,NL 
!U=UI•l 
IJ:L.ASSfiiil .NI. LINE. GO 'l'C 616 
HU1'=11.PIR(UI 1 - {iN(UIS)-IN(tiS)I 
tO "I 1•1, NOS 

716 tCfiU.I •DLMB(UIS,Il- DLI"J(LIS,I) 
8~ CCN'riNOI 

9!' CCN'!'INOI 
1 .. ~ r.ONTINUI 
2~0 ·CCN'f:INt'I 

2!. U=!I•NL · 
3"0 CC'!TINtTI 

4 .. • : .iiiTUR~ 
FND 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 

c 
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SUBRODTIN! !IIIf(IIl,NI,NIIIT,NL; 

VAl TMS YIISION. 

ITALUATIS !.M.S. 11101 101 A VICTOR 01 IISIDUALS 110M ONI 
IfiR.&fiVI CTCtl IN NMI ITIIA'flfl PIOGI!t1. filS UISION IS P'.CDilllt 
JRC~ PROGIA~ "LAOCOON." 

1 
~ 

4 

! IS TF! TICTOI OJ RISitUAlS. 
ItiR IS 'III NU~BIR OJ tl! PBISINT ITIIATIVI CTCll. 
111 IS Thl IMS 11101 110"' THI LAST CTCtl. 
NI IS !Bl TOTAl NUt1BlR Of ITIRATIONS AlLOWlD. 
NIXIT IS A PARAMETER TO BI US!D IN DITIRMINING WHIT!IR 

IUITEIR ITIIATITI CTCLIS SBCULt Bl BUN. 
IJ NIIIT•8 RITURNit NC JUITEIR ITERATIONS NIClSS&Il. 
Il NIXIT•1, 1UT!IB CYCLES Ali IIQOIRLD. 

~1 IS THl NU~!IR 01 RISitUALS CONTAINlt IN B. 

RIAL MINI!! 

CO~~CN »·•5',CJ(4e',IN(2:6 ,ITIR,NOS,IPAIA~(28,1~), 
Il"l! '2!:6 28), "'QIT (2 ,10 .',LASS ( 2:!e l, IIPIII( 230), 
IC'2~e.2E),B(230),V(784),BY(28l,WORI(,900) 

f"INIIIII = 1. rl -E! 
:rR2 ... e e 
JNL-NL 

IC' 1-c-l,NL 
£R2~FR2•!(11•B(I 
1R2,SOP.TfiR2/lNLt 
IJ(IR2 GI. HINIRR) GO TO ~ 
tRITI(6.4~1 1 ER2 
GC TC ~ 

~ •RITI(€~~01) ITIR,IR2 

IJI'lRt-fR2)/lR1~0.01) E!,8,1e 
E NIXIT=e 

lP.1=UI2 
III':URN 

10 Il.ITIR-Nil 111,S,B 
110 111•IR~ 

UII!=l 
U'IUP.h 

3el JCR~AT~5I,'ITiiATION M 'oi2,3I,'R H S 11101 • ',Je.~J 
·~1 101t1AT:I,' ITIRATION CIC11 TIR~INATID -',/, 

1' Ii~S IRP.OR LESS THAN 111I~I~I'1 ALLOiilil ',/, 
2' illkOR = ',!16.4,) 

Hf!) 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 
2. 

c 

c 

c 

20~ 
2i6 

c 

2le 
c 

SOBIOUTI~I NOBMiL(NL\ 

fi:l VMS fUSION. 

TBIS SOJIOOTIN! SITS UP Til NOIMAL IQV!TIONS FOB A ~LIAST 
SQUAllS ITIBATIY! PROCII»ORI. 
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'I!I MATIII PIODOC!S DC-'fliNS•DC AND DC•B UI J'OI.,iJ) WBlil DC IS 'IBI 
MATRIJ OJ J)IRIVATIYIS OJ 711QU1NCIIS WITH 
RISPIC! tO PiRA"ITIIS AND ! IS TBI ~ATIIJ 01 ilSIIUJIS 
EIT~IIN CiLCOLiTID AND OBSIRViD lliQU~NCIIS. 

COI'!MON D (ol5', CJ(ol~ l, IN <2!S& , ITIR, NOS, IPAUI'l(28 ,15), 
It"'lH 2E6 28), 1'9QIT {2 ,11) r L.lSS ( 2:!e: ,iiPU(231tl), 
ICf230,2@),J(230',V(7S4J,JV(28J,WORl(oi900) 

IO 21~ NS1•1,NOS 
IC 206 NS2•NS1,NOS 

INti1="1ATVIC(NS2,NS1,NOSl 
INtl2•"'ATVIC(NS1,NS2,NOS) 

VfiNU1 =0.0 
IC 20~ UO•l,Nl 
V(INtX1'=V(INDI1 +DC(LEQ.NS1l•DC(llQ,NS2) 
V'INIX~'=V{INDI1. 

l!V NS1 =~.0 
!0 21e LIO=l,NL 
EV:NSl'w!V(NSl)+])C(LIQ,NSl)•B(lEC) 

.DHUP.N 
u:r: 



SUBIOUTINI COIIIC 
c 
C Vll,fMS fiiSION. 
c 
C ~!IS SUJROO!IN! 1PPLIIS CORIIC!IONS TO PlllMITtiS TB.lT 
C .lRI JIINC ITII.lTit UPON. IT IS tiSIGNID TO Jl C.llllt lRCM 
C TRI ~!IN PROGRAM MQITIR. 
c 
c 
c 

c 

c 

c 

c 

COM~CN I CSTATI I N,LST(2,1021),N0(11),NSM(11), 
l NSP(11),1"1lf'U,NST 

COMMON D ( ol5' • CJ (ol5) ,IN (256 , ITIR ,NOS, IPAR.lM ( 26,15), 
1 IL~!(25S ~8),~0ITf2,10lrL.lSS(2~e),llPiB(23~). 
2 IC(231,2~),J(230),t(78-lJ,JV(28),VORI(-l901) 

NP~RPS=lt' 
IO 310 NS•l,tlOS 

CO:RP=V P 
IC 20~ NS!=l, NCS 
IN !'l=~ATVIC ( NS, NSJ, NOS ' 

~.. CC'P.R=CCJIP. + V (INti l•BV (NS:B' 

tC 3~9 t~l,NP.lRPS 
7.C · IPAF.}."'(tiS ,It l 
ICPl-:IA!S(lC 10) 
JFIICPl .IQ. 0) ICP1~10 
ICP~=~CDIIA:BS(lC:,l0: 
IJ'ICP2 lQ. 0) ICP2•10 
IC~C·I2•~-ICP1l•(ICP1-1'12-ICP1+ICP2• 
I1 1 KC · 3C6,31~,3~e 

3~€ CJ'ICPC):CJ(ICPC)+CORR 
GO TO :5CIIS 

3~e I'ICPC·=t(ICPC)+CORR 
311!9 CON'!INtti 
31~ CON'l'INUI 

JIITORN 
IND 
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c 
C THIS SUJiOVTINl 1!-AIIANGiS A 1D VECTOR AIRAT 
C (JIAt) RIPRISINTING A GINIIAt BlAt MATIIl INTO !BI S!OiAGi 
C ~ODI WIIRI ONI! Til UPPII TIIANGULAJ IAtl OJ Til ARIA! IS llPT.~ 
C THIS IIDUCIS STOIAGI IIQUIIIMINTS 101 IIAL S!MMITIIC AllAYS. 
c 
c 
c 

c 

c 
c 

IIP'INSION All(l) 

l".l'!'CNT=l 

fO 1ee ICOLMN•l,IDIM 
INDJa(ICCI~N-l)•ItiM 

IO 100 IIOW•l,ICOLMN 
ARR(M.l~CNT)•ARR(INDI+IROW) 
P'.&TCNT=I"'l'l'CNT+l 

100 . CON'l'INUI 

BI'l'URN 
IND 
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c 
C INVfRTS A M&TRII 
c 

c 

Il~INSION A(l),t(1),H(1) 
RIAL A.D.IIGA,!Olt 

r=l 0 
N1 -N 
IC et (:J,N 
Nl NI:+N 
L(l' I 
"((:•( 
U-NI•I 
EIG.&~A 1 Ul 
rc 2: J=I.N 
IZ-N• ( J-1) 
tO 29 I=I,N 
IJoiZ+I 
IJ 'US 'B IGA)-!liS (A (I J) )) 1 ~, 28, 2e 

1~ ~IGA=A~IJ' 
l'I!•I 
f"(!'=.! 

2~ CONTIKUF. 
c 

J=LCK~ 
If J~K ~e.3~.25 

~! U--I-N 
IO 3!l I~l,N 
KI !I-~ 
::t:tr=-JIKil 
.-r u-r•J 
JiKI :.&(JI~ 

3i f(JI =FClt 
c 
;3~ I=f".K 

IF'I-1 4f,4f,3E 
3€ JP-N•(I-1' 

r:o 40 J=l.N 
JK NK+J 
.-r JP•.J 
!!OLD=-A' Jl' 
A ( JI I• .A( J I l 

4e A(.JJ':BOID 
c 
4~ IF'~IG!· 4S,4S,4e 
te !=Ill e 

H'!URN 
4e rc e~ I•l,N 

IJ'I-1~ ~~.~5.~8 
!:0 IK N!t•I 

A(II =A(Ill/C-BIGAl 
55 CCNTINTJi 
c 

10 t:f I•l,N 
II NI•I 
:iOLD=A' I K' 
IJ ·I-N 
IO 65 J:l,N 
IJ IJ•K 
IJ~I-1 60,6f,6e 

e~ IJIJ-1' e2,e~.e2 
62 KJ IJ-I•K 
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IJ=I-N 
IC 7!! J=l,N 
IJ -U•N 
IJ(J-1• ?8 ?!1,?0 

72 J(IJ'•A(IJi,JICl 
?~ CON'l'INUF 
c 
c 

A (U: 1•1 e/BIGA 
ee CON'l'INUI 
c 

K•~ 
1ee 1=1-1 

11·1 151,158,115 
10~ I•t (I' 

IJ'I-I' 121,128,10P 
1'e · JQ·N•(t-11 

JR.::N•! I-1) 
rc 110 J=1,N 
J[·JQ-J 
FOLI=AIJJ) 
.:z·JR•J 
A(JK =-A'JI' 

11~ lfJI =ECLD 
120 J:af"l(J[) 

If J-1 180,101,125 
1&~ u =-1-N 

!C 1~~ I .. l,N 
!ti·U-N . 
l:Clt•A!U) 
.:z -n-t•J 
J(!I =-A:JI\ 

13~ AlJI'•EOI~ 
co !0 100 

i ~" Iii '!'URN 
INI 
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.. • 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c.; 

c 
c 

~uaroutiae uswep:~t.s2,en,i4im,mst~,1fl 

Chects c matrix ts2) •«einst a prew1ous17 stored. 
wetr1x or umit 1sc+1 Cbect is for m1n1•um BHS 
d1fferPace in elements of rows with one another. 
!he sum of (st{j,tl-s2Ci,tl)••2 tor all t trom 
1 to idim 1s calculated. This is stored es tJI(i). 
The minimum ot this wector is then found end 
~t that wimimum it mot tor J•1 tber: the correspomd1ng 
columns r.t s2 are interchanged.. Also tbe elements 
erlll!str+,1l nd ea(mste+i) ere swepped.. 

!b1s rout1re is desigr:ed to aeep the ord.er ot eigemstates 
·nd •i~erwPetors the same tor succesiwe c7c1es in tbe 
iterative portior of ~q1ter. This will help convergence 
1n t~P case wDere the d1ag,nal1rat1on ot tbe Bam1lton1ar 
mry 1~,dvertlJ!tl7 swap e1genstctes. 

di~ersior dJ1(~1',s1(1),s2(1),er(1) 
1ntege~ flind(~'.st1.st2 
co~~or I ct1le I 1sc,tlin4,1tp 

c read ir origital ~atr1x 
cill reedms(1f,1sc+l,sl,tl1nd,1fp) 

c loop over colu~ns by j 
ao 50V j "1.1d1m 
.~o'f' i .~-1 '"'14 1111 

c loop over columns b7 1 
do 200 1-1,1dim 
dJ 1· i =-0 e 
ioff=l!-1l"'14il'll 

do 100 k .1 ,1d 11'11 
1111" dJi'1 =dj1(1· • (s1(joff+t - s2(1o~f+lrJ)"'"'2 

2~l' cortirue 

C fitd l'lliDii'IIUm 
Sl'llfll"'dj1(1) 
ktlr=1 
do 381 t~•2,idil'll 
it dJi klr' .~e. smell) .~to to 30" 
lrkt,.tk 
Sl'llell =d j 1 ( kk ) 

30ft' cort1r:~e 

~f'ttt .eq. J' go to ~r2 

c ~vap eigenvectors 

kOff:(ktk-1)"'141~ 
do 4fl0 t,.1,141~ 
indXl• Joff•k 
1114r2•toft+t 
telllp=s~ (! rUl ) 
s2 1ndx1 •s2(1ndz2' 
s2 1rd7:? •tel'llp 

tlciV! cort111ue 
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SU•J+II'S\f. 
st.2attk+llls\l 
t•lllpc@r( U1 \ 
er 1SU ••r(s\2l 
•D'st2l•t.elllp 

c cut.pu\ sweppe4 5\~\es 
wr1\e(6,1f11 st.l,st2 

580 cont111ue 

Tf!t.\11'1: 

lt:l forlllat 'll'z,' SVAPPID S'l'A'l'IS · ',14,' , ',lf) 
I!DC1 
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subrout1De eout(•.~•z~at,en,ne) 

c !h!s subrout1re outputs the contents ot energ7 •ector 
c eu 11 t12., for.et. States 11 each Zee.aa ••a1told 
c are seperate4 b7 a blank l1De. N 1s \be au.ber ot sp1ns, 
co ~auu 1s the. Slit. ot the largest Zee•.u ~4111tol4 
c cor.tE1~e4 1D PD ea4 ae 1s tbe erra1 coat&1D1~ tbe 
c t1ro~1al coeff1c1eats (41~eas1ons ot the Zee~a• ~an1tol4s). 

d1~enstor en(ll,nt(l) 

Dpl•r.~l 

~b 1 

do 500 J=-l.apl 

1firrC~· .~\. max~etl go to ~ee 
rt ~rb~re( n-1 
wr1te(6,4il l ( 1eng,en( 1eag , 1eng•DD,U) 
rb ~b+r0(J) 

5i:l0 cort1 rue 

<l•l f'C!'"IIIct!l(olx,'!N(',13,'~ = ',t12.4)l 
et11 
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c 
c 
c 

subrou~iae ~~24iff(tbr,i4b1rr,a~qo,i~qo) 

rul~1ple qaartu~ treqaeacr calculatlms routiLe. 
versioD 6. f!l/fMS •ersioa. 

c Tb1s subrouUI!e calculates allowed (bJ SJ~Ur;r) 
c 11n~s 1D a ~ulUple quauu~r. spectrum. AD7 allowed order 
c Cl.t be CP-lculated. Or4ers tor which aot all eigea•ector 
c matrices have beer calculated will Dot be co~plete. 
c 
c subroutine sr~set is called to classif7 eigenstates 
c t7 S11"me t r7 . 
c 
c th~ 1s the minimum allowed ~hresnold tor allowed 
c trars1~1or.s. 
c 
c 1db1rr is tbe flag tor tegeaeracr cbeckiag 
c 14b1rr•1 eiseastates scaaaed for 4egeaeracies 
c idbirr=e e1se11sutes 110t scauet. 
c 
c nmqo 1s the DUMber of orders to calculate. 
c ~qn 1~ t~e v~ctor cortaicirg the orders to calculete 
c IlPments of mqo define what order spectra are calculated 1n. 
c It r"'G o=-1, all orders are calculated stert1111 vi th 1 
c throug~ r aDd tben the zero qu&Dtum. 
c 
c this version •llows up to 10 spins. 

d1~el!s1or s21~P~~ ,s1(3136',treq(1810) 
ir.teger deg,14blf256),1s,mC2~6),srm 
1utegP~ 1deget(1018),1mqo(1),4"l,dmu,ues,fl1t4(7) 
logical tophef,hclt.lcs · 

com~or cf1le 1sc,fl1r4,1fp 
commor. I cstete I u.ls~(2,112-!),n8(11),nsm(11), 

1 usp(11 ,maxmat,nst 

co~or d '45) ,cj(o!~), er ( 256) ,iter ,DOS ,1param(2@ ,15), 
1 dlmb(2e5.2~).mq1tl2,1•l,Iass(231 ,exper(230), 
' de 1 2~~ 2c l .~ (23l' • ,v(7E<! l, bv(2S) ,vort<·u;e") 

equ1•alerce (vort,s2),(14bl(1),dlmb(1,1)), 
l 51' 1 . dlll'b ( 1 '2 \ 

c ~y, t1al1ze 
if tttr ~q. -1) thr•1.1e-o! 
rtreq= 
rs~a~e-2••r 
rpl-=u•l 
rm1=t-3 
C10 3 u =1,25f 

3 1d0l "11 I 
lcs"" f; lse. 
nalf-= false. 
1f.14b1rr .eq. e so to 1 
klE"1 
1top•tm1 
do 6 1 ... 1.1top 
.~tc.p·~·· ( 1•1! 
!f j~op st. fflazmat) so to 6 
CIO ~ j-1.jtop 
tk tt-l 
~t'14bl ()rt) r~. I eOf' J eq. Jtop) go CO e 

310 



c 

c 

(; 

11 110. fl•n ( tt' 
jp1•j+l 
ttt tt 
do " t-=- jp1 ,Jtop 
t.lrlr•ttt·1 
12·1ee.e•erCtttl 
1t: 11 .eq. 12 1Ul (ttt · =tk 

" co11t111ue 
!5 cortirue 
6 CODUJIUe 

1 cell !1MS~t(s1,s2.1sJm,nrep,thrl 

!t!~odfr 2) .re f) halfc,true. 
1t'~m~n gt. e) go to 111 
do 212 1.:-1,r 

~12 1~qoC1 •1 
1mqo(~p1 l•e 
tl'l~o ·up1 

c ~!IN ICOl OYlH OHtiRS !0 C!lCUIATI 
c 

111 co e~e· ~q=1.~mqc 
.,q::> 111'qo ·rq) 
vr~te'6,705· ~qo 

·.lrt::l 
Ute=£! 
tophrt .false. 
c!o 11 1=1,1e~ft 
!req<J'=e.e 

10 ide~~ttj =0 
!!'l ow:r 12 1 
1f'helf' mlov=n+2 
tt rp1 ·l'lq c 
!f' II'Oc!(r,2)-modll'lq0,2'i ,eq. r1 Dt=nt+1 
r.t u ~ 
c!c 13 j=1,r.t 
it rVC~~ .le. mumu .ard. d(J+w.qo) .le. ma%mat) 

go to 13 
W'!'1tP ( 6, 722) 
e;o to 13~ 

13 co'lt1rn:~ 
133 vriteC6.7e-3! 

~rae( e, "23 > 

k%1"'1 
do 2ee 1z=1,r 
rr11w=m1ov-1 
i~lt;lf ~lov-mlow-1 
rrup ·ml nv-l'!q o 
1t toalf mup=mlow-2•mqo 

!t'l'lq~ .Pq. e .ar.d. 1z .eq 1) go to ~~~ 
:t 1 ·1 z·'"=to) .gt np1) go to 38r 

c d1~en!1ors ct lover eDd upper suomatr1c;es. 

41'1 1 =r. ;· ( 1 ~ ) 
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4111U• Dl( 1 &+lllqO ' 

1f 41111 .~t. 4111ul topbef•.true. 
1f~\opblf .1rd. (.aot. lcs)) co \O 311 
lf 41111 .le. IIIIZIIII\) 10 \o 136 
tz2•Jrz2+1 
,.o \0 211 

134 1f•dmu .g\. 111a~atl 10 to 211 
Jrz2=1 
clo 13e 1 .. 1 ,mq o 
1f.n8flz•l' .le. IIIIZmat' 10 to 1:5e 
lu2•Jrz2+1 

· 13~ cortl rue 
if mqo .n~. e· go to 2~E 
1ff~elf' «O to 2~~ 
-r1te(6,Pt3) ~low 
go to ~e 

2~f wr1t~Ce,E04) mlow 
go to 2~e 

2~6 lf balf' go to 27~ 
wr1teCe.~V1l mlow,mup 
t;O to ='""F 

277 ~r1te<s.ee2l mlov.mup 

c locp ov~r lower e1genstates 

27~ les .. e · 
1f 1z ne. 1' les=nsm(1z-tzll 
:'ltcp=dnl 
if'mqo .eq f) rtop=ttop-1 
~o 10~ j-l,Dtop 
les=les•l 

c loop over upper e1ge~states 

ues·ns~(1z-t.z2+mqo) 
ru-1 
:r'mqo re. V) go to 13e 
nu j•l 
u~s=ues· .i 

135 do 95 jst•~u.dmu 
ues.,ues•1 

c 11~~ • counter 
11! e=l1ne+1 
1f 1db1rr .nt' • ., .and• 1dl'll(les) .ne. e)go to 95 

c e1g~r.stetes cf sam~ 57111111~tr7? 
if'lsrmlles) ne. 1SJIII(ues ~~go to 9~ 

c possible degenerate situation for zero quantum? 
1f!1dtirr .ne 0 .end. 

l 1clbl(ues) eq les .a~4 mqo .eq. 8)) GO to &f 
c 1es, o~tput freq . 

freqfJrk)=en(ues)-eD(les) 
SJII' ·urmtles )•1 
~r1t~(6.581' 11ne,treq(Jrtl,ues,1es,sylll 
lltt·ktt+1 
!f!tt lt. 1!01) go to 95 
wr1teCe.~ee~ 
~(' to 3e1· 

c IND of loops o•er upper,lower e1~etiSta\es an4 
c :v~r sets of submatr1ces. 

312 



515 corU rue 
ue ~onuru:e 
28it CO!IUIIue 

c calculate 4e,ellerac1es 

c 
c 

c 

c.; 

c 

300 1t;:p•tk-l 

16" 
lc;5 

171: 

r:.r. -··· 
666 

e .. ·. 

rtreqr• 
1t'1top le. 1) go to @800 
wr1te16,78SI 
de 17r 1cllt•1,1top 
it'14eger(1ctt) .eq. -1) co to 171 
11 1 ee2•treq(1cnt' 
c1e~=1 
icp1=1crt+1 
if: 1cp1 .gt. Hop· go to 165 
do 16f jc~t•1cp1,1top 
1f'ideger(jcllt) .eq. -1) co to 168 
12 1.8e2•treq(JcDt1 
1t'1ebs(!1l .11e. 1abs(12)) go to 160 
ideger:jcu)=-1 
1f'11 eq. 12 4eg•4eg+1 
CO!'til!UP. 
rtreq crfreq •1 
1c1e~en 1 1cntl=deg 
cort1n.'.1e 

output frequerc1es. It there are to cbem1cal 
~!:1fts. tbeD onl7 the aDsolute values output. 

if lcs go tc 666 
~0 5~5 1 1,180f . 
freq(1 =abs(freq.'il) 
c~ll t~qrut(freq.14e~er,1tcpl 
write(E,7071 rtreq 

i~t ~ait locp over orders. 

cO!'tituf' 

tutptt ~esults of degererac7 search of e1genstates. 
1f 11db1rr .eq. 8 go to 7,1 
wr1te(6,7i') 
dO 74ft 11•1,DSt 
1t'14bl!11 l) 743.74e,743 

7~~ wr1tf'(6,716) 11,er(11),1dbl(11) 
ro to 74~ 

7~~ write16.7t~: 11,en(11) 
74r corUJ'Iue 
7'1 wr1te(6,717' 

c cutput s)'ll'~etrt clasS1t1cauous 

lf'lr fl 
nrep•r·ep+1 
ao 770 Jj•l,rrep 
w r 1t e t 6 • 71 e ·, J J 
lrtc=V. 
do 7ff 11•1,rst 
if' 1srmf 11 .!'e. Jrlrl go to 760 
wr1te16,71~) 11,ell(11) 
l'lr~ "Jrlr 1'"1 

7o~ cor U rl\11! 
wr1tete,7t~• ttt 
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??I 

c 

5tf1 
"783 

?15 
?tf6 
.,,7 
709 

71-6. 
71~ 
716 

71'7 

ne 
719 
722 
72:3 
f01 

e •. 2 

ee3 
e .. 4 

JOR~AT STATI~INTS 

to~atf4z,14,1~z.t12.4,17z,13,'->',13,131,12) 
fo!'IIIU! fSI, "LIN I II" ,111, 'liiQlJINCl" 041, '( IZ)" 

l,Sl, '!UNSITION SU'l'IS." ,fl, 'STP1f1" ,I) 
JOI""A'I' f 1!1,. ,111,12," ~U1NTUP1 SPIC!IIUP1 CUCUU T1 ON • • • ',I) 
70Rf1AT (' 1HI liiQ lUI lli.N CALCULATIDI") 
JORP1ATf/," TOTAL I UN1QUJ FIIQ •',15,/) 
JOP.~.Uf111, ,?I,'RIQ (IZ)',Ul,'DIGINliACT',;. 

11l.4E;"-''·' 
!011MA'l'fUi1,UJI, 'ENUGT DIGiNIR.&CT CUCULA'l'IOK. • ',/) 
JOR,.A!(' IN(",I3,') • ',712.4) 
l0Rf1AT(" IN(",I3,') • ',712.4 

1,~J.'1S riGINIIATI VI!! STATE 1',14) 
JOR,.AT(1!1, ,111, 

1' ST"'~~!TRT CLASSIFICATION Ol IIGINSTA'l'IS ••• 'I) 
JOR~AT(/.~X.' STATIS Of RI?RISINTAT10N 1',13) 
JORMA'I ,181,' TOTAL NUMJIR OJ STATIS • ",13) 
J011"'1AT 1 171,'(1NCOP1PLE'l'I SPiC!RUP11',/) 
JOP.,._Tf11.,7Y('-' l 
JCR,.AT( 'IOWil QUANTUM II= ",12,' ; UPPIR QUANTU~ I • 

1.1~/ 
JOP."''ATf/' LOVER QUANTU~ • = ',12,'/2', 

l'; UPPlR OUANTU~ • • ',12,' 2'1) 
JOR~AT (I' QUA toTO~ II "' ', 12/) 
JOR"''A!(/' OUANTU~ I • ',12,'/2'/1 

r~turl'l 

e~d 
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sutrouttre sr~set(s1,s2,1sJ~,arep,tbres) 

c 
c rete1'1111res sr~etrr relaUoasb1ps •~ot& etceutues 
c stcre4 on 41st. ~atr1z elemeats of I •taus are 
c calculue4 a11d 11011-zero resul u are uteD to represent 
c tv~ states 1~ the sa~e represeatatton. 
c 
c sl and s2 arP 1aput matr1cPs used tor the etsen•ector 
c !!Ia trices rea4 trorn 41st. 
c 
c r. is the nurnber ot spins 
c 
c i~rt i! the unit number read on tor eisen•ector matrices. 
c 
c re 1s the •ector ot b1rom1al coefficients. 
c nsm 1s tte sum ot dimensions of allowed suD~atrtces. 
c r.sp 1s the su~ ot dimensions ot all su~atr1ces. 
c "'Imat 1s the largest allo~ed sub~atr1z 41me~s1on. 
c ~st 1s t~e totPl numter ot e1genstetes. 
c 1st is the tvo 41'"er.sional metr1z ot simple product 
c sates al':d the number ot '"one· spins ill each. 
c 
c th~es is thP 1'11n11'1urn allowed threshold tor allowed 
~ trans1t1~DS 
c 
c ~~~ er.1t. IST~ conta1rs the numbers tro~ 1 to NRlP which 
c 1dPnt1f7 the representat1ors tourd tor tbe e1ge11states. 
c 
~ ; S7'"Metr7 rul'lber of one (1J 1Dd1cates a totallY 
c ~yl'lrnetr1c state 1!1 SJ~'"etry). 
c 
c rP.it.he· eigerstates or eigen•ectors i!re re.:rranged. 
c 
c 

di!ller.sior s1(1),s2(1J,1s7'"C1) 
!'eel lvl7f),uvf?fl) 
in te~er spl ( ?fl', spu( ?I', dm l,drnu, dmp, us tate, u tmp, usp 
~rteger ut,sk1p,ues,flind(?) 
logical tophet 

C'O!I'IIIon 1 ct1le I 1sc.tl1n4.1tp 
co!'l!l'ot I estate I r,lst(2,U2t),z:il(11),rsm(11), 

1 nsp( 11 · ,rnazmat ,nst 

do 7 i-1,!1St 
7 1syrnt1 ~0 

isrrntt =1 
:srmCrst'•l 
nml-r.-1 
toph!'f•.f'else 
1rep~1 
z:pt:.n•~ 

Slrip•l' 
iss 'Ill 
do ~~ 1=1,np1 
~f' 1 r.~(1 · .le. rne!rnat) ~o to 9~ 
1-0 to 91 

S0 CO:':UDUP 
~o tr Y3 
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81 

92 

in .. i-1 
do 92 J•1.11P1 
1f'llf( j' .le IIIUIIIU) go to 8:5 
stip•s..,i p+1 
coeuaue 

c !":Utl LOO~ 

93 tz 1 
th r=e bs ( thres' 
1f'tbr .lt. 1' tbr•t.l/thr 
clo 588il 11•2, em1 

c file numbers 
lf it-In 
uf ,-lt-1 
jump"'fJ 
iftiz .eq. in' jump•stip 

c power of I minus operator. 
imp=jUIIIp•1 

c d1mens1oJ! ot lover submatriz 
c1111l-r0( i z) 
if dml .le. maxmat' go to 94 
.r.z. 'kz-1 
e;o to 509'fl 

c d1"1ens1ol! of upper submetr1z 
~4 d~~-n~f1z+1mp' 

c d1mer.s1or of operator matriz 
d!llp-nl6•np1-1l'lp' 
1p•Lspfnp1-(1mp+11 · 

c ~oirters to beg1rr.1tg of simple product states. 
lsp'"r.sp'iz-1' 
usp=nsp( 1t-1+1mp · 

c collect spir. product states 
d~ t::0 )rt-1,dllll 

E~ s~l'kk =lst(l,lsp+ktl 
clO E!!: kk:1,d.IIIU 

E~ spuftt)•lst(1,usp+tt) 

if~d~l ~t. clmul tophef=.true. 

if'tophaf) GO to 10 
c reed 1~ver submetr1x 1ato s1: upper 1Dto s2 

cell reeclllls(l!,1sc,s1,fl1Dcl,1fpl 
call reacl~s(uf,1sc,s2,fl1nd,1fp) 
p.o t.o 11 

c ~e•d lever submatr1z into s2: upper 111to sl 
1~ call reacl~s(lf,1sc,s2,fl1fd,1fp) 

call rea4ms(uf,1sc,s1,fliDd,1fp) 

c lorp over lover ~1~eDstates 

11 les~rsmf1z-tz) 
do 4CIII t"l•1,clml 
les•les•1 

11 · Jl:l ·1 •clml 
1f'trp~efl ~e to 2~ 
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c 

c 

c 

c 

c.; 
c 

50 

62 

r~ i: ~~itit~~t' 
~o to ~2 
cto ~1 n ·1 ,41111 
lv kl: '·S2(1l+tt 

qutct check to see it this e1gerstate is totall7 57~~. 

it 1sJ~(les' .a~. I) so. to 38 
SUI!'•<" ' 
do 20 .,t=1 .4~1 
SU!!!=su~-lv(JrJr' 
1teor.s•:"t>s(1~P.Psu~) 
if'1ters .re 8) 1SJm(les)=l 

lo p over upper eigenstates 

ues nsll'f1%-lrfl+411'l 
do 388 l"u•1,4mu 
ueos~ues•l 

~cveo e1gervector to uv 

: u = · lru-1 '*411'u 
1r t~p~ar' go to 3e 
do 61' !t=1,dll'u 
uv'kt}~s?.(iu•tt) 
ItO t(' 62 
do El Jrlr=1 ,di"U 
uv'kt):sl(1u•kk) 

quick rhect to see if this eigenstate is totally symm. 

1t ! 57!1' ( ues l . n@ 0 l go to ?~ · 
sum=fl! 0 
do ? .. kt 1.dmu 
SU!"=SUI'l•Uv(tk} 
1tens=abs(1ee.e•su~) 
if'iters .reo. fl 1 isrm(ues)=l 

check tor poss 1 ble previous srmmetr7 c.:alcula t1 or 
coth totall7 SJM~. (1rep•1 1 onl7 poss1b1litJ. 

c.: ~atr1J elemert ~alculatio~ section. 
!1.1"' ·e.<~ 

c loop o~er Sill'ple product states ot lower e1ger.state 

do 2P.M ml•1,dml 
lstr-te .. splfll'l l 

c loop o~er si~ple product states of upper e1,enstate 

do 1MI 1111:•1 .4~u 
~tstattoaspuf~u) 

c lo~p ouer co~por~rts ot I !"lDUS operator 
c I m1t1!s to i~p power) 

do 1~f ruc•1,d~p 
c.: ch~se oppratcr 
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1~1a•lst'1,1p+mucl 
c im1rlustate> • I ? 

tr· tustate .ncl. 11th) .me. I) 10 to 158 
c utmp • 1m1alustete> 

ut~p·ustate + lmlr 
c <lstat~lut~> • <lstatellmlalustete> • I ? 

ttllstfte .ae. ut~p) 10 to 1!~ 
sum~su~+ly(~l)•u•(mu) 
go to 1111 

H0 cortiaue 

11f cort hue 
210 coaUaue 

c ; -aes: li m1Dus ·••1111p I ues> 1••2 · · 

1teas=tbr*(sum•sull!) 

1t!lte~s .eq. •' so to 311 
c ro~ 1ero 111atriz elemeat; check to see if oDe of 
c these eigers tues pre•tous 17 classified. 

c 

if isymlhos' .eq. Ill .ud. 1SJIII(uesl .eq. I) go to 175 
if:1SJIII(les) .eq 0) go to 16ft 
1Sf~'uesl•1SJ~(les) 
go t c· ~~" 

lc~ !syJII(les mtsylll(ues) 

17! 

Eo tc ~00 

ae~ ~epresentet1on. 

irep=1rep+1 
i57"''les~•1rep 
1SYIII(ues =trep 

C'O~tit~e 
cor t1 rue 

cor. t1aue 
rrep=i rep 

returr 
ea~ 
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_::. :· c 
e 
(; 

c 
e 
c 

subrout1re frqoutCtreq,1de,em,1top) 

tb1s su,rout1De outputs frequemc1es from we~tor freq 
-r.d tb~1r assoc1ete4 ·stat1st1cel" 4esemerac1es frOM 
~4e6er ltop 1s tbe maz1MUM mumber of frequetc1es 1t 
freq• frequemc1es V1tb I degemeriCf Of -1 1re 
skipped Or coMpletion, 14esen 1s set to -t 
1a all elemeru. 

d1~ens1on freq(l ',14egea(1 

c f1r.4 first freq 

t75 do 1~r 1~1.1top 
if 1degen(1' .eq. -1) so to tee 
k=1 
fO to 1EI2 

lEI col! t1 nue 
e =11 4o~e 

returr 

c find DPZt maz1mu~ freq 

t~~ curr=freq(tJ 
do 1e~ 1=-t~1top 
1t 1clefrez:(1l .eq. -t .or. freq(1 .le. currl 

1 f!O tc 18~ 
k-=1 
~c to lE2 

tEe cor t1 rue 
c ~ax1~u~ fourd, output 

~r1te16.5~1' treq(tl,1deger.ltl 
~de~P!! fk •-1 
eo to 17~ 

601 format 4x,t12.4,15x,13· 
end 
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c Bea~s 1r. 4ata fro~ tile opeD OD uD1\ * 1u. 
c J1lf' must lie opetn tor sequnt141, 41rect access. 
c Jecor4 s1ae should be ~ b7tes. 
c 
c tate 1s read 1P.to real arra7 1mp v1tb urformatted, 
c 41rect access N!ds. Irec determines vh1cb secuon 
c of the tile to rea4 amd f11Dd 1s am 1mt.eger 
c arra7 conta1r1ng tbe uumDer of records tm each sectior. 
c Ifp 1s the cssoc1ated •ertabl• for the file. 
c 

c 

:-eal tnp ~1) 
integH fl1rd(ll 

c 4eterm1re 1r1t1al recotd M 
c 

c 

!.r'.t=l 
tt tree eq. 1) go to 20 
rt irf'c-1 

d.O 1C' i=l,rt 
1~ 1Dit=1c1t+fl1Dd(1) 

c position tile pointer to 1r1t1el reccrd 

20 f1rd(1~'1rit 

c 
c read ch u 
c 

r t -=tl1rd ~ 1 rec · 
d I) 11/li' 1 1 '&t 
re d(iu'in1t imp\1) 
il!lt=1r1t+1 

11/lil «<OJ:t1DUe 

returc 
ere! 
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-. -
c: 
e 
'". 
c: 
e 
c 
c: 
e 

c 

subroutlre vr1tmsCtrec.1u.out,flind,1fp) 

\1"1 tfS 4aU to f1le opeDe4 OD UDU II 1U. 
Jile must be opened tor sequential, 4irect access. 
Be'"ord size sbould be 4 bftes. 

Deta ls vrttten from real arrar out vltb unformatted, 
dt~ect access writes Iree determines the section 
,, the tile to receiYe the data a~d tli~d is a~ integer 
, r"t'cJ cortalnlng the n1111ber of records in each secUon. 

real out(1) 
in t esn tl1 nd ( 1 ) 

c aetermir.~ initial re~ord 11 

c; 

1n1t=1 
it'irec eq. 11 GO to 2~ 
n t i rec:-1 
c!o 1~ 1=1.rt 

1. ir.!t=ir1t+fl1rd-'1-

c 10r1te data 
c: 

2~ nt !linc!'irec) 
do 1CIIfl 1-1.r.t 
"r!.te'iu'irit! out(1' 
1n1t:1r1t•1 

11110 ~C!,tirue 

returr 
enc1 
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IUNCTICN Ml!(I,JI 
c 

322 

-C !lUS IS l 71JNC!ION '1'0 COMPU!J TBI INDII JOB U UB.U' I.OCUION-~ 
C IHIN CNIT !HI UPPII BALl TIIANGLI 01 A TWO DIMINSIONAL AIRAT 
C IS StOliD. TBI !RGUMINTS I AND J Ali !BE NO!Mlt 2I l~Dii1S. 
C J MUS! Jl G! I lOR !IE COMPUTAION TO JE COIRiCT. 
c 
c 

c 
c 
c 

:&I ':URN 
IND 

iU~C~ION MATVIC(I,J,N) 

C TF.IS IS A FUNCTION TO COMPUTE TBi INDii lOR AN ARIA! LOCATION 
C VBIN A GINIRAL 2t ARRAY IS STCRlD AS A SlNGLi VICTCi. 
C AHGU~!N!S I ANU J ARE !!I NCR~AI 2D INDEilS. N IS TEl ti~IN-
C SICN OJ TB! 2D ARRAY. 
c 
c 

Fi!TURN 
IN!' 



c 
c 
c 
c 
c 

pr,«ram b1ph~pera 

calculat~s coupl1n« constants tor a biphenrl 
~1th ASJ~etr1call7 41storte4 rirgs. =··-------

c Coodirat~ SJStem 11; D4 17mmetry: 
c 1h~ origin 1s et the center of ten c-c inter ring bridge. 
c The ~~axis bisects tbe dihedral angle, the z-axis 1s alo~g 
c tb~ benzene para bonds to tbe substituents. 
c 
c Cocrdi~ate SJStem 12; D2 SJmmetrJ: 
c !he a-axis passes through the biRhenJl pat~ bords• 
c the ~r1gir is located in ri~~g "2 (with protons 5,6,7,e), 
c the x-ax!s lies 1r the plare of tbis ring an~ tbe ,-axis 
c is normal to it 
e 
c Tbis •ersic~ (N 4l does not ·sJmmetrize" the hamiltonian 
c cefore diagoralizatior Ci.e. bph4bam is called instead 
c <.f bphhe'"'. 
c 
c th!s versior ir.crements •arious parameters for differert passes 
c 
c :rput C!r commor "geo~"l 
c: 
c ~12. r14. r2:!-, r260, r67, r5S, rE:6, 
c: s1· (n.,-syyli:s2p, uy, delta 
c 

implicit double precision (a-b,o-z) 
~ouble precisic~ tbf16),lx1(4),ly~(4),s(el 
•eel 4'2F),cJ12E~ics(e),e~f25€),~off,freq(5e),cJ44(2e} 
re-1 wl'"x,w2'"x,w1m~.w2'"t,z~x,w1(50) 
inte£er isy'"(cesl.ti-(6) 
logical yens 
coM'"cr I g~o'" I r12,r14,r260,r67,r~e.r56,szz,s2p,sxy,4eltc 
co~!l'or coup I cl.cj,cs,woff 
c~'"'"rt I estate I n,lst(2,256J 
d~tP cjd4 1 2.e.~.0,v.e,4•e.e,e.e,5•e.0,2.e,s•~.0. 

l 2 e,P.0,0.5,0.5,0.0,2.0 I 
~a!a nf 1 1,e,2e.2~,e.1 1 

c g~t input 

do 1 J=1 2es 
en'j)=£1.0 

1 isrm'J ·~ 
~o 2 1=1 e 

2 cs'1)=0 V 
r=!: 
tiOff=~ 2' 
tJPP • ' '-hicb coord SJStem? ( 1 or 2)' 
· ccebt • .ieoord 
tne· • ' INPt''!' OI INITIAl PAIAI'!I'l'iRS:' 
type •.· enter r1~: ' 
cee'J)t •.r12 
tJ~e • ' ert~r r14: ' 
accept •,r14 
typ~ *·' ~ftter r23: ' 
cccept •,r2~ 
tJPP •.' emter r261: ' 
,ccept •.r26P' 
if 1coor4 .eq . 1 : go to eeee 
t7PP •.' entPr r67: ' 
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6866 

6i(6'? 

;ccp:p~ • r6'7 
~7:pe • ' en~er r5~: ' 
ecce:p~ •.r~B 
~7:pe • ' e~~er r~e: ' 
accep~ •.r~fl 
~7pe •.' eDter szz: ' 
r ccept • su 
t7pe •,' enter Csxz-577) 
accept •.52p 
ifC1cocrd .e~. 1 ~o to 606'7 
~7pe •,' etter 517: ' 
accept •.517 
tnu• • ' enter 4el u: ' 
accep~ • ,4 el u 
t:ypp •.' wb1 ch perameter 

Szt • 1 t7pe • ' 
t7pe • ' 
tJpe •.' 
t7pe • ' 
~Jpe •.' 
t7PP •.' 

< 5 n:-s 11 ) = 2 
5%7 ::. 3 

4elte • t 
!'14: = ~ 
r6'7 = 6' 

d.o JOU wUb to var:r?' 
r12 • 7' 
r23 • E' 
r56 • s' 

r260 • 10' 
r56 • 11' 

C'Cept • ,1pe r 
trpe •.' what is the 1rcre~emt ir ~his parameter?' 
eccppt •.sine 
tJpP • ' bOW ~ery Yl!lUPS?' 
accept •.rarg 

t:ype •.' ere the d4: J''s to De used 1n the simulation?' 
1t•ye!l5~1d.ul"··) ~o to 11 
c!o 12 1=3,2!1 

1£ cj i =III.CI' 
~o tc ':3 

11 do 14: 1=1,2P 
14 cj 1 ~cjd4:(i 

13 •a4=4: dV~•d£ter. 1 1.0de~' 
!t -2 rd0e•(24:5.e1'?400••2.21 

w1mz=P P 
w2~7.=l V 
Wl!'lr=P 0 
W2!!!!!•0.fl 
~l'lt:•1 ~ 
iwfla,.=fll 
,pen~~r1t=1,ral'le='spif1.da',t:rpe='new') 
opPnCurit•2,r~l"e='sp1f2.4a',t7pe•'new'l 
rq e 
W!'1te(l,602' DIDg,Dq 
r.q ? 
write'?,Pf?) rar.g,rq 

c ~a1n l~op eYer order parameters 
de ~~P~ r.d=1.ner.~ 

c co~put~ delta 1r reds 
~4Pl~d£lta•rad 1P0.0d~e 

tf'iccc-rc! .eq. 2 ~o to 5ef0 
c 
c co~rd!rete S7S~em r1 

sC l "'!ZI 
sf2 'S2p•(Cdcos(rdel/2.0d0~ 1 ) .. 2-(d.s1D(rdel/2.e40~))••2) 
st:3~•5?p•(dcosfrdel,2.fd.et)•d.51~(rd.elt2.~4~t)) 
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s(<l =-t tdtt 
s(51•fl' !4816 
re"~r2~ 
r~@=r14 
r~6•r1C ,o to 61SI 

cocrd1rat~ syste~ 12 
s(llsszz 
s(2 =s2p 
sC3!•ny 
s(<l)•e eue 
sit =e.eue 

computP trig ru~cttons ot d~lta 
cscll•d.cos ( r4~1) 
sncU=ds1 r:( rdel) 

c output 1~1t1~1 paraM~t~rs · 
J:firt 201, r12,r14,r23,r26.:,re7,r5a,r5e,(s(1i, 1•1,3),d.elta 

2tU fomet\'lprogrem 111ph3- 1D1t1al pareM~ters ...• ·,, 
1' ·12.,. ',e14 4/,' r14 c ·.~14.6/,' r23 = ·,~14.6/, 
2' r2~0 = ·.~14 6 ,· r67 • ·,e14.6,,' r5e • ·,e14.o/, 
~· r5o = ',e14.6//,' saa = ',e14.6/,' (szz-s.r.rl = ·,el<l.e/, 
4' SYJ = ',e14.6/f,' DELTA = ',t1~.4///) 

c co~pute re~ded. distances at delta•0 

~~l lr14 r23 /2.~400 
rz2=fr5~-r67l/2.rd.00 
~z~=ir~=-r14 /2.Pd00 
~x4,.'r14 rs7:/2.~dil'0 
rz5=1r5E-r23),2.fd00 
u5= l r67 -r2~ /2 .111416~ 

c ccmputP trig tullcUoDs ot reed~d angles 

srd,.rzl r12 
csd-dsqrt(1.~d~l-snd**2.0) 
sr:- =rr6/r26V 
csa~4sqrt(1 0400-sna••2.e) 
sn4p= rz2 'r56. 
csdp•dsqrt(1 0d0r.-sndp**2.~) 

ry4.,r260*csa 
ryl=r12*csd.•ry<l 
ry2=r~6*cs4p+ry4 
r;r3=ryl+ry2-ry4 

c calculate 11lt~rnuclear distances tor d.elta=0 

~16~•4sqrtfry1**2.0+rz£**2 8) 
r1516=dsqrt(ry~•·2 e+rr3**2 e) 
r2~0=4sqrt(ry2**2.1•rz5**2.0) 

sre;:n4/ r16., 
csg .. ryl rlee 
sngp..-rx51r258 
csgp=r:r2tr2!'~ 
SDD'=!'I3 rl58 
cs!l-.r;r~lr15fl 
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181 

c 

fo!'lllet( '1pro~ralft b1pb3 - eolCU\et1oD of 6,7 quutu111'. 
1' tor para su,st1tutel b1pherrl. ,///, 
2' trtc Yelues:',/1.~ SD& • ',e14.6,/,' sab • ', e14.6e'e 
3' SD~ • '.e14.6,/,' SDCP • ~.e14.6,/,' SD4 • ',e14.6,/, 
4' srdp- ',e14.6: ,' r168 • ',e14.6,,·,' r15fl • ',e14.ti,/, 
=~ r2bl = ',e16.8//' 

calcul:tP 117'1 eDd 171's 

l1J!ll•r14•srdl 
111'1 · ~n••csdl 

l:rrC2 •r23•sD41 
1JI(2):r2~•csdl 

U;r(3 =-8 8488 
17"X"f3·•r67 

117(4)=8 1480 
171 r.t , rse 

c calcul~tP th's 

. th '1) = ( 171 ( 1 )-l;r:r ( 3)) •2. ld.e0 
n 2·=l:r;rC1 ·lzy(3l\/2.14~~~t 

th :5l=Clr:r(2:-tr:rf:5l ./2.t41G0 
th'4l~Clx7(2'•lzy(3)),2.0400 

~h 5!~(ly1(1,-l71(4)\/2.14~0 
· th'Ei i=(l •r(1l•l:ryf4) l/2.041:!0 

th'7)~ lJI(?)+lJ:r 13))/2.04Z0 
th ~ =(l:rJC2 -llyf3) /2.14~0 

th 1 9:=(l;r:rC1 i+l77C4))/~.~4'0 
th '10) ' ( liJ( 1 )-l%J(4)) 12.848" 

th U'-{1JI(1 +lr:r(3) ·/2.8dllttiJ 
th ·12 > =< 1:rrC t:-l7.JC3 >) 12.eH0 

tbf13)~(1JI(2)-lJ1(4))/2.1418 
th.14 (liJ(2'+l:ry(4)}/2.8d00 

t~·~~~=<tr:r<2 ·•1J:r<•>>l2.t4~0 
th'1~}:(11J(2)-l:r;r(4)).2.8dll 

c calculetP 1Dternucleer d1steDces for delta not=l 

r1?•4sqrttr,1••2 e + thflll••2.e + th(12)••2.1l 
·1F.~4sq~t'rrt••2 e + t~Ct>••2.e • tb(2)••2.") 
r2~=4sGrt<rr2-2.1 + th(t3·••2.t • th(U)••~.8l 
r2E•dsqrtCrr2••2.i + thC15l••2.e + tb(16)••2.8) 
r2~""4sqrt(r74 .. 2 e + u!C:5) .. 2.e • tb(<l)••2.t) 
r1~-4sqrttr73**2 ~ + ttCe>••2.0 • tb(6l••2.e: 
r27=dsqrtCr74-2.e + th(7)••2.fl • th(8)••2.0) 
r1Ests~rt(r73 .. 2.8 + tb(9) .. 2.0 • tt(ltl••~.l) 
r13•4sqrt(((r23•rl<l)/2.14~~>·•~.r • (rJ1-rr4i••2.e) 
r~7~dsqrt(((re7+r5P) 2.t4te>••2.e + (rJ2-rJ•>••2.e) 

c ~utput 1tter~ulcear 41stancPs 
pri~t •,' r17 s ',r17 
;r1rt •.· r1E • ·.rlE 
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print .. , 
r2~ • '.r25 • prir\ .. , r2e • ',r2B • 

pr1Dt ... , 1'2~ • 
, 

,r26 
pr1Dt ... " 1'15 • '.r15 
prin ... , 1'2'7 • ',r27 
pril!t .. , 

rl~ • 
, 
,r1! .. 

pl'11!t ... , 1'13 • , 
,r13 

~r1r\ ... , r57 • '.re7 

~ calculate angles ~etveen 1Dternuclear vectors and 
c moleculer as1s SJStem. 

rpd2•ra4.2.141~ 

ang1~~rpd2-tatanr~.ld00•(rJ1-ryt)/(r2~+rlti) 
th13;=dccsfaDg13. 
tb13x=csdl•ts1r(arg13) 
th13J=sndl*4s1n(ang13) 

· ng~7= .. p42-4 .. tcr. 12 .0d01t'• r r72-r7t l /( r67+r5c)) 
th5'7z:dcos(arg57) 
th~7s=ds1n ( eng57 
th !':7J• I ''d "'" 

tb5€z=csdp 
tt!'>6.r= SDdp 
thee,=·. ,·ctrz 
thl2z=csd 
t!l12s=t'sdl•snd 
th12J•SDdl•Std 

th:6z=rJ1 rlf 
thles= tt: 1 ·. /r16 
tb16y=th I~ l /r16 

tb2Sz=rJ4 r~f. 
tb26x=-tb·3'/r26 
tb26J=th~4l/r26 

th15z=rJ~ r15 
th15s=th'5'/r15 
thl~:r=th '61 /r1~ 

th?7z=ry4 r27 
th27s=tt '7'tr2'7 
th2'7J=th18l/r27 

tb1Ft• r1~ rlF 
thHlt= tb '9 ·trlB 
th l87•th 1 Ul l /r19 

tb1'7z=r;rl r1'7 
th1'7x=tb 11 'lr17 
th1'7J•th'l~l/r17 

tb2!'!z• r:r2 r2~ 
tb25z• th ·13 'I r25 
th2~7•th 1 14)/r25 

th2~z·r:r~ r2EI 
U:2Ez= th 15l/r28 
th2!7•th'16J/r2e 
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c c•lculet~ coup11rcs 

412=dt•coup1Cth12z,th12s,th12y,s,r12) 
423•4t•coup1(~.84,8,cs4l,sndl,s,r23i 
414=4t•coup1(8.84ee,cs4l,sD4l,s,r14) 
413=4t•coup11tb13z,tt13z,th13J,s,rt3J 

d~6~4t•coup1(tb~Ez,th~6z.th~67,S,r56) 
467-dt•coup1(1.8488,1.1401,8.8481,s,r67) 
4~3•4t•eoup1fe.8408,1.14fl,8.e4ee,s,r~e) 
d5? 4k•coup1Cth~7z,th57s,tb57J,s,r57) 

d2e~eoup1(th26z,tb26z,th267,s,r26) 
d27~coup!ltb27z,th27z,th27y,s,r27) 
a42€=41r•:426 • 427)t2.8clll 

41f·eoup1(tb15z,th15z,th15J,s,r15) 
d1E~coup1(tb1Ez,tb1Sx,th1SJ,s,r1E) 
a415=4~ 415 • 41e)/2.8488 

d2~~eoup1Cth2~z.th25z,th2~J.s,r2~) 
d2~~coup!Cth2Fr,th2~z.th2BJ,s,r2e) 
ad25=cU:• 425 • 428~/2.84"1 

d16 coup1(th16z,th16t,th16y,s,r16) 
d17=coup;(th17r,tb17z,th17J,S,rl7) 
a416=dx• 416 • 417)/2.84~8 

c ~ut~ut r~sult 
~r!rt • • RING A' 
prirt •,' 41? "' ',412 
~rint •.· d23 = ',42~ 
prirt •.· 414 • ',414 
pr1r.t •.· 41~ • ',413 
prirt •,• RI~G B' 
; r i r t • • " 4 ~6 • ' , 4 ~6 
print •,· d6? • ',46? 
~r~rt •.' dS~ • ',d56 
~rirt •,' 4~7 • ',d57 
print •,• INTI~ BING COUPLINGS (AfiBAGID OTIR CCNJORMATICNS)' 
print •.· 426 • ',a426 
pr~rt •,' 41~ • ',a415 
pr1~t •,· 42~ = ',ad?5 
prir.t •.· 416 • ',a416 

c r~arraree coupl1rgs to or4er1rf used in s1mulat1ors. 

d ( 1 =412/4 •• 
cH2. •4 13/4. ~ 
c1(3\.,d14 4.0 
41~ =ed15/4.0 
dC~·=ad16/4.V 
ct(€):ad16:4.e 
d(7 =ed15/4.11 
4(~ 1•423/4.11: 
4C9'=4l3 4.e 
4 < 10 s.ad2f/4 .e 
4CH a.=426/4.11' 
dC 12)-=-a426t4 .e 
a ( 13 • ad2~/4 .e 
4(14 •412/4.1( 
4C15)=a42~J4.8 
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c 

4 ( 16 '•a42614 •• 
4(17 •atl2614.0 
4 (10)•&425/4 .• 
4(19 •fU514.1 
cl C2f!l·•aU814. P 
cl(21)•acl16 4.fJ 
4(22 •;.41514.1 
c1 c 23 ·4~614. r 
d ( 24 )='457 ...... 
4(25 =d5E".I 
cl(26·•cl8714.V 
d(27)=cl57·4.f 
d(2E :45614.11 

calculate spectrum 
call cntprt(cl,cJ,~l 
cl'll bph4halll ( eD,i S1f'l · 
call peout(5,28,e~,1SJIII,~fJl 

c ~utput spectrum 
pr1rt 113 

h3 format( '1 U subspectra ••• 'Ill • 
prir:t 104 

104 fom<-t(' SII QUANTUM LINIS 'I) 
J:rirt 1P!= 

1~5 fol'lllat'1J:,17(' '), i,ll:r:,'lHI = 4 to IP'tl • 2';) 
lr=l 
11=r~f1 1 n0(2:+1 
!'1 ll+nfl':!l)-1 
do ~51 jC'=ll.h1 
:t'Urmf1c' .r:e. 1l ,o to ~50 
freqft'•abs(e~(l '-en!Jc~' 
t:t-1 

~-~.: cort1 rue 
call clesfr~(treq.Jr-1) 
r:tl=-t-1 
c1o ~~6 1=1,nf1 
w1'1)=freq(1) 
w1111,~<-~e~1(w1!1',v1111:r;l 

~ee ~1~r=a~1r1fv1f1l,v1mrl 
pritt 1f!= 

liE to met (I /11:r;, 'I H l • 3 to I !"I • 3 "I) 
k=l 
11 r.P'(l)•l 
tl 11•rt 2 ·-1 
12 ri"ft··r0(2l+n.tf3)+rft'(4) .. 1 
t.2 12•tl 1 ~)-1 
do ~55 jcl=ll,hl 
!fi1S7~1~c1l .ne 1) go to ~e~ 

do 555 jc2•l?,h2 
1f'157111ljc2; .ne 1) go to 555 
freq't'=er(Jcll-er(J~21 
it 1t1J(UI.t•alls(treq(Jr.' :) .eq. ll go to 555 
lr•ll:·t 

5b5 corU rue 
call destrq(treq.Jr-1\ 
rf2•Cil-1 /2 
rp ttl tf2 
do ~~7 1=1,d2 
w1'1 nf1 •treqC1 
~1~J~e~ax1Ctreq(1 :,wl~:r;) 

t~7 w1111n alll1t1Ctreq(1 ,w1mr:' 
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write C 1,812) 
Vl'1 U( 1,684) 

18? 

vrt te( 1,&Ml 
pl'111t 1P.7 
fOI'IIIU( ,, SlliN OUAN'rUf'l tiNIS' ,/,19(' ')//, 

2181,'1f'll • 4 to lf'll • 3'/' -
11:•1 
11 r.0C1l•1 
b1 11+n8 (2 1-1 
4o !6f jc•ll,h1 
if'iSJ!IIf !c) .u. 1) go to ~61 
freq(t •ebs(en(jc -en(11) 
w2lllx•~!llax1(freq{k',v2mx) 
~2~r•a!ll1r.1(treq(k),w2!11rl 
k=~-1 
continue 
ca 11 4~s trq ( treq, k-1) 
DP k-1 
vr1tP'r,fie2) 
write(~,F-04) 
wr1te12,6M) 

l!p 
(treq(1), 1=1,ap) 
(1111%, 1=1,r.p) 

enci lllfin loop 

~" to 
. 51!1(111 , 5002 , 500 3, 5004, 51/J(I) ~ , 5006 , 5807 , 50~E: , 
50~&. Euz ,seu J 

51!1161 su-sn-sinc 
go tc fe,·e 

50V2 s2p~s~p•s1tc 
go t~ flll08 

~ •• ~ if 1eerrd .eq 1l stop 
SXJ=SXJ+Sii!C 
~o tc !:000 

e~L4 deltf=delta+sire 
,o to ~801 

50~~ r14-r1~•s1nc 
~0 tC' f("yf 

~e0e r6?~re7•sltc 
1f 1coc·rc1 .eq. 1 r23 .. r67 
o&;O to fV;'QI 

5~~7 r12~r1?•s1nc 
f! !! t c f. (II tr)R 

e~.~ ·2~=r2~·s1ne 
e;o to !10e0 

f0~P :!'F=r5E+s1DC 
!f'iccrrd .eq. 1 r14•r~e 
co to ~1011 

501~ r2et~r26t•st~c 
,.o tc ~ll.F-

5~11 r5~~r5f•s1rc 

ipar 
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.· 

if'1eoer4 .eq. 1 r12•r~6 

corUrue 

vr1 U(1,682 1 1vtlec 
vr1teft.~e•> v1mz.v1mD,zmz 
vr1tef2,ee2) 1vtlag 
wr1te(2,6a.\ v2mz,v2mD,Imz 
closefuDU•1) 
close(u1!1t=2) 

612 fo rmet ! 16 \ 
6.4 torm,:tfel,.6l 

enc1 

dou~le prec1s1oD tuDct1oD coup! 
(tbz,th:r,thJ,s,r~ 

i~pl1c1t double prec1s1or (a-h.o-z) 
dhens1on s(5 

-c celcul•tes et1sotrop1c coupl1D6S after torm11las 
c o~ Emsley ard l1rdot. 

szz•s 1 1 
si:''l'=sf._ 
s:ry=s(~) 
s:rz = s 14 
s1 =sf~ 

coJp1~t szz•r~ 0d00*thz**2.e-1.~c110) • 
-s2p*(th:r**2.~-thY**2.0' 

~ +4.e4ri•C s:ry•Ctb:r•thJI 
~ •s:u•(thz*thz) 
-. •syz• ( th7* thz.l ' ) 

co~p1=coup1 I (r••3.~1 

returr 
end 
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subr~~ttre bph~ha~(eD,tsy~ 

c this 1s ~ Yerston of ham11 written tor 
c the special S)'lllllleU'J ot a J:•n-subst1 tuted 
c 111 pherrl wt tb D4 Sfl'lm. 
~ 0~17 the 11 srmmetrr et~enstetes are labeled in 
c sr~metrr •ector tsrm. 
(; 

c 
" sets up end dia~onel1ZP5 tree induction decey 
c ~emiltonie~ of N spirs 1 2 (N less tban 9). 

~o111111or I coup I d(28 ,cj(2SI,cs(81,vott 
co~mor I estate I n,lstC2,c~SJ 

tti~ensior h(4~€·.s(7~~'.enC1l,numb(2,256),n0(6) 
a1~P~s1o~ 1stC?0l,1spCe; .1flip(2,ticstC~.12~4J 
ai~ens1or c(7e4),vork(?E~).isy~(1J 
data r0 I 1,S,2E,28,8,1 I 
dat; test 1 1.e,2•0, 2,?,2•e, 3.6,2*0, ~.~.2•e, ~2•e, 

1 1,2e,2•0 7,3•0, e,11,17,2e, 14,23,2*0, 1~,3•0, c.5,1E,27. 
2 ~.10.21,24. 15.2~.2*0, 3,4,22,25, 16.3*0, 6.13,2*0, 
3 12 ~·~ 1,2e,2•~. 22,3•v. ~.12,1e,21, e.1~.2•0, 1e.~•e, 
4 2,11,24.~?, ~.Q,19,20, 9,14,2*W, ~,7,25,26, 13,3*2, 
~ 1s.2~.2*~'. t?.~•PJ. t,e.~e. 2,7,2*"• 3,s.~·e. 
t 4.~.2•. 32*~ I 

.,.a7'1'at-:?~ 
r.s t -7~ 
!'!1"'1"'!'-1 
:-c:;:.""r"'rrr1 2 

do:- 1~ i=l.nst 
1 !" i SY!" . 1 = ,• 

1Sy-r ( 1 '= 1 
1sy~( ::!t •1 
C!""~-" 

'.1o 32 1=l,r 
32 acs-acs•cs(i' 

!Cll= l ·• 
ao.35 i=l,rc]: 

3t ecp=ecp•d(i 1•cjf1' 
en 1 •-r•wott•eep-acs 
~~·~st·=r•woff+ec]:+acs 
rrs~91·-1 

c< 11 !"ul'lsrt (r:'JII'b. r. .2ee · 
lst'1.1):ru~bC1,25€) 
lst'2,1 -nu~b'2.2:6l 
lst'1.~~€1•nu~~ 1 1.1) 
lst'2.25€):rull'~(2,1) 
'1 lr,. t 

!f 
co 100 _,s•1,r~1 

1 s r:- 1<-
t s-p=£:~•1· s " 
!rk 'I 
d~ 40 .1=1.2~6 
: t !' u~ 'H ~ •. 1 l . ne is 1 ~o t o 4 e 
kk-lrk .. 1 
Kkt::ktr, .. 1 
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~st 'kk •nu111b ( 1.,1 
1St'1,tk~)•ru~b{1,J) 
lS t I 2 t kJrJr '•1 5 

•"' eort1DU@ 
II'St:Jr)[ 
1111-2' 

1! lll!t .~t. I'll! met' go to 100 
!.t=1f .. 1 

·c!o e0 "'"'1.111st 
de e~ 1=1,111 
lm 1"'•1 
1f·l .re. m' got' 60 

e d1~~cr·l el@~erts 
JI'Sit:1 
do 5~ k=1,t: 
isp·lr ,.._1 
!f. 1 .!.Stfl) .ard. II'SJr\ .re. el 1Sp(k)=1 
ll'slr~lllst.•:? 

!::~ CO"tl!!"lt~ 
.!: 'iii' .,. woff•tsp 
l'tr ?-
~0 !:!: 1:1,r.llll 
:.-;:1 =!.·1 
0' =~ .1~1p1,:! 
sir kk- l 
~'l~ =tll~l • fdfklr)•cj!kkl)•1sp(j)•1sp(1)· 

~= c·H:tinue 
de ~., !.=!.r =7 nfl~·=bllM'- cs 1 1l•isp(i) 
f!O !~ .1:12 

c =~!-dl·gcnal ele~ents 

c 

c 

c 

€( lw-:1 

7~ 

7~ 

~~~ 

1 . .; 

• .. u··0 
; i }'!' =: 
~Sk 1 
:10:: "!: Y.=-1,r. 
:..t 'ist'll F.nd. mSJr)- 'lst(ml .at:d. msk)l 791,7:,7.e 
~sp·js~•1 
1tl1p' jv •t 
-~"-~ 
:I'SK ~s!'•::: 
if ~sp .r.e. 2 go to e~ 
Z!: 12•r-!tl1pi1J .•(1tl1p'1·-11!2-1fl1p(ll+1fl1~(2l 
~~l~·=-d'lr5l•2.0•c1(k5) 
c'~t1tue • 

diai!''H!d 1zt• 
c~ll ~ig2(~.s.em,mstP.,1d111',0 1 

!i~d H states 
~all els'"'"'(s,1sy~,mst0,1d1m) 
II'St~ rr.stP•1d1111 
cO!'tiruP 

:-p:urn 
et.d 
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c 
c 
c.: 
c 
c 
c 

Subrout1r• p•out(D,MEZM8t,.D,1SJM 1 DI) 

tb1s subrout1n• outputs tbe coDteDtS ot enerc1 •ector 
en 1D t12.4 forMat. Stet•s 1D eacb ZeeMaD MID1fol4 
are s•parate4 b7 a blank 11ae. N 1s tbe nuMber ot sp1rs, 
MazMat 1s tbe s1z• ot th• largest Z•eMan Manifold 
conta1re4 1D •n aad Dl 1s the arra7 coata1n1~ the 
t1roM1ol co•ft1c.:1ents (d1M•r.s1ons ot tbe Zeeman ~an1fol~s). 

d1~•as1or en(l',nt(l ,1SJM(ll 

cto 5"1 J 1,np1 

it.ni'(jl .gt. ~UMU) go to 50" 
rt =nb+rl I J )-1 
pr1Dt 411, (1eag.en(1eag',1s7~(1eng), ieng•nD,ntl 
n'b-:.rt-•r9 .1) · 

5*'~ cort1rue 

•h1 fc!'lll.:.tf/(4::r,'IN(.,13,''' = ',f12.4,2:r,1l)1 
erct 
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subrouttre a1srmmCs,tsrm.neD,41~l 
c 
c locr\Ps totell7 s~etrtc etcenvectors 1D S ot 
c dtmensior 41~ Output 1s7~ coDUtDs 1 's tor these· 
c statPs UDettected tor others. Jtrst elemeDt of 
c 1S7~ tr use ts nen+1. 
c 

1Dteg~r urmc 1), us t ,41~ 
U~eutor. s(1' 

c loop over e1gervectors 
tb r~uee e 
1=n~n 
do 1~0~ ie1g•1,41w 
11 t 1e1g,..l )•cu~ 
1 "'1 1 
11<1s7mCl) .~e. e, go to 1r0~ 

c su~ coeft1c1~Dts ot etgeDvector 
sum··A. lll 
dO ~"''-' ~c:•1,d111' 

50i !U~~s~~·s(tl•Jc) 

tPst=~~s!ttr•su~ 
: r . t ~s t r: e . 0 ) 1S fill ( 1 '= 1 
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~ubrout1De 4estrq(treq,1top) 

c tb1s sub~out1De outputs trequeDc1es tro~ •ector freq 
c J r 4esel!ll1rg ol'4e!'. 
c It ··p 1 s tbe III&UIIIUIII DUIIIber of frequencies h freq. 

d1111en1o11 treq (1 

it'1to; le. I) retur~ 
1 tp ... 1 top 1 
do 18E Jr=1,1tp 
1lov~Jr+1 

do 1E~ Jrt•1lov,1top 
r111-= T"'f~a T1 ( treq ( Jr l ,treq ( Et 1) 
freqft~\·alll1r1(treq(k),treq(tk)) · 
freq ( k =max 

1e~ contir:ue 

1=r1u ee1, (fnqft), k•1,1top) 

611'1 fo mat < 4J:, t12 • 4 ·, 
returr 
erd 
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c 
c 
c 
c 
c 
c 

c 

SUJJOU!INI CNTPIT(AJ1,1R2,~) 

CUTPU'l'S COUPIINC CONSUUS TO tPJ. 

ti~INSION 111(1),112(1) 

N'11:~N-1 

1=1 
PRINT 732 
IO :51 I•1,NP11 
Jl»1=I•l 
I:O 30.J=IP1,N 
rorT=AR1'1' • 4.r 
CJCUT=!R2(1) • 4 0 
PRINT 731, I,J,DOUT,I,J,CJOUT 

311i 1•1 1 

731 JORM!T,' ~(',I2,',',I2,') = ',J12.4,/ 
1 . ' J ( ' , I 2 • ' , ' , I 2, ' • ' , !'12. 4 ,I I) 

?~2 JCR~A~'1H1' 
.1-HURN 
iN! 
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c 
c 
c 
c 
e 

~rocra• blpb!para 

c!lculates coupltac coastarts tor a D1pheDJl 
vl tb UJ!IIIIetrtcallr Ustorte4 r1 1:11. 

:----------... 
c this versloa bas error aaa11s1s vbere errors la ;aram~ters 
c are propqated from varlaace - covarla~tce matrix of spectral 
c slmu~lt1oa. this ls laput at bes1DD1DC of pro@raM. 
c 
c Coo41nate SJStem 11; t4 SJmmetrJ: 
c !h~ or11111 ts et the ceater ot teh c-c later rinc br14ce. 
c the x-azls bisects the d1bedral aDele, the z-aris 1s along 
c tb~ tteueae para boa~s to tbe subsU tueau 
c 
c Co:rdlnate s1stem 12; t2 srmmetr, 
c ~be z-ezls passes through tbe b1theDJl para bonds, 
c ihe orlcln 1s located h riq '2 (with protoas ~.6,7,E), 
c the z-az!s lies in the plare of this riag and the 7-axis 
c 1s n~rmal to 1t. 
c 
c.: :h:.s vers1o11 '' 4\ cloes r:ot .. s,mrretrize" the hc:m1ltoD1an 
c te~o!"e cl1aco11al1zaUor (i.e .. l:~h4balf 1s called iutea4. 
c ~t bp~ham'. 
c 
c.: :b-s verslor performs a llr:ear least squared fit of calculated 
e co~plincs to ezper1MeDtcl coupl1ncs. The 1D1ta1l input 
c ge~~etr1 aad order para~eters are varied 111 the iteration. 
1.: 
c itput i 111 comoa '"geom · 
c 
c r12. r14. r23, r2e1, r67, r5e, r~e. 
c szz. iszz-sJJ =s2p. szy. delta 
c 

im~Uc!.t double prec1s1o11 .~a-b,o·z) 
double precisloa daev(12 ,dlast(12',dezp(12;,dc.:(12,11) 
double prec1S1oa b.12),v{144),para(Hl,h(11J 
d~=Dle preclsloa el11,12·,,cz(l2,12),vcJ(l1,11),a~(11) 
·e 1 df2~l,cjf2e ,csrel,Pa·256 ,wotf,treqCeel,cJd4(2SJ 
~rteger iSJml~~e· .nl16),l(l2),m(12),1par(11J 
l·:>g1cal 741lS 
cb rdcter*4 ~a,me'1211'r12 ','t1~ ','D14 ','r1~ ·, 

l 'I16 ','t2~ ','~ti ','t2~ ', 
~ 'tee ', 't5? ', ':cee ', 't67 • 

co~~n I geom I szl,s2p.szJ,delta,r14,r67,r12,r2~.r!8,r26t,r~6 
cormor I geo~2 I r13,r~7 
co~oa coup d,cJ,cs,vott 
ccl'lllton 'cstc-te I a,lst(2,2~l 
~'~or I cit I rpar,1par.dc,b,v,~v 
daua cJd<t l 2.t,e.e,e.!,4•t-t,t.e,s•e.a,2.a,Pe.e, 

1 2.P,P..e,e.e,fl.5,;.e,z.e 1 
data r.l 1,e,2e,2e,e,1 
equl?aleace tpara,saa: 

c ge~ input 

c:o 1 J•1.29 
u J)=l. 

1 iSJII'' J :fl 
do 2 1"'1.8 

2 cs il•t I 
r=:: 
wott•fl e 
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tJpe •.' Wb1Cb coor4. 575t••' (1 or 2)' 
, ccept • .1coor4 
t7'e *•' INPD! Ol INI!I&t PAI&~ItiiS·' 
trpe •.' eater r12: • 
ccept • r12 

r!5e.-r12 
t7pe •.' eater r1•: • 
ccept • r1• 

r!5e=r14 
trpe •.' eater r23: ' 
.ccept •,r23 
re?=r23 
t7pe •.' eater r261: ' 
-ccept •,r28l 
rC1Up=7 
it 1coord .eq. 1 co to 6166 
nc~up•12 
t7pe •,' eater r67: • 
accept •, 1'67 -
trre • ' eater r~E 
ac~.;•pt •,r!5e 
t:rpe •,' eater r5S: ' 
ccept •.r!56 

Ei€E t:r~• •,' e~ter 5zz: 
accept •.szz 
t7pe •.' eater (5%%-577' 
;:ccept •, s2p-- · 
sx:r=e HH 
it 1coor4 .eq 1 go.to eee? 
t:rpe •. -'-~Her 5%7: 
ac~.:ept •.sx:r 

6~6~ t:rpe • ' eater delta 
~ccept • ,del tci 
cs 0 122 1 ,. 1,11 

122 ip rl1 •" 
t:rp• *,'!he paraweter5 vbicb can be varie¢ ar• .•• 
if tco.,rd .eq 2 go to sese 
trpe •.' szz • 1 :12 ?' 
t;rre •., (su-sn) .. 2 r23 = e' 
t:rpe •.' delta = • r261 = 11' 
t:rpe •. ' r1• • ~' 

@O to 6169 
606~ t;rpe •.' szz = 1 r12 = ?' 

t7pe • ' fsu-s:r7' • 2 r23 = E' 
t7pe •.' -Slf • 3 r~e = s' 
~:rpe •.' delta = • r261 " 11' 
t7pe •. ' r1• • !: r!58 • 11' 
trpe •• , re7 • e' 

6165 t:rpe •.' Bow maa7 of tbese do 70u wish to bave var:rt' 
-ccept •.apar 
tn;e •,' lro• the table alloYe. wb1ch paralleters are to var:r? • 
ac~ept •,(1parf1 , 1•1,apar) 
rrpe • ' later tot;l • ot 1terat1Ye CJCles to oe allove4:' 
Jccept *,I!CJC 
1e·au=-r 
trpe • ' Do 70u wllb to 1aclu4e error aaa11111?' 
~t JaDs(14u•}) 1eraa•1 

tJpe •,' are tbe 4~ J''s to De use4 1D the s111Ulat1oa7' 
1f Jaas(14UM ) CO tO 11 
d., 12 t•t.2e 

12 cj 1 •1.1 
to to 13 
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11 40 14 17 1,2! 
14 cj:1;•eJ44(1' 

c 1~put ot ezper1meDtel coupl1DCS 
13 tJpe •.' later ezperUteatel d1polu coupU•cs 

do 1!! 1=1,acoup 
de~pf 1 ~-e. Nil 
tJpe ee1.4aame:1 

e-.1 to··lll~tr1e:r,a4,'• ',$i 
15 3ccept •,ctezp(1) 

c :u!put 1111Ual J&rameters 
17 ~riDt 211, i12,r14,r23,r26e,r67,r58,r56,s~z.s2p,szJ,4elta 
2H1 torMat('1program b1p~e,.r•- 1r1t1al para111eters •• • '11 

1' r12 - • .e14.t/,' r14 • ',e1t.e , • r2:! •· ' 1e14.E , 
~~ -2e0 • '.el' 61,' re7 • #,et4.6/ 'r~e • .el,.e/, 
:3' reS= ',e14 6 ,' 511 • ',-e14.EI,' (S·J:Z-5JJ·) • ·,e14.6, 
4' ~zy ~ ',e14.6//,' DitTA= ',t11.4/ll 

-.r'.rt Si2, fctaa111e r 1) ,de:rp( U, t=t,accup) 
Et\2 for111at 'H!z, 'e:rper11111Dtal coupl1Dg5 .•• ·, , 

1 '15r,•4,'~ ',t11.t) 
c erte! iterative loop 

tter-1 

c 
c 

Se9" 

33:3 
c 
c 
c 
c 

c 

c 
c 

9:9~ 

729 

211 

E!'l=l. fl404 

~alculete coupllr~s 
c<:ll biphcl(4Hst,1coorct' 
:r 1 ter re 1 go to 9899 
~all cler4(~·,cllast ,1coorct' 
c~ll cntprt(cl,cj,S' 
J:r'rt :333 
!HIIIat ( 1h1) 

le:st squares routines 

calculcte cler1vat1•es 
do !!e;: np•1 Dpar 
::ap -1par(Dp) 
·1rc=e ~148t•clabs.para(D~P 
•ara'rap,•para'aap •lire 
call b1ph4f~new,1coo rcl) 
•ft·~!r~pl•pera'D~p!-r1Dc 
catl der1yfcllast,dtew,x1rc.Dp,rccup) 
~oi!Uaue 

celculate residuals 
do !!6~ t•1,rcoup 
t 1 ~)•4ezp(t)-4last(t! 
c~ll e~1t2(er1,acrc,ne71t,acoup,iter 
call rorw2(r~oup\ 
det"'8.8418 
e~ll 41111D~(~.Dpar.4et,l,•) 
f!''~t •,' tl! • ',clet 
it 4et eq. 1.8418' pr1Dt ?2e 
to~et'1~.'DI!II~INAN! OJ ~J!III !0 ~~ INfii~It IS ZIBO!I'IJ 
!t rex1t .eq 8) 10 to ~fll 

correet1oa ot pare~eters 
do 31~ rs•1,11par 
c~rr-=8 1411 
d() 21• "IJ•1,Dpa r 
·r4z•wac~ecfrs.Bsb.ap•r) 
c~rr•corr•Y(1D4Z)*bYCasD) 
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c 

c 

c 

c 

318 
p~ ·a r 1par(as) ) -,ara ( 1pa r (as}) +corr 
co!'Uaae 
1 ter .. i ter•t 
go to 9898 
e~4 of 1terat1oa loop 

~atput f1aal parameters 
cutput 1ateraulce~r 41stcaces 
}:r~r.t 33~ 
to mat (II' liN At P.&Uf1I'IIIS: ' .. 
J:r1Dt •,' r12 • ~.r12 
}:r:!'t •,' r13 • ',r13 
~r1Dt •,' r14 = ',r1~ 
J:r1at •,' r23 • ',r23 
}:rint •,' r261 • ',r268 
pr1at. •,' r56 = ',r56 
J:rint •,' r57 • '.r5? 
pr:rt •.· r5@ ~ ',r5e 
J: :-1 at •, ' r67 = ' , r6? 
~r1~t •.· s:r • '.szt 
}:r:nt •.' (s:u-sn> = ',S2f 
J:riat •,' sz7- ·,szr 
fr;nt •,· delt~ = ',deltr. 
if ierar .eq 8) go to 5e5e 

t7pe •,' Irter variarce- covariance ~atr1% fro~ s1mulat1or:' 

do 9002 j•t,n~oup 
d~ 9~~2 i•j,rcoup 
·.ne 9~8:!, J, 1 
ccept •,vc%\j,1 

"~'C:~i .j •vczlJ,1 
ct'I:.Uaue 
fO m;; t 11•r, 'CX( ',12, ', ',12 ') 

do 9080 rp=1,rpar 
c' 9~0~ ac=1,acoup 
'·p ncl=t edee 

'. $ 

co 9000 1=1,rpar 
rpi~Matveclap,t,apar 

9-~ '~P rcl=e{np,ac + vCap1)•4c(ac 1; 

9830 

c~ 9£50 i=1,rpar 

d~ 904: m2~1.apar 
vcrrt.~2:•0.V4~1 
do 9V.48 J•1,rcoap 
ap J =tt.lcl88 
do 9~3~ k•t,ncoap 
:.; J · =ap(J) .. Ycr(J,k)*a(m~.t) 

cortil!ue 
co~u~ue 

c .utpat veriaace - covariaa~e matrices 
t:r1rt 333 
J:r1at •.' variaace- cevariarce watriz tror. s1•ulat1oa' 
}:r:nt etB, (.1,lvc"t(j,t', t.,.1,Dcoup), J"'1 0 DCoup: 
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eu 

e.s 

c: 

tor111atC 2z,13,' : ',<ac:eup/2)e1-t.e,/11z, 
1<ac:oup12+111o4facoap,2'>e14.6/ 

pr!Dt ~33 
:rr~.Dt •," yarlaac:e - coyarlal!ce lll&trlz tor para111eters' 
prlat @89, (J,fYCJ{J,kl, k=1,apar), J•1,apar) 
fo!'lllr.tf/2:r,13,' ',<apar/2)e14.6,112z, 

l/r:rar 2+111o4(apar,2))e14.6 ) 

c c.;leulete spectru"' 

~ !" call 4or4(4 .4last .1c:oor4; 
~all cntprt(4,cj,e) 
call bpb-tballl(ea,1sr-
call peout(~.2e,en,1S7111,rl 

c output spectru111 
prir.t 11:5 

1~:5 forlll!t('1 A1 satspec:t·a •.• '///) 
p!'iDt 114 

184 to·n~.-t(' SII QUANTUM LINIS 'll 
:rr'!'t u~· 

U5 fo·lllat(1z,17(' '), /,lliJ:r,' t'!l = 4 to ll"l • 2' J 
k=l . 
11 r~r1·· -n0(2 •1 
r.1 11•n8'3)-1 
do 551 H••U,h1 
~t 1S7~7Jc:l re. 1· so to~~~ 
freqtt'•abs(eaC1l-ea(Jcl) 
k=Jr:-1 

~e. \.iO! tirue 
call destrq(treq,k-1' 
!!t:=k-1 
p'.l"t li?E 

l.,E fo'!"lllat! UJz,'lMl = 3 to ll"l = 3·,) 
lr=l . 
11 r.w''1 :+1 
t:1 U•nl(2 )-1 
12 a0i1 •nl(2 •a013l-u0(4)•1 
n2 12•rt"(~)-1 
do ~~5 jc1=l1,!!1 
if 1S71'1l je1' .ue. 1 I go to 555 

,10 ~~!: 1c2•12.h2 
it 1S71117jc2' .Jte. 11 go to 55~ 
treqfk =e~t(Je1t-ea(jc2) 
it 1tlsf18 e•abs(treq(tl )) .eq e) go to ~~5 
r. -r·1 

~!~ cor,1Due 
call destrq(treq,t-1' 
prlat 117 

1-7 to-mctU//' SIVIN QU.lN!UM LINIS' /,15('_'")//, 
21r.J,.I!"I =4 to IMI =3'" l 

If ·-1 
11 !!l(1 1 
~1 11+rlf2)-1 
do :ee jc•l1.111 
it lsJ111r Je; .ee. 1' go tc !ee 
treq't•rabsfeD(Jc~-er(1)) 
Ir-~·1 

~6 co~ t1 z:ue 
call 4estrq(treq ,t-1) 
ea4 
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c 
subrou,lae tortC4,t2,lcoor4) 
double ,reelsloa 42(1) 
re-11 4ft\ 

c rearraace coupllDCS to or4er1 ac usee la st•alaUns. 

d(l l•42(1l/t.e 
d(2l:a42(2) 1 ••• 

d(~'=42(3l/t.l 
d(4 •42(4)/t.e 
d ( ~ ) •4 2 ( !5) / t .1 
4(6'=42(~~/t.e 
d(7 "'42(4)/t.e 
d (Ell =4 2 ( 8) •.• 
di9 =42(2'/t.l 
d(l~' =42'81/t.e 
d ( 111•4·2 (?·) '"·. 
d(·l2-:42('7l/4.1 
d ( 13 =42 c e l/4 • e 
d ( 14 '•d2 ( 1 ) :4." 
d( 15- =42(8 ~14.1 
d f HJ-· •42 ('1) 14. I' 
d!1?~·42('7) 4.8 
c~< 1e =42 8 ·14.0 
di19·•42(t)/4.0 
d ( 2£ '=42 ( 5). 4." 
dl21 =42(5~/4.1 
d ( l22 =42 1") /4. v 
d( 23 "•42(9),4." 
d ( 24 =42 ( 1&) '4 •• 
d 1 2~ •42 1 11)/4:.1 
d(2El•42(12) 4.1 
d(2'7 =42(11\14:.1 
c~r~e :d?C9l/4.P 

returr 
EDd 
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subroutine bipb4(4,icoord) 
c 
c celculltP.I couplitc cotsterts tor e bipbem7l 
f w1tb es7~etr1ca117 distorted r1DaS· 
c ·-- -~-------
c 
c CocdiD;te SJstem •11 n. 57mmetr7: 
c Tbe or1g1D is It the ceDter of teb c-c 1Dter ring bridge. 
c !he z-az1s bisects tbe d1bedrel IDgle, the z-az1s 15 elorg 
c the berze~e para boD4S to tbe substitUeDts. 
c 
c Coordirete SJStem •2; ~2 s7mmetr7: 
c The z-~x1s passes throucn the !1i.be1Jl pare Dozuls, 
\; the or1.v;~r 1S located 11! riDg 2 (v1Us protoDs !,6,7,E), 
c The z-ezis lies iD the plene ot this riDg and the 7-azis 
c !s r.ormel tc it. 
c 
c 

implicit double precision (e-b,o-a) 
double precision tb(16),11J(,),lJI(t),s(5),4(12) 
co~m~t ~eom szz,s2p,SIJ,4elta,r1,,r67,r12,r23,r5e,r261,r56 
co~~ot I .v;ecm2 I r13,r57 

tto 1 J=1.12 
1 ~(j ~~.0~00 

~ed:-4: d:0•d.:tu:f1.0dft"~ • 
dk -2 0de0•C245.017del••2.e) 

c ~~~pute delta ir reds 
rdel-delte•rad/1~1.0400 

!f'icoord .eq. 2 go to !IZ!IZ 
c 
c · co·r~incte SJstel'l #1 

sfl =s~7 

c 
sur 

c 

s(2)=s2p•f(dcos(rdel 2.141~))••2-(ds1r(r4el/2.~d~~))••~l 
s(~ =s?p•(dcos(rdel/2.14~0 •dsit(rdel/2.0400') 
sf 4: :V 0d2'~ 
s c E· 1 ~e ec10r. 
.. 6.,-=-r2~ 
~~~=rt.o: 
r5f'-=rl2 
lO to 6168 

~ccrdirate SJStel'l 12 
s C 1 ):s zz 
s(2 •s2p 
sf3·•SIJ 
sf4)•e ec1ee 
s(!J•:t.0cll" 

COI'I~UtP tri~ fUDCtiODS of deltr 
cscli:dcos(rdel) 
SDcH•cl!:h( rdell 

co~p~te reeded dlst1nces It delta•l 

rz1· 'rl4-r23). 2 .uee 
rz2~(r~f-r67\/2.8dl8 
·T3•fr~~·r14'/2.~400 
r~4 trl4-rB7)·2.e411 
!'I~.=; r!-E -r23 '/2 .Idle 
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.. ~6·(r6'7 r23l/2.0U0 

c comput~ tr1« fumct1oes of ~ee4e4 aDgles 

Sll4=rz1/r12 
cs4:4sqrt(1.0401-sD4••2.0) 
su•ne r261 
csa:4sqrt(1.1418-saa••2.8l 
Sll4p•n2/r~6 
csdp=dsqrt(1.1410-sii4P~•2.e) 

rr•=r268•csa 
·rt•r1~cs4+rr4 
rr2~r~e•csdp+rJ4 
rr:!-= rrl •r72-r7~ 

c CElculJt~ 111ter~uclear 41staaces for 4elta•0 

r1~0•UqrtCrrt••2.t+nZ.•2 0) 
~t51=clsqrt < rr3••2 .e+n3••2 .e l 
r2!V-=clsqrt(r)'2••2.0+rz~••2 el 

sng=u4 rlE\111 
csg=:-J1/r160 
srgp=u~tr2!e 
csgp=ry2 r25t' 
sn'h,.rx3/r15e 
csb•rr:atrH0 

c ~alcul~te lzr's and lrz's 

lxy'l =ra•sr.cll 
lJ::..fl~ r14•c5111 

lzy~? ·r23•sndl 
1JY'~'-=r2~•csdl 

lz7!3)=1!1 1!1480 
lJX·~ ~ r6'7 

lzr(• "=e eue 
lrx ( 4 '=r5~ 

c calctletP th's 

th'll•'1Jx(1l-lrx!3)1/2.0d~e 
th 1 2)='lxJ(1)+lzJ(3))/2.t400 

th 3'•(lyz(2'-1JZ(3) /2.Bd~0 
!h '4)aflTJ(2 )+lzJ(3) )/2.84d 

th'5)=(1Jx(1)-lrx(~)),2.040t 
th 6 silzJ(11•lzJ(4}l/2.84~8 

th''7l•'1Jx(2)+1Jx(3)J/2.14~0 
th'e>=<lxJ(2)-lzrC3))/2.t4et 

th 9 1 ~(lyz(1'•lrz!4ll/2.t4~8 
tt.'10l•ClxJ(1l-lxJ(4l)/2.14~0 

th'11) (1JZ(1)+1JZ(3));2.tdt8 
th 12'~(lzr(1 '-lzJ(3'l/2.14~1 
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tbf13)•(1JzC2l-1Jz(4))/2.t4tt 
tb 14) -.( 117(2 l+lZJ(4)) 12.140 

th(1f)•(lJZ(2)+lfZ(4))/2.1411 
tb(16)•(1ZJ(2)•1ZJ(4)}/2.1tll 

c calculat~ 1ateraaclear 41staaces tor delta aot•t 

r1?•4Sqrt(rJ1~.e + t!!(11 ••2.1 + th<12)••2.1) 
r16=-4sqrt(rJ1•~-• + thC1)••2.e + tll(2)••2.8) 
!"'25=4sq:rt(rJ2 .. 2.e • th(1:5 '••2.1 • th(U)••2.8 J 
r2E=4sqrt(rJ2•~.e • thCt~·-2.8 • th(16)••2.0l 
r26=4sqrt(rJ4••2.1 • tb(:5)••2.~~: + tb{4)••2.t) 
~1~-dsqrt(rJ:5**2.0 + th(~)••2.~ + th{6l••2.1J 
r2?-4sqrtCr74 .. 2.t • th(?)••2.e + tll(B)••2.e) 
rt;:4sqrt(rJ:5••2.1 + tb{9)••2.e + tb(1t)••2.t) 
~1~=4sqrtCCCr2:5+r14)/2.t4etl••2.e + CrJ1-rJ4)*•2.£) 
r~? .. 4sqrt(((r6?+r~e)/2.1tte>••2.t + (rJ2-I'J4)••2.8) 

c c~lcul•tP aagles betweea 1ateruaclear vectors eud 
c molecular azls SJStem. 

rpd2= ud /2 .ld80 

thl~:='ryt-rJ4)/r1:5 
sr.l~=tr1~+r2~) (2.td08*r13l 
t t:.13z=csc1l*su13 
t.l'! 13y=sr-d 1*5!! 1:! 

th57z•'ry2-rJ4) r5? 
t hf"x= ·• r6?•r5~ l/ {2 .tdlll8* r57 l 
th ~?y"': . ''d er 
th5E:r=csap 
th!:6z~stdp 
th~6y•<> ''40e 

th12Z"'C5c1 
th12z=csdl*suc! 
tt l:i'y=suu•srd. 

thlf!z•r71 r1e 
th16J:<=Th 1 '/r16 
th16J=th '2 )/r16 

th2f:z•rJ4 r2e 
tt:.26z.,.th'3'/r26 
th26J•th '4)/r26 

thl!SPrJ~ r1!S 
thl~z .. th ·~ ''/r15 
th!~7aU 16 i/rt!l 

th2?t"'!'f4 r2? 
tb?.'7z•tt:. '7'/r2'7 
th2'7J• th '8 l /r2'7 

tb1Pz=rJ3 r1P 
th1Eiz•th(9l/r1! 
thl.,J•th f1t)/r1! 
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thl?r=th'll)/r1? 
th1?J=UaC12) JJ•l? 

th2~z•1'J'2/r2!5 
th2~r•tb(1~)/r2!5 
tb25r•tbf14);r2!5 

th2~z= '!'f2/r2e 
th~Sr•th'15)/r28 
tb2PJ•tb'16),r2! 

c calculate couplings 

dl?=dt•e~up1(tb12z,tb12r,tb12J,S,r12l 
d23~4k•coup1(8.1418,csdl,st4l,s,r23) 
414-4t-c~up1(t.ldll,cs41.sndl,s,r14l 
413=4k*coup1(tb1~z.tb13r,tb137,S,r13l 

456=4k*c oupi ( tb!56z, tb~6x, tb~67, s ,r~6) 
d67:dt•c~up1(1.1488,1.1det,l.ld01,s,r67) 
dfE=clt•ecup1fe.edi!'0,1.14P0.e.ettee,s,r~El 
d57:-4Jt*c oup1 ( tb57z, tb~?x, tb!5?J, s ,r5?) 

426 eoup1(th26z,th26r,tb26y,s,r26) 
d27=coup1(tb27z,th27x,th2?y,s,r27) 
ad2€-=4k* '426 ... 427)i2.0dtel 

dlf=ctup1(th1!5z,th15x,th15y,s,r15) 
d1;~coup1(th12z,th1Bx,th18y,s,r1El 
adlf-~dk* 415 • 41@)/2.1401 

d2r=ccup1ft~2ft,th2~r,th2!5y,s,r2~) 
d2@-=coupi(th28z,tb2~x,th2!y,s,r28) 
a425=dk•·d~5 • 42El/2.1cl~l 

dlf~ceup1(th16r,th16r,th16y,s,r16) 
417 coup!(tb17z,th17r,th17y,s,r17) 
ad16=dr• 416 • 417)/2.14~1 

c re, rrerge eouplin~s to ordering usecl in si111u1a Uo~:s. 

d(t\•412 
d(2 =413 
d (3 )zd 14 
d(4)=a41~ 
d( e =ad16 
d(6 !•423 
d(7)=ad26 
d(: =ad2t 
d (9 \•d!l-6 
4(10'=4!57 
4( 11 cd5f 
4(12 •467 

end 

dc~bl~ precision fuact1or coup1 
: fthz,tbz,tbJ,s,rl 

1111pl1c1t double prPc1s1or. (a-b,o-al 
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cUmeu1or s(~~ 

c celculetf's a11tsotroptc coupl1DIS after fonnu.hs 
c rf ._511!1 a~d. ttmd.o11. 

su•s( l > 
s2p=-s(2' 
S%J•S (3) 
su=s(ol) 
s)'z.-s(f' 

coup1=( szz•f3.t401•thz••2.!-1.~400) 
1 •s2p•(tbz••2.1-tb7••2.1) 
2 ·~.1401•( szt•(thz•tb7l 
~ •szz•(tbz•thz) 
~ +SJZ•( Ul)'•tU) ) ) 

couptccoupt I (r••3.1\ 

:eturr 
erd. 
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c 
c 
c 

c 

SU!iOO!lNI D~l~V(.l,N,D,L,M· 

IN\'!R'f~ A f'IUIIII 

lf"~LICI'f DOUJLI PRECISION (.1.~!,0-Z) 
tiMINSION 1(1),t(1),M(1) 

!•1 eD"'f 
Nl -N 
to ee t-=1,N 
Nl 'NI•N 
I (I) =I 
M(:t·-=t 
II"'NI•! 
!IGA=AIU) 
to 216 JcK H 
IZ· N•( J-1} 
:to 2e I-=t,N 
IJ IZ•I 
IF 1 r!BSl!IGA •-DAES(A(IJ~J) 1~,20,2e 

15 PIGA~A!I:) 
L(K -:I ,..,!( .•J 

20 CONTINUI 
c 

J=L'!. 
IJ'J-Il ~5,3~,25 

2!" U !-N 
ro 3l' I•1 ,N 
U li+N 
P.OLD=-J.' U' 
.ii U-I+J 
.A!U'=A(.;I) 

~e A(JI =P.OLD 
c 
~5. I=Mit' 

IF I-K ~f.~~.38 
3E JP~N•(I-1) 

IO 4£ J=l,N 
Jt NI-J 
Jl=J'?•J 
BO!:t-=-A( Jl) 
.A(JI'=A(Jt' 

~~ I!JIJ•EOlt 
c 
4: If JIGA ~E.~6.~F 
~ti I• ~lV0 

P.IT'C!IN 
~E DO !f I=l,N 

IF 'I-I !P,~f' ,!-£1 
5f Il N!•I 

A(IK =.A(li)/(-BIGA' 
!f CONTINUE 
c 

DO 65 I•l,N 
II =N!•I 
BOLt=!! II) 
IJ I-N 
rc 6! J•l,N 
IJ IJ•N 
If·I-1 68,6~.61 

6k JJ:J-1 62,6~,62 
62 lJ IJ-I•I 
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A(IJ •P.OLD*A(IJ' • A(IJ' 
ti~ CON!INUI 
c 

IJ 1:-N 
tO -,~ J•l,N 
IJ IJ•N 
II'\J-I ,_,,-,5,78 

-,~ !(IJ:•ACIJl/IIGA 
-,5 CONTINO! 
c 

I•r-BIGA 
c 

A(!! =1.8r,8/!IGA 
H CO~TINUE 
c 

!C:N 
li~ K•K-1 

IF'I' 158,151,185 
lit I=LCI 

I1'I-l 120.120,1~e 
10E JC N*fK-1) 

JP N*l I-1' 
ro ue J=l .N 
J(-JQ•J 
~OLD=.A JK\ 
JI -·JP.9J 
A {..T( lra-A 'J I) 

110 A(JI :!OLD 
lc· J=~'I 

IF'J-K' 1ee,1ee,125 
12t II K-~ 

IO 1~e I:-1,N 
U U•N 
~OLD:A U · 
JI ·-r.I-I+J 
A( !I l=-A 'JI) 

13~ A(JI =SOLD 
GC TC 1V0 

1 !:-£ Jii'IURN 
l.ND 
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c 
c co~putes 4er1Yat1Yes of b1pbearl couplinss v.r.t. 
c 1teret1or para•eters »er1Yat1Yes ere est1•ate~ as 
c the reU o ot the chnse 1D cnpl1JliS vitll • 1 I cbuge 
c 1~ e particular pere•eter. 
c 
c 
c dlast is the 1nit1el (crcle • Uer) couplings 
c dDev is the couplttss calculated. at pare • para + %he 
c ip• 1S tte 11'4ez 1m the 111e tr1% de for tb1s ctepenctnce 
c rcoup is the ru•ber of coupl1n~s (~coup·~ tor tt 17111~, 
c and =1? for »2 s7•111) 
c 

:111plicit doutle prec1s1or. {e-b,o-z) 
double prec1s1or d.lestC1),ct~ev(1) 
co!lllllcn I cit 1Dpar,1per(11 1 ,d.c(12,11),b(12),YU~~),IIY(11) 

do 1ee k=1 ~coup 
dc·t.1pz••l4nev(k -4last(t•lt%1Dc 

1d: ccrtUnue 

returr 
eJ:d 

351 



SUiiOUTINI IJIT2(111,NI,NIII!,Nt,Iflll 
c 
C UJ ''"S fDSION. 
c 
C lliLUJTIS 1.".S. 11101 101 1 fiCTOI 01 I!SIDU1LS 110M ONI 
C I!IIJ!lff CTCLI. 
c 
C THIS IS J DOUBLE PI!CISION fiiSION. 
c 
C B IS !HI ffCTOI OJ I!SIDUJIS. 
C ITUI IS '!'PI NUMBIJI OJ' 1'!1 PliSEN'l' ITEIATIY1 CTCU •. 
C Ill IS THI I~S IIHO! J'BO~ TBI LAST CJCLI. 
C NI IS T!J TOTAL NUMJII OJ' ITI!ATIONS AllOWED. 
C t:ETIT I! A PA!AMITI! tO II USit IN DITIRMINlNG WHUBill 
C JURTP.I! ITI!ATil! CYCLIS SHOULD II !UN. 
C IJ' ~IJIT•0 B!TUBNID NO J'URTBii ITillATlONS UCl.SSARI.; 
C If Nf.IIT•1, lUTHER CTCLIS Akl IIQOIItD. 
C NI IS fBI NU~!IJ Of !ISIDUALS CONTAINID IN J. 
c 
c 

c 

c 

c 

c 

c 

c 

IM~liCIT rOU!tl PRICISION (A-B,O-Z) 
tOUILI PRECISION MINI!R 

CO"'!!"'CN CIT NP!I, IPAJ1(11) ,DC( 12,11) ,J( 12), l( U4) ,JT (11) 

~P~!RP ., 1.0~-e 
U2=e f'Der 
iltiL-NL 

ro • t·1.NL 
4 IR2~I!?.•J(ti•B(I 

IR2=!SO!TCIR2/fNL 
IJ'IR2 .~I. ~INIRR) GO TO 5 
PRINT 401, I:R2 
GO TO @ 

~ PBINT 3~1, 1Tli,IR2 

IJ'(EE1-II2l/IP1-0.!1D02 e,e,1e 
E NUIT:V 

IRl- EJI2 
FITURN 

10 If~ITI!-NI' 111,6,8 -
11" IJI!=EJI~ 

NIXI'I'=l . 
HI'I'URN 

301 JORNJTf~J,'IT!!ATION M ',12,31,'1 M S lRROR = ',18.3) 
4~1 fOR"' A'! I I,' ITI!A'!' ION CTCII Tl!I"'I NAT1D -',I, 

l' Ji 1111S IRRCR ti~S TUN MINIM~~ ALLOIIiiDI ',1, 
~' URCP. • ,:D1E! .4, ) 

iND 
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c 
C Ul/YMS YJISJON. 
c 
C !liS SUJROU!INI SI!S VP !II NOJP11L IOVl!IONS roB 1 tllST 
C SQUAllS I!!I!Tili PIOCJIDUII. 
C T!l MATRIJ PIODUCTS DC-!JlNS*DC lNL DC*I 111 roiMID Willi DC IS tBI 
C ~~~III OJ DIJillTiliS or lllQUINCIIS VITI 
C RIS~tCT TO PliAMITIIS AND B IS !BI P11Till or IISIDUALS 
C ~I!VIi~ ClLCUtl!ID lN~ OBSJiliD liiQUiNCIIS. c . 
c 

c 

c 

c 

c 

c 

IMPLICIT DOUILI PRECISION (A-1,0-Z) 
COP'I""ON CIT NPAR, IPA!(ll) ,DC(12 ,11) ,1(12), l(1-") ,If( 11) 

NOS•NPAJI 
DO 212 NS1•1,NOS 
DO 286 NS2•NS1,NOS 

INDil=M!TliC(NS2,NSl;NOS) 
IND12=~A!llC(NSl,NS2,NOS 1 

v <I NDXl > ·f eree 
DO 20~ LI0•1,NI 

c~~ V(INrl11=l(INri1 •DC(tiQ,NS1)*DC(LIQ,NS2) 
2~€ V(INDl?)~l(INDil) 

::y·ttsl •· .er~k' 
rc 210 uo=t.NL 

21V Bl NS1 =Bl(NS1'•DC(liQ,NS1 *B(llO) 

UTURN 
iND 
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