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NMR STUDIES OF ORIENTED MOLECULES
Steven Williams Sinton
Abstract

Thg properties of liquid crystalline mesophases have been of
continuing interest in physics and chemistfy'siﬁce the diécovery of these
novel compounds{v Recently, nqclear magnetic resonance (NMR) spectroscopy
has been extensively used té'probe the microscopic nature of liduid
vcrystal samples. -Thg NMR spectra contain information which is sensitive
to internal molecular parameters and reflect the anisotropic potential
in which the molecules reorient. Fast diffusion and rotétional motion
remove.the effects of couplings Between-mdlecules. |

In this work, deuferium and proton magnetic resonance are used in
experiments on a number ofvcompounds whichbeither‘form liquidvcrystal
mesophases themselves or are dissolved in a liquid crystal solvent. The
nature_of the infprmation available from the séectra and limiﬁations
impbsed by assumptions necessary in their analyses are .discussed. The
new technique of proton multiple quantum NMR is employed as g'means to
éimplify complicated spectra without the need for selective isotopic
substitution. In a multiple quantum experiment, the change of the total
ﬁagnetic quantum number, M, associated with ébserved spectral lines may
be any integer allowed by the number of coupled spins; e.g., AM = 0, 41,
ces, N for N coupled spin-1/2 nuclei. This experiment also retains the
higher sensitivity and precision in structural information available from
proton NMR compared with other nuclei. The theory of non-selective
multiplé quantum NMR is briefly reviewed. Experimental examples with

benzene dissolved in a liquid crystal are used to demonstrate several



’outuomes of the theory. Possibie complications in.the analysis of spin
echo spectra when chemical shifts and héteronuclear couplings are present
in a strongly coupled spin system are discussed.
Experimental studies include proton and deutefium single quantum
(AM = +1) and proton multiﬁle'quantum spectra of several molecules which
contain the biphenyl moiety. The number uf multiple quantum transitions
in ;hevspectrum can be easily predicted from simple symmetry arguments
for para-uubstituted biphényl. Theée predictions and the extraordinary
simplicity of parts of thé multiple quantum spectuum allow unambiguous
line assignments and tests of simple models to be made in the analysis.
4—Cyaho=4'-nQpentyl-dll-biphenyl (SCB—dll) is s;udied'as a pure
compound in the nematic phase; Assignments of»the proton decoupled
deuterium single quantum spectrum of the_alkyl chain are made to obtain
the chain order 5arameters and dipolar couplings. These are found to be
in close agreement with previouély reported results. The undecoupied
and deuterium decoupled proton multiple quantum NMR spéctra are analyzed
for the aromatic core ofder tensor and structural parameters. A number
of models for the effectivé symmutry of the biphenyl group .in 5CB-d11
are teéted against the experimental épectra. Most of the features are
reproduced by the‘simplest model and possible cuuses of additional struc-
ture in the spectra aré discussed; The dihedral ungle, defined by the
planes containing the rings of the biphenyl group,vis found to Be 30 + 2°
- for SCB-dll. Experiments are also described for 4,4'—d2—Biphenyl, 44"
dibromo-biphenyl, and unsubstituted biphenyl. Complete descriptions are

given of the NMR spectrometer and computer programs used to obtain and

analyze these spectra.
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Chapter 1

Fundamentals

1.1 Introductory Remarks

It is usual to begiﬁ a discussion of experiments which employ a
' spectroscopic technique with a description of the basic interactions
involved and their.relation'to,qqantities of interest. In this work,
the spectroscopy of nuclear magnetic resonance (NMR) is used to study
anisotropic molecular ordering, structure and internal motion in liquid
crystals. -The:two major areas to be considered are the use of NMR (1)
as a tool to probe the chemical nature of the compounds and (2) in the
ongoing investigation of basic speétroscopic physics. For this work,
the first part is found in the.sensitivity of-nuclear magnetic resonance
 to the interaction between the individual dipolé moments of nuclei. This
phenomenon is in turn important in elucidating internuclear distances and
ordering in condensed matter, particularly liquid crystals. The second
area, that of understanding a new speétroscopic procéss, is found in the
development of a technique known as multiple quantum NMR spectroscopy.
The usefulness of this technique in our work lies in the tremendous aid
in spectral'assignment possible from a multiple quantum experiment.
Several éSpects of theory and experiment for multiple quantum NMR
spectroscopy and its application to liquid crystals and solutions of
small molecules dissolved in liquid crystals are described in the fol-
lowing chapters. The next few sections of this chapter present the bgsic
interactions important in liquid crystal NMR and a brief descriﬁtion of
the properties of multiple quantum transitions with reference to the

energy level diagram. Chapter 2 gives a detailed description of the



information available in the NMR spectrum of an ordered medium such as a
liquid crystél. The limitations of this approach are also discussed. |
Chapter 3 describes the basic multiple quantum experiment. A review of
density matrix formalism is held offuntil then. The rotationai proper-
ties of the multiple quantum'density matrix are explored with experimen-
fal examples. of benzene éartially ordered in a liquid crystal solution.
Chapter 4 presents a specifi; example of multiple quantum NMR of biphenyl
groups which demonstrates some-éf the principles developed in earlier
chapters. Finally, a coﬁplete description of one of the two 180 MHz
Fourier transform spectrometersvused for all experiments is found in
Chapter 5. The Appendices contain the details of computer programs used

for calculations and data preparation and complete listings of each.

1.2 The Nuclear Spin Hamiltonian
Usually, the strongest nuclear spin interaction present for a sample
in a high magnetic field is the Zeeman interaction. Classically, the

energy of this interaction (for a single spin) is -
E=-u-H | @)

where : is the magnetic moment of the nucleus and ﬁ is the large static
field. The moment arises from the intrinsic angular momentum of the
electrically charged nucleus; hence the term spin.  Quantum mechanically,
this energy is related to the‘angular momentum operator T through

Equation (1.2).
; = Yh-fs ‘ (1.2)

wﬁere h is Plank's constant divided by 2.



It is well known that TZ and one of the components of T may have
simultaneous'eigenvalues_for the wavefunction of the spin [1]. The total
angular momentﬁm is hI(I+1) where I is the eigenvalue of_fz. By con-
Qention, Iz is the component of T taken to commute with fz. The eigen-~
values of Ié are the (2I+1) values mh where m =1, I-1,...-I+1,-1I.

Taking the magnetic field to be B = (O,O,HO)‘gives
E =_—YhHOm. . (1.3)

The constant Yy is known as the gyromagnetic ratio and its vaiue is
tabulated for every nucleus of interest in NMR. It is not the pﬁrposev
of this.work to measure Yy and so the important intéractions are perturba-
- tions of the Zeeman energy given in Equation (1.3).

Before proceeding with a discussion of these interactions, it is
wbrthwﬁile to point out some of the important consequences of Equation
(1.3). The quantization of the z axis component of angular momentum in
thé.static field,bdescribed by the operator Iz and having discrete values
mh , means that . the energies arebbounded by the (2I+1) vaiues'of m. The
result is that the density matrix approach is particularly useful in the
description of pulsed NMR experiments.

Although the measurement of the energy level diagram. for single
nuclei when I21 provides information from quadrupole perturbations to
Equation (1.3), it is often more useful to consider a collection of
nuclei. For our purposes, a collection of interacting protomns is
relevant. For N such spin % nuclei, the total z component of angular
momentum is described by the quantum number M = z o, . Here the sum runs
over all nuclei which together are sufficient foidescribe the energy

level diagram of the system. There are N+ 1 possible unique values of M



from M = +N/2 to M = -N/2 differing by 1. There are a total of 2N states
for the entire N spin % system. The energy differences among states for
a particular value of M (termed a Zeeman manifold) are determined by the

perturbative Hamiltonians described below.

1.2.1 The Zeeman Hamiltonian
The Zeeman interaction has already been given for a single spin in
Equation (1.3). For an N spin system, setting h = 1 and measuring

energies in frequency units, the general Zeeman Hamiltonian is written

Hy = -Hy ) v41,4» 1.4)

where Wy is the ;ngular Larmor frequency (mo = Zwvo). At magnetic field

~ strengths of about 42 kG, v, is approximately 185 MHz for protons.

0

1.2.2 Radio Frequency Hamiltonian

The interaction of nuclear spins with an externally applied radio
fréquency magnetic field is quite similar to the Zeeman term above.
Assuming this field to be oscillating along the x axis of the laboratory

frame, the r.f. Hamiltonian becomes

H . = -H (t)cos(wt+¢(t)) g \PLIVEE (1.5)
Ix = Z Ixi is the operator for the x component of the spin angular
i

momentum. Hl(t) is the time dependent field amplitude oscillating at
frequency w with phase ¢(t). The usual approach at this point is to
transform to an interaction frame known as the rotating frame [2]. This

is accomplished by the following equation:



R -1thz _ithz

Hrf = e _ Hrf e | - (1.6)

where the expohential operator is defined by [2,3]

-fwtI 2 3
zZ _ . _ (wt) 2 i(ut) 3 '
| e | =1 ithz + 3 ]'.z 6 Iz + cee . (1.7)

The transformation of Equation (1.6) effectively removes the time de-
pendence of the frequency part of the cosine term in Equation (1.5).
The result is given in Equation (1.8) (dropping terms oscillating at’

higher frequencies [4]).

R
Hrf

—wl(t)[Ixcos¢(t) + Iysin¢(t)]. | - (1.8)

in this equation wi(f) Yﬁl(t) is the r.f. fiel& amplitude in angular
frequency units. The occurrence of the opgrators Ix and Iy in Equation
(1.8) comes about from the definition of the exponential operator and
commutation_properﬁies df the angular momentum operators [3,5].

If we also.t:ansform observable quantities, such as the Zeeman in-
teraction to this rotating frame, the spin system will appear to evolve
as though it were observed from a frame rotating abouﬁ the z axis at.

angular velocity w (hence the name). When the transformation is applied

to the Zeeman Hamiltonian Equation (1.4) the result is

R— —
H, = -(wo-w) I, = -AwIz. : (1.9)

The factor Aw is called the offset. Throughout this work, the rotating
frame transformation will be assumed:and the superscript R dropped.

- The remaining interactions described below all take tﬁe form of
spatial and spin tensor products [6]. The spatial tensors involving

just one spin are the chemical shift and quadrupolar tensors. The scalar



(or spin-spin) and dipblar (or direct) temsors involve thevinteraction
of spins with magnetic fields generated By their neighbors. All are
second rank tensors which may be déscribed in a cartesian or spherical
basis [7,8]. Under different conditions, each of these tensor inter-
actions can be reduced in rank or removed by "averagiﬁg". As an example,
the anisotropic chemical shift interaction, the dipplar interaction and
thevquadrupolar_inﬁeraction are all unobservable in non-viscous liquid
samples. This comes about from rapid, isotropic motion of the spins
attached to tumbling molecules. By rapid it is meant that the motion
is fast on the time.scale of the interactions and by isotropic it is
meant that the average over all possible orientations for the spatial
part of the temsor is zero.

Besides the ﬁse of én isotropic liquid, there exis;s'a number of
© ways forvselectiéely.averaging the interactions below. Since the
Hamiltonian for each consists of a product of spatial and spin terms,
this averaging may be done in either coordinate or spih spéce. - These
selective techniques are fully described elsewhere [6] and are only in-
directly relevant to an understanding 6f this work. The isotropic and,
for liquid crystals, anisotropic averaging of spatial quantities pro-
vided by nature are very important in our expériments and will be
described briefly here and in more detail in latter chapters.

In the equations of the next few sections, the second rank inter-
action tensors are written in a cartesian coordinate system baéis with
axes X, Y, Z. Thus, they may be expressed as 3x 3 matrices and the
ﬂamiltonians become scalar products of these with spin operator vectors
such as T = (Ix’Iy’Iz) and § = (Sx,Sy,SZ). The X, Y, Z system is fixed
in space. If we take the Z axis to be along the main field direction,

then the subscripts on tensor elements below refer to components observed



in the labofétory frame. To describe the interaction tensors in some
other coordinate system, such.as one fixed in the ﬁolecules, requires
'transfqrmﬁtioné of the épatial'part of the Hamiltonian as covered in
Chapter 2 and detaiied elseﬁhefe [7,8].

- There will élways exist some coordinate system in'which.a spatial
interaction tensor isvdiagonal.’ Invgeneral, this principle axis system
| (PAS).will not be the same‘for different ihteractiohé. Often, one writes
eachrof.tﬁe Hamiltonians below in a PAS and ;heh thé tensor eleﬁents are
the principle componénﬁs of the interaction. In this case, the trans-
:formation required to relate the Hamiltonian to an NMR spectrum is from tﬁé
PAS to iab frame. Depending on the naturé“of the sample, the PAS compo-
nents of the tensor may be found from lab frame measurements. For a
samplevcopsisting of a single crystal, rotation plots of ‘the frequencies
measured fromvthé'spectrum reveal the principle components [14,15]. If
the-saﬁple is a polycfystalline solid, theﬁ a "powder pattern'" line shape
will reéult.' An example is the well knoﬁh asymmetric chemical shift
powdér pattern obserﬁed»for many samples [14]. In the following chapters,
whenever the Hamiltonian refers to a particulér coordinate system, that
system will be identified. We will always state thevnature ofbany co-
.ordinate transformationé performed.

In considering'the perturbations to H, below, reference is made to

Z
the secular part of the Hamiltonian. This :efers to the usual truncation
of some parts of the total Hamiltonian to those terms which commute with
Iz. This approximation is valid for all cases in this work as non-com-
muting parts of the quadrupolar, dipolar, spin-spin, and chemical shift

interactions are all small compared to the Zeeman term (the "high field

approximation").



- 1.2.3 The Quadrupolar Hamiltonian -
When a nucleus with spin I2>1 isbpresent at a site with non-~zero
electric field gradients, the total energy depends on its orientation.

This is expressed by the quadrupolar Hamiltonian in Equation (1.10).

H e

Q - eT2i-D) X (1.10)

HY

Q is called the quadrupole moment of the nucleus and is related to the
quadrupole term of a multipole expansion for the charge distribution of

the nucleus. The tensor J is the field gradient tensor with elements
2
3V

VGB = 3a38 for «,8 é X, ¥, Z. That § is traceless and symmetric can be

seen from Laplace's equation VZV'= 0, and the symmetry of the-partial

derivatives, VaB = VBd' For a collection of spins, it can be shown [9]'

that Equation (1.10) becomes

'S

i

XYZ |
e > .2
Hy = Z GRETREY Z Vo3I, T + 1 T 0 - 8 D% (1.11a)

Truncating Equation (1.1la) to the secular terms gives

S 2 i 2
HQ B z 4L, (21 1y [sz( -12 Dt (V VYY)(I —I 1. @.11p)
—_eqQ _ 2 2 _ 2
HQ = g 411(211_1) {[3IZi_Ii(Ii+ 1)] + n(Ixi Iyi)}. (1.11C)

- In Equation (1.11) the quantity Qi is the quadrupole moment of nucleus i.

and the asymmetry parameter

In Equation (1.11lc) the gradient eq = VZZ
n = ———?7————— have been introduced. Usually, the electric field gradient
ZZ

is axially symmetric (or nearly so) and n is taken to be zero. That the

quadrupolar Hamiltonian vanishes for nuclei with spin I = can be seen



from a consideration of the expectation value of the spin part of H_,

Q

i.e.,

2
z

<31° - I(1+1)> = 0.
1.2.4 The Dipolar Hamiltonian

The energy of the interaction of spins with the local field caused

by the dipole moments of neighboring nuclei is given classically by [10],

s > > -> >
, U, ol 3, r. )(u, .. ) _
ED = + Z 13 k _ 1 lks k ik (1.12)
i<k rik , rik .

which results in the quantum mechanical Hamiltonian (in frequency units)

o=+ § 1.pt3. 1.13)
1<k

»

In Equation (1.13) the dipolar interaction tensor, gik, is traceless

and symmetric and fi’ gk are the spin angular momentum operators for spins
| ik Yivk | |
i and k. The elements of D are - (3e. e -8 ) wheree , e
2 = S T PaPg P q
ik

(p,q = X,Y,2) are direction cosines for the internuclear vector ¥ik' If
the two spins i and k are of the same species (Yi==yk) then, truncating
HD to the secular terms (terms ﬁhich commute with Hz) and noting that gik.
is axially symmetric [11] makes Equation' (1.13) become (with the Z axis

along the main field)

ik -> >
Hy =+ ] D3 (3T,,T,, -1,-1) (1.14a)
v izk
ik 1
=+ iZk Dy, [T T =7 (T I, +I1 . I.01, (1.14b)

where
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2 .
ik _ _ Y;Yy (3cos™8,, ,-1) _ ' (1.15)
zZ 3 . | .

ik

In Equation (1;15) the angle 6 XZ is between the internuclear vector

i

- and the laboratory z axis. For Equation (1.14) we have introduced

>
ik

the well known raising and lowering (or "ladder") operators:

Ty = Tgo * 115 | o (1.16a)
I_k‘= Lo~ il (1.16b)
i= /-1

For liquid crystal samples we will see that the angular part of Equation
(1.15), averaged over ali molecular orientational possibilities, becomes
what is known as'the ordering temsor [12]. The D;; of Equationv(1.15)

is in a space fixed axis system. For liquid crystals, transformation to
a‘molecﬁlar akis system will be required. For aﬁ isotropic liquid (or a

2 ’ . .
‘gas), <3cos Gi - 1> vanishes and dipolar interactions are not observed.

kZ
We note here that there exists effectivel? two definitions of the coupling
teasor gik in the 1itefature. These definitions differ only:in the use

of Pz(cose) or 2P2(cose) for the angular portion of Equation (1.;5) where
Pz(cose) is the second legendrevpolynomial. We will consistently use

the larger of the two forms of gik'and attempt to make note of any.
conversions required to relate couplings to literature vélues.

When the spins i and k are different nuclear species, then the

secular part of Equation (1.13) becomes

ik : ' |
= ) DI .S, . (1.17)
HD i<k ZZ “zi"sk



1.2.5 Thé Indirect Spin-Spin Hamiltonian

| The iﬁteractibn of Equation (1.12) is the "through space" or direct
energy of spiné in the magnetic field»of neighbors. In addition, there
is a "througﬁ bénds" or indiréct interaction in which a nucleus feels
thé ﬁresence’of its neighbors via the interactions each has with the

electrons making up their common chemical bonds. This is given by

‘. = J 1.7%3. | (1.18)

Although the form of HJviS'similar to HD given in Equétion (1.13),
several differences exist. Whereas gik is traceless,-gik_is not, and

the isotropic average,

(1.19)

is the quantity measured as the "scalar" coupling in high-resolutibn NMR
of liquid samples. - Also, gik may have an antisymmetric component, but
this cannot be measured in NMR [13]}. The total indirect spiﬁ-spin

Hamiltonian, for like spins i and k, may be written

l ik

By = iZk (T I+ (Fpe + I 1, +I1,10) (1.208)
L L ik + 3
- 1 1) 1.20
iy igk {Jik chor g oo, -1 Ly .20

where Equation (1.19) has been used. Equation (1.20b) is sometimes

rewritten in the forms

T anlso
H, = ) {J3,.1..1 +J 3
J 1<k ik’i "k

Izi zk ~

>
I, Ik)} (1.20c)

11
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1

RGN L RIS I WP)
i<k
aniso 1 :
I MpgToe = 3 gl * 11001 (1.20d)
The quantity Janiso above is usually much smaller than Dik Because

ik zz°

it multiplies spin operators in the same form as the dipolar Hamiltonian,

Jiﬁiso is sometimes referred to as the pseudo-dipolar coupling. For

'vliquid crystals J:Eiso'
but may be estimated from theory or from a model for the_Dég values.

cannot be measured independently of D;E by NMR,

1.2.6 The Chemical Shift Hamiltonian

The chemical shift interac;ibn in nuclear magnetic resonance arises
from the screeﬂing affect the electrons surrounding a nucleus have on
the external magpetic field it experiences. Methods exist for calculating
or estimating its value theoretically but will hot be required in this
work.' The chemical shift Hamiltonian is preseﬁted here partly for con-
sistency, but aléo because an importan; consideration for multiple.
quantum NMR as a high resolution technique has its origin in the "inter-
ference" of the chemical shift and dipolar Hamilténians.

The chemical shift takes fhe form of a product of the second rank
tensor g, the first rank spin operator vector‘f, and H (once again taking

Z to be along the main field),
cs

B =] v IgH (1.21)
i

i
= § YiOZZIzHO (secular term),

where 0;2 is the ZZ component of the tensor gi for spin i. Often, the
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i i s ,
product YiHO is included in GZZ so that Hcs = E GZZIzi° As with the

spin~spin coupling, g is not traceless and'o%z may contain an aniso-

tropic component:

iso aniso

Hee = E Y15 Holpg * gzyici _ Holzis
where
iso 1 S T
'Ui =3 Tr(g ) = L

1.2.7 Summary of the Spin Hamiltonian .
Collecting all the interactions written above into the total spin

‘Hamiltonian, we have

H=H,+H _+H, +H +H +H (1.22)

In the rotating frame and under the high field approximation:

= —AwI + z o

(1.23a)
i /

ZZ zi

- ml(t)[cos(¢(t))1x + sin(¢(t))1y]

__eqQ 2 _ . 2 _ 2

+1 T Or oD (BT L@+ DI+ (@, - T ,))

1 1 1

ik 1
DDy [T - T 4 T
1<k :
1 ik ., ik |

+ 1§k {JZZ sl T T Ugy ¥ Igy) (T T, + T, T 00

Equation (1.23a) is sometimes written

H =‘-AmI + z o]

ZZ - wl(t)[cos(¢(t))1x + sin(¢(t))Iy] (1.23b)
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eqQ 2 v 2 2
+ 5“1(211'1) {81, - T (T + 1] + n(I, - T )}

->
+ ) ol (31 ;I -1,.1)
L Pz 2k~ 11k
ik > >
* Z {Jzz i Ik'.""(J * Iyy) BT - I T

It is dften assumed tha£ the asymmetry parameter for the quadrupolar
Hamiltonian is small, i.e., that this tensor is axially symmetric. For |
alkyl deﬁterons, the case bf interest here, n is about .0l and this is
a good assumption. If we also assume that the anisotropic parts of the

chemical shift and spin-spin couplings are negligible, Equation (1.23b)

becomes
H = —AwIz + § oiIzi - wl(t)[cos(¢(t))1x4-sin(¢(t))Iy] (1.23¢)
Z———‘ﬂgi———sz I(I+1 +ZD(3II -1..1)
+ L 41, (21.-1) ( Iz - ) 22 7 tzitzk T iR
i i i i<k
. ->
+ 1 31T,

where the definitions of the isotropic chemical shift and scalar coupling
have been used. Often, the ZZ subscrip; on the dipolar term is dropped
and the coupling is denoted simply as Dik' This will be adopted hereto-
fore except when the distinction of a particular component of the dipolar
tensor is required.

All the NMR measurements analyzed in this work were taken with
- liquid crystal samples in a nematic mesophase. As we shall see, a liquid
crystal is like a polycrystalline sample of rigid molecules in some

respects but quite different in others. For one, the relation between



kpown or desired quantities of the molecules and the NMR spectrum is
complicated by'the need to average over a number of inter and intra-
molecularvmotions. Generally, the "orderingrtensor" elements or
"métional constants" are introduced to describe the average orientation
of molecules with respect ﬁo some laboratory axis system. Tﬁe elements
of such an order temsor are actually the results of various transforma-
tions required fo_gi&e the léb frame components of Equation (1.23c). We
shall show how the symmetry properties of a uniaxial nématic liqui&
crystal reduce the number of elements required in the order tensor.

Molecular symmetry will also become important in this consideration.

1.3 The Energy Level Diagram for Liquid Crystals .

In Equation‘(1.23) we have written out the Hamiltonian for a collec%
tion of N spins., In a non-dilute solid sample, N will be very large and,
in general, none of the individual allowed transitions will be resolved.
The usual approaches in this case include isotopic dilution or selective
averaging to remove the largest'contributions to line broadening. With
liquid crystals (and molecules dissolved in a liquid crystal solution)
nature does a good deal of averaging of the quadrupole and dipble terms
to yield a spectrum with structure.

- Liquid crystalline mesophases are generally characterized by some
degrée of long range order [16-18]. There are several types of meso-
phases which occur for thermotropic liquid crystals. Two of these are
shown schematically in Figure 1.1. For the nematic mesophase, the long
range order consists of an angular correlation of the long axes of the
molecules. The préferred direction of these long axes is described by a
unit vector called the "director'". Smectic phases have a similar align-

ment of the director but in addition order into layers as shown in

15



a) Nematic

b) Smectic A
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A
I

XBL 818-1765

'Figﬁre 1.1
Pictorial representatioh of the two common thermotropic liquid
crystal phases. Liquid crysfal molecules are viewed as rod-like particles
whose long axes are preferentially aligned with respect to the crystal
director, fi. In a), a nematic phase is depicted in which there is only
this angular correlation of molecular long axes. In b), a smectic A
phase is shown. In addition to an angular correlation, one translational
degree of freedom for the center of mass of each molecule is correlated

with the ensemble. Molecules then become ordered in-planes as shown.

16
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Figure 1.1. There is rotational symmetry about the director in the
nematic phase which means that it is uniaxial. All of the NMR spectra
taken in this ﬁork are in the nematic or isotropic phase and so further
discussion‘will be directed to these phases.

When there are no external constraints on a nematic.liquid crystal,
the long axes of individual molecules and the director are not always
colinear but fluctuate in relative orientation. The long range order
extends over domains of many molecules (’106). This order only consists
of angular correlations with complete fréedom of translational diffusioﬁ
for the molecules. (at least on the NMR time scale). When the nematic
. erystal is placed in a sufficiently high magnetic field, the director
becomes aligned along the field direction. This is a result of the
anisotropy of the magnetic susceptibility. The free energy for this

interaction is [18]
' 2 2
F = -AxHO(3cos a-1)/6, _ (1.24)
where
X =Xy X

is the susceptibility anisotropy. The angle o is between the director

and ﬁO' "For nematics studied in this work (and indeed most thermotropics),
Ax is positive which means the minimum free energy contribution occurs
with the director along ﬁO' For liquid crystals, this contribution is
significant when compared to the thermal energy and so the director be-
comes aligned along ﬁO'

When a small molecule is dissolved in a nematic solution it experi-

ences the local potential of the liquid crystal matrix. If the molecule



is not completely symmetric itself, theﬁ.clearly it will also seek a
- minimum free energy situationvin which it orients with respect to the
director. Unlike an isotropically tumbling molecule, ihteractions such -
as the quadrupolar and dipolar Hamiltonians will be present. Because thev
molecule is free to diffﬁse, ihtermolecular interactions'are averaged
away and the NMR spectrum displajs only the intramolecular couplings.
Even for a molecule which is highly'symmetric,ifor example, a molecule
with tetrahedral symmetry,_dipolar~andlquadrupolar couplings have. been
1observed in the NMR spectrum [19,20]. ‘The exact mechanism for the
ordering in this case is a matter of debate in the literature [21-23].
A generalized_picture of the huclear spin energy level diagram is
shown in Figure 1.2, For the liquid crystal case‘the ﬁumber of inter~-
acting spins, N, refers to those of each molecule in the ensemblg° The
major splittings‘shown are from the Zeeman interaction. Each set of
states with a common total magnetic quantum number, M, is termed a
Zeeman maniféld. Without the perturbations of H',vHD, HJ, and‘Hcs, the
states of one Zeeman manifold are degenerate. If the N nuclei are all
spin % (e.g., protqns) then the total number of states is ZN and each
manifold contains N!/(N/2-M)!(N/2+M)! states. The extreme energy states
correspond to the situations in which all spins are aligned with or
against the external field. There are a total of N+ 1 manifolds and,

if N is odd, the M= 0 manifold does not exist.

1.4 Multiple Quaﬁtum Transitions in NMR

The "golden rule" of time-dependent perturbation theory states the
probability per unit time that a perturbation V induces a transition from

state s to state k is given by [24]
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Figure 1.2

Energy level diagram for the spin Hamilﬁonian of a general system
of N coupled spins each with spin quantum number ). The total magnetic
quantum number, M, is the sum of the Zeeman Hamiltonian quantum numbers
115 for each spin, and the large splittings are from the interaction
energy of this Hamiltonian. Smaller spiittings within each group of
states with the same value of M arise from other spin interaction terms
in the total Hamiltonian. A transition from state i to j represents a
change in M of AM = N-3. If N is odd, the group of states for M = 0

doesn't exist.
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W, = ——-<k|V|s>|2 pf(Eéo)j o _ (1.25)

where Pe is the density of states fof the £ina1.(unpertur5ed) states.
Referring to Figure 1.2 justifie§ the usual use of a delta function for
Pe in NMR [25]. | | |

In NMR, we apply a perturbatioh to a sample at equilibrium by ir-
radiating it with the escillating magnetic fie1d of the probe coil. Thus
the perturbation ;akes the form of the r.f. Hamiltonian (Eq. (1.8)); The
transition element isbthen ]<k|Ix|s>|2 for the r.f. field along the x
axis. The matrix elementé can be evaluated in the usually spin product
basis set (a's and 8's) to yield the familiar seleétion rule that the
change in'thebtotal magnetig quantum‘number isvone‘(AM==f1) for allowed
transitions. The ihtensity of thesé fransitions is proportional to
|<k|Ix|S>|2' ’

Equation (1.25) is from a firsﬁ order treatment of peiturbation
theory. It was realized some years ago_that higher order effects would
cause multiple quantum (AM2 0) transitions [26-28]. These non-linear
effects were first demonstrated in the continuous wave observation of
double quantum traﬁsitions in ethanol [29]. The technique has Been used
in the elucidation of spectral assignment of 1iquids [27].

The development of multiple quantum c.w. NMR was hampered byvthe
technical'difficulties associated with creating and oﬁserving this non-

- linear phenomenon. In addition, the stroﬁg r.f. fields required perturb
the spin system in a manner that must be theoretically accounted for.
The advent of pulsed Fourier transform techniques allowed the development

of multiple quantuﬁ NMR without these problems. Theoretically, rather

than dealing with photon absorption and emission processes, the FT

20
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multiple quantum experiment can be described in terms_of coherences and
formulated witﬁ the density matrix. This approéch will be covered in
Chapter 3. Theibasicé.of the development of MQNMR is a rich subjeét and
has beén dealt with in an excellent review by Bodenhausen [30].

Réferring’to Figure 1.2, some of the terminology which will be used
throughout this work can be defined. A multiple quantum_"orderf refers
to all those transitions for which M changes by some integer. Thus, the
_ zero quantum, oﬁe quantum, two quantum, ..., N quantum orders refer to
transitions fbrvwhich M=0,+1, +2, ..., N, respectively. Usually,
the terﬁ.single quantum will be used to mean the "normal" NMR spectrum
élthough occasionélly the one quantum order of a multiple quantum experi-
ment may‘be meant. The only major différences between the two for this
work will be in how the spectrum was obtained and thus the relative in-
tensities of theusingle quantum lines.

Finally, a few words abbut the number of transitions expected for
each'ordér and- the infofmation content of the higher orders. The number

of states in each Zeeman manifold is

N!
N\ = (1.26)
(N ) G-MG+HM! .

E—M

where the common symbol for the binomial coefficient has been used.
Thus, except for the zero quantum order and assuming no molecular sym-

metry, the number of p quantum transitions is given by

N-p N :
) (N)( ) ,p=1,2, ..., N (1.27)
k=0 k k+p |

This is equivalent to the following expression [31].



' : 2N :
# p quantum transitionS'==< ) s, P#0  (1.28a) .
. N—p ‘ ‘

Also, for the zero quantum transition,

" Number zero quantum transitions = %7[(%?) '-ZN]. (1.28b)

Using Sterling's approximation and an exﬁansion.for in(1+x), for large

N Equation (1;283) can be approximated as

,P=1, 2, ...,N. _ (1.29)

Thus we see that the numbér of transitions expected from a sét of coupled
spins with.no symmetry has a Gaussian distribution with order. |

The extreme states shown in Figure 1.2 have a special prbperty.
The bilinearity &f spin operators in the dipolar, quadrupolar and spin-
spin Hémiltonians given in Section 1.2 means that these states will only
experience the sum of these interactions for all spins. pr example,
for N protons the extremes states correspond to all spins in either the
o or the B state. The dipolar Hamiltonian-matrix elements  are

<a(1)...a(n)IHD|a(1)...a(N)>'= <B(1)...VB(N)IH.DI-B(I).f.B(N)> = ) D\

i<k

The chemical shift and Zeeman Hamiltonians are linear in spin operators
and so a flip of all spins corresponds to a change in sign of the matrix

elements. These matrix elements are

<a(l)...a[H,+H |a@)...a)>

~<B(1)...8M B, +H__|8(1)...8(0)>

N
(NAw - g s,).

=



As a conséquence, the N quantum transition contains information only on .

the Zeeman offset Aw and the sum of chemical shifts:

N -
AE§+-N=1 Eg = E_y = NAw - Z o, (1.30)

2 "2 2 2 1

Equation (1.30)‘makes the important statement that complete removal of
vthe dipolar interaction is éffective,in the obéervatién‘of the N quantum
" transition. Thus the N quantum spectrum is similar to that obtained
from the multiple pulse selective averaging technique known as WAHUHA
[32] without reducing the chemical shift interaction.:

To obtain information on the dipolar and spin—spin couﬁlings, one
.has to consider the transitions of.order less than N. In an anisotropi-
' caily‘ordered sample, there are N(N-1)/2 dipolar.couplings, N(N-1)/2
spin-spin couplings and N chemiéal shifts. Assuming that all lines are
reéolved, the (N-1) quantﬁm spectrum gives N frequencies and N(N-1) are
obtained from the (N—l)-prder. Thus, these orders geﬁerallj‘contain_
~enough transitions to solve for all dipolaf ahd spin-spin couplings and
chemicél shifts, These and other counting éfguments are presented in
more detail-elsewhere [33].

of coufse, all the aBoVe arguments aﬁply to a general spin system
with no symmetry. Usually, molecules of interest will belong to a point
group wifh more than one irfeducible_representation [34]. Each Zeeman
manifold is factoréd intolstates of different irreducible representations.
As we shall show, ultimately the multiple quantum coherences produced
and detected in the experiments obey the symmetry selection rules for
normal single quantum NMR. The well known result from group theory is

that allowed transitions are those involving only states within the same



irreducible representation [35]. This is a result of the totally sym-
metric nature of the magnetic dipo1e transition operators of NMR [36].

The symmetry selection rule is written as

<i|V|j> = 0 unless

L@ LW @), A

wheré the usual symbols representing the irreducible representations of
|i>, v and‘|j> are used. Taking Ix’ which is of the A representation,
as the transitioﬁ operator for NMR, the symmetry selection rule is given
by the statement above.

The effect.of molecular symmetry is two sided. On the one hand,
the selection ruie staté& above redﬁces the number of transitions iﬁ each
order and hence the available information. However, the number of unique
couplings required to solve for is also reduced by symmetry. There is
- no general way to predict how many orders will have to be used for a
specific molecule without considefing"symmetry. For each case, the per--
mutational point group relevant to the spiﬁs will have to bé considered.
The results of the group theory for the cases of interest in this work
are presented in the following chapters. It is interesting to note that
there are counting schemes which make use of the behavior of some states
v under point group symmetry elements to predict the number of lines
expected in the higher order spectra [37].

We have éeen that the number of transitions corresponding to the p
quantum order decreases as p increases (p = |AM|). .This comes about
because the higher order transitions probe the Zeeman manifolds with the
fewest number of states. The spread of energy shifts caused by perturba-

tions to HZ is roughly the same for each manifold and so the higher order
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spectra contain splittings similar'to_the single quantum in magnitude.
The result is more_resolved spectra thevhigher'the order,observed. For
the experiments of this work, thevnature of the quantitative information
relevant to molecular(structure that is available in_the high quantum
orders is identical to the single-quantum spectrum. However, from
Equation (1.28) it is readily seen that the single quantum spectrum may
contain a tremendous amount of redundancy of this information for large

- spin systems The multiple quantum experiment has the effect of sampling
the single quantum spectral information and presenting the data in an-
accessible manner (i.e., in the form of resolved transitions). As we
shall demonstrate in Chapters 3 and 4, the high quantum spectra, together
-with a consideration of molecular symmetry, will elucidate the dependence

of transition frequencies'on the molecular parameters of interest.

»



~ Chapter 2

- NMR Using Liquid Crystals

In this chapter, we present some details of the theory for NMR
experiments with liquid crystals. The results here also pertain to

solutes partially ordered in a liquid crystal solution. All the liquid

crystal samples studied are thermotropic nematogéns with positive magne-

tic suscepfibilities. Thus, the director is taken to be parallel to
the static field direction and the laboratory z axis.

‘Alkyi and aromatic quadrupole moments for deuterium are ~l60;180.kHz
and deuterium'spectra from isotopically labeled nematogens are typicaliy
abouﬁ 50 kHz wide. - Thé scaling, as we show below, is due to the imper-
fect ordering of molecules in the matrix. The tybical strength of the
dipolar interaction for protons is 100 Hz to 10 kHz yielding a spectral

L]

width of ~10-100 kHz. Chemical shift values and scalar couplings are

usually about the same size as their isotropic values. Indeed, they are

quite often fixed at the la;ter during spectral analysis.

For asymmetric mbleculeé as solutes in a ﬁematic sample, proton
linewidths are typically a few hertz'wide; This means, with a small
number of couﬁled spins or high enough molecular symmetry, most transi-
tions will be resolved in the single quantum spectrum and an analysis
may be possible. As an example, consider the highly symmetric six spin'
system for thé proton specfrum of benzene dissolved in a nematogen. This
is shown in Figure 2.1. The top trace is the benzene spectrum taken
with a single pulse Fourier transform experiment under conditions.of
moderate field homogeneity. The center trace was produced by applying a

two dimensional spin echo sequence [38]. Use of the spin echo technique
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Figure 2.1

_ Proton NMR spectra of benzene diésolved in a nematic liquid crystal.
The top trace was obtained from a single pulse FT MMR experiment under
conditions of moderate field homogeneity (~.5 ppm). The middle trace _
demonstrates the enhanced resolution obtainable when a two-dimensional
spin echo pulse sequence is used. A theoretical stick spectrum is showmn
~at the bottom.
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has removed line broadening due to magnetic field inhomogeneity. Also
shown in the figufe is a theoretical stick spectrum.fitting the experi-
_mental frequéﬁcies. 'Because there are no chemical shift diffetences,
the spectrum appears symmetric abpuc its center. With complete resolu-
tion of all lines as shéwn in the centér trace, all dipolar and scalar
COQpiings can be determined.- Perhaps the most complicated spectrum
~ studied to date by single quantum.NMR is that from the 10 spin spectrum-
-6f partially oriented'értho.toluené [46].. |

As we shall see in Chépter 4, the proton spgctfum qf a pure liquid
crystal is generally not as wéll resolved as benzene. Without isotopic
substitution the numbef of protoné per molecule is large and, with the
higher degree of ordgring, individual traﬁsition linewidths are greater
than for solutes. The result is a largé number of overlapping lines in
the spectrum. Without a sufficient number of fully resolved peaks, the
proton spectrum is usually intractable and no analysis may be possible.

Deuterium NMR of labeled liﬁuid crystals ﬁas been somewhaf success—
ful in yielding quanﬁitative information on ordering [39-44]. For
example, methylene deuterons on an alkoxy or alkyl chain segment of a
liquid crystal will give 5 resolved doﬁBletv[43]. Linewidths may be
- approximately 0.1 to 1 kHz, but splittings are 10 to 100 kHz. If the
.chain were allowed_énly to exist in an all trans configuration, all the
methylene resonances would be related simply and contain the same infor-
mation about ordering. Usually, one can assign individual resonances to
specific segments [43] and it is possible to learn about conformational
statistics. Dipolar splittings can be observed in a spectruﬁ but are
usually small due to the small deuterium dipole moment. Proton spectra

are much richer in structure [39] than their 'deuterium analogs. 1In



addition, higher sensitivity ahd.greater precision of strucﬁural}informa—
tion make proton NMR of liquid Cristalé.attractive; .Alkyl chain Solutes
partially oriented in a nematic liquid érystal have been studied by
multiple quanﬁum NMR [45].

Before going on to discuss the.ﬁethod of obtaining structure and
ordering information from liquid cfystal'spectra, we pausé now to review
rofations of cartesian_andispherical tensdrsg'-Tﬁe reéults.qf the next
secﬁidn are rélevantbto-the defiﬁition of an‘ofdef tenéorifor a nematic
sample and also apply_to the spin tensor portion of the interaction

Hamiltonians described in,Chapter 1.

2.1 Coordinate Transformations for Temsors

The mathematical details of coordinate transformations for tensors
are éovered'in a nﬁmber of texts [7,8]._ We give here only a brief summary
 of the results necessary for our pgrpoées. The’eq?ations below will be
useful for coordinate-ﬁranSformations of both the brdef ﬁénsor and the

irreducible tensor representations of the spin Hamiltonians.

2.1.1 Cartesian Basis
In Chapter 1 we have given the interaction tensors in cartesian co-

ordinates. To perform a rotation of tensor A,

A A
XX Xy Xz »
= |A__ A A_ | 2.1
& yx yy yz |’ (2.1)
A_ A

A
zx zy 2z

to éR, we apply the transformation matrix R,

t>

i
Qi
X

R t
R". 2.2)
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If A is real, as in the case of the interaction Hamiltonians of Chapter

1, 51- = -1

2

. The usual convention is to break the transformation up into
rotations about cartesian axes with Euler angles @ = a, 8, y [8]. The

rotations are as follows. Rotate by angle & about the z axis to the

!

intermediate frame x', y', z'. Rotate about y' by angle B to the frame

x", y", z". Finally, rotate about z" by angle Y to the transformed axis

e

system x"', y"'", 2"'. The complete rotation matrix is given by Equation

(2.3).
cosacosBcosy-sinasiny sinocosBcosy+cosasiny =sinBcosy
R = | ~cosacosBsiny-sinacosy -sinacosBsiny+cosacosy -sinBsiny (2.3)

cosasing » sinasinf . cosB

2.1.2 Spherical Basis

In the previous section, we have written the secoﬁd rank tensor A in
cartesian coordinates for Equation (2.1). An alte&néte approach, and one.
convenient when considéring several rofations of temsors, is to ekpress é
in a spherical baéis. One can then maké use of the properties of ir-
reducible spherical tensors to simplify calcuiations. Irreducible tensor
methods and fotational properties of tensor operators are subjects
covered in several texts, for example those by Rose [8] énd Silver [7].
Only the results necessary for our analysis will be reviewed here.

Each of tﬁe interaction Hamiltonians of Chapter 1 can be written in
the form of a scalar product of tensors:

H = 'i-é.? = xfz A XY S (2.4)
2 5 13t

> >
where X and Y are first rank temsors (vectors) and A is second rank. .
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To use a spherical basis instead of the cartesian basis of Equation (2.4),
we make use of the scalar product of two irreducible tensors with compo-
nents Ak and Tk,

q q

. k '
ok q ykok
AT q=Z_k D AT | (2.5)

2:>w,
&3

In Equation (2.5), the integer k=0 is the rank and each tensor has
(2k+1) elements spec1fied by q = k -k+—l, «vey tk. 1In general, the
Hamiltonian can be'written:as contributions’from Zero, first, and second

rank tensors so that Equation (2.4) becomes

2 k
. k k
B=J] ¥ (1n%a v (2.6)
k=0 q=-k fa-a
We must now relate the irreducible tensors of Equation (Z.S)Ito the
cartesian components in Equation'(2.4). In terms of the cartesian
components'(Tx,Ty,Tz), we can write the elements o%_the-first rank ir-

reducible spherical tensor as

To ='Tz (2.7a)
™ = 3D +4iT) - (2.7b)
1 x=- "y : : -
and similarly

1 _

A0 = Az v (2.8a)
Al =3/ +1a) (2.8b)
+1 XxX- "y :

To find the elements of a second rank irreducible tensor, we make

use of the product rule for two commuting tensors of rank k' and k'":
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"
[

k.13 o ket x o)

',i k",j

q q (2.8)

Z C(k k'"k,q',q-q )T

q' v

"where the C coefficients are the Clebsch-Gordon coefficients. In.

Equation (2.8), we have introduced the superscripts i and j to indicate

the tensors involve different pafts of the system. For example, in the -

dipolar Hamiltonian, i and j refer to a particular nuclear paif.
Multiplying the first rank tensors of Equation (2.7b) gives the

result [47]:

1,1.1,5 _ oligd,d ool,igl,]

»1j =L s s] . .
To 75 Tl Tl Ty T+ T S
L4 _ L (plyigld _ ghiiglyd
T =5 M T - T Ty!
1,45 _ 1 oloigl,d _ 1,40,
To e A A L A R
1,4 _ 1 pliiglyd _ oligl,d
B R A
2,45 _ .1,i.1,]
T = Th Ty
2 »i3 _ 1 1,1 1,j 1,i.1,3
S i T R N
2,1j _ 1 ol,1i1,3 1,11, , o1,1i01,]
T 2yl v arptred e iy
2,15 _ 1 (pl,igld , ol,igl,d
AT T T
2,13 _ glhigld
B

Similarly, for the tensor éz’ij in terms of the cartesian components



of Equation (2.1) we find, from the product of_first rank tensors (see

Equation (2.8)),

agt = ;—; reald) - - 3 (A}i{;‘;.fVA}i';’; + 4y (2.10)
4 - Lol - o v ael] - At

A - b -l

A - Lof - -l -

R SR R R

LSRR TR

atd o L () - 'Trgjn'

2 - el vt

2,ij _ 1 ., ij iy _ L i3 ij '
AZ; 7 (A - Ay -1 +aD].

As an example particularly useful for our purposes, consider the
dipolar Hamiltonians for like spins i and j. From Chapter 1, the ele-
ments of the dipolar tensor Qij are

Dij

> > 3 o v
= § =-3e - s Psq = X,V,2. 2.11
pa ﬂiyj( g~ 3% eq)/rij,. P,q = X,¥,2 | ( , )

The dipolar Hamiltonian may be considered as a scalar product of two

second rank tensors. ' The elements in Equation (2;11) make up one tensor

and, combining the spin operators, f and f , we have the other. Re-

i 3

calling that Di:I is traceless and symmetric, we get for the components
~
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of the two tensors,

]
o>

=0 S o O (2.12)

A2,13 _ 3 pij

0 V6 22
47 -3 o x o))
W31 -3 0 - o8+ 2nld)
Tcz"’ij‘ ) /L6—_ [21312) +.r-1i-11i1 + I.i.llill 1 (2.13)
Tiii?‘ = /LZ— [I_,i_.lIg + Tomd ] |
Tiiij = 71-2— [ Ifllg + Iéli. ]
Tiiij N I4i-1I-J;-1
M

In Equation (2.13) the first ramk spin operators

i ' |
IL=1, | (2.14a)
d ool g sy (2.14b)

+1 V2 Txi yi :
i _ .1 o L '
I_l = + /5'(Ixi lIyi) (2.14¢)

have been introduced. From Equation (2.11), the spatial elements can be

related to the spherical harmonics Yi by
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. YR :
Az’iJ = - /6 Zl'_Y_J_ ﬂ Y2. ‘ (2 15)
q : 3 5.4 )
1]

If Equations (2.12) and (2.13) are combined according to Equation (2.6),
we obtain the full dipoiar'Hamiitonian. Finally, we note that the sec-
ular.truncatiqn of,HD isvequivalent:to keeping #hdse terms iqrthe pro;
ducts AiTEq corresponding to q = 0. This is a result of thé.commutagion

‘"relations of the angular momentum operators and irreducible tensor opera-

tors [47]:.
) k _ k - !i .
[Ii’ Tq] = Tq‘l'l \[(k+}q)(_k4_rq/+l)] s i : (2.16a)
ky ok - o |
(r_, Tq] = qTq. - . - (2.16b)

Now that we can write Hamiltonians in terms of irreducible tensor
operators; we turn to the question of rotations. JThe coordinate trans-

formation of an irreducible spherical tensor is given by

kR ke t kK k| -
T = RT = T .D Q 2.17
( q) ~ q= (zl. q' q'q( ) ¢ )

where thesz,q(Q) are elements of the Wigner rotation matrix and Q =
(a,B,Y) is the set of Euler angles for the rotation. Properties of the
Wigner rotation matrix, together with a description of how to calculate

the elements Dz,q(ﬂ) can be found in the texts by Silver and Rose.

2.2 Order Parameters

We can now proceed to discuss the situation of an ensemble of aniso-
tropically ordered molecules such as found in a liquid crystal. If only
rigid molecules are considered, the Hamiltonian will contain an average

over the orientation probability distribution of the ensemble. If a



'ﬁuﬁber of conformations are possible for each molecuie, then the
Hamiltonian will also have to reflect an average over these, each
weighted by a éonfdrmational»probability; The probability aistribuﬁion
"fof orientations ié then a function of the.conformationél states of the
mpleculés. Roughly speaking, this takes into 3ccoﬁnt the bossibility
that each conformation mayvorient_differéntly.' Approximations, based

oﬁ afguménts‘for fhe relative'time scales for reorientation of the,entire
molecule and conformationai chaﬁges, are often introduced to reduce fhe;
number of parametersvrequired to describe the ordering of the ensemble.
~For the time being we will ignore such time scale arguments and assume a
conformationallj dependent probability distribution for ordering. Later, -
after introducing the Saupe ordér tensor, the question 6f‘éeparation_of
averaging for reorientation and conformational change will be re-examined.
The problems wiﬁh time scale arguments will be addressed and the approach

for choosing a molecular axis system will be discussed.

2.2.1 .Coordinate Transformations for Liquid Crystal Interacﬁions

In Equaﬁion (2.6) we give the Hamiltonian as a scalar product of ir-
reducible tensors. This.equation is valid for a rigid mdlecﬁle (or a
non-rigid molecule in a single conformation) where thevtenéors gk,
describing the spin portion of H, and ék, deécribing the spatial part,
are related thsome space fixed axis system; More rigorously, for an .
ensemble of non-rigid molecules, we must include the contribution from
each conformation as expreésed below.v

2 k

E= 3 1 DAONIF abhh (2.18)
k=0 s=-k S o " 3n
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In Equation (2.18), the subscript n specifies a particular cOnformatioﬁ

with probability of occurring Fn' ‘We have used the superscript L to
-indicate that we measure the spectrum in the lab frame. For the most

general case, four coordinate systems and three transformations have to

s bevconsidered to relate the microscopic'molecular properties to lab frame

tensor components. The axis systems and rotations are shown schematically

below,f

PAS @ M Qn D Q" L
i 5 (x"’yll-,.zl')

(X,Y,2) v (x,v,2) (x',y’,z') q

. where the rotations involved are:

(1) Qn: Rotate from Principle Axis Syétem (PAS) to a molecule
fixed system (M). '

(2) 9;; Rotate from M to the directo: axis system (D).

(3) Q": Rotate from D to the lab frame (L).

Rotaﬁionsv(l) and (2) with Euler angles (an, Bn, Yn) and»(aa; B;,vyé),
respectively, have to be done for all allowed conformations. The results
are collected with the appropriate weights Fn and the final rotationm,
Q", performed.

Starting with the interaction Hamiltoniaﬁ in the principle axis
system, the fotations £Or‘the spatial portion of H are:

a) from PAS to M

k .

| kM k.PAS .k
(Aq)n p=2_k (Ap)n qu(gn), (2.19a)
b) from M to D
aH? = E A5M pk (g . (2.19b)
r’n qQn qr n’?* *

q=-k
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c) from D to L

@HL = lf D L@ ZF (ak (.19
s B r—k n r n’ : (2.19¢)

The spin operators, Tz, are invariant to these rotations with spa-
tial Euler angles. Combining Equations(2.19) and (2.18) we have for the:

interacﬁion Hamiltonian

H = st (-1) T Z Drs Q" mzlp Fanr(Qn) N % )(A ) (2.20)

where the superscrlpt L on the spin operatofs has been dropped for
brevity. Equatlon (2. 20) is valid for a single orientation of the mole—
cule fixed axis system relative to the director frame. Actually, there
is a distribution of orientations described by the fuhction P(Q&). This
function is usually expanded in terms of the generalizedrspherical

harmonics [48]

2K+l ,'. , '
=l Z o ()_DW( D (2.21)

P(Q ) = (—=

In Equation (2.21), we have explicitly indicated.the-dependence on con-
formation by the symbol ﬁ; The Cﬁv(n) are independent of Q; (but not of
the conformation) and are known as the generalized order parameters orv
"motional constants' [49]. Theraverage of the rotation matrix relating

- molecular and director frames is then

k o = ' '
<qu(Qn)> = j P(Qn) qu(Qé)dQ . (2.22)

Making use of the relation for conjugates of the Dk(ﬂ),

k _ m-n, k * '
DS (@) = DM@, (2.23)



and the orthogonality of the Wigner rotation matrices, we have

0 @) = DT @ (2.24)

We finally get for the general (averaged) interaction Hamiltonian

=] D% ] ok @ ] c;_ ) Df @ )(Ak)PAS (2.25)

ks r npq
_ We can begin to make reductioné iﬁ~the-c§mpiexity of Equation (2.25).
First,‘the:interactidné most important to fhe study of liquid crystal NMR
are of rank two (e.g., dipolar and quadrupolar). Also, the usual high
field approkimation allows us to neglect terms for s # 0. The result is
- Z 2@ I BT )
nq
Cx (] 02 @) ). o (2.26)
p pa n v .
" Thus we see that there are 25 (compléx) order ﬁérameters (for
q=-2,-1,0,1, 2and r = -2, -1, 0, 1, 2) required to describe‘thev
ordering for every allowed conformation. Henceforﬁh, we will replace the
final summation over p in Equation (2.26) with the tensor components in
the moleculg fixed axis system, (Ai)M,,and 1eave off the superscript M.
This seems reasonable for the dipolér interéction where we can choose a
-molecule fixed axis éystem‘according to symmetry to reduce the number of
order parameters. The dipolar intéraction ih its PAS is given by
Dig « (rij)-B and, applying the rotation of Equation (2.19a), we arrive
at gij given in Chapter 1 and Equatipn (2.11).
If wé'now consider the symmetry of a uniaxial nematic liquid crystal

we can reduce the number of order parameters required. The uniaxial

39



nature of the phaée meéns_that P(Q') (aﬁd fhe spectrum).are’invariant

to rotations about z' pf the director frame by angle yf.v Thus, r=0 and
we only have five order parameters for each conformation. The first

© -rotation ma;rix of Equation‘(2.26) then reduces to Dgo 0, B", 0) where.
'B" is the angle between the director frame z' axis and the magnetic
field. Nematic mesogens order nearly perfectly so that 8" = 0. This
may be a poor approximation if used for smectic phases with large tilt

angles [48]. With these uniaxial properties, Equation (2.26) becomes

- 2 149 A2 2 | -
H =T, E F g 1% @ @A), . (2.27)

2.2.2° The Saupe Order Tensor

An alternate description of order for a uniaxial liquid c;ysfal is
offered by Saupe [50]. In the high field approximation an NMR
experiment measures the component of the Hamiltonian parallel to the.
main field. Considering just a single‘qonformation in an ensemble of
rigid molecules for.ﬁow; ;he ﬁransformation of a second rank iﬁteraction

tensor from lab frame to moleéule fixed axis system is given by
v | x§2 . ’
ALAB = L SaBAaB' | (2.28)
AlAp is the lab frame component of A parallelxto thé field (2" direction).

In Equation (2.28) the elements of a traceless, symmétric tensor_§ have

been introduced,

_1 _ .
Sag = 7 “alg Sag” » (2.29)

where 2a’ £, are the direction cosines between the molecule fixed axes

B
@,B and the field direction. In Equation (2.29), the angle brackets imply

an average over an orientational distribution function similar to that .in

40



" the last section. Equation (2.28) may be rewritten

where

iso _
A

3@ =3 A +A +A )

41

(2.30)

(2.31)

is the isotropic average of the tensor. Re-introducing the dependence

v . _ - : .
on conformation n, the elements of § may be related to the motional

constants of the last section by

no_ 2 . _1 2., _
S.zz <D00(Qn)>.— 2 <3cos Bn 1>
(s® -5ty = '-'(3);5 2 @' + D2 (@')>
T Y27 P20Mn’ T P-20Ma
= 7; <sin26'c052a'>
n n .
st = -1(3);i <p? (Q')-Dz' ">
Xy '8 -20*"n”* 720"’

= -{2—-3_ <sin28 'sin2a'>
n. . n

n 3 2 ' 2 .
X2z Q? <D10(Qn)“D—10(Qn)>

3 .
= — <sinB'cosB'cosa'’'>
2 : 8n Bn n

. Y
= —f (3 2 2 o
syz - -i(8> <D-10(Qn)+DlO(Qn)>

/5- ’ ] 1 ]
= 7{~<sin8ncosﬂnsinan>

(2.32a)

(2.32b)

(2.32¢)

(2.32d)

(2.32e)

" As an example of the use of §n, the contribution to the lab frame

dipolar coupling between spins i and j from the nth conformation can be

written:
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| © Yyvsh
bt = - +—~é—i———-{sgz(3cosze

- ..=1)
ij 2, 3 ijz n
4m (rij)n
n - _n 2 2
f (8" =8 )(cos eijxfjcos ] )

ijy'n

n n
o+ 4Sxy(coseijxcoseijy)n + 4sz(coseijxcoseijz)n

). 1, : : (2.33)

+ 48° (cosH
: yz' - jz'n

ijycosei
where coseijp, P = X,yY,2 are the projections onto the molecule fixed axes

of a unit vector pointing from nucleus i to j and r,, is the internuclear

13
‘distance.

From thévform'of Equation (2.32) it is-clear that the number of order
parameters actuaily affecting the spectrum will be determined by molecular
symmetry and the choice of molecular axes. The number of order parameters
required for different molecular point gréups is glven elsewhere [51].

For example, the rigid molecule benzene, with Dy s?mmetry for the proton
spins and the z axis chosen along the six-fold axis, requires only Szz;
We find it convénient to use Equation (2;33) when actually‘calculating
coupling constants in Chapter 4,

Now, using the probability for the occurrence of conformation n, Fn’

the lab frame measurement can be written as
iso\n szgz n ﬁ
A=l F Q@) +3 S S (2.34)
n afB

2.3 The Influence of Internal Motioms on Molecular Ordering

In the last section we have demonstrated that, for molecules with no

symmetry experiencing the ordering potential of a uniaxial liquid crystal,
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the NMR spectrum will be sensitive to five independent order parameters
for_each conformation, weighted by conformational probabilities. Only a
few assumptioné have been made in arriving at this result. First, the
correlation times for all fypes of molecular motion, inéluding intra-
molecular vibration and rotation as well as reorientation, are assumed
‘to be short compared to the inverse of the largest contribution to the
interaction tensor involved.' This ié certaiﬁly a good approximation for
NMR of liquid crystais. Reoriéntationai correlation times for liquid
crystals are usually shorter than a nanosecond.  In contrast, quadru-
polar and_dipolar interactions for common nuclei observed in NMR are
typically 10 to 106_sec- . Thus, the Hamiltonian reflects an average
over intramoleculaf and reorienfational motions. |

The second assumption implicit in Equation (2.27) and (2.34) in-
volves the manner in which‘the conformational average.is treated. The
use of a summation over conformational states implies that molecules
exist for some time in well defined configurations which rapidly inter-
convert; This may be reasonable when the potential barriers involved
are high aﬁd only states at the minima are appreciably populated. If
this is not the case then, in principle, the summation over conforma-
tions may be replaced with an integration over a continuous motion or an
ensemble average of quantum mechanical states. The summation is also
usable, though perhaps not physically meaningful, when a continuum of
conformational possibilities are related thropgh molecular symmetry.
This point will be diécussed when considering oriented biphenyl groups
in Chapter 4.

The most general approach in spectral analysisvmakes use of Equation

(2.27) or (2.34) which contain only the approximations already mentioned.



The motional averaging in Equation (2.34) may be rewritten as

Xyz » .
. ALAB = f <SaBAaB>1nt,mole’ | : (2.35)
aB : : s
where the complete averéging'inciudes both intérﬁal motion (int) and
motion which reorients the entiré molecule (mole). In an attempt to
reduce the number df'parameters in a model used to analyze a spectrum,
further approximationé to-Equatioﬁ (2.35) are often made. A separation .
of thé averaging of S and A 1s sometimes assumed bééed on arguments for
the relative time scales for reorienting and internal ﬁotions [18]0 Two
extremes may be épnsidered. The time-fof which a molecule is correlated.
with a particular orientation Q; relative tb'thevdirectot is denoted

T - The conformational states are characterized by a correlation time

mole’

Tint® In the first extreme conformational changes occur faster than a

molecule can reorient (t. << T ). A single order tensor should then
int mole _

- describe the average orientation for all conformations:

Arap = )Z <S48 mole “Au8”int (2.36)

The distribution function, P(Q'), is then independent of conformation.
This implies that the intermolecular potential determining orientations
only depends‘on Q' [52]. 1In the other relative time scale extreme

(t

<< T ), when a molecule changes its conformational state, it is
mole int
highly probable that it will completely reorient before undergoing another
change of confdrmation. For this case, each conformation must be de-

scribed by a separate order tensor gn as in Equation (2.34). The inter-

mediate situation, for which T,

~ T lacing the
int mole’ corresponds to replacing

discrete summations of Equation (2.27) and (2.34) with a treatment for

continuous internal motion.
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In an approach similar to the assumption T << T the average

int mole’
»obequation (2.35) is separated by assuming é non-rigid molecule is
composed of riéid subunits with relative rotations making up the con-
formational changes [54]. Each rigid Subunitvi is descriﬁed by its ownm
order temsor, $(i). If the relative timeécaies allow a separation of
" internal and feorientational avéraging,.then the g(i) Will be related to
a single'g for the entire molecule. Otherwise, the g(i) wili be |
independent. | |

There seems to be no body of well founded experimental evidence to

support the simplifying assumption T << T

nt mole” For la;ge amplitude

motioﬁs resulting in geometrically dissimilar configurations- it is
reasonable thaﬁ the orientation distribution funcfion P(Q') will be at
least &eakly dependent on intermnal cqordinates. indeed, there are many
-veXamples.in the literature in which the spectrum~of.nbn-rigid‘molecules
cannot be ;dequately e#plained by assuming a single order tensor inde-
pen&ent of conformation ([52-55] and references therein). In some cases
it has been found that observed quadrupplar and dipolar splittings in
the spectra of pure liquid crystals can only be explained by assuming a
conformationally dependent g [54]. Although it would seeﬁ that P(Q')
should be only weakly dependent on ground state vibrational modes of
molecules, e&en this assumption may not be apprbpriate when analyzing a
high resolution spectrum of oriented solute molecules. Emsley, et al.
[52] and Burnell, et al. [53] have suggested that the anisotropic
couplings observed from tetrahedral molecules dissolved in nematic
phases may be explained by a correlation between molecular orientation

and asymmetric vibrational modes.
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Thus it would appear that one must always uée the more complicated.
averaging procedure in Equation (1.35) to relate A to ALAB' -This wiil
present difficulties unless an adequate mbdel exisfs to give tﬁe con-
formational prdbabilities° If, instead, these are ﬁo be detérmiﬁed from
| aﬁ experiment, then drastic‘simplifications or assumptions may have to
be used concerning ﬁoleéulaf structufe._ It has_been.suggesfed that a
possible approach is to carefully choose the molecule fixed axis system
to effectively "decouple intérnal motions and reorientation [55]. 1In
some cases this amounts to finding the principle axis system for §.
Choosing the molecule éxis system in this manner may be difficult if the
conformations are not related by symmetry. The éase of biphenyl discussed

in Chapter 4 demonstrates this approach.



Chapter 3

Multiple Quantum NMR

3.1  Introduction

This chapter éovers the basic theory of multiple»qﬁantum NMR. Most
‘ of tﬁe theoreéical development:of this technique is found elsewhere [31,
38,56*66,69]. No attempt is made to give a‘complete.description of all
asbects of multiple quantum spectroscopy.’ However, details given here
are sufficienﬁ to ‘understand all multiple‘quantum spectra presented in
this and the next chapter. The radio ffequency pulses used are suffi-
ciently broadband to excite all allowed transitions 6f the.spin systems
:studies. Aside from spégific creation énd detection of even quantum
(MM = 0, +2, +4...) of odd quantum (AM = fl, f3,.15,...) transitions- a
result of the bilinear spin coupling Hamiltonians - all pulse sequences
used are non—seleétive. Seléctive.sequences, which produce ephanced
signals for specific multiple quantum orders, are the subject of separate
work [64,66,69,33].

~ As an example of multiple quantum NMR, we again consider benzene
partially ordered in a nematic liquid crystalline solution. A non-—
selective proton multiple quantum spectrum of benzene in Eastman Kodak.
liquid crystal #15320 is shown in Figure 3.1. All orders, from zero
quantum transitions to the six quantum, are present. Each order is
.composed of a group of lines separated from neighboring orders and ex-
tending from zero quantum on the left to six quantum on the right. The
method of separating transitions by order (time proportional phase incre-

mentation) is given below.
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Partially Oriented Benzene
Non-selective Multiple Quantum Spectrum

i |
S5Aw 6Aw

XBL 818-1766

Figure 3.1

Non-selective proton multiple quantum spectrum of benzene oriented
in the nematic phase‘of a liquid crystal solution. Only one half of the
total spectrum, which is symmetric about its center, is shown. Multiple
quantum transitions are separated aécording to AM by the time propor-
tional phase incrementation technique. The central two and four quantum
lines (at 2Aw and 4Aw, respectively) have been truncated in height. The
spectral width shown 1s 50 kHz.



The width of each order in Figure 3.1 is equivalent to the single
quantum baﬁdwidthvand the one quantum regibn of that figure may be
. cqmpafed (except for inteﬁsities) with Figure 2.l. The,ekﬁected reduc-
tion of transition density with higher orders is seen in Figure 3.1.
~ For example; there is only a single pair of fivevquantum lines. The
_origins.of ﬁhese and other transitions are understood from the spin
energy level_diagrémvshdwn in Figure 3.2.  The permutatioﬁ-symmetry of
behzene proton-spin functions is isombrphouS»with the D6 point group
iéading to eight i:reducible representétions. " (Benzene also has an
inversion cénter making the. full point group‘Déﬁf Iﬁversion symmetry
only becomeszimportant-in-the‘zero quantum spectrum.) Thevfivevquéntum
pair comes from the (Al)3 > (Al)fZ'and (Al)2 > (Avl)_3 transitiong. An
aqalysis of this_spettrum becomes completely trivial if we aésumé the

benzene ring has a perfectly hexagonal shape. The dipolar coupling

-constants are then geometrically related by

ortho meta = ° Dpara

The coupling D

ortho is uniquely determined by the five quantum splitting

which can be shown to be independent of scalar couplings. Assuming
. anisotropic indirect spin-spin couplings to be negligible, the relation
is then |

1

= ) = Five Quantum Splitting
2 .

3.7649

o

ortho

If we assume the scalar couplings are equivalent to their isotropic
values, then all couplings are completely determined except for the

relative signs of Di and Jij' An attempt to fit the spectrum with

3
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Figure 3.2

Benzene spin energy level diagram. The total magnetic quantum .
number for the six proton spins, M, is shown on the left hand edge.
States are classified according to the eight irreducible representations
of the D6 point group. Multiple quantum transitions are only allowed

between states in the same representation.
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Dortho > 0 was unsuccessful and so it is concluded that dipolar couplings
are negative. If we choose a molecule fixed axis system with the z axis
‘along the six-fold symmétry axis, and x, y axes in the ring plane, then

by Equation (2.33)

zZ

1
Dortho 2 3
ortho
The'proportiohality’is entirely determined»by nUcléar properties (y )

proton

and the choice of units. If the usual value of r__ . = 2.482 A for

rtho
benzene is assumed, then the five quantdm spectrum gives us the (averaged)
~ order parameter Szz'

3.2 Theory -

This secfion will cover the basic theory for non-selective multiple
quantum NMR experiﬁents. A brief review of the density matrix is first
given and the most general multiple quantum pulsev;équence deséribed.

The rotational properties of the multiple quantum propagator with even
and odd quantum inténsity dependence on pﬁlsé»sequence parameters are
discussed. Methods for separating orders based on properties of the
multiple quantum prbpag#tor under radio frequency phase shifts are also
reviewed. Experimental examples Qith benzene in a nematic liquid crystal

demonstrate several outcomes of the theory.

3.2.1 The Density Matrix

It was mentioﬁed in Chapter 1 that the finite number of states and
bound energies of a coupled nuclear spin system make the density matrix
approach [3,68] particularly useful in pulsed NMR theory. We review here

the density matrix formalism as it applies in later calculations.
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Thevwavefunctions {yp} which'aré‘solutions to the quantum mechanical
Schrédinger equation may be expanded in a complete (orthonormal) basis

{¢} as

o> = I Gyl G
i -

<¢k|

t+ x
o> = g Cik<%4

In general, the expansion coefficients, {C}, are complex numbers (i.e.,
they may be written with a magnitude and phase). If we have an ensemble
of systems all in'the same state wk’ then the expectation value of some

observable quantitf is
<0> = <¢k|0|¢k> o . 'v (3.2)

R4

where 0 is a quantum mechanical operator. For a collection of states,
each occurring with a probability Pys the ensemble averaged expectation

value is

D> =] p v l0lo>, | (3.3)
'k

%*
E E § PrCi1Cx <¢ilol¢j>’

* .
E § ¢3¢, <¢i[o|¢j>,

ﬁﬁete the bars denote. the ensemble average. The coefficients c*c, are

i3

the elements of an ensemble averaged "density matrix" given in the

following equation:



(®,, = Cic.. | (3.4)
All of the theory in this chapter assumes an ensemble averaged density
matrix and so the bar is left off g. Equation (3.3) may be rewritten as

<0>

(3.5)

]
e
e~
©
.
e
A
-
o
o
.-
N
v

where the definition of the trace of a matrix has been used. The "density

matrix opérator" is written

6 = § o luou . 6.8

When the energy of avsystem is determined by a Hamiltonian H, the

density matrix evolves in .time according to its '"equation of motion'"

B2 o(t) = ~1[H,0(8)]. - (3.72)

For our calculations, energies are expressed in frequency units and h is

set to one in what follows. The general solution to Equation (3.7a) is

-iHt

o(t) = e tHE;(0) o1HE, | (3.7b)

for a‘time—indépendent Hamiltonian. When the Hamiltonian is time-
dependent, a time-ordered integration over the duration t in the expon-
‘ential will be required. This treatment is implicit in the rotating
ffamg form of the radio frequency Hamiltonian, Equation (1.8). Evolution
of a density matrix operator in the presence of a time-dependent

Hamiltonian is handled mathematically with average hamiltonian theory [6].
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For a system in therma1 eﬁuilibrium with its surfoqﬁdings,rg.is
diagonal. In this case; the coefficients IEilz corfesﬁond to the prob-
ability qf finding the ensemble in state ¢i’ i.e., they are populations.
In order for R to have non-zero off-diagon#l elements, the coefficients
: C:kckj ﬁust survive.the ensemblg a&e?age of Equation (3.3). This implies
thefe exiéts a definite phase relatibn-among states of the ensemble.

: Thus, off-diagonal elements of L represent a coherent superposition of
the states {¢}. The dff—diagonalvelements are termed coherences.

The probabiiities.in Equation (3.6) are given by a statistical
distribution of energies at equilibrium |

~exp(-E,/kT) .
Py = ’ (3.8)

I exp(-E,/kT)
-1

where k is Boltzmann's constant and T the temperature. Thus, the thermal

equilibrium density matrix operator is given by

exp (-H/KT)

peq B Tr (exp (-H/KT)) (3.9)
with the exponential defined by
exp(-H/KT) = 1 - o+ 2 BB ' (3.10)

1) 2

In the high field approximation in which the Zeeman interaction is the
largest contribution to H, the equilibrium density matrix operator is

expanded

peq =1 - BIz + ..., (3.11)

and the constant B is defined as
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B = (YHO/kT)/Tr(exp(-H/kT))-

- Since the unit operator in Equation (3.11) commutes with all operators in

H, it is often neglected to yield the reduced density matrix

oeq = —BIZ

which has been truncated to the first term. In a high field and at most
temperatures encountered in NMR, B is small and higher order terms are

negligible (the high temperature approximation).

3.2.2 The Basic Multiple Quantum Experiment

Thg_mostvgeneral pulse sequence used for generating and observing
multiple quantum coherence in proton NMR is shown in Figure 3.3. The
basic three pulse sequence in Figure 3.3a consists of pulses with rela-

tive radio frequency phases¢i.and rotation angles ei(ei= ). - The

w, t
, ] 1y
NMR signale(T;tl,tz) as a function of the time parametersvr,_tl, and t,

is detected during t Using phase sensitiﬁe detection (see Chapter 5),

2°
two contributions are separated into ;wo spectrdmeter "channels" cor-
responding.to detection of oscillating field components along the rota-
ting frame x andAy axes.  These are related to the expectation values
<Ix> and <Iy>, ’The choices Of'yalues for parameters T,‘tl, tz, ei, ¢i
are determined by the spin system under investigation and which transi-
tions are desited. The affect of each is discussed below.

Figure 3.35 shows a pulse sequence which is actually used in the
theory below. The experiment is more symmetric from the sténdpoint of
density matrix evolution if we imagine we observe a signal proportional

to <Iz>. This is effected by placing a fourth pulse, P4(64, ¢4), to

transfer magnetization back along the z axis. The experiments themselves
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Multiple -Ouonf_urri
Pulse Sequence

P, (6.4, P,(6,4,) Pslbs,3)

: S(T;f|ﬂz)
L _
a) PO | <IX>F’ < Iy>
L
T - t, R P
Py (8),¢)) Ps(Bpp) Ps(Bs,3) Pa (8a,4)
b) s
c) 1 U _ \V2 )
' <Iz>
T t » ! flg = (fz-T’)
M : ' XBL8I8-4148

The simplest pulse seﬁuence used for generating and detecting mul- -
tiple quantum coherences in NMR. a) The first two pulses (P1 and P2)
1° These "invisible"
coherences are then detected during t, by the action of a third pulse
(P3, the "mixing" pulse). The two dimensional signal, S(T;tl,tz), is a
function of the parameter 1. b) A fourth pulse,_PA, is included in the

create coherences which evolve freely for time t

theory and <Iz> calculated from the density matrix. c¢) A generalization
of the sequence in b) in which the preparation propagator is U(r) and the
detection propagator is V(t'). In the experiment of a), only one point

in tz at t' is collected for each value of tl.



" do not_contain.thisvlast pulse because of the requireﬁent for observation
of magnefizatipﬁ oscillating transverse to the main field.

'Figure 3.3c illustrates a conceptualization of multiple quantum
experimeﬁts which is used below. The signal written in terms of para-
meters in'Figufe>3.3§ is familiar in the general field of two-dimensional
Fourier transform spectroscopy [56]. We instéad use parameters éf Figure

3.3c in expressions for the signal S(t;t ,T') in equations below (t'= tz).

1
As we show below, this allows a copvenient mathematical treatment of
density matrix evolution.

The‘sequence.of Figure 3.3c may be viewed as consisting of three
parts. The multiple quantum coherences are generated during a ''prepara-
tion" period labeled U. Iﬁ terms of parameterévin Figure 3.3; the
fropagator for thié period is given by

+i0.1-4 +ie 1-a

U==¢e z 2 e-lHT e 1 L. (3.12)

A

- In Equation (3.12), 1 is the spin angular momentum operator and ﬁl; f,
are.unit vectors in the rotating frame x, y plane,defined by the relative
r.f. phases ¢1, ¢2. The Hamiltonian is given by H. Multiple quantum
coherences are then allowed to evolve freely during the "evolution"

i. No NMR signal is detected from these qoherences

This is because evolution of a coherent superposition of

period of duration t
during ti.
states involved in a multiple quantum transition does not correspond to
magnetic dipole radiation. Because of this, it is necessary to transfer
multiple quantum coherences back into single quantum coherences which we
can detecf. This is accomplished during the 'detection" periéd labeled

V in Figurg 3.3c. The propagator for this period, of duration 1', may

be written
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> >
+i8,T-4, .., +i6,I'A .
V=oe 4774 e iHT e 373 . (3.13)
in analogy with Equation (3.12). 1In Figure 3.3c the parameter t, has
been set equal to t'. It has been shown that t, = t' = t produces the

2
maximum signal [66,67].

The signal is collected after the detection period and is a function

of t, t., and tz:- S(T;tl,tz). The two-dimensional Fourier transform

1
).

could then be applied to produce a two-dimensional spectrum S(r;wl,oq2

A single quantum spectrum results from a slice in the w, direction and

the multiple quantum spectrum is found from a projection along w For

1°
experiments in this work it is sufficient to collect just the single

) .
point at t2 = r'(t2==0). This point represents the integral over the w

2

épectrum. . Although some signal will be lost in w, due to phase dif-

1

ferences among lines in w the technical convenience of single point

29
detection must be compared to the effort requiréd'to compute the full
2-D spectrum. For constant values of T, tl’ and t2='r', application of
the pulse séequence then yields a single data point. The entire sequence
is then repeated with a new value of tl’ the evolution time. Proceeding
in this manner, a multiple quantum "free induction decgy" is mapped out.

Fourier transformation of the result as a function of t, produces a

1

multiple quantum spectrum such as Figure 3.1.
If we use Equation (3.7b) and (3.5), we can write the signal in

terms of density matrix evolution as

. ' -3 =
S(tst,,t") <Iz> Tr(Izp)

1

-iHt iHt
= Tr[IzVe' 1 UpoU+ e 1Vf], (3.14a)
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- -iHt iHt
elviive  lwgute 11, | (3.14b)

+ oo Aty
; (Up yU )jk(v.IZV)kj e . (3.14¢)
jk . ,

with Vi the transition frequency (2n(vk-vj)). Fourier transformation

with respect to t, gives

1

S(T30,1") = jzk @ogU) VI V) 8Gw-u ) (3.15a)
=ijk (B(r)) 3 Q")) ;8w -wy ) (3.15b)

- In the equations above, o is the density matrix just prior to the first
pulse. Often, but not always, we start the experiment with the equili-
brium density matrix, - BIz’ and, éetting -8 equal to one for now,

= I_. The matrix P is the preparation matrix and Q is the detection

I

~x

matrix. When t' = 1 and po'= L, then Q(t') = P(-1).

3.2.3 Properties of the Preparation Matrix
We now consider the form of g'for specific values of ei-and ¢i.

For now we will assume that all chemical shifts are equal and so we can

set 0, = 0. In additionm, quadrupblar and scalar couplings are excluded
from the Hamiltonian below but may be treated in a straightforward manner.

From the results of Chapters 1 and 2, the spin Hamiltonian may be written

> >
H= -l + ) Dij(aIziIzj-Ii.Ij)’ (3.16a)
i<] :
or, in terms of spherical tensor components.
He=-dw ] 7%+ ] a2t g2s4 (3.16b)

k i<y
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where, from Equation (2.13-2.15),

. Y.Y. ’
2,1 _ g1
Ay /6 3 Pz(coseijz) S (3.17a)
ij ‘
2,13 _ ey% ol i i .1 |
TOV (6) [I+lI_l + 2Ty + I T3] (3.17b)
1,j _ .1 _ i _ .1 -
To I, _'Izi’Ijl + 7 Iri (3.17¢)

All of the experimental pulse sequences can be written so that the

first two pulses are at opposite phase, i.e., ¢ = ¢i; ¢ = ¢2 = ¢ + 7,

and rotate Iz by the same angle 61 = 62 = 6. The propagator U may then -

be written

=

. N . ] :
Uo,é,1t) = e-lef-n e—lHr e1G)I_ (3.18a)

With ¢ the phase shift relative to the rotating frame y axis,

I IPURE T 3 S 1) S T3
elGI f_ e z., Ve z’
then,
i¢Iz -i¢I£
U(e,¢,t) = e v(e,t) e . (3.18b)
o -ier . i8I
Uu(8,t) = e Y e e 7.

Likewise, for the detection propagator (63 = 64 20" and ¢3 =¢; ¢4 =¢+m),

i¢I : -i¢Iz

V(e',p,t') = e z ve',t') e (3.19a)

_ia? ' :
Ve L i@ Iy -iHt ie Iy
vie',t') =e e e . (3.19b)
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As an example of the affect of phase, we consider what happens when the
first two pulses are at some phase relative to the final pulses. This
causes an drdér—dependent phase shift of the preparation matrix relative

to detection. Frdm Equation (3.18), (3.19) and (3.14) we find

. . 1. ' ' 1] )
ij.(U(e,¢,r)rzu*<e,¢,r))jk_(v ©",4,T DLV 0,7 ) 8w uyy)
= : : -f- » 1- | 1 L A\
—_jZk (U, TIL,U(9,1)y (V (01,7 )L V",
-10M, - )¢ | |
x e 3 E 'G(w-'wkj)v , | . © (3.20)

Equation (3.20) states that a.shift in the phase of the radio frequepcy
preparétipn_pulses results in AM = Mjf-Mk times the phase shift for a
multiple QUantum line in the spectrum. This will have implications for
the separation of orders and phase Fourier transformation teﬁhniques as
discussed below,_but-for now we take ¢ =_0.. We now look at.specific
cases for tﬁe parameters of Figure 3.3. |

To calculate the affect of pulse angle 8§, we make use of transformé-

tion properties for spin operators. Again, we write the preparation

propagator
. =i8I » iel
UGe,t) = e y.e-th e y
-iH't
= e
where
~i61 iel

H' =e Tge 7. (3.21)
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The effect of the rotation implied in Equétion (3.21) can be calculated
by a transformation with Euler angles (a,B8,Y) = (0,6,0). From Equation
(2.17) and a definition of the Wigner rotation matrix, the rotated

. ‘ . . ) .
Hamiltonian H' is (H H + HD)

1. dw 1
'=— ——
H | chosOTo + ok 31n6[T T_l]

+ ) A 13 (3c0326 l)T2 13

i<j
3 % 2,1 2,ij
+ () sin26[Ty; J - 1724
8 -1
: 3 % 2,ij, .2 1] '
+ (§) sin e[T +T23 11 : (3.22a)

' . 3 . . . ' .
or, replacing the Tq spin operators with spin angular momentum operators,:

v o ar o Aw :
H' = .chosBIO > sin6[I+14-I_l]‘

+ 7 b, {— (3cos?e-1) (3T IJ-T 1)
i<y 1372 00 3

) j 3 j 3
4_-‘( y 51n26[(I+1I0 + IOI+1) (at o+ I )]

+(—) sin 6[1 Iillill}. R (3.22b)

+1 +l

The affect of the preparation matrix P may then be found by considering

the expansion [3] -

2
P(1) = py + 1T(Pg,H'] = 5 [[pg,H'1E'] + ... (3.23)

In what follows, we introduce definitions for the preparation

matrix using different initial density matrix operators po==Iz, Ix’ Iyz
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pPzue,0 1, ule,0 0 (.26
Py =00, I, q*(e,r) | ' ' (3.24b)
:pg = UG8, I, vt e, (3.24¢)

We now consider specific cases for P.

s Aw =03 p, =1

Case 1 6 =53 °0 2"

2
pulse with phase 180° relative to y). Equation (3.22a) becomes

For this case, the preparation sequence is l-r-y,r,-% ¥ (¥ means a

;5 .
H_ = -7 A2 13 -1 T(Z)’]'J + ( ) [T 13 4 2 1J]} (3.25)
i<j
, = + L 1.3 3 3 3
Bex 1§J Dy 2 (3-IziIzj L Ij) + _ (I+1I+1 + 1 1I 1)}
H_ =-+4 (—)ZD(II +1.1.)
XX 2 1 I 5 N -i-37°

1<j

In Equation (3.25), subscript5~on‘H have been introduced which refer to
rotation of the bilinear dipolar Hamiltonian, i.e., Hxx means sz rotated
by a 90° y pulse.

Since Hxx only containsvfi operators with q = 0, +2, it is a zero
quantum and two quantum operator. This is a direct consequence of the
bilinear nature of‘sz. Linear operators, such as those contained in the
chemical shift Hamiltonian, cannot create mu1tip1e quantumvcoherences by
' themselves. If the commutators in Equation (3;23) are evaluated, using
Equation (3.25) and setting g = Iz, it is easily seen that Pi will only
contain operatofs connecting states separated by AM = 0 or AME even.

Thus, this preparation sequence creates only even quantum coherences.
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The expansion (3.23).can:be used to determine the dependence of each
order on f when this time is short [33,67]. Zero quantum dperators do
ndt'appear until the 12 term. Other even n qu;ntum operators first

~ appear in the T(n—l) term. in most experiments, the higher quantum
transitions are desired requiring the expansion to contain significant |
contributions from high order terms. This impiies longer values of T
for which the expansion w&ll not convegge fast. The'explicitvshort

time T power dependence approach is then replaced by the choice of a

T ~ 1 where v_ is a measure of the "size"

preparation time such that v D

D
of HD in Hertz. Experimental methods exist [69] for choosing values of

T which are best for creating transitions of a certain order.

.
2’

For this case, the propagator U will contain the same rotated

Case 2 0 = Aw = 0; Po = Iy.

Hamiltonian as before (Eq. 3.25). The préparation propagator now becomes

-iH Tt iRt
Y = e X 1 e
r y
2

Again, using the expansion of Equation (3.23 this propagator can be shown
to contain only odd quantum operators. The operator Iy may be written

as a combination of Tii operators. Recalling the commutation relations

in Equation (2.16b) we see that PZ will contain products such as

1,1.1,5 1,i.1,5.1,k
T To 7 Top T Ty

... etc. 2vand so is entirely odd quantum in
nature. The first term in Equation (3.23) with odd n quaﬁtum coherence
is thé t° term. The initialvdensity matrix Py = Iy may be prepared by
proceeding the multiple quantum pulse sequence with an x phase pulse.
With ¢ - 0, the first y pulse then does nothing and may be omitted; An

odd quantum preparation sequence is then %-x,r, %-y.
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;3 Aw = 03 oo = Iz

Caée 38 -%

- Now the édded terms in H' are the first order operators Ti’iJ

Once again, consideringbthe.commutators,in Equation (3.23) we see that

N

P will contain all orders of multiple quantum opefators, both even and

&3

odd. The Tt power dependence of these is somewhat different than the
:previous cases. .For example, the first térm with thfee quantum operators
is the fz'ﬁerm. For ver&vshort preparation timeé,ﬂthe three quantum
transitions will appéar faster than'if ;he odd quantum.sequence of case

2 is used.

r

2 pulse as the first pulse then the sequence’mayvbe

" If we use a

written

ud T35
2 Ty Y

L
<

m
y, Z-Ys‘rs

e

In this case, the preparation matrix is

=L'
V2

3 U(%,r)[lz%IX] U+(%,f5 | +ED. . (3.26)
Both terms above contain even and odd quantum operators,v

So far we have considered just the preparation portion of Figure
3.3c. As we said before, multiple. quantum coherences evolving during t,
are unobsérvable and we have to reconvert them to single quantum signal.
The properties of the detection matrix in Equation (3.15) are essentially
the'samé as thg results above when 1' = t. Equation (3.15) states that
Q will have to contain oﬁerators for the coherences of interes; if they
are to be_obser?ed.v For example, if the detecfion sequence of Figure

(3.35)'13 %-y,r, %-? then only even quantum transitions can be observed.

The signal ultimately depends on the product of P and Q and so we can
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selectively prepare end detect.either-even quantum,_odd qqantum or both
coherences in the experiment.> This:principle is demonstfated»experi—
mentally below. |

In summary, we ﬁave shown that multiple quantum coherences can be
prepared and detected by a humber of simple sequences which are only
selective in the sense that the rotated Hamiltonian (Eq. (3.22a)) and
vinitiel deﬁsity matrix Po can be chceen to contain Ti terms where q is

Q considered

~

even, odd, or a mixture of both. The specific cases of P and

above are summarized here.

N

P, Q;.pure even quantum o . 3.27a)
2 2

pr. oY .
P", QTr pure odd quantum v : (3.27b)
7 2 |
P;’x; Qi’x both even and odd quantum o (3.27c).
4 4 '

We have only considered the case when the resonance offset Aw is zero.
The affect of the offset term in a Hamiltonian can be included straight-

forwardly. Now the preparation matrix is given by

-i8I_ +i(-AwI +H )T 16T -16I  -i(-AwI +H_ )t 161
P=e Y e czozzt o Ty 0 Y e z zz' [y
-iH' T
P=e X exp(—iAwrcoseIz)exp(—iAwTsinBIx)exp(Amtcosesinely)
+iH' Tt

X Pg exp(-Awtcosesiner)exp(iAmtsinGIx)exp(iAchoselz) e &
‘ (3.28)



For a general rotation angle of 6, Equation (3.28) would be difficult to
evaluate. From Equation (3.22a) it is obvious that an offset will result

in the occurrence of both even and odd quantum coherences in P. For the

(Y]

trivial case of 8 = -, Equation (3.28) becomes (with Pg = Iz)

P? (Aw) = cosdwt PZ - sindwt PY . -~ (3.29)
T T - 1 _
2

|

A simiiar expression obtains 1if bO = Iy and for‘Q;iy(Aw). If there are
no chemical shift differences, the spectrometer 2 may be set so that
Aw = 0. This condition cannot Be met for all chemiéally shifted nuclei
in a general spin system and so chemical shift differences will tend to
mix even énd odd coherences.in the preparation; When chemical shifts

are small compared to dipolar couplings, this affect will not be too

severe.

.

3.2.4 The Effect of Static Field inhomogeneities/TPPI

From a considgration of the energy lével diégram.for N coupled spin
% nuclei in‘Figure 1.2 and tﬁe form of the rotating frame Zeeman Hamil-
tonian; it»éan be seen that the affect of a fesouance offset Aw 1is
multiplicative in multiple quantum evolution. The n quantum coherences
wili evolve with an offset of nAg where Aw is the single quantum offset.
»The static field that a sample experiences is not perfectly homogeneous
and there will be a distribution of Aw's over the sample volume. The
result is a familiar broadening of resonances in the spectrum whenever
the distribution of field offsets is wider than tﬁe natural linewidth -
a situation which is often the case in proton liquid crystal spectroscopy.
The n quantum coherence will be broadened by n times the single quantum

inhomogeneity. Unless removed, this broadening would prohibit the
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observétion of high order multiple quantum spectra.

Spiﬁ'echoesfof the Hahn type [70] are used to circumvent this prob-

1

linear terms in the Hémiltonian. ' Bilinear terms such as the dipdlar

lém.  PlacingAa m pulse in the center of t willvréverse evolution under
Hamiltonian remain unaffected by this pﬁlse. Ali.evoiution from terms
with.AwIz is réfoéussed at the end of the evolution period, tﬁus remoQing
the field broadening. Eaéh'multiple quantum - coherence then evolves with
just the dipolar frequencies and éllvorders will overlap. In order to
separate contributions to the spectrum from different‘orders, the method
of time proportioﬁal phése incremeﬁtatiOn (TPPI) [59,60,65] is used.

- The TPPI expefiﬁeﬁt ié shown in.Figure 3.4b, Tﬁe first two'pulées
are at some'reiative phase ¢ and ¢ + nvwith respect tb the third and

fourth. This phase is incremented each time t. is incremented by Atl,'so

1
that A¢ = (Am)(Atl) where here Aw is just a parameter. From Equation
(3.20) we see that each mnltiﬁle quantum line is phase shif;ed by
,vexp(—iAM¢) % exp(—iAMAmtli. The ;esult is that the_n quantum coherences
appear to evolve with an effectivevoffset of nAw. To ensure that all
orders are contained in the frequéncyvspectrum'without fold back, the
phase increment is set so that A¢ S-%.. This phase shif; is usually a
fraction of /2 so that the usual spectrometer quadrature phases ar; not

" adequate. A delay line phase shifter under digital control of the pulse

- programmer is used and is fully described in Chapter 5.

3.2.5 Phase Fourier Transform Averaging

Similar to TPPI, the method of phase Fourier transform (PFT) averaging
may be used to separate multiple quantum orders [56,63]. Considering
Equation (3.20) as a Fourier series in phase indicates that coherences

can be separated in phase space according to AM¢. Coaddition of different.
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Figure 3.4 XBL 8010-12245

The time proportional phase incrementation pulse sequence. In a),
the usual three pulse multiple quantum sequence is repeated withv90°
pulses (vltp = %). b) TPPI pulse sequence. A spin echo pulse (180°)
is placed in the middle of tl to remove inhomogeneous broadening in the
evolution of multiple quantum coherences. The first two pulses are
phase shifted by an angle ¢ which is a linear function of the evolution
time: ¢ = Awtl. ¢) As in Figure 3.3c, the density matrix evolution is
more symmetric if we imagine that there is an additional final pulse and

we detect <Iz>.



spectra with properly chosen preparation phases will allow the cancel-
lation df con;fibutiong to the total spectrum from ail but avfew orders.
As an-example, the even quantum orders may be selected over odd quantum
by adding fwo,spectfa taken with preparation phases¢ and ¢ + n. The
odd quantum signal changes sign whereas the even quantum shows a pﬁase
shift of zero and constructivgly adds. Extensions to other Orders is

straightforward.

3.2.6 Inteﬁsitiés

As Qe have seen, preparation and detection.matrix elements, which
determine the extent to which‘coherences appear in the mﬁlfiple quantum
signal, are a function of the times T and ty. Choosing t2 = 1' = 1 has
proved adequate for bur analysis. From Equation (3.15) iﬁ can be shown
‘that the phases of different multiplg quantum lines will not be the same.
This causes loss of intensity in those orders where lines overlap but is
not a problem in resolved higher order spectra. 1In principle,'all liﬁes
" will have the same phase if a time reﬁersal sequence [72] is used during
detection so that g(r') = g(‘T). In practice, this is not necessary and
magnitude spectra are usuﬁlly calculated to avoid having to phase correct
individual lines.

As discussed previously, for Very short prepafation times, not all
coherences are created due to a strong power dependénce on t. This is
demonstrated experimentally in Figure 3.5. For the shortest preparation
times, oniy the one quantum transitions are observed. As soon as T be-
comes on the order of .1 msec, all orders are observéd to some intensity.
As T is further increased, individual lines are seen to oscillate as

expected from the forms of P and Q. We mentioned earlier that the sizes

of couplings in HD may be used as an estimate of an appropriate value of

70



Benzene Ensembie Averaging

; .30
- ;
ﬂv P
sidl "‘l - 1 I Mol : |
; }Hﬂn - . L ,l.“_‘g.gJAJN‘_jL.«.,.L!“.ku,‘.uch;',h‘«l.fnp‘“‘-fWﬁu..‘.‘d
: 10 ) ' i
i i ) : . .35
. i |
1 il , i L
i ,.IQH P 1 T Lo e e i Pt o b -J
L-,‘.An_-»‘" N h"_‘"-v..-.-f-“h&".u.v‘,»'.w..'.,;.-M" FURVTOr S J ..,,,M &'M . ’“‘tw ‘.L“QJ - -

| .40

b a5 ‘ |

[ i
. .ls o J o S . . .
LA-)w""hu‘l\u»i.;.m'N:-wm'-.-.m:«..w....u»...o« DN TR _\_V*!JH'M vJJw»\.,.. dwidmﬂk&. PUN JPREEE PO W ON
- .20

; : : .45
-

b S [ bl i : ‘
: i v A ) HL
\ ™ A ‘ . B .
* ud’il*“ 'r‘"-'-"“\"-ﬁ-—x.'---»""J:.u-mv.; et e Wi W e Mkwl ’,u-o- cab,s u\ i S

.28 50

: : ¥ .
| : ' o
‘ ¥ ! Lo | i o
L™ MA\CMJN‘W ..n..m..,ww.u.i s+ et ., 'I'n"]m.

S} Mg \J‘-)'-'.'L.«.'. PSRN FRUTIF BT SRS

Average

'dlu o] :

-},h .IIJ[HFMN\ A ) i

XBL 818-1772

Figure 3.5 -

Experimehtal demonstration ef "ensemble" averaging used in multiple
quantum NMR spectroscopy. The preparation time, i; is varied for the
ten magnitude spectra shown at the top._ This time is given in milli-
seconds above each trace. For very short preparation times, only the'
lowest orders are observed. For longer values of t, individual lines

oscillate in magnitude. The average of these ten spectra is shown at
the bottom. |
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T for a.geﬁeral spin system. - Actually, transitions for a11 ordersjare-
observed iﬁva fraction of this time for benzene. This is é result of
molecular symﬁetry and the precise nature of.g for benzene-dipola:
couplings [66]. It is possible to map out the T dependence of P experi-
mentally for any order [73,69]. For small spin systems, this allows
one to choose valﬁés of 1t which produce greater avérage intensity in a
'particular order than an arbitrary choice of T might.

To remove an intensity depeﬁdence on T in the final spectrum,
several magnitude spectra from experiments with different preparation
times ﬁay be averaged tdgefher. This is referred‘té as. "ensemble'"
averaging and is shown for benzene in Eigure 3.5. If a sufficient number
of T values over a wide range are used fhen the average should approach
some asymptotic intensity diétribution. In a "statistical limit onme |
would assume that each transition occurs with equél probability in the
averaged spectrum. As we have séen in Equation'(I;29), for large spin
systems, the number of traﬁsitions per order is in a Géussian'distriﬁu_
tion. We then expect the statistical limit idtegréted inteqsit& per
order to fall off expomentially with n2 for n = |AM|. This is shown in}
Figure 3.6 and is qualitatively correct for the benzene experiment.

Such a distribution implies that high order mﬁltiple quantum spectra

will be difficult to observe for large spin systems by non-selective
techniques. When the spin system is an undiluted liquid crystal, a
practical limit of about ten céupled protons is tractable by non-selective
means. Diiute samples, of course, present further complications.

It turns out that the statistical iimit underestimates the intensity
that will be found invsome isolated high order transitions [66,67].

Figure 3.7 shows theoretical statistical and exact T average stick spectra
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Figgre'3.6

- Integrated intensity per order for benzene ensemble averaged

multiple quantum experiment. The so0lid curve is one half of a Gaussian

distribution normalized for N = 6. The experimental points indicate

that this distribution is qualitatively correct for a large spin system.
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Oriented. Benzene '

L . Theoretical n-quantum specira
a. All transitions weighted equally : n=q P

b.Exact average (2000 values
of T)

(1 A |

n= =3 =4 n=5 n=6
XBL 8010-12692

Figure 3.7

Theoretical n-quantum spectra for oriented benzene. a) In this
"statistical” limit case, all transitions are assumed equally probable
and so of equal intensity. b) The averagevof 2000 spectra calculated
from exact values of preparation time, t. The intensities here are the

- result of detailed calculation of density matrix evolution.
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for benzene. The statistical spectrum was produced by weighting each
allowed transitinn gqually. Some degenerate transitions add to produce
the largest lines. The éxact T average spectrum of Figure 3.7b results
from n computet calculation by Murdoch, gt_él: [66,67] from Equation
(3.15)vu$ing experimentnlly obtained benzene couplings. In this épec-
trum, the high order transitions are, on the average, more intense than
one quantum‘transitions. The six quantum line is the most intense single
tranéition; This exact average fits.the gxperimental spectrum of Figure
‘3.1 more nccurately in.its intensity pattern than the-statistical limit
theory of Figuré 3.7a. |

- For computational purposes, it is.connenient to remove the time‘
. dependence of preparation and detection matfiCes in Equation (3.15).
With t' = T, integrating over T, the result fnr the intensity magnitude
of a single transition j -k, assuming an even quantum preparation matrix,
may be written [66], | |

térm$ involving

<|Sj .= ) B2 + overlapping (3.30)
a B

af

transitions

The time independent elements BaB are defined by

Bus = Aasaghar = A E Ay o (3.31a)
with
A=5" exp(-13 1) § (3.31b)
+
X=81 s (3.31c)
T (3.31d)

2
"
Q2
A=
qwn
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In the equations above, H is the Hamiltonian matrix and A

z’

S are
the eigenvalue‘and eigenvector matrices, respectively. For the high
qguantum orders»where.transitions are resolved (all ordersvfor benzene),
the second term in Equation (3.30) may be dropped and the "ultimate" T
avefagéd intensity is readily obtained. Eqﬁation (3.3b) is easily
modified to handle odd, or a mixture of‘even and odd, coherences.
Programs have been writtgn by Murdoch [67] which are.capable ofvsimulaw-
ting the exact or ultimate T aﬁeraged spectrum for molecules of up to
eight protons. Theory spectra sﬁowing calculated in;ensities_in this
and the next chapter were obtained using these programs.

In addition to.symmetry selection rules restricting allowed transi-
tions to the irredﬁcible represeﬁtafions of the molecular point group,.
’ thére aré further syﬁmétry affects forbidding some zero quantum transi-
tions. When the permutation group contains the in§ersiqﬁ element (center
of symmetry), some states will exhibit either gérade (even) or ungerade
(qdd) behavior undef inversion. When the Hamiltonian is purely bilinear
(chemical shifts and offset terms equal to zero) and the number of. spinms
is even, states in the M = 0 Zeeman manifold may not be connected in zero
quantum coherences by thé préparation matrix in a multiple quantum experi-
ment [66]. Similar to the inversion symmetry element, M = 0 states will
be even or odd under the operator which flips all spins. If H is purely
bilinear, this operator anticommutes with P:/Z if the preparation se-
quence ié-% ¢y T, %-;. The result is that only states of opposite
parity under the spin-flip operator are connected in zero quantum co-

. m
herences. When the preparation sequence involves other than-i pulses,

so that P may be written as a combination of,P: and Pg as in Equation
(3.26), then the spin-flip operator no longef anticommutes with coherence

preparation and no inversion selection rules for zero quantum transitions

are imposed.
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- Figure‘3;8 shows aﬂ expanded trace of-the.zefo.quantdm region of
Figure 3.1. Nineﬁy degree pulses were used in prebara#ion and detection
. and.SO"they may be written as_Pilz and Qilz,iﬁespectively. The stick
spectrﬁm undernéath the experimental trace contains iine position#-of
allvtheoretiéal zero quantum reéonapces_disregarding spin inversibn

symmetry. MArkers ﬁeneath this stick épectruh show lines which should
‘not appéar;by(the spin‘inVersion-seléctionirule stafed abové._ Although
- not ail'éllowed’transitions are'resolved, most are obser&ed td some’
intensiﬁy'while the'forbiddeh_traﬁsitipﬁs are indeed missing.

Zero quantum transitions are_unaffectéd by field inhomogeneity [63].
If the»mulfiple;quantum experiment'ié performed in strdﬁg fieid.gradients
vaﬁd Qith nogn_pulsés, then only zéro quantum'resonancés will be mnarrow
enough to be observed. This provides a copvenient method for zero
v quantum selectibn. Selecting zero qﬁantum transitions.in this manner
and using the sequence-%:¢, t,r% 5, tl,-% ¢, T;.sdmple; the speétrum of
Figure 3.9 is obtained. vThe use of %-pﬁlses has resulted in the :appear-
anée of almost all zero quantum.lines.f Although exacﬁvintensities are

not shown in Figure 3.9, the missing B, transitions are normally only

1
weakly allowed [71].

3.3 Evenlodvauantum ﬁxperiments: Benzene

What follows are expefimental examples demonstrating several1out-
comes of thé theory in Section 3.2. Most of these expériments include
T pulses at t/2 in the prepﬁration and at (t2='r')/2-in detection periods
to eliminate the effects of field inhomogeneities and to ensure the on-
resonance condition. - Linewidths are only a few hertz because of an
additional echo ™ pulse in the evolution period. Transitions are separ-

ated according to order AM by using the TPPI technique. The TPPI phase
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Benzene Zero Quantum Spectrum

Preparation: P:Q

Detection: Qt,z

Ll

8 €2 A A B L 8 A

XBL 818-1770

Figure 3.8

Benzene zero quantum Spectruni. This is an expaﬁded' trace of the
zero quantum region of Figure 3.1. The preparation and detection
pulses are all m/2 pulses. 1In this case, spin inversion anti-commutes
with P and Q and only transitions between states of opposite parity
are allowed. Transitions forbidden by inversion symmetry and their

representations are indicated beneath the theoretical stick spectrum.
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Benzene_ Zero Quantum Spectrum

Prepordtion: P:A _

Detection: Qt/‘

L

XBL 818-1769

Figure 3.9

~ Benzene zero quantum spectrum. This spectrum was obtained using
the sequence 7/2¢, T, /4%, tl, /4, T. Spin inversion selection rules
do not forbid any M = 0 transitions with this sequence. Missing transi-
 tions are of Bl symmetry which are only weakly allowed. - On).y zero quantum

transitions are' observed in a field which was purposely made inhomogeneous.
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shift used ﬁas.29.5°. This placesvthé six quantum spectrum just below
the Nyquist fréquency. All sbectra were taken from a single samﬁle of
~30% (by mole) benzene in Eastman liquid crysfal #15320. The solution.
was nematic at room temperature. Sample environment in the probe was
temperature regulated‘to within tO;l°C (see Chapter 5 for a description
of the probe). Generally, 8K words in ;he Fourier transform are suffi-
cient td resdlve most peaks,although, at the sampling rates used, the
multiple.quantum interferogram does not completely decay. Only one half
of the frequency spectrum, which displays reflection symmetry about the
DC componeht,'is shown in each of the figufes. The two halves of each
spectrum were_co-added in a manner which gnhances the symmetry about the
center.of each order and improves signal-to-noise slightly. Ail spectra
are_magnitude plots. By quation (3.20), the TPPI phase, ¢(tl), can bev
removed from g and g. The equatibns below are written with ¢(tl) =0

as though the preparation phase is coincident with' the rotating frame y

axis as in Figufe 3.4a. This causes no loss of generality in the analysis.

3.3.1 Pure Even Quantum Spectrum

Figure 3.10 shqws a benzene spectrum containing only the even quantum
orders. The sequence of Figure 3.4b was used Qith the addition of.n
pulses midway in the preparation and detection periods. The signal

- S(13t tZ) was polarized into one channel of the spectrometer quadruature

1’

(phase sensitive) detector. Observation in the other channelvcorresponds

to the detection matrix QZ and a signal « to

2

<I,>() = Y (pz)jk (Q;)ij(m-mkj) = 0. (3.32)

m
k37 7



Partially Oriented Benzene
Even Quantum Spectrum
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Figure 3.10

Benzene even quantum experiment. The pulse sequence used prepares
only even quantum coherences. This is demonstrated by a complete lack
of one, three, or five quantum lines. Orders are separated by the TPPI

technique. The signal was polarized to one channel of the phase
sensitive detector. . '

el
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| N

2

The odd quantum detection Qz does-not connect states prepared by P

N

which is even quantum.r

3.3.2 Pure 0dd Quantum Spectrum

The benzene spectrum shown in Figure 3.1l demonstrates that, in
analogy to a pure even quantum experiment, it is possible to detect only
odd quantum orders. This is accomplished with the sequence (omitting
' ’ . T, . T : o
pulses for clarlty)-f ¢, T, i-(¢4~§), tl, 7Y, tyi sam?le, where ¢ is

= 1t' = 1 in this experiment. The prepara-

2

tion and detection matrices are then PZ and QZ‘for observation of signal

the TPPI phase. As usual, t
« <Iy>' As with the pure even quantumzexperi%ent, the signal can be
entirely polarizéd in one spectrometer channel. The signal «<ix> is

- then (with the TPPI ¢(t1) = ()

- , ] ]
<IL>@) = jzk_ ()i Q)8 W= uyy) (3.33)
' 2 2 . '

‘'and will be zero in analogy with the arguments for Equation (3.32).

3.3.3 Breaking Even/0dd Symﬁetry

It is quite often the case that both even aﬁd édd high order mui-
tiple quantuﬁ spectra are desired for spectral analysis. It then becomes
nécessary to remove the even or odd quantum nature 6f preparation and
detection matrices to avoid repeating the experiment to get all orders.
This may be accomplished in a number of ways.

A resonance offset is one approach which, from Equation (3.29),
mixesveven and odd quantum preparation (and detectidn).operators. Using
the sequence %-y, T, %-;, tl, giy, EZ = T3 ngple, the complex signal

becomes (dropping the subscript 2 on P and Q terms)



Partially Oriented Benzene
Odd Quantum Spectrum

law ' 38w 5AW
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Fig}_x_' re 3.11

_ Benzene odd quantum experiment. The pulse sequence used prepared
only odd quantum coherences. There is no intensity from zero, two,
four, or six quantum transitions. The signal was polarized to one

channel of the spectrometer detector and TPPI was used to separate orders.
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<I>(w) = <L >(w) +1 <Iy>(w)

- 2. z .z L2 Yy A o, z .y y z
}; {[cos AmTijij + sin Awerkaj ‘ cosAwTs1nAwT(ijij + ijij)]
. 2 z y _ _:2 y .Z v . z .z _ .y y
+ }[cos AwTijij - sin AwTijij + cosAm131nAwT(ijij ijij)]}

(3.34)

The zy aﬁd yz cross terms have been inciuded in_Equgtion (3.34) for
completeness but ‘do not contribute to the signal. Thus, both channels
contain signal from even and odd quantum cohergnces. Fof any arbitrary
valqe of Awt, the signal energy; c=[<I_*_>|2,vwill not ﬁecessarily bg the
same as pure even or odd quantum éxperiments yield but, when "énsemble"
averaged ovef T this energy partitions equailyvamong even and odd orders,
withvtﬁe total the same as either of the pure coherence experiments.
This.method of removing even quantum selection was used to produce the
spectrum of Figure 3.1.

Makihg use of Equation (3.26)we can.also produce a spectrum with all
orders by setting the second pulse in a standard preparation sequence to
a %-pulse. The TPPL sequehce is then (again, leaving out the w pulses

m

which keep Aw = .0) §~¢,'T, %-E, tl/2, ™, tl/2, 7 ¥ T5 sample. . Now

detection of signal from all coherencés is possible. Once again, the t
dependence of_intensities is different than the pure even or odd quantum
experiments. An average of experimgnts for a sufficient range of values
for t will exhibit the total signal distributed among all orders.

We can combine two of the exﬁeriments above to both create all orders
and simultaneously selectively polarize the signal into the quadréture
channels. This is accomplished‘with the TPPI sequence %-¢, T, %-$, t1/2,
T, tl/2, g-y, T; sample, with Aw = 0. (In practice, n‘pulses are once

again inserted in preparation and detection to ensure that Aw = 0). Now,
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the two components of the complex signal become (with ¢(t1) = 0 as usual)

’ _ 1 z X\ Zy . _ ’
<I> = = Z (¢ + Pﬂ)jk(Qn)kjcS(w “’kj) (3.35a)
iz 37 2 |
1 z X\ Vs ,
<I > = — (P +PD),. ( Slw-w, 3.35b
y /2 ij % %jk ‘Q%)RJ (a wa) (, 350)

The preparatibn sequence, as Eefore, produces all orders of coherence.
If all chemical.shifts are equal, the detection matrices for <IX> and
<Iy> are solely even and odd quantum, respegtively. Thus, the even
quantum coherenges will only be detectable in one channel and the odd
quahtum in the other, if the.spectrometer reference pﬁaée is properly
adjusted. In a spectrum avefaged over values of T, the intensity will
once again be evenly distributed aﬁong eveﬁ and odd channels,with the
total the same as a pure even or odd quantum experiment.

Figure 3.12 shows the spectfa that are obtained when the two channelé
of the above experiment are separately Fourier transformed. The spec-
.trométer reference delay was carefully adjusted so that the two components
of signal in Equation (3.35) correspond to the qﬁa&rature détection chan-
nels. The transform of one cﬁannel gives a spectrum with only even orders
while the spectrum from the other channel exhibits only odd. This experi-
_ ment combined even/odd selectivity with phase Fourier transform tech-
niques. Two multiple quantum free induction decays with preparation
sequences %-¢, T, %-5 and %-5, T, %;¢ were acquirgd. The channels con-
taining even orders were added and those containing odd were subtracted.
In this way, small amounts of bleed-through signals were removed. The
multiple quantum sampling rate'(Atl) has been increased by about a factor

of two without interference between orders.
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Figure 3.12

Benzene non-selective multiple quantum NMR spectra.

This expériment

combines the theoretical results leading to the spectra of Figures 3.10

and 3.11. All orders of coherence are prepared but odd orders are de-

tected .out of phase by 90° with respect to even orders.

Fourier trans-

formation of the y channel signal, Sy’ leads to the odd quantum spectrum

of a) while the even quantum orders are obtained from Sx in b).

86



87

3.4 The Effect of Chemical Shifts

Up till now, we have ignored the chemical shift Hamiltonian1in our
o analysis of thg multiple quantum densi;y matrix; This pro&es adequate
when cqnsidéringvmolecules such as benzene in which all chemical shifts
are equal. In this case, we can take the chemical shifts as zero by
redefining the rotating frame. frequency w. Most molecules of interest
will not have chemically equivalent spins and.so for the density analysis
matrix to be usef@l-we must consider the effecﬁ of Hcs'

" When coupied nuclei are éhemicaliy inequivalent, two effects will’
arise in a multiple quantum experiment. First, the preparation and de-
tection matrices are differeﬁt from the examples we have considered in
lthe previous sections. The pﬁre even or odd quantﬁmlpreparation matrix
is a conseqﬁencg of the bilinear Hamiltonian HJ4-HD when qffset and
chemical shift terms are absent. Hcs can‘be included in a straight-
forward manner in the expressions for g and g [33]. The result is thaf‘
even aﬁd odd coherences appear in the same preparation matrix. Thus
chemical shifts rémove seléctivity of even or bdd-quantum orders in a
manner similar to a resonance offset (the latter, however, is under con-
trol of the experimenter). As previously mentioned, if chemical shifts
are small compared to the couplings then a preparatibn matrix may still
'contain’predominantly even or odd quantum coherences.

As a second effect, the chemical shifts will cause multiple quantum
coherences to evolve with relative frequency offsets during tl. In
principle, this evolution could remain unperturbed by r.f. pulses and
chemical shifts measured in the final spectrum. A problem arises when
TPPI is used to retain homogeneously broadened lines while removing in-

homogeneous broadening with the formation of a spin echo. A 7 pulse
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centered in the erlution period (fig. 3.4c) is used to create fhe echo
by refocusing linear'terms in the Hamlitonian which commute with‘HJ and
HD, This pulsé will also cause a.transfer of coherence between multiple
quantum transitions which produces additional linesbin the final speétrum.
The problem here is very similar to the meésurement of relaxation para-
‘meters in strongly coupled isotropic systems [74]. The origin of addi-
tional lines and an estimation of their affect on spectral analysis is
the subject of-the remainder of this section.

Before going bn to a determination of the signal when Hcs is present,
we first review a simple AB spin-!s system as an example [77]. Normaliy,
when chemical shifts are'absent, the composite two-spin states may be
classified as three triplets and one singlet under spin exchange. There
are fouf allowed transitions among the triplet states all of which are
degenerate when H = H andvDAB, the dipolar coupling, is zero. When the

J

Hamiltonian instead contains HD and J, = 0, two degenerate transitions

AB
produce one line at +(3/4)D and the other two appear at -(3/4)D. When a
chemical shift is introduced, the M = 0 tripiet and singlet states are
mixed in the actual eigenstates. This partially removes the transition
'degenefacy to producé new lines in the spectrum. Whengver the coupling
(J or D) is small compared to the shift difference § = %(oA-ot) the
Hamiltonian terms HJ andeD can be truncated to that portion which com-
mutes with Hcs and the speétrum is termed‘first order [79]}. Figure 3.13

J

Hcs + HD and for varying ratios of the bilinear coupling to chemical

shows theoretical AB spectra when the total Hamiltonian is Hcs + H. or

shift difference. The left hand stick spectrum in part b represents the
familiar isotropic first order spectrum in which J << 28. In an aniso-
tropically ordered sample such as a liquid crystal, the dipolar coupling

D is usually much larger than 2§. This situation is depicted on the
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Figure 3.13

Theoretical stick épectra for an AB two spin-1/2 system. The case
-of an isotropic sample is shown at the left (DAB=0). The anisotropic
case is on the right where, for convenience, TABa 0. Individual spectra
in parts a through e are for varying ratios of the relevant coupling to
§ =1/2 (O’A—OB)..; The usual (first order) isotropic case is shown in b.

The usual anisotropic spectrum is shown in d.
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right hand side of part e. For purely structural analysis, we may Vish
to ignore or remove the chemical shift and reduce the number of para-
. meters required to fit the spectrum. When chemical shifts differences

are small compared to D,,'s, we will see below that a single 7 pulse

ij
removes Hcs from single quantum and multiple quantum coherence evolution,
" to first order. Small additional lines appear in singletquantﬁm or
multiple'quantum Spin‘écho_spectra due to'cohérence,transfefs caused by
the m pulse. It is our aim in this section to describe this phenomenon
and estimate the magnitude of line.shifts and intensities for simple
spin_éystems. Anaiogies may then be drawﬁ for moré éomplicated systems.
We approach.this problem by cOﬂsidering a simple two dimensional FT
:;NMR'experimentbshpwn invFigufe 3.14. This seqﬁencevis familiar-in two .
“dimeﬁsiﬁnal spin e;ho spéctrosco§y>[751 and'is equiﬁalent co.that used
to obtain the middle spectrum of Figure 2.1. The time domain is separa-
ted into two sections: t1 is the usual evolution period after the
density matrix is prepared by the first.W/Z pulse and tz-herevcorréspondsv
-to t2' in Figure 3.3c. We wiéh to calculate the effect of the 7 pulse

at tl/2 when chemical shifts are present. The general two dimensional

signal is then given by (assuming a y 7/2 pulse and x 7 pulse)
Sx(tl,tz) « Tr{Ixexp(—iH3t2)exp(—intl/Z)II
X exp(—iHltl/Z)Ixexp(iHltl/Z)

.f.

x II exp(iH2t1/2)exp(iH3t2)}, (3.36)

where the propagator for a 7 x pulse is given by [75]

=
]

exp(+iwa) (3.37a)

21)¥ 1 (1) (3.37b)
T @ .
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Figure 3.14

Pulse sequence used for two dimensional spin echo spectroscopy.
The evolution period, tl, contains a m pulse in its center. Hamiltonians

-in the three periods are denoted H HZ’ and H3. In a strongly coupled

1’
system of chemically inequivalent spins, the 7 pulse will cause addi-

tional lines to appear in the Wy spectrum from coherence transfers.



Equation (3.37b) is obtained from an expansionvof the exponeht in Equation
(3.37a) and.us;ng Ix = Z(Ix)k where (Ix)k is an operator for a single
nucleus [75]. We have assumed that the 7 pulse non-selectively excites
all N nuclei.

For our purposes it is sufficient to.consider only the case when all .

three Hamiltonians are equal: Hl = H2 = H3 Z H. When H contains only

the Zeeman offset and bilinear terms,.
H= -AwIz + HD + HJ o (3.38)
we may evéluate Equation (3.36) easily by inserting the identity operator
T =1 } T (3.39)
appropriately. The result is
Sx(tl,tz) « Tr{Ixexp(—iH3t2)exp(—%ﬂtl/2)
x exp(-iHRt /2)1 exp(iHRt /2)
1 X . 1

x exp(iHt, /2)exp(iH,t,)} | | (3.40)

where

HR = HHH+ = +AmIz + Hy + HJ (3.41)

Bilinear terms in H are unaffected by the 7 puise.k Because all terms in
H are mutually commuting, we find that the offset term is removed frém
the evolution, as expected in light of the discussion on IPPI.

The difficulties alluded to above arise when a chemical shift
Hamiltonian is present and the total Hamiltonian is

H = -0l + g o I, +Hy +Hp. (3.42)
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H does not commute with HD or H_ when not all o, are equal. When the .
cs ' : J i

sample is»isdtropic»and Jvcouplings small compared.to relatiye chemical
shift differénces (a first order spectrum), HJ can be truncated to that
part which commutes with Hcs and a 7 pulse will again remove chemical
"shift -evolution from tl. Molecules may soﬁetimes,containrlarge J
‘couplings and when anisotropically‘ordered in a.liquid crystal, D

couplings are usually as largé as or greater than chemical shift dif-

. ferences. The chemical shift Hamiltonian may be written as two terms

1

g = »m_l—),igj [(c_i—cj)(I.zi-Izj) + (og+0,) @, + Iz-j>'] (3.34a)

| H%s ='?ﬁ%I7 #Z- [Gij(lzi'-lzj) + Tij(izif-izj)]' ' (3.43b)
where v

544 'z%- (g;_oj) - | (3.44a)

r,. =1 (0 vay.  (3.44b)

i3 T2 VYiT 7y
As an example, the commutator of Hcs and HD is evaluated as

_.1 ) |
Hefpl = -3 E ILIPICL IR R IV I (3.45)

As an approach to evaluating Equation (3.40) when chemical shifts
are'present; one may expand the exponentials containing H with the well-

‘known Zassenhaus formula [3]

exp(A+B) = exp(A)exp(B)exp([A,B]/2)exp([B,[A,B]]/3) + [A,[A,B]]/6)...
(3.46)

and use perturbation or average hamiltonian theory. However, products
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such as §,.D 52 2 se0e5 €tc. -occur and the expansion will

157137 °13°15° P13 %y

1 may be used

not converge unless t1/2 is small. Multiple 7 pulses in t
to scale or remove higher order terms in the average hamiltonian. [59]
As another approach, Equation (3.40) may be evaluated directly in a basis

set which diagonalizes the Hamiltonian.. Evaluating the matrix elements

directly yields [75]

Sx(tl’tZ) « Z Zijkl exp(iwijtz) exP[i(wij-'wkl)tl/Z] “(3.47)

ijke
" where
N : ' ty -
Zigke = T35 Tdieg M3 Mgy - (3.48)
and
w,, =H,. -
ij ii 3]
The matrix elements of I are easily evaluated. 1In the simple
product basis set, from Equation (3.37b)
m =1 . O (3.49)
™M @2 -n+1)
where the usual definition of the Kronecker delta is used:
N
8 N =] form=2-n+1
m(2"-n+1)
= 0 otherwise,
In the eigenstate basis set, II is given by
+ t . N
(sm's),, = ) s. I8 (1) ] s*.S (3.50)
i mm T nj m mi (27-m+1)j



where S is the eigenvector matrix. Now, § is block diagonalized by total °

Zeeman_quantum_number so that AMk2 = Mk--M2 = 0 for the element S We

ke®
méy then find the change in M for II in this basis set as follows.  The

‘total Zeeman quantum number for state i is given by

Mi = ki -

N =

where ki is the number of spins "up" (i.e., number of a's). Thus, from

Equation (3.50) and AM , =AM . =0,
o m (27-m+ 1)j
AM, =M -M
i3 1 2N—m4—1
=k -k
S I}
but .
k = N-k ,
N+ n

so, finally

MM, o= 2k - N o= 2M = -2M, | - (3.52)

for (II)ij in system basis set. Equation (3.52) will prove useful when
considering a TPPI multiple quantum experiment. It méy be éhown [75]
that the intensity coefficients for the signal, Equation (3.48), obey

the following index permutation properties.

| o= = * = * ' .
zijk2 Zklij Zlkji Zjilk' (3.53)

Before going on to the multiple quantum case, we first consider-an

AB spin system as a simple example which illustrates the effect of the 7

(3.51)

95



96

pulse in the two fréquency domains. " Two dimgnsional.fourier transforma-
tion of EQuation (3.47) gives (neglecting relaxation effects)

S(aoup) = J ) 5(‘”2“"ij)‘5(“’1"‘*’ijkz)‘ - (358

ijke

~in which wij#l =-(mij-wkz)/2. The w, épectrum wiil contain the usually
allowed singie éuantum spectrum with intensities different from those
obtained from a siﬁglé éulse gxperiment. The spectrum pfojected aloﬁg
the wy axis will show new lines whose intensity depends on the extent to
which simple produét states are mixed by both the couplings andychemical
shifts. A. Kumar, et al. have evaluated ;he intensitiés and frequencies

for an AB system with J D and 5AB all non-zero [76]. The results_

AB’ "AB

are presented for convenience in Table 3.1. The quantities used in that

. table are defined as follows.

§,p =8 =5 (0,-0p)
Ty =T E-% (oAi-oB)'
D=Dy,,J =13,
c=[( - % D)? ‘ 452;i
cos26 = 26/C,sin20 = (J - £ D)/C.

It should be noted that DAB here is defined ag twice the quantity.used
by Kumar, et al.

The intensities in Table 3.1 will vary depending on the ratio of
couplings and of each coupling to the chemical shift difference, 6. For

the case we are interested in - liquid crystal systems - D is usually



Table 3.1
Frequencies and Intensities for the 2D Spin Echo Spectrum

of an AB System , :

Wy Yy

~ (relative to 1) (relative to 0) Inﬁensity
1. % (J+p) - %D % (J+D) '-% D .(l+si-n28)sin2.6
2. 2(#D) -2D -%(J+D).  cos®2e |
3. —12— (J+D) + -é— D —%— (J+D) +_% C _-(i-sinze)sinzev
4, -% (J+D) +-% C‘ -% (J+D) | ) cosZZG
5. - % (J+D) + %'c - % (J+D) + % D (1+sin26)sin28
6. --% (J+D) +'% c -'% (J+D) ' cosZZG
7. -2y -%¢ Ly -Lp  —(1-sin26)sin2e
2 2 2 2
8. —-%’(J+D5'e-%vc _ —-%V(J+D) c08229
a

O

T = (oA + UB).



much larger than both‘J and §. Figﬁre 3.15 shows the w, spectra calcu-

1
lated from Table 3.1 for two extreme céses. The isotropic, first order
case is characterized by D = 0 and J << 28 and is shown in Figure 3.15a.»
The chemical shift is removed to first order and the major lines reﬁre~
sent the symmetrical J splitting centered.about Wy = 0. Figurg 3.15b
gives .the expected spectrum for the case when D >> 2§ and, for conveﬁ-
ience, J has begn taken as zero. Again, the chemical shift is removed

to first order and the major lines appear where they would be ekpected
invw2 had G_beén rigorously zero. Thes; lines are shifted from their
position when 6§ = 0 by approximately Z%_ . The additional lines resulting
- from coherence transfe:s induced by.tﬁe T pulse are found at + %-D ;nd

are of low intensity when D >> 2§. The small lines at f-% D are from_'

transitions which become allowed when the chemical shift mixes the triplet

and singlet two-spin wavefunctions., They also appear in w, centered
about T =-% (cAi-cB). B . E

We now turn to the TPPI experiment of Figure 3.4c. We wish to deter-
mine the nature of”any.new lines which may result from a m pulse when
the spin system has non-equivalent nuclei. For the experiments in this
work, only.the sihgle_point at t;.= OV(T'='r) is collected for each of t1
and only a one dimensional transform is calculated. The signal may be

written in a manner similar to Equation (3.47) and the transform with

respect to t

1 calculated to give

S(Tiw,,T') = z YA §(w, ~w ) v (3.55)
AT T L B O |
where

: u |
Zygep = B QNI M L @, (3.56)
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Figgre 3.15

Spin echo spectra of an AB spin-1/2 system in the 0y direction

from the two dimensional sequence of Figure 3.14. The chemical shift

is removed to first order by the echo so that line positions are approxi-
mately those shown. a) The result for a first order isotropic system.
b) A strongly coupled anisotropic system. T,, has been set to zéro

AB
for convenience.



As we have seen in previous sections, the preparation and de;ection'

- matrices may contain all orders of coherence in a non-selective experi-
pént, hence AMij’ AMkL = 4+N,+N-1,...,~N+1,-N. We may use Equation (3.52)
to show that a T x pulse will only transfer coherence between pairs of

states separated by the same AM. For Z

ijke’
oMy, = im, n = N,N-1,......
AMjk = ZMj,
AMzi = ZMQ = —2Mi,

hence

AM , = in.

Thus, the 7 pulse will not cause a transfer of coherence between multiple

quantum orders. The inténsity coefficient, 2 "is impossible to cal-

15k’
culate without an exact knowledge of the system Hamiltonian. Even with

model coupling constants and chemical shifts, may be difficult to

zijkz
estimate in a large spin system. A program has been written by J.

" Murdoch [67] capable of simulating the exacf T averaged intensities for
a general system of up to eight spins when a 7 pulse is present during
the evolution period.-'Mbdel calculations using this program on AB, AB2

and more complicated spin systems [78] indicate that relative intensities

follow a pattern similar to the single quantum experiment described in

this section. Additional lines caused by the 7 pulse are generally small

when Zgij << D Those transitions arising from states only weakly

ij°
mixed by the chemical shift are, as expected, only weakly pumped by the

non-selective two pulse preparation. Absolute intensities, averaged over
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‘1, relative to an identical spin system but with chemical shifts zero,

are somewhat different.

3.5 Conclusion v

In this ghapter we have outlined the theory of the simplest, non-—
. selective multiﬁle'quantum experiments iﬁcluding the time proportional
phase increﬁentatipn technique_for retainingrhoﬁogeneouS'linewidths
with complete separation'of orders. We havevindicated'the nature of
‘increased_resolution in tﬁe higher orders and havevalsé argued the
limitations due to a.Gaussian distribution of integrated intensities.
‘A brief presentation of the inherént even quantum transiﬁion nature
ariéihg from a bilinear spiﬁ pumping operator in multiplé quantuﬁ pre-
paration and detectioh has also been given. Several methods for
qbserving even, odd or all ttansitioné are demonstréted with exﬁeri-v
mental examples in benzene. Finally, the extent of distoftionS'in thé

spectrum caused by a 7 pulse in the evolution period of a TPPI sequence

when chemical shift differences are present has been discussed. Selective

preparation and detection for enhanced signal intensities in high

qﬁantum spectra have not been discussed.

101



Chapter 4

. Experimental Studies of Molecules with Internal Motion: Biphenyl

4.1 Introduction

We have stated several times so far that tﬁe aim of acquiring NMR
spectra of oriented molecules in a liquid crystal phase is to learn
something about moleculaf structure, conformational statistics, and
anisotropic ordering. 1In Chépter 1 we saw thaﬁ-p;rt of this information
comes from couplings in the dipolar Hamiltonian. The object is then to
determine Dij'é from frequency measurements taken from the spectrum. If
the molecule is rigid (or vibrational effects can be accounted for) and
contains a smélllnumbéf of coupled spins or sufficiently high symmetry,
this task may be simple. Analytical expressions may exist relating
transition frequencies to parameters of interest and line assignments
may possibly be made unambiguously. We hgve seen,'however, that as the
humber of spins is increased; or when-the molecule exhibits less simpli-
fying symmetryrelements, the single quantum-spectruﬁ rapidly becomes
intractable. Each transition frequencyiis a complicated linear combiqa—
tion of parameters of the Hamiltonian and transition density becomes so
high that individual lines are no longer resolved. Even if sufficient
independent and resolvéd lines‘exist to determine the problem, the sheer
number of possible initial line assignments which-each produce an
acceptable fit,may make an analyéis difficult.

The approach of multiple quantum NMR then appears to offer a signif-
icant advantage by producing high order subspectra which contain con-
siderably fewer transitions then the single quantum spectrum. Often,

these transition frequencies are simply related to dipolar couplings
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'makingvthe whole process of anaiysis more straightforward. When there
ére_few well resolved trénéitions, only a few line assignmént possi-
bilities will need to be considered.

Once couplings are uniquely determined from either a single quantum
or multiple»ﬁuantum spectrum, it remains to interpret these in terms of
one. or several poésibie molecular models; -Fér dipolar cQuplings, the
model must include both the geoﬁetric parameters and order parameters.

If it is assumed that the molecule is completely rigid, them a classical
model of geometry will allow us tovinfefﬁret the results in terms of
bond angleé and lengths. 'Vibrations and perhaﬁs other mbtions will
always be present, hdwever, and striﬁtly speaking, must be inclﬁded in
ourvmodel. We will, in general, distinguish between t&o-types of mo;ion,
- although this does not imply théy'should always be treated iﬁdependently.
The first includes small amplitude vibrations which are usually treated
as harmonic and causéislight correétions to each Dij.- Hérmonic vibra-
tions‘ére handled through abnorﬁal mode_analyéis_which has been developed
for the case of anisotropically ordered molecules_by Luéas [87]. ' The
fheoretical and computational approaches have been reviewed. by Sykora;
et al. [88].

The second type of internal motion which we identify is so-called
"large aﬁblitude" vibrations or»torsions. Exampléé have already béen
cited and Emsley and Lindon devote an entire chapter to the subject [18].
included in this are ffee rotor-like motions of a subunit of a la;ge
_molecule, a molecule which jumps 6r tunnels between qonformations, and
pseudo-rotation such as that occurring in many cyclic compounds. This
chapter reports results for a simple case of large amplitude internal

motion which occurs in the biphenyl moiety. The phenyl rings are able to
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rotate-aboﬁt the axié-which contains the C—C inter;ring_linkagé. The
angle between two planes, eaph.of which is defined by the carbon atoms

*  of one ring; is feferred to as the dihedrai angle and_is &enoted as ¢.
if the potential contains a minimum, the aﬁgle at that-minimﬁm is de-
fiﬁed as ¢ﬁ. Biphenyl was chosen because it represents é very simple
type of motion in é poteﬁtial.which is periodic and one dimeﬁsional.
Moleculesvétudiedbih this wofk which contain tﬁe biphenyl unit are shown
in Figure 4.1, Thexbiphenyls para-substituted (4, 4' locations) with -
halogen or deuterium atoms were studied as”Solutes dissolved in a liquid
crystal. The cyéno and alkyl chain subétituted biphéﬁjl, 4—cyano-4'-q:
pentyl—dll-biphenyl (SCB—dll) is a pure liduid crystal whi;h was sﬁudied
in its nematic phase. vWé a1so present the single”quéntum deutgrium

spectrum of the alkyl chain.of this moieculé in the following sections.

4.1.1 Background: Structural Studies of Biphenyls

The bibhenyl_unit is quite pfevalent in orgaﬁ&c ﬁplecules and‘
naturally serves as a choice for théoretical and expe:imeﬁtal‘studies.
Theoretical work has centered on the use of molecular orbitai calculations
to model the internal geémetry"and potentiél,as a function‘of dihedfal
angle [80-84]. Eéfly experiments were conducted on X-ray analysis_of
solid biphenyl [86] and electfon diffraction measurements in ﬁhe gas
phase [85]. Unsubstituted biphenyl is believed to be planar ih_the solid
and to 6ccur with a dihedral angle of about 42° in the gas phase.
Theoretical calculations confirm these measurements and attempt to model
the potential to rotation of the rings by the inclusion of several con-
tributibns. These contributions.are either of two types: conjugation
and non-bonded interactions. Cbnjugation includes all electronic effects

which tend to bring the ring planes together and reduce ¢. Non-bonded
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R=R’: ct, Br, D, H
. _ . ,- . '
~ R=Cg4D,, R'=CN'
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Figure 4.1

‘Molecules studied by single and multiple quantum NMR. The
symmetrically substituted biphenyls (4;4'-d1chlorof,4,4'-dibromo-,
and 4,4'-d2-biphenyl) and unsubstituted biphenyl were studied as
salutes in liquid crystal solutions. The alkyl cyanobiphenyl,
SCB—dll, is a pure liquid crystal studied in the nematic phase.



interactions include steric hindrance, bond_deformation,vénd intermoléc-
ular- interactions which may raise the.total potential at either ¢ = 0
or ¢ = 90°. The combination of‘these two geﬁeral ﬁypes of interactions
make up thé ﬁotal potential which determines the preferred dihedral
angle ¢m. Thﬁs, it is teasohable'thét bipﬁgnyl should be planar in ﬁhe
solid where'iﬁtermolecular interactions dominate, and at some anglé <90°
when they are absent, as iﬁ the.gas phasé. The theoretical_form of the
pbtential’varies dépending on.whe;hefvbond deforﬁations,which-aré'a
function of ¢ are allowed [81-83]. |

Although the value of ¢'at the potential minimum arrived at by
several authors clbsely agree, rélative heights of the barrier to.fota-
:,tion at ¢ =0 and ¢ = 90f vary depending 6n‘the calculétion apprbaéh.
Dewar, et al. t83] and Fischer-Hjalmérs [81] calculate a slightly lower
barrier fdr‘¢ at 90° while Casaloﬁe,.gg.gi; [82], whd includé bond

deformation in their model, find that the barrier is lower at ¢ = 0°.

The magnitude of both barriers, at ¢ = 0° and 90°,.genera11y falls
between 2 and 5 kcal/mole. V. - |

Since these early investigations, biphenyl has been studied in a
number of varied forms and conditions. Recent stﬁdies include Pénning
ionization from pure biphenyl adsorbed onﬁo a clean metal surface [89]
and a wealth of magnetic resonance results [95-991 on substituted bi-

phenyls. A brief review of the current magnetic resonance results for

halogenated biphenyls in liquid crystals is given in the next section.

4.1.2 Substituted Biphenyls in Liquid Crystals
The literature contains many examples of molecules dissolved in
liquid crystals which exhibit a simple 4~fold periodic potential charac-

terized by a single '"dihedral" angle. Examples include studies of the
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bipyridyls and bithiophenes [90-94] and substituted biphenyls [95-99].
Thé bipyridyl [93] and bipyrimidine [94] studies are quite similar to the
biphenyl problem. For 2,2'-bithiophene, one can imagine an internal
rotational barrier sufficiently large to cause slow interconversion

between true cis and trans isomers. In the models used to analyze the

spectra, an attempt is made‘to:deduce_population rétios for these two
‘isomers [91,92]. The préblem is sdmewhat underdetermined unless enough
assumptioﬁs are made t§ determine the ratio.

-There have been a number of studies published on biphényl solutes
in iiquid crystals. These all involve some substiﬁution; pure (C12H10)
:biphenyl'spectfa>have not been pﬁblished. Substitution patterns are
almost invariably symmetric with respect.to thevC.2 operation along the
para axis linking the_two phenyl rings. This choice of symmetry is con-
venient bécause, as we shall show, only'thfee of the possible five
independent ofder parameters are neqesséry in the analysis. Further
symmetry reduces this number to two.

In all of the biphenyl stﬁdies, a value for the dihedral angle is
found. This résult varies dgpending on the nature of the substitutions
and method of analysis.v For highly substituted molecules, there are not
enough couplings to simultaneously determine all Qrder parameters, bond
1engths and angles, and all terms in the inter-ring potential. Thus, it
is desirable to 1imit the number of substituents, an épproach which, of
course, increases the number of single qﬁantum transitions., The least
substituted molecules studied have two para—substituenﬁs such as in the
case of 4,4'-dichlorobiphenyl [96]. This pattern of substitution does
not reduce the sensitivit& in the spectrum to the dihedral angle since a

coupling involving nuclei in the 4,4' (para) positions will not depend on
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¢. Perhaps the most extensive sﬁudy'bf the internal rotétional degree
of'ffeedom has been carried out by Field, et al. [97,98]. This_grouﬁ
hasjstudied the dihedral angle obtaihed from NMR measurements in liquid
crysfals as a function of subétituents which aré ortho to the inter-ring
linkage. Aithough many assumptions are made, a clear correl#tion~is
vdemonstrated between ¢ and the van der Waals radii of’these‘substituents
suggesting_that the major céntribution in the non—Bonded interaction
portion of the-botential is from ste:ic hindrance.

The primary example of a biphenyl grou§ studied ‘in this work is that
found in SCde11 (see Fig. 4.1),»which is avpure nematic liquid crystal.

The cyanobiphenyls have received considerable attention in a variety of

: studiés which are briefly reviewed below.

4.1.3 AlkylcyaﬁobiphenYls

"The hoﬁologous series of 4—cyano—4f—naalkyl—bipheﬁyls have been
 $tudiéd byva number»bf séecﬁroscopic techniques including X-ray [100],
deutefium [101—102]_and;proton‘[103,164] MMR, infrared [105] and, more
recently, dielectric felaxatibn [106,107]; .This series contains alkyl
chains ranging from butyl to oétyl and'exhibits many of-the'ﬁon-thiral,
thermotropic mesdphases among its memberé. The shorter length molecules
(e.g., 5CB) exhibit only a nematic phase between crystalline and iso-
tropic, while longer éhain members of the series cén be induced to form
smectic phases. . For practical applications, the alkyl cyanobiphenyls
have a remarkable stability and high dielectric anisotropy making some
of them ideal for electric field display devices.

In large part due to the cyano group, each molecule has a large -
dipole moment. The X-ray studiés [100] have indicated an antiparallel

heéd-to-tail arrangement in the nematic and isotropic phases of
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pentylcyanobiphenyl (5CB) and heptylcyanobiphenyl (7CB). 1In this ar-
rangement, molecular dipole moments alternate in direction between |
molecules over a large domain, thus giving the most energetically
faﬁorablé situation. It has been suggested from the results for 5CB
bthat local end-to-end structure between opposing molecules occurs with
a spacing of 1.4 times the molecular length [100].

Deuteriﬁm NMR studiéé of 5CB, 7CB and 8CB have focussed on the
.ordering of the deuterated alkyl chain. Results indicate a variety of
cqnformational ﬁossibilities exist for the chain. ~In this Chapter,

 the deuterium spectrum of the chain of 5CB-d,. will be compared with

11
previous studies.. The proton single quantum spectrum of the unsubsti-

_ tuted nematic liqﬁid_érystéi migﬁt be expected:to be completely unre-
solved because of the large number of spins and high dégree;of ordering.
As a result, proton spectra have only been‘analyzed fof 5CB [103,104]
when one sectiﬁn of the molecule_is substituted with déuterium. An
analysisvof the single quantum, deuterium deéoupled proton spectrum of

4-cyano-4'-pentyl-d. . -2',3"',5',6"-d, -biphenyl [103] yielded a partial
g 1-dp; 4

1
estimate of the order tensor elements for the aromatic core and the
structure of the cyano substituted ring. A multiple quantum NMR study
by Sinton and Pines [104] has yielded a preliminary analysis of the
"biphenyl group structure. The experimeﬁtal results of the latter work

and a more thorough analysis of the spectrum will be presented in this

chapter.

Tobgain an appreciation of the complexity present in the proton spin

system of SCB-dil’ consider Figure 4.2. This figure shows the single
quantum proton spectrum of the liquid crystal in the nematic phase and

under conditions of moderate field homogeneity. With the degree of
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CsDy#2CN
Single Quantum NMR spectrum

5 KHz

XBL 806-10472

Figure 4.2

Single.quan'tum. proton sp'ectrv.ﬁn of SCB-dll. Double quantum deuterium
decoupling was used to remove couplings to the alkyl deuterons. The
: separately measured inhomogeneous proton -HZO line width was ~.05 ppm.

Temperature of the sample was regulated at 26.0°C. The total width
shown is 50 kHz.



resolution in this spéctrum, very littlé useful structure exists.
Although a higher resolution expefiment, such as a two dimensional spin

_ echo experiment, should yield some improvement, the spectrum would
remain difficult to analyze. Because of slow molecular fiuctuations

and the high degree of ordering in tﬁe room temperature nematic phase,
eagh traﬁsition is fairly broad (>200 Hz). Symmetry considerations alone
-predict over 3000.allowéd single quantum transitions in a band width of
~50 kHz.  (Of courée; the actualvnumbef of observable transitioﬁs.will
be less due to degeneracies and to low intensity for séme.)- The single
quantum spéctrﬁm obviously contains many overlapping transitions.

The pfoton multiple quantum spectrﬁm of the same liquid crystal is
shown in Figure 4.3. The reduction in transition density with inCreaéing
mﬁltiplevquantum order, as for benzene in Chapter 3, is‘apﬁarent. All
orders are present with sufficient signal-to-noise to allow an analysis.
Each order is contained in a width about that of the single quantum spec-
trum of Figure 4.2 for a total width shown of 500 kHz. Before going.on

‘to_detail an analysis of this spectrum, in the next section we will
describe the symmetry prbperties of a bipheqyl group and indicate how

the high order multiple quantum transitions reflect this symmetry.

4,2 Biphenyl Symmetry Models

In determining the point group of para—substituted biﬁhenyl, four
basic models must be considered. 1) Free rotation of the rings where
the potential as a function of ¢ is a constant. 2) Only one static con-
formation with angle ¢ between the rings is allowed, or the molecule
interconverts between conformations with angles +¢. This model may be
considered for the cases when the two rings are either equivalent (iden-

tical substituents and geometries) or inequivalent. 3) The rings are
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'cspu¢ZCN
Multiple Quantum NMR Spectrum

4m=0 OMs Am=2 AM=3 AM=4 AMsS - AM=6 AM=7 AM=8
' ‘ e 808-10941
Figure 4.3
Proton multiple quantum NMR spectrum of SCB--d11 The

multiple quantum subspectra are separated according to the order
of the transitions. The change 'in magnetic quantum number, AM, .
is indicated beneath the subspectra. >iny one half of the sym-
metric zero and eight quantum regions are shown. Thelfull width

shown in 500 kHz. No deuterium decoupling irradiation was used.
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entirely equivalent and the molecule interconverts between the four
equally probable conformations at dihédral angles +¢ and 7 + ¢ (see Fig.
4.4). 4) Thelrings are inequivalent but the four conformations of case
3) are present. Each of these models may be modified in thé'mAnner in
which dipolar couplings are averaged over internal motionms. Harmonic
vibrational éorrections méy be added by a normél mode aﬁalysis and
¢couplings may also be averaged err the toréional motion about ¢.

"~ The firét model - that of free rotation - is generally ruled out by
experimental results. The permutation group of the ﬁroton spins for a
'single.conformation ofia para-substituted biphenyl with equivalent rings
ié isomorphous with DZ; Free rotéﬁion effectively increases the sym—.
metry to DZh'

commensurate with experimehtal results [94]. This appears reasonable

-+ The resultingvreduction in allowed transitions is not

since a finite barrier is p;edicted by theory. This barrier, however, is
not expeCCed to be large enough as ¢ goes throﬁgh-90° to prevent iﬁter-
conversion to the other two symmétry related conformationé. Ali four
conformations'aré'depiqted in Figure 4.4. If the Eiphényl group changes
between these four conformations fast compared to ﬁhe inverée of the
couplings which are a function of ¢ - a reasonable assumption again con-
sidéring the magﬁitude of the barriers ~ then this motion will effective-
ly create two new reflectidn planes. In all examples found in the liter-
ature to date, only models which include an average of all four symmetry
related conformations of Figure 4.4 adequately fit the oriented NMR data.
Thus, we will focus on models 3) and 4) above. The difference between
these concerns whéther the phenyl rings are equivalent or not. If they
are, implying that the para-substituents are either the same or do not

perturb ring structure or motion differently, then there must exist a
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: Equivolent- Conformations of Biphenyl

| /<¢ )
(@) ———2 — -+ (b
. | \Z
! A | VAR
(c) » m+¢ (d) TT=9

|
XBLBII0-6677
Figure 4.4

Four equivalent conformations of biphenyl for dihedral angles
+$ and ™ + ¢. The molecule is assumed to change between these
conformations at a rate which is fast compared to the inverse of
couplings which are a function of ¢. This motion creates two
effective mirror planes perpendicular to the page and containing the
dotted lines.



éymmetryvelement which exchanges them. Otherwise there will be fewer:
irfeducible representations in the molecular point group. |
‘Thesé two possible symmetries are shown in Figure 4.5 along with
the.numbering of protons which will be adopted for the rest of this
‘chapter an& coordinaﬁe systems chosen.fof:éalculating'tﬁe Dij's.'>The
highér symmetry casé, in which para-substituents are the‘samg x) and
the rings are equivalent, is shown .on the lef;.' When the rings ére in-

equivalent as in the case of different substituents (X,Y), the right

. hand side of Figure 4.5 is applicable.

4,2,1 Equivalent Rings: D4 Point Group:
When-determining the point group applicable to a spin Hamiltonian,

it is the permutation symmetry of nuclear spins which defines the group

' symmetry elements [(34]. The permutation symmetry group of a symhetrically

para—substituted’bipﬁenyl_(exchanging‘bétween the four conformations of
'-Figure 4.4) is isomorphous with.the D4 poipt grouﬁ. The character table
for this group, along with a definitibn of the symmetry elements is given
in Table 4.1. Each ring has‘an effective C2 axis of its_own (flip ring
about molecular long axis without flipping other ring) due to equal con-
formational probabilities. These are dehoted Cg andvcg in Table 4.1.

In addition, both rings may.simuitaneously flip - a C2 operatibp for the

2
pérpendicular to the axis containing the inter-ring linkage. These

whole molecule, CAB. For the space coordinates, there are two C2 axes

operations combined with the ring C2 elements result in spin symmetry
elements denoted as R. This element means effectively '"exchange the

rings". Two elements in one class, Rg and'Rg, refer to operation by Cg

B
2

simply an exchange of rings.

or C, before the exchange, respectively. The other class (RAB, R) is
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Biphenyl Symmetry
D4 | D,

Coord, System | " Coord. System 2

Ring A

-z Ring. A
|
Ring B - Ring B
X
y o : . : |
Ring B« 4% Ring B | Ring A

Ring A | , v \ 17‘”%7%
| S \x v
XBL 817-10851

Figure 4.5

Two possible symmetries for a para-substituted biphenyl. On the
left, the para-substituents are equivalent (X) and the effective average
permutation symmetfy for the numbered protons is D4. With different
.substituents (X and Y), the point group is D,. Coordinate system #1 for
D4 lies between the rings with x and y axes bisecting the inter-ring
angles. Coordinate system #2 for D2 lies in ring B with the x axis in
the ring plane for all ¢. The projections defining the direction of

positive ¢ are seen looking down the z axis onto the xy plane.
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Table 4.1
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D4 P01nt Group Character Table for Symmetry Elements of Symmetrically
Para-substituted Biphenyl

1"

b)

(see text).

c)

“E | 2C4 C,=C ,2C2 2C2._
‘ A _B AB - LAB B
c) - (12345678) (56784321) - (43218765) . (56781234) - (43215678)
' (87651234)" ' (87654321) (12348765)
1 1 1 1 1 | 1
A2 > 1 1 1. -1 -1
1 1 -1 1 , l» -1
32 1 -1 1 -1 1
E. 2 0 -2 0. 0
.a)D4 symmetry elements.for‘space’variablés for an object of this
point group. :

D, permutation elements for symmetric para-substituted biphenyl

Permutation elements according to hdmbering of Figure 4.5.
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.‘TheHresulting enérgy 1eve1 diagram for D, symmetry is shown in

Figure 4.6. 1Fromvthis§ the predicted number of transitions for each

: multiﬁle quantﬁﬁ order is given in Table 4.2, These‘predictibns take
into account the'dbuble_degenerﬁcy'of the E symmetry trénsitions‘but not
. of 6ther,pOSSible.degenéracieé for the 1owe: orders. it has Beenvshown
.that'the number‘of symmetry allowed tiansifions in the high order spectra
may be predicted without a éompietévredﬁction of the entire Hamiltonién
[33].. Sihce the Hamiltonian:matrix‘only has nonéero elements Hi for

k
AM, =0 (i.e., it is block diagonal by Zeeman quantum number), we only

ik
have to consider blogks for the highest value of M when predi@ting the
high order tfansitigns. In‘pafﬁicular, the>N—l-trahsition§ only conﬁéc;
tqtélly symmetfic_(Al).statés.: A familiér proﬁerty of this representa-
tion is that the "Symmetrized" Basis states (linear combinations of
’product states) are invariant to all group symmétry operations. We can
write dowﬁ the Al-symmetrized states fqr.the M= f(g-l) maﬁifold easilf
by notingvthat they.mﬁst be linear,combinatipns of those Simﬁle product
states which convert into one'anothef underﬂgroup operaﬁions{ The .
M= t(%-—l) simple product_states are those for;whicﬁ all but one of the
spins are in a single orientation (a or B for spins-1/2). By identifying
the number of these states which are not relaféd by any of the symmetry
operations, we can determine dimensions of the A1, M= t(gw-l) manifo1ds.
Returning to the specific examplé of a D4 symmetry biphenyi group,
we see that.there are only two protoﬁ gites, those ortho and meta to
the substituents, which cannot be exchanged by. any of theioperations in
the character table (Table 4.1). Wé.immediatelﬁ predict that there will
be only four symmetry allowed transitions in the seven quantum spectrum,

consisting of two doublets. If we ignore chemical shifts (they are
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.Symme_t‘r'ically Para-substituted Biphenyl
D4-Point Group Energy Level Diagram

M Ay . A, B, | B, E
-4l
-3 2 R | . 2 - 2X2
-2 7 1 3 5 - 2X6
-1 10 : - >4_ . 4 10 - 2x14
ol 15 5 T 11 - 2x1e
1 ..iov 4 g | | jO;. 2X14
2 _71 | ..‘1v 8 5  ~2x6»
3 2 | | 2 '  oxe
4 R
" XBL 8110-7191
Figure 4.6

Spin energy level diagram for a 9ymmetrically para-substituted
biphenyl (D4 symmetry). The six irreducible representations are
given at the top. The E representation 1s doubly degenerate.
Values;for the total magnetic quantum number, M, are shown along
the left hand side. Numbeis ingside the table are dimensions of

Zeeman submatrices occurring in each representation.



Table 4.2

Predicted Number of Transitions in the Multiple Quantum Spectrum of a

Symmetrically Para-substituted Biphenyl

h—Quantuﬁ Order . ~ # Transitions? Symmetry
8 1 Al
7 4 v A1 ( 2 doublets)
6 14 A1 ( 7 doublets)
4 . -A1 " (triplet)
4 B, (triplet)
2 x4 E (triplet) -
- 21 total unique
transitions
s 68 A, (34 doublets)
: 20 B, (10 doublets)
2 x 24 E (12 doublets)
92 total unique '
transitions
4 . 286 total
3 628 total
2 . 1142 total
1 ' 1580 total

2 For 8, 7; 6, 5 quantum a breakdown by symmetry is given and

only the number of unique transitions given in totals (ignoring acci-

dental degeneracies). The double degeneracy of the E representation
is not counted in any of the totals.
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removed By a TPPI 7 pulse) then each doublet will appear centered about
70w in a non-selective spectrum of all orders. We may also write down
the M = +3 Allsymmetrized states. They are schematically represented in.
Figure 4.7. Oné consists of a combination of simple product states with
the unique spin orthq to substituents and the other contains the meta
unique spin. .
| One can proceed in this’manner for the N-2 quantum.spectfﬁmfby_
identifying unique coﬁbinations of two "labeled" spins._.Now representa--

tions other than A, must be considered. Counting schemes have been pro-

1
posed [33] which unify this approach and are applicable to a variety of
cases when molecules exhibit internal_ﬁotion. For the lower order

- spectra, Hamiltonian submatrix dimensions are large ‘and this approach

becomes difficult. However, a rigorous'group'theory applicafion will

allow transition number predictions to be made.

4.2.2 Inequivalent Rings: D, Point G:oﬁpv

| The character,tabie‘defining symmetry elements for the case when
the biphen&l rings are ineqﬁivalent (right‘side of Fig. 4.5) is given in
Table 4.3. The permutation elements are simiiar to the D4 case_except
for the lack of a ring exchange (R) operation. Thé resﬁlting energy
level diagram is shown in Figure 4.8. Numbers of transitions may be
predicted in the manner of the last secﬁion with the results given in
Table 4.4. There are now four unique proton‘sites and twice as ﬁany
high order transitions compared with the D4 symmetry model.

From this analysis, the symmetry of the molecule should be evident

from the seven and six quantum spectra. If we see more than two doublets

in the seven quantum spectrum, we know immediately that the rings cannot

be equivalent. If more than four doublets should appear then some
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Sym'metricolly Poro-sdbsﬁfufed Biphenyl
"M = +3 Symmetrized A, States

©

XBL8II0-6678

' Figure 4.7

Schematic representation of symmetrized M = +3 Al'States for a
biphenyl having D4 symmetry. The proton spin labeled with a dot is
in a quantum state (a or B) opposite to that of the other seven
spins. Each symmetrized state a) and b) is a linear combination of
simple product states for the proton spins. These two symmetrized
states make up a 2 x 2 matrix which must be diagonalized to yield
true eigenstates of the Hamiltonian.
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‘Table 4.3_

D2 Point Group Character Table fbr Symmetry Elements of
Asymmetrically -Para-Substituted Biphenyl

a)  E C2 C2 _02
| AB A B
b) » 3 E C2 C2 C2
e) (12345678)  (43218765) - (43215678) . (12348765) .
A 111
Bl" 1 - 1 : _]_ .—]_ '
B, 1 -1 1 -1
B, 1 -1 -1 1
~a)

) sjmmetry elements for space variables of an object
of this point group. o ”

b) D 'permutation elements for asymmetrically para—
substituted biphenyl.

» c) Permutation'eleﬁehts according to numbering of
Figure 4.5. o o ’
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Asymmetrically Para-substituted Biphenyl

02 Point Group Energy Level Diagram

Wl oA B1f.' B, By
. 1

sl 4 2 2
2| 12 P
-1l 20 8 14 14
of 26 12 16 16
1| 20 8 14 14
2| 12 4 6 6
3 4 2 2
4 1

XBL 8110-7192

Figure 4.8

Spin energy level diagram for an asyﬁmetrically para-sub-
stituted biphenyl (DZ symmetry). The four irreducible represen-
tations are shown along the top and values of the total magnetic
quantum number are given on the left hand side. Numbers within
the table are submatrix dimensions for each representation and

different values of M.



Table 4.4

‘Predicted Number of Tranéitions in the Multiple Quantum Spectrum of an
~ Asymmetrically Para-substituted Biphenyl

n Quantum Order # Transitions® | - Symmetry
8 _ . 1 : | | : Al
7 8 Al ( 4 doublets)
6 24 Al (12 doublets)
24 » Al‘( 6 triplets)
”Bz' (triplet)
B3 (triplet)
41 total unique '
‘transitions
5 ' B 136 N Al (68-&oub1ets)v
‘ 24 . | B, (12 doublets)
24 - By (12 doublets)
184 total unique :
transitions.
4 - 556 total
3 - 1256 total
2 2256 total
1 3160 total

2 For 8, 7, 6, 5 quantum, a breakdown by symmetry is shown
‘and only the number of unique transitions given in totals
(ignoring accidental degeneracies).
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'assumption, e.g.,vabout the phase or pufity of the liquid crystal, must
be invalid. Without exact knowledge of the couplings, we caﬁnot pre-
dict where all of the additioﬁal lines from a symmetry lower than D4
shduld appear. However, if the rings are onlyvslightly'different, then
E symmetry lines of the D4 point group are expected to Split into'twe
‘closely spaced lines. Roughly speaking, this is.a feflection of fhe
doubly degenerate E representation of ;he D4vpoint group "splittingf into
the B, and B ‘

2 3

sentation of'D2 can be viewed as a combination of the states in A1 and

representations of D2. In a similar sense, the Ai repre-

B, of'DA. The statee_of A, 1 4

of-DZ. Unlike the E representation however, this situation cannot neces-

and B, in the D grbup condense to form B1
sarily'be expected toiproduce a simple splitting of-D4 lines. Thus, if
the distoftions breaking the symmetry are only slight, we can expect a
number of overlapping, unresolved transitions. due tb near degeneracies

and perhaps a few additional resolved lines.

: 4.2.3 Order Perameters'

We determine fhe number of order parameters necessary td.describe a
spectrum by'coneide:ing effects of molecular symmetry on the definitions
in Equation (2.32). We find it convenient to use Equation (2.33) for
the dipolar‘couplings requiring the Saupe cartesian order parameters.

We demonstrated in Chapter 2 that, in general,vwe require five order
parameters for each allowed conformation of molecules ofiented in a uni-

axial phase. The C, operation about the long'axis,of the biphenyl group

2
implies -that the orientational distribution function describing a trans-
formation from a molecule fixed axis system to director frame must also
have 02 symmetry aboutvthis axis. We chose the z molecular axis to be

along this C2 axis for both D2 and D4 cases and find that sz a.nd_Syz

must be zero.
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At this poin; the two symmetry cases differ. The additional ring.
exchange symﬁetryfof the D4 modgl implies that there should dnly be two
independentvofder parameters. Thﬁs, we should be able to easily find.the
molecular fixgd axis system in which the order tensqr_ié*diagonal. Such
an>axis se; is conveniently chpsen with its origin along the C-C inter-
'ring bridge.as depicted‘on the left hand side of Figﬁre_4.5. The x axis
then bisects the-dihedral‘anglé for ‘all values of ¢. The y axis is then
perpendiculaf to the effective reflection plgne cpntainiﬁg z - and caused
» :by the rapid in;erconversion bétweeﬁ gonformatidns. We will refer to
;his set of axes as coordinate_system.#l here and in the Afpendix. -The
independent order paraméters aré then the diagohal elements § and"

_ KS##—Syy).” Because these are insensitive to the ébnformationél.étate of
.'s and an

ij

' average over.the four conformations implies averaging just the geometric -

the molecule, a single order tensor suffices to calculate D

quantities aécording to.Equafion (2.36).

;The lesé symmet:ric»D2 case,requires'one'indepehdent Offfdiagénal.
- element in g;_VWe define the-moieculér fixed.axis system for this case .
to have-its.ofigin.in one of the-rings (see Fig. 4.5). The x axis'lies'
in the plane of this ring and the y axis is perpeﬁdicular to it. The
 non-zero order parameters in this axis system - coordinate system #2 are
then Szz, (Sxk - Syy) and sxy’ We see“f?om Equaﬁion (2;32c) that the

Sxy for different conformations are related by'a’sigh. Thus, -

s = g™t g g™ (4.1)
Xy xy Xy Xy |

Averaged dipolar couplings can then be calculated for this case from
three independent numbers and a relative sign in the order tensor and
again we find that biphenyl does not present complications in the

analysis due to its internal motion as described in Chapter 2,



4.2.4  Parameters
Assuming J couplingsvdo not change when a molecule is dissolved in

liquid crystals, we may use values obtained from isotropic measurements

vwhen analyzing a spectrum from an oriented phase. This is common prac—“”

Fice reported in the literature and,vwith the small values of Jij
compared to Dij’ seems justified in most cases. Since the‘spectra are
~usually obtained by the TPPI technique, we also assume that the chemical
shifts are removed and set thém to zero. We will have to consider the
extent to which lines are shifted by this technique in the manner des-
cribed in Chapter 3. Fortunétely, cdmputéf programs have_beéﬁ written
in this léborétory [67] which allow médeiing ofvspectrafwhen chemicalv
shifts are non-zero and so estimates to be made bfvline'shift magﬁitudes.
If we assume the biphenyl has D4 symmetry, then theré,arg seven

ﬁniqué dipolar couﬁlings to determine from the spectrum.v Four of ﬁhese
are intra-ring coupiings which are the same‘for boxﬁ riﬁgs. The femain—
ing three are sensitiye to the dihedral angleland inter-ring.distances.

Assuming nothing about the structures of the molecule, then there are

 seven molecular parameters which must be determined from these couplings:

r =T =T =T
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12 = T34 = Tse = Tyge
T14 = Tsgo
33 = Teps
T260°
6,
S,z (S = syy) (4.2)

where 560 is the distance between protons two and six when ¢ = O.
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To determine something about the potential, some of the quantities
in Equation (4.2) will have to be fixed. In an analysis of a single
,quantum—spectfum of 4,4'-dichlorobiphenyl, Niederberger, et al. [96]
fixed Ti4e »The.four intra-ring couplings then determine'ring structute"
and order parameters. The remaining'three couplings were used to find
Tr60° ¢ and one ﬁiece of information about the potentiai. This analysis
initially assumed an averageioﬁly over tﬁe four étatic conformations of
Figure 4.4. A ﬁore sdphiéticéted aﬁerage over vibrational of torsional
motions requires furthet.s;ructurai'and order paraméter assumptions. The
~inclusion of an average over the toréiénal mp;ionvin which ¢ changes.
cause only a élight improvement in the overail'fit for theféase of
4,4'-dichlorobipheny1 [96]._

When the para-substituents on a biphenyl unit‘are not the same, the
D2 symmetry means tﬁere_are:12-uniquevdipolar,couplinés.’ Thé 11 molec—‘

ular parameters to determine from these are

12 * Tseo
T14 7 Tsgs
Ty3 * Tgy
T260°

¢s

Szz’ (Sxx-Syy), Sxy' (4.3)

All of these, plus something about the potential, may be determined from
experimental couplings. Further reasonable assumptions may be made to

simplify the complexity of the problem.
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Clearly we cannot simultaneously vary all of these pérameters to
obtain a fit without some sort of ite:ative approach. The details of
the least squares approach used in this work are found in the Appendix.
.We can, however, vary only one parameter while all othefs.are fixed to
get some idea of the sensitivity splittings in the spectrum have to
this parameter. This can be done in a systematic manner to determine
which lines will direct convergence and to help identify possible line
assignment difficulties. Program'BIfH4PARA (see appendix) was written
to accomplish this for the si# and se§en qu’antuva1 symmetry tfansitioﬁs
from input parameters of Equation (4.2) and (4.3). When'D4 symmetry is
assumed, a,s;andard set of geometric parameters, based on a phenyl
skeleton identical to thaf of benzene and with To60 i;SlS_Z,_is used.
Ihis correspénds to a C-C intef-ring‘bridge length of l.SOYZ,

o : ) °
= 1,082 A, r.. = 1.400 A, and a C-C-H angle of 120°. This standard

Tcu cc
set of-paraﬁeters is given in Table 4.5.

| Figure 4.9 shqws the variation of six quantum,Al symmetry transition
'frequencies with dihedral angle ¢. Only one half of thevsymmetrical
spectrum which would appear at 6Aw in avnon-séléctive multiple quantum
'experimeﬁt is shown. The order parameters found for 5CB-d11 from an
analysis of the spectrum in Figure 4.2 and assuming D4 symmetry [104]
‘were used. This analysis yielded a vélue for fhe'diﬁedral aﬁgle (see
below) which is lébeled in Figure 4.9. Two featufes to hofe in this
figure are the high sensitivity of some transitions to ¢ in the region
of best fit and that some transitions pass through near degeneracy for

some values of ¢. Figure 4.10 shows a similar dependénce on ¢ for two

members of the four seven-quantum transitionms.



Table 4.5

a:Standard Geomet;y for D4'Symmetry BiphenYl.

= 2.482 A

[a]
=
N

|

a]
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a
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|

4.299 A

To60 = l.818 A
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Figure 4.9

Variation of six q'uantum,A1 symmetry'tranéition frequencies
for a symmetrically substituted biphenyl with dihedral angle ¢.
One half of the symmetric speqtrum calculated from D4 dipolar couplings-
for each of 45 values of ¢ from O to 88° is shown. The frequency scale

shown 1s relative to the center of the six quantum spectrum.

Structure
and order parameters used in the calculation are those in Table 4.5 and
S__=0.568,(s__~-S_) = 0.057.
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Figure 4.10

Variation of seven quantum transition intensities with ¢ from

0 to 88° for a symmetrically para-substituted biphenyl. Only one:
half of the symmetric spectrum for each value of ¢ is shown.

Structure and order parameters are the same as for Figure 4.9.
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With the long axis of the molecule:chosen as the z axis, one would
»expect'szz to be the dominant ordervparametef and transitions to exhibit
‘a linear.depeﬁdence on this parameter when all others are heid constant;
This iévfoundrfor six quantum lihes a$ shown'in-Figure 4.11. Here Szz
is varied from -0.5 to +0.95. The transition frequency dependeﬁce on

(Sxx - Syy) over the sage.fange wi;h Szz_held cdnstant_is shovn in
‘Figure 4.12. The dependence is weakér as éxpeéfed;- Howevgr, all lines
Eut one vary in a positive sense with a pairvof’tfahsitions crossing at
(sxx_- syy) =.+0.15. Clea;ly, this qrder parameter may not be néglected.
in any model calculation. Similar trends for the seven quantum lines
are found. . |

We can alsbvldék at thé>Sensitivity of’a speétfum to changes in inter-
nuciear distances.. Single couplings should be strongly affectéd due to
the (rij);3 dependénge.. waever, the high order ;fansi@ion frequenciés
are acpually the results of linear combinations of couplings and so will
be less sénsitive-tQIChanges inyparticular distances. As‘examples, the
seven qﬁantum D4 transition§ are shoﬁn as functions of r12’ r260, and

r in Figures 4.13, 4.14, and 4.15, respectively. All other parameters

14
are fixed as these distances vary. Strong dependences are shown on I,
and T560 but not on T14° This last distance affects intra-ring geometry
significantly but inter-ring parametérs 6nly slightly. |

‘The program is also capable of producing A1 representation transi-
tion freqqencies for a D2 biphenyl symmetry. The six and seven'quantum
transitions as a function of ¢ are shown in Figure 4.16 and 4.17
respectively. For these plots, the ring B geometry was fixed to the

benzene parameters of Table 4.5. For the other ring (A), ryq Was set to

Q. -]
4,100 A and Ty, to 4,299 A. The order parameters were chosen to be:
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Figure 4.11

Variation of six quantum Al'symmetry transition frequencies
with the order parameter Szz and assuming D& symmetry for an. eight

- spin-1/2 substituted biphenyl. S_ ranges from -0.5 to 1.0. Other
: . zz

parameters are the same as for Figure 4.9 and with ¢ = 32°. Only

one half a spectrum symmetric about the center of the order for
each value of szz is shown.
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Figure 4.12

Variation of six quantum Albsymmetry transition frequencies

) which rangeé from -0.5 to 1.0.

Only

= 0.6.
) is shown.
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Other parameters are the same as Figure 4.11 with S

with the order parameter (S
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one half of the spectrum for each value of (S
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metrically para-substituted biphenyl with internuclear distance
12° The range of Tio is 2.0 to 3.0 A 'in steps of 0.025 A
parameters are the same as Figure 4.9 with S

= 0,057 and ¢ = 32°

of T is sﬁown.

Variation of seven quantum transition frequencies of a sym-
T

Other
z = 0.568, (s
Only one half of the spectrum at each value

-8 )
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Figure 4.14

Variation of seven quantum transition frequencies with To60
for a D4 symmetry para-fubstituted biphenyl; The distance r
ranges from 1.5 to 2.0 A in steps of 0.025 A, Other parameters
are the same as Figure 4.13 with Ty = 2.482 R. Only one half of
~ the spectrum at each value_of'r260 is shown.
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' Figure 4.15

Variation of seven quantum transition frequencies with inter-
nuclear distaan Ti4° This parameter ranges from 4.0 to 5.0 A in
steps of 0.025 A. Other parameters are the same as for the pre-
= 1.818 A and r., = 2.482 R. D4 sym-

260 12
metry for the biphenyl is assumed. Only one half of each spectrum

vious two figures with r

is shown.
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Figure 4.16

Variation of six quantum A1 symmetry transition frequencies of

an asymmetrically para-substituted biphenyl with dihedral angle ¢
from 0 to 90°.

The same structural parameters. for the-‘D4 symmetry

calculations of the preceding figures were used with a slight dis-
-]
tortion of Tyy = 4,100 A which changes the symmetry. to DZ' The
order parameters were set at S__ = 0.6, (S_-S_) = 0.03, and
: zz  Txx Tyy
Sxy = 0.03. Only one half of each spectrum is shown.
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Figure 4.17
Variation

of seven quantum transition frequencies for an
asymmetrically substituted biphenyl (D2 point group) with dihedral
angle ¢.

Other parameters are the same as in Figure 4.16.

Only
one half of the spectrum at each value of ¢ is shown.
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S,, = 0.6, (Sxx - Syy) = 0.03 and Sxy = 0.03 and, as before,'r260 =
1.818 Z. The overall picture is similar to that forbthe D4 case except
now several sefs of transitions collapse to near degeneracy in the six
quantum spectrum (see Fig. 4.16). This occurs close to a value of ¢
obtained for 5CB-dli [104] (see below).

Next, we.investigate the behavior of 'six and séven quantum transi-
tions as moiecular stmetry moves from D2 ;hrough.D4 and back to D2. If
one ring is distorted relative to the other and this distortion is changed
so that the rings eventually become equi?alent, we should sée the number
of transitions change. This is shown for one half of the six and seven
quantum spectra in Figufe 4.18 and 4.19, respectively. The distortion
chosen was in Tog for ring A. This distanqé ranges from 4.275 to 4.325 Z
in steps of 0.001 R for the plots of Figures 4.18 and 4.19. The order
tensor for coordinate system #2 was caléulated so that it becomes diagonal
if transformed to coordinate system #1.(¢ = 32°). * Thus, when T,y =
4.300 Z, it is equal to T 4» Tgys and rss,rso the symmetri is D,. As
seén in Figures 4.18 and 4.19, line frequencies do not véry much but
transitions unique to D2 symmetry simply disappear on either side of the
D4 region. Because there are effectively only twovindependent order
parameters used, this particular distortion only mildly perturbs the

couplings from a D4 symmetry. Ultimate T averages (see Chapt. 3) confirm

2
low intensity relative to those in the D4 symmetry region.

that lines unique to D symmetry_ih Figures 4.18 and 4.19 are of very
As a final example, we consider a case when there are three truly
independent order parameters. For this calculation, the rings had equi-
o
valently distorted geometries with Ti4 = Tsg = 4.500 A, Tyy = Tgy =

-]
4,000 A, ¢ = 32° and with the rest of the parameters as in Table 4.5.
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Figure 4.18

Variation of six quantum A1 symmetry transition frequencies
with internuclear distance r This parameter ranges from 4.275
o o

"23° _
to 4.325 A in steps of 0.001 i. When T,q = 4.300 A the effective

symmetry is D4. On either side of this point the effective sym-
metry isvD2 as evidenced by the increased number of transitions.
Ultimate t averaged intensities for those lines unique to the D2
symmetry cases are small relative to other lines for this particu-

lar symmetry-changing distortion.
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Figure 4.19

Variation of seven quantum transition frequencies with inter-

nuclear distances Tyqe The range of this parametet is from 4.275
o

(-]
to 4.325 A in steps of 0.001 A, Other parameters are the same as
in Figure 4.18. There are four pairs of transitions when the

effective symmetry is D, and only two pairs when the symmetry is

2

D4. Only one half of the spectrum at each value of Tyg is shown.
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Figure 4.20.shows the six quantum transition frequenéies asva function
of-Sxy which ranges from -0.20 to +0.20 in steps of 0.01. The variation
of Sxy was designed so that a D4 symmetry became effective where labeled
in the figure. Now transition frequencies do indeed change»significantly
and sdme lines merge to a degenerafe frequency at the poipt'where D4
symmetfy is effective. |

We could proceed in this manner to determine the many different
pafameter depéndénces high order transitibné exhibit. We have already.
seen soﬁe-generalvtrends and discussed sy&metry changes above; Small
symmetry breaking disfortions cause some additional lines of low intén—
sity and splittings from gear §égeneracy ét the expectea”DA symmetry
ffequencies. This approach of singie parameter variation is limited, -

however, and an iterative technique which simultaneously varies several

parameters is required to fit a spectrum.

4.3 Results: ’4—Cyano-4'-n—penty1-dl -biphenyl

1
The procedufe»of Gray and Mosley [108] with a slight modification

reported elsewhere [104] was used to synthesize SCB—dll. Transition

tempefatures were measured with a polarizing microscope and found to be

T = 23°C and T = 31°C. 1Isotopic purity was estimated at 98%Z. A

C-N N-I

sample of about 400 mg was sealed under vacuum in a 6 mm o.d. glass tube.

A double tuned NMR probe was used for double resonance experiments while
a single tuned probe was used when heteronuclear decoupling was absent.
Probe circuits are described in Chapter 5.

| Thé single quantﬁm proton spectrum has»already been presented in
Figure 4.2. Deuterium double quantum decoupling [109] remoﬁed deuterium~-
proton dipolar couplings. With its lack of resolution, no analysis of
the spectrum was attempted. Deuterium single quantum and proton multiple

quantum spectra are presented below.
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Figure 4.20

Variation of six quantum A1 symmetry transitions of para-
substituted biphenyl with order parameter Sxy ranging from -0.2 to
+0.2. Other parameters are set at their values for D4 symmetry at
the point labeled in Figure 4.18. The off-diagonal order parameter

causes an effective D2 symmetry for the biphenyl couplings except

at the one point labeled for Sxy = 0.02. At this point, the order

tensor is diagonalized by transforming from coordinate system #2

to #1 (see Fig. 4.5).
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4.3.1  Deuterated Chain Spectrum

A single;quaﬁtum, proton decoupled deuterium spectrum of SCB.—dll
in the nematic phase at 25.1°C is shown in Figure 4.21. The total
width shown in 75 kHz. Five major doublets with line widths between
. 300 aﬁd 700 Hz are observed. Each doublet is symmetrically‘centered
about the resonance offset. This doublet structure isvexpected>from
vanisdtropic#lly ordered spin-l nuclei and arises froh the quadrupole
‘éouéling of each chain segmént, séaled by the order tensor [39];
Smaller splittings of some of the lines are from dipoiarvcouplings
between deuterons on the.same carbon. o

.An expanded trace of the right hand half of Figure 4.21 is shown in
Figure 4.22. _Each,mémber of a quadrupolar doublet:is numbered‘for
identification below. We wish to assign peaks in this speétrum to

specific chain segments. The quadrupolar doublet splitting for a single

segment may be written as [102]

' i
i_3 i 3,2 1 n.2 L2
'Avq-- 2 qCD{Szz<(2 2azi 2) + 2 (lazi szi)>
. (4.4)
i ,
1 2 2 n .2 2 2 2
+ 2 (Sxx-'syy)<(£cxi 2cyi) M 3 (laxi layi-*zbyi szi)>}'

This eqqation implicitly assumes that a éingle order tensor, independent
of the conformational state of the molecule, descriﬁes the Spéctral‘
transitions. Here qéD and ni are the characteristic quadrupolar coupling
constant and asymmetry parameter defined in Chapter 1 for a C-D bond in
segment i of the chain. The zabi are direction cosines between a C-D
bond‘fixed axis system (abc) and the molecular fixed axis system in

which the order tensor is diagonal. For C-D bonds, n is generally small

(~0.01) and qéD is about 168 kHz for most CD2 and CD3 groups. Neglecting
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Figure 4.21

Deuterium NMR spectrum of 5CB-d in the nematic phase at

25.1°C. Each pair of lines centeredlin 0 Hz results from the
quadrupolar interaction tensor for the deuterons on one of the
chain carbons. Smaller splittings of each line arise from dipolar
interactions between spins on the same carbon. Couplings to the
aromatic portion of the molecule have been removed by high power

proton decoupling. .
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Figure 4.22

Expanded trace of the upper half of Figure 4.21 for the deuterium
NMR spectrum of SCB-d11 in the nematic phase. Quadrupolar satellite

lines are numbered for reference in the text.
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terms with n and assuming that (Sxx-’Syy) is small, we define an effec-
tive order parameter.for each segment and the doublet splitting from

segment i is given simply as

-3 i
Ave = 2 9¢pSep (4.5)
where
i _ 3 2 1
SCD - Szz<2 Zazi -'§> ° (4.6)

Some peaks in Figure 4.22 may be assigned easily. The CD, group

3
shpuid give the most iﬁtensé signal and, because of its position in the
chain, experiencé the gfeatest amount of motion from the many conforma-
tional possibilities of the chain. Hence the largest peak with the
smallest Avq, peak #5, is assigned to the methyl group. Likewise, the

- peak with the largest splitting and, thus, greatest order parameter by
Equation (4.5), is assigned to the CD2 group attached to the phenyl ring.
This is #1 in Figure 4.22. Other assignments are more tentative, but

it is éxpected that segment order parameters and so Avi will vary mono-
tonically with segment'position. From recent T1 measurementsé Emsley,

et al. [110] have proposed that this is indeed true except for peaks #2

and #3 which they assign to methylenes 3 and 2, resﬁectively, counting

out from the ring. The cause of this unexpected behavior is quadrupolar
splittings has not been explained.
We can determine the dipolar couplings within several segments from

the additional structure of some lines of Figure 4.22. Luz, et al. [43,
44] have worked out the transition frequencies and intensities expected
from isolaﬁed groups of two and three equivalent deuterons. They have

shown that the relative signs of dipolar (D) and quadrupolar couplings

and the magnitude of D may be determined from CD2 and CD3 resonances.
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The theory predicts that each component bf a quadrupolar doublet from a
CD2 group will be split into a triplet of intensities 2:3:1 and frequen-
cies %3D; - %-ﬁ, - %-D relative to vq’ the quadrupole frequency relative
to the Zeeman offset (Avq = qu).

Figure 4.23 shows an expanded trace of line #1 of‘Figure 4.22. If
we assume  the triplet frequencies are not éhifted-significantly by homo-
geneous broadening, then the experimental.spettrum gives a yalue for 2D.
In previous studies of deuterated nematogen alkyl chains in which a
méthylene triplet was resolved it was found that a fit to experimenﬁ
couldvﬁnly.be made wﬁen quadrupolar and dipoiar couplings.wefe assumed to be
of opposite sign [44]. Takihg qéb as positive, a value of -281 Hz is
obtained for the CD2 dipolar coupliﬁg of the first segment in 5CB—dll.
This agrees favorably with values obtained by Boden, et al. [102] for
8CB deuterated in the alkyl chain. The trace of part B"in Figure 4.23
shows the theory stick spectrum broadened by a GéuSsian function to match
the linewidth of experiment. This confirms that the'major transition
- frequencies of the tripletvshift very littie wifh broadening. The homo-
geneoué linéwidth is a result of small random fluctuations in the direc-
tor and small couplings to deuterons on adjacent segments. In a similar
manner, the dipolar coupliﬁg for the methylene’of line #2 in Figure 4.22
is determined to be approximately -201 Hz.

The theory for an isolated methyi group predicts that each member
of the quadrupolar doublet will be further split,into a septet of inten-
sities 3:8:3;1:7:3:2vand frequencies 3D, 1D,‘%-D, - %-D, -1p, -2Dp, - g-D
relative to vq. Again, a fit to experiment is obtained when the coup-

lings are of opposite sign. An. expanded trace of the methyl resonance of

Figure 4,22 is shown in Figure 4.24 along with theoretical stick and
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ki
Uy
XBL 8110-7072
Figure 4.23

. Part A shows an expandéd trace of peak #1 of Figure 4.22 which is
dll' B
and C are a theoretical fit to the experiment with the deuterium dipolar

assigned to the first methylene unit of thé~alkyl chain in 5CB-

coupling reported in the text. C shows the stick spectrum for two
equivalent deuterons while B shows the theoretical spectrum broadened

with a Gaussian function to match.thevexperimentvin A,
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Figure 4.24

Expanded trace of peak #5 in Figure 4.22. A is the experimental
line which is assigned to the chain methyl group deuterons of SCB-dll.
B and C are a theoretical fit using the dipolar coupling reported in
the text. C is the stick spectrum predicted for three equivalent
deuterons and B has been broadened by a Gaussian function to match the

linewidth of A.



Gaussianbbroadened spectra. The major peaks in the stick spectrum-are
separated by 2D and, again>assuming‘homogeneous broadening shifts these
only slightly,.a value for the methyl dipolar couplingvef.-lZS”Hz is
determined. |

' We now estimate the order parametere for each segment from Equation
(4.5). TFor those lines of Figure 4.21 with unresolved dipolar struc-
ture, sz was estimated from peak positions alone. Where seme resolved
dipolar structure exists, Av: was calcu}ated from the position of vi
in the multiplet structure.> The results are given in Table 4.6 along
with a comparison with results obtained at avhigher ﬁemperatdre by Emsley,
et al. [101] for the‘same liquid crystal. The ratio of order parameters
is nearly independent of segment number for these two sets of data.
This would seem to -indicate that the’assumptiqn of a eingle, conforma-
- tionally independent order parameter for each chain segment is qualita-
tively correct. However, an extensive temperature dependence study of
deuteridm spectra from similar liquid efystals by. Boden, et al. [102]
indicated that, for the models chosen, individual methylene order para-
meﬁers.could rot be simply related to a single molecular order temnsor.
Furthermore, the temperature dependence ef the ratios sz/sz could not
be explained by assuming different conformations order equivalently and
that the order tensor may be averaged indepeddent of conformation.

As a final point, we note that a crude estimate of Szz is possible

from the order parameter for the first chain segment. From Equation

(4.6), we have

1 2 -1 '
lszzl = zlsc-nl<3"az1 -1, 4.7)
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Table 4.6

Chain Segment Order Parameters from the
Deuterium NMR Spectrum of 5CB-d

11
C
[cpl
a b v . d e A
Line # Av This work Ref [101] Ratio
Line # Avo This work Ref LIOLL Ratio
1 55.0 0.218 0.185 0.848
2 40.8 - 0.162 0.134 0.829
3 ~ 38.3 0.152 0.125 - 0.823
4 27.7 0.110 0.090 0.820
5 ©20.0 0.080 0.065 0.818

é See Figure 4.22,

b Quadrupolar'splitting in kHz. Calculated relative
to dipolar structure peaks when resolved,

¢ Only the magnitude of the order parameter can be
determined. '

d Spectrum taken at 25.1°C,

e Spectrum taken at 31°cC.
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We assume the order tensor is diagonal in a frame whose z axis coincides
with that of Figure 4.5. With a value of 109.5° for the C-C-D bond
angle from the‘phenyl ring to methylene deuteron, and SéD from Table

4.6, we find [S__| = 0.66.
zZZ

4.3.2 Proton Multiple Quaﬁtum Spectrum

'Figure_4.3 shows the proton multiple quantum Spectfuquf SCB-d11 in
the nematic phase at a regulated temperatute of 26.0°C. A non-selective
TPPI pulse sequehce was:used with the signal intensify distributed
among all orders due to a resonance offset and field inhomogeneity
during the prepération and detection pefiods. The TPPI phase increment

1

was applied. A total of six multiple quantum interferograms were col-

used was 22.5° and At, was 1.0 usec. No deuterium decoupling irradiation

lected for values of T ranging from 0.4 to 1.4 méec.and varying by 0.2
msec. Each had 16384 data points in both phase sensitive channels. For
each t, the channels were separately Fourier trans}ormed (32 K points),
and the_magnitude spéctra averaged together. The spectra from different
Qalges of T were then averaged ﬁogether to give the result shown in Figure
4.3. With this choice of parameters, the frequency resolution is 30.5
Hz/point. Linewidths are not the same for all lines with values ranging
from about 150 to 210 Hz.

4.3.3 Analysis of the Proton Multiple Quantum Spectrum Assuming D4 Point
Group Symmetry :

In a pfeliminary analysis [104], a set of couplings were derived
from this spectrum assuming D4 symmetry for the biphenyl group and using
only selected five, six, and seven quantum lines; A total of 24 unique
line assignments were made among these orders and an iterative fit per-

formed by the least squares program MQITER described in the Appendix.
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The final RMS error of the fit was 26.4 Hz. The resulting seven dipolar
couplings are reported in Table 4.7; It should be noted that the defini-
tion of the diﬁolaf coupling used in this thesis differs by a factor of
two from that used in Table 1 of Sinton, et al. [104]. Also, the
numbering in Table 4.7 is-cdnsistent with Figure 4.5. The theoretical
-~ line positions obtained for the.six and.seven quentum spectra are shown
in'Figute’é.ZS along with expanded traces of these.regions from Figure
4.3. |

As a first attempt to analyie these couplings in tefms.of order
parameters and structure, it was assﬁmed that each:riné has perfeet hexa-
gonal structure defiﬁed'by the perameters of Table 4.5 [104].. Using co-
- ordinate system #1 of Figure 4.5;.We see from Equation (B.4a) in the

Appendix that D., is given simply as

12
b o _hy S
12 2w r3 .
12

and we obtain a value of 0.568 + 0.001 for Szz'. The only two remaining
parameters to'determine»are (Sxx-'syf) and e. In the original analysis
[104], each of these was varied while holding the other constant to find
"a loeal minimum at (Sxx-Syy)'= 0.057 + 0.002 and ¢ = 32 + 1°. The
reported errors were.estimated from the shape of the RMS deviation curve
for the computed'coupliﬁgs elose to this minimum and may not be entirely
realistic. The order parameters agree ﬁell with fhose reported by Emsley,

et al. [103] for 5CB-d g5» considering the difference in temperature at

1
which their wvalues were obtained.
We can use a least squares treatment to fit calculated to experimen-

‘tal couplings when several of the parameters of Equation (4.2) are
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Table 4.7

- Experimental Coupling Constants for 4-Cyano~-4'-n-pentyl-

dll—biphenyl Assuming D4 Biphenyl Symmetry
Protoﬁ Dipolar Couplingsa Proton Scaiar Couplingsb
(Hz) ‘ (Hz)
D, -8956 + 3 -1, 8.0
D), 9% + 4 | J3 0.0
Dy - : 760 + 6 E Ji4 2.0
D15 -294 + 4 Jl5 0.0
D¢ L ST29 +b | T 0.0
Dysq 780 + 5 | Joq . 2.0
D, | -3481 %5 J,e 0.0

2 Errors have been estimated from RMS fit of the
iteration and procedure given in Appendix A.

Assumed values.
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») g 7 QUANTUM REGION

XBL 808-10943

Figure 4.25

Six and seven quantum regions of the proton mﬁl;iple

quantum spectrum of SCB-dllv(seevFig. 4.3). Each trace

shows a total width of 62.5 kHz. The frequency markers
below each experimental trace show the best fit calcu~
lated spectrum assuming a D4 symmetry for thé biphenyl
group and resulting in the couplings of Table 4.7. The
central line in the center of the seven quantum spectrum
is a result of pulse imperfections and lack ofbdecoupling
in the experiment.
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allowed #o vary independently. Prégram BiPHSPARA was writ;en.for this
purpose-and.is described fully in the Appendix. Iterations in which all
séveﬁ parameters of Equation (4.2) Were:varied independently failed to-
converge to a final fit. Several couplings depend strongly on a nuﬁber
of these parameters and so may cause an early divergence unless the
initial parameters are fairly close to a minimum RMS deviation from
experiméntal couplings. We have seen in Figure 4.15 that six quantum
transitions vary little with Ti4
BIPH5PARA was used to fit the remaining parameters with a final RMS de-
viation for the calculated'couplings of 10.1 Hz, somewhat lower than the
original two parameter fit [104]. The results are listed in»Téble 4.8,
The most striking aspect of this fit.is the large iﬁcrease of T560
and decrease in ¢ from the vaiues‘for the benzene riﬁg geometry‘fit re-
ported using Table 4.5.  Allowing Ty60 =° increasé would be expected to
cause ¢ to decrease as the steric hindrance_between protons ortho to the

260

solid and gas ?hases by X-ray and electron diffraction measurements [80,

ring bridge is lessened. The distance r has been determined in the

.85—86]. Typically, a value of about 1.8 R was found with a spread of
about 10%. The value in Table 4.8 is then soﬁewhat larger than might be
expected. |

In considering the possible éauses for this unusually large ring
separation, we might suspect the lack of vibrational averaging of calcu-
lated couplings. The parameters of Table 4.8 were derived from a model
which does not include an average of couplings over small amplitude vibra-
tional excursions of ﬁhe nuglei. Thus, the distances reported are not
necessarily their equilibrium values. 1In their analysis of the proton

spectrum of SCB--d15 (alkyl chain and adjacent ring deuterated), Emsley

: °
and so this distance was fixed at 4.299 A.
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" Table 4.8

Biphenyl Structure and Order Parameters for SCB—dll

Determined with Assumption of D, Symmetry?

Internuclear Distances -

C(A) - " Order Parameters®
r 2.47 + 0.02 S 0.565 + 0.010
12 _ ] v zz - T
b S
Ty 5.299, (8,~Syy) 0.071 + 0.007
T,y 4227 £ 0.03
T 60 1.98 + 0.03

Dihedral Angle (degrees)

6 30.4 + 0.2
m -

2 Errors estimated by methods described in
Appendix A. '

b Fixed at assumed value.

€ For coordinate system #1 of Figure 4.5.
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and co~workers found that the inclusion of vibrational averaging signi;
ficantly affected their results [103]. To model the vibrations of the
liquid.crystal rings, this group used the normal mode analysis of 4,4'-
bipyridyl as an approximatign. Only thrée ihdependent numbers could.be
determined from this-épectrum and so it was not poésible fo derive values
fof_all the parametefs required to descfibe ﬁhe fing structure. Infra-
red spectra of 5CB-d

11

analysis has been carried out. Thus, no vibrational averaging has been

have been reported [105], but no normal mode

included in any analysis reported here.

In addition to averaging the couplings over smail amplitude vibra-
tions, the effect of a continuous torsional motion of the rings about ¢
might be required.‘ Rigorously, this would :equire a solution.to the
quantum mechanical, Schi:odinger equaﬁidn, The potentiél for the .motion

can be approximated as an expansion in a Fourier series by [112]

.

o V '
V) = § 2% (1-cos2ke) (4.8)

k=1 2
Obviously, there are not enough couplings to determine all of the para-
meters of Equation (4.3) and more than a few of the coefficients of
Equation (4.8). Assumptions about the structure or reasonable values
for the first few coefficients in V() and neglect of higher order terms
is required. The Schrodingef equation could then be written in a form
having solufions in terms of Mathieu functions [112]. In a much simpler
approach used for 4,4'-bipyridyl [93] and 4,4'-dichlorobiphenyl [96], the
probability distribution function for ¢ was assumed to be a Boltzmann
distribution. In both studies, only small changesvin the averaged

couplings were found. The magnitude of the corrections for SCB—d11



estimated from these results would be below the level of precision in the

couplings determinéd from thevavailable resolution in the spectrum. 1In
the studies ciﬁed above, it was assumed that the order tensorvis inde-
pendent of ¢ and so may be reﬁéved from the averaging.of couplings as
discussed in Chaptér 2. This aséUmptiOn might affect the finalvvalue

» 11° Wifhout a knowledge of a

possible dependence on ¢ for S, not averaging the couplings over the in-.

obtained for S and so be invalid for 5CB-d

ternal rotation can not be eliminated as a possible soﬁrqe of error in
any final fit.

Figure 4.25vshows.thé reéulting theoretical liﬁe.frequencies for
the sixland seven quantum transitions; - We also calculated the magﬁitude

of exact T averaged signal intensities for the five, six, and seven

quantum spectra. The computer program mentioned in Chapter 3 and written

by J. Murdoch was used with the couplings of Téble 4.7. The results are
shbwn in Figures 4.26; 4,27 and 4.28. The fits of intensity patterns to

- the experimental spectra are fairly close but differences dé exist.

These differences are most likely due to the exclusion of chemical shifts
and heteronuclear couplings with the chain deuterons from the calculation.
As we saw in Chapter 3, when chemical'shifts are present in a strongly

‘ coupled spin system, the.w pulsé used for a 2D spin'epho’experiment will
.change the intensity coefficient for each line in the spectrumbrelative
to. its free evolution intensity coefficient. The exﬁent of the change is
~ determined by the relative sizes of the linear chemical shift Hamiltonian,
which is partially refocussed by the action of ﬁhe m pulse, and the
bilinear coupling Hamiltonian, which is unaffecte& by it. In the absence
of deuterium Larmor frequency r.f. pulses, the Hamiltonian for proton-

deuteron couplings causes a density matrix evolution for the proton spins
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Five Quantum Spectrum
D4 Symmetry Model

- b)

’c).

l |l' il

|

XBL 8111-12404

Figure 4.26

Five quantum spectral fit assuming D4 symmetry for the

biphenyl group in 5CB-d In a) the experimental spectrum

for the five quantum re;ion of Figure 4.3 is shown on an
expanded scale. Total frequency width shown is 62.5 kHz.
b) and c¢) show the theoretical spectra calculated from the best
fit couplings of Table 4.7 with intensities from exact dynamical
calculations of the density matrix using values of the prepara-

tion time from the experiment. 1In b) the spectrum has been
broadened to match the linewidth of the experimental transitioms.
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Six Quantum Spectrum
D4 Symmetry Model

b)

..’_n MMJ L)LLAk L

c)

| ll ‘I |v|..'|| |

XBL 8111-12400

Figure 4.27

Six quantum spectral fit assuming Dl‘- symmetry for the biphenyl
11° a) Expanded trace from Figure 4.3. Total width
shown is 44189 Hz. b) and c¢) show the theoretical fit with inten-

" group in 5CB-d

sities calculated from exact dynamics of the density matrix using
values for the preparation time from the experiment. The
broadened linewidth in b) matches that of the experimental lines
in a). '



Seven Quantum Spectrum
D4 Symmetry Model

b)
I It _
c)
XBL 8111-12401
Figure 4.28

Seven quantum spectral fit assuming D4 symmetry for the biphenyl

group in 5CB-d a) Expanded trace of experimental seven quantum

11°
region with a total width of 31982 Hz. The central line is due to
pulse imperfections in the experiment. The intensities of b) and ¢)
are from exact dynamical density matrix calculations. The

broadening in b) matches the linewidths of the outer transitions in a).
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similar to their chemical shift Hamiltonian. The_evolution from these
heteronuclear couplings is not entirely refocussed by a single proton 7
pulse and will cause intensity distortions in the same manner as the
chemical shifts. -Thus, because no deuteriﬁm decoup1ihg was. used in this
experiment and with the presehce 6f protdn‘chémicai shifts, in;ehsities
- calculated from just profon homoﬁucleaf”couplings are not expected to
match”the experimental spectrum exactly. However, these hbmonuclear

g coupliﬁgé cértainly déﬁinate the sﬁip Hamilfonian for 5CB-d.. and so a

11
qﬁalitative'fit is. found in Figufes 4.26, 4.27, and 4.28. The extent to.

which couplihgs are precisely determined in. the theoretical model also

affects the quality of the intensity fit.

4.3.4 Additional Structure in the Protbn Multiple QuantﬁmvSpectrum of
SCB—dll : : ' ' .

It has ‘been noted that some of the.splittings,in the high order pro-

ton épectra of 5CB-d,, cannot be explained on the )basis of this simple

11
D4 symmetry approach [104]. For example, close inépection of the seveﬁ
quantum spéctrﬁm-in Figure 4.25b indicatés that thevinnér-pair of 1inesv
‘lsv split into two pairs. Also, only éné of ﬁhe lines in a Closely
vspaced doublet of the six quantum spectrum fits the theoretical transi-
tions. These iines weré not assigned in the simulation and so are not
reflected in the RMS error reported_abové.

There are'severalvpossible sourées of this added structure to con- -
sider. For example, we demonstrated in Chapter 3 that the presence of -
chemical shifts in a two-dimensional spin echo experiment will cause

additional lines to appear in the w. spectrum. In a similar manner,

1
heteronuclear couplings may cause splittings of transitions or new lines
to appear when a w pulse Is used. Finally, since the pentyl and cyano

groups are certainly not equivalent, a D2 symmetry model may be required

to explain the high order spectra of SCB-dll.
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4.3.4.1 Estimation pfvthe Effect éf Chemical Shifts

We.can confideﬁtly ignore chemical shifts as the cause of a closély
spaced pair of lines in‘therseven quantﬁm spéctrum. To see how this ié
so, wegconsider a much simpler spin systém for cdﬁvenience'in computation.
If the permutation gréﬁp for the couplings'of a.three spin system hag C2
.symmetry, then»the inc1usion of a chemical shift difference'Betweenv£he
two spins exchaﬂged by the C2 operation aqd the third spin does not
‘change this permutation group [79]. Such a spin system is classified as
A32°v For a three spin—l/ZIABZ;system, the eigeqstates are classified as
.either symmetric or antisymméﬁric under-eXChange of the B spins. The
dimensions of the>Zeeman manifolds of the symmetric states for M= -3/2,
-1/2, 1/2, 3/2:are 1, 2, 2, i, respectively.v There are 6ﬁly two anti-
symmetric_statéé,kone each for M = -1/2 and 1/2. The.six symmetric
states form a system similar to the M = +4 and M = +3 manifolds of the
D4 symmetrized energy level diagram of Figure 4.6. -Like an AB2 system,
incluéion of: the chemical shift Hamilﬁoniaﬁ for a para—subStituted bi-
phenyl does not change'the.symﬁetry from D, or D,. The D, point group
M = +3 spin functions,'schema;ically represented in Figure 4.7, aré
»symmetric under exchange of theylabeled ortho or para sites, similar
to the’AB2 sysﬁem states deséribed above. For an AB2 oriented system,
we predict two transitions in the two qhantum spectrum obtained without
an evolution period ﬁ pulse. This is analogous to the seven quantum
predictions for the D4 point group eight spin system given in Table 4.2.
Th@s, along with the results of Section 3.4; we can use a éimple AB2
system to model the behavior of a seven quantum spin echo spectrum of a
D4 symmetry biphenyl. Analytical_ expressions for the oriented AB2 energy
levels can be obtained from the solution for the single quantum spectrum

givey by Emsley, et al. [111].
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Figure 4.29 shows theoretical two quantum spectra for an AB, system

2
in which the chemical shift difference,'GAB, is small compared to the di-
polarvcouplings. The intensities are an average for 2000 values of 7

from 0.05 to 100 msec. Figure 4.29a shoﬁs the fouf'line spec;rum.expéc—

. ted when no spin echo 7 pulse is used during the evolution period.

Figure 4.29b shows the resulting two quantum spéctrum when a T pulse is
used to refocus the éhemical shift and inhomogeneous evolution. The
equations of Section 3.4 and the computer program described there were .
used to.calcﬁlate both the frequencie; and intensities'for Figure 4.29.

- The chemical shift is removed by the 7 pulse and small nev'lines appéar

. centered between transitions on either side of the two quantum resonance
offset (O Hé in Fig; 4.29). The'largest transitions, at frequenéies'
shifted only slightly from those predicfed when SAB =0, éfe not split by .
the action of the 7 pulse (see Fig. 4.29b). .

A similar situation is found in the seven qudntum spectrum of SCB-dll.
Comﬁuter calculations using the couplings of Table 4.7 and a reasonable
range of values for the chemical shift difference between ortho and meta
protoﬁs.confirm this behavior. Additional lines frdm coherence transfers
caused by the 7 pulse are indeed centered at the average of the transition
frequenéiés on either side of 7Aw. The exact T averaged relative inten-
sities of these additional lines is small and they cannot be observed in
Ythe sevén quantum spectrum of Figure 4.25b. This trend is also found in
the lower order spectra. We conclude that a non-zero chemical shift dif-
ference is not the cause of lines that cannot be explained by a D4 sym—-
métry model in the six and seven quantum spectra. The calculations also

support the neglect of a chemical shift parameter in the analysis of

transition frequencies in the TPPI echo spectrum. A single 7 pulse should
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. ABoy Two Quantum Spectra

a)
1

RN

7(9a*og]
' b)

1 nl
1 . _
: -0 v 5 XBL 8111-12385

Figure 4.29

Calculatedvtwp,quantum spectra for an anisotropically ordered AB2
spin-1/2 system. Each spectrum is an average for 2000 values of the
>multiple quantum preparation time 1. a) Predicted spectrum when the
chemical shift difference is not refocused by the application of a m
pulse. b) When a 7 pulse is used, the frequency shifts relative to 0
‘caused by the chemical shift are removed and new lines with low inten-

sities are predicted centered about thé average of the major lines.
Parameters used iﬁ the calculation are (in Hz) D,, = 1000, D 250,

AB BB
=10, §, = ;oo, and 8, = 0.

Tan
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be adequate to remove the chemical shift evolution unlessbthe shift dif-

ferences for ring protons in 5CB~-d l’are inordinately large;

| 1
4.3.4.2 The Effects of Heteronuclear Couplings

. Heteronuclear cpuplings between the ring and chain spins may also
complicate the spectrum when a single w pulse is used during multiple
quantum evolqtion.» For certain special symmetries, a m pulse can be o

shown to decouple a single deuteron from several strongly coupled pro-

1

sample [110]. A partial decoupling of the chain deuteroms will occur

tons in the w, spectrum of a two-dimensional'experiment with an oriented

11

diﬁolar Structure could possibly exist on the proton transition line-

for the proton TPPI expefiment.of 5CB-d,. but femaining heteronuclear

' shapes. _The.ﬁ puiSe'may reduce this structure to the point that it
cannot be reéolved-in the fairly wide lihes‘of Figﬁre 4.3. An estimate
of the.éxact line shapé'is difficult.withouﬁ a.kﬁowledge'bf the.couplings
invol&ed. Using standérd bond lengths and angles’we can estimate thgﬁ
‘largest possible static dipolar coupling betweéﬁ a deuteron on the first
- chain methylene and a proton ortho to the chain-ring bond to be on the
order of a few kilohertz. The actual coupling will be greatly reduced by
Szz < 1.0 and internal molecular motions. In fact, the power require-
ments for deuterium double quantum decoupling of the single quantum pro-
 ton spectrum imply that this coupling is on the order of a few hundred
hertz (see below). The seven quantﬁg tr&nsitiéhs of SCB-d11 at 26°C
occur at about 4 and 10 kHz relative to the center of the order and are
sensitive to suﬁs of a number of the proton-proton couplings. Thus, the
magnitude of the heterénuclear coupling partially refécused by the =

pulse is much smaller than the characteristic evolution frequencies in

this order and a lack of deuterium decoupling in the experiment may not



-be-responsiﬁle'for the added»struéturévnot.explained by a simple D4

symmetry model. However, these crude estimates do not allow us to unequi-

vocally adopt this conclusion. Heteronuclear couplings can be scaled
even further by the use of multiple w pulses during tl‘[59] or elimina-
ted completely by a number of decoupling schemes. An attempt to decouple
11

. the chain deuterons from the proton multiple quantum spectrum of 5CB-d

by using deuterium double quantum transitions is described below.

4.3.4.3 D2 Symmetry Model
Finally, the effects of inequivalently distorted rings and a non-—
zero, off-diagonal element in the order tensor, which cause an effective

D2 symmetry for the protons in 5CB-d 1° were considered. Several sets

1
- of initial parameters were used for iterations in which the twelve unique
dipqlér couplings were_ailowed to vary.independently. The finai RMS
error reported above fof the D4 syﬁmetry iteréﬁion (26.4 Hz) is already
‘below the digital resolution in the spectrum of Figure 4.3. Several
attempts usihg initiai Dz'coﬁplings produced final fits somewhat befter
than this. However; the limited preéision.from the spectrum makes it
difficult to judge which of these represénts a better model for the bi-
phenyl gfoup»in SCB—d11 than thevone discussed abové. ﬁe saw earlier
that if the distortions fr_om‘D4 symmetry are not too severe,.in addition
to some new transitions, thefe'will be many near degeneracies which would
not be resolved in the linewidths of a spectrum such as that of Figure
4.3. Thus the amount of new information in the high order spectra
available to distinguish D2 from D4 couplings may not be sufficient.

The number of parameters to obtain from nearly the same amount of infor-

mation has increased significantly.
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Many different sets of initial couplings modeled -by assuming slight
distortions in the rings and a finite value for Sxy were used in attempts

to fit the five, six, and seven quantum spectra of 5CB-d These D

11° 2
symmetry iterations exhibit general trends in the final parameteré de-
rived. Tﬁe,r14, r2$’ Tggs and I, Parameters ﬁsually change signifi-
cantly from'those found in the D4 symmetfy fit. As an example, the best
fit .couplings for an iterétion using the same 24 line assignments as the
D4 calcuiation described abo#e, but allowing the 12 sets of couplings
_wﬁich are uhique for D2 symmetry to vary indebeﬁdently, are given in
Table 4.9. The final RMS error of the fitvfrdm this iteration is 13.5 Hz.
A1l the_couﬁlings have’changed significantly from the D, couplings in
Table 4.7.. In partiéular, the coﬁplings with the larges; errors, Dl&’
D23, DS?, D58,Vare considerabiy different. Theoretical stick spectra
“for the five, six, and seven quantumvregions, along with.the-experimental
traces, are shown in Figures 4.30, 4.31, and . 4.32.

Least squares iterations'using program BIPHSPARA and varying all
elévgnvof the D2 moiecularvparametérs of Equation (4.3) independently
failed to converge to a final fit.‘_Wé then assumed the §alue of one of
these parameters. Two cases are considered here, with the results given
in Table 4.10. The final RMS deviations of calculated from expgrimental
éouplings wés 6 ﬁz for both cases. In.case A, Tre0 V28 fixed at the
value found for Eiphenyl from X-ray studies, i.e., To60 ~ 1.818 Z. All
the parameters have changed significantly from those found with a D4

model. The largest errors among the r 's occur for those pairs of

i3
nuclei whose dipolar couplings are poorly determined (cf. Table 4.9).
The distortions from a benzene geometry for the phenyl rings implied by

these results are quite severe and do not seem realistic. Typical



Experimental Coupling Constants for 5CB-d
_D_2 Symmetry

Proton Dipolar.Couplingsa

Table 4.9 -

Assuming

Proton_Scalar Couplingsb

(Hz)
D,  -8920 + 6 | J, 80
D5 144 + 8 I, 0.0
Dy, 926 + 9 Iy 20
D, ~299 + 4 Js 0.0
Dy, -817 + 6 Je 0.0
Dy, 581 + 14 I3 2.0
D,s -719 + 5 Js 0.0
D, -3441 + 4 I 0.0
Dy ~9000 + 4 | Jog 8.0
D, 139 + & Jg; 0.0
Deg 635 + 9 Jog = 2.0
Dy 915 + 10 Jg; 2.0

2 From iteration of 5, 6, 7 quantum lines. Errors -

"~ estimated by method given in Appendix.

b

Assumed values.

174



Five Quantum Spectrum
D2 Symmetry Model

XBL 8111-12407

Figure 4.30

Five quantum spectrum of.SCB-d_'l:L piotted with a total width of
62.5 kHz. Beneath the expefimental trace is shown a stick spectrum
calculated from the best fit couplings of Table 4.9,' assuming a D2
symmetry for the biphenyl group. Line heights for the theory are

based on frequency degeneracies only. ‘
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Six Quantum Spectrum
D2 Symmetry Model

. o : XBL 8111-12408

Figure 4.31

S Six quantum. spectrmﬁ of SCB—dll plotted with a total width of

44189 Hz. Beneath the experimental trace is shown a stick spectrum

calculated from the best fit couplings of Table 4.9 assuming a D2

symmetry for the biphenyl group. All theoretical lines are of unit
height. - ‘ '
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Seven Quantum Spectrum

02 Symmetry Model

XBL 8111-12409

Figure 4.32

Seven quantum spectrum of 5CB-d 1 plotted with a total width of

1
31982 Hz. Beneath the experimental trace is shown a stick spectrum

caldulated from the best fit couplings of Table 4.9 assuming a D2
symmetry for the biphenyl group. The theoretical lines are all given
unit height; The dentral line in the experimental spectrum is a
result of pulse imperfections and the use of a pulse without

deuterium decoupling during multiple quantum evolution.

"
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Table 4.10

Best Fit.Structures and Order Parameters for

'SCB-dll Determined from Couplings of Table 4.92 e T

CASE A CASE B

-]
Internuclear Distances (A)

i, 2.32 £ 0.05 - 2.453 + 0.003
., 3.88 + 0.09 4.11 +0.03
rys 4.54 + 0.09 4.81 + 0.03
Teeo . 2:.32#0.04 2,456 + 0.003
reg  4.41+0.17  4.67 +0.10
T4s 3.90 + 0.13 4.14 +0.06
, c ) s ' ;o
T,eo  1.818° 193 xo.04
- b
- Order Parameters
S . 0.48 + 0.03 0.565%
zZZ - . ‘ -
(S__-S__)0.02 + 0.02 ©0.03 + 0.02
= ¥y - - :
S 0.00740.007 0.008 + 0.008
Xy . ‘ - . | = _
Dihedral Anglé (degrees)
6 28.9 + 0.5 28.9 % 0.5

a Erroré estimated by methods in
Appendix A.

b For coordinate system #2 of Figure
4.5,

¢ Fixed at assumed value.
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distortions in internuclear distances found from NMR studies of solutes
in liquid crystals are on the order of a few percent. The largest distor-
tion.frqm the‘benzene values in Table 4.10 for case A.occurs for r14 and
 is nearly lOvbefcént. |

vThe value of Szg for éasevA in Tablé 4.10, using coordinate system
#2;.ha§ changed sigpificantly from that ob;ained ;sing t;he‘D4 symmetry
model giyen in Table 4.8. Since the z axes of_thé_two axis éysteﬁs for
'D2 and;D4 symmetries are parallel, these are expected to be the-saﬁe.
Thus, for Casg-B, Szz was fixed at the value.obtain_for thé‘D4_model
while the other parameters were variedvto'obtain the best fit valpes.
given in Table.4.10, .Several of t:hevr],-_j values are reésongbly‘CIOSe to
thdsébobtained’using the Dh-model'and.haVe smélier'error 1imits than fo;
éaSg'A.r.However,_the distortions implied by values for Ti4o r23,'r58,
" and r6} still seem unreasonablé._ Thg-remaining parémeters are foﬁﬁd to
be essentially the saﬁe as fér case A. Whether ;he'resﬁltS'in Table
4,10 for case A or case B more accurately fits the actual parameters -

for 5CB~d,, cannot be determined from our analysis.

11

We have computed exact T a&eraged theoretical intensities from the
D2 symmeﬁryvcouplings of_Table‘4.9;. The:results for the six and seven
quantum specfra are shown iJ1Figures44.33 and 4.34, respectively. The
intensity patterns'do not seem to rep:oduce the genefal féatures of the
experimeﬁtal spectra as well as the D4 model.intensities of Figures
4.27 and 4.28. |

The closeness of the fit for lines shown in Figures 4.30, 4.31, and

4.32, and the RMS error for the spectral simulation repérted above may
be somewhat ﬁisleading. Only transitions which are predicﬁéd from a D4

model were used in the initial assignment. Additional lines in the

experimental six and seven quantum spectra, which are assumed here to be



~ Six Quantum Transition Intensities
Exact v Average

a) .
—A A A A
b)
] 4 l ' , | A ' ]
’ XBL 8111-12403
Figure 4.33

Theoretical six quantum spectra calculated from the DZ symmetry
couplings of Table 4.9. The intensities here are the result of an
exact calculation of the multiple quantum signal averaged from the
same values of the preparation time T as those used in the experiment
11 in Figure 4.3. Both a) and b) are
plotted with the same width as Figure 4.31 and the broadening in a)
is designed to match the experimental linewidth in that figure.

producing the spectrum of 5CB-d
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Seven Quantum Transition Intensities
Exact r Average

a)
L A J{' A JL
b)
1 L L i
XBL 8111-12402
Figure 4.34

Theoretical seven quantum spectra calculated from the D2 symmetry
couplings of Table 4.9. As for Figure 4.33 the intensities are the
result of an exact calculations using the same values of t as for the
experimental spectrum in Figure 4.3. Both a) and b) are plotted with
the same width as Figure 4.32 and the broadening in a) is designed to
match the experimental linewidth in that figure.
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the fesultaof.symmetry lowering distortions, do noﬁ fit the théory spec-
trum as well as other tfansitions. When;the two previously ﬁnassigned
transitions of the six and se?en‘quantum regions are included in the
iteration, a final fit is obtained but with a significantly larger RMS’
érfor of about 60 Hz. The largest contributions to this error come from
assignments for these additional lines. Whep the reéultiﬁg couplings
are interpreted for order parameters and structural quantities,'distof—
tions similar to those of Tablé 4.10 are found but with 1arger.error
limits.

In éddition_to real strhctural'distortions as an explanation for an
effective D2 Symhetry iﬁ-tﬁe biphenyl grbup of SCB—dil, we'ihvestigatéd'
the'possibilityvthat the rings move inequivalently. This seéms ;o be
not entirely'unreasonable,as'oqe fing has attached to it the light,
unrestricting cyano grouﬁ while the other moves relative to the bulky
alkyl chain which presents steric hindrance dué to the adjacent methylene
group.. A fit to the spectrum was obtained starting with the ring para-
meters fromvthé Da'symﬁetry analysis (Tablé_4;8) and varying all 12 Dé,
couplings._ The iteration waé{then repeated, allowing only. the ring A
b(see Fig. 4.5) and‘infef-ring éouplihgs to vary. Both models achieved
adéquate fits to the experimental five, six, and seven -quantum spectra
with the final Rﬁs errors (~20 Hz) within the digital resolu;ion of the
Fourier transformed spectrum. .Wheg the résulting couplihgs were intér-
preted in terms of a model in which the rings are equivalently distorted
but mové inequivalently, only moderately closé fits for the calculated
couplings could be obtained. A fairly close fit (RMS = 18 Hz) was
obtained from the set of 12 iﬁdependent experimental couplings but then
only when ring distortions were re-introduced. The resulting values for

the internuclear distances resembled those of Table 4.10.



Several such models were tried, all with similar results. .Adequate
final fits for‘calculated couplings could only be obtained when inequi—
valent ring distortions were allowed. These results do noﬁ entirely
‘preclude the possibility that the effective Dz'symmetry is due primarily
to inequivalent ring motions as only the product of the order tensor
with molecula: ﬁarémeters is obtained from the dipolar couplings. 1In
addition, the prbbabilityvdistribuﬁion for the chain cqnforﬁations will
certainly affect the way thg whole molecule orders and the éroton spec-
trum from the biphenyl group is indirectly.éffected in é compliéated
manner that can not be entirely de;ermined.from_;he available spectral
information in Figure 4.3. As a final note we p§int out that, in their
anélysis of the proton spectrum of-SCB-dis, Emsley and‘co-WOrkers also
found exceptional'dis;ortions in T4 and Tyq [163]. Due to the limited
number of couplings which could be obtained from their spectrum,

independent values for both parameters could not be found.

4.3.5 Deuterium Decoupling Experiments

‘Theré are many possible SChemeé avaiiable for decoupling qf the
proton spectrum of Figure 4.3; The choice is directed primarily by the
. same considerations as a normal single quantum spectrum. Double quantum
'deuﬁerium decoupling was chosen Because the r.f. power requirements are
significantly less than for decopuling via single quantum transitions
- [109]. It was found that only a few kHz of deuterium r.f. field was re;
Quiredbto decouple the single quanfum spectrum with the result shown in
Figure 4.2. This seems reasonable based on estimates for the largest
heteronuclear coupling between ring brotoné and the first chain methylene

deuterons. The deuterium r.f. field, wys required to decouple a deuteron
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with quadrupolar splitting w. from a heteronucleus via double quantum

Q

transitions is given by [109]

wy ~ (meD)% :

where w is~the dipolar cdupling expressed in angular frequency units.

D
The decoupling requirements cited above_a:e then coﬁsistent with an
v, of a few hundred hertz.

The multiple quantum spectrum waé decoupled by applying deuterium
irradiation at the genter.of the qﬁadrupolar»spectrum-of Figure 4.21.
The result’is‘shown in Figure 4.35. There is a significant loss in
signal-to-noise for fhis spéctrum compéréd with Figure 4.3 which may be
a result of two facto:s. First, the long deuterium pulse required to
thain»each point in the mﬁltiple qﬁahtum_signél may cause significant
-témperature gradients in tﬁe sample. This was reflected in the spec-

trum by a larger linewidth for transitions furthe£ from the centers of

each order. This effect was partially circumvented by the use of

smaller samples'and longer delays between shots, as described in Chapter

5. The second cause for a lower signal-to-noise was the finite iso-
létion of the spectrométer-receiver from the high power deuterium trans-
mitter. Even with good isolation of the probe circuiﬁs and the use of

. a narrow band filter before-the receiver, several millivolts of deuterium
r.f. at the reéeiver was difficult to avoid. This partially satufated
the broadband preamp of the receiver causing the observed loss in
sigﬁal-to-noise. This effect was most critical in the higher order
vregidns of the spectrum where the integrated signalvintensity is lower

as we saw in Chapter 3. These problems complicated obtaining a spectrum

with adequate signal-to-noise in the high quantum regions in a reasonable
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C50"¢2CN v
Decoupied Proton Multiple Quantum NMR Spectrum

o] law 2w 3Aaw 4Aw . Saw AW TAw - . 8Aw

XBL 8111-12406

Figure 4.35

Deuteriqm,decoupled-proton multiple quantum spectrum of"SCB-d11
at‘28.9°C.~ The spectrum is an average of six spectra obtained for
- six different values of T from 0.2 to 1.2 msec with the same non— |
selective pulse sequence used to obtain the spectrum of Figure 4.3.
- Lines in the five, six, and seven quantum regions were used to obtain

the couplings of Table 4.11. The total width shown is 500 kHz.



amount of overall acquisition time. Instrumental instabilities duriﬁg
decoupling experiments may also.increase the two-dimensional "tl noiseﬁ
éresent as a fesult»of fluctuations in the prepared density matrix [69].
The spectrum of Figure 4.35 is the result of an average from six.
values of T ranging from 0.2 fo 1.2 msec in increments of 0f2 msec.
Most of the experimental parameters wefe the same‘asvfor the undecoupled
spectrum of'Figure 4;3vexcept that the temperature was regulated at a
slightly-higﬁer value of 28.9°C. The length of the multiple quantum tl

* .signal was 16 K points in both phase sensitive channels for each t and

- 32 K complex»Fourier transforms were calculated. 'Figure74.35 shows the

resulting averaged magnitude spectrum. Linewidths are somewhat narrower

than in the undecoupled:spectrum with a typical value being 120 Hz.

4.3.5.1 D, Symmetry Model Analysis of Decoupled Multiple‘Quahtum Spectrum

4

The poor signal-to—noise of the higher order spéctfal regions df
Figure 4.35 makes an analysis more difficult than'for an undecoupled
'vspectrum. ,Nonetheless? a total of 13 lines were assigned in the five,
six, and séven,quantum regions for gn iteragivé fit aséuming D4ksymme;ry
couplings. _The results are given in TaBle 4,11, The fiﬁal RMS error‘of
the fit for these lines was 21.2 Hz. The small number of lines which‘
could be assigned in these orders leads to large error limits on the
" couplings in Table 4.11. As with the undecoupled spéctrum, chemical
shifts have been ignored in the analysis of this spin echo spectrum.

The computed exact T averaged line intensities for the six quantum
transitions are shown along with an expanded trace of.the éix'quantum
region in Figure 4.36. Obviouély, the fit is only marginally adequate.
Broadening due to temperature gradients may be the cause of the lines
with the greatest predicted intensity appearing with in fact fhe lowest

intensity in the experimental spectrum.
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CgD, #,CN 6 Quantum 2H Decoupled
Proton NMR Spectrum

a)

b)

1 1 1.L|i - ili;l 1 L

XBL 8111-12399

Figure 4.36

a) Expanded trace of the six quantum region of Figure 4.35.
Total width shown is 44189 Hz. The central line is truncated in
height. b) Theoretical spectrum calculated from the couplings
of Table 4.11. Intensities are from én exact calculat;ioﬁ using

the same values of T as in the experiment.
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Table 4.11

Experimental Coupling Constants from the Deuterium
Decoupled Proton Multiple Quantum Spectrum of 5CB-d

Assuming D4 Symmetry 1
Proﬁon Dipolér:Couplingsa' .Proton Scalar Couplingsb
(Hz) (Hz) '
Diz - . =7818 + 7 Iy é.o
I_)13 ' .~ 88 +38 i3 0.0 .
D, 577420 3, 2.0 
D15 : v—226 + 10 _ J15 . 0.0
Dis -653 + 6 ' Jie | 0.0
D23 S 719 + 12 N ' J23 2.0
D -3057 + 11 J 0.0

26 - 26

a Errors have béen'estimated from the RMS error of the
iteration and the procedure given in Appendix A.

Assumed values.
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Despite the large error limits for the couplings of Table 4.11, a
least squares analysis in terms of the parameters of Equation (4.2) for
D4 symmetry cénverged to a close fit. The final RMS'deviétion of ¢alcu-
lated to obSer&ed dipolar couplings was only 3.Hz. The reéults are
féported in Table 4.12. As with the D, model fit for the undecoupled
spectrum of Figure 4;3, riA was held constant at the value 4.299 Z for
this calculation. Although the valqe of r26

o is more in line with the

value for biphenyl (1.818-2) than the analysis of the undecoupled spec-
trum,‘ring distortion implied by Tio and r;3 is duite severe. In addi-
;ion,-the value of ¢m has increased.. It is not éxpected that a tempera-
ture increase of only 3° alone should cause éuch a change in ¢m. Perhaps

the inclusion of vibrational or torsional averaging in the model would

bring the two results more in line.

4.3.5.2 D Symmetry Model Analysis for Decoupled Spectrum

2
Attempts to derive twelve unique D2 symmetry hipolar couplings from
just tﬁe 13 lines assigned in. the higher order regions failed. The
. problem is only barely determined and sé convergence may depend strongly
on the closeness of the initially guessed couplings. If the iteration
.is started with the D4 couplings of Table 4.11 then the RMS fit is
already below the resolution in the Fourier transform spectrum, and so
further improvement is unlikely. A more complete analysis may be pos-
sible when transition assignmenﬁs in ordersvbelbw the five quantum are
included. For example, the decoupled spectrum shows a number of nearly

resolved lines in the three and four quantum regions (see Fig. 4.35)

which could be used. Such an analysis was not attempted in this work.
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Table 4.12
Biphenyl Structure and Order Parameters for SCB—d11
Determined from Couplings of Table 4.11 and Assuming
D4 Symmetryd
Internuclear Distances (A) Order Parametersc
r 2.36 + 0.03 S 0.43 + 0.0l
12 v - .22 -
b , :
LA 4,299 (Sxx—Syy) 0.06 + 0.02
Thg 4.00 + 0.10
960 1.82 + 0.05
iDihedral Angle
¢ 31.6 + 0.2°

m

2 Errors estimated by methods of Appendix A.

b Fixed at assumed value.

€ For coordinate system #1 of Figure 4.5.
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4.3.6  Conclusions on Results for SCB-d11
As an example‘of the use of multiplg quantum NMR, the spectra of
SCB—d11 demonétrate the utility of the approach. »The higher order regions
of ;he spectrum clearly show a greater simplicity than the single quantum

spectrum.. Line assignments can be madé unambiguously when these orders
are compared with spectra simulated_from physically reasonable parameters.
The symmetry charéccerisfics of the biphenyl group are very simply re- |
lated to the number of transitions which occur in the six and seven
quantum spectra. |

On the other hénd, 5CB-d11 as an example demonstrates.some of the
limitations in the analysis of NMR spectra of ofiented molecules. These.
limitations are presént in both single quantum and multiple qﬁanﬁum NMR
and are a result of the coﬁplexity of.relationships between molecular
structure and transition frequenciés and.not on the particular technique

"used to obtain»the‘spectrum. For 5CB-d the limewidths ultimately

11’
iimit the level bf precision available for couplings. Deuterium de-
coupling seems to reduce linewidths by af most only a factor of'about
two frém the spin echo linewidths. This limit on the precision of
couplings prevents an analysis refined beyond those presented in this
work.

Of all the models which were used to explain the undecoupled five,
six and seven quantum spectra of SCB-dll’ the one which approximates
the biphenyl'proton symmetry as a D& point group system éeéms the most
reasonable. The order parémeters derived from the protoh spectrum are
in line with estimates from the single quantum deﬁterium specﬁrum of

the alkyl chain and those obtained for SCB—d15 [103]. The best fit

molecular parameters of Table 4.8 for this model agree closely with



192

-ray and electron diffraction data for the internuclear distances of
biphenyl, considering that no vibrational corrections have been applied.
. Theoretical tfansition frequencies calculated from this model fit most
of the lines resolved in ﬁhe higher orders withvthe RMS deviation well
withie the resolution of the Feurier transform. The caleulated exact T
averaged transition intensities yield a qﬁaiitative:fit to‘the expegi-
ment as shownvin Figures 4.26, 4.27,vand'4.28.-

In contrast to this D4 symmetr& model, several models assuming an
effective D2 permutation symmetry for_the biphenyl spins‘in'SCB—d11
yieldAmolecular parameters which reflectﬂlarge‘distertions in the phenyi
.vringsf Because the transitioné which are predicted byvt:,he.D4 model
alreedy'fit the simulated spectrum within the available resolution,
fufther slight imérovemeﬁts from the ﬁee of Dz.symmetry models do not
allow an unequivocal choice for the best model. wé have also.seen that
very slight symmetry Breaking distortions perturb ‘the speetrum ie a
‘manner resulting in a peucity of additional information with which wevh B
must determine the iﬁcreesed eumber of parameters of the lowerbsymmetry
model.b Transitions in the high order spectra which are not predicted
by a D4 symmetry model are not as closely fit by the'Dz symmetry models
considered here as other transitions. |

We have tried to model the high order spectra of SCB-d11 by eonsider-

ing cases where there are real structural differences between the rings
or the rings experience_ inequivalent mobilities while undergoing inter-
nal motions. The data do not allow us to exclude the latter possibility,
but seem to require real structural deformations of the rings to achieve

the closest fits. In addition, we have considered the effects of proton

chemical shifts and heteronuclear couplings on the multiple quantum spin
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echo spectrum. We have presented arguments which demonstrate that
chemical shifts are not responsible for the additional structure in the
six and seven(quantum regions. However, we are unable to do the same.
with absolute certainty for heteronucleaf couplings between ring protons
and chain deuterons. Deutérium decoupling experiments wefe nbt entirely
conclusive in resolving this issue because of the lower signgl-to—noise
of the high brder decoﬁpléd spectra.

Finaliy, we comment on the reliability of resuits from the various
models uéed. At first, it may seem disturbing tﬁat.sevéral models
- achieved close fits with the spectrum but yielded internuclear distances
which differ by amounts greater‘thaﬁ their error limits.  This, in part,
‘reflects thé fact that ﬁhe errors are ﬁropagated directly from the degree
of fit only for those.lines assigned in the spectrum; ‘Resolved linés in
 lower order speétra may also be assigned andlperhaps‘would.change.the=
‘overall fit obtainéd. Particular care must beutaken to consider those:
éxperimental lineé which afe‘poorly matchedvby the theory, such as in
the six and seven quantum spectra of SCB-dil.' In addition,.systematic
errors caused by the‘neglect of vibrational and torsional averagihg of
éalculéted couplings is not inclﬁded in the error limits reported in
this chapter. Inclusion of these contributions to the errors would tend
to bring the results of the various models into closer agreement.

The beét results in terms of reasonable values for bond angles and
distances appe#rs to be found in the D4 symmetry model, For ﬁhe value
of the dihedral angle derived, almost all models closely agree. This
is understandable considering the strong dependence an ¢ for the six and
seven quantum transitions in the neighborhood where the best fit values

are found. From our results, we can confidently give a value of 30 + 2°

to the dihedral angle of the biphenyl group of SCB—dll.



4.4 Experimental Examples of Biphenyl Solutes
Of the other molecules shown in Figure 4.1 we will briefly present
the results for 4,4'-dibromobiphenyl, 4,4'-d2—bipheny1 and pure biphenyl

&issolved in liquid crystal nematic phases.

404;1 4,4'—d2-bipnenyl‘and 4,4'—dibromobiphenyl

The single quantum echo spectra ofuéjh'—dz—biphenyl diesolved in
Eaetman_Konak L.C. #15320'and 4,4'-dibromobiphenyl in 4-ethoxybenzyl-
idene—&'—n-bntylaniline (EBBA) are shown in Figures 4.37 and 4.38,
respectively. 'Linewidths are nafrower in both cases than for SCB--dll
as a result of more reorientational freedon for the so;utes;i As a
resnlt, ;here should be edequate resolution in a well averaged single

'quantum spectrum to allow an analysis without resorting to a multiple

quantum experiment, although the latter would of course, allow unambig- -

uous line assignments to be made in higher erders° Deuterium decoupling
for_4,4'—d2—biphenyl could be easily achieved by érequency modulated
irradiation oredonble quantum decoupling. The deuterinm spectrum should
yield an independent measure of one of the order parameters for comnar-
ison with.the'results of the proton spectrnm. A TPPI muitiple quantum
spectrum of 4,4'-dz-biphenyl is shown in Figure 4.39 and demonstrates
the expected loss of signal-to—noise for a solute compared to a pure

liquid crystal.

4,4,2 Unsubstituted Biphenyl

An analysis of the NMR spectrum of unsubstitutedvbiphenyl dissolved
in a liquid crystal has not been published before. Additional ceuplings
to the para hydrogens, which are absent when these positions are sub-
stituted, are insensitive to the dinedral angle and the potential deter-

mining it. They will, however, add many more parameters from which the
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Oriented - 4,4'-d, - Biphenyl
Single Quantum Echo Spectrum

XBL 8111-12425

Figure 4.37

Single quantum proton spin echo spectrum of 4,4'-d2-biphenyl dissolved .
in the nematic phase of a liquid crystal at 30°C. The total width
shown is 16.67 kHz. No deuterium decoupling irradiation was used.
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Oriented 4,4'-Dibromobiphenyl
Single Quantum Echo Spectrum

XBL 8111-12427

Figure 4.38

Single quantum ﬁroton spin echo spectrum of 4,4'—Br2-bipheny1
dissolved in the nematic phase of a liquid crystal at 65°C. The total
width shown is 31.5 kHz. The central portion of the spectrum has been
truncated in height.
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" Oriented 4,4'-d2-Bipheny|
Proton Multiple Quantum NMR Spectrum

XBL 8111-12424

Figure 4.39

Proton multiple quantum TPPI spectrum of 4,4'—d2-biphenyl at 30°C.
An even quantum pulse sequence was used with preparation and detection
times of 6 msec. Total width shown is 125 kHz. Most of the intemsity

is found in the zero and two quantum regions. No deuterium decoupling
irradiation was used. '
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order tensor and ring structure may be obtained. Also, tﬁe resulting
structure would be determined in the absence of perturbing affects of
substituents. |

The single quantum spectrum is tremendously complex even though
some resolvedvstructure exists. An even quantum TPPI echo spectrum‘is
shown in Figure 4.40. There is little intensity in the highest orders
as would be expected on the basis of the approximate statistical |
arguments for the intensity distribution given in Chapter 3. Extensive
averaging would be required to produce sufficient signal-to-noise in,
say, the six and eight quantum regions to allow an analysis. Alternately,
this molecule is a reasonable candidatévfor the selective excitation

techniques briefly mentioned at the start of Chapter 3.

4.5 Conclusion

Clearly, we have achieved some of our goals in ﬁhis chapter. We
~have given examples with various substituted biphényl molecules which
illucidate the strengths and limitations .of nomn-selective multiple

quantum NMR. The case of 5CB-d shows how both deuterium single

11
quantum and proton multiple quantum spectroscopy can be used in liqqid
crystals and compares the nature of information obtained from quadru-
polar and dipolar interactions. Proton spectra are particularly desirable
because of the higher precision for structural information and greater
sensitivity available as a result of the 1érger gyromagnetic ratio. We
have seen that a very simple model is capable of simulating most of the
features of the high order spectra of SCBQdil. Transition frequencies

in these spectra are only indirectly sensitive to the true order para-

meters for the entire molecule with its myriad of conformational



possibilities. Additional couplings to the alkyl chain, perhaps with
a-l3C spin—1/2, would prove useful by adding features in the spectrum
sensitive to fhe chain motions. Techniques which are extensions of
the basic, ndﬁ-selective multiple quantum e#periments described here,
-such” as heteronuclear multiple quantuﬁ NMR [113], codld be used to

increase the amount and variety of information available to determine

molecular parameters.
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QOriented Biphenyl
Even Quantum NMR Spectrum

XBL 8111-12426

Figure 4.40

Proton even quantum TPPI spectrum of unsubstituted biphenyl dissolved

in the nematic phase of a liquid crystal at 44°C. A total of four shots
were averaged and the preparation time used was 4.0 msec. Total width
~plotted is 100 kHz. The single ten quantum tramnsition is visible at the:
right hand side of the spectrum.



Chapter 5

Spectrometer

The experiméntél work described here was performed on two high field
NMR spectrometers which are largely equivélent in their design and oper-
ation. Both are home-built, 180 MHz, pulsed Fourier Transform spectro-
meters capable of a Variety of experiments in solids and_liquids using
lH, 13C and 2H reéonance. Because ﬁost of tﬁe_work was done on éne of

the two and this spectrometer has been modified during the course of

experiments, a thorough description of its design follows.

5;1 Magnet

The magnet is a persistent éuperconducting solenoid made'by;Bruker
Instruments and operating at a field of approximately 42.5 kG. The room
temperature boré éf its dewar has a diameter of 3.5 inches. The Larmor

frequencies for the nuclei commonly observed at this field are:

i 185.04 Muz
3¢ 46.52 Mz
2

H = 28.40 MHz

In addition to the main solenoid there are three superconducting,
linear gradient coils for shimming the field homogeneity. One is along
the main field axis and the other two are ofthogonal and in the trans-
verse plane. These are normally left in a persistent mode during experi-
ments. Within the bore there is a set of home-built, room temperature
coils producing ten linear and higher order gradients. Using these coils

and the superconducting coils field homogeneities less than 1 PPM over a
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‘l cm3 region are easily obtained. The resulting field is extremely stable

so that no field/frequency lock is necessary.

5.2 Low Power R.F. Section S » R S 1

A schematic diagram of the radio frequency electronics is shown in
Figure 5.1. This figure shb&s‘the arréngement én the-low frequency side
for 13C resonance; removal of the doubler and changing the X Synthesizer

setting converts thiS'chanﬁel to.zH resonance. All frequéncies are
supplied by two syﬁthesizers: a Hewlett-Packard Model 3320A for the
low freduency side (set at 3.26 MHz for'l3C and.8.40 MHz for 2H), and a

 PTS Model 160 for the proton side. The rear paﬁél output of the PTS
 synthesizer internal reference (10 MHz) is used to lock the HP synthe-
sizer, generate the intermediate frequency (i.f.), and drive the pulse
programmervclock. ‘

Frequency generation for each channel is dgtailed more in Figure
5.2. The output'ofvthe HP sy£thesizer (front panel setting plus 20 MHz)

13C. Switching and phase control

is used directly fof 2H or doubled‘for
for routing to the low frequenéy transmitter is done at this frequency.
A local oscillator (z.O.D.frequency is generated by combination of this
r.f. with the i.f, frequency. This £.0. is used in the low fréquency
receliver when 130 or 2H observation is required. The 30 MHz i.f.
frequency fér both channels is generated by tripling the 10 MHz refer-
ence of the PTS synthesizer. Besides being used in the low frequency
2.0. generation, this i.f. is routed to the phase sensitive detectors

| and the r.f. géneration'for the high frequency (proton) channel.
Unlike the low frequency channel, pulse and ﬁhase control for the

proton channel is done at the i.f. frequency. The front panel output of

the PTS synthesizer at 155 MHz is used directly as the 2.0. frequency for
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frequency channels are shown. The proton frequency generation is bésed
on a 155 MHz 2.o0. synthesizer output. The X frequency generétion, shown
here for carbon, is based on the r.f. output of the X synthesizer. 
channels make use of the 30 MHz i.f. reference which is also used in

the phase sensitive detector.

Block diagram of 180 MHz pulsed FT NMR spectrometer. Two nuclear

See text for a complete description.
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AF Multiplier
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Figure 5.2

Block diagram of 180 MHz NMR speétrometer AF Multiplier. The X
channel r.f. is used directly in quadrature pulse generation and is
| mixed with the 30 MHz i.f. to produce the receiver %.o0. frequency.
This i.f. is produced by clipping the 10 MHz reference with shorting
crossed diodes and filtering for the third harmonic. The generation

of the proton r.f. pulses from 2.0. signal and i.f. pulses is also
shown.
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the proton channel. The 30 MHz pulse output is mixed up to the nuclear

. frequency by combination with this £.O.frequenéy. This is then amplified
" and routed to.the high power transmitters and probé. The 155 MHz 2.0.

is also directéd to the proton'receiver where it is combined wifh the
nuclear signal. ‘

The pﬁlsé and phase generation (quadrature detection) for the low
fréquency channel is detailed in Figure.5.3. Switching is done at the
r.f. Qsed for sample irradiation. Two orthogonal phases are géneratéd
as the r.f. is passed.through a hybrid. One phase is selected and a
pulse is generatéd.by a TTL controlled r.f. switch. A variable attenu-
ator with 1 db increments is used to trim tﬁe pulse amplitude. - For |
improved isolaﬁion, another r.f. éwitch in series is used before'final.v
'1amplificatibn and transmission to the probe. The design of the r.f.

- switches uéedvheré and in tﬁe proton quadrature is shown in Figure 5.4.
A TTL ﬁfigge; is,received.and used to drive two Summit 571 r.f, gates in
series. This circuit generally provides 30 to 40 dB of isolation.

.Although the experiments iﬁvthis work require only one phase at the
low frequency for decoupling, four quadrature phaéeS'(X, X, Y, and ¥) are
generally required at the proton frequency. In addition, téchniques
such as time proportional phase increméntation (IPPI) require finer
control of some of the phases and an ability to rapidly and reproducibly
change between them under TTL control from the pulse programmer. FA
.schematic diagram of the protén quadrature generation is shown in Figure
5.5. |

The 30 MHz i.f. signal is first split to two lines. One line is
passed through a delay line phase shifter (Daico Model 100D0898) under

" TTL control of the pulse programmer. This is then further split and
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Bc ,2H Pulse and Phase Generation
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Figure 5.3

Block diagram of X channel quadrature pulse genefation for 180 MHz
NMR spectrometer. Switching is done directly at the nuclear freqdency
to avoid possible leak through of an L.o. frequency. The attenuator
is setthble in 1 4db steps.
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Figure 5.4

Dual r.f. switch for 180 MHz NMR spectroﬁeter. TTL control pulses
are input ‘at the BNC connections and received by a quad OR buffer. The
high and low outputs of the N8T09 driversare used to bias a diode
bridge which opens the r.f. gates. Two gates in series are used to
produce 280 db of isolation when ﬁhe switch is "off". '
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Block diagram of protoﬁ quadrature pulse generation for 180 MHz

NMR spectrometer.

the four lines are mutually orthogonal (X, X, Y, Y).

With no delay chosen for the 8 bit phase shifter,

For arbitrary

delay, the first two lines are still 180° relative to one another

(¢, 5) but at some other phase relative to the second two lines. The

adjustment attenuators are continuously variable from 0 to 20 db and

the phase delay adjusters vary from 0° to 90°.
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 -passed through phase delay adjusters (Merrimac Model PSS-2—30)'and vari-
able attenuators (Merrimac Model ARS-1, 0-20 db). The result is two r.f.
lines 1809kin bhase-with respect to one another but at an arbitrary phase -
relative to the second line of the initial power splitter. This second
line is passed'thrbugh a hybrid to give two more lines (Y and Y) with a
180° relative phase. Onl& amplitude control of the § line is required
for complete fine tuning of the four lines. After switching (dual r.f.
switch, Figure,S.Q) the outputs are recoﬁbined, amplified, and adjusted
by a final.attenuator-wifh l.dbrincrements Before conversion to the
nuclear-frequency and final transmission. |

fhe 8 bit phaée shifter is,schematica11y repfesentedvinvFigufeA5.6.‘_'
_ This unit1consists of a series bf dela& lines wﬁich are switchéd'iﬁ and
'§ut‘of_line by_TTL controlled gates. The total phase shifﬁ produced is
the_sum'bf.the delays»cﬁosen.. The preCision of this phasé'shifter ié'
2m/256 and the accurécy,of phaée shifts cheéked with a vector impedaﬁce
meter is within f2°vfor an arbitrary phase shift. The VSWR of the_uni;
"is‘dependent on the ph#se sétting and this results in an amplitude vari-
ation on the qrder 6f a few percentf ‘This generally ié not a problem if
there is saturation of some amplifica;idn elementvdown path of the phase
" shifter. Because of narrow band filtering in the r.f. circuifry, a
~ phase shift is not effective until about 2 usec after.a change has been
made in fhe 8 bit control word. -This control word is;generated,by a
digital controller shown in Eigure 5.7. Thé 8 bit word sent to the DéiCO
phase shifter is chosen from a number of sources input to aiset of
pArallel multiplexers. The data sources include a fronﬁ panel setting,
a single latched byte from a computer interface or a FIFO ocutput loaded
from the computer, and a wrap around adding circuit used for phase incre-

menting as in the TPPI experiments.
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. Digitally Controlled RF Phase Shifter
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Figure 5.6

Schematic diagram of r.f. phase shifter. Phase shifts which are
a multiple of 27/256 are caused by sﬁitching the various delay lines
in the path of the i.f. signal. The eight bit TTL control word is
supplied by the circuit shown in Figure 5.7.
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Figure 5.7

Circuit diagram for control logic supplying the eight bit word
for the r.f. pulse shifter shown in Figure 5.6.
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All mixers used in the low power r.f. section are high level,
dopble balanced Anzac Model MD-143, Mini-Ciréuits ZAD-2, ZAD-1-1 or
_ Herétt_Packard Model 10514A; All powér dividers and combiners are
either Aniac Model DV-50, Mini-Circuits ZSC—2¥l, Anzac Model DS-312
(Four-Way), or Merrimac PD-20-50. Hybrids-afe Merrimac Model QH—l—SO,
Anzac Model JH—126, Anzac.Model JH-125, or Mini-Circuits ZSCQ-2. Low
power amplifiefs are.Ahzac Mddel AM102 (~10 ab) and Anzac Model AMl05
(~20 db). All voltages (+5V, iizv; 424V)'are_sqpplied by regulated
power supplies and are further ;egulated by i.c. circuits ét each

component box.

.5.3 High Power R.F, Séctioﬁ
Onée thé switching.and-r.f. generation has beeh acédmblished, pﬁlses.
are routed to the power - preamp fbr émplification, secondéry_sﬁitéhing for
isolation, and filtering before.transmitting to the probe.v This is shown
in Figure 5.8.v The 24; 25 aﬁd 53 db amplifiers are,.respectively,
- Radiation Devices que_ié BBA-1-PB, BBA-1-PBM, and BBA-1-PM. ~The buffer
amplifier for the protonvchannel:is a 5 watt pbwer amp ffbﬁ RF Péwer
Labs Modei'MBOS—S. |
| A variety of power transmitters are available. For decoupliﬂg or
pulses, the proton frequency is delivered as is to a cavity tuned Class
C [114] transmitter with é 4CX250-B tetrode tube (2.5 kV plate, 130 V
bias, and 500 V screen). Alternately, the buffer amplifier is Bypassed
" and an Amplifier Research Model 100L Class A amplifier is used. ﬁoth
arrangements are caﬁable of pro&ucing 100 to 200 watts depending on
input amplitude, tﬁning parameters, input attenuation, etc.
v 13

Similarly, several transmitters are available for C and ZH. Two

Class C Millen type transmitters employing RCA 3E829 tubes are used,
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Power Preamplifier
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Figure 5.8

‘Biock'diagram showing final'amplification,vswitching; and filteringv
before r.f. pulses are sent to high power transmitters. The output of
this section is designed to provide enough power to drive and saturate
the Class C transmitters described in ﬁhe text. For use with the Class
A transmitter for protons, the final buffer amplifier is removed and

'the output trimmed to ~1 V.
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one tuned for 13C and one for 2H. Typically,_ZOO watts can be préduced.
In addition for higher power applications, a Drake Model Lf7 driven by a
ENI 350L will provide on the order of a kilowatt.

with a single coil probe design, care must be taken fo protect the:
receiver preamplifier from the high power pulses. The circuit generally
used is shown in Figure 5.9. CrosSed diode pairs are used to block
transmitter noise at levels <0.6 V. A quarter wave line af the obser-
vation wavelength with crossed diodes to ground protects the receiver.
Occasionally, an-addiiional quarter wave line and diodes are used for
further protection. Typically, there is less than i V.(peak to peak)
of a distorted wave form leaking to thevpreamp.during a pulse. A band

pass filter is used between the probe and quarter wave line to improve

rejection of.the'decoupling frequency when present.

5.4 Probes

Several home built probes were used in this wofk. Each probe used
was chosen for particular characteristics whiéh optimize signal-to-
. noise, high power decoupling and minimum sample heating.

The general fesonance circuits used are shown in Figure 5.10. For
experiments requiring only observation oflthe protonvfréquency with no
decoupling, a simple, tunable resonance circuit was used. The tuning
capacitor is a home-built unit consisting of an inner cylindrical con-
ductor and an outer bell separated by a teflon dielectric. Matching
capacitance of several silver mica or ceramic capacitors are placed in
parallel. The sample coil is made from 18 or 20 gauge copper wire
wrapped to form a solenoid of 5-7 turns with a diameter of 6 mm and

about 1 cm long. With 200 watts of r.f. power and a probe Q ~ 100,

rotating fields of 10-20 G can be generated.
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Probe/Receiver Circuit
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Figure 5.9

Probe and receiver connection to high power transmitter. Trans-
-mission diode pairs (IN 914) are used to block transmitter noise and
protect the receiver preamp from high power pulses. The A/4 line is
a quarter of the wavelength being observed.
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(a) SINGLE—TUNED PROBE
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Figure 5.10
Probe circuits for NMR spectroscopy.
a) Single tuned circuit. Tuning is done with the variable cap

in series with the sample coil. The second capacitor is adjusted to

achieve impedance matching with the transmitter and receiver.

b) Double tuned circuit. Both low and high frequencies tune
with the same coil. The proton wavelength is AH.
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For double resonance experiments, an additional tuned circuit at
the decoupler frequency is present. The double resonance probe must be
capablevof prdducing large r.f. fields at both frequéncies, while detec~
ting the microvolt-sized nuclear signal during decoupling. This implieé
gobd isolétion between the two circuits. 1In addition, sample heating
due to resistive losées‘in the coil are a problem when wquing with an
- ordered samplé such as a liquid crystal.

| Some of‘tﬁe double resbnanée experiments were'performe& on a two—
coil probe. .In this design, the deuterium resonance circﬁi; is similar
to the proton (Fig; S,lOa) éxcept for capaciﬁative values and a éoil of
saddle Helmholtz geometry. The saddle-shapéd deuterium Helmholtz coil
is.mounted orthogonal to ﬁhe.proton solenoid and outside of.the lgtter.
This arrangéﬁenﬁ provides good isoiation (30-40 db) ‘and the distance of
the decoupler coii‘from the sample'évoids thermal contact. Dielectric
losses in'the saﬁple itself can still be a probléq. Typically? 20 G of
rdtéting,field can be achieved for'2H decoﬁpling, the main limitation
- being afcing at some point inAthe probe; This was found to be adequate
for some of the experiments in this work.

When more deéoupling field is required, a double-tuned, single coil
arrangement (Fig. 5.10b) is necessary [115]. Most of the elements in
this probe are similar to the single resonance circuit. High and low
.impedance points for the proton fréquency are present on either side of
the'sample coil and are effected with the use of quarter wave lines:
one grounded and one open. The:use of a single solenoid coil for both
high and low frequency improves decoupling by allowing for greater 2H
fields (40-50 G) and equivalent r.f. homogeneity over the sample for

both channels. It was found, however, that sample heating during
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decoupliﬁg was more problematic than with the Helmholtz coil due to the
closer proximify of the coil to the sample. Tﬁis was avoided by using

a smaller sample with tefloﬁ'spacefs to hold it along'the axis of the
solenoid. ‘The resu1ting reduction of the filling factor ‘lowered the.
signal-to-noise somewhat. Although it has been claimed [116] that the
efficiency, defined -as the fraction of transmitter power that is
dgliﬁered to the sample coil, will be significantly less for the high
frequency side ofva double-tuned probe of thisvdesign compared.with a
signal resonance circuit, it was found that, in general, 90° pulse times )
were nearly equivalent for the.probes used iﬁ this work.

. Because the anisotropic ordering Qf a thermotropic.liquid crYstai
is dependeﬁt on temperéture; careful con;ro1,of the tempgratufe qf ﬁhe
sample environment‘isvrequired.v The probes used‘in;this work are
equipped with an evacuated glaSs dewar which surrounds the immediate
region of the sample coil. Radio frequency power 'is passed into this
region by leads through the KEL-Fror téflonvsupport on whiChvtuning-
eiements are mounted. Tﬁe temperature is ﬁeasured by a single copper-—
 constantin thermocouple junction ~1 cm from the éample coil, The tem—-
perature is read‘by'a Noric digital thermometer. 'Roughvtemperature
regulation is achieved by passing air or N2 through the sample region
via an evacuated transfer line which is also the support rod for the
probe. For temperatures above the ambient gas temperature, the gas is
first heated by passing it through an element with up to 100 watts of
regulated power. Colder temperatures are achieved by first bubbling

2

house N, through liquid NZ’ or passing air through a copper tube im-
mersed in ice water. The temperature read by the digital thermometer

is sampled periodically and compared against a preset value. If the

temperature drops below-this value, a small auxiliary heater (~30 watts)
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in the probe transfer line is turned on. This heater is disabled during
~a pulse sequence and data acquisition to avoid noise pick-up. With this
arrangement, the temperature sample of the environment can be regulated

to +0.1°C over a range from -120° to +150°C.

5.5 Receiver Section

A_high»sensitivity'NMR»spectromefer must be able tb détect the
microvolt-level nuclear signals typically preéent and be designed so
that the néise figure of the preamplifier determines'recei&er noise
c§ntributions. In addition, quadrature.phase sensitive detection is
empioyed to proﬁide maximum signal—to-noiée and for those experiments

‘where the'signal is not linéarly polarized. -

5.5.1 Preamplifier and IF Gain

The preamplifief sectionsof both the high and low frequency channels
operéte in a similar m#nner. For carbon-and deuterium detection, thel
preamplifier (Miteg Model AU-IB-005M) prcvides~abqut 35 db gain of the
nuclear signal. After filtering, thisvis mixed‘with the-z,O. using a
Hewlett-Packard modei 10514A mixer ;d-prbduce the 30 MHz receiver i.f.
signal. The major difference in the proton receiver is the use of a
preamplifier with ~50 db of gain and a Mini Circuits Model ZAD-1-1 mixer.
_TYpically full receiver recovery follows 20 usec after an r.f. pulse at
ﬁhe-observation frequency. | |

Either receiver i.f. is.touted'to an i.f. strip amplifier (RHG Model
EVT3010) with a band pass of 10 MHz, This unit provides 20 db.of fixed
plus 50 db of variable gain. This amplifier is ﬁominally'linear but

must be calibrated when relaxation measurements are taken.
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S’sz . 'Phase Sensitive Detector/Audio Filtefs

Phase sensitive deﬁection of thevreceiver i.f. signal is accomp-
lished as_follbws (see Fig. 5.11). The 30 MHz spéctfometer reference
is first paséed thfough a variable delay line1énd-then split by a |
quadrature hyBrid. Both channels are passed through mixers:élong,with
the i.f. strip output which haé Seen divided with no phase difference.
Thé audio output‘is.filtered by vafiable lOW'péss filters‘(see Fig. 5.12)
:and sent to-tﬂé digifizers. Thé relative phase of tﬁe spectrometer

and signal is adjuéted by the reférence delay line.

5.6 Digitizers

" The fl V.éhase'detected.signal channels.ére seht_to the High.Speed
Acquisition system for digitizing and memory stérage (see Fig. 5.13).
The signals afe first gainéd to +10 V by a %mall audio amplifier (AMlOlA).v
On a "START" pulse the signél is sampled by a Datel Model SHM-2 sample-—
: ;nd—hold aﬁd'converted to 10 bits of data.by a Datel Model ADC—GlOBAC
analog-to-digital convérter. Tbtal conversidh time ié 1 ﬁsec. Tﬁefe»is
an eqﬁivalent cifcuit fof each‘phase éhannel.k.ThevSTART_pulse is gen-
erated and the data read by an intérfacé attached to the spectrometer
éomputer (Data General Nové 820); Successive data points (complex) are
placed directly into the computer's meﬁory as they are con#erted via the
DMA. The interface can acquire up to 2048 complex data points with a
dwell time of >3 usec. This provides adequate spectral breadth for all
experiments in this work. The.acquisition interface was built by
Spectrometer Data Systems and has been modified to allow da;a collection
from a single trigger pulsevfor an entire FIﬁ or from triggef pulses for
each point in a FID. All data collection is synchronous with the pulse

programmer clock.
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Phase Sensitive Detector
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Figure 5.11

Phase sensitive detector. Heterodyne detection method is employed.
.The i.f. signal is divided with no phase difference and the reference is
. split into 0° and 90° lines. These are mixed to give two audio channels.
HSA means High Speed Acquisition. |
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AUDIO FILTERS, GAIN CONTROL, OFFSET CONTROL

- +
|

1%
VOLTAGE 233k
v . DIVIOER ]
) 30MC
: - ?REF Bnc
IF ' o°
RCVR ? Ps.o. °0° Lz Bhe
__f . -
f— ) . OFFSET
ADJUST
(x2}
510 : OIuF
2N5906 Ov:gglmqe JuF {0 1 kC lro
1.5k 1000 pF
rFme . OluF l—o:--J 10kC I—o—J -AUDIO
ovc‘:':;!oqe 2ns904 |/52|(V)l 100sF FILTERS
1000pF }{=0 100 kC ~j}~0 (X2)
. 10pF
I00pF =40 1 MC {0
-12v A 12v
LIk 200 Lik
500
LM 2w
~-tov 320k M -
+ L8 # 200 L—? 3¢ Gain adjust R.P.
15uF ISuF 4w 52%0

LED
LN & 'H Gain adjust R.P.
.

ABLBIS- 4149 .

Figure 5.12

Audio filter circuits and miscellaneous circuitry for offset
adjustment, IF gain control voltage and IF strip overvoltage detection.
Each channel of the Phase Sensitive Detector output is passed through
identical filters and offset op-amps. The 6 and 12 db selection
affects filter roll—off characteristics. '



High Speed 10 8it

20pF
. SAMPLE AND
1—_”—] HOLD
VWA~ SHM 2
INPUT tox . w
e w \
L A fmm‘ +i15 ziov " o Low
A '7"-[ 2 LOW _ CONT
. +
SHIELD: 4: p I3
*
v # i OFFSET

ADC Circuit
VAD Converter
(ADC-GIOBAC)
BIT 1 |-M88_ pata s
BIT2 DATA 7
15V . )
ZERO Ser
ZERO 20k Se—OFFSET
sy
£s: — REF OUT .
ADJ. WA REF N s
— BITY DATA 14
W sitiopLtS8 __paTa s
ART START
Low ST
Eoc

Figure 5.13

GND
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5.7 Pulse Programmer

The nature of the pulsed NMR experiments described in this work
require a progfammable unit to generate pulse gating and delays for the
- sequences used. The pulse programmer employed ih this spectrometer is
microprocessor based and contains its own memory and home-written soft-
ware. This software (micro-code) éllows pulse programs of up to 64
simple steps to be enteredvand executed. Each step can be an operation
such as variable definition and incrementing, comparison of Variableé
and branching, etc. Based on the pulse program instructions, the micro-
processor outpdts a sequence of'timing words to either a RAM dr FIFO
memory. These timing words are clocked out by gating hardware whiéh is
bééed on the lO’MHi reference output of the proton synthesizer. Thus
pulses'and &elaysvare ééttable in 0.1 usec units and quite complicated
sequences can be programmed. fhe microprocéssor communicates with the
spectrometer computer via the EIA interface of the system console; The
design and operétion of this pulse prograﬁmer are described in more |

detail elsewhere [ 45 ].

5.8 Computer

A dedicated minicomputer is used to direct the operations of the
spectrometer. Data acquisition, data manipulation and peripheral control

are all handled by specialized hardware and software.

5.8.1 Hardware

The spectrometer minicomputer is a Data General Nova 820 with a 16
bit word length and 32 K words of core memory. Mass storage ié on a
Data General 6045 hard disk subsystem with 10 Mbyte capacity. Data back
up and storage is aided by a Data General 6030 single density floppy

drive with 315 kbytes of storage capacity. Besides CPU, TTY, I/0,



Disk I/0 and memqryvboards, several interfaces handling data display and -

X~y plotting, data acquisition and miscellaneous peripheral control

reside in the main frame.

5.8.2 Software
To handle the many different operations of the spectrometer which
are under computer control, a large program was written [117] mosfly in

FORTRAN with some subroutines in assembly:language. This program -

comprises an independent, stand-alone operating system. Computer memory

is partitioned by the software into well defined-regioﬁs:as shown in
- Figure 5.14. Mosﬁ of the ﬁemory is devoted to data, allowing rapid “
acquisition and manipulation of digitizea signals. The entire programb
caﬁnot‘fit into the remaiﬁiné memory and”so is divided into_é series of
overlays which afe_swapped t9‘mehory_frqﬁ.disk.as'nee&ed. 

| "This oﬁerating,system coﬁsists of 60 commands;whicﬁ direct data
ééquisitibnvand display,iFouriér tfénsfo;mation; ﬁhéée'correctioﬁ, and a
variéty of other operations. - Commands ate givenvsimp1e ﬁames'and accept
parameters when executed. Comhands_may either.be executed individhally

from the console .or as a sequence from a previously defined string

stored on disk (known as a MACRO). MACRO command strings except variables

which are passed to the commands at execution time and MACRO's may be
nested iﬁ almost any way desired. This arraﬁgement allows unattended
direction of a coﬁplicated expefiment whicﬁ is defined befotehand. Data
is stored in a large archive on the hard disk system and lagér moved
to floppy disk for iong term storage.

In addition to the spectrometer operating program, several routines
were.written for specialized data manipulations. Among these is a series
of programs which facilitate the calculation of a large, floating—point

disk Fourier transform. These are described in Appendix C. This was
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Figure 5.14

Software partitioning of 32768 words of Nova 820 memory for
spectrometer operating system.
data with programs swapped into the overlay segment as needed.

The hatched region is used for communications with the pulse

programmer.
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required in tﬁe work on liquid crystals because thé computer word size
(16 bit) and core memofy size (32 K) limits the length of a.Fourier
transform thaﬁ can be calculated by the spectrometer software to 8192
complex péints. "The disk based,programs allbw a spectrum of up to

64 K words (complex) to be calculated with no overflow.

- 5.9 .Conclﬁsion
Iﬁ this chapfer one of tﬁe}twd NMR spectrometers used in,all'experi-

~ments repor;ed in this work has been described. The basic circﬁitry of
the spectrometer consisfs of a: low power r.f. section in which pulses
are generated with well defined phéses reiative.to the spectrometer.
referencé. A1l pulse andvdela} timing-is‘choreographed-by a sophis;i-
pated, microprocessor-based pﬁlée programmer; Pulses are amplified,
converted to thé nuclear ffequenéy_of interest, and transmitted to the
saﬁple probe. Two designs of tuned fesonancefcircuits are uééd in the
probes: a.sihgle coil for each resohance used or é'single-coil,’doubleﬂ
tuned probe. Each désigﬁ offers some advantages over.thé other; the
choice of probe was dictated by the considerations of signai—to—noise,
sample heating and deéoupling power requirements.

The dedicated minicomputer system with specialized software used
with the spectrometer is also described in this chapter.‘ This arrange-
ment foers a. great deal of flexibility in the typeé of experiments that
can be performed."The ability fo constrﬁct chains of simplg commands
as MACRO strings allows for automation of experiments once initial para-
ﬁeters are gset. The High Speed Acquisition system employed is suffi-
ciently fast for solid stéte expe:iments and adaptable to high resolution

for liquid crystal and liquid samples. Magnetic field homogeneity is
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obtained wiﬁh a.set of room temperature shim coils in additién to
superconducting gradient coils. Finally, a low noise figure pre-
amplifier followed by variable gain i.f.,stage and phase sensitive‘
detection yieid the best arréngemént from the standpoint of

signal-to-noise.
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APPENDIX A

Spectral Simulation and Iteration Programs

This appendix describes the simulation and iteration programs
(MQITSET and MQITER) used to fit the multiple quantum épectra discussed
in Chapters 3 and 4. Both programs and their subroutines are written
in FORTRAN IV and execute on a DEC VAX/VMS 11/780 computer. All the
file I/0 statements are specific for that computer but may be modified
-to'rﬁn dﬁ’virtually any medium or large scalevcomputef;- The VAX system
has 1.5 Mbytes of virtual memory aﬁd so program MQITER dimensions large
. arréys>which'allow'it to handlé up ;o 10 coupled spins.

In the following sections, the thedry of linear leastrsquéres péra-
méter'adjustment_is briéfly reviewed_aﬁ&“ifs apblicétiog to NMR‘speétrai.
fitting discussgd._ In Section A.2.3; a description of prégram flow for
MQITER is given. Finaily an.example,.éartially oriented benzene, is

presented to demonstrate the basic operation of MQITER.

A.1 MQITSET

MQITSET.ié a program used to collect data required for the execu-
tion qf MQITER. The laﬁter progr#m is non;interactive and acquires all
of its necesséry_data from'file MQITER.DAT. MQITSET asks a series of
questions and, based on the responses, colleéts COupling constants and
creates the data file. In this manner, several data files cah’be‘
created while the actual simulations and iterations are dome in the

background without interaction from a terminal.
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A.2 MQITER

MQITER is the basic simulation and iteration prdgram used fof spec—
tral fitting. " For spectral simulation, input consists of the dipolar
-and scalar couplings. From these couplings the homonuclear, spin-1/2
Hamiltonian matrix is set up in é single productvbasis'set.‘ Chemical
shifts and rotating frame offset are assumed to be zero. This is then
subjected to a diagonalization routine employing the Jacobi rotation
technique; Einally; ﬁhe transition frequencies expected in the multiple
quantum spectrum are éalculated. This is done by first classifying
eigenstate vectors by symmetry'répreSeﬁtatibn and ;hen choosing all
possible transitions'within each,representation.

Oncé an initial simhlation has Been done,'experimental frequeﬁcieS»
can be assigned to those calculated. The éalculated frequencies are
identified by a numbef given them in the simulation. With these as
input, the program is run again and a»linear least squares Qariation
is used to refine the couplings and produce a new speétrum with a minimum
RMS deviation from the experimental lines. The method of least squares
variation is essentially the same as that used by Castellano and
vBothner-By in their‘program LAOCN3V(see'Réf. [118,119] and references
theréiﬁ). .The next section‘will discuss the theory of these iterative

calculations.

A.2.1 Least Squares Spectral Ahalysis

| If a set of experimental measurements have been made, {mi}, cor=
responding to a set of theoretical quantities, {Mk} and it is necessary
to find the parameters, {pq}, which determine the Mk's from known

quantities, i.e.,

Mk = fk(pl’°°°5pq)’ (A.1)



then the method of least squares is appropriate. In this method, it is

desired to minimize the quantity

: 2
N (am)°, : (A.2)
k=1 , o _ :

where AMk = mk - Mk. In matrix notation we require

9, T, \ _ o

~ ~

-

for all the parameters j = 1, ..., q. In order to obtain élsolution for

Equatidn (A.3), M is expanded in a Taylor series about some initial

parameters 2(0).

~
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In Equation (A.4) it has been assumed that only small changes in para-
meters are to be considered and so terms with higher’deriﬁatives ofvg
are insignificant. If we use as the vector of residuals the difference

between the measured quantities and the zero order term of Equation (A.4),

oy = g-¥9, (A.5)

=z

then the minimization problem becomes, -

3, T
_3?._ (gAg-Ag) ,QAg—AM) = 0, (A.6)

J ~
which may be rewritten as

Tusp = LTy, a.7)
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If M is a linear function of the parameters, then Equation (A.7) is the
éolution wﬁich gives the form of the function in Equation (A.1l). This
is what has been assumed in going from Equation (A.6) to Equation (A.7),
i.e., that ¥ is not a function of the parameters. For the case of épec-
tral fitting in NMR wherevthe measurgd quantities are tranéition
frequencies, their dependénce on coupling constants»ié, in general, not
linear [118]. Tﬁus, the parameters will have to bé.varied to approach
fhe situation stated By Equaﬁion (a.7). The.usual'procedure is to.solve

the "normal equations,'

ap = @0 ¥iag, (A.8)

to give corrections to the parameters which are used to calculate a new

R

are kept small so that the "]inearization" approximation is valid, this

(£)

representing a

. It can be shown that, as long as the changes to the parameters

method may converge to some set of final parameters p

local minimum of residuals [120].

The question of uniqueness ofithe sqlution g(f) must then be taken
up. It is possible that the convergence will be to a local minimum on
the surface of parameter space which is one  among several or even an
infinite locus of solutions. Where the convergence ends up will be
détermined by the ﬁclosenesS" of the initial parameters (i.e., the mag-
nitude of thé initial RMS error) and the assignments of thevmeasured
quantities, {mi}. The Castellano/Bothner-By method requires a reasonably
good.choice of initial parameters and line assignments [119]. Generally,
when the number of lipes assigned does not greatly exceed the number of

parameters varied, an improper line assignment will result in no conver-

gence at all. Several different line assignments may be tried to isolate
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those which do converge. For single quantum NMR spectra‘of_a molecule
with a large number of interacting nuclei, the number of different line
assignménts péésible which fit within some range of the initial simula-
tion becomes too great to allow a full least squafes iteratiqn of each.
With the increased resolutidn and spectral simplicity inherent in high
quantum spectra, the number of reasonable line assignments is greatly
reduced. Iﬁ a similar sense ‘a variety of initial.paraﬁeters'may be
used to probe the space of possible sélutions. Tﬁe»advantages of using
multiple Quantum spéctra in choosing initial parameters arisé when a
éhoicé can be made’betweeﬁ severéivdifferent couﬁling constanﬁ models

. which predict different multiple quantum spectra.

For either a multiple quantum or a single quantum case, the uniqueness

" of a solution may depend on‘molecular_symmetry. For example,vit has been .

shown that two and three spin systemé ahalyzed from line frequgncies
'alone“yield several 6: even. an infinite number of solutions [121].
Unique solutiohs only become possiblevwhéﬁ intensity informatibn is in-
cluded. = For é general spin system without,symmetry, the direct and in-
direct couplings and the chemiéal shiffs,may all be deﬁermiﬁed uniquely
except for the relative sign of the couplings‘with respect to shifts and
for a permutation of the ﬁuclei [122]. The ambiguity in numbé:ing of

nuclei is removed with the addition of molecular symmetry which also

reduces the number of parameters required to solve for. In addition, when

some of the parameters are assumed, the number of possible solutions is

reduced. Thus, the uniqueness of a solution derived from the Castellano/

Borthner-By method depends on how well the initial model fits an experi-

ment and how many parameters in the model may be kept stationmary.
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Returning to Equation (A.8), it méy now be seen what is required
in the program MQITER. The measured quantities from a multiple quantum

spectrum are the line frequencies,

A

B
sl

-9, (A.9)

thebparameters are the direct and indirect coupling constants (chemical

shifts are assumed to be equal) and the derivative matrix is

JF, ,
W), = —. _ (A.10)

~"1j 3p.
~ 1) 9Py
Equatiqn‘(A,9) is evaluated by_consideriﬁg.the eigenstates of the

Hamiltonian for the initial parameéters and the line assignments made

-from the spectrum. The derivatives of Equation (A.10) are found by

differentiating the Hamiltonian in the simple product basis‘sét;

.

3F, [axn axm] ‘ | _ :
= - : - (A.1la)
op. op. ap.
Py Pi %P3 :
A _
o =5 IS ES)
j j
asT )
SF LA
i j
3s
+5" B
j
as’ ) . 38
= SA+S - StAS 5
J + %H . 38 . 38 |
30— =§ ’ﬁ:"§+ﬂ§'?p:_'§ 3—1;42 (A.11b)
Py Py i j
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In reaching Equation (A.llb), the orthonormality of the eigenvectors has
'been used. The left hand deriﬁative matrix in Equation (A.1llb) is dia-
gonal and so we need only consider the diagonal elements of the right

hand matrices. Those elements cancel in the last two terms and so

AW L3\ -
3/ om J mm . .

Equation (A.12) stéﬁes that the deribatives for g in the normal equatioﬁs
‘can be foﬁnd.by'differentiating,;he_Hamiltonian and then applying the
-éame,trénsformation used to diagohalize it’ﬁo yield tﬁe eigéﬁstate deriv~ .
‘étives. 'ihe differeptiation of the Hamiitonian in the simple product

3

- basis is trivial since Hi
- “Equation (A;12)’are;found at each cycle of the iterétion,v

= Scipj and the eigenvectors required by -

Once the derivatives in Equation (A.12) afevcélcglaﬁed; the.norﬁal
equations may be ;oived according‘to Equation (A.é) to yield corrections
tb the parameters..’The initial paraﬁeteré are adjusted by tﬁese amounts
and the hext cyclé 6f the iterétion is started. In-each cycle,vthe RMS
. deviation of the caléulated lines and assigned frequencies is computed
(Eq. (A.3)). 1If this RMS deviaﬁion does not change by more than one
percent on going from one cycle to the next, then the dgfinition of con-
vergence has been reached aﬁd.the final parametefs used iﬁ a spectfgl

simulation. " Figure A.l1 shows the overall procedure used in multiple

quahtum spectral fitting.

A.2.2 Error Analysis
The errors present in the digital resolution of a multiple quantum
spectrum can be propagated to parameter errors by the usual techniques.

It can be shown [118] that for the case where the standard deviations of
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Figure A.1

Flow diagram for least squares iterative program used to fit

and simulate multiple quantum NMR spectra.
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each frequency measurement are the same, the variance-covariance matrix

for the parameters derived from Equation (A.8)

.cients of the normal equations:

Diagonal elements of o give individual errors

P

is given by the coeffi-

(A.13)

. ' ' 2
in each parameter (0i )

and off-diagonal elements give the chariances defined by

Cip = <(py- pio))><(pk-,p

(0) ’
K )

(A.14)

- where the angle brackets define an expectation value. In general, the

parameters used for iteration are not independent and so the covariances

are expected to bevsignificant. 'As in the original prdgram LAOCN3, the

- matrix in Equation (A.13) is diagonalized to,give parameter errors for

linear combinations ofvparameters-forming'a,principle axis system in

"error spéce“. This may be of use in identifying those linearly inde-

pendént combinations of parameters which define the system better. In

addition, this locates the maximum and minimum errors possible for the

parameters.

In Equation (A.13) the variance qz

s assumed'eqdal fbr all

‘lines used in the fitting, may be assumed from the final fit as [118]

2

a” = (Agf M)/ (k- q)

(A.15)

where k is the'numbgr of assigned lines and q is the number of parameters.

The propagation of errors from the refined parameters determined

from MQITER to quantities such as bond angles and distances'mustvalso be

considered. If the derivatives defining the relationship of the desired

quantities, y, with réspect to the variables x are known, then the

propagation of errors is expressed as



-pg n". (A.16)

D is the matrix of derivatives, By;/axk, and C , C are the variance-
= ) i =y’ =x
covariance matrices. Such a propagation of parameter errors will become

impoftant-in the discussion of the program BIPHSPARA (Appendix B).

A.2.3 Program Description/MQITER

The'listing for the iteration progiam MQITER is given in Appendix D.
What follows is a brief description of thevprograds operations and sub-
routines, Table A.TI gives a listing of the subroutines used and Table
'AfII'a listing of the major matrices requiréd. This listing is of a
version desigﬁed to handle up to ten Spins, N&ﬁ all multiplevquantum,
spectra may need to be calculated since line assignments may only be
taken from the highest quantum fransitidns. If this is the case, the
program allows for the exclusion of those parts of the Hamiltonian not
necessary. The Hamiltoniéﬁ is first set.up in the, simple product basis
set in block diagbnal form [118]. If a complete zero quantum or one
quantum spectfum is-desired then every submatrix must be set up in this
basis set and then diagonalized,‘ If this is the case,. then the largést
sﬁin system possible with the array dimensions givenvin Table A.II is
eight spins-%. MQITER is capable of calculating‘higher multiple quantum
orders for greater than eight spins. As an example, if the five quantum
is desired, none of the transitions involve the submatrix with M = 0 and
its diagonalization may be omitted. This eliminates the need to dia-
gonalize a 70 x 70 mat:ix and so computational time is decreased consider-
ably. Some multiple quantum transitions for orders lower than five may
still be found but those spectra will be incomplete. Variable MAXMAT
holds the dimension of the largest Zeeman submatrix which is allowed.

In this mahner, part of the total multiple quantum spectrum can be
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Table A.1

Subroutines and Functions Used by MQITER

» Sub:outihé or Function Called
— Name ’ From Purpose
'"_1) LINORD MQITER Orders line assignments
2)  CNTOUT MQITER Outputs coupling constants
3) HAMILS MQITER Sets up Hamiltonian -
4) _CONDIT ' MQITER Sets ﬁp equations of condition
5) ERRIT MQITER ' ~ Calculates RMS error
6) NORMAL MOITER _ Sets up normal equations
'7) MINV - MOITER Inverts a matrix
8) CORREC MQITER Corrects initial parameters
'9)  GENSYM MQITER : _ Rearrangés symmetric matrix
10) EIG2 MQITER .=  Diagonalizes a real symmetric
: HAMILS matrix '
11) EOUT MQITER . Outputs energies
HAMILS »
12) MQ2DIFF MQITER " Calculates allowed MQ spectra
13) NUMSRT HAMILS Calculates SP states
14) UNTRANS HAMILS Performs a unitary transforma-
USWAP “tion ‘ :
15) READMS MQITER File 1/0
. HAMILS
SYMSET
USWAP
16)  WRITMS . USWAP File I/O
17) USWAP HAMILS Rearranges Eigenvectors
18) SYMSET MQ2DIFF Calculates symmetry representa-
: tions
19) FRQOUT MQ2DIFF Outputs frequencies
20) MAT All routines Array index functions
21) MATVEC All routines Array index functions
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Table A.IIX

Major Arrays Used in MQITER

Array Namev Size Purpose
D (28) .Dipolar.coupling eonstants
CcJ | -(28). Scalar coupling constants
LST (2,1024) SP statee‘and quantum numbers
NO (li) | Binomial coefficients
NSP -(11) v Sum of binomial coefficients
NSM _(ll) Sum of allowed sub-matrix
-dimensions
EN (256)‘ Energies
IPARAM (28,15) Parameters
DLMB (256,28) Derivativeskef eigenvalues
MQIT (2,10) Multiple quantum orders
LASS (230) Experimen;al line assignments
" EXPER v(230) | Experimeﬁtal frequencies
- DC (230,28) Metrix of derivatives
B v(230)
\ (784)
Miscellaneous work matrices
BV (28)
WORK (4900)



calculated for nine and ten protons. The lowest orders for which all
allowed transitions may bé found are zero quantum for eight protons or
less, seven,quéntum for nine protons and eight quantum when the molecule
contains ten protons.

The program starts by opening three files; two are scratch files
which will~contéin eigenvector matrices and one is the data file
MQITER.DAI produced by MQITSET. The initial data is read in and certain
array elements are determiﬁedf Variable N is the number of spins, LOWORD
the lowest order tfansitions for which a complete spectrum is desired
and ITER is the iteraﬁion control variable. Next, the couplings are
read in (either from a previous data_file with the same name as CASE or
from MQITER.DAT) and.outéut by éubroutine CNTOUT. 1If this is an iterative
calculation, the line assigmments are also read in. Subroutine LINORD
arranges them by order and line number for later calculation. Next; the
parameters to be varied are read. A total of 28 parameter sets are

.allowed. With most molecules of interest, symmetry dictates that some
parameters must be kept .equal during the iteration [118]. As an example,
for benzene, all the ortho couplings are equal and this forms one para-
meter set. A total of 15 .parameters are allowed per parameter set. The
method of specifying which dipolar’br scalar coupling is meant by each

- parameter is described in: the output of program MQITSET.

The iteration loop takes up the next eleven statements. Subroutine
HAMILS, described belqw,"ié,called to set up and diagonalizé the Hamil-
tonian matrix and find. the derivative of this matrix with respect to

- each of the parameters. -.1f (ITER is zero, then the program just skips to
the part which simulates the multiple quantum spectrum. Otherwise, sub-
routine CONDIT is used -to calculate the equations of condition. ERRIT

finds the current RMS error and returns variable NEXIT which determines
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if convergence has been reached. Subroutine NORMAL sets up the normal
.equations according to Equation (A.8). MINV, a routine simila: to a
subroutiﬁe froﬁ an IBM subroutine package [123], inverts the normal
equations coefficient matrix. Finally, CORREC applies the computed
corrections to the parameters. ITER is then incremented for the nexﬁ
cycle.

Once convergence has béen reached or too many cycles have occurred,
flow prnceeds to the error analysisAsection. - The matrix of coefficients
to the normal equaEions is first output. The inverse of this matrix is
proportional to the parameter variance-covafiance matrix according to
Equétion (A.13). Tﬁen, as deécribed in Section A.2.2, this matrix is
diagonalized by‘EIGZY(described below) and the eigenvectors, the standard
errors of these "eigen paraﬁeters"'and their probable errors are output.
Finally, subroutine MQ2DIFF (see below) is used to simulate the multiple
quantum speétrum.froﬁ the refined parameter.values.

Subroutine HAMILS_is used to set up the Hamiltonian in a simple
producﬁ basis set. The operation of this routine is based in large part
on the methods developed by J. Mu:doch [67 ]. The ZN simple product
states are actually the integers froﬁ zero to ZN-l in which each bit
represents one nucleus. The numbering of these "nuclei" follows that of
the dipolar and scalar couplings used. A zero for a particular bit rep-
resents one of the two spin-!s states (a or B) and a oﬁe.means the other
state. Thus, checking the value of a particular bit.determines the spin
state of that nucleus. For exémple, with four spins, a simple product
state aBaB is represented by the integer 5 (0101 binary). Using these
"spin states" the Hamiltonian is found in this basis set by 'operating"

on the states to determine which couplings contribute to each matrix
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element. Both the on-diagonal and off-diagonal elements are calculated
in this manner. Only the submatrices for each total magnetic quantum
~number are céiculated, all other elements being zero. HAMILS uses a
definition of dipolar cdupliﬁgs twice that of Reference [18].

After each submatrix of the Hamiltonian in the simple product basis
sef is calculated, it must be diagonalized to give eigenstates and eigen-
véctors.”'If ;his is fﬁe first cycle in an iferation, or if no iteration
is desired, thié is done immediately by EIG2. For an intermediaté stage

in the iteration, the Hamiltonian is first subjected to the transformation

-i-

g.(n) - §=(n—1) E(n) §-.(n_1)- ' (A.17)

-In Equation (A.l7), the subscripts indicate the cycle number. If thé
parameters have. not changed_much on going from cycle (n-1) to cycie (n),
then using the method of Equation (A.17) will produce mAtrix gzn) which

| should be apprqximately diagonal.. Subjecting thig transfofmed matrix

to the Jacobi method should require fewer rotations tq-reach a completely
'&iagoﬁél form. In addition, using Equa;ion (A.17) At eﬁery cycle will
help preserve the order of the eigenstates.

The subroutine EIG2 produces a diagonal matrix from a real symmetric
one by ﬁhe Jacobi rotation technique [124]}. In this approach, the
largést off-diagonal element is chosen as - a pivbtal element about which
an orthogonal rotatibn is done. The angle of rotation is chosen so that
this largest off-diagonal element is made to vanish. Orthogonal trans-
formations of this type are repeated until no off-diagonal element is
larger than a threshold. The unit matrix is also rotated by the same
angle for each transformation. It can be shown that the product of the

orthogonal matrices for each rotation is the required eigenvector matrix

[118]. ‘
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As mentioned above, it is necessary to keep the eigenstates iﬁ the
same ofder as in the initial diagonalization. This is important to ﬁain—
tain the fit to experiment because the eigenstates will no longer be in
fhe proper ofdervfor line assigﬁments and will cause an erroneous diver-
gence [125]. Such a situation is pértly avbided in MQITER. Subfoutine
HAMILS5 calls USWAP which calculates the sum of squared deviations

“according to

2

2
A5 = ) (S5 0y = Bis) () (A.18)

k

If none of.the eigénvecfbrs have changedrpoéition then the minimum ele-
ménts of matrix g w111 be along iﬁs diagonal. If one of the off-diagonal
eiements in abparticular row is the minimuﬁ'value’of‘that row, then the
eigenstates and eigeﬁvectors are swapped accordingly. ' This procedure
should maintain ﬁhe iine assignmencs‘and évoid divergence due to the
method of diagonalizatiOn.v This reafr#ngement ofvthe eigenvalue sequence
is par;icularly common_wheh"the diménsionvof the'submatrix.is-large-and
itvc0ntaiﬁs several degenerate states.

Subfbuﬁine MQ2DIFF is used to calculate the multiple quantum spec;
trum fromrfinal péfameters. As with the othe; ﬁarts'of the program,
MQZDIFF will éalculate incomplete multiple quantum spectra when not all
submatrices of the Hamiltonian have.been diagonalized. Since there is
no offset term in the Hamiltonian computed bf_HAMILS,'transition fre-
quencies for each order are calculated relative to the centers of the
orders. HAMIL5 also assumes that all chemical shifts are zero and sb
each order is symmetric about its center. MQ2DIFF only outputs one half
of the symmetric spectrum. Aftér the presentation of the spectrum with

identifying line numbers and transition states, the frequencies of one
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half of each order are preéented as a descending list 6f positive
numbers. MQ2DIFF attempts to idéntify degeneraté transitions in this
list. ,The eigénstates may also be scaﬁned for degeneracies to help
locate doubly degenerate symmetryvrepfeéentétions.

. Subroutine SYMSET is éalied by MQ2DIFF to classify eigenstaﬁes by
their S§mmetry relations. .The calculation is based on the group theory

’_result'stated in the following. equations.

: 2.
If l'q‘ilAlIFj)L # 0,
them T, =T,. S O (a.a19)

~In Equationv(A.lg), the fvsymbolé refer to the irfeducible symmetrf fe-_
‘pfesentaﬁions of_stétes i and j.. Fof NMR éingle quantﬁm-transitioﬁs,.
‘neglecting symme#ry-breaking relax;tion.effects;ifhévmagnetic»dipOIe
transiﬁion opéfaﬁors are totally"symmetric (i.e., Al represéntaﬁion) 

| [36]. Equation (A.19) states that to find states of the same irreduci-

.

~ ble symmetry represéntation, the transition element
2

< i>

|<i]z,l3>]

must be found and compared to. zero. Insﬁead of Ix’ a more convenient
operator to use in SYMSET based‘on the form of the simple product states
‘I'is I_.'. SYMSET loops through all eigenstaté’s and calculates the appro-
‘priate matrix.elemeﬁt from the expansion of‘thesé in tefms of simple
,product states with the eigenvectors from HAMIL5 as coefficients. The
resulting matrix glements are compared to a threshold level and if found
greater than this level the corresponding states are labelled as belong-
iﬁg to the same irreducible representétion. In this mahner, all States

are classified by representétion. An alternative to the approach of



calculating each matrix element7individua11y is to set up the transition
operator.in the simple product basis and then transform it using the
eigenvector maerix.

When not all submatrices have been included in the calculations of
HAMILS, matrix eleﬁents of T_ alone‘are not sufficient to determine all
the symmetry relations among eigenstates. The missing submatrix is
"bridged" by computing matrix elements ofllf where n-1 is the number of
submatrices'missing; This allows syﬁmetry repreeentations fof states
below the missing Zeeman manifold to be connected to those above.
However, ealeulations show [126] that matrix eiements of If fof states
within tﬁe same representation may vanish aﬁd SO ehis method maonmit'
allowed transitions. The best possible calculation, without expressing
the point group of the molecule‘in the Hamiltonian [127] is te use the
eingle quantum operator I_ .-

Once the representations have been determined, MQ2DIFF outputs all

the symmetry allowed transitions for the'multiple quantum orders of inter-

est. This presentation carries none of the information concerning inten-
sities as‘they'are dependent on experimental peremeters as described in
the previous chapters. Also output by the program are the eigenstates
organized by the symmetry representations found by SYMSET. Im this

list, states labelled as repreeentation #1 are those for which no non=
zero matrix elements were located. States of representation #2 are the
totelly symmetric (Al) states. The extreme Zeeman states are always
found in this representation. The relationship of the other represen-
tations to the actual poiﬁt group irreducible representations must be

made by examination of the dimensions of each Zeeman manifold.
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A.2f4 2roéram Example: Benzene

As an example of the operation of MQITER, consider the case of
benzene oriented in a liquid crystal as'in previous chapters. Thé high
order transitions prdduce very simple spectra and the line splitting of
the sole five quantum pair is sufficiénﬁ to determine the entire spectrum
when hexagonal ring geometry and scalar couplings are assumed. Because
of this, it is not;necessary tq use MQITER‘to iterate to a soluﬁion for
kthe benzene spectrhm. Howéver,.it is a well understood and characterized
:sﬁeCtrum and so a convenient example to choose. This parficular example-
is for.ﬁhe fit of one calculated spectrum to thaﬁ of another and so the
parameter errors arerextremely small. The use of MQITER with actual
éxpetimental lines assignmen:s.also ﬁroduces ébvery good fit with the
~ parameter errors found to_be‘w¢11 within the bounds expected on the basis:
of ﬁhe digital fesoiution of'the,Fouriér.transfdrm~spéctrum.

Aﬁvinitial run is necessar§ to give line numbers forvaséignmeht.to
the "experimental" spectrum. ‘In the second rum, the liné assignmenﬁs
comevffom anothér simulation with avdifferent set of couplings which
represents this "experimental" spectrum. As seen in the RMS error calcu-
~ lation, the initial fit is already fairly close. Both D's and J's were
varied in the iteration, the parameter sets corresponding to ortho, meta,
and para couplings. During the cycies, states are swapped by the method
described in the ﬁrevious sectioﬁ. Note that only degenerate states are
affected by this swapping implying that, even without this check, con-
vergence would be obtained because ﬁhe RMS error would still decrease.
The final parameter errors reported are indeed very sﬁall. After the
refined pafameters afe output, the variance -covariance matrix and the

eigenvectors from its diagonalization are given. This eigenvector matrix
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is not gompletely diagoﬁal indicating strong mixing of the parameters.
This is to be expected for the dipolar coupling pérameters due to their
depéndence-mentioned_above, but in addition,_eééh eigenvectof shows
significant miging.of.dipolar and scalar couplings. Even though no
‘anisotropic (or "pseudo—dipolér") coqtribution from'”Jij is included. in
‘the Hamiltonian, this eigenvector matrix shows.;hat the Dij's-and Jijfs
afe not linearly independent.

After the simuléfion is performed and the frequencies output, a
. listing of dégeﬁeracies found among.the eigenstates is given. Following
" this, the symmetry.classificationsvbf'eigénstates is.shown. The cor-
reépondence betweep'thesé classes-andvthe point group reéresentations‘is:
>repfesentatidnv#l; A, state; feprésehtétion #Z,AAlvsgates; representation

2
a,b _ a,b

#3, E,’" states; représentgtidni#4,'31 states; representation #5, E1

states; representation #6, B2 states.
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A.2.5 Computer Outpﬁt for Benzene Example
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4 NCY-1681 16 42:18 2¢

PROGRAM MQITER - START OF ITERATIVI CAICULATIONS.

ITIRITION & 1

R M S ERROR =

SVAPPEL STATIS: -
- SYAPPED STATES 17 .

ITIRATION # 2

R M S ERROR =
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SYAPPED STATES - 12,
SWAPPEL STATIS eg .

ITERATION »# 3 -
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SYAPPED STATES 5 ,

ITRZPLTION
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T4€ .
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THMPMCB 1CG3i1 | 4-NOV-1581 16:42:18.28 Page 17
| 1 OUANTUM SPECTROM CALCULATICN . . .
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TMPMCB ICG71 _ 4-NCV-1501 16 42:18.28 - Fage 23
2 QUANTOM SPICTRUM CALCUIATICN . . .

‘TINY # FREQUENCY ‘BZ) TRANSITION STATES 34]
LOVER QUANTUM # = 3 ; UPPER QUANTOM # = 9
2 3261.5828 . 4-> 1 2
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1723 1700 1
1314 619€ 2
1293 0477 2
E¢6 ese2 1
209 786% 2
184 6064 2
29 eses 1

TOTAT ~ UNIQUE FRRQ = 12
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4-NOV-1c81 16:42:18 28¢ Fage 2%

4 QUANTUM SPICTRUM CAICUIATICN . . .

.-.. LINE #

FREQUENCY  (HZ) TRANSITION STATES -~ SYMM R

LOVER QUANTOM #

"OPPER QUANTOM # = -1

1 156%.2118 , S 43> 1 2
2 4104.978¢0 44=> 1 2
4 2332.2088 - . 46-> 1 2
LOVER CUANTOM # = ; UPPIR QUANTUM # = -Z ,
1€ -0.080% . €9-> 2 .3
20 0.0004 : 62> 2 3
22 8.0¢00 o £g-> 3 2
25 -9.0801 N &g-) 4 4
2» 9.0001 - 61-> £ 5
2g -e.e021 . o €3> & -8
. TMPMCB ICG31 4 NOV-1681°16:42:18.26 .~ Fage 2€
IRIQ (B2 CIGENRRACY ' '
4104 9780 1
2332 22g% 1
1565 8118 1
_ o 208% 6 .
TCTAI # UNIQUE FREQ = 4
TMPMQE LCG31 4-NOV-1581 16:42:18.26 Page 27
S QUANTUM SPECTRUM CALCUIATICN . . .
LINE # FREQUINCY ‘HZ) TRANSITION STATES STMM
LOVER QUANTOM # = 3 ; UPPER QUANTUM # = -2
1 2371.877¢ ' 8-> 1 2
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4-NOV-1981 16:42:18.28 Fage 2§

@ QUANTUM SPICTRUM CAICUIATICN . . .

LINE # FREQUENCY "EZ) ~ TRANSITION STATES - = SIMM
QUANTUM & 2
QUANTOM » 1
1€ 2539.16%8 v ' 8-> @ 2
17 766 .398%7 - 1e-)> 8 2
32 -1772.769¢ ' 10-> § 2
&€ . =1€34.1186% 13-, 11 3
g -840 .£408 16-> 11 3
62 -0402,94€E€ : 19 > 11 3
€2 ~-1534.1102 : 29-, 11 3
71 . 1416.22¢8 18->. 12 s
74 1419.22%% . 21> 12 g
dd 1634.1108€ I - 15-) 13 3
7e 763.2617 ' 16-> 12 3
) | 763.2617 . 19-> 132 '3
1e2 -7¢€3.261% : 20-, 1€ 3
QUANTUM « [
122 62%.6882 . 28-> 23 4
124 2€14.7¢€192 3?7-., 232 4
1¢1 -1434.4467 S 26-> 24 2
142 1533.3097 .. 2B-)> Z4 2
1S 1929.0872€ 27-> 28 4
178 2987 .7563 28 > 28 2
- 2.1 ~713.408€6 I&-) 27 L]
2¢2 ~16€9.95%1¢8 : 39-» 27 ]
204 -713.4084 , 41-> 27 5
z s -16€9.9%2” g 42-> 27 8
220 : 9.00024 20-, 29 3
222 -16S8.0125 32-> 25 3
z22 ~169€E.412S . 33-> 28 .3
z2% -€24.6227 v 38-> 29 3
22¢ -624.65228 : : 368-> 2S 3
724 -1668.2133 . 22-> 2 3
238 -166€.2133 33-, 8 3
237 -624.68231 - 35=> 20 3
3¢ -624.£232 36-> 2 3
258 1073.39¢1 38> 32 3
256G 1073.3901 36-> 32 3
1 -5%6.5433 39-> 3E& ]
204 -9%26.5435 _ v 42-> 28 5
206 926.5438 41-> 29 5
QUANTEM & -1
211 25%9.1¢60 44-> 43 2
213 766 .3967 46-) 43 2
x2¢ -1772.7683 46-) 44 2
22 240.249% £8-) 47 3
I8s -783.2613 52-> 47 3
1] 842.8482 €8 D 47 3
e -7$3.2617 97-> &7 3
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1
1
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1
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1

TOTAL # UNIQUE FRIQ =

E'l
SES
772

€€9
€24
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424
419
73
956
€40
7¢3
7€6
713
62%
€z4

]

(§Z'
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1419.2261 - 49>
1419.2261 . S4-)
-1419.2260 £3->
-846.0495 o 51->
-1634.1108 - e2->
-1634.1112 } €7->
1634.1105. £5->

| 4-NOY-1681 16:42:18.28
TECENIRACY

7563

7€10
16%¢e
2726
7690
212¢

gs18

1168
3097
4467
2255
3901

£433
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3967
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£9
£2
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TMPMCE ICG31 4-NCV-1681 16 42:18. 28 Fage 32

INIRGY DEGENERACY CALCUIATION. ..
INC 1 = -2348 6201
IN( 2 -1126.1265
INe 3 23.2%569
IN' 4 - -1336.491%
ING 8) -585.8827 .
IN 6 -565.8827 IS DECENIRATE VITH STATI # &
EN( 7 - -1126.12¢9 IS DIGENIRATE dITH STATE # 2.
IN( B' =  -782.883 A
EN© 9 - 1756.3574
IN( 10 - -16.4116
CEN( 110 1017 .77680
EIN: 12 - -670.4888
BN( 13 = -616.334f% ,
IN( 14) 671.6273
IN' 15 1817.7761 IS DEGENERATE VITH STATI # 11
EN( 16 = 176.9272 »
ING 17) -€70.48€9 IS DEGENERATE WITH STATE # 12
IN 1€ 748.7367
ING 19 - 176.9272 IS TEGENERATE WITH STATE # 16
IN 20) - -£16.3342 IS TEGENERATE WITH STATE & 13
IN 21 748 .7367 IS DEGENERATE VITH STATE » 18
INC Z2' © -%92,3799 ,
EN: 23) :  -€4€ 6532
IN 24 - 912.9626
EN z= = -14 9649
IN 26) -521.4849
EIN 27 1121.28€5
IN' ZE - 244€.2722
EN Z9' - 1127.6€298
IN 2P 1127.6301
NG 21 -21.7a7¢
NG 22) -57¢ .3831 ,
IN T -57¢,3632 IS TEGENIRATE WITE STATE » 32
IN 24 - 1121.28%83 ' IS TEGENERATE #ITH STATE & 27
IN( 2 s92 0070 . ’ '
IN 36 - £83.8070 IS DECENEMATE VITH STAT: # 3£
EN 27 - 1974.1877 : '
IN' 28) . 407.877@
IN 20 -54€.6663 ,
IN' ¢ . 1178 .488% : _
IN© 41 487 8772 1S LIGEABRATE VITH STATE ¢ 3¢
IN 42 -£4c 6665 IS DEGENERATE WITH STAT: # 39
EN' 43 =  -78Z.8@€63
IN: 44) - 175€.3877
N 4F -£93.3801
EN' 468 - -16.4116
IN( 47) - 17€ 9273
IN 48 -670 .48¢1-
EN' 49 - 748 .7365
EN( £8) 1917 7768 Lo :
IN: £ - 176 .9273 IS PEGENERATE VITB STATE # 47
EN' %2} = . -616.3347
INC =3 -€70 4890 IS DIGENERATE VITH STATE # 46
EN 4 748 .7389 IS DEGENERATE WITE STATE # 49
N B2 = 1017.7764 IS IIGEAERATE #ITE STATE # 52
IN' se) €71 6202
IN 7 -616.3344 IS DEGENIRATE VITR STATI # £2
IN fE . 23.2569
IN 29 -133€.4916
IN €0 -1126.1210
mogoc g /
(€2, - 6.1201 IS DIGENERATE WITH STATE # 68
N €3) - -sgs sg2g IS DRGENERATE VITH STATI # 61

EN 6¢ - -2348.6201
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EN-

BN’
INC

EIN

EN'
ENTY
EN
EN’
EN!
EN
EN:
IN/
EN

IN‘

EN(
EN(
EN
AN/
N
IN
b | M

SYMMETRY CLASSIFICATION CF BIGENSTATES. .

STATES CY RIPRESINTATION # 1

;- -21.747¢
TOTAL NUMBER OF STATIS = 1
STATES OF REPRESENTATION # 2
1) = -2348.62¢1
3 23.2%69
e - -7@2.88€3
9 =  17%€.3574
10) -1€ 411¢
24 - 912.9626
26 =  -£21.4840
ze) . 244€.2722
4z -782 .8083
44 =  17%6.3%77
ag -1€ 4116
e 23.2569
€¢ -  234£.6201
"0TAI NUMBER OF STATES = 12
STATES OF REPRFSENTATION # 3
2 = -1126.12e%
” -112€.1200
11 1017.7760
13 -616.334¢
15" 1017 7761
15 176.9272 .
19 - 176.9272
20" -€16.3342
g 1127.6208
2o - 1127.6301
2° - -s57g 3831
z -570.3832
- €22 Pe7e
T2 53 0070
i 176 .5273
e - 1¢17.776%
g1 17¢.9273
2 -616.3340
oy . 1517 Tres
) - -61€.3344
ep -1126.1219
€2 = 1126.12M
TOTA? NUMBER OF STATES = 22
STATES OT REPRESENTATION & 4
¢ - -1336.4915
14) &71 6273
23 -640.8532
78 = 14.9649
a7y 1974 1077
‘g 671.8262
9 -1336.4916

TOTAI NUMBIR OF STATIS = 7
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STATES OF RIPRESINTATION # S
mw o« - ? 7

BN/ 6 =  -%6%£.8827

ING 12) =670 .4888

IN: 17 - -670.4889 .

BN’ 18! = 74€.7367

IN( 21) 748 .7367

IN. 27 1121.2855

EN( 34) = 1121.2853

IN( 28) = 487.8770

EN( 29 -54£.8663

IN' 41 =  487.8772

IN( 42} - -B4E€.6668.

IN 48 -670.4891

ENC 49, = 748.7369

IN( £3) - -€70.4890

IN. S4 748 .7369

EN' €1 = -56%.8826

EN' €3 = -565.8828

" TOTAL NUMBER OF STATES = 18
© STATES CF REPRESENTATION # 6

IN' 22) -592.3799 :
EN' 40 1172.4855

EN( ¢ =  -£93.38P1

. TOTAI NUMBER OF STATIS = 3
" FORTFAN STCP

PINENUTS. jcb termirated et 4 NCV-1981 1€-42:18.1F

'Acéountirg irformation:

Buffered I 0 count 72
. Lirect I 'C covrt- 236
Page faults: : 404

Fl psed “PU time:. 0 90:01:12.97

-

Page 3%

Feak vorking set size: 210

Feak virtual size:

"ounted volumes:

Flapsed time.

a4
¢
P 09:.15:12.15
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APPENDIX B

Programs to Calculate Biphenyl Dipolar Couplings

The protoﬁ dipqle«&ipole couplings of a biphenyl group with either
D2 or D4 symmgtry are calculated with programs BIPH4PARA or BIPHS5PARA.
Program BIPH4PARA calcﬁlates-couplings for any particular set of molec-
ular parameters. Ihiévprogram-will also’inprement one of the para-.
meters to produce a Series of coﬁplings. Program BIPH5PARA computes a
leas;—sqﬁéres fit of the calculated couplings to a set of experimeﬁtal
. couplings which are given as ﬁartvof the input. Both pfograms calculate
the Al.symmetry lines allowed in thé six and seven quantpm transitions.
BIPH4PARA writes these liné‘frequencies to a disk file which is later
used to produce variationvplots like these shown in.Chaptef 4. |

The following sections outline the coupling constant calculation

and give a brief.descripﬂion of each program.

B.1 Dipolér Couplings for Biphehyl.

The_férm of the coupling éonstant equations is esséntiélly-the same
when either D2 or D4 symmetry is assumed. The more genefal‘case is the
one with less symhetry:\ the DZ point grouﬁ; Thié is the symmefry
Iassumed in the equations below. The Da.couplings are derived by first
" transforming the order temsor from coordiﬁate system #1 (see Fig. 4.5)
and then proceeding with the equatiops_for D2 symmetry, This trams-

formation may be written as

(2) T (1)

s\ =r" s (B.1)
1 =1 ~

A

where §(l) and g(z) refer to the order tensors in molecular coordinate

system #1 and #2 respectively. The transformation matrix R is given in
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Equation (2.3). 'For the transformation required, angle a = +¢/2 and
B=y =0, The non-zero order parameters in coordinate system #2 in

terms of coordinate system #1, are then

(2) @)y _ Q) )y, 2, 2 -
(Sxx --Syy ) = (Sxx --Syy )(gos ¢/2-sin"¢/2) (B.2a)
Sii) = (Sii)— S;;)) cos¢/23in¢/2 _ ' | (B.2b)
s(2) . s - (B.2c)

- ZZ ZZ

- The equations for the coupling constants are .given below. Since co-
ordinéte.system #2 is uéed thfoughout, the superscript 2 is dropped;
These equations all contain the average couplings for conformations, with
+¢. The numbering is according to Figuré:(4.5). The foliowing defini-
.tiohs afe used in. the doupling.cpnstant équétioﬁs. The internuclear
vdi5£ances when thé aihedral angle ¢ is zero are dgnoté as r26o,vr150?
r16d, and Ty50° 'Tﬁevéngles a,B8,Y,Y',9, Aﬁd 6'_are'given by the

following trigonqmetricvrelations.

r ,-r )
sina = 67 23 : (B.3a)

2T 560

r_,~r
sinB = —%%——li ' (B.3b)
- 150 |

r,,-Tr
giny = 14 67 ' (B.3c)

2T 60

T.o-T
siny' = 28 .23 (B.3d)

2155

r,,-r : ,
siné = _%ﬁ__g; ' (B.3e)
T12

. R P .
sing' = o8 67 (B.3f)

2r56
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Finally, with the constant related to nuclear properties,

K= -Yih/4"2’ the coupling constants are given below. For Ring A:
K 2, \ 2, .2 2,
D12 =3 [Szz(3cosv6-1) + (Sxxcsyy)(cos ¢~sin”¢) sin”§ ,
.
12 _
_ . . 2 o - '
+ ASxygos¢31n¢31n §] » (B.Aa)
b " - K [(S.__-S )(cosz¢451n2§) + 48 cos¢sin¢]'» (B.4b)
14 3 XX yy - .y v :
r
14
_ r 3 v v
14 B
D,, =D, — (B.4c¢)
23 14(r23) | _
_ K 2 _ _ '
Dl3i_ 3 [Szz(3cos>6132 L+ (Sxx Syy)
r .
13
2 2, .2 S ~
x sin Bl3z(cos ¢ - sin ¢): _ ‘ (B.4d)
+ 4S8  si 26 cosdsind].
: Xy %13, *
For Ring B:
D., = X [s '(3c0525'—1) + (s -8 )sinzé'] | (B.5a)
56 3 zz ) STxx yy '
T
56
Doy = —— [(S_-S_) -S ]. f | (B.5b)
58 r3 XX yy zz" ' :
58
r 3 '
' 58 . o
D =D _ _ (B.5¢)
67 58(1‘67)
D, - K [s (3c§sze -1)+(Ss_ -8 )sinze ] (B.5d)
57 T, 22 57% XX yy 57z :
where
r12c636
cosel3z =TT
13
r56coss'
cosf =

57z r57
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For inter-fing couplings, the full equation for Dij in terms of
internuclear distances, order'parameters and direction cosines (Eq. 2.3)
must be used ﬁs théy do nbt reduce simply as with the intra-rirgcouplings.
,'Tﬁé cosines of”the angles eija-defining internuclear vectors in the
molécular axis frame are calculated from the trigonometric relations in

_Equation (B.3) and the rij values. These are then used in Equation (2.3)

o to obtain inter-ring couplings. These inter-ring couplings are for an

average of the conformations with dihedral angles +¢. To calculate the
four-conformation'average (+9, —¢, n+¢, n-¢) the following equations are

used.

' " D, .+D
5 = - = =12 18
D15 =Dyg = D45 =D4g =3 - (B.6a)

' - D, +D
=D _ = =5 =6 17 ' '
D16 = D17 = D4 = Dyy z (B.60)

: . D..4+D
- = = DygtDyy -
P26 = P27 = P36 “ P37 T T 7, | (B.6c)

- = = DystDyg

Dy5 = Dyg = D35 = D3y =—35 (B.6d)

B.2 Program BIPH4PARA
Program BIPH4PARA calculates biphenyl dipolar couplings from
Equation (B.4-6). For D4 symmetfy, the input parameters are Tips Ti4o

at ¢ = 0), A(l), (S(l); S;;)), and angle ¢.

(distance r S
‘ - zz XX

T23* 260 F26
Since the second ring (Ring B) is equivalent to the first, its geometric
parameters are set equal to those above. For D2 symmetry, the added
parameters required as input are r67, r58, and r56. The order parameters
' 2 2 2 2
required for coordinate system #2 are Séz), (Six)-'sgy))’ and Siy). The
calculation of couplings is done in coordinate system two regardless of

which symmetry is assumed and, for D4, the order tensor is first trans-

formed according to Equation (B.2).
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Afte?‘calculating the Dij's, BIPH4PARA sets up the Hamiltonian
(assuming no offset and chemicél>shift terms) in the simple product basis
. set fo: the submatrices with:magnetic quantum_numbérs M = +4, +3, and.tz.
Ihese subﬁétriceé aré'then diagonalized. The totalljvsymmetric (Al)
eigenstates are identified as follows. The coefficients of each eigen-
vector‘ffom the diagohalization'are summed. It can bé shown th#t this

symmetry

sum will vanish unless the state 1s of A1 symmetry [34.]. Ai

staﬁes foﬁnd in.this manner are labelled and printed out. From this.
'Symmetry determination, the A1 symmetry trénsitions expecﬁed in the six
and seven quantuh régiops’are calculated.

'BIPH4PARA will perform the coupling constant and frequency calcu-
latibns for a series of pafametefs by incfemenfing one of thém o&er a
givén range. Two files are created’éontaining the six and seven quahtum
Al spectra calculated for each set of éouplings. These may 1ater.be
plotted bf another'program. This is ;he method us'ed tb produce the

‘variation plots shown in Chapter 4.

B.3 Progfam.BIPHSPARA )

This program‘perféfms ﬁhe same coupling constant and A1 subspectra
calculations as BIPH4PARA. Instead of varying just one parameter, any
or all parameters for either symmetry case can be varied in a least
squares fit of the calcuiated couplings terxperimental ones given as
 inpu£. The intermediate couplings arebnot printed and the A1 sﬁbspectra'
simulation is only done at the completion of the iterative pfocess.

The least squares iterative procedure used to fit the couplings is
esséntially the same as that for program MQITER and most if the discus-
sion given in Appendix A applieé to BIPHSPARA as well. The method of

calculation for the derivatives of the D, 's with respect to order

ij
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parameters and geometric quantities is noteworthy._’Rather than giving
the derivatives from Equation (B.4-6) explicitly, they are estimated as

a change in the D,.'s with a one percent change in the parameter:

ij

aD,, AD,, : : '
_ii._1 : (B.7)
‘ apk Apk‘- )

where -

AD,, =D,, -=D,,
ij - 1] ij -

bp, = 001G (8.8)

' In”Equation (B.8) Dii-is ‘the couplingbconstaht calculated with parameter
.pk and Dij.is the constant with'pk +-lApk[; This is the method of
‘estimating derivatives adopted in the more general program SHAPE written

by Diehl and Bosiger [128].
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APPENDIX C

Disk Based Fourier Transform Programs

“The core memory capacity of the Data General Nova 820 computer used
'fot opera;ing the speqtrometervdescribed in Chapter 5 allows the éalcu-
‘lation of a Fourier transform of up to 8192 points (complex). For the

typicai linewidths and spectral‘range required in a non—selective multiple
quantum experiment on ablafge spin éystem; this is not.of adequate length.
As an example, considering the spectra presented_in Chapter 4, the trans-
fqrm.siZe required (32k) élréad&»equals the‘memofy available, leaving no
room fof the éxecutabie program. As‘a solution, a set of pfograms were
written to allow thé calcﬁlatioﬁ of the trénsform'in pieces-performing
-phase‘sﬁifts and transpositioné on the intermediafe result. This
gppendix describes the algorithm.used, discusses the possible:errors

induced by'the calculation, and presents a descriﬁtion of the programs.

C.1 Disk Based FFT Algorithm

(The description presented here follows closely that given in Ref. [129].)
The discréte Fourier transform of a time series ‘d(j) may be written
- N, -1 | -
1 ko
D(k) = ] -d(i) W (C.1)
J'=0 . ’
~where d(j) is N, points long, D(k), the transform, is N2 points long, and

1

wik

expl (127/X,) k]

k = 0,1, .,.,Nz-lc N - (c.2)

We assume



N, =N, =N =CyC = CyC, . (C.3)

where Co'is the amount of core storage available to hold a fraction of

d(j). We then write d(j) in composite indices

403 = d0g,3y)
31739 %31%
v jO
3; =0, 1, ...,Cp-1 - (C.4)
Likewise; D(k) may be indexed,

D(k) = D(k,,kq).

k = k.2 + kocz
ko =0, 1, ....,Co-l _
kZ =0, 1, ...,.CZ—]. _ (C.5)

-Rewriting Equation (C.1) with these indices gives

o7t &t (ke C)) (G g+, Cg)
D(k,ky) = L ) d(n,3) W
22707 P 0°~1
JO-O 31-0

(C.6)

Expanding the exponential factor and noting that WN'= 1, Equation (C.6)
reduces to
Co-l Cl-l

D(k,,k.) = ) T d(a.3,) W
2°%0 1470 1,50 0’31

(G H,C Ok, +i k. C
0-“10°2-00 2. .7

For the case where C, = C, and using the notation

2
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A exp(iZn/co); (C.8a)

W =
Wl = exp(iZw/Cl)? : | (C.8b)
W= exp(iZW/N),k _ (C.8¢c)
Equation (C.7) becomes
St At o dgks j11‘2 kg
D(k,,ky) = ._z : Z 4,3 W7 W T T Wy
: J-—O Jl—O .
Cfort agkof dgk, I oak,
= Wo W e W d(G,,34) (C.9a)
. : .o L 0’71
Jo 17
C.-1
D(ky,ky) = __Z_ Wo o BUgk), . (C.9b)
with
jok2
B(jgrky) =W Ak,y) (C.9¢c)
| €t iy o
Ak = L W d(3g»3q) | (C.9d)

Equation (C.9) shows that if we first ddCOJa:point Fourier transforms
of d(jo,jl), phase shift each section of the result according to Equation

(C.9¢), and finally do a C,-point Fourier transform, we will obtain the

0
desired frequency spectrum.
If Equation (C.9) is written in matrix form, we can readily see

what is required of computer calculations. First, the program must

Fourier transform the columns of the input matrix d:

A=Hd. | (C.10)

276
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Next, the matrix A is phase shifted according to Equation (C.9c) and the
transpose of this matrix is Fourier transformed to complete the calcu-

lations:
T ' - .
D= EOE . A (C.11)

. T . ; 2y s :
Matrix D is written to the output file to facilitate later calculations

- and display.

C.2 Errors

.For the acquisition systémvemployed in the sﬁectrometer, data is
represented.and stored as fixed poin;.(integer)'numbers iﬁ the range
+32767 (only 10 bits are actually digitized). It has been shown [130]
that an upper bound to the ratio of the RMSiérror to‘thaﬁ of-the root
. mean squared value of the result for the Cooley-Tukey FFT algorithm ié

RMS (error) _ 2(M+3)/22—B(0.3)
RMS(result) RMS(initial timefunction)

(C.12)

In Equation (C.12), the number of points in the transf?rm,is N = ZM and
B is the number of bits for single precision integer arithmetic (B =15
for a 16 bit-word computer operating in twos complement mode). For an
8 K, complex FFT on a Nova 820, the numerator on the right side of

Eqdation (1.12) evaluated to 2.34 x 10-3

. This is generaily sufficiently
small to be ignored. The ratio of Equation (C.12) increaées as VN and,
even for the transform size required in the multiple quantum experiments,
it is not considered to contribute to errors in the analysis.

The factors contributing to Equation (C.12) are i) the propagation-
of errors present in the input time series, ii) errors induced by the

mathematical requirements of the FFT algorithm and iii) the necessity to

scale the transform calculation occasionally intermediate to the final



result. This last contribution alsb arises because the RMS value of the
intermediate result in_the FFT algorithm increases from one cycle to the
next_[l3Q]. Tﬁis tendehcy for ﬁhe RMS magni;ude of the spectrum to in-
- crease during the FFT éalculation effects the programming_approach
sigﬁificantly. If the. entire calculatioﬁ were- to be performed on
iﬁtegers, provisions would have to be made to detect overflow during

- both transforms and the phase shifting of Equation (C.9c). ‘With tréns-
- form lengths above 16'K, the typical methods of bit shifting to scale

- the calculations during overflow is no longer adequate. The highest

intensity lines become small with the many divisions by two and, for the

usual cases where the full dyhamicrrange available from the acqﬁisition
is desired, Low intehSity lines are completely lost.:

The solution tovthis problem and one that removes the contribution
to Equation‘(C,IZ) from scaling is to perform all computations in
'fioating point arithmetic. "In addition, using floating point numbers
removes errors associated with multiplication and addition. Errors in
intensity and frequency determinations froﬁ the final spectrum are then
almost completely a resﬁltvof errdrs propagated from the experimental

time series.

C.3 Programs
Besides the programs DSKFFT, DSKFT1l, and DSKFT2 which do the actual

transformation, several other programs are necessary to produce tau-—

averaged spectra such as those presented in Chapter 4. CONVERT takes

the original integer data and converts it to floating point representation.

DSKSCL, DSKMAG, DSKBASE and DSKBADD are used to scale, take magnitudes,

baseline correct and co-add the data and calculated spectra. Finally,
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RETSPC is designed to re-convert the floating point spectrum to integers
by truncation.
These programs were written specifically for the Data General .

commercial operating system RDOS but could be modified to run on almost

any mini- or micro-computer. A memory size of 32 K words and a moderate

amount of disk étofage are_requiréd.  Calculgtions of a 32 K Fourier
tfansform on the NOVA system deécribea in Chapter §.fequires abouf

' one—half,ﬁour. The.opera;ion of all.the disk,progfams_is described in
‘more detail elsewhere [117]. Because these programs are quite lengthy,
a listing (~80 pages) is nét giveﬁ here. Copieé ﬁay be bbtained from

the author upon request.

279



OAOONMNHOO

ao0o0n

oo

MQITSET
SITS UP DATA FOR MOITIR

COTPUT FILE IS MOITER.TAT

integer mqit(1@),iparam(1%,,f1lcatl
integer title(72).case(40) ,mgo(1@)

 real d{45 Yoe)(4S

logicél yans

data mqit - 10%-1 /, 1param /7 15%9 /, title / 72%@ /
data 4 / 45%90.8/, cj / 45%e.0 - ' 4
data cse / 40%9 /. v

iv ¢

maxparp=1%
maxlir=230

this sectior opers up appropriate file and sets up

“iritiel dete

9penluniz=01;namec’hqiter.dat'.typeﬂ'nev') :

type 1 1 . .
accept 122, case
vrite{1,103' case

flcrtl=0
type 104 C,
:f yars(iu)) flcrtlsl

dcte initialization section

iype 128

-ccept 196, title

write(1,1€7) title

type 108

ccept *, p

if'r ge 1 .ard n le. 1¢) go to 3

type 4067 _

20 to 2

loword=¢

iffr eq 9) lowords?

ift‘r .eq 10 loword=8£

rml=p=1"

rcop=n*mm1/2

type 2 1. n,loword

accept *, louord

1 r .eq 9 .apd. loword .1lt. 7) lowords?
iffp .eq 1¢ .end. loword .1t. €) lowords=g€

iter-¢

1ype 203

if yars({iu)) iter=1

vrite(1,*) r,lovord,iter,f1lcntl
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190

cOoO0n

18

160

220

o060

bR-14

170
19¢

19¢

" -~ccept *, ni

the pext section hardles ifoput of the coupling corstarts

1f flcntl .eq. 1 g0 to 200

‘type 2¢%

k=1

do 100 1=1,pm}
ipi=i+}

do 120 )-ipl,n
type 208, 1,)

-accept * d(Xk:
_type 2¢€, {,)

.ccept =, cjlx®
k=K1 .

continue -

do 150 i{:1,necp
write/1,%) 4(1)
do 1€9 1:1,acp
vrite(1,*) ¢j(i®

. 1f iter = 1 ther enter the lipe assigmment

datsa

if'iter eq ©) go to 5€¢

rvlire-1
ropd=¢
type 3€1

type 3: ¢4 S
i?° pet yars(iu)) nwline=g
i¢ nvline .ne. 1 go to 180

. type 3€3

accept *, acrd

type 3 ¢

accept * (mqit(i), i=1,rord)
1f:flcnt]l .eq. 8 go to 180
vrite(1,%) pi.nord,nwline

.f nwlire eq. @) go to 19%
vrite 1,*) (mqit. 1), 1=1.,14"
type 37

do 19¢ 1 -1,rord

type 378, mqit(t

do 17¢ 3=1.mesxlire

type 308

accept ®, lpum,frgq
write(1.®) lpum,frq
if’'lrum eq. @) go to 190
continue

cortirue

data input for parameter sets

type 403
accept *, ncs
write(1,®) nos
type 4i3%
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340

344

350

3£8
3wl

500

428

45,

000

il

1v2
13
104

1€
19€
107

1vs

2cl

203
v
2¢6
20€

PP AN -

do 360 1-=1,.n0s
do 29¢ j=1,maxparp
iparam!( §i=g S

- type 408, 1

do 322 3=1.maxparp

type 3€8

accept *=, ip

1e(ip lt 96 go to 344
type 407

€0 to 340

i2lip -eq. 25 go to 3&S%
iparam(j=1ip

coatinve

write(1.408) (lparamlj), J=1 maxparp\
cortirue

type 409

idbirr=2d :

if'yars{iv)) idbirr-i
iype 562

accept e rmqo

write(1,%) fdbirr ,OMq o

1f. amgc .le. @' go to 425

type 5¢3

accept *,(mqo{(i), i=1,mmqo)
write(1.*' (mqo(i , i=1 amqo)
type ‘Qﬁ

thr-@

if yass{iu'® thr=-1.0

if thr eq. -1.9. go to 45¢
type 506

accept *, thr

write(1,*) ttr
closelurit=@1)

formét statments

tormat( +1x, ‘Program MQITSIT’, . /

1z, Data collection for program MQITIR.’//,

1x ‘What 1S the case pame (data file pame) for this run?”’)
format 4Mal}

formst’lx.&@el)

format(Ix. Has this case been handled before vith’,/,

1z “the same data file? °,$)

formet 1v,’Enter & cese title (up to 72 char) ‘)
format'?Zal)

: fornat(Ix.’Zal\

fo-nat(/ 1z, ‘How memy spins ip this case? °,$)

tormat JAx, For °,12,° spins, the lowest order for’ )
ix.’vhich a couplete frequency calculation s possible o/
1x is the “,12,° quentum spectrum. Other orders’,/,

1x. may be calcnlted dbut will de missing some allowed’

i1z . ‘trapsitions.’,/,

1x 'tnter the lovest order for wkich a complete frequency,’,/,
1z calculatlor is desired °,$)

format(1x,’ Is _this an tterative run? ‘,$)

formet(/ . 1x,” Enter the coupling constanmts (ino Hz) . . .%,//)
format( 10:. ‘D’ .12. . .12. ) = ’,8)

format(12x, J('.iZ. ’ 012. - o’)
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.format(/1x, Eov many iterative cycles are to be alloved? °,$)

format( 1x,"line assigmmeat fnput. /,,

‘1¥ ‘Hov many orders contaip lipe assigrpments? 'e$)

format(1z,°ls this & pev set of lipe assigements’,/; ¢ FETmL

1z.°for this case? °,$°

format(1v, “Enter these orders: °,$)

format( 1x, After the prompt, enter the lipe aumbers fror’,/,

1x.“the simnlation and the experimental frequencies’,/,

1 ‘assigped to them (enter each pair with a CR). & zero ‘o7

1z ‘for a lire pumber terminates ipput. A total of 230°,/,

1X. 1ines are allowed.’//)

format(/° Line assignments for the ‘.42, quantum spectrum:°’/)

format(” >> °,$)

format(/1x, “Perameter set imput.’,/,

1x. “Eow mary parameter sets are there? °,$)

tormat\/ix. After the prompt, enter each of the parlmeters

1z ‘in a set Eech entery should de a two digit oumder’ ./.

1x,‘correspording to the nuclei i and J coupled.’,/,

1x ’(A gero means nucleus ten and the louer aumbder nucleus

1x ‘1s the first digit in the pair. )’

1z.‘Positive prumbers refer to I"’s and negative numbers’,/,

1z “refer to J°°s’,//"

L0TMSE :(1:. Péremeter set # ‘,42,7)

format! Say what?’ )

formrtfl‘ién

formatflr,” Do you vish tc include a search fcr douhly

. degenerete ,  eigerstates ip freq calculatior? ,$)

formet(lv, Fov mécy orders do you wast calcualted? o/

1x “’-1 mears all orders) ,$)

fo'mat '1x, “Enter the orders you vant in the order’,/,

iz ‘threy are tc be calculated: ‘08

fornat(lx. Is the default value (1.de-4) of the thresnold’,/,
‘for alloved frequencies to de used? ‘%)

fgrmat‘lx. Erter the threshold to be used (positive pumber)

end of program

stcp
end
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PROGRAM MQITER

YAX VMS VERSION.

. TBIS PROGRAM SIMULATES THE MULTIFLE QUANTUM NME SPECTRUM FCR UP

10 10 COUPLID SPINS 1/2. THE PRCCRAM CAN FITHER SIMPLY SIMUIATIE
THE SPECTRUM FROM GIVEN COUPLING CONSTANTS OR ITERATE CN A SET
C¥ INITIAL PARAMITIERS TO FIT AN FXPERIMEINTAL SEECTIROM.

FOR UP TO EIGRT SPINS TBI EINTIRE SPICTRUM (ALL MQ ORLCEES) CAN

EYI CAICUIATED FOR NINI SFINS TER SEVEN QUANTUM SPECTRUM ANL
ABOVF ARE COMPLETE. ICR TEN SPINS TER LOVWEST CCMPLITE SFECTROM
IS TER BIGHT QUANTUM SPECTHROM. IOWER ORDERS THAN THESZI ARE
FOSSIBLIE, BUT NOT ALL EIGENSTATES ANI FREQUINCIES ARE CAICUILATED

I¥ ITER=@ JUST THF SIMULATION IS DONE.

IF ITER GT @ THEX PBOGRAM IS ITERATING CN INPUT PARAHETIRS.

A TOTAI CY NI ITERATIONS WILL PE PREFORMID IF CCNVERGENCE

IS NOT REACHED FIRST. CONV!RGINCS 1S REACBED wHiN THE REIATIV:
TERCINT CHANGE IN THE R M.S. IRRCR CF¥ THE FIT E2TeEEN TH1OEY
ANT I%;IgI;INTAL SPECTRA ICR SUCCESSIVE ITERATIONS IS 1ESS TEAN
CNE PERCENT.

TIYENSION SIGMA(28°,PROBER(28)
INTEGER L(28' .M(2%),TITLE(72),FLCNTL CASE(42)
INTEGER 1"00’11) FIIND(?‘

COMMON / CFILE / ISC rLrnn 1P
COMMON CSTATE LST 2,1924),N8(11), ASH(II).
NSP(II PAIFAT NST

CCMMCN T(45).CJ(4%),EN(2%6",ITER .NCS,IFARAM(28,15),
LLMB(256,28 ,MQIT(2,10°',IASS(23@ ,EXFER(230},
IC'23@.29),B(230 ,v(784),BV(28), ORK(4SCY)
ECUIVALENCE (SIGMA,BV),(PRCBIR,D '

ggENSSCRATCE DATA FILES

CPEIN ONIT=@3,TYPE= "SCRATCE ,ACCESS="TIRECT’, INITIALSIZE=1,
EXTINDSIZE=1 .RECORDS IZE=1, EECORDTYPE="FIXED ",
ASSOCIATYVARIAPIE=IPP)

CPIN UNIT=04,2YPF="SCRATCE ', 4CCESS="DIRECT , INITIALSIZE=1,
EXTINDSIZEB=1 .RECORLS12E=1,FECCEDTYIPE="FIXEL",
ASSOCIATEVARIABIEI=ITP2)

FEZD IN CAST. TITLE.
CPIN(UNIT=81,NAME="MQITIR.IAT ,TYPE="0ID")
FEAD 1,481 CaSE

VRITI/&, 4€2) CASE

READ(1,701) TITLT

RITE(S,792' TITLY

FEAD IN CONTRCL VARIABLES INL PRRFORF INITIAL CALCULATIONS.
FZAD(1,®* N, LOVWORD,ITIR,IL(NTL

IR1=10¢00.0

NPARPS=15

NM1=N-1

NPl=N+1
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31

15

CALCULATE BINOMIAL COEFFICIENTS, AND NSP
N@'1Y=1 :

" NSP{1)=1

10 20 J=1,N

JP1=J+1

JD N+1-J

NO JP1 =(NB(J'*JD /J
NST(JP1)=NSP(J '+NE(JP1)

TETERMINE MAXMAT, NSM, NST. NFILIE, JFIIND
NT-NP1-LOVORT -
1¥ (MOD(N,2) - MOD(LOWORD,z)) .EC. 8. NT=NT+1
NT NT/2 :
MAYMAT=1

10 12 J=1,NT

MAYMAT=MAXB(NO'J ,MAXMAT
A'HAT-HA!G(NZ'J*IOIO!D' HAXHAT)

‘N§ST-2

anL!-o

NSMI1: =1

E=1 . _

IG 13 J=2,N

I? NC(J: .GT MAXMAT  GC TC 13
K=%+1 -
NSM(E =NSM(K-1 +N@&'J
NST=NST+NE(J:
FIIND(K=-1)=Na(T)*NO(J)

" NFILE=NFILE+1

CCrTINTE
NSM(X+1)=NSM(K)+1

KCPaN®NM1/2

RIAL IN COUPLING CONSTANTS
IP FLCNTL) 4.5,.4.
PEN'UNIT=02. NAH£=CLS!.TYP1- CLr’)
REAL’2.*) (D’K), K-1,NCP"®
FEAD!2,* (CJI(X), x=1 NCP)
GC TC 12

RZAD(1,*) (D(J), J 1,NCP)
FEAD:1.= (CJ(J. J-l NCP)
IC 8 J=1 NCP

T(JV=D(J) 4.0

-3 J =CJ(J /4.0

CPIN/UNIT=C2 ,NAME=CASE,TYPi="NEV ")
wRITF(2,*) (D(K), K=1,NCP)
~RITE(2,*) (CJ(K . K=1,NCP

CAIL CNTCUT(D,CJ,N}

FICNTI-#

17 ITIR IQ. 2 GO TO %°
REAT IN IXPPRIMENTAL LINES
FEAD 1,* NI,NORD,NWLINE
I0 31 I=1.10

MOIT(1.])==1

*QIT(2.1 =8

IC 1% I=1,230

TASS(I)=8

FIPER(1 =0.8

NEXPEIR-1
IP NVLINE .20. 8 GO 70 37
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QOO0

27

38
32

- 38

3e

70

(44
(£ ]

(s Xz X¢]

REAT!1,*) (MQIT(1.1), I=1,18)
IC 35 I=1,NORD

"FBAD(1,*  LNUM,FPRQ

IF INC~ .LE. 8: GO TO 38
IASS(NEXIPER)=INUM
EI°ER{NEXPIR =FRQ

MQIT(2 1 =MQIT(2.1I'+1
NIXPIR=NIIPIR+1

IP NEXPIR .GE. 231) GO TO 232
GC T0 27

CONTINUE

CALL LINORD(NORD .

WRITE MQIT,LASS,EXPER TC DISK FIIR '
YRITE(2,®' ((MQIT(I,X), I=1,2), K=1,10"
WRITE(2,®) (LASS'K', K=1 2'0)
WRITF!2,%) (!XPIR(K). K’1.23l)

GO TO 38

READ IN-CLD LINB ASSIGNMINTS:

READ(2,* ((MQIT(I,K*, I=1.2), K 1,10 -
FRAT(2,% (LASS(K , E=1,237)

RIAD(2,.*) (FXIPIR/X), E=1,220)

I¢c 3¢ JC-1,10

NIYPER=NEYPER-MQIT(2,JC:
NEXPER-=NEIPER-1

ARITE(6,724" NEIPIR

WRIT: IIN! ASSIGNMENTS TC CUTFUT

IF nvn:n: .NE @ GO To 265
NCRL=0

0 360 I=1,18 .
¥ MCXT‘I.X) .NB. =1 NORD:NORI~-1
k=¢ v ‘
I0 359 JC=1 ,NCRD ,
WRITR(6.739) MQIT!1,JC"
J=rQIT(2,JC)

Lo 370 1=1,J

£=x-1 .

WRITIE(€,740) IASS'K), E!P!R(K)
CONTINUE

CCNTINUX

READ IN PARAMETER SET DATA

REAL 1 .®: NOS

READ(1 ®) ((IPARAM(I,J), J-1, NPABPS ), I=1,NCS)
sRITI(6,741"

INTER ITIRATIVE LOOP.
CAIL HAMILS
IF ITIR IZQ @) GO TO SP0

LI2ST SQUARES ROUTINES

CAII CONDIT

CAIL ERRIT(XR1 NI, NEXIT,NEXPER)
CATL NORMAL(NIXPIR)

IP NEXIT .EQ. 6 GO TO 406

CALL MINV(V ,NOS,DIT,L,M.
IFTIT ¥Q. & 8) WRITI(E,729)
CALL CORREC
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- 471

400

411

413
4065

a7

41€

417
4¢9

ITIR=ITER+1

GO T0 85
~ END OF ITERATION LOOP

COTFUT REFINED PARAMETERS
IO 487 1=1,NOS
+RITE(6,728) I

- IC 465 J=1 ,NPARPS

K=IPARAM(I,J®
KCUT=1ABS(K)
I¥ 'K) 411,407,413
#RITE(6,737' KOUT

" GC T0 4c%

SRITE(6,738) KOUT
CONTINUE

CCNTINUS
WRITE(E,730) N
CALL CNTOUT(D.CJ . N"

ERRCR ANALYSIS.

CUTPOT CCEFF OF NCR™AL EQUATICNS
D -TRANS ® DC *®(-1"

- IC 471 1=1,7¢c4

lCPK’I‘=V(I)

CALL MINV(VOPK,NOS,DET,L.M

IF LT - §Q. 0.02) UBIT!(G 7z 9)
PRITF(E,7%1)

L0 409 NS=1 NOS
II?'=’NS-1"NCS
IBIGE=IICW+NOS

ILO4=1L04W*1

IF NOS-14) 416.41€.417

‘WRITE(6,752) NS, {WORK(K), K=IICV IEHIGH)

G0 TO‘409 :
WRITE'6,7%3' NS, 4ORK(K: K=I104 IRIGH)
co~rrnut . :
CALL GENSYM(V.NOS

SIcma(1 =¥(21.

IF NCS EQ. 1} GO TO 42¢

CALL Etcz(v.wonx.SIan #,NCS,08"
WRITI(G,7%4)

1F NOS-14) 516.516.517

RITE(6,785" (SIGMA(K', K=1,NCS)

GC T0 42¢

SRITI(E,7568) (SIGrA(K), K=1,NCS)
INL=NEXPIR

FN"S=NOS

CEV=(IR1®ER1*INL) (FNL-INOS)

L0 43% J=1,NOS

FRNPER(J '=3. ¢

WRITE(6,734)

ICOLMA -@

IC 4%¢ NS=1,NCS

ER2+SQRT/DIV SIGMA(NS))
INDX=ICOLMN®NOS

IBIGH=INII+NOS

I1CW=INDX+1

JRITE(8,732  (dORK(K , KE=I1OVW,IRHIGH)
WRIT2(6,735: RR2

I0 445 J=1,N0S

PROBER(NS‘-F!O!SI’NS 4(40!:(!unx+J)'132\"2
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450
46¢

4.-1
4¢2
701
7.2
724
728
29

q°

73e .

732
723

734

73
736
737
73¢
73

7440
741
781
7€2

7583
754

ICCLMN=ICOLMN+1
CONTINDY

L0 468 J=1.NOS o 15t

FRCBIR'J =g, 674“3011(210)il(J3)
iRITi!e 733) (J,PROBER(J), J=1,NCS)
WRITE!6.736"

CALL ECUT(N, MAYMAT BN, NG

CALCULATE ALLOVED MQ LINES

BEAD(1.* IDBIRR.NMQO

IF NMQO LE. €' GO T0 &S
READ(1,%) (IvQO(I), I=1,NMCC)
FEAD(1,* TRP

CAIL ~Q2IIFF/THR,ILBIRR.NMCC,IMQC)
CICSE(UNIT=01)

CLCSE{UNIT=92

Cl SE(ONIT=03

STOP

FORMAT/40AY)

FCRmMAT/1B1,10X,° cas :°,51 40A1/)

FORMAT: 7241 - ~

FCEMAT!/1€X,7241,//)

FORMAT(’ TOTAI # OF FREQ INTERID =°,I4, )

FORMAT. ",° PARAMETIR SEIT # °,12, )

SCEMAT(/,

1 n!ttanxnaur OF MATRIX 10 BE INVERTID IS ZERO 1y, )
FQamaT 191,/,° REFINED PARAMETERS . REVA

IChMAT(RY, (PAX'14 NOS)DFE.4!

¥ ODHATflEI. .,  PROBABLE ERRCRS OF IIGEN)ASIS "

1 “PARAMFTER SITS. . .%, 7/,
2(8Y .12 £X . ¥12.3 !

1'

PORPAT(IPI. ,° TRROR VICTORS AND STANDARD rIVIATICNS ‘

‘CF fIGINBASIS PAFRAMETERS . . o)

FCIMAT/1 2 ,“STANDARD IRROR = FE 2)

FOPPAT?1B1, ,” RIFINED INIBGIIS ey )

FOSMAT( J'.IZ

FORMAT(” D’ IZ

FOPMAT(1EY, , IINI ASSIGNMENTS ¥CR THEF °,12,

* GQUANTU™ SPECTRUM.,//5X, LINE #° .10!.'IXPERIHENTAL FREQUENCY”

1 ’ 1'.46('-';.

1-
1.

7.8 )

-

756

FOPMAT '5X 14,141,512 &)
FOSMAT(1P1,/.

"FEGRAM™ roxr:n - START OF ITERATIVE CALCULATIONS.’,//)
FCRMAT(1H1, ° MATRIX OF CORFFICIINTS FOR TBE NOBMAL EQUATICNS ®

° BEFORE DIAGONALIZATION . . “//)
FCEMAT(2X,12,°) ‘,<NOSDICMIN(1Z, 128-NCS))>.4/)
JORMAT(2X,12,°) %,1409.2,/ ,{NCS=14>15.3/)
FOnMAT: / zx.‘trcluvnxnts OF NCRMAL IQUATIONS HAIRIX o o )
ICHMAT (@Y, CNCSOTCMIN(12,1126/NCS 1)>.3/)
;ognar'ex.ziro.s. ,{NOS~1¢ 8.3 )

N
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SUBROUTINE LINCRD(NORD)

.!HIS.SU)BOUTINI ORDERS TEI LINE ASSIGNMENTS OF EXPERIMINTAL

LINES THAT ARE INPUT FROM THE TTY FOR AN ITERATIVE RUN.

'COMMON 3!45).c:(4:).tu(zse).xrzasnos.xrnnan(ze.1s).

II~B(2%€,26),M017(2,10),1455(2302),EXPER(230), .
DC(ZSH.ZSY.B(ZSO‘.V(?Gt).B‘(ZB).VORK((QOO)

INDEX=0

I0 1M I=1,NORD

NL=NMQIT(Z,1)

IFINI EC. 1) GO TO 99
NLM1=NL~-%

IC &2 J=1,NLM1

J¥ J+INDIX

JP1:J+3 _

I0 4% X=JP1.Nl _
KM X-INDEX ;

IF LASS(JM' .LE. LASS(EM:) GO TO 45
IT=LASS{JIM) i '
TASS/JM)=1ASS (X

IASS X -LT.
IX=EXPFR/JIM!

EXPER(JM '=FXPER(ENM)
FXPER({™ =EX .

CCKTINUE

CCNTINUE
INDEXY=INDEX+MQIT(2,I
CONTINUE :

RETURN
ENT
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SUBRCUTINE CNTOUT(AR1,AR2,N)

c
c
c
c COTPUTS COUPLING CONSTANTS TO LPR..
c
c TIMENSION AR1(1),4R2(1)
NM1-N-1
=1
IC 32 I=1,M1
IP1=1~-1 ~

10 3¢ J=IP1,N

I0UT=AR1(Kk) = 4.0

‘CJOUT=AR2(K) * 4.9

WRITI!6,7321) 1,J,T007,1,J,CJ00T
2 ¥=gK+1

7?31 $OPMAT(” D(’,12,7,°,12,°) = *,F12.4,/
1, J('.I2o"'1129') = '.r12-4'//)
RETORN ) :
END
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SUBROUTINE EAMILS o
VAX ¥MS VIRSION.

,AEIS PROGRAM S!TS UP AND CALLS FOR THI DIAGONALIZ&TION 0F THE Same e w s
- FREE-INDUCTION HAMILTONIAN OF AN N SPIN 1,2 SISTE® (N 1ESS TEAN 11).

CNLY DIPOLAR AND SCALAR COUPLING. CONSTANTS ARE_INCLULIL IN
THE HAMILTONIAN. THE SUBRCUTINE IS CAILED BY "MQITIR.
AISC CAICULATED IS THY MATRIX CF DERIVATIVIS OF TEE
EIGENVALUES vwITE RESPECT T0 THE PARAHITEBS BEING ITIR&TED
OPCN  TEIS IS HATRIX DLMB. .

SUBROUTINES CLII!D ARE NUMSRT, IIG2, UNTRAN, ANL MATID

ALSC C2LIED ARY READMS AND WRITMS

TIMINSION B(24€5),5(4920:,5T(490¢)
INTEGER NUHB(Z.1024)o!$f(72).15?(10).IFLIP(Z).ILIND(7)

COMMON / CYILE / ISC,PLIND.IFP
COMMON  CSTATF  N,1sT(2, 1024) NB(11),NSM(11),
: nsr(11' MAIMAT,NST

,ccnnon I{45),CJ(4%),EN(256),ITER,NOS ,IPARAM(28, 18),

LLMR 256 .26 ,MQIT(2,10 IASS(Z'O*.EIPER(ZSO)-

ICi23¢ 2¢),B(23¢,7(784),BV(28) ,VORK (4500)
FQUIVAIENCE (WORK,ST), (n(1‘.nc(1 1)),(s(1),0c(1,12))

NBARPS=1F
NM1=N=1
NSTATE=2==N
NCT=N®NM1/2

IF ITER .EQ. @' GO TO 31
I0 2% I=1,NOS
IIMP(1,1)=0.0

L0 24 J=1,NPARPS
K=ITARAM '], J) -

.- IF(X' 10.15,10
. TL»p/1.1 'DLHB(I I)1+1.0

CCNTINDE
IIHB(NST.X)'DIPB(i 1)
CONTINUE

§iCP=2

I0 35 I=1,NCP
LCP=ECP-D(I 1+CJ(I"
EN‘1'=ECE

EN/NST '=ECP

MSTR=1

CALl NUMSRT(NUMB N ,NSTATE)
I1ST(1,3)=NUMB(1,NSTATE)
187(2,1'=-NUMB{2,NSTATE"
IST 1 . NSTATE)aNUMEB(1,1)
IST(2,NSTATE )=NUMB(2,1)
KKK-1

17 ¢

“AIN LOOP

IC 170 JS=1,NM1
INL @

IS=N JS
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. EK=0

LO 40 J=1, NS!ATE

l”ﬂﬂﬂ!(c.J) .NR. IS) o TC 42

Kk KK+l

EEX=KKK~+1

IF/XX LE. MATIMAT) IST(XK)=NOUME(1,J)
IST(1,KKX)=NOUMB(1,J)

1STi2,KKK)=1S

CONTINDE

IF/XX GT. MAXMAT) GO T0 1¢0

IT IF+1

#ST=KK
P PSTEMST

IH_

LC E@ M#=1,MST

IC 8¢ L=1 M

IM 1M+l

IFP L .NE. M) GO T0 60
IIAGONAL ELEN!NTS
~#S%-1 :

TO 50 X=1,N

ISPIK:==1

CIFCIISI(T) .ANT MSK) .NE. @) xsp(x)=;

MSK-MSK*2

CONTINUE

P(Iv'=p ¢

IF'IND .NE. @' GO 10 S6°

LK="

IC 5% I=1,NM1

IP1=I-1

IC BE J=1IP1,N_

XK KK+1 :

2{LM "(LH\‘(D\KK“CJ(KI‘)'ISP(J"ISP(I)
CCNTINOE

.

~ GC 70 Pfo

r0 5¢ I=1,NPARPS
E=1ZARAM(IND,I)
IF(X 57.80,57 -
ICP1=IABS(K/10"

"IF'ICP1 EQ. &) ICP1=10

1CP2=MOD(1ABS(K),10)

1Fi1CP2 .IQ. @) ICP2=19

p(IM =E{IM)+ISP(ICP1I*ISP(ICFZ)
GC 70 F@

CFF DIAGONAL LLEMENTS.

Jw =1

JSP=p

B(Ir =¢ ¢

¥SE=1

L0 7&% K=1,N . . )
IF/°1ST(1l) .AND. MSK) - (IST(M) .ANL. MSK)}). 70,7%,7¢
oSP-JSP+1

IFLIPJd =K

Ju-2

MSK =MSK®2

IF JSP .NE. 2° GO TO &@

KE=(2®N-1FLIP(1) :®*(IFLIP(1:-1)/2 - IFLIP(1)+IFLIP(2)
IF:INT NE. @) GO TO 77

“(L¢ = -D(K5‘'+2,.0*CI(K5"

GC TC o0
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"~x-xp;n;n
IF(K EQ ©) GO TC 80

IO 9% I=1,NPARPS
fun I

1CP1=1ABS(K. 102)
JP(ICP1 .EQ. 0 ICPi=1¢
1CP2=MCD(IABS (KX),10)
IF(ICPZ XQ. @) 1CP2=1¢0
I6 (2*N-ICP1)*(1CP1-1)/2 - ICP1 + !CPZ )
IF(KE NI. X% GO TO 9%
IF¥(K) 83,800,805
-B(LH?*B(LH)#Z.G
GC TC 9%

. B(IM»)=B(1IM)=-1 O

CONTINUE
CCNTINUE

IF(ITIR 1E. 1 .AND. INT .30. @) 60 70 87
IF(IND .NE. @' GO TO 81 .
CALL READMS(IF,ISC,S,PLIND,IFP)

ROUGE TIACONAIIZATION

CALL UNTRAN(E,S,MST,ST

CALL EIG2(E,S,EN,MST@,MST,ITIR)

 CALL lRITHS(iF.ISC.S.FLIND.IF?)

.I¥ " ITER LE. e) GC TO 9€

IF ITIR .NE. 1) GC TO 968 B
CAIL WRITMS(IF.1SC+1,5,FLINL,IFP;:
GO0 TC 97

CALL USJAP’ST S,EN,MST ,MST2,IF}
GC TC 97

CAII UNTRAN(E,S,¥ST,ST"
IC 9~ I=1,MST

IT-%ATII.1)
LLvYB(MSTO+1,IND =R(11)
IND=INT+1

IFINT IE. NOS) GO 70 45
"MSTA=MSTe+MST

. CCNTINUE .

IF/ITER NE. @) RETURN
+RITE(E,402)

CALL ECUT(N.HAYHAT.EN.N?*
RETURN

FORMAT/191,/,” ENRRGIES (HZ) . . .°/)
IND
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SUBROUTINE NUMSRT(NUMB,N,NN)

. TABULATES. TEE NUMBER OF ONIS IN THE BINARY RIPRESINTATION CI- INTGERS:-

LIMENSION NUMB(2,NN)

IC 28 J=1,NN

JJ J-1

NOME(1,] =JJ

X 1

1L }
IC 12 K=1,N

IF((JJ AND. EK). NE. @) LI=LI+}
KK -2%K%

CCNTINDE

NOMB(2,J ‘=11

CONTINUE

" RETORN .

END

% Ve
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‘SUSROUTINI-IIGZ(!.S.EN.HSTQ.N.ITIH)

SUBPROGRAM EIGEN - VERSION ‘2 . - B S

TEIS SUBROUTINE DIAGONALIZIS AN N BY N SYMMETRIC MATRIXI B BY T9L
JACCBI MFTBOD. THE UPPER TRIANGULAR ELEMENTS OF E (B(1,J)? J .Gi. I)
ART ENTERED COLUMN-VISE IN A 1-D ARRAY. THE SUBRCUTINE CUTPUTS 1B
EIGENVALUES IN THE VECTOR IN. THE TRANSTORMATION MATRIX IS

CUTPGT IN VECTOR S (B = S®R-LIAG®S~INV). DEPENLCING ON TBI VAIUE OF

“1TER, § IS EITRER SET EQUAL TO THE UNIT MATRIX OR LEFT AS INPUT

WITY SUCCESIVE JACOBI ROTATIONS BEING MULTIPLIXT INTC IT.
"BE SUBPCUTINE IS ADAPTIL FROM SUBRCUTINE "EIGEN" IN THE IBN

SYSTEv /362 SCIENTIFIC SUBROUTINE PACKAGE.

LIVENSICN B(1°,S(1),EN(1 -
CN=N
RANGCE=1 CE-6

1J-2

I0 20 J=1,N
L0 20 I=1,N

1J=1J~1
S(1JY=¢ ¢
IF I .EQ. J' S(1J:=1.0

ANCRmM=@ ¢
IC 30 J=2,N
Jv1=J-1

"0 3¢ I=1,Jm

I1J MAT'1.J)

ANZRM=ENCRM™ + B(IJV*E(1J:
ANCRM=SQRT(2.0*ANORM) ' : .
IF:ANOFM .LT. RANGE) GO 70 12%
INCRMX=ANCR™ ® RANGE / ON

INT .2 A

TPR-ANOR™.

“HR=TER QN

I0 1¢2 M=2,N

FPL=v-]

L0 120 L=1,MM1

IM MATIL M)

IF/ABSH(LM)) .IT. TER) GO TC 120

INL=1

II MAT(L,I)

PM-MAT ‘M M}

T1FF=F/mr)-E(1L)

I¥FITIFF EQ. ©0.2) DIFF=1.0i-3¢
AL P S®ATAN(2.0*H(LM'/DIFF
SINA=SIN'AL)

C0SA=CCS/AA)

SINA2=STINA®SINA
COSA2=CCSA®COSA

IC 70 K=1,N -
IF(K-1° 61,7¢,62
K1 MATK.1)

KM MAT K.M!

GC TC €%

IF/K-M' €3,70,64



63

65

¢

KM=MAT'K M)
cC 10 €S

EL-MATIL,K)
EM=MAT(M K)

E(KL =FE
CCNTINUE

FILLi=LE

B(IM'=-DIFF*SINA®COSA + H(IM)*(CCSA2 - SINAZ)

I0 8¢ I=1,N

CKL:MAT LK)

II (1-1)®N + I
IM- (M=1'®N & T

SS ccsa=s(IL) - SINA‘S(IH)
S(I¥)=SINA®S(I1) + COSA‘S(IM)

S(IL =SS
CCNTINNE

"CONTINUE

INZ-2
GC T0 £¢

1F TER .GT.

I1 MaAT 1.1°
J=1+MSTZ
EN2Y=B(I1)

© CONTINDE

EETORN
END

ANORMX)

- BB COSA®H(KI) - SINA®B(KM)
H(XM =SINA®H(KL) + COSA®H(ZM)

$5:2 PA®SINA®COSA®H(LM)
BR CCSA2*B(LL) + sxunz-s(nn) - 8§
B(MM =SINA2®E(LL' + COSAZ2®E(MM) + SS

IF’ IND EO 0) GO TO 122

GO T0 40
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SUBROUTINE UNTRAN(A,U,N,ST)

' 1B1S SUBEOUTINE CALCULATES THE UNITARY TRANSFORMATION

298

{D-ADJCINT)®A®(U) FOR THEE SPECIAL CASE WHERE A IS RIAL srnnzeff-

.IRIC AND U-ADJOINT=U-TRANSFOSE.

RISUI? RETURNET IN A
N IS T°F DIMENSION OF A,U ANI NSQ'N"Z.

STCRAGF ~ODE CF MATRICES IS SINGLE SUBSCRIPT VECTOR WITH ONLY

UPPER TRIANGLF BALF OF A STORIL.
ST IS & 4ORK MATRIX.

TIMENSION ST(1',A(1),0(1"

NSQ=N®N

. IC 1@ ISI=1,NSQ

ST/IST =¢.0

- YORM PRODUCT AU AND STORE 1N-ST

IC &¢ ITLX1=1 N

I0 S¢ IDX2=1,N
INZ-MATTLC(IDX1,IDX2,N}
IC &2 I=1,.N

IF/IEX1~- I) 30,29,20
IN2=MAT(I, IDX1) ‘

GC TO <¢ v
IN2=MATIIDX1,T)

CIN1-MATVEC{I.IPX2.N)

ST IN3 =SP(IN3) + A(IN2)=U(IN1)
CONTINDE

FOS™ PFOTUCT U-TRANSPOSE®ST AND STOR' IN & -
IC 1¢¢ IIX1=1 N

IC 1m0 1DX2= IDXI N .

IN1=MAT(IDX1,1DX2.

A(IN1)=0 @

[0 190 I-1,N '
IN2=MATYRC(I,ILX2,N) -

INZ=MATVEC(I,ICX1 ,N)

A(INY =A'INY" *U(Ih3)*$”(IN2)

CONTINUE :

RETUBN
END
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SUBROUTINE CONDIT
YAI/VMS VERSION.

TRIS SUBROUTINY YORMS TBE XQUATICNS CF CONLITION FOR A LIEAST
SQUAPES ITERATIVE FIT OF AN EXPERIMENTAL SPECTRUM TO THECRY.
CUOANTITIES CALCUIATED IN TBIS SUBPROGRAM ARE SUM(PARTIAL LERIV.
CF NU(I' W.R.T. PARAMETIR P(J)) AND (NU(OBS) = ND(CAIC)) WEIRE
1EL NU°S ARE FREQUENCIES (FITHER EXPERIMENTAL OR TERORETICAL)
AND THY PARAMETIRS P ARE TBE INITIAI PARAMETERS BIING ITIRATIL
UPON. TUF_SUM IS RETURNED (IN COMMON) IN ARRAY DC AND TEE
"RESITUALS ™ ARE RETURNET IN ARRAY B.

THIS SUBROUTINE IS MODELED AFTER TEAT. FOUND IN THI

" FROGRAM "LAOCCCNS3.

INTEGEP CRDER,UES,DML,IMU

COMMON / CSTATE / N,LST(2,1024),N0(11),NSM(11),
NSP{11),MAXMAT ,NST

CO»MON I'74%),CJ{(4%),EN(2%6,,1TER,NOS,IPARAM(2E,15),
TIMB/2%€,28),MQIT(2,10),LA85(22¢),RIPER(230),
IC 23@.2:,B(230°',¥(784),.BV(28',¥ORK(4500Q)

NF1-N+1
KX @

IC 320 ICRD=1,N

NL ™QI17T(2,ICRD)
CRLER=%QIT(1,IO0RD)

IF CRDFR .EQ. =1) GO TO 40«

10CP OVER 2EEMAN SUBMATRICES

IIVE-¢

K21-1 -

1T 2°¢ IZ=1,N v

I¥ CRIIR .EQ. @ AND. IZ .EQ. 1) GO TO 200
IF (12+0FDZR) .GT. NP1 ' GO TO 259 :

SUBMSTRIX LIMENSIONS

IMI=NR(12)

MU N@12+0RLCER

1F'TMI LE. MAIMAT) GO TC 134
X21=K21+1

G0 T0 200

IF'T™M0- GT. MAXMAT) GO TC 220
£22-1

" L0 136 1-1,0RDER

IF'NC(12 1) .LE. MAXMAT) GC TC 136
X22=X22+1 ‘
CONTINDE

167P OVEF LOWER EIGENSTATES

115-¢

IF{1Z .NE. 1) LESeNSM{I1Z-kz1)
NT P=IML

1F'ORDER .EQ. @) NTOP=NTCP-1
[0 100 J=1 ,NTOP
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1XS=LES+]

ICOP OVEP UPPIR JIGENSTATES
UgS*NSH(IZ-KZZ*OBDEk

NO=1

I¥(ORDER .NE. @) GO TO 133
NU-J-i :

- CES=URS+J

TO 95 JST=NU, DHU

 DES=UES+1
LINI NUMEER COUNTER

IINF=LINE+1
KKE=XK

IC 82 NC=1, NL
KYX=KKK+1

IZ LASS(XEK) .NE. LINE GO TC &

F(KEK '=EYPER(KEK' - (iN(UlS)‘iN(IBS)'
I0 79 X=1,N0OS
TC/KKK.X -DLHB(UES K\ - DLNB(LIS.K)
- CONTINUE

CCNTINUI

" CONTINUE
- CCNTINUE

EK=XK-NL"
CCNTINUE.

RETURN
IND
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SUBROUTINE FRRIT(ER1,NI,NEXIT,NL;
VAX 'TMS VIRSION.

BVALUATES R.M.S. IRROR FOR A VECTOR OF RESIDUALS FROM ONE
ITERATIVE CYCIY IN NMR _ITERATIVE PRCGRAM. THIS VEBSION IS MCDIFIIL
FRCM PROGRAM LAOCOON, : :

E IS TFX VECTOR OF RESILUALS.

ITER IS THE NUMBIR OF THY FRISENT ITERATIVE CYCIE.
ER1 1S TER BmMS ERROR FROM THE LAST CYCLE.

NI IS THE TCTAL NUMBER OF ITERATIONS ALLOWILD.

NEXIT 1S A PARAMETER TO BE USED IN DETERMINING WHETHER

L

FURTEER ITERATIVE CYCLES SHCULL BE RUN.
IF NEXIT=@ RETURNIL NC FURTEIR ITERATIONS NECESSARY.
; IF NEXIT=1, FUTHER CYCLES ARE REQUIRED. ‘
NL IS TEE NUMEER OF RESILUALS CONTAINEL IN B.

REAL MINERR

COM“CN D 45',CJ(45',EN(256 ,ITER,NOS,IPARAM(28,15),
Ilvp/2¢%6 28),MQIT (2,10 ,LASS(27¢),EXPER(232),
[C’23@ .2€),B(230),V(784),BV(2€),VORK (4909 )

PINERR = 1.2F-8
PR2-0 ¢
ENL-NL

IC 4 -1 ,NL

ER2-FR2+B(K'*B(X"

ER2=SQRT/ER2/FNL!

IF(ER2 GE. MINERR) GO TO &
sRITE(6,4P1} ER2 .
GC TIC & '

WRITE(€,201) ITER,ER2

IF(/FR1-FR2)/ER1-¢.01) 8,8,1¢
NEXIT=¢
ER1=kR2
RETURN

IF ITER-NI! 110,.8,.8
IR1=ER2

NEXIT=1

FETURN

FCR™AT!SY, “ITERATION # °,12,3X,’R M S ERROR = °,JB.2)
FORMAT!/,” ITERATION CYCIE TERMINATED -°,/,

EMS ERROR LESS THAN MINIMUM ALLOWED!®,/,

»RHOR = °,E16.4, ) '

END
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SUBROUTINE NORMAL (NL)
VAX ¥MS VIRSION.

TEIS SUBROUTINE SETS UP TEE NORMAL EQUATIONS FOR 2 LEAST ‘-
SQUARES ITERATIVE PROCEIDURE.

T9E MATRIX PRODUCTS DC-TRANS*DC AND DC*B ARE FORF!D VEERE DC IS TBE
MATRIX OF DERIVATIVES OF FREBQUINCIES WITH

RESPECT TO PARAMETERS AND E IS TBE MATRIX OF RESITUALS

-BETYEFN CALCULATED AND OBSERVED FPREQULNCILS.

OO0 OO0

 COMMON D(45),CJ(45),EN(2% ,ITER,NOS,IPARAM(28,15),
1 ILMB(2%6 28),MQIT(2,10),LASS(222: ,BXPER(23¢),
2. rcrzsa.zs).n(zsa>.V(7s45.nv(ze),vonx(4soa)

10 21¢ NS1=1,NOS
IC 206 NS2=NS1,NOS

INDX1=MATVEC(NS2,NS1,NOS)
INCX2=MATVEC(N51,NS2,NOS)

© V(INIX1 =0.0

- IC 2@% LEQ=1,NL
20¢ 'V(INEXI"V(INDXI +DC(LEQ. NSI)'DC(LIQ NSZ‘
2¢6 V/INIXZ =V(INDX1"

BV NS1 =0.9
: 10 21¢ LEQ=1,NL
21¢  EVINS1‘'=EV(NS1)+DC(LEQ,NS1)®B(LEC)

AEIUEN
EN



OO0

N

3ve

3¢e
308
319

303

SOUBROUTINE CORREC
VAX/VMS VERSION.

. TBIS SUBROUTINE APPLIES CORRECTIONS TO PARAMETEIRS THAT

ARE BEING ITIRATEL UPON. IT IS DESIGNED 70 BE CAILEL FRCM
THE MAIN PROGRAM MQITER.

COMMCN / CSTATE / N,LST(2,1024),N8(11),N5M(11),
NSP(11),¥AXMAT NST

COMMON D(45),CJ(45).EN(256 ,ITER.NOS,IPARAM(26,15),
TLMB(256 28).MOIT(2,18),LASS (22¢),EXPER(232),
IC(232,20),B(230),7(784),BV(28),VORK (4500 )

NPARPS=1%
IO 310 NS=1,NCS

CORR=0¢ ¢

IC 20¢ NSE=1,NCS : :
INPX=MATVEC(NS,NSB,NOS"
CCRR=CCRR + V{INLI)*BV(NSB®

- IC 30§ K=1,NPARPS

¥C IPARAM(NS ,K)
ICP1-=1ARS(KC 12)

- IF(ICPY1 .EQ. @) ICP1=10

1CP2=MCD(TABS (KC:,10:

. 1¥'1CP2 1Q. @) ICP2=10

ICPC - 2®N=ICP1)®(ICP1~-1)/2-1CP1+ICP2°’
IF/EC: 376,312,308
CJ'ICPC)=CI(ICPC)+CORR

GO T0 3m@s .

I'1CPC =I(ICPC)+CORR

CCNTINUF

CONTINUE

RETORN
END
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SUBROUTINE GENSIM(ARR,ITIM)

THIS SUBROUTINE RE-ARRANGES A 1D VECTOR ARRAY = ,
(RFAL) RIPRESENTING A GENERAL REAL MATRIX INTO THE STORAGE - -
“ODE WHERE ONIY THE UPPEIR TRIANGULAR HALF OF TER ARRAY IS KEPT.” - -
THIS RIDUCES STORAGE REQUIREMENTS FOR REAL SYMMETRIC ARBAYS.

TIMENSION ARR(1)
ATCNT =1

TO 12¢ TCOLMN=1,IDIM
INDX=(ICCIMN=1)*ITIM

10 1¢@ IROW=1,ICOLMN
ARR(MA™CNT })=sARR( INDX+IROV)
MATCNT=MATCNT+1

" CONTINDE =~ P
BETURN ' :

ENT
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SUBRCUTINE MINV(A.N,L,L,M)
INVFRTS A MATRIX

TIMENSION A(2),L(1),M(1)
REAL A.D.BIGA,BOID

I=1 9
N -N
IC &/ K=1,N
NK NX+N :
LK X
¥(K: =Kk

- KE-NX-K

FIGA-A KK}

IC 2’ J=K N

1Z-N*(J-1)

L0 20 I=K,N

1J:12+1

IF’ AB"BIGA)-ABS(A(IJ))) 18,20,2¢
PIGA=A(IJ)

L(K:=]

MIZ =g

CONTINUE

JeL(K!

IF J-K 3I£,35.28
KI-E-N S
IC 3¢ I=1,N

KI XI-K
ECLT==p(KI)

oI KI-X+J

ATET =A(JTY

£(J1 =FC1D

I=~ X

IF/'I-K  4F,4F .38
JP-N®(I-1) .

[0 40 J=1,N

JE NE+J

«I JP+J

30LD=~A'JK"

A(JK)=A(J])
Al(S1'=BOID

IF'2IGL  48,46,42
T=¢ ¢

FETURN

IC 28 I=1,N

IF'I-K® %0,55,50

IK NK+T

AMIK =A(IK)/(=-BIGA)
CCNTINYF

10 €€ I=1,N

IE NX+I
40LD=4A"IK)
1IJ-1-N

I0 68 J=1.N

1J 1J+K

IF'1-X 60,6%,6¢
IFtJ-K' €2,6%,62
XJ 1J-1-+K

305



- e
N) -
L.

-
n
-

13
180

A(17:=HOID®A(KJ) + A(1J)

CONTINUE

KEJ=K-K

IC 78 J=1,N
EJ-KI+N
1F(J-K ' 78,7%,70
AT V=a(x3 ). Bica
CONTINDE

T=L*BIGA

MXEi=1 €/BIGA
CONTINUE

K=X
K=K-1

- 1¥-K 150,150,105

I=L(K"®

" 1¥'1-K) 120,120,108

JQ N®(K-1)
JR=N®(1-1)

IC 119 J=1,N .
JK-JQ-J

FOLI=A(JK)

<l -JR+J .

AJE =-AJT"

E1JT =EQLD

J=M(K}

IF J-k 120,100,125
KI-K~N :
IC 12¢ I:1,N
RT-XI-N

ECLL=A'X])
cI-X1-X+J
A(XY == J1I0
A(J1:=ROID

G0 70 120

RETOURN

INT
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suproutine uswvap sl,s2,en,idim,msté,if}

Checks ¢ matrix (s2) ageinst a previously stored
ratrix or upit isc+l Check is for mipimum RMS
difference in elements of rovs with one another.

The sum of (s1(J.x)-s2(i,k))*®2 for all k from

1 to idim is calculated. This is stored as LJI(1).
The mipimum of this vector is ther found and

{f that ripimum if not for jJ=i ther the correspording
columns cf s2 are interchapged. Also the elements
er(msti+)) and en(mstd+l) are svepped.

This routire is deslg:ed to keep the order of eigerstates
-nd elgervectors the same for succesive cycles in the
iterative portior of mgiter. This will help convergence
in tre case wnere the diagonalization of tne Hamiltoniar
méy incdvertértly Svap eigemstctes.

dimersjor d4j1(79),51(1),s2(1),er(1)
integer flipd(7),sti,st2
commor / cfile / isc,flind,ifp

read ir origiral matrix
cell recdms(i1f,isc+1,s1,f1ind.ifp)

loop over columns by |
ao 50¢ j-1.idim
oo i t=1%idim

loop over columns by {

do 20¢ 1-1,idim

a3i'{ =0 @ .
ioff=(i-1)%1d1im .

do 10@ k 1,idim

dii'y =aj1(1 + (s1(joff+k - s2(ioff+k))*%2

cortirue’

fird minimum

sm:11=dj1(1)

kkr=1

do 300 kr=2.,idim

if 431 kk) .ege. sm&ll) gc to 300
.3 343 4

small=d ji(kk)

cortirue

if'REE .eq. §) go to £¢2
swap eigenvectors

xoff=!kkk-1)%idim
do 40¢ k=1,1dim
indxi= joff+k
indx2=goff+k
temp=s2{irdxl)

s2 indxl =s2(indx2"
s2 irdy2 =temp
cortinue

svap eigenvalues
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sti=jemste

- §t2=kkk<+ms 10
temp=er{sti’
er'stl =er(st2)
en’'st2'=atemp

cutput swepped states
write(6,121) stl,st2

500  contipue
" reture

1¢l  format1¢z,” SVAPPED STATES® ,14,° , °,14)
end -
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subroutinse eout(n,maxmat,en,nd)

This subroutire outputs the contents of energy vector

en ip £12.4 format. States {p each Zeeman manifold

are seperated by 2 bdlapk lipe. N is the pumder of spins.
mazmat {S the Size of the largest Zeemar manifold

cortéired in en 2nd n@ is the erray containicg toe

tiromial coefficients (dimensions of the Zeeman manifolds).

dimensior en(l\.no(l)

npl-r~1
rd 1

do 526 j=1,.npl

(4 .gt. mazmat) go to 500
rt-pd+r@(§)=1

write(6, 401\ (ierg,en(ieng , ieng-no.nt)
rd pd+r@(})

cortirue

return

rormat!/{4ax,“EN(’.13,°' = °,P12.4))
erd
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sudroutine mq2diff(thr,idvirr,namqo,imqo)

reltiple quartum frequercy caliculating rouziae,
version 6. ~ VYAX/VMS version.

This subroutire calculates 2lloved (by symmetry)

lines in a multiple quantur spectrum. Any alloved order
cir be celculated. Orders for which not all eigeanvector
matrices have bdeer calculated will not de complete.

subroutine symset 1s called to classify eigenstates
Tty symmetry.

thr i{s the minimum alloved turesnold for alloved
trarsitiors.

idbdirr 1s the'flac for degeneracy checking
" iddbirr=]l eigenstates scanned for degeneracies
idbirr=6 eigenstates not scarcped.

"nmqo is the numder of orders to calculate.

7gn is the vector cortairirg the orders to calculate
Elements of mgo define vhat order spectira are calculated is.
If rmqgo=-1, all crders are calculated startipg with 1
through r and then the zero quastum.

this version #llows up to 1@ spins.

dimensior s2(490¢ ,s1(3136',freq(100@9)

irteger deg,i1ddl(256),isym(2%6),sym

integer ideger(1098), imqo(i) arl .dmu,ues,f1ird (7)
legicel topkef,.helf lcs

.

commor cfile isc,flird, ifp

commor. / cstate / n,1st(2, 1024).nﬂ(11).nsm(11).

psp{11 ,maxmat, ast

comrmor 4/45),cj(4%),er(256),iter,n0s,iparam(28,15),
dlmb(z‘e.ZE‘.mqit(z 18, lass(zso .exper(ZSﬂ).
Qc’ZS& 25),!(230'.v(?EQ).bv(2E).vork(&SGU)

equivalerce (workx,s2),(idvi(1),d1mb(1,1)),
s1'1 .41md(1,2"

r tialize

if tar eq. =i) thr=1.fe-4
rfreqs

rstate-2%%r

£epl=n-1

rmi=g-3

do 3 1i=1,2%€

idnl ‘11 @

les= filse.

nalf= false.

if 1dbir> .eq. 8 go to 1

kk=1

itop=rml

do 6 i-1l.itop

‘ttp’E\(i*l‘

if jtop gt. maxmat) go to 6
o € J-1.3top .

kk kk-1

if1dbl(kk) re. @ .or J eg. jtop) go to £

310



(e ;]

ac

awmw

€12

111

1

i1 100 .M%en(kk’

Jpi=}+1

xkr kk

do 4 k=3jpl1, jtop

kkk=kkk-1

i2-102.0%ep(kkk)

12711 .eq. 12 a0l {kkk '=kk
continue

cortirue

continue

calcul ate symmetries
cell eymset(sil,s2.isym,arep,thr)

‘¢imodir 2) .re @) half=.true.
if‘emgn gt. ) go to 111

do 212 {-1,r

imqo(i =t

imqo(zpl =9

rmgo:-npl

MAIN IOCOP OVEIR ORIERS TO CALCUIATE
g0 £.¢- rq=1,rmqc '

n32 imgo ‘rq)
vrite’'6,.705 . mqo

3 £

lire=@

tophsf .false.

do 1 j=1.,1@¢¢

’req(j'=2.98 _ v
idegeri{j =0 ’

‘rlow=r/2 1

12 'half) mlow=n+2

rt rpl mqe

i’ mwodlr,2)-modmqo,2 , .eq. €} nt=nt+l
rt et 2 ’

- de 13 i=1,rt

if re(3: .le. maxmat .ard. pe(j+mqo) .le. maxmat)
go to 13

write(€,722)

¢0 to 132

contipue

write(6.7¢3:

write/€,723)

lo~p cver sets of zeemar submetrices.

k21-1
do 2¢¢ 12=1,r

rl w=mlow=] '

12/rrle mlovsmlow-i
rup ‘mlow-mqo
if hal? mup=mlowv—-2%mqo

“if'mge .eq. 2 .ard. iz .eq 1) go to 20¢

it "{2-m30) .gt npl) go to 3P¢
dimenciors cf lover and upper submatirices.

dml=rifi-)
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134

" 13€°

27¢ .

276

277

27¢

135

dmu: pd(iz+mqo "

i1f 4ml .gt. dmu) tophafe.true.

if ‘tophaf .ard. {.pot. lcs)) go to 360
12 d4m) .le. mazmat) go to 134
k231=k21+1

a0 t0o 200

if.amu .gt. maxmat) go to 2060
k22=1

do 136 1-=1,mqo

1f.00(12+4) .le. mazmat) go to 136
k22=k22+1}

cortirue ,

1f mqe .re. @' go to 27€
if(hslf’ go to 27%
srite(6,803) mlov

g0 to 27¢&

vrite(6,E04) mlov

£0 to 278

if half: go to 277
write(6,801) mlow,mup

£0 to 27F

write(6,602) mliow,.mup

locp over lower eigenstetes

les=9 :
1f 1z ne. 1' les=nsm(iz-kz1)

" atcp=dnl

if'mgo .eq &) rtop=rtop=-}
do 10@ j-1,ntop
les=1les+1

loop over upper eigens;ates

ves ‘-asm{iz=Fkz2+mqo!}

ru:-1.

:f'mgo re. ) go to 135’
nu j+1 :
ues=ues- j

de 95 jst=pru,dmu
ues=ues=1

lire # counter
lire=lipe+}

i1f idoirr .pe. ¥ .and. idbl(les) .pe. ¥)go to 95

eigerstetes cf same symmetry?
if'isym{les) nre. isym(ues:) go to 9%
possible degenerete situation for zero quantum?
i2'i{dvirr .ne @ .end.
idvi(ues) .eq 1les .ard mq0 .eq. @)) go to ¥¢
yes, ortput freq
freqlkk)-er(ues)-en(les)
sym-isymiles }+1
srite{6.501"' lipe,freq{kk) ues,les,sym
kK -kk+1
ik 1t. 1201) go to 95
vrite(6,706'
¢ to 3ey

END of loops over upper. lover eigepstates apd

.ver sets of submatrices.
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98
100

. 209

16¢

les

17¢

Er,.
(3

€66

742

74€
74¢
741

c0o

300

cortirue
contince

contipue

calculate degeneracies
itop=kk=1

reregrs’

1f/ttop le. 1) go to 89P0
write(6,70¢)

) dc 17¢ icats}, itop

ffideger(ictt) .eq. =1) go to 17¢
11 1 #e2*freq{tcat)
depn=1 .

icpl=icrt+l

1f 1cpl .gt. itop’ go to 165
do 16¢ jcrt=icpl,itop

i’ 1¢egez(3cnt§ .eq. =1) go to 160
12 1. an‘freq(Jcnt)

if'1ebs(21) .ne. 1abs(12)) go to 160
ideger ! jert)=-1 .
1£°11 eq. 12 degsdeg*l

cortirue

_r!reqs'freq‘l

jdegeniicnti=deg
cortinye

output freqﬁercies. I? there are ro chemical
<kifts. then orly the apsolute values output.

if les go tc 666 -

co 585 { 1,100¢

treq(1 ebs(freq ) :
¢211 frqrut(freq.ideger.itcp) v
write(€,707) rfreg

ENT mair locp over orders.

cortirue

rutpzt results of degereracy search of eigenstates.

ifridvirr .eq. @ go to 741 -

write(6,714)
. 40 74/ {i=1,nst

12°1481714)) 743,745,743
write(6,716) ii,er(11),1401(11)
g0 tc 740

write(6.71%: ii,ep(14)

cortinye

write(6,717"'

cutput syrmetry classifications

kk @
nrep-r-ep*l
do 778 jji=1,rrep
write(s,718" 33
kkg=¢
do 7€ ii=1,rst
if tsym(it .re. kk) go to 76¢
write(6,71%) 1i,en(i})
Yy -kky+1
cortinue
writel(€,71¢) kkk
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770

501
703

785
706
%4
7¢9

714 -

718
716

717

718
719

kk kk+1

" continue

FORMAT STATEMENTS

formézf4x.14 131,£12.4,172,13,°=>",13,131,12)
format (61, ‘LiNL 4°.101, ‘TREQUINCT® eX.°(B2)°
1.6, “TRANSITION STATES®,EX, STMM’,

FORFAT(I!I. ,101,12,°

QUANTUM SPIC!RUH CALCULATION . . . ./)

FORMAT(” 1008 rn!q EAVE BELN CALCULATED!®)
FORMAT(/.” TOTAL # UNIQUR FREQ =,15,/)

!OPHATfill. +7X, ‘TREQ

11X .48 °="V )
FORMAT(1E1, 10: tuxncr DEGENEBAC! CALCULATION. . .%,/)

-FORMAT(* rn( .Is. ‘) =
FORMAT(” EN(°,13,°) =

1,5X,°1S TEGENBRATE WITE

JORMAT(1E1, ,1@X,

(#z)’,11x, DIG!NIRLC! ./,

‘y12.4)
‘' r12.4
STATE #°,14)

1° SYMMETRY CLASSIPICATION OF EIGENSTATES. . .°/)
FORMAT (/ ,%X,° STATES OF REPRESENTATION #°,13)
FORMAT! ,10X,° TOTAL NUMBER OF STATIS = “,I3)
FORMAT /17X, *( INCOMPLETE SPECTRUM)’,/)

722

723

Eol -

.2

EBJ
8.4

1°

FORMAT(1Y,79( =" )

FCRMAT( ° IOWER QUANTOM # = “,12,° ¢ UPPER QUANTU® # = °
1.12/

5 UPPER QUANTUM # =
FORMAT(/° QUANTUM # =
FORMAT(/° QUANTUM # =

return
end

rornn"!/ LOVER QUANTUM # = 7. 12,7/2°,

‘. 12,7 2°7)
'912/\-
7:12,°/72°/)
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sutroutire symset(sl.sz.isym.nrep.thres)

Ietermires symmetry relationships amorg else:states

- stcred on disk., Matrix elements of I minus are

calculated apd ron-zero results are taken to represent
tv: states {r the same representation.

s1 and s2 are input matrices used for the eigenvector
matrices. read from disk.

r is the pumber of spins
iurt 1c¢ the unit number read op for eigenvector matrices.

r@ is the vector'of bdiromial coefficients.

.nsm is tke sum of dimensions of alloved snbhetrices.

nsp is the sum of dimensions of all submatrices.
raxmat is the largest allowved submatrix dimersion.
rst is the total numter of eigenstates.

l1st is the two dirensional matriz of simple product
stetes ard the pumber of ope $pinms ip each.

thres is the minimum alloved tkreshold for elloved
transiticns

in exit, ISIM conteiés the numbers from 1 to NREP whick
identify the represenptatiors fourd for the eigeustates.

.symmetry rumber of ore (1) 1ndicates e totelly

-symmetric state ‘Al symmetry).

reithe- eigerstates or eigenvectors &re re:crranged.

dimensior 51(1).52(1) 1sym(1)

- regl 1vi7@),uvi?Q)
‘integer svl(VH‘.spu(vo‘.dml amu, dmp.ustete utmp,usp

irteger uf,skip,ues, £11pd(7)
logical tophaf :

common / efile / isc.flind.ifp
comror / cstate / r, 15t'2 1224) re(11), rsm(11).
nsp(ll ,magxmat ,gst

initielize

do 7 i-1,rnst
isym{i =9
igymil =1
isym{rst'=1
aml-r-1
tophaf=_felse
irep-1
epl-p=+?
skip=¢

izs-@

do €0 1=1,npl
ieir(i- .le. mavmat) go to 9¢
&0 to 91
continuve

R0 tc 93
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2
g2

- 83

b4

g0
€5

e

11

i3s+*i=1

‘@0 92 j3=i.ap}

1¢p2(3' .le mexmet) go to 93
skip=skip+l
coetinve

»AIN LOOP

kz 1

threabs(thres

it’'thr .1t. 1 thr=l .@/thr
do 5002 12=2,rml

file pumbers

1? 1z2-kz

uf-1£-1 _

Jump-¢ : ,

ifriz .eq. izs) jump=skip
pover of I minus operator.
imp=jump-1 ]

.dimensior of lover submatrix

gmi-re(iz) _
if dm)l .le. maxmat) go to S4
fz°kz~1 :

€0 to 5000

dimensior of upper submatrix

ému-pefiz+imp:

dimersior of operator matrix

dmp-n@' ppl-imp' = v
ip-rspippi-(imp+1) - :
poirters to begirpi:g of simple product states.
lsp-rsp’iz-1"

usp= usp(iz-1+1mp

collect spir product states
. da F@ ¥k-1,aml

spl 'kk -1st(1 1sp+kk)
a0 €5 kk=1,.,dmu
spulkk)=1st(1,usp+kk)

ift’dml pgt. dmu) tophaf=.true.

if‘tophaf) go to 19

read l~wer submatrix into si; upper into s2
cell readms{l¢,isc,s1,f1ind,ifp)

call readms(uf,isc,s2,flird,ify)

/0 to 11

re;d lcwer sudmatrix irto s27 upper into sl
call readms(1f,isc,52,f1ire,ifp}

call readms{vf,isc,s1,flina,ifp)

locp over lover eigenstates
les=rsm{iz=-¥z)

do 409 rl=1,4ml

lesrles+]

Tove eigervector to lv

i1 ¥l -1 ®aml :
if ‘tephaf) gc to 2%
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do 5¢ kk=1,dml}
1v kk =s1{{1+kx>
€0 to %2

do 51 kk 1,4ml

‘1v kk -$2(11+kk

quick check to see if this ejgerstate 1is totally symm.

1f isym(les’ .pe. #) go to 30
sum=¢

do 2¢ rk-1,dm}

sum=sum-lv(kk’
iters=-vs{1¢¢.2%sum)

if'iters .re B) isym(les)si

lo p over upper eigenstates
ues nsmiiz~kz)+dml

do 3¢9 ru=1,4dmu
ves-ues+1 .
mecve eigerpvector to uv

ius‘ku-1'*dry

“if tophaf' go to 3%

do 6( rk=1.dru

 uv'kk)-s2(iu+kk)

go tr 62
do €1 kk=1,dru
uv 'kk)=s1(iu+kk)

cuick check to see if this eigenstate is totally symm.
i? lsym(ues) .ne @) go to 7% ’

sum=¢ @ )

do 7¢ kk ‘1.,d4mu

sur=sum+uv (kK
1tens=abs(100.2%sum)

if'iters .re. A' fsym(ues)=1

check for possidble previous symmetry calculatior
otk totally symm. (irep=1' only possibility.

1¢ isym/les: .ne € .2pd. i{sym{ues) .re. #) go to 2€¢

ratrir elemert calculaticn section.
ey -9.¢

loop over simple product states of lower eigerstate’

do 20A¢ ml=1,dml

istzte=spli(ml) v
loop over simple product states of upper eigenstate

do 10f mus=}.dmu
ngtate=spuimu)

lo~p over comporerts of [ ripus operator
I mirvs to imp power)

do 1%¢ ruc=l1,d4mp
chrse operatcer
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15¢

lo0
209

16«

S
4¢P

Sope

imin=1st‘1,1p+nuc!

imiriustate) = § ?

1f fustate .end. imin) .ne. 6) go to 15¢
utmp = iminlustated

utrpsustate ¢+ imir

<lstatelutmp) = Clstateliminiustated =9 ?

if(1stéte .ne. utmp) go to 1%0
sum=sum+lv(ml )®%uv(mu)
g0 to 190

- cortinue

cortirue
continue

i <les! (I minus *®imp luesd> |®»2 -
itens=thr*(sum®*sum)

if-{ters .eq. 8 go to 300

ror- zero métrir element; check to see if one of

these eigerstates previously classified.

i1f isym(les' .eq. @ .and. isym(ues) .eq. B) go to 175

if'isym{les: .eq @) go to 16¢
1sym‘ues '=isym(les)

. g0 tc 299

tsym(les sisym(ues)'
eo te 20

.pev representation.

irep=irep+l}
isyr/les ‘=irep o ‘ o,
isym(ues =irep

corticue
cortiruve

cortinue

.rrep=irep

‘returr

eand
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175

1e0

“lekx

601

[y

ideger{k =-1

subroutire frqout(freq,idegen,itop)

this subroutime outputs frequencies from vecior freq
-rd their associcted “statistical” degeneracies from

~deger Itop is the maximum sumber of frequercies ic -

freq. TFrequencies with a degeneracy of -1 are
skipped Or completiou. idegen is set to -1
in all elemerts.

dimension freq{l',idegen(1
fird first freq
do 18€ 1-1,ito0p

ir 1degen(1‘ .eq. -1) go to 182
k=i

€0 to 1f2

cortinue

=11 dore

returr
find né:t maximum freq

curr=freg(k) v

do 18% 1=k ,itop o

if tdeger(i) .eq. =1 .or. freq(i . .le. curr)
ge te 18F - . _ ' .

k=i

‘ge to 1£2

cortirue
raximum fourd, output ‘
write(6.601 freq(k),ideger(k)

€0 to 178

- format 4x,£12.4,15x,13"

end
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suproutine readms(irec.iu.inp.flind.ifp)

Feads ir data from file opep or unit # iu.
File must be opered for Sequertial, direct access.
Fecord size should de ¢ Ydytes.

Lata 1s read irto real array ipp vith urformatted,
direct access reads. Irec determines which section

-of the f1le to read and flind is an integer
array contajring the sumder of records ir each sectior.

Ifp 1s the e&ssociated vériadle for the file,

real ipp!1).

“integer flird (1)

determipe iritial record #

irit=}1

12 irec eq. 1) go to 2¢

rt irec~1 . .

do 1¢ i=1,rt »

init={piteflind(i)

position file pocinter to initiel>recc:d
firditu init

read data

rt=flird’irec.
do 102 1 1,rt
re.d(iu’init 4impii)

T imit=iritel

corctinue

‘reture

ere
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subroutire writms(irec,iu,out,f1ind,ifp)

writes data to file opeped on umit # ju. .
File must de opened for sequenticl, direct access. -
Record size should be 4 bytes.

Pate s vritten from reel array out with unformatted.
direct access writes Irec determipes the section

7f the file to receive the data ard flird is ar integer
«Prey cortaining the numbder of records im each section.

real out(1)

integer flind (1)

cetermire initiel record #

ipit=1 i
if'irec eq. 1) go to 22

-pt {rec-1
- ¢0 10 {=1,rt

frit=iriveflirall -
write dete

rt flipd’'irec)

do 100 {-1.1¢t
writeffu“irit: out(i)
init=ipit+l

centirue

returr
end
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FUNCTICN maAT(].J!

TRIS IS 4 FUNCTION TO COMPUTE TEE INDEX FOR AN ARRAY LOCATION-
4EIN CN1Y THE UPPER HALY TRIANGLE OF A T¢O DIMENSIONAL ARRAY

- IS STORED. THE ARGUMINTS 1 AND J ARE THE NOBRMAL 2I INLEIX:S.

J MUST BE GT I POR THE COMPUTAION TO BL CORRECT.
vAT=J®(J-1) 2 ¢ T

RETURN
ENT

FUNCTION MATVEC(I.J,N)

TEIS 1S A YUNCTION TO COMFUTE THE INDIXI FOR AN ARRAY LOCATION
WHBEN A GENERAL 2T ARRAY 1S STCRED AS A SINGLE VECTCE.
ARGUMENTS 1 AND J ARE THE NCEMAI 2D INDEXES. N IS TEX DIVMEN-
SICN OF THF 2T ARRAY.

MATVEC=[J=1V8N + |

EETURN
END
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program biph4para

calculates conpling constants for a biphenyl
witk asymmetrically distorted rirgs.

T s aren e e c=gp Snas e

Coodirate system #1; D4 symmetry:

The origin is at the center of tebh ¢-c inter ripg bdridge.
The x-axis disects the dihedral angle, the z2-axis is along
the benzepe para bomds to the substituents.

Cocrdirate system #2; D2 symmetry:

The g-axis passes through the diphenyl para bdords,

the zrigir is located i{n ripg 2 (with protoss 5,6,7,E),
tee x-axis lies ir the plare of this ring and the y-azxis
is normal to 1t

This versice (# 4) does not symmetrize" the hamiltomian

tefore diagoralizatio: {i.e. bphanam is called instead

¢f bphhem), . ,

this version ircrements various parameters for differert passes
irput  (ip commor “geom”)

r12. ri4. r2%, r260, r67. rS5€, rt6,
s?2- (sx-=-syy'=s2p, sxy, delte

. implicit doubdle precision (a=h, 6-2)

double precisict th(16),1xy(4),1yx(4),s(%) .

real d°'2F),cj(28" .cs(E).en(zse).uotf freq(‘Z).;Jd&(ze‘
Te-1 wimx van.vimn wa2me 2z, w1 (50)

integer syw(2‘6).t0(6) .

logical yans

commcr / geom / r12 r14 r260,r67,r=8.r5,522,52p, s1y,del te

- ¢ommor coup / d.cj,cs,woff

commcr / cstate / n.1st(2.zss)

datas cjde / 2.¢,2.2,v¥.2,4%2.0,6.5,5%C.0, 2 e, S'ﬁ 2,
2.¢,0.0,0.5,0.5,0.2,2.9 /

da’a o2 / 1,E,2€6,25,8,1 /

et input

do 1 §=1 286

en’j)=0.0

isym! ) =@

do 2 i=1 €

ts'i)=0 L4

bR

voff=¢ ¢ _

type ®* ° which coord system? (1 or 2)°
-ccept *.icoord

type ®* ° INPUT OF INITIAL PARAMETERS :
1ype ®,° enter ri2:
ccept *,ri12

type ® ° erter ri4: °
accept *®,.ri4

type *.’ enter r23: °
dccept *,p23

type *.° epter r269:
cccept *,r260

if icoord .eq. 1: go to 6266
1ype *.° enter r67:

»
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- ccept ® iper v
‘type *.” what is the ircremept ir this parameter?”’

324

¢ccept ¥ ré7?
type *.° enter rbda:

-accept *,prd8

4

type ® ° epter r3g:
accept *,r5€

type *.° enter szz:
cccept * g22 '
type =, enter (sxx=syy)
accept *.s2p

if(icoord .ec. 1 go to 6067
type ¥, erter siy:
accept * sy

type ® ° epter delta:
accept *,4elta :
type *.° which perameter do you wish to vary?’

»

.

o

type * ° szz = 1 ri2 = 7°
type * ° (sxx=-syy) = 2 123 = €°
type *.° sxy = 3 r56 = §°
type * ° delta = ¢ r260 = 190°
type =.° ri¢ = 5 r56 = 11°
type *.° r67 = 6°

eccept *.sirc
type * ° how mery values?’
accept *.rarg

type ®.° are the d4¢ j°‘s to pe used in the simulation?’
if'yers’/idum:) go to 11

do 12 i=1,28

¢y i =0.0 !

20 tc 13

do 14 i=1,28 .

¢t 1 -cjde(d : .

rad=4  d¢OP®dcter’1.04ce’
Ak <2 PAPL™(245.217400%%2.7)

wimx=¢ @

wamz=( ¢

wimr=¢ @

w2nn=0 .0

‘mr=y L

iwflag=0
‘pen‘vrit=1,name="spifl.da’,type="nev’}
open({urit=2,reme="spif2.d42 ",type="nev”’)
rq € :
write(1,602' nang,nq

rq 7

write’'?,F@?) rarg,rq

maip l1~o0p cver order parameters
de €09V rd=3.nerp

cotpute delta ir rads
rdel=delta®rad 169Q.0d42¢

if'iccerd .eq. 2 RO tec 56°9

c?erairate system #1

s{1 =c212

s(2 =s2p®((dcos(rdel /2.040¢ " )»=2-(dsin(rdel/2.0dev))**2)
s(3'=gsPpe(dcos(rdel,2.0d00)"dsir(rdel /2.0de¥))
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s(4 -0 BdoR
s(51=¢ 2400 _ e
r€7-r22 e : -

r8E=r14

r&6=p12
go to 6068

cocrdirate system w2
s(1'=s22

s(2 =¢2p

s(3 =sxy

s(4)=@ Pao@

s(s =0 .09¢00

compute irig;fu:ctions of delte
csdl=dcos(rdel)
spdl=dsir(rdel)

output irteiel perameters

Frirt 201, ri2,r14,r23 rzs..rev.rss rss (s(1, 1=1,3),delta
tormat\ lprogram piph3 =~ initiel parameters . . . Y,

“12 = “,e14 4/," r14 = °,e14.6/,° 123 = .314 &/,

r2€p = “,el4 .6 ,  r67 = .e14.6/.’ r5¢ = " el4.6/,

185 ‘,e14.6//,° s33 = ‘,e14.6/,° (sxx-syy) = ‘,ela.€/,
sYy ‘o014 .67/, DELTA = °,012.4///) S

compute reeded distances at delta=¢p

*x1 (r1e r23 /2.0d400
rx2={r5c-r67)/2.¢400 .

S rx3= rE2-rle /2.P400

rx4~/r14 r67:/2.¢420 ,
rxS=(r58-r23).2.0400 , .
1X5=( r67 -r2% /2.04¢9

compute tkig furctions cf reeded angles

srd=rxl ri2
csd-dsqrt(1.Mdvé-spda*=2.0)
St =rx6/r26¢

csa=dsqrt(l 0400-5pa%*2.0)
spdp=ri2 'r56

csdp=dsqrt (1 240¢-sndp**2.2)

ry4-r2€0%csa
ryl=ri12%csd+ry4

" ry2=rf6®csdp+ry4

rys-ryl‘ry2-ry4
calculate ipternuclear distances for uelta=0

r16¢=dsqrt(ry1®%2 g+rx®»2 9)
r15¢=dsqrt(ry2®*2 g+rx3**2 @)
12%Q=dsqrt(ry2%=2.9+rx5**2 .9)

Srg=rx4&/ri6e
csg-ryl riée
sagp-rx5/pr2506
cCSEPp=ry2/r2%87
spd=rx3 ri1s%@
csd-ryr/ri5e

prirt 1#1, sra,srd,srg Srgr,snd,spdp,ri16P,r18e ,r2te
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formet( “iprogram bixhs - celculation of 6,7 quactum’,
for para substituted dipheryl. ,///,

trig velves:’,//.” sne = “,e14.6,/,° s0b = “, e14.6,/, -
sng = °,e14.6,/,° sogp = °.e14.6,/,’ spd = ‘,ei4.6,/,
S!dp - '.014.8 N .' ri€e = '.016-5.:’. ris0 = .31*06'/0
1250 = ‘,e14.68///

calcul:te 1xy°’s epd 1yx°’s

1xy/31)=riqe®spdl
1yx/1 -rie®csdl

1xy(2 =r23%spnd}
1yx(2)Y=r23%csdl

12y!3 =@ 0400
1yx(3 . =r6%?

1xy(4)=0 8400
1yxi4 -rS€

calcul-te th’s

"th'1)=(1yx(1)-1yx(3))-2.0420

th 2-=:1xy(1 =-1xyi3))/2.0490

th 3)={1yx(2:-1yx(3)./2.04¢@
th'4)=(1xy(2'+125(3)).2.04¢0

th 5'=(1lyx(1 " -1yx(4))/2.04%0

th'6i=(1ry(1)+1xy(4))/2.24¢0

th'7)= 1yx(2)+1yx/3))/2.04¢0 .

th £ =(1lxy(2 -1xy(3) /2.8d420

th(9:=(17x(1i+1y5(4))/2.0d 0
th’'18) - (1xy(1)=1zy(4))/2.0400

th 11‘-(1yx(lv¢1yx(3)-/2;adwa
th'12)=(1xy(31:~1xy(3))/72.0d¢€¢

th/13)=(1yz(2)=-1yx(a))/2.0400
th 14 (1xy(2 +1xy{a))/2.0¢00

tr18)=(1yx(2 '+1yx(4))/2.0420
th'16)=(1xy(2)=-1xy(4) ). 2.8d00

calcu;ete ipternauclear distances for delta not=@

r17=dsqrtiry1®=2 0 + th(11)%%2.2 + th(12)%%2.8)
~1€-dsqriiryl1®®2 @ + tr(1)%%2.¢ + th(2)%%2.0)
r25=ds¢rt{ry2®*2.0 + th(13'*%2.0 + th(14)*%2.9)
r2c=dsqrt({ry2®*2.¢ + th(151%%2.¢ + th(16)%%2.0)
r2€=dsqri{ryd4®=2 @ + th(3)®%2.¢ + t1h(4)®%2.0)
r1€=dsqriiry3®®2 ¢ + th(5)®%2.9 ~ th(6)%*2.9;
r27=dsqrti{rys4**2.8 + th(7)%*2.¢ + th(a)»=2.2)
r18=dsqri(ry3®=2 .9 + th(2)®®2 .9 + t£(10)¥%2.9)

113=dsqri(((r23+rie)/2.0840¢L)%%2.¢ + (ryi-ry4;®®2.¢)
r57-dsart(((rE7+r58) 2.940¢)%%2.¢ + (ry2-rys)®*2.¢)

sutput {rterrulcear distances
prirt ®,° p17 = ° . r1?
Frirt *,° r1€ = °,r1€
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®,° 128 =
prirt ®,° r2¢ =
print %, r2¢ =
print *,° riS =
priest .’ r27 =
prict ®,° r1f =
prirt ®,° r13 =
grirt ®,.° r57 =

calculate chgles

vpetveen {pterpuclear vectors and

" moleculer axis system,

rpd2=rad. 2.0d400

angll=rpd2-datan
thi3-=deccs(epgld.

(2.0400% (ryl-ry4)/(r22+rie))

thi3x=csd1®dsir(argld)
th13y=snd1®*dsin(angld)

-ngE7=rpd2-detern
thS57z=dcos(argh?
~thi7z=dsiclangs?
. th&?y=. "d¢

th5€z=csdp
te56x=-sndp
thE6y=". Va7

thl2z=csd
thi2x=csdl*snd
thl2y=sndl®srd

thi6z=ryl rif
th1€x=t1k:!1'/rl6
thi6y=th(2)/1r16

th26z2=rys4 r2€

" th26x=th'3'/r26

th26y=th'4)/r26

thlS52=ry2 ris
thiSx=th:5'/ri1b
th1%y=th/6,/r1¢

th272=ry4 r27
th27z=1r 7°/r27
th27y=th(81/r27

thlfz=ryX rif
thif€x=1th:'S /ri18
thi3y=th/10)/rie

thi?z=ry! ri?
th17z=th 11'/r1?
thl?y=th 12)/r17

th2%z=ry2 r28
th25x=th 13)/r2%
" th2%y=th14)/r25

th282=ry2 r2€
th2Ex=tk 15'/r28
th28y=th '16)/r28

gz zdow"ryz-ry4)/(r67#r55))
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celculate couplirgs

" di2=4k*coupi (th12:,tki2x,th12y,s,ri2)

d23=dk*coupi(2.0d4#%,csd1,8pdl,s,r23)
d14=dk®coupi (#.0d400,csdl,sndl,s,r1e)
413=dk®coupi/th132,t213x,tr13y,s,.r13)

d86-dx*coupi (th5€z,th56x,th56y,s,r56)
467 -dk=coupi (0.0400,1.04099,0.0400,5,r67)
d%55=dk%coupi (¢.0420,1.04¢0 .6.240¢,5,r28)
457 dk*coupi(th57:,th57x,th57y,s,r5?)

d26=-coupi(th26z,th26x,th26y,s5,r26)
d27=coup:(th272,th27x,th27y,s ,r27)

" ad2€=dk* 426 + 427)/2.0400

41%-coupi{thi15z,th15x, th15y,.s,r15)

dle=coupi{thiEz,thifx,th18y,s,r1€)
‘ad15=4k*® 415 <+ 418)/2.0400

"~ d2%=coupi(th2%z,th25x,th2%y,s,r2%)

d2f=coupi(th2Ez,th2mx,th28y,s,r2¢)
ad25=dk* 42% + d2&'/2.0400

d16 coupi(thi6z,th16x,th16y,s,r16)
d17-coupi(th172,thi?x,th1?y,s,r1?)

- 8d16=dr* 416 + 417)/2.040¢

sutput result
Frirt ® ° RING A’

prirt *,° d12 = °,d12

Frint *,° 423 = ‘,d22 ’
Frirt ®,° 414 = ‘.d14

prirt ®,° 41 = 7,413

prirt =,° RING B’

prirt ®,° 4% = ° 4%

print *,° 467 = ° ,d€7

prirt ®,° 45€ = °,458 '
grirt ®,° 487 = °,4%7 :
prict *,° INTER RING COUPLINGS (AVIRAGED OVIR CCNFORMATICNS ) *
“print *,” 426 = “,3d426

Frirt ®,° 41f = “,ad15

prirt =,° 8258 =  ad25

prirt *,° 41€ = “,ad16

- rearrarge couplirgs to orderirg used ir simulatiors.

4{i =d12/4.0"
472 .=413/4 .¢
da(3'=d14 4.0
dlae =adl5/4.0
d4(€.,=e216/4.0
d(€)=ad16.4.¢2
a(? =ad15/4.0
a(c1=423/4.2
e(9'=d13 4.2
a(16¥ =ad25/4.0
a(11 =+426/4.¢
a(12)-2826/4 .2
a(13 - ad2%/4.0
a(14 =d12/4.¢
d(15%)=ad2%/4.90
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16'=ad26/4 .9

19)=ad25/4 .0

1§ =ed15/4.0
4(20 =ad16/4 .0
4(21)=ad16 4.0
4(22 =-415/4.0
d(23 =4%6/4.¢
4(24)=¢57 4.0
d4{(25 =45€/4.0
d4(26 -=d67/4.¢
d4(27)=257.4.0
4(26 =456/4.0

a(

4(17 =ad26/4.9
- af

a(

calculate spectrum
call cotprti(d,cy,®)

.€&€11 bphaham{enm,isym-’

call peout(5,28,er,isym,r®)

~utput spectrum

prirt 183

format(’1 Al sudspectra . . .°///
prirt 124 . v
formet(’ SIXY QUANTUM LINES /)

prirt 1¢F€

11=ric(1) pe(2:+1

rl 11+n6°'2)-1

do 550 je=11,h1

i 1sym(1c\ re. o to £&5¢
freq'k’ =abs(en(1\-en?jc‘\
k=k-1

cortirue :

call desfrg(freq.k-1)"
rfli=k-1

do ££6 1=1,nf1

wl’'y)=freq(i)
wimr-émaxi{wl(i}',wimx)
sirr=amirli{wi (i), wvimp)

prirt 1@¢

formet(//18x,°IM| = 3 to M| = 3°/)

k=1

11 r@f1)-1

rl 11-+r@ 2°'-1

12 ré (1 -p@(2)+pL/3)+pe(4)1
£2 12+r@'%)=1

do BEE ’c1=11.h1 '
ifiisym(iicl) .pe 1) go to REEL

o 555'?c2-1?.h2

irisym(3c2; .pe 1) go to 555

freq’k =er(jcl)=-er(jc2)

12 1212(10.0%ads (freq(k':) .eq. @) go to 555
x=K-1

cortirue

- call desfrq(freq.k-1?

r£2=(k-1 /2

1p rfl pf2

do 5% §-=%,cf2

vi‘l nfl =freq(i
wimr-araxl{freq(i’,wirx)
simp amirl(freq(! ,wimr’

- format’1x,17(° ’). / 1ox."n. = 4 to M| = 2°/)
k=1 : :
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vrite(l.eﬂzg rp :
vrite(1,604) (wi(i), 1=1,np) -
vrite(1,604) (smx. 1=1,13p) : o

print 167

format( +° SEVEN OUANTUH LINES’,/, 19(' ')//.

11 rO(I) -1

hi 11+n0(2'=1

do £6¢ ?ccli 1

if'1sym{ ‘c) .re. 1) go to %560

. freq(k -abs(en(ic -en(1}))

v2mxsemax1i(Preq(kx®,v2mx)
w2rp=amirl(freq(k),v2mr)

k=v-1

conticue

call desfrq{freq,k-1)

ep k-1

vrite!2,622}) rp

write(2,604) (freq(1), 1=1,np)
write(2,6M4) (2mx, i=1,5p)

end mein loop

gn to B ' o

€001 ,5002,5003, 5004, 5005 , 5006 ,5007 , 50VE,

Sy ,5012,5€11) .
© ipar

szz-szz-~sine

‘80 tc FC. ¢

s2p-s2p+sirc ) o
g9 1o FPee

if icccerd .eq 1) stop
sxy=sxy*sinc» :

'bgo tc Souve

delte=delte~sirc
€0 to 5000

ri4-ris+sinc
20 tc F2ee

ré7-r€7+sirc
if icocrd .eq. 1 1r23=r67
go to £e.@

r12-r12+sinc
g9 12 £0ve

~23=1r23-sinc
¢0 to Seee

rfE=r5€+sinec
if'icccrd .eq. 1 ri4sr&g
€0 to Seee

1260=r260+sicc
€0 te f2.¢

rS¢ -r8€+sirc



Svev

if'1cocrd .eq. 1 pr12=r56
cortirue

write(1,602' ivflag
write(1.604) wimz.vimn,zmx
write(2,602) ivflag
write(2,604° w2mx,w2mp,zmx
closelupit=1)
close(uprit=2)

format(i6)

formeti{elds . 6)

end

doudle precision functior coupi
{thz,thx, thy,s,r’

implicit double precisior (a=h,o-t)
dimension s(5 .

ceélculctes étisotropic couplings after formuleas
of Emsley ard lirdor. '

s22°%11
s2n=s(?
sxy=s5(2) .
sx2=5(4

. sy =s(&

AR

coapi={ sz2®(2 PAPO*thz*%*2.0-1.0400) -
' -S2p*{ thx**2 .0-thy*=2.0}
+4.edce=(  sxy*(thx=thy,
" +sx2*(thx*thz)
. -=syz*(thy*thz) ! )
coapi=coupi / [(r*=3.2)

‘returr

end

331



aococCNnOO0O

1€

32

P NH DN -

sudbravtire bphaham(en,fsym’

this is ~ version of hamil written for

the special symmetry of a para-substituted
eipheryl with De symm.

Orly the Al symmetry eigenstates are lebeled in

© syrmetry vector isym.

sets up and diagonalizes free ipduction decay
hamiltoniar of N spirs 1 2 (N less thar 9).

commor / coup / 4(28 ,cj{28}),c5(8),vof?
commor / cstate / n 15:f2,2=6)

dirensior h(40f' ,s(794),enl(1) ,pumd(2,256), n0(6)
dirersior 1st(70),isp(2. 1£1ip(2,,icst(4, 12 4)

divensior c(784),work(7€4), isym(1

data r@® / 1.6.26,28,8,1 /

dats iest / 1,8,2%0, 2,7,2%2, 3.6,2%0, 4.-.2'2 %8,
1,28,2%9 7,3*0, 8, 11 17 26. 14 23,2%@, 19,3%9, 2,5,1€,27,
€.10.21,24, 15.20.2‘9. 3.4.22.25. 16.3'0. 6,+13,2%¢,

12 3=¢ 1,28,2%2, 22,3%¢, 2,12,192,21, €,1%5,2%9, 12,3%¢,
2,11,2¢,27, & 8,19, 2l 9,14,2%¢, 4,7,25,26, 13,3%¢,

16 .22 .2%», 17 ,.3%0, 1,8,2%9., 2,7,.2%0, 3,6,2%0,

& & 2%, 32%¢ /

varwat -2¢€
rgt -7
ml=p-1
rcr=r*rrl 2

é~ 1% i=1,nst .
isym ' § =¢ )
18yri(1 =1

isyminet =1

ce=¢ . ¢

d0 32 i=1,r

acs-acs-csfi

ecn:,’ "’

do 35 i-= -.nc;
ecp=ecp~d(i:+cjfi’

en 1 =-p®yoff+ecp- acs
Er'rst . =r®yoff+ecr+acs
sl v

¢¢11 rumsretinumd,.r 256"
1st’1,1)=rurd(1,25€)
l1st'2,1 -numdi2,.256)
1st/1.286)=gumrtr’1.1)
1st/2,25€)=rumb(2,1)

v 1

i
a0 122 is=1.rril

is g=3¢

tsp=2%*ig p

vk ¢

4o 49 3=1,2%6

‘f murr({Z.1) .ne 1S go to 4€
kk -kk-+1

KRy=kigr+1]
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‘st'kk =numd(1,)

1st'1, rkr)-ru*b\l 3)
1st’2.xkk'=ig .
cortinue

rst=kk

im-¢

1 met .gt. matmat) go to 160

if=1f41

@0 €0 mrl . mst

de 22 1=1,m

im 1ms1

if-1 .re. m' go t> 60

dizger-1 elemerts

rsk=1

49 5¢ kx=1,¢

isp'k -=1

i fiet{l) .ard. msk) .re. 2) isp(k)=1
rSk-mgk®? ‘ .
cortinue

riir = v~ff'tsv

vy 2

¢2 55 {=1,rm}

lpt=i-]

a5 E& i=ipl,»

gk kk-1 : :

21w =rl)1m) 5 (a!xk)+cii{kk))*isp(j)®isp(i)
¢ontinve )
dc &7 i=2,¢r :

n{l~-=hflm} - es’i)®isp(i)

€ 1292

:#¢-di.-gcrel elements

‘w—l

42 7% k-1,.rn ) '
(P ‘istfl) end. msk) - (ist(m) .ard. msk)) 7@ ,7E5,7¢
Jsp-isp+l
i211p jv =x
iw-Z
WSK TS VE7?
de¢p .re. 2 go to E€C
I‘ ’2""!11p‘1) '(iflip’ii-15/2 1!11p(1)*1f¢1p(2)
rllw'==d 'R8)s2, 5‘09(k5‘
tonticue

Tidim=rClipey

diagorelize

call eig2{(h,s,.en,mst,1dim,0"
fi{rd4 #1 states

cvall alsymm(s, isym,mst@, idim)
rsth mstPeidim

cortirue

return
erd
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_‘sudbroutire peout(m,méxmat,en,isym,nd)

this subroutine outputs the contents of energy vector

er in £12.4 format. States in each Zeeman manifolad

are separated by a bdlark lipe. N is the pumbder of spirs,
mazimat 1s the size of the largest Zeemar manifold

contéeired in en 2and nd® is the array containing the

tiromial coefficients (dimersions of the Zeemar marifolds).

~ dimensior en(1),00(1 ,1sym(1)

npl=n+1
rd 1

do 500 J§ 1,npl

if 'n?¢(3) .gt. mexmat) go to 52¢

rt=pb+r@/j)=1 _ o

print 401, (ieng.en(ieng',isym(ieng), ieng=nd,nt)
nb=rh+rf §)° :

cortirue

ret_urn

formst!/(ax, EN(",13,°) = *,£12.4,22,11))
erd
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sudbroutire alsymm(s,isym,nen,dim’

locétes totally symmetric eigenvectors in S of

dimensior &aim  Output isym contaips 1°s for these

states upaffected for others. First element of
isym tc use is nen+il.

integer isym(1l),test,dim
dimensior s(1°

loop over eigervectors
thr=1000¢ ¢

l=nen

do 1¢Pv j{eig=1.,dir

il lileig-1)*aim

111 » -

if(isym(l) .re. €: go to 1¢0¢
sum coefficients of eigenvector
sum - A.¢

do SA¢ jc=1,dim
sum=sum+s(11+ jc)

test=é s thr®*sum _
f 'test re. ¢) isym(l'=1

contirue

-erure
enrd
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subrovtine desfrq(freq,itop)

this subroutine cutputs frequencies from vector freq

ir deserdirg order.

Itp 1s the mazimum pumber of frequencies in freg.

dimersion freq(1

i?‘itor le. 8) returp
{1tp=itop 1

do 18% k=1,itp

ilowsk+1

do 1E€ kk=ilowv,itop
rm-r=eémsrl(freq(x',freqikk)

freq(kr)-amiri(freq(k),freq(kk)) "

freq{k =rmax
contirue

rrirt €01, (freg’x), k=1,itop)
format(ex,f12.4°

returr
erd
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" CJCUT=AR2(K) * 4 @ ‘ .
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SUBROUTINE CNTPRT(AR1,AR2,N)

CUTPUTS COUPIING CONSTANIS TO LPR.
DIMENSION AR1(1),AR2(1)

NM1=N-1

K=1

PRINT 732

I0 3. I=1,kM1
IP1=141 o

TO .30 J=IP1,N
IOUT=AR1(K: = 4.0¢

K=K 1
fORHAT\' n("IZQ.’Q'.IZO' .'911204'/

FCRMAT/1H1)

~ RETURN

ENT
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‘progran'biphSpara

calculates coupling comstarts for & oiphenyl
with asymmetrically distorted rirgs.

this version has error apalysis where errors in parameters
are propagated from variance - covariansce matriz of spectral
simuzltion. this is input at beginning of program.

Coodirate system #1; T4 symmetry: :
The origin ts a2t the center of teh c-c inter rins bridge.

- The x-axis bisects the dihedral angle, the : aris is along

the pengene para bomds to the substituents

Co-rdinate system #2; [2 symmetry

“he z-axis passes through the bi;henyl para donds,

the originm {s loceted in ring "2 (with protoas £,6,7.€),
the x-ax!s lies in the plare of this rimg and the y-axis
is normal to {t.

“his version '# 4% does rot “symretrize” the hemiltonian

telore diagonalizetion (1.e.‘t;h4ham is called insteaq
3 4 bphham . :

“h's versior performs a4 lirear least squared fit of calculated

' couplings to experimentél couplings. The initail inmput

genmetry and order parameters are varied ip the iteration.
irput f1e commosn geom

rlz. ;14. r23, r2€¢, r67, r&e, rk&6,
€2Z, i SEX=SYY =s2p. SXYy. delta Y

implicit double precision .'a=h,0-2)
doudle precision doew(12 ,dlast(12" +dexp(12:,d¢(12,11)
doudle precision b 12}, v(144).para(11‘ bv (11,
datble precision afll, 12 ,:cx(12, 12).vcy(11 11),ap(11)
re 1 4(26),c3(28 ,cs! ‘@), en. 256 vore., freq(‘ol cjd4(28
irteger isymi2%6 .n®#!6),1(12),m(12),ipar(11,
logical yares
ch r:cter®4 dmeme’12)/°D12 °,°L13 ‘,°D14 °,°T1E °,
‘L16 '.'I2‘ '. Iz6 .. ., L28% °,
‘r=6 °,‘ts7? °,’r=e °,‘r67 °
commor / geom / $28,52P.%XY. delta.r14 r67, r12.r2 .rE8,1260,r36
cormor / geomg / ri3,rs%?
cemmon  coup d.cJ.cs.volf
ccrmor / cstéte / n,1st(2,2%8)
carmor / cit / rpar,ipar,dc,d,v,tv
dara cjde /. 2.0,0.0,0.5,4%¢.0,.2.%,5%0.0,2.0,6%¢.0,
2.7,e.0 C.-,O 5,7.0,2.8 /
data r@ 1,8,28, 28 a,1
equiralence fpara.s:z¥

ge* input

¢s 1 J=1 2%6
en j)=90 @

r==
voff=@ ¢
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ELEE

605>

606¢

12

type ®.° ¥eich coord. system? (1 or 2)°

:ccept ®.1coord

type *,° INPUT OF INITIAL EARAMEBIERS - °

type *.° enter
ccept * ri2
r8€-r12

type *,° enter
ccept * . ri4

188=rl4

type *,’ enter
. ccept ®,r23
ré7=r23

type *,° enater
-ccept *,r26¢
reup=?

12 {coord .eq.

pcup=12
tyre *,  enpter

"~ actept *,p67 -

tyre * ° enter
accept *,r5¢
type *,° enter
ccept *.rS56

“tyre *,° enter

accept *.s32
type *.° enter

- zouept *,s2p -

sxy=0 €408

if fcocrd .eq
type ®, -enter
accept *,sxy
tyre * ° enter
iccept *.deltd
do 122 1-1,11
ip vl =0

delta

r12=
ris:
r23: *

ra26o: ‘

1 go to 6066

r67: °
ree
r5§: ‘
s22°

(sxx=-syy’

.

1 go to €PE"

SxYy:

’

type *,” The parareters vhich cap be varied are . . .

if icoord .eq 2 go to 6@6¢E

type *,° . szz = 1 r12 = 7°
tyze *,°  (sxx-syy) = 2 r23 = 8°
type *,° " delta = 4 r26@ - 19°
type ®.° ri¢ = &°

20 to 6269

type *,° s2z = 1 ri2 = ?°
type ® ° {(sxx-syy! = 2 r23 = &’
tyre *.° .sxy = 3 r88 = §°
type *,° delta = 4 r26e = 10’
type ®.° riea = & r5¢ = 11°
tyre *,° re? = 8°

type *.” Hov maany of these

-ccept ® . npar

tyre *,” From the tabdle adove, which parameters are to vary?’

do you wish to

accept ®*,(ipar/i , i=1,npar)

type * ° Inter tot-1 # of iterative cycles to %e allowved:’

accept *,rcyc
ie-an=¢@

have vary?’

type ®*.° Do you wish to imclude error asalysis?’

:? yans(idum})

type *,° are the d4 3°°s tc de used in the simulatioa?’

1f yans{idum )
do 12 1=1,20
cy i =0.0

f0 to 13

ieraps=l

go to 11
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21¢

do 14 171,28
c) 1 =cjae(g’

isput of experimental couplings -
type *.° Epter experimental dipolar couplings . .
do 12 1 1,acoup

devpli}=0.0400

type £61.dpame’}

format{1¢x ,a¢,’s ° %

iccept *.dexp(i) '

utput initial parameters

print 201, ri2,ri4,r23,r26¢,r67,r58,rs56, s::.sZp.sxy.delte
formet( lprogram biphSpare - irltial pqrameters o e o1/

rl2 - ‘,el4.4/,° ri4a = ..e14 € ,  ra2d = ,e14 .€ ,

-2€9 = ° 014 6/, T'67 = ‘,e14.6/ ' rf8 = " el4.6/,

%€ = “,ele¢ 6 ,° szz = “,el4.€6/,” (sx3I=8yy) = ’,el4.6 ,

sxy = ",el4.6//,° DELTA = °,f10.4///

Irl rt 822 (dnamefy) +dexp(i’, 1=1,nccup)

format’ lcx. experinental couplinss e ey e
5:.&‘4' = 'f1'04)

erter iterative loop

iter-1i

eri=] . 0d04 -

calculete couplirgs

czll bdiphd(dlest,icoord’
if iter re 1 go to SESH
call derd(d,dlast,icoora’
c211 cntprt{d,cj,8'’

Frirt 233

format(irl)

lez=st sguares routines

celculéte derivatives
do %Z€.. ap=1 npar
Tap- ipar(nap)
‘ire=@ Gldoo*dabs para(nzp "
;ara rap !=para’map -xirc
call biphd{dpev,icoord).
ra"2{papi=para’nep'-xine
cail derividlast.,drew, xirc.np.rccup)
cortinue ’

c:leculete residuals

10 £226% k=1,rcoup

tie)=dexp(k)-dlastik’®

cz211 eritz(erl.ncyc nerit, ncoup,iter
call rorr2(rcoup’

det1=0.04090

€211 dminv(v,opar.det,1,m)

Friot ®, IIT = '.det
if det. eq. 0.9400°' print 729

format’ 'iv, “DETIAYINANT OF MATRIX T0O =K INVEI%Et IS 2ERO!1°/)
‘f rexit .eq ©) go to %2e8¢ :

correction of parameters
do 31V rs=1,ppar

corr=0 2408

do 210 nsdal,npar '
‘rdxsratvec{»s ,gsb,ppar)
c-re=corr+v(indx )®de(nss)
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pa-alipar{ns))=para(ipar(ns})+corr
cortinue

iter-{ter+}

g0 to 9098

erd of iteratioen loop

Jutput final parameters

cutput intersulceer distances
Irirt 334

format(//' FINAL PARAHETIBS‘ <)

print *,° r12 = °,r12

Frint '.' r13 = °,r13

print *,’ ri4 = ‘,ris

Frint ®,° r23 = °,r23

[ript ®*,” r260 = °,r268
print. ®,” r56 = “,r56

Frint ®,° r857 = ° r87

prict *,° pr58 = °,r%8

Frint *=,° r87 = °,r87

grint ®,° g22 = “.s32

Iript ®,° (sxx-syy) = °,s2p
priast *,° sxy - “,szy

Irint *,° delta = °,delte
if ierar .eq 8) go to 505¢

erTor zpelysis _
type ®*,’ Ipter variarce -.bovariance matrix fror simulatior:’

d0 SenN2 J=1.ncoup

dn 97¢2 i=3,rcoup

“ype Se@?, j,1

-ccept ‘.ch\j 1 . .
ve: 1. ) =vexl§,1

co:tinve

fomst’1¢x,°CX(%,12,°,7,12 °) = °,%

do 9@8@ rp=1,rpar
as 909¥ nc=1,ncoup
‘p nc)=0 242¢
co 9009 i=1,rpar
rpi-matvec{np.i,npar
/-p rci=ze{np,nc + v(npi)'dc(nc i : ~

¢o 9€%0 1=1,ppar

d5 9042 m2=1.np¢r
vey!1,m2!=0.¢479

do Sv49 j=1,rcoup

ap ) =9.9400

do 937 k=1,ncoup

ap ) =ap(y) vcx(J.k)'l(m:.k)

cyii,m2 =svey' i, m2° - ap‘j) *ali, )

cortipue
co:tirue

u:pnt variance ~ covariance matrices

Frirt 333

Friot *, variance - ccvariarce natrix from simulatiop’
rrint Eio. {(Jofvex(3, k', K=1,Bc0uUp), j-1,nCOVP
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" 104

129
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10e

(3]
Tom
(3]

1.7

led

tormat(izx 13,° ¢ .<ncou;/2>e14 €, /10:.

1<ncoup/2¢modluconp.2‘>e14 8/

print ‘33

Frint *, variasce - covariance natrix ror pqrameters
print 809. (3, (vcy(J.k) k=1, npcr). J=1,npar) .
form:t!/22,13,° ' .(nyar/2>e14 /122,

1/rprar 2+mod{npar,2)>els.6

celculate spectrum

call dord(d.dlast.icoord:
call cotprt(d,cy,8) .

call bph&ham(en.lsyn

call peout(S 2&,en,isym,r?

sutput spectrum

Print 103 :

“format(”1 Al sutspectra . . .7///)
Frint 104 : ‘ : :
fomat(’ SIX QUANTUM LINES /)

Fr'rt 10%

“fo-mat(1x,17(° °), /,10x,” M| = 4 to M| = 2° )

k=1

11 r2(1 -p@(2 +1

nl 11+p8/3)=1

do 550 je=11i,h1 .

2 isymlijc) re. 1. 70 to £%¢
freq(k\=abs(en(1‘-en Jje))

k=k-+1

cortirue

call desfrq(freq,k -1\

nfli=k-1 .
Frirt 10CE :
format! 10x,°iM| = 3 to (¥l =3".)
k=1 : -
11 rvf1:+1 :

k1 11+n0(2)=-1

12 n@'1 +p@(2 +@(3)- na(&)*l

n2 12+r2(%)-1

do S&5 901=11,51

i? isym(jcl' .pe. 1) go to E88

jo S8 ic2=12.h2

if 1symijc2) .pe. 1) go to %8%

?req(kx =en(jcl'-en!jc2)

if 1£1x(16 #®abs (freq(k))) .eq &) go to %55
E-r-1

cortinue

call desfrq(freq,x-1"

priat 167 )
fowm:t’///' SEVEN QUANT?H LINES® /,18(°_")//,

21¢X, 'in| = 4 to M| = 3°

k-1 _
11 ed(1 1

11 11+r8/2)=1

do 560 jc=11.hi

iz isym(je: .re. 1) go tc %6¢
freq 'k ‘=abs{en(jc'-er(1))
k-re}

corticue

call desfrq(freq,k-1)

end
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subdbroutipe dord(d . d2,1coord) "
doudle precisios 42(1)

re.‘!l ‘{l H

rearrange couplings to orderipg used 1a simulatiosns.

a(1)=42(1)/4.
a(2)=42(2) 4.
4(2:'=42(3) /4.
a4 =d2(4)/4.
d(%)=a2(%) 4.
a(6'=42(5)/4
d(7 =¢2(4)/
d(e)=42(8) ¢
dig =da2(2'/4
d(10 =d42/8) e
d(11)=d2(7?) "]
a{12-=42(7)/4.9
413 =d42(6)/74.2
a(14'=d2/1) 4.0
4(15- =42(81/4.0
4¢16-=d2(7)/4.0

4.0
4.0
]
4.0
9
]
4.0
f
]
/4.
/ .

4
4
4

4117'=42(7) 4.0

a(18 =42 8 /4.0

4(19 -=a2(4)/4.¢

a(2¢'=d42(5) 4.0
4(21 =d42!5 /4.0
a{z2 =d2/4)/4.¢

4(23'-42(9).4.8"

. d(24 =d2(18)/4.90
4/2% =d2'11)/4.9
d(2€1=42(12) 4.9
d(27 =d2(19)/4.8

dicg =d42(9)/4.9

reture
end
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l_subroutiné diphd (d,8coord)

calculates couplirg corstarts for a diphernyl
vith esymmetrically disterted rings.

n- - e e o

Cocdinite system #1; De symmetry.

The origin 1s at the center of teh c-c 1nter ripg bdridge.
The x—axis bisects the dihedral apgle, the z-azxis is along
the d»erzene para bonds to the sudstituents.

Coordirate system #2; D2 symmetry:

The z--xis passes througn the diphenyl para vonds,

the orig'r is located ir ring 2 (with protoms %,6,7,&),
the x~axis lies in the plane of this ring and the y-axis
is rormel tc it.

implicit doubdble precision {a=h,0-2)

doutle precisior th{16),ixy(4),lyz(4),s(5), a(12) .

commor aeom szz,s2p,sxy.delts,ri¢,ré?, r12 r23,r58,r260 ,r56
commor / gecem2 / r13 b o d

do 1 j=1.12
alj =0.0¢00 ,
red-¢ d.e®detaernf(l.2d0?:

dk f2deGﬂ'(?QS.El?dOO"Z.Z)‘.»

.compute delta ir rads

rdel-del te®*rad/160.0400

if'icoord .eq. 2 go to £@°5¢
co-rédinete system #1 ’
sl{1-=gr2
s(2)=92p*((dcos(rdel 2.9d@2))**2-(dsir(rdel/2.04¢e))**z)
s(2 =s»p®(dcos(rdel/2.04¢0 "dsir(rdel/2.0dv0 ")
sl¢ =0 @dee )

s(5'=@ pdoe

rg7-r22

T&€=zrlc.
r5€:112
g0 to 60680

cecrdirate system #2
s{(1)=s22

s{2 =s2p

s{3 -=g3y

sla)=g @dee
s(L'=0.0d00

compute trig functions of delte
csdl=dcos(rdel)
sndl=dcic(rdel)

corpute reeded distences at deltas=g

rxl-‘ri14-r23).2.0400
rx2=(rf€-r6%'/2.0400
~v3=(pFE-r14'/2.2400
rx¢ (ri4a-r67) 2.2400
rx5= PFE -r23'/2.0408



rx6=(r67 r23)/2.04¢28
compute trig furctioms of reeded angles

spd=rx1/r12
csd=dsqrt(1.0400-spd**2.0)
spa=rx€ r26e
csa=dsqrt(1.0408-sna®*2.9)
spdp=rx2/r&6 - '
¢csdp=dsqrt(1.0400-spdp**2.2)

1y4=r260%csa
“yl=ri2®csd+rys
Ty2-r5€%csdp+ry4
ry2=ryl+ry2-ry4

celcul;te'internuclear.aistances for delta=@

‘T1€@=dsqrt (ryl®®2 p+prx2%¥2 o)
r1£0=dsqrt (ry3*=2 ,0+rx3*%2.0)
r2f¢=dsqrt{ry2ss2 pg+rxse=2 ¢)

sng=7tI4 ri60
csg=ryl/ri16e
srip=rr&/r2¢¢
CSgpP-ry2 r2se
snh~ry3/r15¢
csbaryl/ri1%e

calculete 1xy°s end 1yx’s

©13xy’1 =ri4®srdl
1ya(31} rise=csdl . .

1xy!? -r23®spdl .
1yv(z:=r23%csdl

1xy/3)=0 edoe
lyx:® ré67

1xy(4 - =-¢ 0d4¢e
lyx(4 =rs¢

calctlete th’s

th'1l)= 1yx(1)-1yx(3),/2.04 :¢
th/2)=/1xy(1)+1x3(3))/2.0d00
th 3= (lyvx(2'-1yx(3) /2.0490
th'4)=(1ry(2)+1xy(3))/2.0d¢0
th'S5)=(1yx(1)=-1yx(4)). 2.0402¢€
th 6°=:1xy(1'+1xy(4))/2.0400

th ' 7)=/1yx(2)+1yx(8))/2.04¢0
th'8)=(1xy(2)-1xy(3))/2.0400

th ©'=(1yx(1'+1yz(4))/2.0400
ek 1e1=(1xy(1)-1xy(4))/2.84¢0

“te’11) (1lyx(1)+1yx(3)).2.0de0
th 12'=(1xy(1 ' -12y(3')/2.0400
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th(13)=(1yxz(2)-1yx(4 /2.0400
th-14)-(1xy(2)+12y(4) ) /2.0400

t2(18)e(1lyz(2)+1yx(4))/2.0426
zh(;s)-(1:1(2)-1xy(4))/2..¢ol

calculate internuclear distances for delti not¥0f

ri7=dsqrt(ry1%s2.0 +
116-dsqrt(ryl1®*2.9 +
r25=dsqrt(ry2es2.9 «
r2é=4dsqrt(ry2%%2.2 +
r26=4asqrti({rys®s2.9 +
r18=dgqrti(ry3®s2.¢ +
r27-dsqri(rys®*2.p +
r1f=dsqrt(ry3*®2.9 +

*123=dsqrt({(r23+r14)/2.0d€¢)*%2.2 + (ryl-ry¢)®=2.2)
r57=dsqrt(((r67+r58)/2.0408)%%2.0 + (ry2-rys)**2.0)

célculfte 2ngles bdetween interpuclear vectors énd

th(11 **2.8 + th(12)*=2.0)

‘th(1)®%2.9 + th(2)%%2.9)

th(13'*%2.9 + th(14)%*2.9)
th(1%5 . *%2.2 + th(16)%%2.9)
th{3)®®2 ¢ + th{4)*=2.9)
th(S)=®2 .4 + th(6)*%2.0)
th(7)*=2.¢ + th(B8)**2.¢)
th(9)**2.0 + th(19)%*2.9)

molecular azis system.

rpd2:=rsd/2.0490
“th13z=/ryl1-ry4)/ri3

srlX=(ria+r2x) (2.0d4002%r13)

tE13x=csd1*snld
th13y=srdi®sp1l

th572- ' ry2=ry4) rs57?

theé7x=r67+r56)1/(2.8400%r57)

thE7y=: . v4eC

th5€2=csdp
tht6z=srdp
th&6y=2 ¢42¢

" thl2z-csd
thi2zx=csdl®snd
tr12y=spd1l®srd

thil€z=ryl1 ri€
thi6x=th 1°'/r16
thi6y=th’'2}'/r16

th2€2=ry4a r2€
" th26x=th 3'/r26
th26y=th ‘4 }/r26

th1Sz-ry2 ri1s
th1fx-th '%'/r15
thify=th (6:/r1%

th27z=rys4 r27
th27x=tk 7 :/r27
th2?y=th’8)/r2?»

thiP2=ry3 rlf
thifx=th!9'/r18
thi8y=th’1€)/r18

thi?z=ry1 ri?
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thi?z=th 11}/r17
th17y=th(12), 217

th25z=1ry2/r2%
th2&x=th (13)/r28%
th25y=th(14)/r2%

th28z=ry2/r28
th2ex=th 1%)/r28
th29y=th/16)/r28

calculate couplings

d12=4k®ccupi(thi2z,th12x,thi2y,s,r12)
423-dk®coupi(@.09400,csdl,srdl ,5,r23)
414 -dx*coupi(9.0400,csd41,s0d1,5,r14)
d413=dk®*coupi(th13z,th13x,th13y,s,r13)

d56=dk*coupi(th862,th56x,th56y,s5,r56)
467 -dk*coupi (2.0499,1.0400,0.0400,s,r67)
dfE=dk*ccupl (2.04¢2,1.0400.0.04¢C,s ,r&€E)
dS7-ak*coupi(th57z,th57x,th57y,s ,r57)

426 coupi(th26z,th26z, th26y,s,r26)
a27=coupi{th2?z,th27x,th2?y,s,r27)
2d2€-dk® ‘426 + 427)/2.0a¢P

d1¢-ccupi(th15z,thi5x, th15y,s,r15)
dl13-coupi(thifz,th19z,thily,s,rig)
ad1f-dk® d15 + 410)/2.0409

d27=ccupi{th282,th2%x,th28%y,s ,r2%)
d26-coupi(th28z,th28x,th28y,s,r28)
ad25=dk*® 425 + A2€)/2.04v0

d1€-~ ccupi(tﬁlbz thi6x,th16y,s,ri16)

Q17 coup‘(thl’z.thl?x thl?y,s, r17)

ad16= dk' 416 + d417)/2.0dv0
re.rrerge couplings to ordering used im simulatiocs.

d(1'=412
a(2 =413
d4(3:=414
d(4)=adls
d(& =5d16
d(61=d23
d(7)=ad26
d(z =ad2%
d(9:=d%6
a(19)=2%7
a(11 =d5¢F
d(12 =487

end

dcudle precision functior coupi
{thz,thx,thy,S,r!

implicit doudle precisior {a=h,0-3)
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AN -

dimersior s(f:

calculates cntsotrohic couplings after formulas
cf Imsley ard Lindon.

sge=s(1)

s2prs{2’

sxy=s(3)
sxz=s(4)
sye—s(&®

coupi=( sz2%(3.0aCP%thz*»2. 8-1.0400)
+52p*(thx**2.0~thy**2.8)
+4.0400%( sxy*(thx*thy)

+sx2%(thx®thz)
+syz®(thy*thz) ) )

coupi=coups / (r*=3.8) .

;eturr
erd
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SUBROUTINE DMINV(A,N,D,L.M"
INVIRTS A MATRIX

IMPLICIT DOUBLE PRECISION (A-E,0-Z)
IIMINSION A(1),L{1),M(1)

‘I=1 €pee

NK =N
TO €0 X=1,N

- NK :NK-+N

I(K)=K

MK =K

KK =NE-F

2IGA=A(KX)

TO 2¢ J=K,N

1Z-N®(J-1}

L0 2¢ I=K,N

1J 12+1

Ir'r;nc(vch--DAES(A(:J\)) 1%,20,2¢

BIGATA(1))

L(K =1
Mix . =J
CONTINUE

J=LfY .

1F'J-K) 25 35.25
kI X-N .

TC 32 I=1 N

kI KI+N
BOLD==4'X1)

oI KI-K+J

ARIV=A(JT)

A(JT =FOLD

I=mig)

IF I-K 4%5.4Z,36
JP-N®(1-1)

IO ¢4¢ J=1,N

JK NK-J

J1=J%+J
BOIL=-A(JX)

AR =a0J1"
$(J1:=E01T

IF BIGA 4E,46,4F

1= e1ve

RETURN

DO f& I=3,N

IF'1-X ‘?.EE.EQ

IX NX+]

A(TX =A(1K)/(=BIGA)
CONTINUE

DO 65 I=1,N

IK=NK+]
BOLD=A!IK)

1J 1-N

IC 68 J=1,N

1J TJe+N

IF - I-K 60.6%,.60
IF:J-¢ 62,6%,82
KJ ‘1J=-1+X
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102

1e€

13e
C158¢

A(1J =POLD®A(KJ) + A(1J"
CONTINUE

IJ k=N

I0 7% J=i N

EJ KJ+N :
A(KJ:=A(KJ)/BIGA
CONTINUE

I=D*BIGA
A(TE =1.0000/BICA

- CONTINUE

K=N
K=K-1
IF’K) 159,15¢,105

“I=L(K

IF'I-K 12¢.129,10@
JC N®(K=1) '
JP N®(1-1"

I0 11¢ J=1.N
JE-JQ+J

"0LD=A JK)

JI-JR=J
A(JE)==-A"J1)

. A(J1 =BOLD

RELAS ¢ ’

IF'J"“ 100 '100'125
K1 E-A

IC 13¢ 1-1,.N

KEI KI=+N

T0LD=a K1
JI-KI-X+J
A(RIY==p"J1)

"A(J1 =HOLD

GC TC 1r0
RETURN
END

350



0000000000000

lut

snorontiie deriv(dlast.drevw,zipc,ipz,rcoup)

computes derivatives of bviphenyl couplings v.r.t.
jteratior parameters Derivatives are estimated as
the retio of the cherge im couplings with a 1 X change

‘i{r a particular parameter.

dlast is the ipitial (cycle # iter) couplings

dnev {s the couplirgs calculated at para = para + xinc
ip~ is tte inrdex ip the matrix dc for this dependence
rcoup 1s the rumder of couplings (rcoup=? for 4 symm,
apd :12 for D2 symm)

‘mplicit doutle precisior (a=h,o-z)
double precisior dlast(l), drew(1)
commer / cit / spar, 1par(11‘.dc(12 11).b(12).v(144) bv(11)

do 100 k=1 ncou
dc k.ipx‘t dnew(kx —dllst(k'\/xinc
cent;nue

returr
erd
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SUBROUTINE ERIT2(ER1 NI1,NEXIT,NL,ITER)
VAX VMS VERSION.

EIVALUATIS R.M.S. ERROR YOR A VECTOR OF RESIDUALS FBOH ONE
ITERATIVY CYCLI

TEIS IS A DOUBLE PRICISION VBISION.

B IS THE VICTOR OF RIESIDUALS.

ITER IS TFE NUMBIR OF TRE PRESENT ITERATIVE CICLE.-

ER1 IS TEE RMS ERROR FRO™ THE LAST CYCLE.

NI IS TEF TOTAL NUMBER OF ITERATIONS ALLOWED.

NEYIT IS A PARAMETER 70 BE USEL IN DETERMINING WHETHER
FORTPER ITERATIVE CYCLES SBOULD BE RUM.
I¥ NEYIT=00 RETURNED NO FURTHER ITERATIONS NECLSSARY.
IF NFIIT=1, FUTHER CYCLES AkE REQUIRLD.

NI IS THI NUMBIR OF RESIDUALS CONTAINEL IN B.

- IMPLICIT POUBLE PRECISION (A-E,0-2)

TOUBLE PRECISION MINERR . _
CoMMCN cit NPAR,IPAR(11),DC(12,11),B(12),V(144),B7(11)
MINERF = 1.00-8

}R2=0 eDee

FNL-NL

TO & X-1.NL
ER2-FR2+B(X)*B(X

 ER2=TSORT(ER2/FNL

AR

IF/ER2 .GE. MINERR) GO 70 5
PRINT 401. ER2

GC TC 8

PRINT 301. ITIR,ER2

1F ' (EE1- rnz)/zrx—o f1D02: €,8,1@
NEXIT=¢
ER1-ER2
FETURN

IF ITER-NI' 110,6,8 ~
FR1=ER7? :
NEXIT=1"

RETURN

FCR™AT/SY, “ITERATION # °,12,3X,°R M S BRROR = °,¥8.3)
FORMAT(/,” ITERATION CYCIE TERMINATED -°,/,

- F™S ERRZR LESS TFAN MINIMU™ ALLOJED!’,/,

FRRCR ‘,D16.4, )
IND
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SUBROUTINE NORM2(NL)
VAX/VMS VIRSION.

TEIS SUBROUTINI SETS UP THI NORMAL BQUATIONS FOR 4 LRAST

SQUARES ITERATIVI PROCELDURE.

TEX MATRIX PRODUCTS DC-TRANS®*LC ANL DC*B ARE FORMED WEERE DC IS TEE
MATRIX OF DEFRIVATIVES OF FREQUINCIIS VWITH

RESPECT TO PARAMETERS AND B IS THE MATRII OF BISIDUALS

EITVELV CALCELATID AND OBSERYED FREQUANCIES.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

- CoOMMON  CIT NPAR IPLR(ll).DC(12.11).3(12).'(144) BV(II)

NOS=NPAR ' '
DO 21¢ Nsi1=1, NOS
DO 206 N82=N51 NOS

INDX1=MATYEC(NS2,NS1,NOS)
INDX2=MATYEC (NS1,NS2,NOS"

V(INDX1) -¢ @eTree

L0 20 LEQ=1,NIl

V(INP11)-V(INr11 +DC(LEQ, NSi)‘DC(LBQ NS2)
V(INDX?)-=¥(INDX1)

IV 'NS1 =..0le#

"IC 21¢ 1¥Q=1.N1l

BY NS1 =BV(NS1'+DC(LEQ,NS1 *B(1LQ)

FETURN
END
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