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Genomic signatures of local adaptation 
in recent invasive Aedes aegypti populations 
in California
Shaghayegh Soudi1, Marc Crepeau1, Travis C. Collier1, Yoosook Lee2, Anthony J. Cornel1,3 and 
Gregory C. Lanzaro1* 

Abstract 

Background  Rapid adaptation to new environments can facilitate species invasions and range expansions. Under-
standing the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for 
mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored.

Results  Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from vari-
ous sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals 
of local adaptation among populations. Patterns of population structure, as inferred using principal components and 
admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which 
all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, 
we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-
climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows 
selective sweep and recent positive selection acting on these genomic regions.

Conclusions  Our results provide a genome wide perspective on the distribution of adaptive loci and lay the founda-
tion for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease land-
scape and how such adaptation could help or hinder efforts at population control.

Keywords  Aedes mosquitoes, Genome scan, Landscape genomics, Selection, Adaptive loci

Background
Biological invasions, involving the introduction, estab-
lishment, and spread of species outside their native zone, 
present one of the main threats to biodiversity, ecosystem 

integrity, agriculture, fisheries, and public health; with 
economic costs amounting to hundreds of billions of 
dollars per year worldwide [1, 2]. During biological inva-
sions, species often spread over a wide and climatically 
diverse range of environments. Although plasticity and 
broad ecological tolerance have been shown to facilitate 
the spread of invaders across such heterogeneous con-
ditions [3, 4], increasing evidence suggests that rapid 
adaptation to local conditions is commonplace in inva-
sive populations and can enable the establishment and 
spread of these species in the face of novel selection pres-
sures [5–10]. As such, invasive species represent an ideal 
model to investigate contemporary adaptive processes, 
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which is key in an era of rapid, human-induced, environ-
mental change.

The establishment and persistence of vectors within 
new ecological niches poses a serious threat from emerg-
ing and endemic arboviral diseases [11]. Dengue fever 
is among the most widespread vector-borne infectious 
diseases in the world and is re-emerging in the United 
States of America after many years of absence [12, 13]; 
the same trend is also reported elsewhere around the 
world such as Brazil, Cuba and China [14]. The risk of 
dengue infection coincides with the distribution of mos-
quitoes capable of transmitting dengue virus (DENV). 
Aedes aegypti, the yellow fever mosquito, is the primary 
urban vector of dengue viruses worldwide is prevalent 
throughout the tropics and sub-tropics and is closely 
associated with human habitats outside its native range 
in Africa. The state of California has maintained an active 
and extensive mosquito surveillance program initiated 
in the early 1900s [15] and has previously only detected 
sporadic specimens of Ae. aegypti near airports [16]. 
Confirmed breeding populations of Ae. aegypti in Cali-
fornia were never reported prior to the summer of 2013, 
when they were detected in three cities in the central val-
ley counties of Fresno and Madera and the coastal county 
of San Mateo [16, 17]. Subsequent reports indicate that 
Ae. aegypti has now become established and is spread-
ing throughout large regions of California [18]. Recent 
studies demonstrated that Northern and Southern Cali-
fornia populations of Ae. aegypti were presumably intro-
duced from two independent introductions which came 
from the South-Central US and Southwest US/northern 
Mexico region specifically [19]. Introduced populations 
of Ae.aegypti to USA have also undergone behavioural 
and genetic changes in comparison to their ancestral 
African form, including the evolution of house-entering 
behaviour and a preference for human odour and blood-
feeding [20, 21].

Although it is known that the environment is a key 
element in driving and altering the life-history traits 
of Aedes mosquitoes [22–24], there remains a limited 
understanding of how their genomic background changes 
across a heterogeneous landscape. A landscape genomics 
approach is an important first step to associate popula-
tion structure with the environment and to narrow down 
candidate genomic targets for further investigation of 
local environmental adaptation [25]. In the present study, 
we applied landscape genomics approaches to test the 
possibility of rapid adaptation to heterogeneous environ-
ments by identifying loci with unusual allelic associations 
to different environmental conditions. We produced 
evidence relevant to the question of whether adapta-
tion is predominantly mono- or polygenic by conducting 
genotype-environment association (EAA) analysis using 

whole genome re-sequencing (WGS) data and by char-
acterizing population structure to account for potentially 
confounding effects in EAA tests. Our new insights into 
the evolution of rapid adaptation observed in Ae. aegypti 
in California will improve our knowledge of evolutionary 
forces and processes during the invasion of disease vec-
tors, which is crucial for advancing dynamic mitigation 
strategies aimed at reducing disease risk worldwide [26, 
27].

Materials and methods
Mosquito collections
A total of 96 individual adult female Ae. aegypti from 
12 geographic districts were collected across south-
ern and central California between 2013–2017 (Fig.  1, 
Supplementary Table  1). These mosquitoes were col-
lected using BG Sentinel traps baited with CO2. All 
collections on private properties were conducted after 
obtaining permission from residents and/or owners. 
Mosquito samples were individually preserved in 80% 
ethanol and held at either -20 or -80  °C prior to DNA 
extraction.

Whole‑genome resequencing
Genomic DNA was extracted and sequenced using 
established protocols as described by Nieman et  al. 
2015 [30]. Genomic DNA concentrations for each 
sample were quantified using the Qubit dsDNA HS 
Assay Kit (Life Technologies, Carlsbad, CA) on a 
Qubit instrument (Life Technologies, Carlsbad, CA). 
A genomic DNA library was constructed for each indi-
vidual mosquito using 20  ng DNA, the Qiaseq FX 96 
kit (Qiagen, Valencia, CA), and Ampure SPRI beads 
(Beckman Coulter, Brea, CA) following an established 
protocol by Nieman et  al. 2015 [30]. Library concen-
trations were measured using Qubit (Life Technolo-
gies, Carlsbad, CA) as described above. Libraries were 
sequenced as 150-bp pair-end reads, each in one lane of 
an Illumina HiSeq 4000 platform at the UC Davis DNA 
Technologies Core and according to the manufacturer’s 
standard protocols (summary statistics of Illumina re-
sequencing data per sample is available in Supplemen-
tary Table 1).

Alignment, variant calling and annotation
Raw reads were trimmed using Trimmomatic [31] ver-
sion 0.36 and high-quality trimmed reads were mapped 
to the AaegL5 reference genome [32] using BWA-MEM 
version 0.7.15 with default parameters. Mapping sta-
tistics were calculated using Qualimap [33] version 2.2 
(Supplementary Table  1). The marked duplicate reads 
were removed using Picard tools version 2.1.1 (http://​
broad​insti​tute.​github.​io/​picard/).

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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We called variants using Freebayes [34] version 
1.0.1 with standard filters and population priors disa-
bled. We required a minimum read depth of 8 to call 
variants for each individual following the recommen-
dation of Crawford and Lazzaro to minimize bias in 
population inference [35]. To improve the reliabil-
ity of calls, we required variants to be supported by 
both forward and reverse reads overlapping the loci 
(Erik Garrison, Welcome Trust Sanger Institute and 
Cambridge University, personal communication, 
Dec. 2014). The repeat regions were “soft-masked” 
(repeated and low complexity regions in the genome 
replaced with lowercased versions of their nucleic 
base) in the AaegL5 reference genome and single 
nucleotide polymorphisms (SNPs) in these regions 
were excluded from analysis. SNPs with minor allele 
frequency (MAF) of < 3% and individuals with > 20% 
missing genotypes after filtering for genotype qual-
ity were excluded from the analysis to minimize bias 
from sequencing error [22].

Analysis of population structure
We started by generating linkage disequilibrium (LD) 
pruned SNP sets as follows. We set sliding widows of size 50 
(that is the number of markers used for linkage disequilib-
rium testing at a time) and window increments of 5 mark-
ers. For any pair of SNPs in a window we defined, the first 
marker of the pair was discarded when the correlation coeffi-
cient (r2) between markers exceeded 0.2 using an R package, 
SNPRelate [36]. This yielded 100,089 independent SNPs that 
were retained for downstream population structure analysis.

Analysis of population structure was performed using 
the quality-control-positive linkage-disequilibrium-
pruned set of 100,089 autosomal SNPs. Principle com-
ponent analysis (PCA) [37] was conducted across all 
populations using EIGENSTART (v. 6.1.4) and results 
were visualized in RStudio [38]. We applied unsupervised 
hierarchal clustering of individuals using the maximum 
likelihood method implemented in ADMIXTURE (v. 
1.3.0) [39] using default input parameters. ADMIXTURE 
estimates ancestry coefficients from K modelled ancestral 

Fig. 1  Sampling locations of 96 Ae. aegypti mosquitoes collected across central and southern California between 2013 and 2017. Map was created 
using R Project for Statistical Computing v. 3.3.1 [28] and package maps v. 3.2.0 [29]. Colors indicate the origin mosquito abatement or vector 
control district of populations. Consolidated refers to the name of a mosquito abatement district in central California
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populations by assigning individuals to subpopulations 
after maximizing Hardy–Weinberg equilibrium of allele 
frequencies. The ‘—cv’ flag was added to perform the 
cross-validation procedure and to calculate the optimal 
number of K. A good value of K exhibits a low cross-vali-
dation error compared to other K values.

Environmental data
A total of 25 biologically relevant topo-climate variables 
(Supplementary Table 2) were used in the analyses. Cli-
mate data for each geographic district were collected 
from geographic coordinates of the locations where the 
samples were collected using the software package Cli-
mateNA [40]. All variables were annual and collected 
from 2010 to 2017 available by ClimateNA software. We 
calculated the average of the annual climate variables 
over 2010–2017 for the subsequent EAA analysis.

Screening for SNPs associated with local adaptation
To identify putative loci with a signal of selection, we 
used three approaches with different underlying algo-
rithms and assumptions. To identify loci associated with 
a signal of selection, we used two EAA approaches, Bay-
Pass [41] and latent factor mixed model (LFMM) [42].

BayPass package version 2.1 [43] provides a re-imple-
mentation of the Bayesian hierarchical model and 
explicitly accounts for the covariance structure among 
population allele frequencies that arises from the shared 
populations history. This was achieved by estimating a 
population covariance matrix, which renders the iden-
tification of SNPs subjected to selection less sensitive 
to the confounding impact of neutral genetic structure 
[41]. Population structure was estimated by choosing a 
random and unlinked set of 10 K SNPs across all popula-
tions selected for this study using the BayPass core model 
when no covariate data (i.e., no climate data) is provided. 
The main parameter of the interest is the scaled covari-
ance matrix of population allele frequencies estimated for 
individuals collected from each geographic district used 
for this study. We then used the auxiliary (AUX) covari-
ate model to assess the association of SNPs with topo-cli-
mate variables. For each SNP, the Bayes factor (denoted 
BFis as in Gautier, 2015 [43]) relies on the importance 
sampling algorithm proposed by Coop et  al. 2010 [44] 
and uses Markov Chain Monte Carlo (MCMC) samples 
obtained under the core model. Aux model involves the 
introduction of a Bayesian auxiliary variable for each 
regression coefficient and the auxiliary variable indicates 
whether a specific SNP can be regarded as associated cli-
mate variable or not. It is then straightforward to derive 
a Bayes Factor to compare both core and AUX mod-
els. BFis was expressed in deciban units (db, tenths of a 
power of 10) via the transformation 10 log10 (BF). As a 

decision rule and to calculate a significance threshold for 
outlier identification, pseudo-observed data (POD) were 
employed with the same random 10 kb SNPs used for the 
core model, and a 1% empirical threshold was calculated 
for the observed Bayes factor. To produce a narrower set 
of outlier loci, we then followed the popular Jeffreys’ rule 
[45] that identified outlier loci with BF ≥ 10. The Latent 
Factor Mixed Model (LFMM) is a variant of the Bayes-
ian principal component analysis in which residual back-
ground population structure and confounding variables 
are introduced via latent factors. We used a model with 
three latent factors (representing three major genetic 
clusters) to account for neutral population structure in 
the data based on the result we obtained from PCA and 
ADMIXTURE. We ran 105 MCMC integrations with 5 
burn-in steps with 10 replicate runs. Z-scores from repli-
cate runs were combined and adjusted using the genomic 
inflation factor which estimates the excess of the false 
discovery rate due to multiple testing, and it is defined as 
the ratio of the observed and the expected median of the 
distribution of the test statistic [46]. Lambda was calcu-
lated according to Delvin and Roeder (1999) [46]:

We corrected for multiple testing by fixing the false 
discovery rate to 5%. Only SNPs with FDR < 5% were 
retained as those significantly associated with topo-cli-
mate variables.

In addition to two EAAs methods, PCAdapt was used 
to find loci putatively under selection pressure as they 
deviate from the typical distribution of the test statistic 
Z [47]. Similar to LFMM, three K populations were cho-
sen to account for neutral population structure. PCAdapt 
examines the correlations (measured as the squared load-
ings p2

jk, which is the squared correlation between the 
jth SNP and Kth principal component) between genetic 
variants and specific PCs without any prior definition of 
populations. Assuming a chi-square distribution (degree 
of freedom = 1) for the squared loadings p2

j1, as suggested 
by Luu et al. 2017 [47], we used PCAdapt to calculate P 
values for all SNPs and then estimated the FDR to gener-
ate a list of candidate SNPs showing significant associa-
tions to population structure. Only SNPs with FDR < 5% 
were retained as those significantly involved in local 
adaptation.

Identification of top candidate genes
Loci that selected as outliers by all three implemented 
methods, BayPass, LFMM and PCAdapt, were identified. 
For each gene, we counted the number of outlier SNPs 
(a) and the total number of SNPs (n). To identify top-
candidate genes for each variable, we compared the num-
ber of outlier SNPs per gene to the 0.9999 quantile of the 

� = median (Z2)/0.456.
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binomial expectation where the expected frequency of 
SNPs per gene is p = ai/ni (summation over i genes), 
calculating p  separately for each environmental variable 
and excluding genes with no outliers from the calculation 
of  p  . Any genes with   p  values falling above this cutoff 
threshold were then identified as “top candidate genes” 
[48]. The position and function of the candidate genes 
identified by this approach were mined using the mos-
quito genomics resource of VectorBase [49].

Signature of positive selection around candidate genes
Two standard methods were further applied to search 
for signs of selective sweep in different groups of pop-
ulations. Pairwise nucleotide diversity (π) [50], which 
is expected to have local reduction following a selec-
tive sweep, was calculated using a sliding window 
approach with window size of 10kbp and moving step 
of 5kbp using the software R package PopGenome [51] 
separately for each of the three groups detected by the 
PCA and admixture analyses. Weir and Cockerham’s 
Fst, which measures genetic divergence between pairs 
of three groups of populations, was calculated using a 
sliding-window size of 10 kb and moving step of 5 kb 
by VCFtools [52].

Gene annotation and enrichment analysis
To explore which biological processes (BP) top candi-
date genes are involved in, we performed a Gene Ontol-
ogy (GO) and enrichment analysis for the top candidate 
genes we identified using topGO package in R [53]. Sig-
nificance for each individual GO-identifier was com-
puted with Fisher’s exact test and significance threshold 
of 1%. We also performed BLAST [54] searches of the 
predicted genes against the homologous genes in the 
annotated Drosophila melanogaster genome in order 

to potentially obtain more precise information on their 
functional annotation.

Results
Characterization of sequence variation in Ae. aegypti
We performed whole genome re-sequencing of all 101 
Ae. aegypti samples and obtained, on average, over 110 
million Illumina raw reads with an average sequencing 
depth of ~ 10X per individual covering > 85% of the refer-
ence genome. After variant calling and applying appro-
priate filtering, we identified a total of 1,968,198 single 
nucleotide polymorphisms (SNPs) with a minor allele 
frequency (MAF) > 3% which were subjected to down-
stream analysis. Supplementary Table 1 summarizes the 
per-individual read counts and coverage depths.

Analysis of local population structure
We examined population structure and identified ances-
tral components with an autosomal marker dataset 
(100,089) using PCA and ADMIXTURE. We found a 
strong local population structure across the entire range 
of collections by PCA. The two-first axes (principal com-
ponents 1 and 2) explained a large proportion of the vari-
ation, cumulatively accounting for 63.9% of the variance 
in SNP genotypes and three main genetic clusters were 
determined from this analysis (Fig.  2a). The first cluster 
(Ae.a1) included samples collected from various sites in 
Consolidated Mosquito Abatement District in central 
California. The second cluster (Ae.a2) primarily included 
samples from other mosquito districts in central Cali-
fornia (Madera, Fresno, Kings, Tulare_Delta, and Kern) 
and the third cluster (Ae.a3) consisted of samples col-
lected from southern California mosquito districts (San_
Diego, Imperial, Orange, Northwest, Greater_LA, and 
San_Gabriel_Valley).

Fig. 2  a. The first two principal components of a principal component analysis (PCA) of individual genotypes based on the LD pruned dataset 
describing the relationship among populations. Color code refers to origin mosquito abatement or vector control district of populations. b. 
Clustering assignments of each genotype inferred using the software Admixture for K = 2 and K = 3 populations. Each color represents one genetic 
cluster and each vertical bar represents one genotype
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Admixture analysis highlighted a significant popula-
tion structure. According to cross validation error (Sup-
plementary Fig.  1), k = 3 was the most well-presented 
population structure for our dataset which distinguished 
individuals from southern California, central California, 
and Consolidated as genetically distinct groups (Fig. 2b). 
There were some individuals positioned between the 
three main clusters suggesting a potential admixture 
between different populations (Fig.  2a/b). Our results 
generally recapitulate the broad inferences of a previous 
study by Lee et al. 2019 [18].

Genomic evidence for local adaptation in response 
to environmental heterogeneity in California
If the CA populations of Ae.aegypti were locally adapted, 
we would expect to see that these populations of Ae. 
aegypti harbor genomic loci with signals of selection cor-
related to heterogeneous environmental conditions after 
taking the underlying population structure into account. 
In order to find genomic regions that are associated with 
local adaptation and to assess how candidate variation is 
portioned among different environmental variables, we 
carried out three complementary approaches which take 
into account the neutral genetic structure.

We performed PCA analysis for the 25 topo-climate 
variables extracted from ClimateNA (Supplementary 
Table  2). The two-first axes (PC1 and PC2) explained a 
large proportion of the variation, 56% and 35% respec-
tively. Twelve Ae. aegypti populations, mainly distributed 
along the second PC axis, were linked to both tempera-
ture and precipitation variables (Supplementary Fig.  2). 
We then started by identifying SNPs that showed strong 
associations with the topo-climate variables using LFMM 
and BayPass [42, 43]. The number of latent factors was 
set to three based on the results of Admixture and PCA, 
as explained above. Under K = 3 genetic clusters, LFMM 
identified 17,519 outlier SNPs with a genomic signal of 
local adaptation at the FDR of 5% across all variables. 
Among all variables, we found the highest number of 
outliers associated with both temperature and humidity 
(climatic moisture deficit, degree-days above 18  °C, and 
annual heat-moisture index with 4,406; 4,078; and 3,685 
outlier SNPs respectively).

LFMM is robust in identifying adaptive processes 
that result from weak, multi-locus effects across various 
demographic scenarios and sampling schemes. However, 
it is important to recognize that a subset of the 17,519 
candidate loci identified through this single analysis are 
likely to be false positives. We therefore explored asso-
ciations with the Bayesian method available in BayPass 
under the AUX covariate model. We selected this model 
over others because it is more precise and efficient when 
estimating the covariance matrix (Ω) and more sensitive 

for identifying SNPs displaying weak association signals 
resulting from soft selective sweeps often involved in 
polygenic characters [43]. Analysis of the data set under 
the BayPass core model allowed us to estimate the scaled 
covariance matrix of population allele frequencies Ω 
that quantifies the genetic relationship among each pair 
of populations. The resulting estimates of Ω accurately 
reflected the known structure between samples, that is, 
a clustering at the higher level by population geographic 
origin (Supplementary Fig.  3a and b). BayPass analysis 
identified 16,976 SNPs with a signature of selection wide-
spread across the genome and associated with various 
topo-climatic factors we tested. Among the analyzed var-
iables, latitude, annual heat-moisture index, mean annual 
temperature, and climatic moisture deficit were the vari-
ables with the highest number of outlier SNPs detected 
by the BayPass AUX model.

The PCAdapt [47] method is considered less sensitive 
to confounding demography due to its ability to account 
for population structure or unobserved spatial autocor-
relation in the data [55]. Compared to 17,519 and 16,976 
outlier SNPs detected by LFMM and BayPass respec-
tively, PCAdapt identified a of total of 8,637 SNPs with a 
signature of selection widespread across the genome. Fig-
ure 3 shows an example of a circular Manhattan plot for 
a single environmental variable: mean warmest month 
temperature (MWMT). Across all three implemented 
methods, there were 1,991 SNPs consistently identified 
as outliers with a signal of selection and correlated with 
topo-climate variables, providing higher confidence that 
these loci are located within, or close to, regions involved 
in adaptation to heterogeneous environments.

Candidate gene functions and molecular pathways
We identified top candidate genes as those where an 
exceptional proportion of their total SNPs were out-
liers across all the three methods used, as explained 
above and in the methods section (Fig. 4). In total, we 
found 112 top candidate genes and many of these genes 
were supported by multiple environmental variables 
(Supplementary Table  3). AHM (annual heat-moisture 
index),CMD (Hargreaves climate moisture deficit) and 
DD18 (degree days below 18 °C) were the three top var-
iables with the largest number of top candidate genes 
respectively. The vast majority of the genes detected 
as top candidates are annotated as being involved in a 
variety of biological processes, including AAEL001245 
(EBgn0262737) which is known to encode a protein 
involved in thermo-sensory behavior and regulation 
of alternative splicing in Drosophila and AAEL019772 
(FBgn0015245) and AAEL008641 (FBgn0001122) 
which encode heat shock proteins in Drosophila [56] 



Page 7 of 13Soudi et al. BMC Genomics          (2023) 24:311 	

(complete list of candidate genes with Drosophila 
homologs are described in Supplementary Table 3).

To understand the biological function of the top candi-
date genes, we performed GO enrichment analysis. From 
the 112 genes identified as top candidates, we identified 
10 significantly overrepresented biological processes 
including metabolism, cell growth, response to stress, 
DNA repair, membrane assembly, transport through the 
endomembrane system, and mRNA transcription which 
all play important roles in adaption (Table 1).

In order to gain further insight into the evolutionary 
history of adaptation, we performed nucleotide and dif-
ferentiation-based tests to examine the presence of recent 
positive selection for the three genes with known activ-
ity in thermal adaptation (AAEL001245, AAEL019772 
and AAEL008641). The nucleotide diversities (π) at the 
selected genes were significantly below the genome-wide 
averages in coding regions in all three groups (Fig.  5), 
which was consistent with the expectation of a strong 
selective event and rapid adaptive evolution [57]. Addi-
tionally, the level of genetic differentiation (Fst) among 

Fig. 3  Circular Manhattan plot of genome-wide association analysis performed using three different methods. Ring 1 shows distribution of 
high-quality SNPs over three different Ae. aegypti chromosomes. It indicates the number of SNPs within 1 Mb windows and reflects the SNP density 
on each chromosome for genome-wide association with climate variables. Ring 2 shows SNPs association with MWMT (mean temperature of 
the warmest month) detected by BayPass. The significance level of association based on Bayes Factors (BF) is presented by blue (BF = 10) and red 
(BF = 20) circles. Rings 3 and 4 show SNPs detected by LFMM and PCAdapt respectively. The significance level (–logP for LFMM and PcAdapt) is 
represented by a red circle
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populations was higher at the selected genes compared 
with genetic background, especially between Ae. aegypti 
2 and Ae. aegypti 3 groups (Fig. 5) implying that spatially 
varying selection has likely driven differentiation in these 
genes between the groups.

Discussion
Invasive species cause considerable ecological and eco-
nomic harms worldwide [58, 59]. Despite the broad 
impacts they have on diversity and agriculture, the 
genetic basis of adaptations and near-term evolution of 

invading populations are poorly understood. Ae. aegypti 
is the major vector of multiple diseases, such as dengue, 
Zika, and chikungunya and its geographical range is con-
tinuously expanding; presumably due to anthropogenic 
conveyance, ongoing climate change, and increasing 
global transportation. The goal of the present study was 
to describe the fine-scale genomic architecture of this 
invasive mosquito within habitats characterized by dif-
ferent abiotic environmental conditions and to probe the 
underlying genetic basis for rapid adaptation of this spe-
cies to new environments.

Fig. 4  Top candidate genes for mean warmest month temperature (MWMT) identified as those with an extreme number of outlier SNPs relative to 
binomial expectation, shown in red. The same method was used to identify top candidate genes for each of the 25 topo-climate variable tests

Table 1  Top-ranked biological processes that were significantly overrepresented in the top candidate genes in Ae. aegypti 

GO.ID Term Annotated Significant Expected elimFisher p.adj

GO:0006468 protein phosphorylation 241 73 31.87 1.10E-12 0

GO:0006355 regulation of transcription 403 100 53.29 4.70E-11 0

GO:0007186 G protein-coupled receptor signaling pathway 151 46 19.97 1.70E-08 0

GO:0035556 Intracellular signal transduction 184 55 24.33 5.70E-05 0

GO:0035023 Regulation of rho protein signal 28 12 3.1 1.00E-04 0

GO:0006813 Potassium ion transport 39 18 5.16 2.20E-04 0

GO:0007165 Signal transduction 600 154 79.34 0.00028 0

GO:0007169 Transmembrane receptor protein tyrosine 9 6 1.19 0.00031 0

GO:0071805 Potassium ion transmembrane transport 13 7 1.72 0.00057 0

GO:0007264 Small GPTase mediated signal transduction 17 25 9.52 0.00312 0
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Our investigation of putative signals of selection and 
local adaptation of Ae. aegypti (in total 96 mosquitoes 
from 12 geographic sites) that were recently introduced 
and established in various locations in central and south-
ern California (Fig.  1) found signals of selection, dis-
tributed along the genome. In a stepwise approach that 
included applying landscape genomics, identification 
of top candidate genes and GO enrichment analysis, we 
identified a set of candidate genes with various biological 
functions associated with adaptation to local abiotic envi-
ronmental conditions in central and southern California.

The study by Pless et  al. [19] showed northern and 
southern populations of Ae.aegypti were likely founded 
by two independent introductions which came from the 
south central US and southwest US/northern Mexico 
regions respectively. We found three major genetic clus-
ters among 96 individuals collected from 12 geographic 
sites across central and southern California. Our results 
were consistent with a previous study by Lee et  al. [18] 
where they also found three major genetic clusters. In 

their analysis, samples from southeast USA (Florida) 
clustered with populations from the town of Exeter in 
central California and southern California. Our finding 
along with the previous findings by Lee et al. and previ-
ous report support the hypothesis that populations of Ae.
aegypti distributed in California originated from multi-
ple independent introductions from genetically distinct 
source populations; although the exact origin of the 
introductions remains uncertain and open for the future 
investigations.

To find genomic regions that have been targets of 
natural selection, we identified SNPs that are putatively 
selected for and strongly associated with topo-climatic 
variables using various landscape genomics methods. 
The methods we employed substantially controlled for 
neutral population genetic structure such as genetic drift 
or gene flow. We chose outlier SNPs as those which were 
consistently identified by all applied methods, allowing 
us to eliminate stochastic variation that could affect the 
results. We assumed that outlier loci detected along the 

Fig. 5  Nucleotide diversity (π) and genetic differentiation (Fst) for three genes, a. AAEL001245, b. AAEL019772 and c. AAEL008641, with significant 
signature of adaptation and well-known roles in thermal stress adaptation in Drosophila melanogaster 
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genome are likely to be under selection, either directly or 
through hitchhiking [60]; although we acknowledge that 
other processes, including regions with reduced recom-
bination, inversions, and chromosomal rearrangements, 
may also be responsible for the results we obtained [61]. 
Therefore, further studies of linkage disequilibrium and 
the regions with reduced recombination and genome 
structure could illuminate the possible role of these fac-
tors in shaping adaptation as has been shown in other 
mosquitoes such as Anopheles [62].

Natural selection plays a key role in shaping the avail-
able genetic variation of populations and thereby pro-
duces adaptation [63]. By applying EAA methodology 
we scanned the genome to uncover genomic selection 
footprints. We detected loci which were associated with 
both temperature and precipitation related variables 
(Supplementary Table 3), which implies the significance 
of both of these elements in shaping selection pressure 
and forming local adaptation in Ae. aegypti. Our results 
are in accordance with previous reports identifying these 
abiotic variables as major predictors in Aedes distribu-
tion patterns [14, 25]. Temperature has been known to 
govern reproduction, maturation, and mortality rates 
and to be important for egg laying, development and sur-
vival of Ae. aegypti in larval habitats [64]. These variables 
are also likely to elevate selection for thermal tolerance 
at the adult stage to increase resistance to diurnal and 
inter-seasonal variation [14, 64, 65]. Precipitation affects 
the distribution of Ae. aegypti since rainfall generates 
breeding grounds for adults. Unlike other mosquito spe-
cies, Ae. aegypti eggs are laid above the water surface and 
hatch only when the water level rises and wets them [66].

The introduction of Aedes aegypti into California 
would most certainly have been through some anthro-
pogenic means which is a well-known mode of dispersal 
in this species. [14] A rapid evolutionary response, as we 
observed in this population, would therefore have been 
largely based on preexisting standing genetic variation. 
We have identified signals of local environmental adapta-
tion across a relatively small number of loci distributed 
along the genome. Our lack of ability to detect more 
putative regions under selection can be explained by ana-
lytical limitations in distinguishing weak multi-locus sig-
natures from the genomic differentiation introduced by 
genetic drift and demography [67, 68]. It has been shown 
that there is an extensive genetic differentiation and a 
limited amount of gene flow among CA populations of 
Ae.aegypti and also a relatively limited number of gen-
erations after introduction to California. Therefore, small 
number of regions with signature of adaptation can be 
stemmed from biological limitations and not just analyti-
cal limitations [69]. These limited regions are expected 

to have a strong impact on the fitness such as viability, 
reproductive success, cold tolerance and phenology traits 
such as diapause in one environment over the other 
because the allele with the highest fitness is expected 
to spread to all populations if this condition is not met. 
This can be tested in a common garden with a reciprocal 
transplant experiment in the future.

By applying top candidate gene methods, we discov-
ered 112 genes that contain SNPs highly associated 
with at least one topo-climatic variable (Supplementary 
Table 3). To better understand the role of each selected 
top candidate gene, we found their homolog genes in 
Drosophila. Several genes of heat shock protein (HSP) 
families are known to be selected in mosquitoes, which 
aid in overcoming stress induced by elevated tempera-
ture [70]. Nucleotide diversity at these genes was below 
the genome-wide averages and the level of genetic dif-
ferentiation was high among populations which further 
confirms that these genes are likely targets of the positive 
selection. In general, these results present some prom-
ising avenues for future works; especially if the markers 
detected here are linked to the actual targets of selec-
tion. The congruence between the observed genome 
scans and the genes assigned biological functions makes 
them ideal targets for further experimental validation. 
From an evolutionary perspective, coding regions are key 
genomic spots to look for the signatures of selection, as 
these directly influence functional elements in contrast to 
the non-coding genome regions. However, it is important 
to note that selection can also act on noncoding regions 
since they may be located, for example, in promoters, 
enhancers, or small RNAs where they affect gene expres-
sion. In this context, SNPs residing in non-coding regions 
of the genome may be of interest for future studies.

Conclusions
The study of invasive adaptation and genome evolution 
is an emerging field that is developing rapidly and offers 
countless opportunities to investigate adaptive processes. 
Understanding the genomic basis of adaptive evolution in 
invasive species is important for predicting future inva-
sion scenarios, identifying candidate genes involved in 
invasions, and, more generally, for understanding how 
populations can evolve rapidly in response to novel and 
changing environments.

Here we used a landscape genomics approaches to 
identify genomic regions and candidate genes potentially 
involved in adaptation. The identified genes showed foot-
prints of selection and were correlated with environmen-
tal factors that differed between sites, as expected under 
a scenario of environment-mediated selection in natural 
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populations of Ae. aegypti in California. Our findings 
help to elucidate the role of rapid evolution in the estab-
lishment and spread of invasive species. We detected 
evidence indicating local adaptation to various environ-
mental conditions in populations of Ae. aegypti just a few 
years after its introduction into California, adaptations 
which may translate into a fitness advantage for specific 
populations.
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