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Abstract

People living with HIV are affected by the chronic consequences of neurocognitive impairment 

(NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend 

life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may 

continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes 

mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some 

components of antiretroviral therapy exert undesirable side effects on the nervous system. No 

treatment for HIV-associated NCI has been approved by the European Medicines Agency or the 

US Food and Drug Administration. Historically, roadblocks to developing effective treatments 

have included a limited understanding of the pathophysiology of HIV-associated NCI and 

heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying 

causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite 

these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially 

druggable targets, including excessive immune activation, metabolic alterations culminating in 

mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and 

microbiome alterations. In addition to drug treatments, we also highlight the importance of 

non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential 

interventions addressing these mechanisms, we hope to supply reasons for optimism in people 

living with HIV affected by NCI and their care providers.
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Introduction

Acquired neurocognitive impairment (NCI) affects 30–50% of the 38 million people living 

with HIV worldwide1,2. Persistent NCI is a major concern for the ageing population of 

people living with HIV who are affected by the chronic, negative consequences of this 

condition3. By highlighting interventions that treat or prevent HIV-associated NCI, we hope 

to supply reasons for optimism in affected individuals. Among the general mechanisms 

that underlie HIV-associated NCI are chronic inflammation, oxidative stress and direct 

neurotoxicity of viral proteins. In subsequent sections, we specifically and precisely describe 

these potentially targetable mechanisms.

HIV infects and replicates in immune cells, particularly in CD4+ T cells, macrophages 

and microglia. It causes cellular dysfunction and disease by a variety of mechanisms, 

such as progressive CD4+ T cell depletion and inflammation. The prognosis for people 

living with HIV has made great strides forward over the past two decades as effective, well-

tolerated antiretroviral therapies (ART) have evolved. In most people living with HIV, these 

combination drug regimens suppress viral replication, restore CD4+ T cell numbers, slow, 

stop and even partially reverse disease progression, reduce the likelihood of opportunistic 

diseases and cancer, and greatly extend lifespan. While ART has not been specifically 

approved to ameliorate NCI by the European Medicines Agency or the US Food and Drug 

Administration (FDA), individuals initiating ART often demonstrate substantial, clinically 

significant improvements in cognitive performance3,4, particularly when ART is initiated 

early, before substantial immunosuppression occurs5. Nevertheless, some degree of NCI 

persists in many individuals and does not appear to improve in the long term6. While 

frank dementia is now very uncommon, milder HIV-associated NCI persists in the context 

of suppression of viral replication. The remaining lingering mild NCI is associated with 

poor health outcomes and quality of life in people living with HIV1,7,8. Several ART trials 

designed specifically to target HIV-associated NCI have shown little effectiveness3,9, and 

numerous plausible explanations for the lack of effectiveness have been advanced. For 

example, an intensification trial that added abacavir, a drug with good, predicted CNS 

penetration, to existing background ART, did not show neurocognitive benefit. Subsequent 

assays found that two-thirds of patients had baseline resistance to abacavir, probably because 

of prior exposure to other drugs in the same class (for example, HIV nucleoside reverse 

transcriptase inhibitors).

The clinical literature on NCI in HIV is characterized by numerous areas of debate, 

controversy and inconsistent findings. These include concerns about nomenclature and 

varying reports on the prevalence and incidence of NCI. In our discussion of these various 

areas of study, we highlight several sources of disagreement. Discrepancies arise from 

factors such as differences in NCI prevalence depending on the selection of neurocognitive 

test instruments, variations in cohort composition (for example, proportions of men 

versus women, different racial or ethnic groups, differential access to care, and specific 

antiretroviral treatment regimens), the rapid evolution of specific antiretroviral combinations 

resulting in long-term group trends, and differences in the thresholds for designating 

impaired performance (for example, one standard deviation in two domains versus two 

standard deviations).
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Nomenclature, epidemiology and clinical impact of HIV-associated NCI

In 2007, a multinational consensus document outlined the terminology for HIV-associated 

neurocognitive disorders, including HIV-associated dementia, mild neurocognitive disorder 

and asymptomatic neurocognitive impairment (ANI)10. Diagnosis of these conditions is 

based on impaired performance in multiple neurocognitive domains in combination with 

a clinical history including premorbid or ongoing conditions, impact on activities of 

daily living, medical and neurological examination, and laboratory testing designed to 

identify conditions other than HIV (‘confounds’) that contribute to or in some cases fully 

account for NCI and functional impairments. However, with the rapid advancement of 

ART and the ageing of people living with HIV, the patterns of neurocognitive dysfunction 

are evolving. The classification terminology is debated, particularly the importance of 

ANI11–13. Some investigators suggest that isolated test results showing NCI (ANI) might 

represent false positives or artefacts of inadequate normative corrections that are clinically 

insignificant, are related to comorbidities rather than HIV itself, and have no basis in 

neuropathogenesis. Counter arguments include observations that ANI often progresses 

to symptomatic impairment and is associated with blood, cerebrospinal fluid (CSF) and 

neuroimaging biomarkers of neuronal injury and neuroinflammation that have plausible 

connections to HIV itself14–16. Recognizing the continuing debate in this area, we have 

chosen to use the broader term HIV-associated NCI.

Despite sustained ART and viral suppression, HIV-associated NCI affects 30–50% of people 

living with HIV1,17–19. Key symptoms are difficulties with attention and sustained focus, 

forgetfulness, and loss of the ability to perform some cognitive tasks that the person 

previously managed with relative ease. Additionally, depression often accompanies this 

condition. HIV-associated NCI adversely impacts ART adherence20, driving20, quality of 

life21–24, independence in daily activities11,16,17 and life expectancy25. The risk of HIV-

associated NCI significantly increases in people living with HIV aged 50 years and older, 

who now comprise the largest and fastest-growing age group of people living with HIV in 

Europe and the USA26–29. Legacy effects contribute to the high prevalence of NCI in people 

living with HIV. This concept is supported by the well-established observation that lower 

nadir levels of CD4+ T cells, which reflect a history of advanced immunosuppression, are 

associated with an increased risk of NCI30,31. Additionally, people living with HIV show 

premature and accelerated neurocognitive ageing23,24, leaving them vulnerable to functional 

decline25,26 and impaired quality of life27. Unlike Alzheimer disease (AD) and many other 

neurodegenerative disorders, HIV-associated NCI is not inexorably progressive32, but the 

cumulative effect of decades of neurocognitive disability is profound.

Ethnic and racial disparities in HIV-associated NCI have received increasing attention 

over the past few years. In the USA, new HIV infection rates are eight and four times 

higher, respectively, among Black and Latino people than in non-Latino white people. 

Black and Latino people account for 65% of the national population of people living 

with HIV33. These groups are underserved clinically and under-represented in research. 

Despite inconsistent findings across studies, some have reported that Black people living 

with HIV have cognitive impairment more frequently than white people living with HIV 

in the USA34–36. Similarly, Latino people living with HIV of diverse heritage (Mexican 
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and Puerto Rican) and language use (speaking primarily English and Spanish), and who 

live in different geographical regions in the USA37–40, show more frequent NCI and faster 

longitudinal neurocognitive decline than non-Latino white people living with HIV.

In 2021, 38.4 million people were living with HIV worldwide, with the vast majority in 

low-income and middle-income countries, including 53% in eastern and southern Africa2. 

Although estimates vary according to the viral clade (subtype), regional subpopulations 

and assessment methods, HIV-associated NCI is quite prevalent in these regions41–43. 

Notable disparities in access to ART and other medical resources are likely to drive at 

least part of the increased risk of HIV-associated NCI42, yet there are important gaps in our 

understanding of the underlying mechanisms and management of HIV-associated NCI in 

these settings.

Neuropathogenesis of HIV-associated NCI

A variety of molecular mechanisms contribute to HIV-associated NCI; we focus on the 

direct and indirect effects related to HIV infection. Because the number of neuropathogenic 

mechanisms is large, we focus on a subset of mechanisms for which robust experimental 

support exists. Figure 1 presents an overview of some of the key contributing causes of 

HIV-associated NCI.

HIV persistence in the brain

Despite ART-mediated suppression, HIV proviruses are detectable in the brain and CSF of 

people living with HIV. As such, the brain presents a major challenge for viral eradication44–

47, and HIV persistence directly or indirectly contributes to HIV-associated NCI.

Although CSF viral loads (HIV RNA) do not always provide a reliable surrogate for brain 

viral loads, CSF escape is well described in people living with HIV on ART. CSF escape 

is a condition in which HIV RNA is detectable in the CSF but undetectable in blood or is 

significantly higher in CSF than in blood (usually by 0.5 log10 [copies per millilitre]). Most 

studies report a prevalence of CSF escape of 5–15%, but this prevalence varies depending on 

the characteristics of the cohort studied and has generally declined over the past 15 years as 

ART regimens have become increasingly effective, convenient and well tolerated48–50.

Although most instances of CSF escape are asymptomatic, clinical presentations are non-

specific and include encephalopathy, seizures and stroke-like symptoms. In some cases, 

antiretroviral drug resistance mutations have been found in CSF but not in blood, although 

this finding is confounded by technical limitations in assessing resistance at low viral loads. 

Reports exist of individuals whose antiretroviral regimens were changed in response to 

CSF escape and drug resistance profiles, with a subset of these cases showing clinical 

improvement49,51. However, whether these improvements were spontaneous or related to the 

regimen changes is unclear.

Intact and defective HIV DNA provirus has been detected in post-mortem brain tissue from 

people with HIV who had been on ART52,53. Transcriptomic analyses of brain tissue showed 

increased HIV RNA levels accompanied by elevated interferon signalling compared with 
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uninfected controls. Conversely, the expression of genes linked to synaptic and neuronal 

function was downregulated compared with uninfected controls54. HIV RNA transcripts 

have also been measured in the CSF of people living with HIV, predominantly in CD4+ 

T cells55. High levels of intracellular HIV RNA transcription in CSF CD4+ T cells have 

been associated with ongoing neuronal injury as measured by proton magnetic resonance 

spectroscopy56. Another study showed that HIV-infected cells (HIV DNA) persist in the 

CSF of almost half of individuals on sustained ART and that the presence of these cells 

is correlated with decreased neurocognitive performance57. Consistently, HIV transcription 

occurs in infected cells even under sustained ART58,59. Chronic transcription and translation 

could potentially induce chronic immune activation60. The factors driving HIV transcription 

despite ART are not well defined. Interestingly, HIV transcripts and proteins, such as Nef, 

Tat and Env, are present in exosomes — small vesicles carrying proteins and RNAs from 

the originating cells — secreted from infected cells61–63. Therefore, exosomes continue 

to be an evolving topic for improved understanding of HIV infection and the associated 

NCI64,65. Exosomes are being studied for their suitability in providing HIV and NCI 

biomarkers64,66,67 but also as functional players in the promotion63,64,66,67 of infection 

and NCI and as delivery vehicles for therapeutics61,62,66–68. Exosomes from HIV-infected 

cells modulate the gene expression and function of uninfected immune cells, for instance, 

via activation of NF-κB69,70. Vice versa, exosomes from uninfected cells can modulate the 

transcription of HIV in infected cells, leading to an increased release of HIV RNA from 

infected cells71. Comorbidities such as substance use disorders have also been shown to 

modulate HIV transcription72. Specifically, the use of benzodiazepines, at least in a subset 

of people living with HIV, is linked to NCI73,74. The benzodiazepine alprazolam increases 

HIV RNA transcription and might thus indirectly contribute to neuronal dysfunction75. The 

precise mechanisms by which drugs modulate HIV transcription in T cells and myeloid cells 

are not well understood.

Long-term HIV infection can induce neuronal damage that could have been triggered before 

starting ART, commonly referred to as a legacy effect76. Concerted efforts such as the ‘Last 

Gift’ study, which follows people living with HIV who were diagnosed with a terminal 

illness during the last months of their lives and agreed to donate their bodies to HIV 

research, provide the unprecedented opportunity to deeply profile all anatomical niches, 

including the brain, where HIV plays hide and seek77.

Neuropathogenesis in diverse ethnic and racial groups

An understanding of the sociocultural, behavioural and biological factors that underlie 

HIV-associated NCI is crucial to achieving treatment benefits. Most human studies in the 

USA have included primarily non-Latino white people and have not investigated differences 

in neuropathogenesis across diverse ethnic and racial groups. However, evidence exists that 

key pathophysiological mechanisms of HIV-associated NCI might differ across ethnic and 

racial groups. For example, a higher score on the Veterans Aging Cohort Study Index 

was significantly associated with worse global neurocognition in white and Black people 

living with HIV but not among Latino people living with HIV in southern California78. 

Age and lower current CD4 T cell counts were the most important predictors among Black 

people. For Latino people, age and hepatitis C virus (HCV) status were most important. In 
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a multisite study at six medical centres in the USA78, comorbidity status was a unique and 

important predictor of higher NCI in participants of Mexican and Puerto Rican heritage. 

Among those of Mexican heritage, lower nadir CD4 T cell count was also a notable 

predictor, as was being on ART, in people living with HIV of Puerto Rican origin78. A study 

of Spanish-speaking people living with HIV in southern California showed that, among 

those without a history of lifetime substance use disorder, more years of ART exposure were 

significantly associated with decreased rates of global NCI, while those not meeting criteria 

for a lifetime substance use disorder showed no such association40. A post-mortem study 

of people with HIV on ART showed that alterations in triggering receptor expressed on 

myeloid cells 2 (TREM2) were an important marker of HIV-associated NCI among Latino 

people and a potential therapeutic target for intervention79. One genetic association study 

found that a common mitochondrial DNA haplogroup within this population (haplogroup B) 

was linked with decreased risk for NCI among Latino people living with HIV80.

Evidence of neuronal injury in HIV-associated NCI

The final common cause of HIV-associated NCI is neuronal dysfunction. Comprehensive 

neuropathological analyses of post-mortem brain samples from people with HIV with NCI 

report reductions in synapses and dendrites, weakening the functional connectivity between 

neurons upon which cognition depends81–83. Imaging studies of people living with HIV 

with NCI suggest that neuronal dysfunction is associated with brain atrophy14 and abnormal 

brain white matter connections84. Functional measures, such as PET and functional MRI, 

show additional abnormalities. CSF, serum and plasma levels of neurofilament light and 

Tau — both major structural elements of large-calibre myelinated axons — increase in 

many neurodegenerative disorders85–90, including HIV91, indicating progressive axonal 

and neuronal degeneration. A study conducted in 2022 showed that increasing levels of 

neurofilament light, total Tau and phosphorylated Tau 181 were associated with worse 

neurocognitive performance16. These clinical findings reinforce the neuropathological data 

linking neurodegeneration with NCI in people living with HIV. Again, minority racial and 

ethnic groups are under-represented in these studies.

HIV neuropathogenic mechanisms can be classified into two broad categories: direct 

toxic effects of the virus itself and toxic effects related to host response to the virus 

and its downstream consequences. Because HIV does not infect neurons, most proposed 

mechanisms of neuronal injury are indirect.

Animal models used in research on HIV in the brain

Numerous animal models of HIV neuropathogenesis have been developed, ranging from 

chimpanzees and other non-human primates to cats and rodents (rats and mice)92–97. 

Only non-human primates, cats and rodents have been found to be suitable for the study 

of HIV neuropathogenesis, neurological sequelae and behavioural impairment (reviewed 

elsewhere98). Non-human primates, cats and rodents are not permissive to HIV infection; 

however, some monkey species can contract simian immunodeficiency virus (SIV), and cats 

can be infected with a lentivirus called feline immunodeficiency virus (FIV)99–101. Both SIV 

and FIV induce AIDS-like disease with neuropathology or encephalitis, and thus macaques 

and cats have been used to study the pathogenesis of AIDS and NeuroAIDS99–105. However, 
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there are substantial differences between these viruses and HIV, limiting the translation of 

the findings into the human system.

As rodents cannot be productively infected with wild-type HIV, two chimeric HIV mutants 

have been generated in which the viral envelope protein gp120 is replaced with the gp80 

of ecotropic murine leukaemia virus (EcoHIV)106. This pseudo-typing approach enabled the 

establishment of a lasting and neuroinvasive lentiviral infection in mice with an associated 

immune response, and thus provides a model suitable for research on HIV in the brain107.

An earlier experimental approach for research on HIV in the brain used intracranial injection 

of HIV-infected human monocyte-derived macrophages into the brains of mice with 

severe combined immunodeficiency108–111. This model system provided evidence that HIV-

infected macrophages cause key features of the neuropathology observed in post-mortem 

brains from patients with HIV dementia. Alternatively, a human haematopoietic system can 

be established in some immunocompromised mouse strains, resulting in ‘humanized mice’ 

that are permissive to HIV infection and provide a small animal model for research on HIV 

in the brain97,112.

Mice and rats have the important advantage that they can be genetically modified; 

several transgenic mice and a rat that express an entire HIV genome develop AIDS-like 

diseases93,113–116. Transgenic mouse models expressing the entire HIV genome or single 

components of the virus, such as gp120, Tat or Vpr, in the brain develop various degrees 

of behavioural deficiencies and neuropathology, including loss of synapses, neuronal 

dendrites and entire neurons, as well as glial activation; these models thus recapitulate key 

pathological features of people living with HIV who have neurocognitive impairment117–

124. Moreover, the brains of HIV-gp120 transgenic mice share a considerable fraction of 

differential gene regulation with brains from people with HIV or HIV encephalitis who did 

and did not have NCI when alive125.

Direct neurotoxic mechanisms

Although HIV does not infect neurons, these cells are directly exposed to neurotoxic HIV 

proteins from infected myeloid cells. Low-level expression of HIV proteins in the brain 

and periphery continues in the presence of suppressed viral replication in the brain126–

128 and might explain the neuronal dysfunction and damage that underlie many of the 

clinical neuronal complications associated with HIV infection. In vitro, the HIV proteins 

Tat, gp120, Vpr and Nef trigger neuronal oxidative stress, altered mitochondrial transport 

and autophagic flux, induction of apoptosis, and abnormal Ca2+ signalling in cellular and 

animal models129–136. The involvement of HIV proteins in mitochondrial dysfunction in 

the brain was highlighted in a study that found alterations in the electron transport chain, 

glycolytic pathways, mitochondrial trafficking proteins and proteins involved in various 

energy pathways in a rat model of HIV-induced neurotoxicity137.

Indirect mechanisms of neurotoxicity

The concept of indirect mechanisms of neurotoxicity refers to the observations that HIV-

infected cells, specifically macrophages and microglia, secrete neurotoxins in conjunction 

with HIV virions or viral components and host proteins as well as other toxic molecules that 
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damage neurons. The neurotoxicity of macrophages and microglia is in line with the notion 

that HIV infects and persists in myeloid cells.

Persistence of HIV in brain myeloid cells.—HIV enters the brain within days after 

infection, infecting myeloid cells through chemokine receptors and sustaining productive 

infection (replication and assembly of infectious virions)138. The earliest descriptions of 

HIV encephalitis identified fused macrophages (multinucleated giant cells) and microglial 

nodules reflecting direct infection139,140. Modern neuropathological studies of decedents 

who had HIV infection and were virally suppressed find predominantly synaptodendritic 

pruning141,142. This shift in neuropathology has paralleled the clinical shift from frank 

dementia to milder forms of NCI. Astrocytes can also be infected but are resistant 

to productive infection143,144. Brain myeloid cells can constitute a ‘latent’ reservoir 

and are associated with chronic neuroinflammation145, although viral genes continue to 

be transcribed and translated128. Latent HIV in brain myeloid cells is associated with 

chronic neuroinflammation146 and neuronal dysfunction147,148 (Fig. 2). Several lines 

of evidence suggest that macrophages and microglia can injure neurons by releasing 

excitotoxic substances that lead to excessive activation of glutamate receptors, primarily 

of the N-methyl-d-aspartate subtype (NMDARs), including a metabolite of the tryptophan–

kynurenine pathway, quinolinic acid149–152. Quinolinic acid concentrations are increased 

even in the brains of people living with HIV with viral suppression and have been linked to 

prospective memory impairment151,153, providing a potential explanation for persistent NCI 

despite viral control. Moreover, neurotoxicity can also be mediated by macrophage-derived 

and microglial-derived inflammatory cytokines (such as IL-1α and tumour necrosis factor 

(TNF)), arachidonate and its metabolites (including the closely related platelet-activating 

factor (PAF), the biosynthesis of which shares a precursor source with arachidonic acid and 

eicosanoids), certain chemokines, and the release of viral proteins such as gp120, Tat, Nef or 

Vpr143,149,151,152,154.

HIV-associated NCI is characterized by distinct microglial phenotypes. Microglia respond to 

pathogens, injury and neurodegeneration by changing morphology, migrating to the site of 

damage and destroying pathogens. Microglia possess sensing mechanisms, such as TREM2, 

to detect CNS damage79. Transcriptomic analyses of brain tissue revealed dysregulated 

genes implicated in immune functioning and synaptic transmission155, and pathway analyses 

identified genes involved in immune responses, neurotransmission and cell signalling156–158. 

In vitro, exposure to HIV Tat protein resulted in microglial activation and induced the 

NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome159.

Type I interferons.—In contrast to interferon-α (IFNα), a product of activated microglia 

and macrophages, IFNβ exerts anti-inflammatory effects and is able to control HIV and 

SIV infection in the periphery and brain160,161. Studies of SIV-infected macaques show that 

IFNβ is the main type I interferon that is produced by the brain during acute infection, and 

its expression is associated with viral control in the brain160.

In the classical model of type I interferon signalling, IFNβ controls the time course of IFNα 
production162. However, SIV infection induces a protective antiviral IFNβ response in the 
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brain without the production of IFNα163. The suppression of IFNα during SIV infection 

depends on CCL2, which is predominantly produced by astrocytes upon viral infection164.

Similar to the observation in SIV-infected macaques, transiently increased expression of 

Ifnb1 mRNA (encoding IFNβ) is seen in the brains of HIV-gp120 transgenic mice165. 

This transgenic mouse model of HIV in the brain expresses viral gp120 of the HIV 

isolate lymphadenopathy-associated virus (LAV) under the control of a modified glial 

fibrillary acidic protein (Gfap) promotor in astrocytes in the CNS and recapitulates key 

features of brain injury seen in patients living with HIV or AIDS118. Moreover, as 

mentioned previously, HIV-gp120 transgenic mouse brains share a considerable number 

of differentially expressed genes with patients with human HIV and HIV encephalitis, 

including evidence of an endogenous interferon response125,166. Most interestingly, 

treatment of HIV-gp120 transgenic mice with exogenous recombinant IFNβ via intranasal 

delivery results in neuroprotection, at least in the cortex and hippocampus165, whereas, 

in the absence of exogenously supplied IFNβ, IFNAR1 critically contributes to the 

neurotoxicity of gp120 (ref. 167).

Because of its pronounced antiviral activity168,169, IFNα has been investigated for HIV 

treatment in several settings: before the introduction of combination ART, as part of a 

structured treatment interruption strategy, in acute HIV infection, as a component of salvage 

therapy and, most recently, in attempts to eradicate viral reservoirs170,171. Early attempts at 

treating established HIV infection were disappointing or inconclusive, in part because of a 

lack of understanding that the effects of the endogenous interferon system and exogenously 

supplied interferons depend on the stage of the HIV infection172–174. Moreover, chronically 

elevated IFNα eventually compromises the immune system and facilitates viral persistence 

and progression to AIDS171. Accordingly, one study suggested that blocking type I 

interferon (IFNα) signalling during chronic HIV infection with an antibody against IFNAR2 

enables the restoration of immune function175. However, other investigations related to HIV 

eradication suggest that non-IFNα2 type I interferons, such as IFNε, or type III interferons 

along with combination ART as well as viral reactivation agents can support the elimination 

of HIV reservoirs172,173,176–178. As the brain constitutes an HIV reservoir in the majority of 

people living with HIV, even in those on virally suppressive ART53, it presents a potential 

challenge for viral eradication44–46. Additionally, it will be important to assess whether 

therapeutic modulation of the interferon system can remediate NCI. Unfortunately, prior 

clinical trials of interferon treatment for HIV did not evaluate cognitive endpoints. The 

timing and duration of interferon treatment might be critical factors for the successful 

eradication and treatment of NCI179,180. IFNβ induces expression of antiviral C-C motif 

chemokine receptor 5 (CCR5) ligands165,181 and, as a therapeutic tool, it seems to cause 

fewer adverse effects than IFNα179. Moreover, owing to its immunomodulatory effect, 

IFNβ is approved by the FDA for the treatment of the inflammatory neurodegenerative 

autoimmune disease multiple sclerosis.179,180. Thus, on the basis of the available data, it 

is reasonable to further develop human IFNβ and IFNα isoforms to therapeutically control 

chronic HIV infection and delay or prevent the development of HIV-associated NCI.

Lipocalin 2.—Lipocalin 2 (LCN2) is a component of the innate immune system that 

counteracts bacterial infection by sequestering iron and regulates biological processes such 
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as cellular energy metabolism and apoptosis182–186. LCN2 has been implicated in the 

regulation of anxiety, emotional and contextual discrimination, and cognition182,187–190. In 

addition, it regulates inflammation125,129,130 and modulates microglial activation191,192 and 

possibly neurodegeneration125,193,194. Knockout of the Lcn2 gene in HIV-gp120 transgenic 

mice reduced behavioural impairment and neuronal damage195. Elevated levels of LCN2 

may be neurotoxic and override neuroprotection mediated by CCR5 and its chemokine 

ligands. Increased plasma and serum levels of LCN2 in people living with HIV correlate 

with worse processing speed and motor function196. Further studies are needed to clarify 

whether LCN2 can serve as a therapeutic target for HIV-associated NCI195.

BBB dysfunction in HIV

The blood–brain barrier (BBB) consists of vascular endothelial cells welded together via 

tight junctions surrounded by pericytes and astrocyte end-feet. The BBB is important in 

selectively filtering substances from the peripheral blood supply into the brain parenchyma. 

Increased BBB permeability allows harmful products from the systemic circulation to enter 

the CNS, including both HIV and activated immune cells197. HIV affects the function, 

structure and multicellular components of the BBB, including subcellular structures 

such as mitochondria, all of which contribute to the regulation of tight junctions and 

BBB permeability197. HIV affects the BBB largely through infection of monocytes and 

macrophages, which affect the BBB upon crossing198–201. HIV also infects astrocytes202–

204 and pericytes205, although to a smaller extent than the aforementioned myeloid-lineage 

cells, as astrocytes and pericytes are resistant to productive infection143,144. In people living 

with HIV with viral suppression on ART, the BBB can also be affected by HIV protein 

expression and ART-induced inflammation198,206 as well as by drugs of abuse207. Studies on 

the triggers of BBB breakdown consistently report a decrease in tight junction proteins, with 

a critical role for HIV proteins208–211. Although a comprehensive review of HIV-induced 

and ART-induced BBB dysfunction is beyond the scope of this Review, mounting evidence 

suggests that further investigation into this area is warranted.

Neuroinflammation and inflammasome activation

Neuroinflammation is a major indirect contributor to synaptodendritic degeneration. HIV 

infection induces an inflammatory state that alters the homeostasis of cytokines in both 

plasma and CSF212–215. Cytokines are immunomodulatory proteins with a variety of 

functions, including recruiting immune cells to sites of infection and regulating their 

functions, to resolve infections and repair injured tissues. However, chronic expression 

of cytokines is harmful. As most neural cells express cytokine receptors216–219, cytokines 

affect and mostly impair neuronal function. Several key biomarkers of inflammation and 

their clinical correlations in people living with HIV are described below.

Macrophages secrete TNF, which binds lymphotoxin-α220. Soluble TNF receptor II 

(sTNFRII) is the cell membrane-bound receptor for TNF and modulates its biological 

function. Concentrations of sTNFRII in plasma correlate strongly with the clinical stage 

and progression of disease221,222. Neopterin is a marker of myeloid cell activation and 

a biochemical product of the guanosine triphosphate pathway. Neopterin is elevated in 
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people living with HIV and strongly predicts disease progression223. Neopterin levels 

correlate strongly with reactive oxygen species released by myeloid cells, which contribute 

to oxidative stress and neurodegeneration. In addition, neopterin induces pro-inflammatory 

signal transduction224. ART reduces CSF neopterin levels; however, neopterin often remains 

mildly elevated despite suppression of plasma and CSF HIV RNA, raising the important 

question of whether neopterin elevation is caused by continued CNS infection or persistent 

CNS injury224.

The NLRP3 inflammasome

Recent studies show that HIV alters NLRP3 inflammasome signalling in CNS 

microglia, astrocytes and neurons159,225–229, suggesting a role for this pathway in HIV 

neuropathogenesis. The NLRP3 gene encodes the NALP3 protein (cryopyrin), a member of 

the NLRP3 inflammasome complex. This complex is an intracellular sensor that detects 

microbial motifs and endogenous danger signals such as reactive oxygen species and 

lysosomal damage230, resulting in the assembly and activation of the inflammasome231. 

Inflammasome activation leads to caspase 1-dependent release of the pro-inflammatory 

cytokines IL-1β and IL-18 as well as to pyroptosis, a rapid, inflammatory form of 

lytic programmed cell death. NLRP3 remains activated in people living with HIV with 

viral suppression232,233. Inflammatory cytokines regulated by NLRP3 (refs. 234–236) are 

elevated in the blood and CSF of people living with HIV. High IL-1β and IL-18 deplete 

synaptic serotonin, dopamine and norepinephrine237. Both IL-1β and IL-18 affect dendritic 

sprouting, synaptic plasticity, long-term potentiation, growth factors and neurogenesis238–

240.

mTOR and NCI in HIV

Mammalian target of rapamycin (mTOR) is the catalytic subunit of two structurally distinct 

multiprotein complexes, mTOR complex 1 (mTORC1) and mTORC2 (ref. 241). The 

functions of mTORC1 include initiation of translation, protein synthesis and autophagy, 

while mTORC2 orchestrates cytoskeletal organization and cell survival242. mTOR regulates 

the metabolic machinery necessary for glucose, lipid, amino acid and nucleic acid 

metabolism243,244. HIV enhances mTORC1 activity to favour its replication, contributing to 

dysregulated apoptosis, autophagy and inflammation245,246. However, inhibition of mTOR 

is neuroprotective247,248 and has beneficial effects relevant to HIV, including improved 

immune function249,250 and metabolism251, preserved insulin sensitivity252, and suppression 

of T and B cell activation253,254.

AD-like pathogenic mechanisms in HIV

As the mortality rate of HIV has decreased as a result of ART, people living with 

HIV reach the age when their risk of AD increases. Indeed, histological studies using 

post-mortem brain tissue suggest that increased interaction of HIV neuropathogenesis 

with age-dependent neurological diseases might contribute to the pathogenesis of HIV-

associated NCI255–257. For example, post-mortem studies of the brains of individuals with 

HIV-associated NCI revealed that the intracellular and extracellular presence of β-amyloid 

is a common pathological feature255,257. Dysfunctional clearance of β-amyloid was shown 
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to correlate with increased levels of HIV RNA and neuroinflammation in the brain82. 

HIV can lead to the accumulation of amyloid in the brain through several mechanisms, 

including neuroinflammation. Infected microglia release inflammatory cytokines, such 

as TNF and IL-1β, which increase the production of amyloid precursor protein and 

its cleavage by β-secretase and γ-secretase, resulting in the release of amyloid that 

can accumulate in brain tissue258–261. Studies have shown that HIV-associated NCI 

and AD share common pathogenic pathways, including signs of immune activation, 

decreased levels of microglial receptors involved in the clearance of protein aggregates 

and dying brain cells, and compromised neuronal functioning79,82,156,256. These findings 

have led some researchers to postulate that HIV may promote accelerated ageing of the 

brain262,263. For example, multiple studies have indicated reduced levels of microglial-

bound TREM2 in the CNS of people living with HIV with NCI79,264. This finding might 

be important because TREM2 dysfunction has been implicated in AD neuropathogenesis, 

suggesting that HIV neuropathogenesis might share mechanisms with AD, consistent with 

findings of HIV-associated premature ageing. However, there is evidence that HIV-induced 

neuropathogenesis is distinct from that of AD. For example, some studies did not detect 

increased brain β-amyloid in people living with HIV compared with controls265. As will 

be discussed, disruptions in metabolic homeostasis, including autophagy and mitochondrial 

dysfunction, are also potential common aetiologies of HIV and AD. The prospect of HIV-

associated AD-like pathogenesis is the subject of many ongoing studies. Mackiewicz et 

al.266 have published a thorough review of the current findings on this topic.

Comorbidities as sources of NCI in HIV

Ageing people living with HIV have an excess burden of comorbidities, such as diabetes 

mellitus and depression267,268, and these comorbidities have a substantial adverse effect, 

including frailty269, poor adherence to ART and virological failure270,271, NCI272, poor 

quality of life22,273–275, and early death276–279. Comorbidities tend to appear at younger 

ages in people living with HIV than in the general population and accumulate at a faster rate 

as people living with HIV age, phenomena often referred to as premature and accelerated 

ageing280–282. Numerous cross-sectional and some short-term longitudinal studies have 

shown that comorbid medical conditions predispose both people living with HIV and people 

without HIV to worse neurocognitive outcomes283–286. Additionally, an increased burden of 

comorbidity in people living with HIV with viral suppression is associated with increased 

brain white matter abnormalities, reduced grey matter volume and loss of neuronal integrity, 

illustrating continuing effects on the brain even with virally suppressive ART287. It is 

plausible that comorbidities are now the chief source of brain injury and NCI in people 

living with HIV, rather than HIV disease itself or its treatment with ART284.

Various comorbidity indices have been developed to predict the risk of poor cognitive 

outcomes in people living with HIV288–292. These indices incorporate data such as medical 

history, medication use, laboratory testing and, in some cases, demographic characteristics. 

In a study of people living with HIV followed for 7 years on average293, more rapid 

neurocognitive worsening correlated with worse average cumulative comorbidity scores and 

lower nadir CD4+ T cell count. Poorer visit-specific neurocognition was related to worse 

comorbidity scores, detectable HIV viral load and higher CD4+ T cell counts. The impact of 

Ellis et al. Page 12

Nat Rev Neurol. Author manuscript; available in PMC 2024 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comorbidities on neurocognitive decline exceeded that of HIV disease factors. In a second 

study, a simple comorbidity index composed of the presence or absence of chronic lung 

disease, hypertension and depression predicted significantly worse cognitive decline over 

12 years. HIV infection increases the prevalence of all three of these conditions294–299. 

Treatments for these comorbidities were at best partially effective, and more successful 

treatment or prevention of these comorbidities might improve neurocognitive outcomes. 

Effective treatment of comorbidities in people living with HIV may require different 

strategies from those for comorbidities in people without HIV. For example, depression 

in people living with HIV is often refractory to typical anti-depressant medications such 

as serotonin reuptake inhibitors300–302. Because chronic inflammation persists despite 

viral suppression, it might be that inflammation drives depression in people living with 

HIV to a greater extent than in people without HIV. Inflammation in people living with 

HIV also confers an increased risk of hypertension and chronic lung disease303–306. 

Improvement in hypertension can be achieved with exercise, dietary interventions and 

anti-hypertensive medications307,308. Abundant evidence in other clinical situations has 

shown that successful treatment of comorbidities does indeed benefit neurocognition309,310. 

Treatment of comorbidities associated with cognitive decline is particularly important in 

middle age311–314.

Abdominal obesity, metabolic syndrome and HIV-associated NCI

Abdominal obesity is a central component of metabolic syndrome, a very common 

comorbidity in people living with HIV. Metabolic syndrome was present in 20% of 2,247 

antiretroviral-naive individuals entering ART clinical trials and developed de novo in an 

additional 27% after 2.8 years315. The frequency of the metabolic syndrome increases with 

age and is associated with increased risk for and severity of NCI in people living with 

HIV316. The severity of NCI in people living with HIV correlates with waist circumference 

(a measure of abdominal obesity317), as also occurs in HIV-negative populations318. 

Abdominal obesity is a major risk factor for systemic inflammation, which is mediated by 

an influx of M1 pro-inflammatory macrophages that replace resident M2 anti-inflammatory 

macrophages319 in lipid-laden adipocytes. In older people with obesity and living with 

HIV, more than 70% had elevated serum TNF, insulin resistance and impaired endothelial 

function320.

CNS insulin resistance

Preclinical data implicate insulin resistance in the CNS in HIV-associated brain injury 

and suggest that insulin treatment might be beneficial. Neurons in the hippocampus, 

cerebellum and cerebral cortex express insulin receptors321–324. Insulin treatment of HIV-

infected primary human microglia suppressed HIV p24 levels and reduced CXCL10 and 

IL6 transcript levels325. Insulin treatment of primary human neurons prevented HIV Vpr-

mediated cell process retraction and death325, suggesting that insulin acts as a neurotrophic 

factor to improve survival. In a mouse model of HIV-associated NCI, NCI correlated with 

reductions in hippocampal dendritic arbours and downregulation of neuronal function genes; 

intranasal insulin reversed these changes and completely reversed NCI. Intranasal insulin 

treatment also reduced brain HIV DNA in mice326. Clinical data supporting the use of 

insulin for HIV-associated NCI and other conditions, such as mild cognitive impairment, 
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have recently emerged327–329. A randomized, double-blind, placebo-controlled study of 

intranasal insulin for people living with HIV with mild-to-moderate cognitive impairment 

(NCT03277222) was recently completed, and the results are being analysed.

Co-infections

People living with HIV frequently present with co-infections. Although some co-infections 

might not markedly impact HIV disease, others affect the natural history of HIV 

infection and vice versa330–332. Several common co-infections, such as HCV, tuberculosis, 

cryptococcal meningitis and malaria, have been linked with worse NCI in people living 

with HIV333–337. The mechanisms underlying this increased risk of NCI in people with 

HIV co-infections vary by type of co-infection, and many remain unclear. Evidence is 

emerging that herpesviruses, including cytomegalovirus (CMV) and Epstein–Barr virus 

(EBV), can also contribute to NCI in people living with HIV. For example, higher anti-CMV 

IgG titres were associated with worse HIV-associated NCI338–341. Higher anti-CMV IgG 

concentrations in blood were associated with higher CSF viral load and higher sCD163 

(a marker of activated monocytes), suggesting that the CMV-related immune response at 

least indirectly influences pathological events in the CNS, perhaps by increased migration 

of activated monocytes, increased sCD163 or by infected CD4+ T cell-derived HIV RNA 

into this protected compartment. CMV is likely to contribute to HIV-associated NCI through 

metabolic317,342,343 and vascular disease284,344 and by replicating in vascular endothelial 

and smooth muscle cells, leading to macrophage infiltration of vessel walls and promoting 

atherogenesis345,346. An ongoing clinical trial (NCT04840199) is testing whether the potent 

anti-CMV drug letermovir can reduce inflammation and atherosclerosis in people living 

with HIV, with the aim of improving neurocognitive performance. Detection of EBV 

DNA in CSF was associated with increased levels of biomarkers of neuronal damage and 

inflammation347.

Mitochondrial dysfunction

Mitochondrial dysfunction has downstream effects on autophagy, metal ion signalling, and 

other pathways and vice versa; intracellular and intercellular communication must be kept 

in mind when establishing research paradigms. Thus, targeting metabolism is promising for 

therapeutic discovery, and such discoveries might not only lead to help for people living 

with HIV but also for people with other CNS disorders.

Mitochondria in HIV CNS dysfunction

Mitochondrial dysfunction has long been implicated in the pathogenesis of HIV-associated 

NCI348–351. Neurons require high levels of mitochondrial activity to maintain and form 

new synapses and are thus highly dependent upon energy substrate from blood and a 

healthy network of mitochondria. In a healthy brain, astrocytes transport glucose across 

the BBB into the brain parenchyma and provide an energy substrate to neurons in the 

form of lactate and glutamine352,353. Perivascular macrophages and microglia primarily 

rely on oxidative phosphorylation to generate ATP to fuel their functions in immune 

surveillance of the brain parenchyma. During brain injury, such as occurs with HIV 

infection, astrocytes and microglia shift their metabolic profiles to oxidative phosphorylation 
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and glycolysis, respectively354,355. These metabolic shifts in glia might lead to metabolic 

stress and mitochondrial dysfunction in neurons355–362. Thus, the metabolic interplay 

between neurons, astrocytes and macrophages might impair brain health in HIV-associated 

NCI.

Almost every aspect of mitochondrial function is negatively affected by HIV or ART. 

Mitochondrial biogenesis, mitochondrial fission and fusion, and mitophagy are altered in 

the brains of people living with HIV and HIV-associated NCI358,363,364. Mitochondrial 

biogenesis proteins are reduced in neurons and increased in astrocytes in the brains of 

people living with HIV on ART and in in vitro and in vivo models for HIV-induced 

and ART-induced neurotoxicity358,359. Mitochondrial fission and fusion are compromised 

by gp120 but possibly also by other HIV proteins, and the trafficking of mitochondrial 

proteins along neuronal microtubules is also compromised, resulting in damaged and 

elongated mitochondria in neurons135,136,364,365. Inflammatory cytokines induce increased 

glycolysis and oxidative phosphorylation in astroglia and confer neurotoxicity358. Several 

studies have shown that blocking this increase in metabolic activity in stimulated 

astroglia, for example, by using cannabinoid receptor agonists and caloric restriction 

mimetics, might be neuroprotective358,366–368. Mitochondria are key regulators of the 

sequestration and signalling of metal ions, particularly calcium and iron, both of 

which are dysregulated by HIV proteins, including Tat, nef and VPR369–374. Animal 

models expressing gp120 in the brain induce mitochondrial biogenesis in astroglia while 

concomitantly reducing it in neurons359–362. Inflammatory cytokines induce increased 

glycolysis and oxidative phosphorylation in astroglia and confer neurotoxicity358. Several 

studies have shown that blocking this increase in metabolic activity in stimulated astroglia 

might be neuroprotective358,366–368. In line with the neuroprotective properties of caloric 

restriction mimetics, exercise is a potential intervention (discussed below) that might provide 

neuroprotection in part through improved mitochondrial function in neurons, which might 

help to ameliorate HIV-associated NCI375–380.

Autophagy and lysosomal biology

As the molecular processes of autophagy and the lysosomal systems were deciphered in 

detail381–386, it became clear that HIV might affect this important process for cellular 

renewal during times of physiological stress129,247. Although autophagy often plays a 

defensive role in viral infections, some viruses can hijack these cellular processes to 

facilitate infection and replication. The number of autophagosomes in the brain is increased 

in people living with HIV compared with control individuals247. HIV gp120 and Tat 

alter autophagosome, lysosome and endosome function in mouse models and neuronal 

cultures387–389. Pharmacological compounds, such as rapamycin, an mTOR inhibitor, show 

neuroprotective properties that coincide with the normalization of autophagy markers 

and levels of astrogliosis and microgliosis388. Gene delivery of the autophagy nucleation 

protein, beclin 1, also showed promising results in the gp120 transgenic mouse model, 

reducing neurodegeneration markers and gliosis while enhancing autophagy proteins387. 

Thus, targeting autophagy might be worth further investigation as a therapeutic avenue for 

people living with HIV.
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Iron regulation in HIV CNS dysfunction

Several studies have implicated disruptions in iron regulation and signalling as an aetiology 

of HIV-induced neurological dysfunction373,374,390,391. These findings are particularly 

important because iron ions regulate the intracellular redox state, which modulates 

the function of mitochondria, autophagosomes, lysosomes and practically all cellular 

signalling370,371,392. Intracellular iron levels affect HIV replication by enhancing Tat escape 

from endolysosomes, which might be a mechanism that promotes neurotoxicity in people 

living with HIV393.

The gut microbiome

The gut is an important reservoir for HIV and acts as a hub for its dissemination310. 

Some gut microbes produce metabolites such as short-chain fatty acids (for example, acetic 

acid, propionic acid and butyric acid) and neurotransmitters (for example, acetylcholine, 

GABA and serotonin). These metabolites can communicate to the brain via the bloodstream 

and vagus nerve. Changes in gut microbial composition and metabolites have been 

associated with altered neurotransmitter signalling, neurogenesis, microglial development 

and response, myelination, neurogenesis, and diseases including Parkinson disease, AD 

and amyotrophic lateral sclerosis394–396. Interestingly, experimentally induced colitis in 

rhesus macaques resulted in a neuroinflammatory profile like that observed in SIV-infected 

rhesus macaques, highlighting the importance of the gut–brain axis397. For example, 

inflammatory cytokines, including interferon, activate indolamine dioxygenase, an enzyme 

that metabolizes tryptophan, ultimately lowering serum tryptophan concentrations. Indeed, 

tryptophan levels are lower in people living with HIV compared to people without HIV398. 

Further studies investigating treatments targeting the gut microbiota in people living with 

HIV are needed.

Antiretroviral medication neurotoxicity

Although ART has been transformative in the management of HIV infection, 

antiretroviral drugs can induce neurotoxicity directly or indirectly, contributing to cognitive 

impairment399–401. The neurotoxic effects of currently used antiretroviral drugs are 

summarized in Table 1. Notably, the ‘greying’ (shifting age of the population) of people 

living with HIV on virally suppressive ART is linked to polypharmacy that includes both 

ART and non-ART drugs, increasing the risk of drug–drug interactions that could worsen 

neurotoxicity and NCI402,403. Age-related changes in drug distribution, binding proteins, 

metabolism and elimination can lead to increased CNS drug exposure in older people living 

with HIV404–406, further predisposing to NCI. In addition, ageing causes structural and 

functional changes in the BBB that result in increased BBB permeability, which can affect 

ART CNS pharmacokinetics407–409. Information on ethnic and sex disparities in this area is 

scant.

Experimental treatments for HIV-associated NCI

Examples of past and current human clinical trials of treatments for HIV-associated NCI 

— selected to illustrate mechanisms discussed in this Review — are listed in Table 2. 
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Some of these treatments have already been approved for other neurodegenerative diseases 

(for example, selegiline and memantine)410,411 or represent re-purposing of treatments for 

other conditions (for example, minocycline, fluconazole, intranasal insulin (NCT03277222), 

statins (NCT01600170))412–417 and antioxidants (coenzyme Q10, haem oxygenase 1 and 

dimethyl fumarate)418–420. A comprehensive list is beyond the scope of this Review, but a 

summary of the interventions that are most relevant to the mechanisms discussed here is also 

provided (Table 3).

Tesamorelin

Tesamorelin, an analogue of human growth hormone-releasing hormone (hGHRH), has 

been approved by the FDA to treat HIV-related abdominal obesity but has not been tested 

for the treatment of NCI in people living with HIV. Tesamorelin stimulates physiological 

growth hormone (GH) secretion and restores the normally pulsatile nocturnal rhythm 

of GH release that is seen in GH-deficient conditions such as HIV421. In addition 

to reducing abdominal obesity, tesamorelin also reduced C-reactive protein (CRP), an 

inflammatory mediator released from the liver422,423. A second mechanism by which 

tesamorelin might benefit neurocognition is by stimulating the production of insulin-like 

growth factor 1 (IGF1), a neurotrophic hormone. IGF1, in turn, stimulates brain blood 

flow and angiogenesis, improves neurogenesis, neurite out-growth and synaptic complexity, 

and is neuroprotective against oxidative stress424. Blood IGF1 levels correlate with overall 

cognitive performance425, including perceptual motor performance, fluid intelligence and 

processing speed426,427. In animals, when IGF1 levels are increased in the hippocampus by 

treatment with IGF1, deficits in cognitive functions are corrected428. An ongoing clinical 

trial (NCT02572323) hypothesizes that tesamorelin will attenuate systemic inflammation 

and immune activation in people living with HIV with viral suppression and cognitive 

impairment.

GPLD1

GPLD1, an enzyme also known as phosphatidylinositol-glycan-specific phospholipase D, 

can mimic the beneficial effects of exercise (discussed below). Levels of GPLD1 are 

increased by physical activity, improving antioxidant systems429 and anti-inflammatory 

responses430. Novel mechanistic associations have been reported between physical activity, 

cognition and GPLD1 levels431. GPLD1 from the liver cleaves glycosylphosphatidylinositol 

and glycosylphosphatidylinositol-anchored proteins to regulate mitochondrial function and 

regulate inflammation, clotting and vascular integrity432–434. GPLD1 also ameliorates 

oxidative stress and inflammation435,436. In mice, systemic administration of GPLD1 

recapitulated the neurogenic and cognitive benefits of physical activity431. Furthermore, 

in mice, higher GPLD1 levels dampened inflammation and normalized coagulation, factors 

shown to be fundamentally dysregulated in people living with HIV and to predict declines 

in cognition, mood and other outcomes even in people living with HIV with viral 

suppression437. By mimicking the effects of physical activity, exogenous administration of 

GPLD1 or other interventions to modify this pathway might be beneficial for HIV-associated 

NCI and are currently being tested in animal models.
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Effectiveness of pharmacological therapy for HIV-associated NCI

A consistently efficacious treatment or prevention for HIV-associated NCI has not yet 

been discovered, for multiple reasons. Clinical trials for NCI frequently fail despite 

promising preclinical results owing to inadequate participant recruitment and/or retention, 

fundamental differences between animal models and human participants, and unforeseen 

adverse effects. More specifically, the pathogenesis of HIV-associated NCI remains unclear. 

HIV-associated NCI can result from legacy effects, inadequate viral suppression in the 

CSF, persistent inflammation, direct or indirect neurotoxicity from antiretroviral drugs, 

combinations of these factors, or other uncharacterized factors. Without a clear pathological 

target, developing specific treatment modalities becomes exceptionally challenging, and 

the impetus for the many prior clinical trials came either from medications that 

showed neuroprotection in other diseases or from incidental findings in the clinic. 

Pathophysiological mechanisms of NCI in people living with HIV might vary between 

ethnic and/or racial groups, and sociocultural and behavioural factors might interact with 

the pathophysiological mechanisms underlying NCI. To properly confront this disease 

entity, more research to provide answers to preclinical questions about NCI is essential. 

Furthermore, future studies incorporating culturally relevant psychosocial, environmental, 

biomedical and genetic factors might best inform the identification of therapeutic targets and 

the development of clinical interventions to promote the neurocognitive health of the diverse 

population of people living with HIV.

Non-pharmacological interventions

Pharmacological therapeutics are important, but non-pharmacological approaches are also 

needed These therapies can affect metabolism and inflammatory processes in ways that 

drugs cannot. Despite advances in our understanding of HIV-associated NCI pathogenesis, 

the translation of findings into the clinical setting has been disappointing. Medical 

approaches targeting different mechanisms have not resulted in better primary outcomes. 

Owing to comorbidities, people living with HIV already require several medications. Thus, 

attention should be placed on non-pharmacological interventions for HIV-associated NCI, 

including sleep, physical exercise, diet and cognitive training interventions.

More than half of people living with HIV with NCI report symptoms of insomnia438–441. 

Compromised sleep quality and duration are often connected to drug or alcohol use and 

other comorbidities such as depression or obstructive sleep apnoea442,443. Poor sleep health 

leads to reduced cognitive performance in memory, learning and concentration. In healthy 

individuals, β-amyloid levels in the brain on PET imaging were elevated after a single night 

of sleep deprivation444. Reduced sleep can also activate the immune system and increase the 

production of inflammatory mediators445,446.

The benefits of caloric restriction, ketogenic diets, intermittent fasting and physical activity 

— all of which improve metabolic function — need to be investigated for therapeutic 

efficacy. One trial (NCT02936401) is currently assessing the use of mindfulness-based stress 

reduction as a method to improve function in people living with HIV with NCI who are 

older than 60 years. Another trial (NCT03483740) is testing cognitive remediation group 

therapy in a similar cohort of older people living with HIV with NCI.
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As mentioned above, physical activity has a plethora of positive effects at the molecular 

level in the brain by increasing levels of neurotrophins and growth factors and by 

modulating synaptic plasticity, neurogenesis and blood flow447. Physical activity improves 

cognition, mood and general health status in the general population, and we and others 

have published findings showing correlations between greater physical activity and better 

cognition in people living with HIV448–454.

Cognitive training is another non-pharmacological intervention that has been associated with 

improvements in cognition and daily function in people living with HIV. Some computerized 

cognitive training programmes might improve cognition in people living with HIV455. The 

domains of speed of information processing and attention and/or working memory seem 

the most likely to show improvement456. However, there are gaps in understanding the type 

and dose of cognitive training that might be most beneficial. There is a need to consider 

sociocultural factors in the development of all types of non-pharmacological interventions 

for people living with HIV to assure their acceptability and utility among diverse people 

living with HIV, particularly those living in regions of the world where health-care access is 

limited and resources scarce.

Conclusions

Findings from preclinical and clinical studies suggest that HIV-associated NCI is a 

heterogeneous disease with a complex multi-system pathogenesis. Several mechanisms can 

contribute to neurodegeneration and NCI in people living with HIV, including mitochondrial 

toxicity, endoplasmic reticulum stress, oxidative species and neurotoxicities of specific 

antiretroviral medications. A substantial number of experimental therapies, including anti-

inflammatory drugs, are not beneficial in the treatment of NCI in people living with HIV. 

We have presented promising avenues for the improvement of cognition in the ageing cohort 

of people living with HIV. Lastly, we delineated non-pharmacological treatments that could 

be readily implemented in the daily lives of people living with HIV. We think that, with the 

current rapid scientific advances in the field of HIV-associated NCI, more treatment options 

will be available for people living with HIV and NCI.
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Key points

• The pathogenesis of neurocognitive impairment (NCI) in people living with 

HIV is complex, and no disease-modifying therapies are currently available.

• Neuroinflammatory and metabolic changes are hallmarks of HIV-associated 

NCI and are potential therapeutic targets.

• The neuropathogenesis of HIV-associated NCI in diverse ethnic and racial 

groups warrants further exploration.

• Examples of promising targets for the treatment of NCI in people living with 

HIV include human growth hormone-releasing hormone (hGHRH) and the 

enzyme phosphatidylinositol-glycan-specific phospholipase D (also known as 

GPLD1).

• Non-pharmacological interventions that might enhance cognitive function in 

people living with HIV include increased physical activity, improved quality 

of sleep and nutritional treatments.
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Fig. 1 |. Overview of factors contributing to neurocognitive impairment in people living with HIV 
with viral suppression.
HIV proteins, such as Tat, which continue to be produced even when HIV replication is 

suppressed by antiretroviral therapy, are toxic to neurons and glial cells. In addition, HIV 

interacts with the host to produce deleterious immune responses. Particularly important 

here is the innate immune response, mediated in large part by interferon signalling 

and myeloid cell activation, which results in the production of neurotoxic inflammatory 

mediators, mitochondrial dysfunction and oxidative stress, impaired autophagy and 

ultimately neurodegeneration, leading to neurocognitive impairment. Additional contributing 

factors are comorbidities, such as insulin resistance, and visceral adiposity as well as 

toxicities of antiretroviral medications. Addressing these alterations might influence the 

long-term course of brain disease associated with HIV. LTR, long terminal repeat; NfL, 

neurofilament light; MAP2, microtubule associated protein 2; SYN, synaptophysin; TNF, 

tumour necrosis factor.
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Fig. 2 |. Hypothetical model of HIV-mediated myeloid cell and neuronal dysfunction in HIV-
associated NCI.
HIV-infected monocytes transmigrate from the peripheral blood to the brain. HIV-infected 

perivascular macrophages and microglia respond by releasing cytokines that further activate 

microglia and astrocytes. This eventually leads to neuronal dysfunction, as evidenced by 

impairment of synaptic transmission, disturbed mitochondrial bioenergetics and, eventually, 

neurocognitive impairment (NCI). BBB, blood–brain barrier.
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