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ABSTRACT OF THE DISSERTATION

Appearance Acquisition for Digital 3D Content Creation

by

Sai Bi

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Ravi Ramamoorthi, Chair

Digital 3D content plays an important role in many applications such as video games,

animations, virtual reality (VR) and augmented reality (AR). Traditionally, the creation of

digital 3D content requires complicated software and designers with special expertise, which

imposes great challenges for novice users. In comparison, an alternative approach for this

task is to acquire and digitize the appearance of real-world scenes by capturing images and

automatically reconstructing 3D models from the scans. In this dissertation, we present a series

of works for efficiently and accurately creating 3D representations from the captured images. We

exploit appropriate representations for both scene geometry and reflectance to support different

functionalities including novel view synthesis, relighting and dynamic animations.

xv



First, we present an approach for generating accurate texture maps for RGB-D recon-

structions that enable us to navigate the scene under novel viewpoints. Our method can correct

misalignments between captured images caused by inaccurate camera poses and corrupted

geometries and produce highly-quality texture maps. Afterwards we take one step further and

propose a learning-based method to reconstruct high-quality meshes with per-vertex BRDFs

from a sparse set of six images captured under collocated camera and light, which supports

visualization of the scene under novel viewpoints and lighting conditions. Then we go beyond

traditional mesh representations and propose to learn a novel volumetric representation that

encodes volume density, normal and reflectance properties at any arbitrary 3D point in the scene

for joint view synthesis and relighting. We demonstrate that our volumetric representation can

be estimated from images captured with a simple collocated camera-light setup, and accurately

model the appearance of real-world scenes with complex geometry and reflectance. Finally,

we develop approaches for modeling the dynamic appearance of human faces and learning ani-

matable lifelike avatars that support free-viewpoint relighting and novel expressions. We apply

neural networks to directly regress the facial geometry and textures under the desired viewpoints,

lightings and expressions. We show that our model can be animated and driven by images

captured with VR-headset mounted cameras, demonstrating the first system for face-driven

interactions in VR that uses a photorealistic relightable face model.
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Chapter 1

Introduction

With the advent of new applications such as VR and AR, the demand for digital 3D

content has been increasing in an unprecedented way. Traditionally we rely on experienced

designers to create 3D content using professional software, which requires special expertise and

highly time-consuming manual efforts. In contrast, real-world objects and scenes have provided

us an abundant source for 3D content. Therefore, acquiring and digitizing the appearance of

real-world objects and scenes has been a core task in computer vision and graphics. In this

dissertation, we propose a series of methods to automatically reconstruct high-quality 3D models

from the captured images of real-world objects and scenes.

The appearance of real-world scenes depends on two components including geometry

and materials, both of which have various representations. Geometry can be represented using

depth maps, point clouds, triangle meshes and volumes etc. More recently, researchers have also

applied neural networks to represent the geometry using implicit signed distance functions [104]

and implicit volumetric representations [94]. In terms of materials, for diffuse objects, we

can simply represent their appearance using 2D texture maps. For non-Lambertian objects,

bidirectional reflectance distribution functions (BRDFs) are commonly used to model how light

is reflected on the surface of the objects. We exploit appropriate scene representations to support

different functionality including changing viewpoints, relighting and dynamic animations. We

also propose effective methods to automatically and accurately reconstruct these representations
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from the input images.

Specifically, in Chapter 2, we propose a novel method to produce accurate texture maps

for geometric models of real-world objects represented with triangle meshes. Although a high-

quality texture map can be easily computed for accurate geometry and calibrated cameras, the

quality of texture map degrades significantly in the presence of inaccuracies. In this work,

we address this problem by proposing a novel global patch-based optimization system to syn-

thesize the aligned images. Specifically, we use patch-based synthesis to reconstruct a set of

photometrically-consistent aligned images by drawing information from the source images. Our

optimization system is simple, flexible, and more suitable for correcting large misalignments

than other techniques such as local warping. To solve the optimization, we propose a two-step

approach which involves patch search and vote, and reconstruction. Our approach can produce

high-quality texture maps (Figure 1.1a) better than existing techniques for objects scanned by

consumer depth cameras such as Intel RealSense. We demonstrate that our system can be used

for texture editing tasks such as hole-filling and reshuffling as well as multi-view camouflage.

Texture maps are only suitable to model the appearance of diffuse objects and do not

support relighting under novel lighting conditions. However, most real-world objects are non-

Lambertian, and their appearance changes depending on the illumination conditions. Therefore,

in Chapter 3, we introduce a novel learning-based method to reconstruct the high-quality

geometry and complex, spatially-varying BRDFs (Figure 1.1b) of an arbitrary object. Unlike

previous approaches that rely on high-end 3D scanners or dense input images, we achieve

this using a sparse set of only six images We first estimate per-view depth maps using a deep

multi-view stereo network; these depth maps are used to coarsely align the different views.

We propose a novel multi-view reflectance estimation network architecture that is trained to

pool features from these coarsely aligned images and predict per-view spatially-varying diffuse

albedo, surface normals, specular roughness and specular albedo. Finally, we fuse and refine

these per-view estimates to construct high-quality geometry and per-vertex BRDFs. We do this

by jointly optimizing the latent space of our multi-view reflectance network to minimize the
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(a) Chapter 2: high-quality texture maps from in-
accurate RGB-D reconstructions.

(b) Chapter 3: geometry and reflectance from
sparse multi-view images.

(c) Chapter 4: neural reflectance volumes for re-
lightable appearance acquisition.

(d) Chapter 5: deep relightable appearance models
for animatable faces.

Figure 1.1. Our contributions in this dissertation. We propose novel methods to reconstruct
different representations for objects and scenes to faithfully reproduce their appearance.

photometric error between images rendered with our predictions and the input images. While

previous state-of-the-art methods fail on such sparse acquisition setups, we demonstrate that our

method produces high-quality reconstructions that can be used to render photorealistic images.

In the first two works, we have been using triangle meshes to represent the geometry of

the captured objects. While triangle meshes have many advantages and are widely used, it is

usually difficult to accurately reconstruct them for complex scenes with thin structures, heavy

occlusions and non-convex shapes such as trees. Their irregular structure also makes it difficult

to be applied in an end-to-end learning pipeline. In contrast, volumes have regular 3D structures

and can be easily integrated with neural networks. Therefore, in Chapter 4, we introduce a novel

volumetric scene representation that encodes volume density, normal and reflectance properties
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at any arbitrary 3D point in the scene. We combine this representation with a physically-based

differentiable ray marching framework that can render images under any viewpoint and light.

We demonstrate that our volumetric representation can be estimated from images captured with a

simple collocated camera-light setup, and accurately model the appearance of real-world scenes

with complex geometry and reflectance. This allows us to perform high-quality view synthesis

and relighting (Figure 1.1c) that is significantly better than previous methods.

Different from previous chapters that focus on reproducing the appearance of static

objects, in Chapter 5 we present a method for building high fidelity dynamic animatable 3D

face models (Figure 1.1d) that can be posed and rendered with novel lighting environments in

real-time. Human faces have complex appearance including diffuse and specular reflections and

subsurface scattering, which cannot be accurately modeled by analytical BRDF models based on

physical priors as those used in previous chapters. Therefore, in this chapter we apply neural

networks to model the complex reflectance of human faces. Our model takes in the expression

code, view direction and lighting condition as input and directly regresses the geometry for the

current expression and the view-light specific texture. Our method is capable of capturing subtle

lighting effects and can even generate compelling near-field relighting despite being trained

exclusively with far-field lighting data. We motivate the utility of our model by animating it from

VR-headset mounted cameras, demonstrating the first system for face-driven interactions in VR

that uses a photorealistic relightable face model.

Finally, in Chapter 6, we summarize the dissertation and discuss some future works on

related topics such as appearance acquisition in an unconstrained environment, capturing objects

and scenes with complex light transport effects, neural rendering for large-scale scenes and

neural representations from sparse images.

4



Chapter 2

High-Quality Texture Maps from Inaccu-
rate RGB-D Reconstructions

2.1 Introduction

With the availability of consumer depth cameras to the public, ordinary users are now able

to produce geometric models of objects using techniques like KinectFusion [98]. However, repro-

ducing the full appearance of real-world objects also requires reconstructing high-quality texture

maps. Image-based texture mapping is a common approach to produce a view-independent

texture map from a set of images taken from different viewpoints. However, this is a challenging

problem since the geometry and camera poses are usually estimated from noisy data, and thus,

are inaccurate. Moreover, the RGB images from consumer depth cameras typically suffer from

optical distortions which are not accounted for by the camera model. Therefore, naı̈vely pro-

jecting and combining the input images produces blurring and ghosting artifacts, as shown in

Fig. 2.2.

We observe that we can overcome most of the inaccuracies by generating an aligned

image for every input image. Our method builds upon the recent work by Zhou and Koltun [161]

that proposes an optimization system to correct the misalignments using local warping. Although

this approach handles small inaccuracies, it fails to produce high-quality results in cases with

large inaccuracies and missing geometric features because of the limited ability of local warping

in correcting misalignments (see Figs. 2.1, 2.2 and 2.4).
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Waechter et al.

Zhou and Koltun Ours

Ours

Our Texture Mapped ResultsGeometryInput Images

Figure 2.1. The goal of our approach is to produce a high-quality texture map given the geometry
of an object as well as a set of input images and their corresponding camera poses. A small subset
of our input images as well as the rough geometry, obtained using the KinectFusion algorithm,
are shown on the left. Since the estimated geometry and camera poses are usually inaccurate,
simply projecting the input images onto the geometry and blending them produces unsatisfactory
results with ghosting and blurring artifacts. We handle the inaccuracies of the capturing process
by proposing a novel patch-based optimization system to synthesize aligned images. Here, we
show different views of an object rendered using OpenGL with the texture map generated using
our system. Our approach produces high-quality texture maps and outperforms state-of-the-art
methods of Waechter et al. [135] and Zhou and Koltun [161].
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Figure 2.2. We generate 24 input views by rendering a synthetic textured bunny from different
viewpoints and artificially add inaccuracies by simplifying the geometry and adding noise to
the camera poses. We compare our approach against state-of-the-art methods as well as naı̈vely
projecting and combining the images. Waechter et al.’s approach [135] selects a single view per
face by solving a complex optimization system to reduce the artifacts around the face boundaries.
However, their results contain visible seams because of large inaccuracies in the geometry
and camera poses. Zhou and Koltun [161] tackle the inaccuracies of the geometry by using
local warping to align the input images, but fail to properly register the images and produce
unsatisfactory results. Moreover, when the camera poses are significantly inaccurate, their system
converges to a local minimum, and thus, their results suffer from ghosting and blurring artifacts.
Our approach is more flexible and can properly synthesize aligned images that when combined
produce artifact-free texture in both cases.
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Inspired by the recent success of patch-based methods in image and video editing

tasks, we propose a novel global patch-based optimization system to synthesize aligned images.

Our energy function combines our two main desirable properties for the aligned images; 1)

include most of the information from the original input images, and 2) preserve the photometric

consistency of the projection. By optimizing our proposed energy function, we simultaneously

maximize the local similarity of the aligned and input images and ensure the consistency of all

the aligned images and the texture map.

Our system draws information from the source images in a patch-based manner, and

thus, is flexible and able to handle large inaccuracies. Moreover, our method handles cases

with missing geometric features (see Fig. 2.4) by synthesizing the missing content, while the

existing warping-based [161] and graph-cut based [135] techniques are not able to do so. Finally,

in contrast to Zhou and Koltun’s approach, we perform the optimization in the image domain

which makes the performance of our system independent of the complexity of the geometry. In

summary, we make the following contributions:

• We introduce the first patch-based optimization system for view-independent image based

texture mapping (Sec. 2.3.1). Our method corrects misalignments by synthesizing aligned

images which can then be used to produce a single view-independent texture map.

• We propose a simple iterative two-step approach to efficiently solve our energy equation

(Sec. 2.3.2).

• We show that our approach produces better results than existing techniques (Sec. 2.5).

Furthermore, we show other applications of our system (e.g., texture hole-filling) which

are not possible to do with the current methods.

2.2 Related Works

Reproducing the full appearance of a real-world object from a set of images has been

the subject of extensive research. Image-based rendering approaches [17, 51] reproduce the
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appearance of an object by generating a view-dependent texture map [31]. However, these

methods are only able to provide the ability to navigate an object with the lighting condition

of the input photographs. Therefore, they cannot be used for applications where the goal is to

use the scanned object in a new environment with different lightings. Moreover, since these

approaches do not produce a globally consistent texture map, they are typically not used in

gaming, augmented reality, and animations.

View-independent texture mapping approaches like our own, produce a single consistent

texture map from a set of images captured from different viewpoints, which can then be rendered

with different lightings.1 The main challenge of these methods is addressing the inaccuracies

in the capturing process. Several methods have been presented to register the images to the

geometry in a semi-automatic way [102, 108, 38] or automatically by, for example, optimizing

color consistency [109, 13], aligning image and geometric features [78, 126], and maximizing

the mutual information between the projected images [28, 27]. While these methods are effective

at addressing the camera calibration inaccuracies, they are not able to handle inaccurate geometry,

and optical distortions in RGB images which are common problems of consumer depth cameras.

A small number of approaches have been proposed to tackle general inaccuracies. We

categorize these approaches in two classes and discuss them in the following two subsections.

Single View Selection – Instead of blending the projected input images, which could

generate blurry results because of misalignments, these approaches select only one view per

face. To avoid visible seams between the boundaries of each face, they typically solve a discrete

labeling problem [134, 77, 123, 135].

For example, the state-of-the-art method of Waechter et al. [135] solves a conditional

random field energy equation, consisting of two terms: a data term which favors views that

are closer to the current face and are less blurry, and a smoothness term which penalizes

inconsistencies between adjacent faces. However, as shown in Fig. 2.2, even this approach is not

1Note that, the final textures in this case still have the original lighting condition. However, this problem can be
addressed by applying intrinsic decomposition [15] on the source images and using albedo to generate the texture
maps.
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Figure 2.3. Here, the goal is produce a high-quality texture map, using the rough geometry
as well as two source views, shown on the left. We illustrate the texture mapping process
from a novel view, shown with the blue camera. Because of the inaccuracies in the geometry,
camera poses, and optical distortions of the source images, the projected source images to view i,
S1(xi�1) and S2(xi�2), are typically misaligned. For example, the inset shows that the position of
“ar” and “gr” in the two projected source images is different. Therefore, combining (averaging in
this case) these projected source images produces a texture map, Mi, with blurring and ghosting
artifacts. We propose to handle this misalignment problem by synthesizing a target image for
every source image in a way that the projected target images are photometrically consistent. To
reconstruct each target image, we keep the overall visual appearance of the source image, but
move its content to correct the misalignments. Note the difference in position of “gr” and “ar” in
the source and target images. In this case, since the projected images are aligned, we are able to
produce a ghost-free high-quality texture map.

able to handle the large inaccuracies in challenging cases, producing visible seams in the final

texture map.

Image Alignment – The approaches in this category directly handle the inaccuracies by

aligning the input images. Tzur and Tal [133] propose to estimate local camera projection for

each vertex of the geometry to handle inaccuracies from calibration, geometry, etc. However,

their approach requires user interaction to produce plausible results. Aganj et al. [2] address

misalignment by finding matching SIFT features in different views and warping the input images,

while others [36, 32] perform warping using optical flow. These methods do not minimize the

distortion globally and work on a pair of images, and thus, are sub-optimal. Gal et al. [41]

assigns each triangle to one input image and finds the optimum shift for each triangle to remove

the seams, but their optimization is computationally expensive.

The recent work of Zhou and Koltun [161], which our method builds upon, solves an

optimization system to find optimum camera poses as well as non-rigid corrections of the input
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images, simultaneously. They use local warping to perform non-rigid alignment and propose

an alternating optimization to minimize their objective function. However, the local warping

is not able to correct large misalignments and it produces results with ghosting and blurring

artifacts in challenging cases, as shown in Fig. 2.2. To avoid this problem, we propose a different

optimization system with a more flexible mechanism for non-rigid alignment than local warping.

Patch-Based Synthesis – Our approach is inspired by the recent success of patch-based

synthesis methods in a variety of applications such as hole-filling [140], image retargeting and

editing [122, 10], morphing [120], HDR reconstruction [118, 61], and style transfer [11, 58].

Patch-based synthesis has been shown to be particularly successful in applications where finding

correspondences between two or multiple images (e.g., morphing and HDR reconstruction) is

difficult. In our application, the synthesized aligned images need to be consistent with respect to

the object’s geometry, and thus, direct application of patch-based synthesis to our problem does

not work. We address this challenge by proposing a novel patch-based energy equation which

incorporates the geometry into the formulation.

2.3 Algorithm

The goal of most image-based texture mapping approaches is to produce a high-quality

view-independent texture map using a set of N source images, S1, · · · ,SN , taken from different

viewpoints. These methods usually assume that the object’s approximate geometry and rough

camera poses (i.e., extrinsic and intrinsic parameters) of all the source images are already

estimated using existing techniques [117, 98]. Once the texture map is created, the object with a

view-independent texture can be rendered from any novel views.

A simple way to produce a texture map is to project the source images onto the geometry

and combine all the projected images. Ideally, these projected images are photometrically

consistent, and thus, combining them produces a high-quality texture map. However, in practice,

because of the inaccuracies, the projected images are typically misaligned. Therefore, this simple
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Table 2.1. Notation used in this chapter.

S1, . . . ,SN source images (input)
T1, . . . ,TN target (aligned) images (output)
M1, . . . ,MN texture at different views (output)
xi pixel position on image i
xi� j pixel position projected from image i to j
Tj(xi� j) RGB color of the jth target image at pixel xi� j, i.e., the result of projecting

target j to camera i

approach produces texture maps with ghosting artifacts.

We show this problem in Fig. 2.3 (top row) for a case with two source images S1 and S2.

To observe the misalignment problem, we project the source images to a novel view i. Note that,

projection from a source image S j to a novel view i can be performed by remapping the source

image’s pixel colors, S j(y). Here, y is the projection of the pixels from image i to j. Formally,

we can write this as:

y = P j(Gi(x)),

where x is the pixel position on image i, Gi projects a pixel on image i to the global 3D space, and

P j projects a 3D point to the image j. In this chapter, for clarity and simplicity of the notation,

we use xi and xi� j to denote the pixels on image i and the pixels projected from image i to j,

respectively. In this case, y = xi� j and S j(xi� j) is the result of projecting source image S j to

view i. See Table 2.1 for the complete list of notation used in this chapter.

As shown in Fig. 2.3 (top row), because of the inaccuracies in the estimated geometry and

camera poses, the projected source images, S1(xi�1) and S2(xi�2), are misaligned. Therefore,

the texture map generated by the simple projection and blending approach contains ghosting

artifacts (rightmost column). Here, Mi refers to the final globally consistent texture map, seen

from camera i. Note that, M j is reconstructed from all the source images, and thus, is different

from the projected source images.
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To overcome this misalignment problem, we propose to synthesize an aligned (target)

image, Ti, for every source image, Si. As shown in Fig. 2.3, the targets are reconstructed

by moving the content of the source images to correct the misalignment. As a result, all the

target images are photometrically consistent, and thus, projecting them onto the geometry and

combining them produces a high-quality result. In the next section, we explain our patch-based

optimization system to synthesize these target images.

2.3.1 Patch-Based Energy Function

Our main observation is that to produce a high-quality texture map, the target images

should have two main properties: 1) each target image should be similar to its corresponding

source image, and 2) the projected target images should be photometrically consistent. Our goal

is to propose a global energy function which codifies these two main properties.

To satisfy the first property we ensure that each target image contains most of the

information from its corresponding source image in a visually coherent way. To do so, we use

bidirectional similarity (BDS) as proposed by Simakov et al. [122]. This is a patch-based energy

function which is defined as:

EBDS(S,T ) =
1
L
(∑

s⊂S
min
t⊂T

D(s, t)︸ ︷︷ ︸
completeness

+α ∑
t⊂T

min
s⊂S

D(s, t)︸ ︷︷ ︸
coherence

), (2.1)

where α is a parameter defining the ratio of these two terms, s and t are patches from the source

S and target T images respectively, and D is the sum of squared differences of all the pixel values

of the patches s and t in RGB color space. Moreover, L is the number of pixels in each patch,

e.g., L = 49 for a 7×7 patch.

Here, the first term (completeness) ensures that every source patch has a similar patch in

the target and vice versa for the second term (coherence). The completeness term measures how

much information from the source is included in the target, while the coherence term measures

if there are any new visual structures (artifacts) in the target image. Minimizing this energy

12



Source Geometry

Zh
ou

O
ur
s

W
ae
ch
te
r

Figure 2.4. Here, we have a scene with a chair and a green marker on top as can be seen in the
source image. Because of the inaccuracies of the consumer depth camera, the marker’s geometry
is not reconstructed. In this case, the texture from the marker should not appear in the final
texture map. The method of Waechter et al. [135] selects one of the source images for each
triangle in the geometry. Since the marker exists in all the source images, this method incorrectly
places it in the final texture. Zhou and Koltun [161] align the source images by locally warping
them. Therefore, they are not able to remove the marker from the aligned images, resulting
in ghosting artifacts. Our patch-based approach synthesizes the target images, and thus, only
includes valid information from the source images. Therefore, we are able to remove the marker
from the source images and produce an artifact-free result.

function ensures that most of the information from the source is included in the target image in

a visually coherent way. In our implementation, we set α = 2 to give more importance to the

coherence term.

Note that, Eq. 2.1 is defined for a single pair of source and target images. To enforce the

similarity property for all the images, we extend this equation as:

E1 =
N

∑
i=1

EBDS(Si,Ti). (2.2)

Patch-based synthesis is more flexible than local warping [161], and thus, is more suitable

to handle large inaccuracies in the geometry and the camera poses. Furthermore, while local

warping inherently preserves the visual coherency, it includes all the information from the source

in the aligned (target) image which is not desirable in our application. If the geometric model
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does not contain specific features, the regions corresponding to these features should not be

included from the source images in the texture map. Therefore, this method produces results

with blurring and ghosting artifacts in these regions, as shown in Fig. 2.4. Waechter et al.’s

method [135] selects one view per face and can avoid ghosting artifacts in this case. However,

this approach is not able to remove the texture corresponding to the missing feature, since it

exists in all the source images. Note that, missing geometric features occur in most cases with

significantly inaccurate geometry (Fig. 2.9), which is why the existing techniques poorly handle

these challenging cases.

Although the similarity of the target and source images is a necessary condition for

generating a high-quality texture map, it is not sufficient, as shown in Fig. 2.5. Therefore, we

need to enforce the second property by ensuring the consistency of the target images. This

constraint can be implemented in several ways. For example, we can enforce the consistency by

ensuring that the projected target images are close to the current target, i.e., Tj(xi� j) = Ti(xi).

This constraint can be formally written as the `2 distance between Tj(xi� j) and Ti(xi) and be

minimized in a least square sense.

Alternatively, the constraint can be enforced by ensuring the consistency of the current

target and average of all the projected targets, i.e., 1/N ∑
N
j=1 Tj(xi� j) = Ti(xi). Similarly, we can

enforce the texture at view i to be consistent with the projected target images, i.e., Tj(xi� j) =

Mi(xi), to enforce the constraint. Since all the target images will be consistent with each other

and the final texture map after optimization, these different approaches result in similar optimum

target images. However, to be able to utilize alternating optimization (see Sec. 2.3.2), we use the

last strategy (Tj(xi� j) = Mi(xi)) and write our consistency energy equation as:

EC({Tj}N
j=1,Mi) =

1
N∑

xi

N

∑
j=1

w j(xi� j)
(
Tj(xi� j)−Mi(xi)

)2
, (2.3)

where the first summation is over all the pixel positions xi on image i. Here, the weight w j

enforces the constraint to be proportional to the contribution of the jth projected target image. In
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our implementation, w j = cos(θ)2/d2, where θ is the angle between the surface normal and the

viewing direction at image j and d denotes the distance between the camera and the surface.2

This weight basically gives smaller weight to the cameras that look at the surface at a grazing

angle and are further away from the object. Minimizing this energy function ensures that all the

target images are consistent with the final texture map viewed from camera i. We extend this

equation to enforce the consistency constraint for all the images as:

E2 =
N

∑
i=1

EC({Tj}N
j=1,Mi) (2.4)

To satisfy our two properties, we propose the complete objective function to be the

weighted summation of E1 and E2:

E = E1 +λE2, (2.5)

where λ defines the weight of the consistency term and we set it to 0.1 in our implementation.

Optimizing our proposed patch-based energy function produces target images that contain most

of the information from the source images, are visually coherent, and preserve the consistency of

the projection. Once the optimum target images, Ti, are obtained, they can be used to produce a

single consistent texture in different ways. For example, this can be done by first projecting all

the target images to the geometry. After this process, each vertex receives a set of color samples

from different target images. The final color of each vertex can then be obtained by computing

the weighted average of these color samples.3

We evaluate the effect of each term in our optimization system in Fig. 2.5. Optimizing

the first term alone produces aligned images that have the same visual appearance as the source

images, but are not consistent. Optimizing the second term produces consistent target images,

but they contain information that does not exist in the source images. Optimizing our proposed

2We use the interpolated normal and vertex from the fragment shader.
3We can generate the global texture with either the target images, Ti, or the textures, Mi, as they are very similar

after optimization.
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Figure 2.5. We evaluate the effect of enforcing our main properties with the two terms in Eq. 2.5.
Only optimizing the first term ensures that the target image contains most of the information of
the source image. However, since the consistency constraint is not enforced, the final texture
is not consistent with the target image. On the other hand, by only optimizing the second
term, the consistency constraint is enforced, and thus, the target image and the final texture
are photometrically consistent. However, the target image has ghosted content which does not
appear in the source image. Our full approach optimizes both terms and ensures that the targets
contain source contents and are consistent. Therefore, only our full approach is able to produce a
high-quality texture map.

full energy function produces a high-quality texture map by enforcing both properties.

2.3.2 Optimization

To efficiently optimize our energy function in Eq. 2.5, we propose an alternating opti-

mization approach which simultaneously solves for the target images, T1, · · · ,TN , and the texture

at different views, M1, · · · ,MN . Specifically, we minimize our energy function by alternating

between optimizing our two sets of variables. We initialize the targets and textures with their
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Figure 2.6. Our approach synthesizes aligned images (target) by optimizing Eq. 2.5. We propose
to optimize this energy function with a two-step approach. During alignment, patch search and
vote is performed between the source and target images to obtain new targets. Note that, while
the source and target images are similar, the target image is reconstructed by moving the source
content to ensure alignment. In the reconstruction stage, the target images are projected on the
geometry and combined (Eq. 2.10) to produce the texture at different views. The two steps of
alignment and reconstruction are continued iteratively and in multiple scales until convergence.

corresponding source images, i.e., Ti = Si and Mi = Si. We then iteratively perform our two steps

of alignment and reconstruction until convergence. The overview of our algorithm is given in

Fig. 2.6. Below, we explain our two steps:

1) Alignment – In this stage, we fix M1, · · · ,MN and minimize Eq. 2.5 by finding

optimum T1, · · · ,TN . This is done using an iterative search and vote process similar to Simakov

et al. [122]. In the first step, we perform a patch search process, as proposed by Simakov et

al., to find the patches with minimum D(s, t) (see Eq. 2.1), where D is the sum of squared

differences. In the next step, we perform the voting process to obtain T1, · · · ,TN that minimize

Eq. 2.5 given the calculated patches in the previous step. Note that, as we will discuss next, there

is a key difference between our and the original voting [122] which is because of our additional

consistency constraint, EC.

For the sake of clarity, we explain our voting by first discussing each term of Eq. 2.5

separately.

First (Similarity) Term: We start by rewriting the BDS energy function (E1) using the
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obtained patches during search as done in Simakov et al. [122]:

E1(i,xi) =
1
L

[
U

∑
u=1

(
su(yu)−Ti(xi)

)2
+α

V

∑
v=1

(
sv(yv)−Ti(xi)

)2

]
. (2.6)

where E1(i,xi) refers to the error E1 for a specific camera i and pixel xi. Here, su and sv are the

source patches overlapping with pixel xi of the target for the completeness and coherence terms,

respectively. Moreover, yu and yv refer to a single pixel in su and sv, respectively, corresponding

to the xth
i pixel of the target image. Finally, U and V refer to the number of patches for the

completeness and coherence terms, respectively. Note that, most of these variables are a function

of the current pixel, xi, but we omit this dependence for simplicity of the notation. See the

original paper by Simakov et al. [122] for the derivation of this equation. To obtain Ti’s that

minimize the above equation, we need to differentiate the error with respect to the unknown

color Ti(xi) and set it equal to zero which results in:

Ti(xi) =

1
L

U
∑

u=1
su(yu)+

α

L

V
∑

v=1
sv(yv)

U
L + αV

L
. (2.7)

Here, the target is obtained by computing a weighted average of the pixel colors of a

set of source patches, overlapping with the xth
i pixel of the target image. Note that, although

the normalization terms, 1/L, cancel out, we keep them here to be able to easily combine this

equation with the next term (Eq. 2.8) in Eq. 2.9.

Second (Consistency) Term: The first term is the standard voting process, as proposed

by Simakov et al., and basically draws information from the source image to reconstruct the

targets. Our key difference lies in the second term which enforces the consistency constraint by

ensuring that the target images are close to the textures. As shown in the Appendix, the targets
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minimizing the second term in Eq. 2.5 can be calculated as:

Ti(xi) =

1
N wi(xi)

N
∑

k=1
Mk(xi�k)

wi(xi)
. (2.8)

Again, although the weights, wi(xi), cancel out, we keep them in this equation for clarity,

when combining the two terms in Eq. 2.9. Here, each target is computed by averaging the current

texture maps from different views. This is intuitive as the constraint basically enforces the

aligned image to be as close as possible to the textures.

Combined Terms: Intuitively, the targets solving the combined terms should be recon-

structed by drawing information from the source images, while staying similar to the textures.

Since the two terms are combined with a λ factor (see Eq. 2.5), the combined solution can be

computed by separately adding the numerator and denominator of the terms in Eqs. 2.7 and 2.8

as:

Ti(xi) =

1
L

U
∑

u=1
su(yu)+

α

L

V
∑

v=1
sv(yv)+

λ

N wi(xi)
N
∑

k=1
Mk(xi�k)

U
L + αV

L +λwi(xi)
. (2.9)

As can be seen, the final updated target is a weighted average of the result of regular

voting (Eq. 2.7) and the average of all the current texture maps (Eq. 2.8). This means that the

consistency term basically enforces our updated targets to remain close to the current textures.

This energy function is minimized by iteratively performing the search and vote process

until convergence. These iterations work by using the updated targets after voting as the input to

the search process in the next iteration. We empirically found that only one iteration of search

and vote is sufficient to obtain high-quality results, as shown in Fig. 2.7.

2) Reconstruction – In this step, we fix T1, · · · ,TN and produce optimum texture at

different views, M1, · · · ,MN , to minimize Eq. 2.5. Since the textures only appear in the second
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Single iteration Multiple iterations

Figure 2.7. We show that a single iteration of search and vote produces results that are very
similar to those with multiple iterations.

term (EC), which is quadratic, the optimal textures can be easily obtained as follows:

Mi(xi) =
∑

N
j=1 w j(xi� j)Tj(xi� j)

∑
N
j=1 w j(xi� j)

. (2.10)

This is our texture generation equation which basically states that the optimum texture is

obtained by computing a weighted average of all the projected targets. In case the targets are

misaligned, which is usually the case at the beginning of the optimization, this process produces

textures with ghosting and blurring. The next iteration of the alignment process will then try to

reduce the misalignment between the targets, which consequently results in a texture map with

fewer artifacts after reconstruction.

We continue this process of alignment and reconstruction iteratively until convergence.

As is common with the patch-based approaches [140, 10], we perform this process at multiple

scales to avoid local minima and speed up the convergence (see Sec. 2.4). Note that the iterations

here are done between our two main stages of alignment and reconstruction. We also have

an inner iteration between the search and vote process at every alignment stage. However, as

discussed, we found that only one iteration of search and vote is sufficient during alignment.

Once converged, our algorithm produces the aligned images, T1, · · · ,TN , as well as the

optimum texture at different views, M1, · · · ,MN , which will be very similar. Since our target

images are consistent, a single global texture can be obtained by projecting all the target images
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on the geometry and averaging their color samples to obtain the final color at each vertex.

2.4 Implementation Details

Capturing input data – We use an Intel RealSense R200 camera to capture our input

RGB-D sequences. This camera records depth and color sequences with a resolution of 628×468

and 1920×1080, respectively, both at 30 fps. To minimize the color variations, we use fixed

exposure and white balancing. We estimate the geometry and the camera poses of each frame

using the KinectFusion algorithm [57]. Note that, this approach estimates the camera pose of

the depth frames and we also assign these estimated camera poses to the corresponding color

frames.4

Keyframe Selection – To reduce the number of our input images, we select a subset of

images with a greedy approach similar to Zhou and Koltun’s method [161]. Specifically, given a

set of already selected key frames, we use the method of Crete et al. [29] to find a frame with the

lowest blurriness in the interval of (t, 2t) after the last selected key frame. In our implementation,

t varies between 30 to 60 frames depending on the scene.

Alignment – To accelerate the search process, we use the PatchMatch algorithm of

Barnes et al. [10] with the default parameters and patch size of 7. Moreover, to avoid the target

images deviating significantly from the source images, we limit the search to a small window of

size 0.1
√

w×h, where w and h are the width and height of the source image.

Multiscale Optimization – We solve our energy function in Eq. 2.5 by performing the

optimization in multiple scales. Specifically, we start by downsampling all the source images to

the coarsest scale. We first initialize the targets, T1, · · · ,TN , and the textures, M1, · · · ,MN , with

the low resolution source images and perform the alignment and reconstruction stages iteratively

until convergence. We then upsample all the targets and textures to the resolution of the next

scale and perform our two stages iteratively at this new scale. Note that, instead of upsampling
4One may obtain the color camera poses by applying a rigid transformation to the depth camera poses, but this

strategy would not significantly help for two reasons: 1) the shutters of the depth and color cameras are not perfectly
synchronized, and 2) our depth and color cameras are close to each other, and thus, they have similar poses.
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Single Scale Multiscale

Figure 2.8. The energy function in Eq. 2.5 has a large number of local minima. By minimizing
this energy function at the finest scale, there is a significant possibility of getting trapped in one
of these local minima. Similar to other patch-based approaches, we perform the optimization at
multiple scales to produce high-quality results, as shown on the right.

the sources from the coarser scale, we directly downsample the original high resolution source

images to the current scale. This allows the system to inject high frequency details into the

targets and textures. We continue this process for all the finer scales to obtain the final targets

at the finest scale. In the coarsest scale, the input image has 64 pixels in the smaller dimension

and we have a total of 10 scales with scaling factor of 9
√

x/64, where x is the smaller dimension

of the original source images. We perform 50 iterations of alignment and reconstruction at the

coarsest scale and decrease it by 5 at each finer scale.

As shown in Fig. 2.8, this multiscale approach is necessary to avoid local minima, and

consequently, produce high-quality results. Intuitively, our optimization system aligns the global

structures in the coarser scales and recovers the details in the finer scales. A video demonstrating

the convergence of our algorithm at multiple scales can be found in the supplementary material

of the original publication.

2.5 Results

We implemented our framework in MATLAB/C++ and compared against the state-of-

the-art approaches by Eisemann et al. [36], Waechter et al. [135] and Zhou and Koltun [161].

We used the authors’ code for Waechter et al. and Eisemann et al.’s approaches, but implemented
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Figure 2.9. We compare our approach against the state-of-the-art algorithms of Eisemann et
al. [36], Waechter et al. [135] and Zhou and Koltun [161]. We also demonstrate the result of
naı̈vely projecting all the images and averaging them for comparison. Other approaches are not
able to handle these challenging scenes and produce results with tearing, discoloration, blurring,
and ghosting artifacts. On the other hand, we generate artifact-free high-quality results.

the method of Zhou and Koltun ourself since their source code is not available online. Note

that, for Eisemann et al.’s approach, we use the implementation for static scenes and generate
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TRUCK GUN HOUSE

BACKPACK PILLOW COW

Figure 2.10. Estimated geometry for the objects in Fig. 2.9.

view-independent textures to have a fair comparison. We demonstrate the results by showing one

or two views of each object, and videos showing the texture mapped objects from different views

can be found in the supplementary video of the original publication. Note that, our scenes are

generally more challenging than Zhou and Koltun’s scenes. This is mainly because of the fact that

we casually capture our scenes under typical lighting conditions, and thus, our geometries have

lower accuracy. We have tested our method on the FOUNTAIN scene from Zhou and Koltun’s

paper and are able to produce comparable results, as shown in Fig. 2.13 (Aligned Target).

Figure 2.9 compares our approach against other methods on six challenging objects, and

the estimated geometry for these objects is shown in Fig. 2.10. The TRUCK is a challenging

scene with a complex geometry which cannot be accurately captured with consumer depth
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cameras. Eisemann et al. [36] works on a pair of images and corrects misalignments using

optical flow without optimizing a global energy function, which is suboptimal. Therefore, their

method produces blurry textures as their warped images typically contain residual misalignments.

Waechter et al. [135] select one view per face by solving an optimization system to hide the

seams between adjacent faces. However, their method is not able to produce satisfactory results

in this case, since they assign inconsistent textures to some of the adjacent faces because of

significant inaccuracies. Note the tearing artifacts at the top inset and the distorted bear face at

the bottom inset. Moreover, the local warping in Zhou and Koltun’s approach [161] is not able

to correct significant misalignment in this case, caused by inaccurate geometry (see Fig. 2.10).

Therefore, their results suffer from ghosting and blurring artifacts. Our method synthesizes

aligned target images and is able to produce high-quality texture maps with minimal artifacts.

None of the other approaches are able to handle the GUN scene. Specifically, note that

only our approach is able to reconstruct the thin black structure at the bottom inset. Because of

inaccuracies in optical flow estimation, Eisemann et al.’s approach produces results with tearing

artifacts. It is worth noting that the method of Waechter et al. performs color correction to

fix the color variations between adjacent faces. Since in this case the images are significantly

misaligned, adjacent faces may have inconsistent textures. Therefore, the color correction

introduces discoloration which is visible in the two insets. Next, we examine the HOUSE scene,

which has a complex geometry. Waechter et al. produce tearing artifacts, while Eisemann et

al. and Zhou and Koltun’s results demonstrate ghosting artifacts. This is mainly due to the

complexity of this scene and the inaccuracy of the geometry (see Fig. 2.10). On the other hand,

our method is able to produce high-quality results on this challenging scene.

The top inset of the BACKPACK scene shows a region with a fairly smooth geometry.

However, Eisemann et al.’s method is still not able to properly align the images and generates

blurry textures. Moreover, Waechter et al.’s method generates results with tearing artifacts due to

incorrect camera poses. Although Zhou and Koltun’s method corrects most of the misalignments

in this case, their result is slightly blurrier than ours. The bottom inset shows a region from
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Figure 2.11. We show a small inset on the side of the toy house in the HOUSE scene (see
Fig. 2.9). The input images are significantly misaligned as can be seen by the blurriness of the
Naı̈ve approach. Our method is able to correct the misalignments and produce a plausible result.
However, our patch-based approach is not able to always preserve the semantic information. For
example, our method produces a result, where the single hole is broken down into two separate
pieces. Other approaches are able to produce results with a single hole, but they suffer from
tearing and blurring artifacts.

the side of the backpack with a complex geometry. In this region, Waechter et al.’s method

demonstrates discoloration artifacts, while Zhou and Koltun and Eisemann et al.’s approaches

produce results with ghosting artifacts. Similarly, none of the other methods are able to properly

reconstruct the textures on the sides of the PILLOW, a region with complex geometry. It is worth

mentioning that Waechter et al.’s approach also produces discoloration artifacts in the underside

of the pillow which can be seen in the supplementary video of the original publication. Finally,

only our method is able to properly reconstruct the eye and heart at the top inset and the blue and

brown structures at the bottom insets of the COW scene.

Limitation – The main limitation of our approach is that patch-based synthesis generally

produces plausible results, but in some cases is not able to preserve the semantic information,

as shown in Fig. 2.11. Here, although our approach corrects the significant misalignments and

produces plausible results, it is unable to preserve the structure of the hole (see the source inset)

and breaks it down into two segments.

2.6 Other Applications

In this section, we discuss several applications of our patch-based system including

texture hole-filling and reshuffling as well as multiview camouflage. Note that, although patch-

based synthesis has been previously used for image hole-filling and reshuffling [122, 10], these
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Image hole-filling of different views [Wexler et al. 2007]
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Figure 2.12. We first use our system to synthesize aligned target images, one of which shown
on the top left. We then mark the unwanted region (the sticker on the pillow) as the hole and
project it to all the other views to obtain holes in other targets. The top row shows three views
of the hole-filled results using the traditional patch-based synthesis [140] to fill in the hole at
each target image independently (we project the results to the same view for better comparison).
Although the hole-filled results at each view are plausible, combining them produces texture
with ghosting artifacts because of their inconsistencies. Aligning the hole-filled images using the
method of Zhou and Koltun [161] only slightly reduces the blurriness. Our method completes
the holes in different targets in a photometrically consistent way, and thus, is able to produce
artifact-free results.

methods are not suitable in our application because of lack of consistency.

Texture Hole-filling – In some cases, the texture of a real-world object may contain

unwanted regions (holes) that we wish to fill in. One example of this case is shown in Fig. 2.12,

where the sticker on the pillow is not desired and should be removed from the final texture map.

To do so, we begin by synthesizing aligned target images using our system. We then mark the

hole region (shown in blue) in one of the aligned target images. This region can be simply

projected to the other views to generate the hole in all the targets. These marked regions basically
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divide each target image into hole Hi and input Ii (the region outside the hole).

Here, the goal is to fill in the holes, Hi, by drawing information from each input, Ii,

while preserving the photometric consistency of the filled holes. This is very similar to the main

properties of our energy function in Eq. 2.5, and thus, our system can be used to perform the

hole-filling process. Note that, this problem is related to multi-view hole-filling which has been

proposed in a few recent techniques [8, 131], but we present a way to perform this task using our

texture mapping framework.

We do this by setting the sources to the inputs, Si = Ii, and the targets to the holes, Ti = Hi

in Eq. 2.5. In this case, our optimization draws information from the sources (regions outside

the holes) to fill in the targets (holes) in a consistent way. This is done by performing the patch

search from the regions outside the hole to the holes and voting these patches to reconstruct only

the hole regions. For initialization, instead of using the sources, we smoothly fill in the holes

from the boundary pixels using MATLAB’s roifill function. We also omit the completeness term

in the BDS energy term (see Eq. 2.1) which is responsible for bringing most of the information

from the source to the target images. Note that, while this is a requirement for alignment, it is

not necessary for hole-filling since we only need partial information from the inputs to fill in the

holes.

We compare our approach to patch-based image hole-filling [140] in Fig. 2.12. Although

performing the hole-filing separately can produce plausible results at each view (top row),

combining them generates a texture with ghosting artifacts (bottom row - left) because of their

inconsistency. The method of Zhou and Koltun [161] can be used to align the hole-filled images

at different views (bottom row - middle). However, the final texture still contains ghosting

artifacts since the inconsistencies cannot be corrected with warping. Our method is able to

produce consistent hole-filled results in different views, and consequently, generate high-quality

hole-filled texture.

It is worth noting that we do not hole-fill the geometry. Therefore, our method can

only fill in texture holes, if their underlying geometry is not complex, like the one in Fig. 2.12.
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Figure 2.13. We show one of the aligned target images on the left. Here, the goal is to
plausibly copy the regions in red to the desired locations which are marked with yellow. We
first use Simakov et al. [122] to perform the reshuffling process for this target image. We
then project the yellow masks to the other targets and use our hole-filling system to fill in
the projected yellow masks. Performing the hole-filling independently for each target image
produces inconsistent hole-filled results, which consequently produces textures with ghosting
artifacts. Simply projecting the reshuffled result from one target to the other targets has problems
at grazing angles. Our method is able to produce consistent results across different views and
generate high-quality textures.

Extending our system to also fill in geometries is an interesting topic for future research.

Texture Reshuffling – As shown in Fig. 2.13, our method can also be used to copy parts

of a texture (marked with red masks) to other regions within the texture (marked with yellow).

Again before starting the reshuffling process we synthesized aligned targets using our system.

We then mark some regions in one of the target images (reshuffling target) and the goal is to

replicate them in a plausible way in the desired locations (yellow masks in Fig. 2.13). Moreover,
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the synthesized contents at the new locations of the reshuffling target need to be consistent with

all the other target images.

To do this, we first perform the single image reshuffling [122] and synthesize a replica

of the regions of interest in the new locations. Note that, this process is performed exactly like

Simakov et al. [122] and only on the reshuffling target. At this point, the other targets are not

consistent with this target image in the areas where the reshuffling is performed (yellow regions).

We address this issue, by first projecting the yellow masks to the other targets. We then

use our described hole-filling system to fill in the projected yellow masks in other targets. Note

that here we do not modify the reshuffling target and it is only used to force the other targets to

produce consistent content in the regions defined with the yellow mask. Formally speaking, this

means that we remove the EBDS term corresponding to the reshuffling target in Eq. 2.5.

This process produces targets that are consistent with the reshuffling target, as shown in

Fig. 2.13. Again, the textures produced by hole-filling each target separately using Wexler et

al.’s approach [140] contain ghosting artifacts. Moreover, projecting the content of the yellow

mask from the reshuffling target to the other targets produces blurriness. Our method produces

high-quality results.

Multiview Camouflage – Our method could also be used to camouflage a 3D object

from multiple viewpoints. Here, the input is a set of images of a scene and the geometry of a

3D object that needs to be artificially inserted into the scene and camouflaged. This is done

by producing a consistent texture map for the geometry to make it invisible from different

viewpoints. This problem can be viewed as image-based texture mapping for a highly inaccurate

geometry, where the geometry of the scene is modeled with the 3D object. We compare the result

of our technique for camouflaging a box against Owens et al.’s method [103] in Fig. 2.14. Note

that, their approach is specifically designed for this application and is limited to camouflaging

boxes. Therefore, their approach produces high-quality results in this case. In comparison, our

framework is able to handle this additional application and produce reasonable results. Moreover,

our method is not limited to boxes and is able to handle any other objects (see supplementary
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Figure 2.14. We show three views of a camouflaged box generated by our approach and Owens
et al.’s method[103]. Comparing to Owens et al.’s technique, we are able to produce a reasonable
texture map.

video of the original publication).

2.7 Conclusion

In this chapter, we have presented a novel global patch-based optimization system for

image-based texture mapping. We correct the misalignments caused by the inaccuracies in the

geometry, camera poses, and optical distortions of the input images, by synthesizing an aligned

image for each source image. We propose to do this using a novel patch-based energy function

that reconstructs photometrically-consistent aligned images from the source images. To solve our

energy function efficiently, we propose a two step approach involving a modified patch search

and vote followed by a reconstruction stage. We show that our patch-based approach is effective

in handling large inaccuracies and outperforms state-of-the-art approaches. Moreover, we

demonstrate other applications of our system such as texture editing and multiview camouflage.

This chapter is based on the material as it appears in ACM Transactions on Graphics,
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2017 (“Patch-Based Optimization for Image-Based Texture Mapping”, Sai Bi, Nima Khademi

Kalantari, Ravi Ramamoorthi). The dissertation author was the primary investigator and author

of this paper.
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Chapter 3

Geometry and Reflectance from Sparse
Multi-View Images

3.1 Introduction

In Chapter 2, we have introduced a novel method to reproduce high-quality texture maps

for 3D reconstructions to reproduce the appearance of real-world objects and scenes. While

texture maps are widely used, they are limited to purely diffuse objects. For non-Lambertian

objects, we reconstruct their 3D geometry and reflectance properties so that we can render

them under novel lighting conditions. Traditionally this has been accomplished using complex

acquisition systems [9, 53, 132, 147, 163] or multi-view stereo (MVS) methods [39, 115] applied

to dense image sets [97, 152]. The acquisition requirements for these methods significantly limits

their practicality. Recently, deep neural networks have been proposed for material estimation

from a single or a few images. However, many of these methods are restricted to estimating the

spatially-varying BRDF (SVBRDF) of planar samples [33, 42, 82]. Li et al. [83] demonstrate

shape and reflectance reconstruction from a single image, but their reconstruction quality is

limited by their single image input.

In this chapter, our goal is to enable practical and high-quality shape and appearance

acquisition. To this end, we propose using a simple capture setup: a sparse set of six cameras—

placed at one vertex and the centers of the adjoining faces of a regular icosahedron, forming a

60◦ cone—with collocated point lighting (Fig. 3.2 left). Capturing six images should allow for
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Input

Figure 3.1. From six wide-baseline input images of an object captured under collocated point
lighting (top row), our method reconstructs high-quality geometry and spatially-varying, non-
Lambertian reflectance (bottom row, a tone mapping is performed on specular albedo to make it
more visible), allowing us to re-render the captured object under novel viewpoint and illumination
(bottom, right).

better reconstruction compared to single image methods. However, at such wide baselines, the

captured images have few correspondences and severe occlusions, making it challenging to fuse

information across viewpoints.

As illustrated in Fig. 3.2, we propose a two-stage approach to address this problem. First,

we design multi-view geometry and reflectance estimation networks that regress the 2D

depth, normals and reflectance for each input view by robustly aggregating information

across all sparse viewpoints. We estimate the depth for each input view using a deep multi-view

stereo network [153, 157] (Sec. 3.3.1). Because of our sparse capture, these depth maps contain

errors and cannot be used to accurately align the images to estimate per-vertex BRDFs [97, 163].

Instead, we use these depth maps to warp the images to one viewpoint and use a novel deep multi-

view reflectance estimation network to estimate per-pixel normals and reflectance (parameterized

by diffuse albedo, specular albedo and roughness in a simplified Disney BRDF model [67]) for

that viewpoint (Sec. 3.3.2). This network extracts features from the warped images, aggregates

34



1

6

Depth 
predictor

Encoder
SVBRDF
decoder

1

1←6
Diffuse albedo 

Roughness

Specular albedo

Normal

Poisson 
reconstruc�on

Warping

Op�miza�on

Mul�-View Reflectance Predic�on
(Sec�on 3.2)

Mul�-View Depth Predic�on 
(Sec�on 3.1)

Geometry Reconstruc�on (Sec�on 3.3) 
SVBRDF and Geometry Refinement (Sec�on 3.4)

∗
Ini�al geometry Op�mized geometry Per-vertex BRDF

2

3

4

6 5

1

Our acquisi�on setup

Figure 3.2. Our acquisition setup (leftmost figure) and framework. We capture six images with
collocated cameras and lights placed at a vertex (green circle 1) and five adjoining face centers
(green circle 2-6) of an icosahedron. Using the six images, we predict per-view depth (red block).
We warp the input images using the predicted depths and pass them to a multi-view SVBRDF
estimation network to get per-view SVBRDFs (blue block). Finally, we reconstruct 3D geometry
from the estimated depth and normals, and perform a joint optimization to get refined geometry
and per-vertex BRDFs (yellow block).

them across viewpoints using max-pooling, and decodes the pooled features to estimate the

normals and SVBRDF for that viewpoint. This approach to aggregate multi-view information

leads to more robust reconstruction than baseline approaches like a U-Net architecture [112],

and we use it to recover normals and reflectance for each view.

Second, we propose a novel method to fuse these per-view estimates into a single

mesh with per-vertex BRDFs using optimization in a learnt reflectance space. First, we

use Poisson reconstruction [68] to construct a mesh from the estimated per-view depth and

normal maps (Sec. 3.3.3). Each mesh vertex has multiple reflectance parameters corresponding

to each per-view reflectance map, and we fuse these estimates to reconstruct object geometry and

reflectance that will accurately reproduce the input images. Instead of optimizing the per-vertex

reflectance parameters, which leads to outliers and spatial discontinuities, we optimize the the

latent features of our multi-view reflectance estimation network (Sec. 3.3.4). We pass these latent

features to the reflectance decoder to construct per-view SVBRDFs, fuse them using per-vertex

blending weights, and render them to compute the photometric error for all views. This entire

pipeline is differentiable, allowing us to backpropagate this error and iteratively update the

reflectance latent features and per-vertex weights till convergence. This process refines the

reconstruction to best match the specific captured images, while leveraging the priors learnt by
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our reflectance estimation network.

We train our networks with a large-scale synthetic dataset comprised of procedurally

generated shapes with complex SVBRDFs [153, 155] and rendered using a physically-based

renderer. While our method is trained with purely synthetic data, it generalizes well to real

scenes. This is illustrated in Figs. 3.1 and 3.8, where we are able to reconstruct real objects

with complex geometry and non-Lambertian reflectance. Previous state-of-the-art methods,

when applied to sparse input images for such objects, produce incomplete, noisy geometry and

erroneous reflectance estimates (Figs. 3.4 and 3.7). In contrast, our work is the first to reconstruct

detailed geometry and high-quality reflectance from sparse multi-view inputs, allowing us to

render photorealistic images under novel view and lighting.

3.2 Related Works

3D reconstruction. To reconstruct 3D geometry from image sets, traditional methods [40,

76, 115] find correspondences between two or more images utilizing specific image features.

Such methods are sensitive to illumination changes, non-Lambertian reflectance and textureless

surfaces. The existence of multiple points with similar matching costs also require these methods

to have a large number of images to get high-quality reconstructions (we refer the interested

readers to [40] for more details). In contrast, our method reconstructs high-quality geometry for

complex real scenes from an order of magnitude fewer images.

Recently, numerous learning-based methods have been proposed to reconstruct 3D shape

using various geometric representations, including regular volumes [60, 110, 149], point clouds

[1, 136] and depth maps [54, 157]. These methods cannot produce high-resolution 3D meshes.

We extend recent learning-based MVS frameworks [153, 157] to estimate depth from sparse

multi-view images of objects with complex reflectance. We combine this depth with estimated

surface normals to reconstruct 3D meshes with fine details.

SVBRDF acquisition. SVBRDF acquisition is a challenging task that often requires a
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dense input image set [35, 97, 152]. Many methods utilize sophisticated hardware [89] or light

patterns [53, 64, 132]. Reconstruction from sparse images has been demonstrated for planar

objects [5, 82, 154], and known geometry [163]. In contrast, we reconstruct the geometry and

complex reflectance of arbitrary objects from a sparse set of six input images.

Photometric stereo methods have been proposed to reconstruct arbitrary shape and

SVBRDFs [7, 45]; however, they focus on single-view reconstruction and require hundreds of

images. Recent works [55, 97] utilize images captured by a collocated camera-light setup for

shape and SVBRDF estimation. In particular, Nam et al. [97] capture more than sixty images

and use multi-view reconstruction and physics-based optimization to recover geometry and

reflectance. In contrast, by designing novel deep networks, we are able to reconstruct objects

from only six images.

Learning-based methods have been applied for normal and SVBRDF acquisition. Deep

photometric stereo methods reconstruct surface normals from tens to hundreds of images [21, 22]

but they do not address reflectance or 3D geometry estimation. Most deep SVBRDF acquisition

methods are designed for planar samples [4, 33, 34, 42, 81, 82]. Some recent multi-image

SVBRDF estimation approaches pool latent features from multiple views [34] and use latent

feature optimization [42] but they only handle planar objects. Li et al. [83] predict depth and

SVBRDF from a single image; however, a single input does not provide enough information

to accurately reconstruct geometry and reflectance. By capturing just six images, our approach

generates significantly higher quality results.

3.3 Algorithm

Our goal is to accurately reconstruct the geometry and SVBRDF of an object with a

simple acquisition setup. Recent work has utilized collocated point illumination for reflectance

estimation from a sparse set of images [4, 5, 33, 82]; such lighting minimizes shadows and

induces high-frequency effects like specularities, making reflectance estimation easier. Similarly,
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Xu et al. [153] demonstrate novel view synthesis from sparse multi-view images of a scene

captured under a single point light.

Motivated by this, we utilize a similar capture system as Xu et al.—six cameras placed at

one vertex of a regular icosahedron and the centers of the five faces adjoining that vertex. Unlike

their use of a single point light for all images, we capture each image under a point light (nearly)

collocated with the corresponding camera (see Fig. 3.2 left). The setup is calibrated giving us a

set of n = 6 input images, {Ii}n
i=1 with the corresponding camera calibration. This wide baseline

setup—with an angle of 37◦ between the center and boundary views—makes it possible to image

the entire object with a small set of cameras. In the following, we describe how we reconstruct

an object from these sparse input images.

3.3.1 Multi-View Depth Prediction

Traditional MVS methods depend on hand-crafted features such as Harris descriptors

to find correspondence between views. Such features are not robust to illumination changes or

non-Lambertian surfaces, making them unusable for our purposes. In addition, due to the sparse

inputs and large baselines, parts of the object may be visible in as few as two views. These

factors cause traditional MVS methods to fail at finding accurate correspondences, and thus fail

to reconstruct high-quality geometry.

Instead, we make use of a learning-based method to estimate the depth. Given the input

images {Ii}n
i=1, we estimate the depth map Di for view i. Similar to recent works on learning-

based MVS [56, 153, 157], our network consists of two components: a feature extractor F

and a correspondence predictor C . The feature extractor is a 2D U-Net [112] that extracts a

16-channel feature map for each image Ii. To estimate the depth map at Ii, we warp the feature

maps of all views to view i using a set of 128 pre-defined depth levels, and build a 3D plane

sweep volume [26] by calculating the variance of feature maps over views. The 3D volume

is further fed to the correspondence predictor C that is a 3D U-Net to predict the probability

of each depth level. We calculate the depth as a probability-weighted sum of all depth levels.
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Figure 3.3. Our multi-view SVBRDF estimation network. An encoder extracts features from
reference and warped image pairs. These features are max-pooled to get a single reference-view
feature map, which is decoded to predict that view’s SVBRDF. Note the errors in the warped
images; max-pooling mitigates their effect on the output SVBRDF.

The training loss is defined as the L1 loss between predicted depths and ground truth depths.

By learning the feature representations and correspondence, the proposed framework is more

robust to illumination changes and specularities, thus producing more accurate pixel-wise depth

predictions than traditional methods.

While such networks are able to produce reasonable depth, the recovered depth has errors

in textureless regions. To further improve the accuracy, we add a guided filter module [148] to

the network, which includes a guided map extractor G as well as a guided layer g. Let the initial

depth prediction at view i be D′i. The guided map extractor G takes image Ii as input and learns a

guidance map G (Ii). The final depth map is estimated as:

Di = g(G (Ii),D′i). (3.1)

The training loss is defined as the L1 distance between predicted depths and ground truth depths.

All components are trained jointly in an end-to-end manner.
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3.3.2 Multi-View Reflectance Prediction

Estimating surface reflectance from sparse images is a highly under-constrained problem.

Previous methods either assume geometry is known [4, 5, 82, 33] or can be reconstructed with

specific devices [53] or MVS [97]. In our case, accurate geometry cannot be reconstructed from

sparse inputs with traditional MVS methods. While our learning-based MVS method produces

reasonable depth maps, they too have errors, making it challenging to use them to align the

images and estimate per-vertex SVBRDF. Instead, for each input image Ii, we first estimate its

corresponding normals, Ii, and SVBRDF, represented by diffuse albedo Ai, specular roughness

Ri and specular albedo Si.

To estimate the SVBRDF at view i, we warp all input images to this view using predicted

depths Di. One approach for multi-view SVBRDF estimation could be to feed this stack of

warped images to a convolutional neural network like the commonly used U-Net [82, 112].

However, the inaccuracies in the depth maps lead to misalignments in the warped images,

especially in occluded regions, and this architecture is not robust to these issues.

We propose a novel architecture that is robust to depth inaccuracies and occlusions. As

shown in Fig. 3.3, our network comprises a Siamese encoder [25], E , and a decoder, D , with

four branches for the four SVBRDF components. To estimate the SVBRDF at a reference view i,

the encoder processes n pairs of inputs, each pair including image Ii as well as the warped image

Ii← j, where we warp image I j at view j to the reference view i using the predicted depth Di.

To handle potential occlusions, directly locating occluded regions in the warped images using

predicted depths and masking them out is often not feasible due to inaccurate depths. Instead we

keep the occluded regions in the warped images and include the depth information in the inputs,

allowing the network to learn which parts are occluded.

To include the depth information, we draw inspiration from the commonly used shadow

mapping technique [142]. The depth input consists of two components: for each pixel in view

i, we calculate its depths Zi← j in view j; we also sample its depth Z∗i← j from the depth map
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D j by finding its projections on view j. Intuitively if Zi← j is larger than Z∗i← j, then the pixel is

occluded in view j; otherwise it is not occluded. In addition, for each pixel in the reference view

i, we also include the lighting directions Li of the light at view i, as well as the lighting direction

of the light at view j, denoted as Li← j. We assume a point light model here. Since the light is

collocated with the camera, by including the lighting direction we are also including the viewing

direction of each pixel in the inputs. All directions are in the coordinate system of the reference

view. Such cues are critical for networks to infer surface normals using photometric information.

Therefore, the input for a pair of views i and j is:

Hi, j = {Ii, Ii← j,Zi← j,Z∗i← j,Li,Li← j}. (3.2)

The input contains 14 channels in total, and there are a total of n such inputs. We feed all the

inputs to the encoder network E and get the intermediate features fi, j. All these intermediate

features are aggregated with a max-pooling layer yielding a common feature representation for

view i, f ∗i :

fi, j = E (Hi, j) (3.3)

f ∗i = max-pool({ fi, j}n
j=1) (3.4)

f ∗i is fed to the decoder to predict each SVBRDF component for view i:

Ai,Ni,Ri,Si = D( f ∗i ) (3.5)

Compared to directly stacking all warped images together, our proposed network architecture

works on pairs of input images and aggregates features across views using a max-pooling layer.

The use of max-pooling makes the network more robust to occlusions and misalignments caused

by depth inaccuracies and produces more accurate results (see Tab. B.1). It also makes the
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network invariant to the number and order of the input views, a fact that could be utilized for

unstructured capture setups. The training loss L of the network is defined as:

L = LA +LN +LR +LS +LI (3.6)

where the first four terms are the L2 losses for each SVBRDF component, and LI is the L2 loss

between input images and rendered images generated with our predictions.

3.3.3 Geometry Reconstruction

The previous multi-view depth and SVBRDF estimation networks give us per-view

depth and normal maps at full-pixel resolution. We fuse these per-view estimates to reconstruct

a single 3D geometry for the object. We first build a point cloud from the depth maps, by

generating 3D points from each pixel in every per-view depth map. For each point, we also get

its corresponding normal from the estimated normal maps. Given this set of 3D points with

surface normals, we perform a Poisson reconstruction [69] to reconstruct the fused 3D geometry.

The initial point clouds may contain outliers due to inaccuracies in the depth maps. To get rid

of undesired structures in the output geometry, we generate a coarse initial geometry by setting

the depth of the spatial octree in Poisson reconstruction to 7—corresponding to an effective

voxel resolution of 1283. We refine this initial geometry in the subsequent stage. Compared to

learning-based 3D reconstruction methods that directly generate geometry (voxel grids [66, 111],

implicit functions [104, 113] or triangle meshes [137]) from images, this approach generalizes

to arbitrary shapes and produces more detailed reconstructions.

3.3.4 SVBRDF and Geometry Refinement

Given the initial coarse geometry as well as the per-view SVBRDF predictions, we aim

to construct a detailed 3D mesh with per-vertex BRDFs. For each vertex, a trivial way to get its

BRDF is to blend the predicted SVBRDFs across views using pre-defined weights such as the
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dot product of the viewing directions and surface normals. However, this leads to blurry results

(Fig. 3.5), due to the inconsistencies in the estimated SVBRDFs and the geometry. Also note that

our SVBRDF predictions are computed from a single feed-forward network pass, and are not

guaranteed to reproduce the captured input images exactly because the network has been trained

to minimize the reconstruction loss on the entire training set and not this specific input sample.

We address these two issues with a novel rendering-based optimization that estimates

per-vertex BRDFs that minimize the error between rendering the predicted parameters and

the captured images. Because of the sparse observations, independently optimizing per-vertex

BRDFs leads to artifacts such as outliers and spatial discontinuities, as shown in Fig. 3.5. Classic

inverse rendering methods address this using hand-crafted priors. Instead, we optimize the per-

view feature maps f ∗i that are initially predicted from our SVBRDF encoder ( Eqn. 3.4). These

latent features, by virtue of the training process, capture the manifold of object reflectances, and

generate spatially coherent per-view SVBRDFs when passed through the decoder, D (Eqn. 3.5).

Optimizing in this feature space allows us to adapt the reconstruction to the input images, while

leveraging the priors learnt by our multi-view SVBRDF estimation network.

Per-vertex BRDF and color. For each vertex vk, we represent its BRDF bk as a weighted

average of the BRDF predictions from multiple views:

bk =
n

∑
i=1

wk,iD(pk,i; f ∗i ), (3.7)

where pk,i is the corresponding pixel position of vk at view i, D(pk,i; f ∗i ) represents the SVBRDF

prediction at pk,i from view i by processing f ∗i via the decoder network D , and wk,i are the

per-vertex view blending weights. The rendered color of vk at view i is calculated as:

I∗i (pk,i) = Θ(bk,Li(pk,i)), (3.8)

where Li(pk,i) is the lighting direction and also the viewing direction of vertex vk at view i, and
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Θ is the rendering equation. We assume a point light source collocated with the camera (which

allows us to ignore shadows), and only consider direct illumination in the rendering equation.

Per-view warping. Vertex vk can be projected onto view i using the camera calibration;

we refer to this projection as uk,i. However, the pixel projections onto multiple views might be

inconsistent due to inaccuracies in the reconstructed geometry. Inspired by Zhou et al. [161],

we apply a non-rigid warping to each view to better align the projections. In particular, for

each input view, we use a T ×T grid with C = T 2 control points (T = 11 in our experiments)

to construct a smooth warping field over the image plane. Let ti,c be the translation vectors of

control points at view i. The resulting pixel projection, pk,i, is given by:

pk,i = uk,i +
C

∑
c=1

θc(uk,i)ti,c, (3.9)

where θc returns the bilinear weight for a control point ti,c at pixel location uk,i.

SVBRDF optimization. We optimize per-view latent features f ∗i , per-vertex blending

weights wk,i and per-view warping fields ti,c to reconstruct the final SVBRDFs. The photometric

consistency loss between the rendered colors and ground truth colors for all K vertices is given

by:

Ephoto( f ∗i ,w, t) =
1

n ·K

K

∑
k=1

n

∑
i=1
||I∗i (pk,i)− Ii(pk,i)||22.

We clamp the rendered colors to the range of [0,1] before calculating the loss. To prevent the

non-rigid warping from drifting, we also add an L2 regularizer to penalize the norm of the

translation vectors:

Ewarp(t) =
1

n ·C

n

∑
i=1

C

∑
c=1
||ti,c||22. (3.10)
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Therefore the final energy function for the optimization is:

E = Ephoto( f ∗,w, t)+λEwarp(t). (3.11)

We set λ to 100 , and optimize the energy function with Adam optimizer [70] with a learning

rate of 0.001.

Geometry optimization. We use the optimized per-vertex normal, nk, to update the

geometry of the object by re-solving the Poisson equation (Sec. 3.3.3). Unlike the initial geometry

reconstruction, we set the depth of the spatial octree to 9—corresponding to a voxel resolution

of 5123—to better capture fine-grained details of the object. We use this updated geometry

in subsequent SVBRDF optimization iterations. We update the geometry once for every 50

iterations of SVBRDF optimization, and we perform 400− 1000 iterations for the SVBRDF

optimization.

Per-vertex refinement. The bottleneck in our multi-view SVBRDF network—that we

use as our reflectance representation—may cause a loss of high-frequency details in the predicted

SVBRDFs. We retrieve these details back by directly optimizing the BRDF parameters bk of

each vertex to minimizing the photometric loss in Eqn. (3.10). Note that after the previous

optimization, the estimated BRDFs have already converged to good results and the rendered

images are very close to the input images. Therefore, in this stage, we use a small learning rate

(0.0005), and perform the optimization for a small number (40−100) of iterations.

3.4 Implementation and Results

Training data. We follow Xu et al. [153] and procedurally generate complex scenes by

combining 1 to 5 primitive shapes such as cylinders and cubes displaced by random height maps.

We generate 20,000 training and 400 testing scenes. We divide the high-quality materials from
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the Adobe Stock dataset1 into a training and testing set, and use them to texture the generated

scenes separately. For each scene, following the setup discussed in Sec. 5.1, we render the 6

input view images with a resolution of 512×512 using a custom Optix-based global illumination

renderer with 1000 samples per pixel. We also render the ground truth depth, normals, and

SVBRDF components for each view.

Network architecture. For depth estimation, we use a 2D U-Net architecture [112]

for the feature extractor, F , and guidance map extractor, G . Both networks have 2 downsam-

pling/upsampling blocks. The correspondence predictor C is a 3D U-Net with 4 downsam-

pling/upsampling blocks. For multi-view SVBRDF estimation, both the encoder E and decoder

D are 2D CNNs, with 3 downsampling layers in E and 3 upsampling layers in D . Note that we

do not use skip connections in the SVBRDF network; this forces the latent feature to learn a

meaningful reflectance space and allows us to optimize it in our refinement step. We use group

normalization [150] in all networks. We use a differentiable rendering layer that computes local

shading under point lighting without considering visibility or global illumination. This is a

reasonable approximation in our collocated lighting setup. For more details, please refer to the

supplementary document.

Training details. All the networks are trained with the Adam optimizer [70] for 50

epochs with a learning rate of 0.0002. The depth estimation networks are trained on cropped

patches of 64×64 with a batch size of 12, and the SVBRDF estimation networks are trained on

cropped 320×320 patches with a batch size of 8. Training took around four days on 4 NVIDIA

Titan 2080Ti GPUs.

Run-time. Our implementaion has not been optimized for the best timing efficiency.

In practice, our method takes around 15 minutes for full reconstruction from images with a

resolution of 512×512, where most of the time is for geometry fusion and optimization.

1https://stock.adobe.com/search/3d-assets
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Table 3.1. Quantitative SVBRDF evaluation on a synthetic test set. We report the L2 error. Since
Li et al. [83] work on 256×256 images, we downsample and evaluate at that resolution. Also,
they do not predict the specular albedo.

Diffuse Normal Roughness Specular
Naive U-Net 0.0060 0.0336 0.0359 0.0125
Ours 0.0061 0.0304 0.0275 0.0086

Li et al. [83] 0.0227 0.1075 0.0661 —
Ours (256×256) 0.0047 0.0226 0.0257 0.0083

3.4.1 Evaluation on Synthetic Data

We evaluate our max-pooling-based multi-view SVBRDF estimation network on our

synthetic test set. In particular, we compare it with a baseline U-Net (with 5 downsam-

pling/upsampling blocks) that takes a stack of all the coarsely aligned images (Hi, j∀ j in Eqn. 3.2)

as input for its encoder, and skip connections from the encoder to the four SVBRDF decoders.

This architecture has been widely used for SVBRDF estimation [33, 82, 83]. As can be seen

in Tab. B.1, while our diffuse albedo prediction is slightly (1.7%) worse than the U-Net we

significantly outperform it in specular albedo, roughness and normal predictions, with 31%,

23% and 9.5% lower L2 loss respectively. This is in spite of not using skip-connections in

our network (to allow for optimization later in our pipeline). We also compare our results

with the state-of-the-art single-image shape and SVBRDF estimation method of Li et al. [83].

Unsurprisingly, we outperform them significantly, demonstrating the usefulness of aggregating

multi-view information.

3.4.2 Evaluation on Real Captured Data

We evaluate our method on real data captured using a gantry with a FLIR camera and a

nearly collocated light to mimic our capture setup. Please refer to the supplementary material

for additional results.

Evaluation of geometry reconstruction. Our framework combines our predicted depths
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COLMAP Our ini�al geometry Our op�mized geometry 

Figure 3.4. Comparison on geometry reconstruction. COLMAP fails to reconstruct a complete
mesh from the sparse inputs. In contrast, our initial mesh is of much higher quality, and our joint
optimization recovers even more fine-grained details on the mesh. Input image in Fig. 3.8 (top).

and normals to reconstruct the initial mesh. Figure 3.4 shows the comparison between our

reconstructed mesh and the mesh from COLMAP, a state-of-the-art multi-view stereo framework

[115]. From such sparse inputs and low-texture surfaces, COLMAP is not able to find reliable

correspondence across views, which results in a noisy, incomplete 3D mesh. In contrast, our

initial mesh is already more complete and detailed, as a result of our more accurate depths and

normals. Our joint optimization further refines the per-vertex normals and extracts fine-scale

detail in the object geometry.

Evaluation of SVBRDF optimization. We compare our SVBRDF and geometry opti-

mization scheme (Sec. 3.3.4) with averaging the per-view predictions using weights based on the

angle between the viewpoint and surface normal, as well as this averaging followed by per-vertex

optimization. From Fig. 3.5 we can see that the weighted averaging produces blurry results.

Optimizing the per-vertex BRDFs brings back detail but also has spurious discontinuities in

appearance because of the lack of any regularization. In contrast, our latent-space optimization

method recovers detailed appearance without these artifacts.
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No op�miza�on Direct op�miza�on Ground truthOur op�miza�on
Figure 3.5. Comparison on SVBRDF optimization. Simple averaging without optimization
produces blurry results, and direct per-vertex optimization results in outliers and discontinuities.
In comparison, our optimization generates more visually plausible results.

Comparisons against Nam et al. [97] We also compare our work with the state-of-the-art

geometry and reflectance reconstruction method of Nam et al. Their work captures 60+ images

of an object with a handheld camera under collocated lighting; they first use COLMAP [115]

to reconstruct the coarse shape and use it to bootstrap a physics-based optimization process to

recover per-vertex normals and BRDFs. COLMAP cannot generate complete meshes from our

sparse inputs (see Fig. 3.4). Therefore, we provided our input images, camera calibration, and

initial geometry to the authors who processed this data. As can be seen in Fig. 3.6, our final

reconstructed geometry has significantly more details than their final optimized result in spite

of starting from the same initialization. Since they use a different BRDF representation than

ours, making direct SVBRDF comparisons difficult, in Fig. 3.7 we compare renderings of the

reconstructed object under novel lighting and viewpoint. These results show that they cannot

handle our sparse input and produce noise, erroneous reflectance (CAT scene) or are unable to

recover the specular highlights of highly specular objects (CACTUS) scene. In comparison, our
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Our ini�al geometry [Nam et al. 2018] Our op�mized geometry 

Figure 3.6. Comparison with Nam et al. [97]. While both have the same initialization, our
learning-based refinement produces more accurate, detailed geometry. Input in Fig. 3.8.

[Nam et al. 2018]
with our geometry

OursCaptured object [Nam et al. 2018]
with our geometry

Ours

Figure 3.7. Comparison with Nam et al. [97]. We render two reconstructed objects under novel
viewpoints and lighting. Nam et al. are not able to accurately reconstruct appearance from sparse
views, and produce noisy edges and incorrect specular highlights (top) or miss the specular
component completely (bottom). In contrast, our method produces photorealistic results.

results have significantly higher visual fidelity. Please refer to the supplementary video of the

original publication for more renderings.

More results on real data. Figure 3.8 shows results from our method on additional real

scenes. We can see here that our method can reconstruct detailed geometry and appearance for
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Novel view ground truth Point-light rendering GeometryDiffuse albedo Normal Roughness Env-map rendering

Figure 3.8. Results on real scenes. For each scene, we show our reconstructed geometry, normal
map and SVBRDF components (please refer to supplementary materials for specular albedo). We
compare our point-light rendering results (second column) under novel viewpoints and lighting
with captured ground truth photographs (first column). We also show a rendering of the object
with our reconstructed appearance under environment lighting (last column).

objects with a wide variety of complex shapes and reflectance. Comparing renderings of our

estimates under novel camera and collocated lighting against ground truth captured photographs

demonstrates the accuracy of our reconstructions. We can also photorealistically render these

objects under novel environment illumnination. Please refer to the supplementary document and

video of the original publication for more results.

Limitations. Our method might fail to handle highly non-convex objects, where some

parts are visible in as few as a single view and there are no correspondence cues to infer correct

depth. In addition, we do not consider global illumination in SVBRDF optimization. While

it is a reasonable approximation in most cases, it might fail in some particular scenes with

strong inter-reflections. For future work, it would be interesting to combine our method with

physics-based differentiable rendering [80, 158] to handle these complex light transport effects.
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3.5 Conclusion

We have proposed a learning-based framework to reconstruct the geometry and appear-

ance of an arbitrary object from a sparse set of just six images. We predict per-view depth using

learning-based MVS, and design a novel multi-view reflectance estimation network that robustly

aggregates information from our sparse views for accurate normal and SVBRDF estimation. We

further propose a novel joint optimization in latent feature space to fuse and refine our multi-view

predictions. Unlike previous methods that require densely sampled images, our method produces

high-quality reconstructions from a sparse set of images, and presents a step towards practical

appearance capture for 3D scanning and VR/AR applications.

This chapter is based on the material as it appears in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019 (“Deep 3D Capture: Geometry and Reflectance

from Sparse Multi-View Images”, Sai Bi, Zexiang Xu, Kalyan Sunkavalli, David Kriegman, Ravi

Ramamoorthi). The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Deep Reflectance Volumes for Relightable
Appearance Acquisition

4.1 Introduction

In the first two chapters, we reconstruct the scene geometry in the form of triangle

meshes. However, it remains highly challenging to accurately reconstruct mesh-based geometry

for complex scenes such as those with thin structures, textureless regions, heavy occlusions, and

non-convex shapes. Moreover, triangle meshes have irregular structures, which makes it difficult

to be integrated with neural networks for effective training. In contrast, volumes have the regular

3D grids and are widely used to represent scenes with complex geometry.

Therefore, in this chapter, we propose a novel volumetric representation to make high-

quality scene acquisition and rendering practical with off-the-shelf devices under mildly con-

trolled conditions. We use a set of unstructured images captured around a scene by a single

mobile phone camera with flash illumination in a dark room. This practical setup acquires

multi-view images under collocated viewing and lighting directions—referred to as photometric

images [153]. While the high-frequency appearance variation in these images (due to sharp spec-

ular highlights and shadows) can result in low-quality mesh reconstruction from state-of-the-art

methods (see Fig. 4.3), we show that our method can accurately model the scene and realistically

reproduce complex appearance information like specularities and occlusions.

At the heart of our method is a novel, physically-based neural volume rendering frame-
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(a) Sample input images

(b) Normal volume (c) Albedo volume (d) Roughness volume

(e) Rendering under novel viewpoints and lightings

Figure 4.1. Given a set of images taken using a mobile phone with flashlight (sampled images
are shown in (a)), our method learns a volume representation of the captured object by estimating
the opacity volume, normal volume (b) and reflectance volumes such as albedo (c) and roughness
(d). Our volume representation enables free navigation of the object under arbitrary viewpoints
and novel lighting conditions (e).

work. We train a deep neural network that simultaneously learns the geometry and reflectance of

a scene as volumes. We leverage a decoder-like network architecture, where an encoding vector

together with the corresponding network parameters are learned during a per-scene optimization

(training) process. Our network decodes a volumetric scene representation consisting of opacity,

normal, diffuse color and roughness volumes, which model the global geometry, local surface ori-

entations and spatially-varying reflectance parameters of the scene, respectively. These volumes

are supplied to a differentiable rendering module to render images with collocated light-view

settings at training time, and arbitrary light-view settings at inference time (see Fig. 4.2).

We base our differentiable rendering module on classical volume ray marching ap-

proaches with opacity (alpha) accumulation and compositing [73, 144]. In particular, we compute

point-wise shading using local normal and reflectance properties, and accumulate the shaded

colors with opacities along each marching ray of sight. Unlike the opacity used in previous

view synthesis work [86, 162] that is only accumulated along view directions, we propose to
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learn global scene opacity that can be accumulated from both view and light directions. As

shown in Fig. 4.1, we demonstrate that our scene opacity can be effectively learned and used to

compute accurate hard shadows under novel lighting, despite the fact that the training process

never observed images with shadows that are taken under non-collocated view-light setups.

Moreover, different from previous volume-based works [86, 162] that learn a single color at each

voxel, we reconstruct per-voxel reflectance and handle complex materials with high glossiness.

Our neural rendering framework thus enables rendering with complex view-dependent and

light-dependent shading effects including specularities, occlusions and shadows. We compare

against a state-of-the-art mesh-based method [97], and demonstrate that our method is able to

achieve more accurate reconstructions and renderings (see Fig. 4.3). We also show that our

approach supports scene material editing by modifying the reconstructed reflectance volumes

(see Fig. 4.6). To summarize, our contributions are:

− A practical neural rendering framework that reproduces high-quality geometry and appear-

ance from unstructured mobile phone flash images and enables view synthesis, relighting,

and scene editing.

− A novel scene appearance representation using opacity, normal and reflectance volumes.

− A physically-based differentiable volume rendering approach based on deep priors that

can effectively reconstruct the volumes from input flash images.

4.2 Related Works

Geometry reconstruction. There is a long history in reconstructing 3D geometry from

images using traditional structure from motion and multi-view stereo (MVS) pipelines [40,

74, 115]. Recently deep learning techniques have also been applied to 3D reconstruction with

various representations, including volumes [60, 110], point clouds [1, 105, 136], depth maps

[54, 157] and implicit functions [24, 93, 100]. We aim to model scene geometry for realistic

image synthesis, for which mesh-based reconstruction [68, 87, 98] is the most common way in
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many applications [14, 97, 107, 161]. However, it remains challenging to reconstruct accurate

meshes for challenging scenes where there are textureless regions and thin structures, and it

is hard to incorporate a mesh into a deep learning framework [75, 84]; the few mesh-based

deep learning works [48, 63] are limited to category-specific reconstruction and cannot produce

photo-realistic results. Instead, we leverage a physically-based opacity volume representation

that can be easily embedded in a deep learning system to express scene geometry of arbitrary

shapes.

Reflectance acquisition. Reflectance of real materials is classically measured using

sophisticated devices to densely acquire light-view samples [37, 89], which is impractical for

common users. Recent works have improved the practicality with fewer samples [99, 154] and

more practical devices (mobile phones) [4, 5, 55, 82]; however, most of them focus on flat planar

objects. A few single-view techniques based on photometric stereo [7, 45] or deep learning [83]

are able to handle arbitrary shape, but they merely recover limited single-view scene content. To

recover complete shape with spatially varying BRDF from multi-view inputs, previous works

usually rely on a pre-reconstructed initial mesh and images captured under complex controlled

setups to reconstruct per-vertex BRDFs [16, 65, 147, 152, 163]. While a recent work [97] uses a

mobile phone for practical acquisition like ours, it still requires MVS-based mesh reconstruction,

which is ineffective for challenging scenes with textureless, specular and thin-structure regions.

In contrast, we reconstruct spatially varying volumetric reflectance via deep network based

optimization; we avoid using any initial geometry and propose to jointly reconstruct geometry

and reflectance in a holistic framework.

Relighting and view synthesis. Image-based techniques have been extensively explored

in graphics and vision to synthesize images under novel lighting and viewpoint without explicit

complete reconstruction [17, 30, 79, 106]. Recently, deep learning has been applied to view

synthesis and most methods leverage either view-dependent volumes [125, 153, 162] or canonical

world-space volumes [86, 124] for geometric-aware appearance inference. We extend them
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to a more general physically-based volumetric representation which explicitly expresses both

geometry and reflectance, and enables relighting with view synthesis. On the other hand, learning-

based relighting techniques have also been developed. Purely image-based methods are able

to relight scenes with realistic specularities and soft shadows from sparse inputs, but unable to

reproduce accurate hard shadows [62, 128, 155, 160]; some other methods [23, 107] propose

geometry-aware networks and make use of pre-acquired meshes for relighting and view synthesis,

and their performance is limited by the mesh reconstruction quality. A work [95] concurrent to

ours models scene geometry and appearance by reconstructing a continuous radiance field for

pure view synthesis. In contrast, Deep Reflectance Volumes explicitly express scene geometry

and reflectance, and reproduce accurate high-frequency specularities and hard shadows. Ours

is the first comprehensive neural rendering framework that enables both relighting and view

synthesis with complex shading effects.

4.3 Rendering with Deep Reflectance Volumes

Unlike a mesh that is comprised of points with complex connectivity, a volume is a regular

3D grid, suitable for convolutional operations. Volumes have been widely used in deep learning

frameworks for 3D applications [151, 157]. However, previous neural volumetric representations

have only represented pixel colors; this can be used for view synthesis [86, 162], but does not

support relighting or scene editing. Instead, we propose to jointly learn geometry and reflectance

(i.e. material parameters) volumes to enable broader rendering applications including view

synthesis, relighting and material editing in a comprehensive framework. Deep Reflectance

Volumes are learned from a deep network and used to render images in a fully differentiable

end-to-end process as shown in Fig. 4.2. This is made possible by a new differentiable volume

ray marching module, which is motivated by physically-based volume rendering. In this section,

we introduce our volume rendering method and volumetric scene representation. We discuss

how we learn these volumes from unstructured images in Sec. 4.4.
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4.3.1 Volume rendering overview

In general, volume rendering is governed by the physically-based volume rendering

equation (radiative transfer equation) that describes the radiance that arrives at a camera [90, 101]:

L(ccc,ωωωo) =
∫

∞

0
τ(ccc,xxx)[Le(xxx,ωωωo)+Ls(xxx,ωωωo)]dx, (4.1)

This equation integrates emitted, Le, and in-scattered, Ls, light contributions along the ray

starting at camera position ccc in the direction −ωωωo. Here, x represents distance along the ray, and

xxx = ccc− xωωωo is the corresponding 3D point. τ(ccc,xxx) is the transmittance factor that governs the

loss of light along the line segment between ccc and xxx:

τ(ccc,xxx) = e−
∫ x

0 σt(z)dz, (4.2)

where σt(z) is the extinction coefficient at location z on the segment. The in-scattered contribution

is defined as:

Ls(xxx,ωωωo) =
∫
S

fp(xxx,ωωωo,ωωω i)Li(xxx,ωωω i)dωωω i, (4.3)

in which S is a unit sphere, fp(xxx,ωωωo,ωωω i) is a generalized (unnormalized) phase function that

expresses how light scatters at a point in the volume, and Li(xxx,ωωω i) is the incoming radiance that

arrives at xxx from direction ωωω i.

In theory, fully computing L(ccc,ωωωo) requires multiple-scattering computation using Monte

Carlo methods [101], which is computationally expensive and unsuitable for deep learning

techniques. We consider a simplified case with a single point light, single scattering and no

volumetric emission. The transmittance between the scattering location and the point light is

handled the same way as between the scattering location and camera. The generalized phase

function fp(xxx,ωωωo,ωωω i) becomes a reflectance function fr(ωωωo,ωωω i,nnn(xxx),R(xxx)) which computes

reflected radiance at xxx using its local surface normal nnn(xxx) and the reflectance parameters R(xxx)

of a given surface reflectance model. Therefore, Eqn. 4.1 and Eqn. 4.3 can be simplified and
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Figure 4.2. We propose Deep Reflectance Volume representation to capture scene geometry
and appearance, where each voxel consists of opacity α , normal n and reflectance (material
coefficients) R. During rendering, we perform ray marching through each pixel and accumulate
contributions from each point xxxs along the ray. Each contribution is calculated using the local
normal, reflectance and lighting information. We accumulate opacity from both the camera
αc→s and the light αl→t to model the light transport loss in both occlusions and shadows. To
predict such a volume, we start from an encoding vector, and decode it into a volume using a 3D
convolutional neural network; thus the combination of the encoding vector and network weights
is the unknown variable being optimized (trained). We train on images captured with collocated
camera and light by enforcing a loss function between rendered images and training images.

written concisely as [73, 90]:

L(ccc,ωωωo) =
∫

∞

0
τ(ccc,xxx)τ(xxx, lll) fr(ωωωo,ωωω i,nnn(xxx),R(xxx))Llll(xxx,ωωω i)dx, (4.4)

where lll is the light position, ωωω i corresponds to the direction from xxx to lll, τ(ccc,xxx) still represents

the transmittance from the scattering point xxx to the camera ccc, the term τ(xxx, lll) (that was implicitly

involved in Eqn. 4.3) is the transmittance from the light lll to xxx and expresses light extinction

before scattering, and Llll(xxx,ωωω i) represents the light intensity arriving at xxx without considering

light extinction.

4.3.2 A discretized, differentiable volume rendering module

To make volume rendering practical in a learning framework, we further approximate

Eqn. 4.4 by turning it into a discretized version, which can be evaluated by ray marching

[73, 90, 144]. This is classically expressed using opacity compositing, where opacity α is used to
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represent the transmittance with fixed ray marching step size ∆x. Points are sequentially sampled

along a given ray, ωωωo from the camera position, ccc as:

xxxs = xxxs−1−ωωωo∆x = ccc− sωωωo∆x. (4.5)

The radiance Ls and opacity αc→s along this path, c→ s, are recursively accumulated until xxxs

exits the volume as:

Ls = Ls−1 +[1−αc→(s−1)][1−αl→(t−1)]α(xxxs)L(xxxs), (4.6)

αc→s = αc→(s−1)+[1−αc→(s−1)]α(xxxs), (4.7)

L(xxxs) = fr(ωωωo,ωωω i,nnn(xxxs),R(xxxs))Llll(xxxs,ωωω i). (4.8)

Here, L(xxxs) computes the reflected radiance from the reflectance function and the incoming

light, αc→s represents the accumulated opacity from the camera ccc to point xxxs, and corresponds

to τ(ccc,xxx) in Eqn 4.4. αl→t represents the accumulated opacity from the light lll—i.e., τ(xxx, lll)

in Eqn. 4.4—and requires a separate accumulation process over samples along the lll→ xxxs ray,

similar to Eqn. 4.7:

xxxs = xxxt = xxxt−1−ωωω i∆x = lll− tωωω i∆x, (4.9)

αl→t = αl→(t−1)+[1−αl→(t−1)]α(xxxt). (4.10)

In this rendering process (Eqn. 4.5-4.10), a scene is represented by an opacity volume α ,

a normal volume nnn and a BRDF volume R; together, these express the geometry and reflectance

of the scene, and we refer to them as Deep Reflectance Volumes. The simplified opacity volume

α is essentially one minus the transmission τ (depending on the physical extinction coefficient

σt) over a ray segment of a fixed step size ∆x; this means that α is dependent on ∆x.

Our physically-based ray marching is fully differentiable, so it can be easily incorporated
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in a deep learning framework and backpropagated through. With this rendering module, we

present a neural rendering framework that simultaneously learns scene geometry and reflectance

from captured images.

We support any differentiable reflectance model fr and, in practice, use the simplified

Disney BRDF model [67] that is parameterized by diffuse albedo and specular roughness (please

refer to the supplementary materials for more details). Our opacity volume is a general geometry

representation, accounting for both occlusions (view opacity accumulation in Eqn. 4.7) and

shadows (light opacity accumulation in Eqn. 4.10). We illustrate our neural rendering with

ray marching in Fig. 4.2. Note that, because our acquisition setup has collocated camera and

lighting, αl→t becomes equivalent to αc→s during training, thus requiring only one-pass opacity

accumulation from the camera. However, the learned opacity can still be used for re-rendering

under any non-collocated lighting with two-pass opacity accumulation.

Note that while alpha compositing-based rendering functions have been used in previous

work on view synthesis, their formulations are not physically-based [86] and are simplified

versions that don’t model lighting [125, 162]. In contrast, our framework is physically-based

and models single-bounce light transport with complex reflectance, occlusions and shadows.

4.4 Learning Deep Reflectance Volumes

4.4.1 Overview

Given a set of images of a real scene captured under multiple known viewpoints with

collocated lighting, we propose to use a neural network to reconstruct a Deep Reflectance

Volume representation of a real scene. Similar to Lombardi et al. [86], our network starts from

a 512-channel deep encoding vector that encodes scene appearance; in contrast to their work,

where this volume only represents RGB colors, we decode a vector to an opacity volume α ,

normal volume nnn and reflectance volume R for rendering. Moreover, our scene encoding vector

is not predicted by any network encoder; instead, we jointly optimize for a scene encoding vector
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and scene-dependent decoder network.

Our network infers the geometry and reflectance volumes in a transformed 3D space

with a learned warping function W . During training, our network learns the warping function

W , and the geometry and reflectance volumes αw, nnnw, Rw, where the subscript w refers to a

volume in the warped space. The corresponding world-space scene representation is expressed

by V (xxx) =Vw(W (xxx)), where V is α , nnn or R. In particular, we use bilinear interpolation to fetch a

corresponding value at an arbitrary position xxx in the space from the discrete voxel values. We

propose a decoder-like network, which learns to decode the warping function and the volumes

from the deep scene encoding vector. We use a rendering loss between rendered and captured

images as well as two regularizing terms.

4.4.2 Network architecture

Geometry and reflectance. To decode the geometry and reflectance volumes (αw, nnnw,

Rw), we use upsampling 3D convolutional operations to 3D-upsample the deep scene encoding

vector to a multi-channel volume that contains the opacity, normal and reflectance. In particular,

we use multiple transposed convolutional layers with stride 2 to upsample the volume, each

of which is followed by a LeakyRelu activation layer. The network regresses an 8-channel

128× 128× 128 volume that includes αw, nnnw and Rw—one channel for opacity αw, three

channels for normal nnnw, and four channels for reflectance Rw (three for albedo and one for

roughness). These volumes express the scene geometry and reflectance in a transformed space,

which can be warped to the world space for ray marching.

Warping function. To increase the effective resolution of the volume, we learn an

affine-based warping function similar to [86]. The warping comprises a global warping and

a spatially-varying warping. The global warping is represented by an affine transformation

matrix Wg. The spatially varying warping is modeled in the inverse transformation space, which

is represented by six basis affine matrices {Wj}16
j=1 and a 32× 32× 32 16-channel volume B
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that contains spatially-varying linear weights of the 16 basis matrices. Specifically, given a

world-space position xxx, the complete warping function W maps it into a transformed space by:

W (xxx) = [
16

∑
j=1

B j(xxx)Wj]
−1Wgxxx, (4.11)

where B j(xxx) represents the normalized weight of the jth warping basis at xxx. Here, each global

or local basis affine transformation matrix W∗ is composed of rotation, translation and scale

parameters, which are optimized during the training process. Our network decodes the weight

volume B from the deep encoding vector using a multi-layer perceptron network with fully

connected layers.

4.4.3 Loss function and training details

Loss function. Our network learns the scene volumes using a rendering loss computed

using the differentiable ray marching process discussed in Sec. 4.3. During training, we randomly

sample pixels from the captured images and do the ray marching (using known camera calibration)

to get the rendered pixel colors Lk of pixel k; we supervise them with the ground truth colors

L̃k in the captured images using a L2 loss. In addition, we also apply regularization terms from

additional priors similar to [86]. We only consider opaque objects in this work and enforce the

accumulated opacity along any camera ray αck→s′ (see Eqn. 4.7, here k denotes a pixel and s′

reflects the final step that exits the volume) to be either 0 or 1, corresponding to a background or

foreground pixel, respectively. We also regularize the per-voxel opacity to be sparse over the

space by minimizing the spatial gradients of the logarithmic opacity. Our total loss function is

given by:

∑
k
‖Lk− L̃k‖2 +β1 ∑

k
[log(αck→s′)+ log(1−αck→s′)]+β2 ∑‖∇xxx logα(xxx)‖ (4.12)
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Here, the first part reflects the data term, the second regularizes the accumulated α and the third

regularizes the spatial sparsity.

Training details. We build our volume as a cube located at [−1,1]3. During training, we

randomly sample 128×128 pixels from 8 captured images for each training batch, and perform

ray marching through the volume using a step size of 1/64. Initially, we set β1 = β2 = 0.01; we

increase these weights to β1 = 1.0, β2 = 0.1 after 300000 iterations, which helps remove the

artifacts in the background and recover sharp boundaries.

4.5 Results

In this section we show our results on real captured scenes. We first introduce our

acquisition setup and data pre-processing. Then we compare against the state-of-the-art mesh-

based appearance acquisition method, followed by a detailed analysis of the experiments. We

also demonstrate material editing results with our approach. Please refer to the supplementary

materials of the original publication for video results.

Data acquisition. Our approach learns the volume representation in a scene dependent

way from images with collocated view and light; this requires adequately dense input images

well distributed around a target scene to learn complete appearance. Such data can be practically

acquired by shooting a video using a handheld cellphone; we show one result using this practical

handheld setup in Fig. 4.4. For other results, we use a robotic arm to automatically capture

more uniformly distributed images around scenes for convenience and thorough evaluations; this

allows us to evaluate the performance of our method with different numbers of input images that

are roughly uniformly distributed as shown in Tab. 4.1. In the robotic arm setups, we mount

a Samsung Galaxy Note 8 cellphone to the robotic arm and capture about 480 images using

its camera and the built-in flashlight in a dark room; we leave out a subset of 100 images for

validation purposes and use the others for training. We use the same phone to capture a 4-minute

video of the object in CAPTAIN and select one image for training for every 20 frames, which
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effectively gives us 310 training images.

Data pre-processing. Our captured objects are roughly located around the center of the

images. We select one fixed rectangular region around the center that covers the object across

all frames and use it to crop the images as input for training. The resolution of the cropped

training images fed to our network ranges from 400×500 to 1100×1100. Note that we do not

use a foreground mask for the object. Our method leverages the regularization terms in training

(see Sec. 4.4.3), which automatically recovers a clean background. We calibrate the captured

images using structure from motion (SfM) in COLMAP [114] to get the camera intrinsic and

extrinsic parameters. Since SfM may fail to register certain views, the actual number of training

images varies from 300 to 385 in different scenes. We estimate the center and bounding box

of the captured object with the sparse reconstructions from SfM. We translate the center of the

object to the origin and scale it to fit into the [−1,1]3 cube.

Implementation and timing. We implement our system (both neural network and

differentiable volume rendering components) using PyTorch. We train our network using four

NVIDIA 2080Ti RTX GPUs for about two days (about 450000 iterations; though 200000

iterations for 1 day typically already converges to good results, see Fig. 4.5). At inference time,

we directly render the scene from the reconstructed volumes without the network. It takes about

0.8s to render a 700×700 image under collocated view and light. For non-collocated view and

light, the rendering requires connecting each shading point to the light source with additional

light-dependent opacity accumulation, which is very expensive if done naively. To facilitate this

process, we perform ray marching from the light’s point of view and precompute the accumulated

opacity at each spatial position of the volume. During rendering, the accumulated opacity for the

light ray can be directly sampled from the precomputed volume. By doing so, our final rendering

under arbitrary light and view takes about 2.3s.

Comparisons with mesh-based reconstruction. We use a practical acquisition setup

where we capture unstructured images using a mobile phone with its built-in flashlight on
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Figure 4.3. Comparisons with mesh-based reconstruction. We show renderings of the captured
object under both collocated (column 2, 3) and non-collocated (column 4, 5) camera and light.
We compare our volume-based neural reconstruction against a state-of-the-art method [97] that
reconstructs mesh and per-vertex BRDFs. Nam et al. [97] fails to handle such challenging
cases and recovers inaccurate geometry and appearance. In contrast our method produces
photo-realistic results.

in a dark room. Such a mildly controlled acquisition setup is rarely supported by previous

works [16, 65, 152, 153, 155, 163]. Therefore, we compare with the state-of-the-art method

proposed by Nam et al. [97] for mesh-based geometry and reflectance reconstruction, that uses

the same cellphone setup as ours to reconstruct a mesh with per-vertex BRDFs, and supports

both relighting and view synthesis. Figure 4.3 shows comparisons on renderings under both

collocated and non-collocated view-light conditions. The comparison results are generated from

the same set of input images, and we requested the authors of [97] run their code on our data and

compared on the rendered images provided by the authors. Please refer to the supplementary

materials of the original publication for video comparisons.
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Table 4.1. We evaluate the performance of our method on the HOUSE scene with different
numbers of training images. Although we use all 385 images in our final experiments, our method
is able to achieve comparable performance with as few as 200 images for this challenging scene.

25 50 100 200 385
PSNR 25.33 26.36 26.95 27.85 28.13
SSIM 0.70 0.73 0.75 0.80 0.81

Table 4.2. We compare against DeepVoxels on synthesizing novel views under collocated lights
and report the PSNR/SSIM scores. The results show that our method generates more accurate
renderings. Note that we retrain our model with a resolution of 512×512 for a fair comparison.

HOUSE CARTOON

[124] 0.786/25.81 0.532/16.34
Ours 0.896/30.44 0.911/29.14

As shown in Fig. 4.3, our results are significantly better than the mesh-based method in

terms of both geometry and reflectance. Note that, Nam et al. [97] leverage a state-of-the-art MVS

method [115] to reconstruct the initial mesh from captured images and performs an optimization

to further refine the geometry; this however still fails to recover the accurate geometry in texture-

less, specular and thin-structured regions in those challenging scenes, which leads to seriously

distorted shapes in PONY, over-smoothness and undesired structures in HOUSE, and degraded

geometry in GIRL. Our learning-based volumetric representation avoids these mesh-based issues

and models the scene geometry accurately with many details. Moreover, it is also very difficult

for the classical per-vertex BRDF optimization in [97] to recover high-frequency specularities,

which leads to over-diffuse appearance in most of the scenes; this is caused by the lack of

constraints for the high-frequency specular effects, which appear in very few pixels in limited

input views. In contrast, our optimization is driven by our novel neural rendering framework

with deep network priors, which effectively correlates the sparse specularities in different regions

through network connections and recovers realistic specularities and other appearance effects.

Comparison on synthesizing novel views. We also make a comparison on synthesizing

novel views under collocated lights against a view synthesis method DeepVoxels [124], which
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Figure 4.4. Additional results on real scenes. We show renderings under novel view and lighting
conditions. Our method is able to handle scenes with multiple objects (top two rows) and
model the complex occlusions between them. Our method can also generate high-quality results
from casual handheld video captures (third row), which demonstrates the practicability of our
approach.

encodes view-dependent appearance in a learnt 3D-aware neural representation. Note that

DeepVoxels does not support relighting. As shown in Fig. 4.2, our method is able to generate

renderings of higher quality with higher PSNR/SSIM scores. In contrast, DeepVoxels fails to

reason about the complex geometry in our real scenes, thus resulting in degraded image quality.

Please refer to the supplementary materials for visual comparison results.

Additional results. We show additional relighting and view synthesis results of complex

real scenes in Fig. 4.4. Our method is able to handle scenes with multiple objects, as shown in

scene CARTOON and ANIMALS. Our volumetric representation can accurately model complex

occlusions between objects and reproduce realistic cast shadows under novel lighting, which

are never observed by our network during the training process. In the CAPTAIN scene, we show
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the result generated from handheld mobile phone captures. We select frames from the video at

fixed intervals as training data. Despite the potential existence of motion blur and non-uniform

coverage, our method is able to generate high-quality results, which demonstrates the robustness

and practicality of our approach. Please refer to the supplementary materials of the original

publication for video results.

Evaluation of the number of inputs. Our method relies on an optimization over adequate

input images that capture the scene appearance across different view/light directions. We evaluate

how our reconstruction degrades with the decrease of training images on the HOUSE scene. We

uniformly select a subset of views from the full training images and train our model on them.

We evaluate the trained model on the test images, and report the SSIMs and PSNRs in Fig. 4.1.

As we can see from the results, there is an obvious performance drop when there are fewer than

100 training images due to insufficient constraints. On the other hand, while we use the full 385

images for our final results, our method in fact achieves comparable performance with only 200

for this scene, as reflected by their close PSNRs and SSIMs.

Comparison with direct optimization. Our neural rendering leverages a “deep volume

prior” to drive the volumetric optimization process. To justify the effectiveness of this design, we

compare with a naive method that directly optimizes the parameters in each voxel and the warping

parameters using the same loss function. We show the optimization progress in Fig. 4.5. Note

that, the naive method converges significantly slower than ours, where the independent voxel-

wise optimization without considering across-voxel correlations cannot properly disentangle the

ambiguous information in the captured images; yet, our deep optimization is able to correlate

appearance information across the voxels with deep convolutions, which effectively minimizes

the reconstruction loss.

Material editing. Our method learns explicit volumes with physical meaning to represent

the reflectance of real scenes. This enables broad image synthesis applications like editing the

materials of captured scenes. We show one example in Fig. 4.6, where we successfully make
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Figure 4.5. We compare our deep prior based optimization against direct optimization of the
volume and warping function without using networks. Direct optimization converges significantly
slower than our method, which demonstrates the effectiveness of regularization by the networks.

the scene glossier by decreasing the learned roughness in the volume. Note that, the geometry

and colors are still preserved in the scene, while novel specularities are introduced which are

not part of the material appearance in the scene. This example illustrates that our network

disentangles the geometry and reflectance of the scene in a reasonable way, thereby enabling

sub-scene component editing without influencing other components.

Limitations. We reconstruct the deep reflectance volumes with a resolution of 1283,

which is restricted by available GPU memory. While we have applied a warping function to

increase the actual utilization of the volume space, and demonstrated that it is able to generate

compelling results on complex real scenes, it may fail to fully reproduce the geometry and appear-

ance of scenes with highly complex surface normal variations and texture details. Increasing the

volume resolution may resolve this issue. In the future, it would also be interesting to investigate
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Before editing After editing

Figure 4.6. Our approach supports intuitive editing of the material properties of a captured
object. In this example we decrease the roughness of the object to make it look like glossy
marble instead of plastic.

how to efficiently apply sparse representations such as octrees in our framework to increase

the capacity of our volume representation. The current reflectance model we are using is most

appropriate for opaque surfaces. Extensions to other materials like hair, fur or glass could be

potentially addressed by applying other reflectance models in our neural rendering framework.

4.6 Conclusion

We have presented a novel approach to learn a volume representation that models both

geometry and reflectance of complex real scenes. We predict per-voxel opacity, normal, and

reflectance from unstructured multi-view mobile phone captures with the flashlight. We also

introduce a physically-based differentiable rendering module to enable renderings of the volume

under arbitrary viewing and lighting directions. Our method is practical, and supports novel view

synthesis, relighting and material editing, which has significant potential benefits in scenarios

such as 3D visualization and VR/AR applications.
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This chapter is based on the material as it appears in European Conference on Computer

Vision (ECCV), 2020 (“Deep Reflectance Volumes: Relightable Reconstructions from Multi-

View Photometric Images”, Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Miloš Hašan, Yannick

Hold-Geoffroy, David Kriegman, Ravi Ramamoorthi). The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

Deep Relightable Appearance Models for
Animatable Faces

5.1 Introduction

In the prior chapters, we have presented methods to faithfully reproduce the appearance

of static objects. In this chapter, we take one step further and propose novel methods to

model the dynamic appearance of human faces and create animatable and relightable avatars.

Avatar creation has seen a notable increase in the use of learning-based techniques in recent

years [85, 116, 96] Traditional physically-inspired methods [119, 141] require precise geometry

and reflectance, where costly and time-consuming manual cleanup is typically needed. In

contrast, learning-based methods use general function approximators in the form of deep neural

networks to faithfully model the appearance of human faces. They can achieve impressive realism

with completely automated pipelines without relying on precise estimates of face geometry and

material properties. They can also exhibit an efficient functional form that enables real-time

generation and rendering in demanding applications such as VR [85], where classical ray-tracing

methods can be too computationally intensive [141].

Despite their many advantages, avatars created using learning based techniques have

so far been limited to a single lighting condition [85, 96]. For example, Lombardi et al. build

avatars that support novel viewpoints and expressions, but their model is limited to the uniform

lighting condition under which the data was captured. Although there has been great progress
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Nearfield light rendering Environment map rendering Directional light rendering Video-driven animation

Figure 5.1. Our relightable facial appearance model supports renderings under novel viewpoints,
expressions, and lighting conditions including nearfield lighting, directional lighting, and en-
vironment lighting. Our model is also animatable and can be driven by images captured from
cameras on head-mounted displays.

in learning-based relighting, existing methods are limited to 2D images [129, 155], static

scenes [129, 155, 159], or performance replay [91], which are not suitable for generating dynamic

renderings under novel expressions and lighting conditions (see Table 5.1). This limitation has

prevented the broader adoption of learning-based avatars in game and film production, where

consistency between character and environment is essential.

In this work, we describe Deep Relightable Appearance Models (DRAM), a learning-

based method for building relightable avatars. Our model supports rendering under novel

viewpoints, novel expressions and more importantly, it can be rendered under novel lighting

conditions, where we can reconstruct complex visual phenomena such as specularities, glints

and subsurface scattering. We build the relightable model from light-stage captures of dynamic

performances under a sparse set of space- and time-multiplexed illumination patterns. Like [85],

we train our model using the variational auto-encoder framework [71], which produces a well

structured latent space of expressions, suitable for animation. To avoid overfitting to the lighting

conditions observed during capture, we leverage the additive property of light transport [19]

and generate expression- and view-dependent textures for each light in the scene, which are

then fused with intensity-defined weights into the final lit texture. Since the lighting information

is fed at a later stage of the decoder network, instead of at its bottleneck, we call this model a
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late-conditioned model. It affords generalization to completely unseen lighting environments

including both distant directional lighting and real environment maps (Figure 5.1), and it exhibits

smooth interpolation of point light sources despite the discrete set of 460 lights used during

capture. Finally, it can generate compelling near-field illumination effects (Figure 5.8), which is

particularly challenging for a learning-based approach that exclusively uses data with distant

light sources.

Although late-conditioned DRAM (DRAM`) exhibits good generalization properties,

its architecture is not suitable for real-time applications, since each point light in the scene

requires the generation of a light-specific texture. For natural environments, the large number

of illuminating directions make it computationally prohibitive to generate. This limitation is

shared by many previous works [91, 159, 30]. However, we observe that early-conditioned deep

neural networks that input the desired lighting condition at the network’s bottleneck can exhibit

enough capacity to model the span of a single person’s illuminated facial appearances while

being considerably more efficient to evaluate.

The main drawback of early-conditioned models is their poor extrapolation properties

to unseen natural illumination conditions. Thus, we use DRAM` to generate renderings of the

face under a large number of natural illumination conditions, which we then use to train an

efficient early-conditioned model, obviating the need for it to extrapolate to those conditions

during test time. We call this model early-conditioned DRAM (DRAMε ) and propose a hyper-

network architecture for its representation. It comprises two components, one network that

takes the desired lighting condition as input and predicts the weights for a second network that

produces the view, expression and lighting-dependent texture. Such a design further increases

the capacity of the network and results in renderings of much higher quality while maintaining a

low computational cost. The result is a method for creating animatable faces that can be relit

using novel illumination conditions and rendered in real time. We demonstrate a use case of our

relightable model by live-driving it from a VR-headset mounted camera [138] and rendering in

novel and varying illumination (Figure 5.1).
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Table 5.1. Feature comparison with previous methods. Ours is the only approach that enables a
relightable and animatable model, in addition to free viewpoint and dynamic expressions.

Free viewpoint Relightable Dynamic capture Animatable
Wenger et al.[139] 7 3 3 7

Lombardi et al. [85] 3 7 3 3

Xu et al. [155] 7 3 7 7

Meka et al. [91] 7 3 3 7

Sun et al. [129] 7 3 7 7

Sun et al. [130] 7 3 7 7

Zhang et al. [159] 3 3 7 7

Meka et al. [92] 3 3 3 7

Ours 3 3 3 3

A summary of the contributions of this work are:

• A method for generating high-fidelity animatable personalized face avatars from dynamic

multi-view light-stage data that can be relit under novel lighting environments, including

challenging natural illumination and near-field lighting that are far from what is observed

during training.

• A student-teacher framwork for training an efficient relighting model that achieves real-

time rendering while overcoming generalization limitations typically exhibited by such

models.

• A novel hyper-network architecture for early-conditioned models that achieves significantly

improved reconstruction accuracy while remaining efficient to evaluate.

• The first demonstration of relightable faces driven by headset mounted cameras for VR

applications.

5.2 Related Works

Face modeling. Traditional methods for face modeling [6, 119] depend on precise 3D

reconstruction of human faces, which requires a large amount of manual effort and is not suitable
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for real-time applications. Recently Lombardi et al. [85] propose a data-driven method for face

modeling. It applies a conditional variational autoencoder to learn a latent representation for

facial expressions and regresses a tracked mesh and a view-dependent texture to model the

appearance of human faces. Schwartz et al. [116] build on the same framework and explicitly

model human eyes for better eye contact. However, these methods are limited to a single lighting

condition and do not support relighting under novel lighting conditions.

Reflectance acquisition. To relight human faces under novel lighting conditions, previ-

ous approaches have tried to estimate the reflectance properties of human faces from captured

images. Such methods usually assume a simplified reflectance model based on physical priors.

Some previous works develop their method based on the diffuse assumption for faces. Garrido et

al. [43] and Cal et al. [20] assume that faces are diffuse and jointly estimate the diffuse albedo

and facial geometry from monocular videos. Shu et al. [121] applies a learning-based method to

infer facial normals and albedo from a single image. Other works also model specular reflections

of human faces. Both diffuse and specular albedos are estimated from captures with different

acquisition setups such as spherical gradient illuminations [88, 49] and multi-view captures under

passive illumination [46]. Yamaguchi et al. [156] applies a deep-learning based approach to infer

both reflectance and high-frequency displacement maps to model mesoscopic surface details

on human faces from a single RGB image under uncontrolled illuminations. More complex

reflectance models that consider subsurface scatterings have also been applied. Jensen et al. [59]

introduced a bidirectional surface scattering model for human faces based on a dipole diffusion

approximation and proposed a method to measure the model parameters. Ghosh et al. [44]

recover layered facial reflectance including specular reflectance and scatterings at different

layers from a set of twenty photographs under environmental and projected illuminations. All

these physically-based approaches can only model a portion of face appearances, and fail to

faithfully reproduce the complex visual appearance of human faces, especially for dynamic

animations, where different expressions will result in significant differences in appearance. In
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addition, rendering with such reflectance models under complex lighting conditions also requires

physically-based path tracers, which is computationally expensive and not suitable for real-time

applications.

Image-based relighting. Methods in this category make use of the linearity of light

transport and synthesize renderings of the scene under novel lighting conditions by combining

images under a set of basis lighting patterns. A category of these works focus on the relighting

of static scenes. Debevec et al. [30] captures the reflectance field of human faces by capturing

images under a dense sampling of directional incident illuminations. Xu et al. [155] propose

a learning-based method to synthesize renderings of static scenes at a novel lighting direction

from a sparse set of captures. Sun et al. [129] train a network to directly regress the relighting

results under novel environment lightings from a single portrait image. Their results have limited

fidelity and cannot recover visual effects such as specularities and detailed glints. In a later

work [130], they propose a method to increase the resolution of static light stage captures and

enable relighting under an arbitrary lighting direction. Zhang et al. [159] achieves free-viewpoint

relighting of static human captures by explicitly reconstructing the geometry of the scenes and

training a network to synthesize texture-space RGB images under desired view and lighting

direction. Most of these methods require a static capture setup, where the subject remains still

and maintains a fixed expression while a one-light-at-a-time (OLAT) capture is performed. This

limits their ability to capture transient expressions of the face in motion required for building

dynamic animatable face avatars.

Free-viewpoint Methods Some exising works leverage 3D reconstructions of the scene

to enable free-viewpoint rendering of the relightable models they build. Wenger et al. [139]

achieves dynamic relighting with time-multiplexed lightings where the subject is illuminated

with a rapid series of basis lighting patterns. They warp adjacent frames to the target frame using

optical flow so as to relight the target frame, which suffers from potential misalignments due

to inaccuracies in flow computation. Meka et al. [91] applies colored gradient illumination for
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efficient dynamic captures, and they train a network to infer the renderings under an arbitrary

lighting direction from two gradient illumination captures, which are then used for relighting

under novel lighting conditions. Their method requires colored illuminations, and suffers from

misalignments between the two input captures. In a follow-up work [92], they reconstruct the

geometry of the human and propose a network to regress dynamic textures under an arbitrary

lighting direction from color gradient captures, which enables free-viewpoint dynamic relighting.

However, they use per-frame reconstructions without correspondence between the frames, which

makes it unsuitable for novel sequence animation, restricting its use to performance replay.

We provide a detailed comparison of features between previous methods and our method

in Table 5.1. Compared to previous works, our method is the first that supports novel viewpoints,

novel lighting conditions, dynamic playback and animation.

5.3 Data Acquisition

The appearance of human faces can be modeled as a function of the facial expression,

viewpoint and lighting condition. We propose to use neural networks to approximate such a

function. To supervise the training of such a network, ideally we could capture image data of all

possible combinations of these three factors using a light stage. Our capture system consists of

∼140 color cameras and 460 white LED lights. All the LEDs can be independently controlled

with adjustable lighting intensity. The cameras and lights are positioned on a spherical dome

with a radius of 1.1m surrounding the captured subject.

To densely sample expression and viewpoint combinations, a capture-subject is asked to

make a predefined set of facial expressions, recite a set of 50 phonetically balanced sentences,

perform a range-of-motion sequence, and have a short natural conversation with a colleague [85].

During captures, all the 140 cameras synchronously capture at a frame rate of 90 frames per

second, and output 8-bit Bayer-pattern color images with a resolution of 2668×4096.

The simultaneous capture of images with different lighting conditions is much more chal-
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Figure 5.2. Capture system with lights and cameras in a spherical dome (left) and light patterns
used during capture (right). We evaluate different spatial groupings: one-light-at-a-time, 5
random lights, and spatial groups of 5 and 10 lights. Temporally, we sample lights using stratified
random sampling.

lenging in comparison. Wavelength multiplexed approaches [52, 47] are limited in the frequency

bands that can be used, while time-multiplexed approaches [139, 143] present challenges in

capturing dynamic content with transient expressions. Our work follows the approach of Wenger

et al. [139], where time-multiplexed lighting is captured by rapidly cycling over a set of basis

lighting patterns. However, instead of requiring static expressions for each cycle, we rely on

amortized inference [72] to disentangle lighting from expression in our captures of the face

in motion, and evaluate the suitability of different kinds of lighting patterns for this approach.

Specifically, we evaluate the efficacy of OLAT, Random (i.e., spatially unstructured sets of

5 lights), and two sets of Group patterns (i.e., spatially clustered groups of lights); one with

five lights and another with ten. The rank of the basis formed by each lighting pattern ranges

from 460 to 50. In all cases, a fully-lit frame is interleaved every third frame to enable face

tracking [146] which produces a topologically consistent mesh, M ∈ R3×7306, for every frame1.

In discussions that follow, we will use the following notation to refer to the lighting at a given

1In this work we presume the mesh between every third frame can be well approximated by linearly interpolating
its adjacent tracked meshes.
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frame:

L = {b1,b2, ...,bn} (5.1)

where bi is the index of the i-th light that is turned on and n is the total number of lights for that

frame.

The choice of lighting patterns we consider in this work is guided by a few factors that

are difficult to meet simultaneously. First, it is desirable to see many different facial expressions

for each lighting condition. OLAT generates the most complete set of lighting conditions with

the finest spatial resolution, but has a long cycle time, minimizing the variety of facial expression

seen in each lighting condition. Second, it is desirable to see many complementary lighting

conditions for each facial expression. To achieve this, we temporally sample light directions using

spatially stratified random sampling: lights are first stratified into 8 groups (represented as grid

cells in Fig. 5.2) with the next group chosen using furthest-group sampling across consecutive

frames, and the light direction chosen randomly within a group. Third, it is preferable to have as

much light as possible to overcome the noise floor of our cameras. Random and grouped lights

trade off the spatial granularity of each lighting condition, but increase the light available to the

cameras, potentially relaxing requirements on the capture system.

5.4 Building Relightable Avatars

Our goal is to build personalized expressive face avatars that can be rendered from novel

viewpoints and relit to match the lighting in novel environments. We leverage the representation

power of neural networks to map viewpoint, expression and lighting to highly accurate texture and

geometry, which can be used to synthesize an image using standard rasterization techniques [85].

To overcome challenges presented by dynamic capture that are discussed in §5.3, we leverage

the amortized inference properties of conditional variational auto-encoders (CVAE) [71] to

disentangle expression from lighting in our representation. However, a naive implementation of
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such an architecture generalizes poorly to novel lighting conditions that one might encounter

in practice. This includes natural indoor and outdoor illumination conditions that can be quite

different from the point light patterns used during data capture. An example of such a failure

is illustrated in Figure 5.14. A key contribution of our work is a two-stage system that enables

efficient relightable models that generalize to unseen lighting conditions to be learned.

The first stage of our system comprises a representation, DRAM`, that achieves general-

ization by leveraging the additive property of light. Although it is computationally expensive

to evaluate, it allows us to synthesize high fidelity face images under lighting conditions that

are far from what can be captured in our light stage. Thus, we use DRAM`to generate a large

number of high-quality synthetic images to complement our real captured images, to overcome

the need for the efficient neural network architectures used in the second stage to extrapolate to

those conditions.

Armed with an expanded dataset generated from the first stage, the second stage of our

system involves training a novel neural network architecture, DRAMε , with high capacity but

low compute. Here, we employ a hyper-network that produces lighting-specific network weights

of a standard deconvolutional architecture that has previously been demonstrated to be capable of

spanning the space of expressions for a single lighting condition [85]. The resulting model attains

real-time performance of 75 frames per second on a Nvidia Tesla V100, and we demonstrate its

suitability for animation by driving it from headset-mounted cameras as discussed in Section 5.5.

For all the models we describe in this section, we follow the data preprocessing described

in [85]. Specifically, images, I ∈ R3×2668×4096, of a specific frame and camera viewpoint,

whether real or synthetic, are unwarped into a texture, T∈R3×10242
, using the tracked mesh,

M, for that frame. We also calculate the average texture, T̄, for every frame by averaging the

texture at each camera, which is used as input to CVAE to encourage better disentanglement

between viewpoint and latent space. Representative visualizations of these elements are shown

in Figure 5.3.
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Figure 5.3. Network architecture for our late-conditioned model. Expression and view-dependent
features are generated with an encoder-decoder architecture, and late-conditioned with in an
MLP network to produce single-light textures, which can be modulated by light intensity and
summed to produce more complex illuminations.

5.4.1 DRAM`: A Late-conditioned Model

As shown in Figure 5.3, our late-conditioned model is a CVAE comprised of an encoder

E` and a decoder D`. The encoder takes the tracked mesh, M, and the average texture, T̄, of

its nearest fully-lit frame as input and outputs the parameters of its variational distribution, N ,

from which the latent code z ∈ R256 is sampled:

µµµ,σσσ ← E`

(
M, T̄

)
, z∼N (µµµ,σσσ2). (5.2)

A Gaussian distribution with diagonal covariance is used for N . The reparametrization trick [71]

is used to ensure differentiability of the sampling process.

The input to the decoder D` includes the latent vector z, the view direction v of the

camera relative to the head orientation in that frame, and the lighting condition L, transformed

to the head coordinate system. The decoder outputs the reconstructed mesh M̂ and predicts the

textures corresponding to each single light in L, which sum up to produce the final texture T̂.

The decoder consists of two branches: the geometry branch, G`, which takes the latent vector
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as input and predicts the mesh, and the texture branch, T`, which additionally conditions on

viewpoint and lighting to produce texture:

M̂ = G`(z) , T̂ = T`(z,v,L). (5.3)

Our texture branch consists of three components; a feature network F , a warping network W ,

and an OLAT prediction network O . The feature network and the warping network output view-

dependent feature maps, and the OLAT network takes per-texel features and a single lighting

direction as input to predict the lighting-dependent colors at each texel. Finally we combine the

colors under each light weighted by the lighting intensity to reproduce the texture. Please refer

to Figure 5.3 for an illustration of our architecture.

Feature network. The feature network takes the latent vector, z, and view direction, v,

as input and outputs a 64-channel feature map of size of 512×512:

C = F (z,v) (5.4)

This feature map serves as a spatially varying encoding of expression and viewpoint across all

lighting conditions.

Warping network. The warping network outputs a view-dependent warping field,

W ∈ R2×10242
, which is applied to the feature map, C, resulting in a warped feature map,

C̃ ∈ R64×10242
, of the same size as the texture:

W = W (z,v) , C̃t = φ(C,W), (5.5)

where φ denotes the warping operator, which performs bilinear interpolation at floating point

coordinates. The warping field accounts for texture sliding as a result of view-dependent effects

stemming from imperfect geometry, most noticeable around the mouth, eyes and hair, where
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accurate geometry is difficult to estimate during mesh tracking. It is also used to upscale the

lower resolution feature maps, whose size is constrained by memory limitations on modern GPU

hardware.

OLAT network. Given the warped feature map, C̃, O is applied to each texel inde-

pendently, where it predicts the color of that texel under a given lighting direction. O is a

multi-layer perceptron (MLP) that, for a texel k and a light bi with position lbi , takes as input C̃k,

the 64-dimensional feature of C̃ at texel k, as well as the direction of light with respect to the

corresponding point on the face in 3D.

Different from previous works (e.g., [91]) which assume distant lighting and where all

texels share the same lighting direction, we calculate the lighting direction of each texel using the

light position and the corresponding position of the texel on the reconstructed geometry, M̂. This

better models the setting in our light-stage, whose 1.1m radius results in some non-negligible

foreshortening effects.

One of the most distinctive appearance change on faces is shadow by self-occlusion.

While our late-conditioned model allows us to learn appearance change in a localized manner,

we observe that it remains challenging for such a model to learn clear shadow boundary due to

the lack of geometric information, resulting in noticeable artifacts. To alleviate this issue, we

exploit the predicted geometry, M̂, to encode geometric relationship between a light source and

a texel in the spirit of a shadow map [142] as an additional input to O . Specifically, for a texel, k,

and its corresponding 3D position, pk, we calculate the difference between the depth of pk and

its nearest occluder along the ray from the light to the texel in the light coordinate frame. With

this, we arrive at the final form for our OLAT network:

T̂bi(k) = O
(

C̃k,dbi
k ,s

bi
k

)
(5.6)

where dbi
k is the lighting direction of light bi for texel k, and sbi

k is the depth difference mentioned

above. Applying the OLAT network to each texel gives us the full texture T̂bi under the current
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view direction and lighting, bi.

Each frame of our training data is captured under multiple lights that we approximate by

the weighted sum of textures generated for each light independently, using weights that reflect

the intensity of each light. Given the preset lighting intensity γbi for a light bi, our final predicted

texture is constructed as follows:

T̂ =
n

∑
i=1

γ
biT̂bi. (5.7)

Training. Our loss function consists of four terms; a texture reconstruction loss `T , a

geometry reconstruction loss `M, a regularizer loss on the warping field `W and a latent space

regularizer `KL:

L (E`,D`) = ∑
v,t

λT `T + λM`M + λW `W + λZ`Z, (5.8)

where (v, t) are the camera and frame indices over the dataset, and:

`T = ||w� (T− T̂)||22 (5.9)

`M = ||M−M̂||22 (5.10)

`W = ||W−WI||22 (5.11)

`Z = KL
(
N (µµµ,σσσ) ||N (0,I)

)
(5.12)

Here, w is a weight map that avoids penalizing self-occluded texels in the current view2. The term

WI is an identity warping field, and the regularizer loss `w prevents the warped texel positions

from drifting too far from their original positions. The KL-divergence loss `KL with a standard

normalization encourages a smooth latent space. In all our experiments we set the weights of

each loss term as λT = 1,λM = 0.1,λW = 10,λZ = 0.001. We use the Adam optimizer [70] with

a learning rate of 0.0005 for training. We train the networks on 4 Nvidia Tesla V100 GPUs with

a batch size of 16 for about 300k iterations, which takes 4-5 days on average.

2We have omitted indexing the variables with v and t in our equations to reduce notation clutter, but they should
be understood to correspond to unique values for every frame and viewpoint in the dataset.
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Testing. Our model provides great flexibility and generalization for rendering under

novel lighting conditions. We can feed in an arbitrary lighting direction for each texel as input to

the OLAT network O , and predict the texture under the desired lighting conditions. Therefore,

our model supports the rendering of directional lighting (Figure 5.7), as well as near-field lighting

(Figure 5.8), which is not previously possible using existing image-based portrait relighting

methods [91, 129, 159]3. For complex lighting conditions like environment maps, we can predict

textures for every single pixel in the environment map, and linearly combine them to synthesize

a face image in that environment. The model’s runtime comprises: 24ms for shadow map

calculation, 29ms for feature map generation, and 0.9ms for full texture decoding of a single

lighting direction on a single Nvidia Tesla V100 GPU. Although feature map generation needs

to be computed only once, the shadow map and texture decoding need to be performed for each

light in the environment. So, although single light rendering using DRAM` can be relatively fast

(i.e., ∼ 55ms), even a low-resolution (16×32)-environment map can take ∼ 18 seconds.

5.4.2 DRAMε: An Early-conditioned Model

Our late-conditioned model allows us to synthesize face images under novel expressions,

viewpoints and lighting conditions. However, it is computationally expensive to evaluate for

complex lighting conditions with many light sources. Unfortunately, most natural illuminations

exhibit this property. Hence, they are typically modeled using an environment map, which is

equivalent to having as many light sources as there are non-zero pixels in the map. Thus, this

model is not suitable for interactive applications, such as VR, where real-time performance is

necessary. In this section, we build on top of results from the late conditioned model described

in the previous section to arrive at a formulation with similar accuracy, but that is an order of

magnitude more efficient.

Data generation. We use DRAM` to generate face renderings under environment maps

3For nearfield lighting we employ a quadratic drop-off for lighting intensities used in the weighted sum in
Equation 5.7.

87



captured from real indoor and outdoor scenes, and use the generated textures as ground truth

to supervise the training of our early-conditioning model; DRAMε . For the set of environment

maps to render, we use the same large-scale dataset used by Sun et al. [129], which contains

3094 high-resolution HDR environment illuminations including both indoor and outdoor scenes.

We randomly select 2560 environment maps from the dataset for training and use the remaining

534 for testing.

We generate these synthetic lighting images for randomly sampled frames and viewpoints

from our light stage capture. During rendering, we randomly select an environment map from

the training dataset and apply a random rotation of [0◦,360◦] in longtitude and [−30◦,30◦] in

latitude, followed by downsampling to a (16×32) -sized lat-long environment map. The resized

environment map is further normalized by dividing by its sum and multiplying by a constant

α ∈ [6,12]. We denote the environment map as e. DRAM` is applied to predict the textures

for each lighting direction, which correspond to individual pixels in the environment map, and

perform the weighted sum in Equation 5.7 to produce the final texture Te. In total, we generate

1.2M ∼ 1.8M textures for training each subject in our dataset. In addition to environment map

renderings, we also augment our training data by rendering the captured subject under 1− 5

lights randomly selected from the 460 lights. During training, we project the selected lights onto

an environment map of 16×32 and use them as input to our network to predict the corresponding

textures.

Network architecture. Our early-conditioned model exhibits a similar CVAE archi-

tecture as its late-conditioned counterpart, comprising an encoder, Eε , and a decoder, Dε . The

encoder, Eε , shares the same architecture and input as E`, and outputs a latent vector, z. The

decoder also consists of two branches; a geometry decoder, Gε , with the same architecture as G`,

and a texture decoder, Tε , that predicts a texture under the given environment map.

As shown in Figure 5.4, a naı̈ve architecture for the texture decoder would be an extension

of [85], where the vectorized environment map is concatenated with the latent vector, z, and view
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direction, v, and fed into to a single deconvolutional network to output the predicted texture, T̂e.

As this network architecture is designed for speed, it lacks the capacity to accurately reconstruct

data that spans a large number of different environment maps. To do this, a straight-forward

approach would be to increase the channel size in the hidden layers of the network. However,

as we will show in §5.6.2, a considerable increase is required to achieve reasonable accuracy,

which diminishes the model’s efficiency, making it unsuitable for real-time applications.

DRAMε takes inspiration from recent works on hyper-networks [50], and consists of

two networks: a weights network, H , that takes the environment map as input and predicts the

weights for a second network, Tε , that takes the efficient form used in [85], and produces a view,

lighting and expression dependent texture:

Θ←H (e) , T̂e = Tε(z|v,Θ). (5.13)

Θ denotes the weights of Tε that consists of 8 transposed convolution layers. For each layer, we

use a small weights network that consists of 5 fully connected layers to predict the convolutional

kernel weights and biases. Similar to the late-conditioned decoder, a warping field is employed

on the output of the texture decoder to give us the final texture. The hyper-network architecture

specializes the texture network to a specific lighting condition, which we find to be effective in

improving reconstruction performance without substantially increasing computational cost, as

shown in Figure 5.14 and Table 5.5.

Training. We use all the same settings for training DRAMε as we did for DRAM`. For

the same number of iterations, a model can be trained within 3−4 days on average. The trained

model can synthesize face images lit by environment maps within 13ms (∼75 frames per second),

making it suitable for interactive applications, including demanding real-time applications such

as VR.
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Figure 5.4. We apply a hyper-network architecture for our early-conditioned model, where we
use a separate network H that takes the current environment map as input to predict the weight
and bias of the texture decoder Tε .

5.5 Animating Relightable Avatars

The trained early-conditioned decoder Dε can efficiently generate novel outputs with

respect to its three inputs: expression, viewpoints, and lighting. The disentanglement of these

factors in the model are important for animation, because the images coming from driving sensors

can have completely unrelated viewpoints and lighting to the decoded avatar. For example, in the

VR telepresence system of [138], the driving signal comes from headset-mounted IR cameras

that observe facial expressions of a person wearing the headset in an arbitrary room, while being

lit by headset-mounted IR lights, whereas the avatar that person is driving needs to be relit in

accordance with the virtual scene, which might be arbitrarily different from where the person

really is. The only factor that is desirable to match between the sensor images and the avatar, is

the facial expression.
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In this work, we utilize the method in [116], which finds correspondences between input

headset images and expression codes z of DRAM` through analysis-by-synthesis. We similarly

learn a regressor that encodes multi-view headset images into z and a relative pose between the

headset and avatar, jointly with a style transformer that accommodates for domain differences

between the headset images and the rendered avatar. An important difference here, is that we

assume the lighting variation in the sensor images is small enough so that we can fix the lighting

input, e, at a constant uniform lighting. Any difference in lighting between the domains is

handled by the style transformer. While this assumption holds in many cases, as shown in

Section 5.6, an interesting future direction is to leverage our model’s relighting capability and

jointly optimize the model’s lighting so that there is less reliance on the style transfer module,

which can introduce semantic shifts during optimization.

5.6 Results

In this section we provide qualitative and quantitative evaluations of different components

of our method including both the late-conditioned model (Section 5.6.1) and the early-conditioned

model (Section 5.6.2). We perform ablation studies on each model and validate our design

choices. We show relighting results with our models under novel lighting conditions, viewpoints,

and expressions. We also demonstrate our relighting results animated by VR headset mounted

cameras (Section 5.6.3).

5.6.1 Evaluation of late-conditioning model

As discussed in Section 5.2, none of the previous works support both free-viewpoint

relighting and animations, as in our method. The work that is closest to ours is Meka et al. [92].

However, their model is not animatable and requires color gradient illuminations as input.

Therefore, in this section we focus on showing our qualitative results and validating different

design choices in our system.

91



Ground truth Ours Ground truth Ours Ground truth Ours

Figure 5.5. We show comparisons between the predicted OLAT images under novel viewpoints
and expressions with our late-conditioned model and the ground truth. Our model is able to
reconstruct the OLAT images accurately, even though it is trained only on group-light captures.
This enables us to synthesize accurate renderings under novel lighting conditions such as
environment lighting by combining multiple OLAT predictions.

Qualitative results. We first compare our renderings to ground truth captures under

novel viewpoints, expressions, and lighting conditions. To achieve this, we evaluate our model

on a separate sequence of images captured using a similar acquisition setup as described in

Section 5.3 except that each frame in this sequence is captured under a single light. We make

the comparison on images captured at a set of 4 validation viewpoints that are not used in

training. As shown in Figure 5.5, although our model is trained on images captured under group-

light patterns and has never seen OLAT captures during training, our network can successfully

reconstruct high-fidelity OLAT images that closely approximate the ground truth captures in

terms of shadows, specularities, and texture details. This demonstrates that our proposed model

can not only generalize to novel expressions and viewpoints, but also effectively super-resolve

the group-light captures and increase the resolution of the lighting.

Figure 5.6 shows renderings with our model under novel directional lights. By combining

the renderings under each pixel lighting of an environment map, our model can also achieve
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Figure 5.6. Late-conditioned model: rendering under novel directional lights.

Figure 5.7. Renderings under environment maps with our late-conditioned model. Our model is
able to faithfully recover complex shading effects including specularities and shadows.

photorealistic renderings under environment lighting. Figure 5.7 shows environment map

renderings with our model under both outdoor and indoor environment maps. Our model can

faithfully recover the glints on the forehead and the specularities on the face.

Figure 5.8 shows our rendering results under near-field lighting. We make use of our

reconstructed geometry output by the geometry decoder to calculate the lighting direction of

each texel. Since our OLAT prediction network O is applied on each individual texel, our

model can predict the OLAT renderings with a single inference. In comparison, previous

methods [155, 129, 91] do not reconstruct the geometry and therefore fail to support near-field
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Figure 5.8. Nearfield relighting with our late-conditioned model. Our late-conditioned model
can take different lighting directions for each texel and predict their colors, which enables us
to achieve efficient nearfield renderings making use of the geometry reconstructed with our
geometry decoder.

lighting. While some other methods [159, 92] build on estimated geometry, their network can

only take a single lighting direction as input at each time. To predict near-field rendering, separate

evaluations of their model for the lighting direction of each individual pixel would be required,

which is very time-consuming. In contrast, our model provides greater flexibility and more

efficient near-field renderings. For more results, please refer to the supplementary video of the

original paper.

Evaluation of design choices. To validate our different design choices, we evaluate

our models on testing sequences and compare them to the ground truth. We consider image-

space error metrics including mean-squared error (MSE) and structural similarity index (SSIM).

Considering the fact that the ground truth OLAT images with our models may have different

lighting intensity than the predictions, and there are potential color mismatches due to different

camera calibrations, we optimize a matrix Q ∈R3×3 to align our predicted image Î to the ground
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Ground truth Ours w/o depth difference

Figure 5.9. We make use of the shadow mapping technique to feed self-shadowing information
to the network. We can see that without the depth differences, the rendering results suffer from
jagged boundaries at shadows. In contrast, our full model reproduces more accurate shadows.

truth I:

Q = argmin
Q
||QÎ− I||22 (5.14)

Then we calculate all error metrics between QÎ and I.
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Ground truth Dynamic capture Static capture

Figure 5.10. We show visual comparisons between renderings on novel expressions with our
late-conditioned model trained on static captures and dynamic captures. Static captures cover
many fewer facial expressions than dynamic captures within the same number of frames, thus
resulting in poor generalization to novel expressions.

In Table 5.2, we perform an ablation study to show the effectiveness of applying depth

differences as input to our OLAT network. From the result we can conclude that it helps improve

the accuracy of the model. We provide additional qualitative comparisons in Figure 5.9. As we

can see from the figure, without including the depth difference information, the network predicts

shadows with incorrect shapes and jagged boundaries, especially for long-range shadows on the
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Group-light OLAT RandomGround truth

Figure 5.11. Late-conditioned model: a visual comparison of different capture lighting patterns.
The leftmost image shows a ground truth image under an “OLAT” single point-light illumination.
We reconstruct this using a model trained on 5 spatially clustered lights (“Group-light”), OLAT,
and 5 spatially random lights (“Random”). Both “Group-light” and “random” can use shorter
camera exposures than OLAT to achieve similar camera intensities, but only “Group-light”
recovers comparable details to OLAT.

Table 5.2. We evaluate the effectiveness of using depth differences as input to the OLAT network
in our late-conditioned model on two subjects. Subject 1 and Subject 2 correspond to two
subjects in Figure 5.5 respectively, The results on both subjects show that involving the occlusion
information helps improve the accuracy of our model.

Subject 1 Subject 2
MSE (×10−4) SSIM MSE (×10−4) SSIM

Our full model 6.4377 0.9363 2.9843 0.9469
w/o depth difference 6.5115 0.9344 3.0562 0.9464

neck. In contrast, our full model with depth differences produces more accurate shadows.

Effect of spatial ight pattern. In Table 5.3, we make a comparison between different

lighting bases for our time-multiplexed lighting. We train our late-conditioned models on

captures under different lighting bases including OLAT, Random, and Group-5. We make

the comparisons by predicting the OLAT images under novel expressions and viewpoints and

calculate the error between the predictions and their corresponding ground-truth OLAT captures.

A visual comparison is also shown in Figure 5.11. From the results we can see that Group-5

captures lead to better reconstruction accuracy than random lighting patterns. Compared to
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Table 5.3. We compare the performance of our models trained on captures under different basis
lighting patterns. We do the evaluation by comparing the predicted OLAT images under novel
viewpoints and expressions to their corresponding ground-truth. From the result we can see that
the performance of Group-5 capture is much better than random light patterns. The Group-5
capture is even better than the OLAT captures on 3 out of 4 metrics although it has never seen
OLAT images in training. Note that this evaluation is done on a different testing sequence from
that used in Table 5.2.

Subject 1 Subject 2
MSE (×10−4) SSIM MSE (×10−4) SSIM

OLAT 6.5071 0.9349 3.4949 0.9415
Random 9.9668 0.8842 4.1159 0.9230
Group-5 6.3761 0.9368 3.6791 0.9433

Table 5.4. Late-conditioned model: comparison between static captures and dynamic captures.
Within the same number of frames, dynamic captures can cover more facial expressions and lead
to better generalization to novel expressions, thus achieving higher accuracy.

Subject 1 Subject 2
MSE (×10−4) SSIM MSE (×10−4) SSIM

Static capture 7.5862 0.9301 3.6335 0.9429
Dynamic capture 6.4377 0.9363 2.9843 0.9469

OLAT, Group-5 achieves very similar performance despite the model never having seen OLAT

images during training, and using an evaluation design that is favorable to OLAT captures.

Grouped light captures have reduced single-light maximum power requirements compared to

OLAT to overcome the noise floor of the cameras, or, equivalently, support capturing with shorter

exposure times (which has implications for perceptual discomfort [139]). This result indicates

that grouping lights in spatial clusters is an attractive option for power or exposure constrained

settings, with results almost indistinguishable for groups with diameter twice the size of the

single-light spatial sampling distance on average.

Effect of capture script content. We also compare a dynamic capture script with a

static expression capture script of roughly the same total duration. For static captures, the subject

is asked to remain still during each elicited expression, while a full cycle of the light patterns

is captured. Each individual expression is therefore fully sampled along all spatial lighting
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Table 5.5. We compare our early-conditioned model with hyper-networks against baseline
models. Compared to the naı̈ve model that applies a single decoder network with fixed weights,
our hyper-network is able to achieve much better accuracy with similar computational cost. Our
model is even comparable to the naı̈ve decoder model with twice as many feature channels at
each layer, which has a much larger computational cost. In addition, from the figure we can
see that while the model trained on group-light captures only can predict accurate group-light
renderings, it fails to generalize to novel environment maps, which demonstrates the necessity of
our two-stage student-teacher framework.

Test on environment renderings Test on group-light captures MACs (×109)
Subject 1 Subject 2 Subject 1 Subject 2

MSE(×10−4) SSIM MSE (×10−4) SSIM MSE(×10−4) SSIM MSE(×10−4) SSIM
Single decoder 11.396 0.9815 3.6423 0.9885 7.5256 0.9833 3.7622 0.9937 1.44
Single decoder (×2 features) 8.7349 0.9862 2.6697 0.9909 7.2872 0.9838 3.5373 0.9938 5.53
Ours (train on group-light) 108.93 0.9277 61.221 0.9417 6.2536 0.9846 3.0830 0.9937 1.50
Ours 7.3878 0.9882 2.5309 0.9914 7.4345 0.9838 3.5846 0.9938 1.50

directions. Conversely, for the dynamic capture, the subject is asked to move naturally, and

the allotted capture time is used to elicit more varied expressions and poses. Instantaneous

expressions are therefore sampled very sparsely along lighting directions, but a more diverse set

of facial expressions is sampled, and we rely on amortized inference during model building to

span the combined space of expressions and lighting directions. We capture roughly the same

number of frames for these two kinds of captures. From the result in Table 5.4 we can see that

our dynamic captures produce better results than static captures. Specifically, within the same

number of frames, static captures cover a much smaller set of expressions than our dynamic

captures. Therefore, as we can see in Figure 5.10, the model trained on static captures does

not generalize well to novel expressions. In contrast, our dynamic captures provide us a more

efficient way to capture the subject under a large number of expressions.

5.6.2 Evaluation of early-conditioned models

Qualitative results. In Figure 5.12, we show the rendering results with our early-

conditioned model under novel environment maps, expressions and viewpoints. Because we are

using the late-conditioned model to supervise the training of the early-conditioned model, we

regard the renderings with the late-conditioned model as the ground truth. From the results, we

can see that our early-conditioned model can generate photorealistic results with accurate texture
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Late-conditioned model Early-conditioned model Late-conditioned model Early-conditioned model Late-conditioned model Early-conditioned model

Figure 5.12. Our early-conditioned model is able to generate renderings under novel environment
maps that have the same quality as those generated by the late-conditioned model. Compared to
the time of around 18 seconds required by the late-conditioned model, our early-conditioned
model is much more efficient and can generate environment map renderings in real time.

Ours [Sun et al. 2019] Ours [Sun et al. 2019] Ours [Sun et al. 2019]

Figure 5.13. We compare our early-conditioned model to the state-of-the-art single image
portrait relighting method of Sun et al. [130]. From the results we can see that the method of
Sun et al. fails to recover accurate specularities on the face and eyes, produces softer shadows,
and predicts incorrect colors. In contrast, our method can achieve much more photorealistic
relighitng.

details and shading effects that closely resemble its corresponding ground truth. Such results

demonstrate that by extensively sampling the natural illuminations and generating renderings

as training data, our early-conditioned model is able to achieve good generalization to novel

lighting conditions.

We also compare to the state-of-the-art single image portrait relighting work of Sun et

al. [129]. To achieve this, we directly feed the ground truth fully-lit captured image as input to

their method and compare their renderings to the predictions of our early-conditioned model.

We use the code and model provided by Sun et al. to generate the results. From the results in

Fig. 5.13, we can see that the method of Sun et al. fails to predict faithful shading effects such as
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Late-conditioned model Ours Single decoder Single decoder (x 2 features) Ours (group-light training)

v

SSIM:0.9806  MSE: 1.37 SSIM:0.9730  MSE: 3.01 SSIM:0.9755  MSE: 1.80 SSIM:0.6542  MSE: 118.92

Figure 5.14. We compare our early-conditioned model with hyper-networks against baseline
models with a single decoder. Our hyper-network generates results of higher quality that better
match the ground truth compared to baseline models. We also compare against a model that has
the same architecture as ours but is trained on group-light captures only, and the result shows that
such a model fails to generalize to novel lighting conditions. Instead, our models that are trained
on environment map renderings with our late-conditioned model achieve better generalization,
which demonstrates the effectiveness and necessity of our two-stage student-teacher framework.

specularities, and generates overly flat renderings. In contrast, our method produces renderings

with higher fidelity.

Evaluation of design choices. To validate the design choices of our early-conditioned

model, we evaluate our model and the comparison models on a separate testing sequence with

novel expressions. We generate renderings with the models at a set of 4 novel viewpoints under

environment maps randomly chosen from the testing dataset. The corresponding ground truth

renderings are generated with our late-conditioned model. We also compare the renderings of

different models on a testing sequence under group-light patterns to the ground truth group-light

captures. To achieve this, we project the group-light patterns to environment maps and use them

as input to the models. We apply the same error metrics as used in Section 5.6.1, and report the

scores in Table 5.5. We also report the computational cost of the texture module by calculating

the number of multiply-accumulate operations (MACs) for a single inference. We also show a
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Input Images Our Rendering Input Images Our Rendering Input Images Our Rendering

Figure 5.15. Our early-conditioned model under novel environment maps animated by VR
headset mounted cameras. Our model is able to faithfully reproduce the expressions in the
headset captures while achieving photorealistic relighting simultaneously.

visual comparison between our model and the baseline models in Figure 5.14.

From the results we can see that the naiv̈e decoder with fixed weights has low accuracy

and generates incorrect colors on faces. In comparison, our hyper-network architecture produces

more accurate renderings while maintaining a comparable computational cost. We also compare

against a baseline model with twice the number of feature channels, and our hyper-network is

able to achieve better performance with a much smaller computational cost.

Instead of training on environment map renderings generated with our late-conditioned

model, we also compare against a model that is only trained on our group-light captures by

projecting the group-light onto environment maps and training the same hyper-network model

on this dataset. From the table we can see that while it can produce renderings with the

highest accuracy on a testing set of group-light sequences, it produces the lowest accuracy

on the environment renderings. Training only on the group-light captures makes the network

overfit to the training lighting patterns and fail to generalize to novel environment lighting (see

Figure 5.14, right). In contrast, by training on renderings with our late-conditioned model

under extensively sampled natural illuminations, our hyper-network can generalize to novel

environment illuminations, which demonstrates the necessity and effectiveness of our two-stage

framework.
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5.6.3 Animation from headset mounted cameras

The advantage of our relightable appearance model over previous works is the good

disentanglement of its inputs: facial expression, viewpoints, and lighting. This makes the model

animatable, and can be driven by sensors such as video captured by VR headset mounted cameras.

In Figure 5.15, we show our early-conditioned model relighted in different environment, given

the latent values z we extracted from the given headset images, using the method described in

Section 5.5. The renderings of our model faithfully reproduce the facial expressions from the

headset images, while photorealistically relit under novel lighting conditions. For more results,

please refer to the supplementary video of the original paper.

5.6.4 Limitations

While our models produce photorealistic relightable avatars, several limitations remain:

(1) Most notably, in regions where the tracked mesh is inaccurate or lacks sufficient geometric

detail, such as the hair outline, textured mesh rendering produces jarring border artifacts instead

of blending into the environment background. This could potentially be addressed via volumetric

neural rendering approaches with the capacity to produce translucency. (2) Similarly, we notice

some blurring in regions where the mesh geometry does not accurately track the surface, such

as the mouth and eyes. Using specialized geometric models for these regions (e.g., [12, 145])

would greatly improve registration accuracy and therefore reduce the capacity required to model

their appearance in texture space. (3) Our models are limited by the acquisition hardware and

lighting rig used to capture the training data. Due to the use of low-dynamic range 8-bit images,

we notice decreased quality and color shifts in very dark regions, likely due to poor signal to

noise ratio. Similarly, our model fails to reconstruct lighting directions that are very far from

those that can be elicited by the light stage (e.g., lighting directly below the participant). High

bit-depth HDR imaging and more complex light stage setups could improve results in these cases.

(4) Finally, we have presented an efficient model for rendering animatable and relightable avatars
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in realtime in environmental illumination, but designing an efficient model that can render both

nearfield and farfield illumination remains an open problem.

5.7 Conclusion

We presented Deep Relightable Appearance Models, a novel two-stage framework to

achieve photo-realistic relighting of animatable face avatars. Our approach produces, for the

first time, a photo-realistic face avatar that can be driven and rendered in real-time under various

new illuminations. The experiments demonstrate that our late-conditioned model achieves high

generalization across a wide-range of illuminations including natural indoor/outdoor illumina-

tions, nearfield lighting, and distant directional lighting, despite being trained only with grouped

point-light captures. This is possible due to the explicit modeling of the additive property of light

transport and the late-stage fusion of light information in our network architecture. We further

examined the effects of different light patterns and captured scripts, and show the efficacy of

dynamic capture and spatial grouping of light sources. This allows us to render high-quality

synthetic images under different illuminations to generate an augmented training set for train-

ing efficient models. We also presented a hyper-network architecture for early-conditioned

relightable models, which is highly efficient to run in real-time while showing comparable

fidelity to a higher-capacity baseline. We believe that our two-stage framework is general and

applicable to many different relighting problems and real-time applications, including volumetric

rendering, and building cross-identity face models, which can be addressed in future work.

This chapter is based on the material as submitted to ACM Transactions on Graphics,

2021 (“Deep Relightable Appearance Models for Animatable Faces”, Sai Bi, Stephen Lombardi,

Shunsuke Saito, Tomas Simon, Shih-En Wei, Kevyn McPhail, Ravi Ramamoorthi, Yaser Sheikh,

Jason Saragih). The dissertation author was the primary investigator and author of this paper.
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Chapter 6

Conclusion and Future Work

In conclusion, in this dissertation we have presented four works on acquiring the ap-

pearance of real-world objects and scenes. We apply appropriate representations for scene

geometry and reflectance to support functionalities such as changing viewpoints, relighting

and dynamic animations. For diffuse objects, in Chapter 2 we have introduced a novel method

to recover high-quality texture maps from inaccurate RGB-D reconstructions. Our method

can effectively handle the misalignment of input images caused by inaccurate camera poses,

corrupted geometries and optical distortions, and generate aligned images as a result of our

optimization framework. It enables us to produce compelling textures for the RGB-D scans

without blurry or ghosting artifacts, which greatly improves the quality of 3D reconstructions

with consumer RGB-D cameras. For non-Lambertian objects, we first introduce a learning-based

method to reconstruct high-quality geometry and per-vertex BRDFs in Chapter 3. Different

from previous works that require dense input images that are time-consuming to capture, our

method takes a sparse set of six images captured under collocated camera and light as input. We

apply data priors to solve this challenging problem and propose novel networks for geometry

and SVBRDF estimation by aggregating multi-view cues. Our method enables reconstruction of

objects with complex non-Lambertian reflectance with a simple acquisition setup. In Chapter 4,

we further introduce a novel volumetric representation to encode the geometry and reflectance

properties of the scene. Such a novel volumetric representation can accurately model objects
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and scenes with complex geometry such as thin structures and heavy occlusions, and supports

free-viewpoint relighting under arbitrary lighting conditions. We have proposed an end-to-end

method based on differentiable ray marching to learn such a representation from unstructured

mobile phone captures under a flash light. Finally, in Chapter 5 we go beyond static scenes and

introduce a relightable appearance model for animatable faces where we directly apply neural

networks to regress the geometry and textures under the desired expressions, view directions and

lighting conditions. We propose novel methods to train such networks from efficient dynamic

captures under time-multiplexed lighting. Our method faithfully creates an animatable and

relightable avatar that can be driven by VR headset captures, enabling many applications such as

telepresense.

We demonstrate that our methods can effectively reproduce the appearance of real-world

objects and scenes by recovering their geometry and material properties from the captured

images. Compared to manually creating 3D content with complicated software that requires

time-consuming efforts and special expertise, this dissertation takes one step further towards

practical and faithful appearance acquisition, which empowers novice users to create digital 3D

content by simply capturing a set of images. We believe that efficient and accurate methods for

digital 3D content creation is the key to the future of many applications such as VR and AR, and

many interesting topics remain to be explored. Here we discuss some future directions in this

field:

Unconstrained environment. In Chapter 3 and 4 we have introduced methods to achieve

relightable reconstructions of objects using only collocated camera and light, which enables

mobile phone captures with a flash light. While such an acquisition setup is less expensive than

those used previous methods [9, 53, 132, 163], it still requires the captures to be conducted in a

dark room, which limits the practicability of these methods. To make appearance acquisition

more practical, ideally we would like to enable casual mobile phone captures under mildly

constrained or even unconstrained environments such as indoor scenes. Unknown environment
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illumination leads to more ambiguities in material estimation, and the introduction of data priors

as done in [83] would alleviate the problem and help achieve better material estimation.

Complex light transport effects. In this dissertation, we mainly focus on recovering the

appearance of solid opaque objects, and only direct illumination is considered in the imaging for-

mation models. Real-world objects and scenes have more complex materials such as transparency

and translucency, and more complex light transport effects such as refractions, inter-reflections

and subsurface scattering. Accurate appearance acquisition with the existence of these complex

light transport effects remains challenging. Recently the development of differentiable rendering

using Monte Carlo estimators [158] allows us to calculate the derivative with respect to arbitrary

scene parameters in the presence of complex light transport effects. It would to be interesting to

apply this framework for the task of appearance acquisition.

Neural representations for large-scale scenes. In addition to acquiring the appearance

of real-world objects, another direction would be developing novel representations to reproduce

the appearance of large-scale scenes. Traditional methods [3, 127] rely on 3D reconstructions

based on multi-view stereo or depth sensors. Such methods fail to handle complex scenes with

thin structures, heavy occlusions and result in reconstructions with holes. They cannot accurately

reproduce the view-dependent effects of non-Lambertian surfaces, which greatly limits the

photorealism of the rendered images. Recently neural-rendering based methods [94, 95] have

shown great progress in generating highly photorealistic images. It’s exciting to scale these

methods to large-scale scenes so that we can freely navigate them in VR.

Neural representations from sparse images. We have introduced novel neural repre-

sentations to recover the appearance of real-world objects. In Chapter 4, we introduced a novel

neural volumetric representation for joint view synthesis and relighting. In Chapter 5 we train

neural networks to regress the geometry and textures under novel expressions, viewpoints and

lighting conditions. While such a model can faithfully reproduce the appearance of the captured

object, the model needs to be trained from scratch for each object with abundant input images,
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which is highly time-consuming. In the future, it would be desirable to research into methods

that can effectively generalize to novel scenes with a sparse set of images or even a single image

as input.
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Appendix A

Appendix for Chapter 1

In this Appendix, we discuss the derivation of Eq. 2.8, which computes the targets that

minimize the second term of Eq. 2.5. To start, we rewrite E2 as:

E2 =
1
N

N

∑
k=1

∑
xk

N

∑
j=1

w j(xk� j)
(
Tj(xk� j)−Mk(xk)

)2
. (A.1)

To compute the optimum targets, we first need to differentiate the error with respect to each

target as:

∂E2

∂Ti(xi)
=

∂ ∑
N
k=1 ∑xk

wi(xk�i)
(
Ti(xk�i)−Mk(xk)

)2

∂Ti(xi)
, (A.2)

where we remove the normalization factor, since it does not affect the optimum result. Moreover,

since we differentiate with respect to the ith target, we set j = i. Here, for each k, the summation

is over all pixels of image k. Since we take the derivative with respect to the ith target, we should

backproject each term from k to i. By ignoring the effect of interpolation in the projection, we

have:

∂E2

∂Ti(xi)
=

∂ ∑
N
k=1 ∑xi wi(xi)

(
Ti(xi)−Mk(xi�k)

)2

∂Ti(xi)
, (A.3)

where we used the fact that xi�k�i = xi. By taking the derivative in the above equation and
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setting it equal to zero, Ti’s can be calculated as defined in Eq. 2.8. Note that, since the derivative

is with respect to a single pixel of the target image xi, we remove the summation over all pixels

before taking the derivative.
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Appendix B

Appendix for Chapter 2

B.1 BRDF Model

We use a simplified version of the Disney BRDF model [18] proposed by Karis et al. [67].

Let A, N, R, S be the diffuse albedo, normal, roughness and specular albedo respectively, L and

V be the light and view direction, and H = V+L
2 be their half vector. Our BRDF model is defined

as:

f (A,N,R,L,V ) =
A
π
+

D(H,R)F(V,H,S)G(L,V,H,R)
4(N ·L)(N ·V )

(B.1)

where D(H,R), F(V,H,S) and G(L,V,H,R) are the normal distribution, fresnel and geometric

terms respectively. These terms are defined as follows:

D(H,R) =
α2

π [(N ·H)2(α2−1)+1]2

α = R2

F(V,H,S) = S+(1−S)2−[5.55473(V ·H)+6.8316](V ·H)

G(L,V,R) = G1(V,N)G1(L,N)

G1(V,N) =
N ·V

(N ·V )(1− k)+ k

G1(L,N) =
N ·L

(N ·L)(1− k)+ k

k =
(R+1)2

8
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[Nam et al. 2018] Our op�mized geometry [Nam et al. 2018] Our op�mized geometry 

Figure B.1. Comparison with Nam et al. [97] on geometry optimization. Our results have more
fine-grained details and fewer artifacts.

Network input Diffuse Normal Roughness Specular
Ii← j 0.0081 0.0456 0.0379 0.0098
Ii, Ii← j 0.0071 0.0363 0.0304 0.0109
Ii, Ii← j,Zi← j,Z∗i← j 0.0063 0.0321 0.0306 0.0098
Ii, Ii← j,Li,Li← j 0.0061 0.0304 0.0299 0.0093
Ours full 0.0061 0.0304 0.0275 0.0086

Table B.1. Quantitative comparisons between networks trained with different inputs on the
synthetic test set.

B.2 Comparison on Geometry Reconstruction

In Fig. reffig:comp-nam-geo of Chapter 3, we compare our optimized geometry against

the optimized result from Nam et al. [97] that uses the same initial geometry as ours. We show

additional comparisons on real data in Fig. B.1. Similar to the comparison in the paper, our

optimized geometry is of much higher quality than Nam et al. with more fine-grained details and

fewer artifacts.

B.3 Additional Ablation Study

In this section, we demonstrate additional experiments to justify the design choices in

our pipeline, including input variants of the SVBRDF estimation network, non-rigid warping

and per-vertex refinement.

Network inputs. Our SVBRDF network considers the input image (Ii), the warped
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Without warping With warping
Figure B.2. Comparison between optimizations with and without per-view warping. Our method
with warping removes the ghosting artifacts around the edges.

Without refinement With refinement
Figure B.3. Comparison on results with and without per-vertex refinement. With the refinement,
our method is able to recover high-frequency details such as the spots on the object.

images (Ii← j), the light/viewing (which are collocated) direction maps (Li and Li← j), and the

depth maps (Zi← j and Z∗i← j) as inputs (please refer to Sec. 3.3.2 in the paper for details of these

input components). We verify the effectiveness of using these inputs by training and comparing

multiple networks with different subsets of the inputs. In particular, we compare our full model
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against a network that uses only the warped image Ii← j, a network that considers both Ii← j and

the reference image Ii, a network that uses the reference image, warped image and the depth, and

a network that uses the reference image, warped image, and the viewing directions. Table. B.1

shows the quantitative comparisons between these networks on the synthetic testing set. The

network using a pair of images (Ii, Ii← j) improves the accuracy for most of the terms over the one

that uses only the warped image (Ii← j), which reflects the benefit of involving multi-view cues in

the encoder network. On top of the image inputs, the two networks that involve additional depth

information (Zi← j, Z∗i← j) and the viewing directions (Li, Li← j) both obtain better performance

than the image-only versions, which leverage visibility cues and photometric cues from the

inputs respectively. Our full model is able to leverage both cues from multi-view inputs and

achieves the best performance.

Per-view warping. Due to potential inaccuracies in the geometry, the pixel colors of a

vertex from different views may not be consistent. Directly minimizing the difference between

the rendered color and the pixel color of each view will lead to ghosting artifacts, as shown in

Fig. B.2. To solve this problem, we propose to apply a non-rigid warping to each view. From

Fig. B.2 we can see that non-rigid warping can effectively tackle the misalignments and leads to

sharper edges.

Per-vertex refinement. As shown in Fig. B.3, the image rendered using estimated

SVBRDF without per-vertex refinement loses high-frequency details such as the tiny spots

on the pumpkin, due to the existence of the bottleneck in our SVBRDF network. In contrast,

the proposed per-vertex refinement can successfully recover these details and reproduces more

faithful appearance of the object.
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Bousseau. Flexible svbrdf capture with a multi-image deep network. Computer Graphics
Forum (Proceedings of the Eurographics Symposium on Rendering), 38(4), July 2019.

[35] Yue Dong, Guojun Chen, Pieter Peers, Jiawan Zhang, and Xin Tong. Appearance-from-
motion: Recovering spatially varying surface reflectance under unknown lighting. ACM
Transactions on Graphics, 33(6):193, 2014.

[36] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. De Aguiar, N. Ahmed, C. Theobalt,
and A. Sellent. Floating textures. CGF, 27(2):409–418, 2008.

[37] Sing Choong Foo. A gonioreflectometer for measuring the bidirectional reflectance of
material for use in illumination computation. PhD thesis, Citeseer, 1997.

[38] Thomas Franken, Matteo Dellepiane, Fabio Ganovelli, Paolo Cignoni, Claudio Montani,
and Roberto Scopigno. Minimizing user intervention in registering 2D images to 3D
models. The Visual Computer, 21(8):619–628, 2005.

[39] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. Foundations
and Trends® in Computer Graphics and Vision, 9(1-2):1–148, 2015.

117



[40] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stereopsis.
IEEE transactions on pattern analysis and machine intelligence, 32(8):1362–1376, 2009.

[41] Ran Gal, Yonatan Wexler, Eyal Ofek, Hugues Hoppe, and Daniel Cohen-Or. Seamless
montage for texturing models. CGF, 29(2):479–486, 2010.

[42] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. Deep inverse
rendering for high-resolution SVBRDF estimation from an arbitrary number of images.
ACM Transactions on Graphics, 38(4):134, 2019.

[43] Pablo Garrido, Levi Valgaerts, Chenglei Wu, and Christian Theobalt. Reconstructing
detailed dynamic face geometry from monocular video. ACM Trans. Graph., 32(6):158–1,
2013.

[44] Abhijeet Ghosh, Tim Hawkins, Pieter Peers, Sune Frederiksen, and Paul Debevec. Practi-
cal modeling and acquisition of layered facial reflectance. In ACM SIGGRAPH Asia 2008
papers, pages 1–10. 2008.

[45] Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M Seitz. Shape and
spatially-varying brdfs from photometric stereo. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(6):1060–1071, 2009.
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[80] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable monte
carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):222:1–222:11, 2018.

120



[81] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Modeling surface appearance from
a single photograph using self-augmented convolutional neural networks. ACM Trans.
Graph., 36(4):45:1–45:11, July 2017.

[82] Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. Materials for masses:
SVBRDF acquisition with a single mobile phone image. In ECCV, pages 72–87, 2018.

[83] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan Chan-
draker. Learning to reconstruct shape and spatially-varying reflectance from a single
image. In SIGGRAPH Asia 2018, page 269. ACM, 2018.

[84] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit
surface representations. In CVPR, pages 2916–2925, 2018.

[85] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. Deep appearance
models for face rendering. ACM Trans. Graph., 37(4):68:1–68:13, July 2018.

[86] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. Neural volumes: Learning dynamic renderable volumes from images.
ACM Transactions on Graphics (TOG), 38(4):65, 2019.

[87] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

[88] Wan-Chun Ma, Tim Hawkins, Pieter Peers, Charles-Felix Chabert, Malte Weiss, and
Paul E Debevec. Rapid acquisition of specular and diffuse normal maps from polarized
spherical gradient illumination. Rendering Techniques, 2007(9):10, 2007.

[89] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven
reflectance model. ACM Transactions on Graphics, 22(3):759–769, July 2003.

[90] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visual-
ization and Computer Graphics, 1(2):99–108, 1995.

[91] Abhimitra Meka, Christian Haene, Rohit Pandey, Michael Zollhöfer, Sean Fanello, Gra-
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