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Abstract

LiveJS: Improving JavaScript Loading Times

by

Daphne Irene Gorman

Despite the prevalence of JavaScript in modern web development, most JavaScript optimiza-

tions are designed to improve run-time. However, the load-time of websites is also an important

aspect of a user’s experience. Therefore, it would be advantageous to have a method for signif-

icantly decreasing the amount of time it takes to load webpages.

We propose LiveJS: a tool that utilizes seamless profiling information to modify the

order and method JavaScript functions are sent to the client, thus providing a speedup in loading

time. The initial JavaScript response LiveJS sends to the user is shorter, as the definitions of

most of the JavaScript functions have been removed or delayed. Following that, the rest of the

used functions are sent in an asynchronous response from the server. Because the initial file size

is smaller, the web browser is able to start compiling and even running the JavaScript code it has

before the rest of the data has even finished downloading. The evaluation shows the speedups

with highly optimized websites like the Google calendar and the Amazon website, showing an

average of more than 20% load time reduction across all benchmarks.
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Chapter 1

Introduction

Since its introduction in 1995, JavaScript’s ubiquity has increased, and now it is in-

cluded in almost all modern websites [4,9]. Figure 1.1 shows the top 1000 websites reported by

httparchive with the most traffic [22]. Additionally, the average JavaScript code size has nearly

tripled in the last 4 years. As such, it would be advantageous to optimize JavaScript usage in

order to provide faster services to web users. It follows that there are many tools available to

web developers that offer JavaScript optimization and methods to improve JavaScript efficiency.

Furthermore, large companies are working towards improving their browsers so that JavaScript

will load and run more quickly [14].

To date, most JavaScript optimization tools are aimed at run-time optimizations.

Large corporations such as Google and Mozilla have created optimizing JavaScript compil-

ers that allow for load time optimizations like supporting asynchronous JavaScript loads and

separated threads for compilation. Additionally, some tools are available to web developers to

parallelize and optimize code for run-time [20]. Unfortunately, tools available to web develop-
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Figure 1.1: JavaScript usage keeps increasing over time. Increasing from 130 kB to 371 kB in
the last 4 Years for the 1000 websites with the most traffic [22].

ers that decrease the load-time of webpages are generally restricted to minimizing the amount

of code being sent to the client such as the Google Closure compiler [8] and applications such

as UglifyJS [2].

In order to load a webpage, it is rarely necessary to utilize all of the JavaScript func-

tions that are provided by the server. Often times, many functions are platform-specific, and

thus useless on all other platforms. Furthermore, many functions provide functionality to web-

pages, but are not needed for rendering the images or populating the content. Some webpages

contain dead code, or functions that are never used. Equally as important, many functions are

not needed until later in time a special event is triggered such as a mouse click or a keystroke.

In Figure 1.2, the percentage of functions that are used by the browser over time is shown for

Google Calendar. Even after a minute and a half, less than ten percent of the functions are used

by the client.

As Google developers have noted, the speed of compiling and running the actual

code is only a component of JavaScript optimization; loading web pages is also a large (and

probably more noticeable) part of a web-browsing experience [14]. The aim of this work is to

2
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Figure 1.2: Less than 9% of the JavaScript functions are used in the first seconds of execution
when using Google Calendar.

provide an orthogonal way to optimize JavaScript load times that is compatible with existing

methodologies.

The traditional process for loading a webpage includes three main parts that are per-

formed sequentially [14]. The first part includes downloading the actual web page. This in-

cludes downloading all code elements, including HTML as well as JavaScript, as well as pic-

tures, music, and other digital media. Only after each individual file download has completed

do traditional browsers start parsing the code. This means that the browser does not start doing

anything with the information received from the server until it has the following data in the file

whether or not that data is relevant.

The next step in the page loading process is the parsing of the code [14, 26]. That is,

the JavaScript code is broken down into an Abstract Syntax Tree (AST) that is to be interpreted

later on. Once again, during this phase, the user will not be able to utilize the JavaScript code.

The final phase, standard in most web browsers, is the interpretation or code gen-

eration of this syntax tree. At this phase, the user is finally able to use the JavaScript that is

3



embedded in their website. An exception is observed in the Google web browsers, that skip

this step and compile the parsed code into native machine code [26]. This extra step allows

the JavaScript in the website to actually have a faster run time, at the cost of some load time.

The Mozilla approach is to use a more traditional Just In Time Compiler (JIT) where code is

optimized only after it is interpreted several times [26].

Proposed in this work is a technique called LiveJS that provides an alternative way

to optimize the loading time of JavaScript components in web pages and is described more in

depth in the following chapters. Briefly, LiveJS is a tool that modifies existing JavaScript code

in order to allow the parsing and compilation to begin before the JavaScript file download phase

has completed. Each JavaScript file is divided in three categories: inlined, asynchronous, and

synchronous. Inlined functions are needed early in the execution time. Synchronous functions

are functions frequently used after the execution starts but their transfer can be delayed. Asyn-

chronous functions are rarely used. Inlined functions are send with the original file request,

synchronous functions are sent with a separate file immediately afterwards, and asynchronous

functions are only sent on request when the associated functions are used.

To the user, the web content will appear to have loaded quicker than if LiveJS had not

been utilized. LiveJS has been designed to be compatible with all the current solutions and add

further efficiency to the existing optimizations in the browsers.

Using this technique, we were able to get an average of 30% load time reduction in

the already well-optimized Google Calendar. Across all benchmarks, we observed an average

21% load time reduction, and in no cases did we observe an increase in loading time. The main

contributions of this work include:

4



• The proposition of LiveJS as a tool to decrease the load time of websites. We provide

the model for LiveJS and describe the flow for loading a website using the LiveJS tool.

• A methodology to test the efficacy of such a tool on multiple webpages and web clients.

We describe a test setup that uses real-world websites to compare the load time with and

without LiveJS.

• The evaluation of LiveJS as a viable tool to attain speedups in real-world websites. We

provide an analysis as to why each benchmark was affected differently by the LiveJS tool,

and show the overall impact that LiveJS has on website load times.

This work provides the model for the LiveJS tool proposed in Chapter 2. Chapter 3

describes the details for how we set up our experiments. Our results will be provided in Chap-

ter 4. We will describe some current related work in Chapter 5, and finally we will explain our

conclusions in Chapter 6.

5



Chapter 2

LiveJS Model

This chapter provides the structure of LiveJS and describes the inner workings of the

tool.

LiveJS
Parser

LiveJS
Server

Client

Asynchronous
Function
Definitions

Load
Page

Function
Inlining

Profiling
Info

Profiling
Pass

Skeleton

JavaScript
Code

Full
Functionality

Figure 2.1: Flow of LiveJS in terms of the server, the JavaScript parser, and the client. The
server and the parser are LiveJS specific, whereas the client is generic and can be any web
browser.
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2.1 LiveJS Flow

LiveJS uses profiling information to build a timeline of the JavaScript functions usage.

Once the relative JavaScript function order is built, LiveJS can sort the original JavaScript code

by function usage in order to discern which functions should be sent to the client first. Figure 2.1

shows the three main components and the steps to achieve a load time optimized JavaScript

code: the main server hosting the website, a JavaScript parser and the client loading the website.

The parser we utilize is Esprima [13].

When new JavaScript code is provided to the LiveJS server, it is immediately sent to

the Esprima parser to create a JavaScript “skeleton”. This “skeleton” contains the structure of

the original code, but has relatively poor functionality, as the bodies of each function definition

have been replaced with a synchronous XMLHttpRequest (XHR) to the server.

In its basic state, the skeleton code is impractical for repeated use. However, every

time it receives an XHR, the LiveJS server is able to obtain profiling information. Thus, once

this profiling pass is complete, the server is able to utilize its results in order to insert the original

function definitions back into the skeleton. During this “inlining phase”, the LiveJS server re-

inserts the functions that are used first back into the skeleton. Upon completion of sending the

file with blank function definitions, the server will asynchronously send the original function

definitions in the order that that they are called.

This allows the functions that are necessary early in the execution to be provided in

the original script that gets sent when a client loads an optimized webpage. Once that script has

finished loading, the rest of the functions the client uses are sent asynchronously to the client in

7



order to provide full functionality. The functions that are rarely used by the client are not sent,

so to get them, the client sends one synchronous request per function.

2.2 Load Size Optimization: Skeleton Creation

One of the main bottlenecks of a website’s loading time is the size of the file be-

ing downloaded. In order to minimize the amount of data, we create a “skeleton” of all the

JavaScript that is to be loaded. This skeleton consists of all the functions in the file, but instead

of their original definitions, the bodies have all been replaced with our shorter LiveJS code. Ad-

ditionally, some skeletons will contain a string with the definition for the function livejs()

at the beginning of the file.

After parsing all JavaScript code with the Esprima parser, we are able to utilize the

estraverse tool [24] in Esprima to traverse the AST in order to identify all the function definitions

in each script. The body of each function is then replaced with two instructions: an eval()

statement on the string defining the livejs() function and a livejs() function call.

The livejs() function overwrites its calling function with the original function on

the server and returns the result of that function applied on its arguments. The intricacies of this

function are described in more detail in 2.2.1.

For the livejs() function to be effective, it must have access to all the variables

in its calling function’s closure. In order to ensure that all of the properties of the this object

as well as the elements in the current scope are preserved in the livejs() function call, it

is necessary to define the function inside its calling function. We accomplish this by utilizing

8



an eval() call on a string containing the function definition for livejs() as shown in

Listing 2.1.

When the AST has been completely modified as desired, we utilize the escodegen

tool [23] in order to generate relatively optimized JavaScript described by the syntax tree.

1 var livejs_def = function livejs(name, scope){

2 //livejs function definition

3 }.toString();

4

5 . . .

6

7 function example () {

8 eval(livejs_def);

9 livejs("example", this);

10 }

11

12 . . .

13

14 var xhr = new XMLHttpRequest();

15 xhr.open("GET", async_function_defs, true);

16 xhr.onload = function (e) {

17 eval(xhr.responseText);

18 }

19 xhr.send();

Listing 2.1: Pseudocode for the layout of the code skeleton including a skeleton function
definition example and an asynchronous request at the end of the file.

9



2.2.1 LiveJS Function

This function ultimately replaces the calling function with its original version: what

we had originally replaced with our blank is now once again the function definition.

In the case that this function was being called to create an object, all the functions in

the prototype would also be replaced with their original functions before creating and returning

the new object.

In order to accomplish this, the livejs() function performs a number of steps.

The first thing it determines is whether or not the calling function is creating a new instance of

an object. If so, we must replace the object that has already been created with a new object,

described by the original code (as opposed to the skeleton dummy code). It then determines

all the attributes of the calling function: Object prototype definitions and/or other Object keys.

Following that, the function sends a synchronous XHR to the LiveJS server asking for the

original function definition.

Once the original function definition is received from the server, the livejs() func-

tion will overwrite its calling function as such. Then it will repopulate that function’s keys and

prototype attributes. If the keys or the prototype attributes are functions still described by their

dummy skeleton definition, livejs() will recursively call itself to obtain the original func-

tion definitions for those functions. Finally, it will return the newly described function applied

on the this object provided by the calling function with the arguments provided to the calling

function. The pseudocode for the function is provided in Listing 2.2.

10



1 function livejs(fcn, scope) {

2 this.attributes = attributes_from_server;

3 this.prototype = prototype_from_server;

4 if(this == new Object){

5 this = this.prototype();

6 }

7 return this;

8 }

Listing 2.2: Pseudocode for the livejs() function. In JavaScript, the prototype of a function
is itself, and the prototype of an Object is its constructor function.

2.2.2 JavaScript Modification

After using Esprima to generate an AST for the original code, LiveJS performs mul-

tiple passes to modify the JavaScript. The first three passes format the AST so that all of the

functions are positioned in the code such that when the dummy skeleton code replaces the

original function body, if the livejs() function is called then its calling function can be

overwritten in its scope as well as, if necessary, globally. The fourth and final pass performs the

replacements of the non-inlined functions with the dummy function on this modified AST.

The Esprima project includes a code generation tool called Escodegen [23], which

generates JavaScript based on the AST created by Esprima. LiveJS utilizes Escodegen on the

AST of the skeleton code to produce minimized code. The generated code uses all of the

optimizations available in the Escodegen tool.

11



2.3 Load Time Optimization

Using some profiling information, LiveJS is able to determine the appropriate method

for providing the client with different JavaScript functions. There are three modes in which

JavaScript functions are provided to the client: inline with the original JavaScript file, sent

asynchronously after that file has been run, and synchronously only on a livejs() func-

tion call. As the synchronous function downloads are inherent in the code “skeleton” that is

originally created, this section will focus on the inline and asynchronous function loads.

2.3.1 Function Inlining

Some JavaScript functions are used as soon as they are defined, and therefore must

be sent as soon as they are requested in order to prevent delays. Since these functions must

be defined early, LiveJS will replace the “skeleton” body of those functions with the original

function definition, leaving the function inline in the script. By keeping the inlined functions to

a minimum, LiveJS is able to reduce the size of the original file sent to the client. Therefore,

the browser will be able to begin running and/or compiling the necessary code before the rest

of the functions are sent from the server.

2.3.2 Asynchronous Load

Appended to the end of the original file is an instruction to send an asynchronous

request to the server for the remaining functions that are used.

Many JavaScript functions in a webpage are utilized only after a page has been fully

rendered, and only provide functionality for the page. As such, they are necessary for the page to

12



run, but are not essential for the user to feel as though the page has been fully loaded. Examples

of website processes used by such functions include populating rarely-used drop-down menus

and hover text.

As such, these functions can be provided after the website is already running. There-

fore, LiveJS omits sending these functions with the original file, and only sends them asyn-

chronously, once the original file has been completely processed, during the asynchronous re-

quest.

2.4 Profiling

In order to find the relative order by which functions are called and which functions

are not frequently called, LiveJS employs some primitive profiling techniques.

The first time a website is used, LiveJS will send only the “skeleton” to the client. As

the skeleton sends a synchronous request to the server for every function being called, LiveJS

will be able to determine which functions are used. Additionally, by taking into account the

order in which it receives XHRs, the LiveJS server is able to procure a general ordering for

when the functions are first needed. The reason is that this is a simpler profiling than typical, us

that LiveJS only takes into account the relative order of functions being called, not the execution

time of functions.

Using this information, LiveJS is able to determine which functions to provide inline

with the file as well as which functions will be sent asynchronously.

13



2.4.1 Profile Gathering

LiveJS keeps track of a general order in which JavaScript functions are first used. As

opposed to most run-time JavaScript optimizations, LiveJS does not need to take into account a

function’s frequency of use and therefore avoids any associated overhead. Thus, keeping only

a basic ordering in which the functions are used is sufficient for LiveJS to perform as desired.

Obtaining this information is done in two ways: once the first time a webpage is

loaded in an initial profiling pass, and also during every subsequent page load when the livejs()

function is called.

When a LiveJS server is first set up, it will lack any profiling information, and thus

the first client to request a webpage will be provided with only the JavaScript skeleton. As the

skeleton contains none of the original function definitions, in order to run the webpage, each

time a function is used, its livejs() function will be called, triggering a synchronous request

to the server. The LiveJS server will keep track of the order in which these requests are received,

and therefore be able to monitor the order each function is actually called.

After that original profiling pass, LiveJS continues to obtain profiling information. If

a function is requested synchronously, LiveJS knows that somehow that specific function has

not been adequately provided to the client in time. Thus, that function is given a higher priority

to be sent earlier. If that function has never been used before, the next time that webpage is

loaded, it will be sent asynchronously. If that function was originally sent asynchronously, it

would be inlined the next time the webpage is loaded.

In order to keep the LiveJS statistics and function call order up to date, periodically the

14



LiveJS server will insert some asynchronous XHRs (a simple POST request with the function

ID) into a small percentage of the inlined and asynchronous function definitions in order to keep

track of the relative ordering in which clients utilize different functions. This allows the LiveJS

server to maintain a current function order by getting information from multiple clients.

2.4.2 Profile Usage

Depending on what type of network a client connects from, a LiveJS server will be

able to provide a function breakdown that is optimized for that connectivity. As different web-

sites utilize JavaScript functions in different ways, it might be advantageous for one website to

inline more functions for a slow connection, but send more in the asynchronous reply for fast

connections, whereas other websites may experience the opposite. A more in-depth description

of these cases are provided in Chapter 4.3.

Therefore LiveJS servers will keep track of when synchronous requests for function

definitions are received from different network types and modify the ratio of inlined to asyn-

chronous functions accordingly per bandwidth.

15



Chapter 3

Measurement Setup

This chapter describes our strategy for testing the speedup LiveJS provides. In order

to test LiveJS on widely used websites, we implemented a test setup using a proxy server, a

node.js server, and a web browser. All tests were performed on an i7 processor running Arch

Linux.

3.1 Proxy Server

In order to determine the efficacy of LiveJS, we implemented a proxy server using the

mitmdump apparatus in the mitmproxy tool [7], which allows us to set up a man-in-the-middle

proxy server that runs locally on the same machine as the client, intercepting all data transfer

between a browser and any servers. Using mitmdump, we were able to test the impact LiveJS

has on real websites such as Google Calendar and Amazon.

Utilizing mitmdump, we were able to intercept all the responses from the server and

apply our LiveJS tool. We first identified all the server responses that contained JavaScript, such

16



as a JavaScript file or an HTML document containing script tags. From there, we were able to

isolate all the JavaScript code and run it through our Esprima parser described in Chapter 3.3.

As the proxy server intercepts all data being transferred to and from the server, we

were able to store all the scripts that were being sent to the browser. Once we obtained all the

code, our proxy server was able to function as though it was the original server: it can handle

all the requests locally and therefore completely cut out all communication with the original

server.

When a request for new JavaScript code is received from the client, our proxy server

determines whether or not that code has already been stored locally. If not, it forwards the

request to the server and waits for the response. Upon receiving the response, it sends all of

the JavaScript code to an Esprima parser that works as described in Chapter 2 and then receives

a skeleton and a list of all the function definitions. It also saves the original JavaScript file.

The proxy server sends the skeleton to the client, and monitors every request for a function

definition. In doing so, it is able to maintain a priority ordering for when the functions should be

sent (based on the order in which they are used). As the proxy server also has all of the function

definitions, it is able to send the JavaScript function definitions directly, without needing to

further utilize the Esprima parser until the next time the webpage is loaded.

If the proxy server receives a request for JavaScript code it has encountered previ-

ously, then it sends the saved JavaScript code to the Esprima parser and requests a skeleton that

has some inlined functions and includes an asynchronous request.

As our proxy server is standing in for an independent LiveJS server, it keeps track

of all the profiling information. Upon receiving a synchronous request from the livejs()
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function call, the proxy server will identify the function being requested and update its priority.

If the function has never been used before, it will assign the next available priority to that

function. If the function has been used, it will assign a higher priority to that function.

Depending on a function’s priority, the proxy server is able to determine the order in

which functions are provided to the client and by what means. When the proxy server receives

a synchronous request for a function definition, it determines whether or not that function has

been previously sent asynchronously based on its current priority. If it has not, that function

will be set asynchronously the next time the web page is loaded. If the function has been

sent asynchronously, the proxy server will increase the number of functions that should be sent

inline, and assign that function a higher priority for getting sent first. Therefore, the next time

the page is loaded, that function will have a higher probability of being sent inlined with the

initial JavaScript response.

3.2 Client Setup

We used the Chromium browser version 49 and Firefox version 45 in order to test

LiveJS. Chromium includes developer tools that allow users to test their websites on different

platforms and have an option for limiting bandwidth. On the other hand, to conduct the tests

in Firefox, we utilized The Wonder Shaper 1.2 [15]. The differences in the results we obtained

from each browser was negligible (within a 2% error margin), and thus this document will report

the results obtained by the Chromium client.

Using the throttling tools, we were able to test LiveJS on websites as though the user
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Table 3.1: This table shows the speed and delay of the networks used during testing.
2G 3G 4G

Speed 250 Kbps 750 Kbps 4 Mbps
Round-Trip Delay 300 ms 100 ms 20 ms

is accessing them through 2G, 3G, and 4G networks as well as turning off bandwidth throttling

entirely. As all of the data transfer was performed between the client and our proxy server, we

were able to perform our tests without worrying about the connectivity with the actual server,

and thus the connection speed selected in Chromium was the determining factor for bandwidth.

The exact speeds for each network are described in Table 3.1.

Other than throttling the bandwidth for testing different network speeds, we made no

changes to the client test setup. Thus, we are able to test LiveJS as a tool for web developers

that is not impacted by the client.

3.3 Parsing JavaScript

In order to test LiveJS on widely-used websites, we implemented our technique using

the Esprima JavaScript parser running on a node.js server.

Upon intercepting JavaScript code, the proxy server in our test setup would send a

request for a JavaScript skeleton for that script to the node.js server running the Esprima parser.

When it receives a request for a skeleton, the node.js server simply parses the script and replaces

the body of each JavaScript function as described in Chapter 2.2.

When the proxy server receives a request for a script that it has already stored, it

will send a request to the node.js server for a JavaScript file that has inlined functions. This
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request will provide the original function definitions and some profiling information including

function priority (or a general order) as well as the percentages of functions that should be sent

inlined with the file as well as asynchronously. As before, the Esprima parser will isolate all

the functions definitions. However, this time, it will only replace the functions that should not

be inlined with their dummy skeleton definitions. Additionally, the parser will also append a

server request at the end of the file to receive all the functions that are sent asynchronously.

However, the node.js parser will not provide a function definition for a function that

has never been used. If the proxy server requests a higher percentage of functions to be inlined

than there are used functions, the file will only inline the functions used and no functions will be

sent asynchronously. Additionally, if the sum of the percentages requested for inline and asyn-

chronous functions exceeds the number of functions used, the parser will inline the requested

percentage of functions, but less functions will be sent asynchronously.

3.4 Benchmarks

In order to test LiveJS, we were able to utilize our testing setup on six real-world

websites: Google Calendar, Amazon.com, OS.js, Facebook.com, CNN.com, and Twitter.com.

3.4.1 Google Calendar

One of the benchmarks we used to test the efficacy of LiveJS was Google Calendar.

The original version of this website (before being modified by the LiveJS setup) is

already highly optimized. When tested, it is apparent that the JavaScript code is split up into
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multiple files, and the first file sent contains the functions that tend to be used first. Therefore,

we utilized this benchmark in order to determine the impact LiveJS would have on code that

already has ordering taken into account.

A majority of the Google Calendar website’s code is JavaScript. Of the 3.7 MB of

data that gets sent from the server to the client, 3.5 MB (95%) is JavaScript code. Most of the

code for rendering the page is done in JavaScript, with very little CSS code. Additionally, all of

the events in the calendar are obtained using JavaScript code. Therefore, utilizing a JavaScript

optimization tool should make the website faster.

3.4.2 Amazon.com

In order to test LiveJS on websites that are widely used, we used Amazon.com as a

benchmark. Amazon.com uses JavaScript in multiple ways such as populating the page based

on each user’s preference as well as powering its search engine. However, a majority of the data

being transferred to the client from the Amazon.com server is actually not JavaScript code, but

rather images. Out of the full 10.1 MB, only 7% of the data is scripts.

We utilized this website to determine the effect of LiveJS on websites that have a

small percentage of JavaScript code.

3.4.3 OS.js

The third benchmark we tested was the OS.js project: a JavaScript Desktop Platform

that runs entirely on the web. OS.js includes a window manager and several applications.

Most of OS.js’s data is JavaScript (66% of the total 708 KB). The next significant
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portion of data is once again images, as with Amazon.com. However, in OS.js, there is a single

image - the desktop wallpaper - that takes up 14% of the data on its own, with the other images

being relatively negligible in size, comprising a total of about 6% of the total data. Thus, all the

data for the wallpaper image will be sent all together, instead of in many different (potentially

parallelized) server responses as with Amazon.com.

3.4.4 Facebook.com

In order to observe how LiveJS performs on a large social network site, we used

Facebook.com as a benchmark. Facebook has a large mix of different types of code and images,

and JavaScript does not comprise the majority of Facebook’s data on a load, only about 50% of

the full 2 MB. Instead, Facebook contains many images as well as CSS code.

3.4.5 CNN.com

CNN.com was used as a benchmark because not only is it widely used around the

globe, it also is rendered using JavaScript in order to maintain consistent appearance and func-

tionality across mobile and desktop clients. Additionally, the website has been subject to cri-

tiques claiming the current version, although more aesthetically pleasing, is now slower to

load [3, 12]. In total, the JavaScript code for CNN.com takes up 55% of the total website

data (5 MB).

As a popular website that relies heavily on JavaScript during load-time, CNN.com

was an obvious choice for testing LiveJS.
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3.4.6 Twitter.com

Twitter.com was used as a benchmark in order to test LiveJS as it is widely used but

has relatively minimal functionality. Mostly content and images, Twitter.com’s 4 MB is only

about 15% JavaScript, most of which is JQuery definitions and analytics for site traffic.
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Chapter 4

Evaluation

This chapter will describe the results we observed and provide an evaluation of our

findings. As the results from Chromium and Firefox were comparable, only the Chromium

results are reported in this chapter.
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Figure 4.1: Normalized Load time for LiveJS for each benchmark with respect to load time
without using LiveJS. The bandwidths are as described in Table 3.1
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4.1 Profiling

The algorithm LiveJS used to determine which functions will be sent with the original

JavaScript response and which functions will be sent asynchronously depends heavily on the

initial profiling pass. Potentially, LiveJS will have poor performance for the next few times the

page is loaded, but the algorithm stabilizes quickly and will provide the client with function

definitions in a more optimized order. However, once that profiling pass is done, the user will

rarely experience an effect from the profiling.

If LiveJS is collecting some profiling data, that means that a function has been called

before the server has provided its definition, and thus a synchronous request has been triggered.

However, with the exception of during the profiling pass and potentially the first few page loads,

these synchronous requests are relatively rare as the LiveJS server will have found a setup in

which the appropriate functions are sent inline with the skeleton and asynchronously to the

client as to avoid triggering the livejs() function. We found that a maximum of around

ten page loads was sufficient for the LiveJS algorithm to maintain a workable ordering that

mitigates synchronous function calls. This amount of page loads is negligible to websites with

a lot of traffic, and can even be performed by the developer before launch.

All the results provided in this chapter were obtained after the profiling passes are

complete, and thus are representative of the typical LiveJS behavior.
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Figure 4.2: Total time taken for each benchmark with and without utilizing LiveJS

4.2 Load Time Decreases

Ultimately, LiveJS is a tool designed to improve the load time for webpages. The

results of our testing load times, normalized with respect to the load time without using LiveJS,

are shown in Figure 4.1. This section will provide descriptions of the load time decreases as

raw data, and analyses of these results will be presented in Section 4.3.

4.2.1 Google Calendar

We were able to achieve a 58% load time reduction for Google Calendar when on

a network with unlimited bandwidth. On slower networks, we achieved less speedup but still

maintained a faster loading time than the baseline, with the smallest reduction of 14% for a 2G

connection speed.
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4.2.2 Amazon.com

Amazon.com experienced a more distinct speedup when the network was slower. On

the 2G network, the load time was only 37% of the baseline when using LiveJS, but as the

connection speed increased, the speedup from LiveJS became less significant. However, for the

3G and 4G networks, the LiveJS load time was still about 2 times faster than the baseline. Even

with unlimited bandwidth, the LiveJS provided a 11% load time reduction.

4.2.3 OS.js

For the faster networks, OS.js failed to achieve a significant speedup from LiveJS,

with only 1% load time reduction for ethernet speeds and 12% for the 4G connection, but on

the 3G network it loaded in only 70% of the time for the baseline, and maintained a significant

25% reduction at 2G speeds.

4.2.4 Facebook.com

When loading Facebook.com, we observed a higher speedup as the network speed

declined, loading 30% faster at 2G connection speeds. Without throttling the connection speed,

Facebook.com loaded only 10% faster with LiveJS than its baseline time.

4.2.5 CNN.com

CNN.com observed the most significant reduction in loading time from LiveJS with

the 3G network connection: 25%. Still, LiveJS provided at at least a 20% reduction consistently

at all four connection speeds.
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Figure 4.3: Breakdown of functions for each benchmark. The majority of the code remains
unused for all three benchmarks, and therefore is sent using synchronous requests. In general,
most of the functions that are used are sent inline with the original JavaScript response, and a
small percent of functions are sent asynchronously to the client later.

4.2.6 Twitter.com

The amount of speedup provided by LiveJS for Twitter.com was negligible. The load

times between the LiveJS optimization and the baseline were the same for all connection speeds.

Further explanation will be provided in Section 4.3.

4.3 Insights

This section seeks to provide explanations for the results of our tests. In Figure 4.3,

we can see the breakdown of how the functions are sent during a page load.

4.3.1 Google Calendar

Although Google Calendar had the highest percentage of JavaScript functions, LiveJS

did not necessarily provide a higher speedup than for the other benchmarks. Because the LiveJS
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Figure 4.4: Total data transferred from the server to the client when loading Google Calendar.
The LiveJS server ultimately sends less data to the client than the baseline.

skeleton still provides the full structure of the original code, it still sends an average of 85% of

the amount of data to the client, as shown in Figure 4.4. However, this data is split up into many

different files, all of which must be requested by the client. The way Google Calendar is set up

the JavaScript files are almost always requested using another JavaScript function. Therefore, if

each file can start running an average of 15% faster, then the time saved compounds on it self,

giving us the 58% time reduction we observe.

4.3.2 Amazon.com

Of the six benchmarks, Amazon.com was affected most by utilizing LiveJS. Because

it relies so heavily on JavaScript in order to populate the website, when LiveJS is used, some of

the hidden content is never downloaded from the server. For example, when using a basic setup

to load Amazon.com, the client will download a lot of data (mostly images) that may never be

displayed on the screen, as they are hidden in menus, or at the bottom of the page. Also, many

images downloaded by a web browser are used to populate graphic elements that scroll through
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Figure 4.5: Data necessary to load Amazon.com. In general, the LiveJS server would send less
data than the baseline.

multiple images, but only display some of them. When using LiveJS, the hidden images are

not requested until after the initial page has been loaded and the browser is already running the

functions that have been sent asynchronously.

Taking this into account, it makes sense that less data is transferred when using LiveJS

to load Amazon.com. Therefore we can justify the observed average reduction of 44% while

noting that minimizing the amount of data downloaded also lessens the time it takes before that

data can be utilized.

4.3.3 OS.js

The main bottleneck for the OS.js benchmark is downloading a single huge image

that acts as the background for the virtual desktop. Furthermore, OS.js effectively only utilizes

five JavaScript files. Therefore, although much of the OS.js functionality is implemented in

JavaScript, that functionality is relatively unnecessary until after the page as loaded. Figure 4.3

shows the percentages of functions that are sent inline with the skeleton, on an asynchronous
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Figure 4.6: Data for loading OS.js. There was a negligible difference in the amount of data sent
for the baseline and using LiveJS.

request, or when a function is called and a synchronous request is triggered. As shown in the

figure, much of the JavaScript functions are unused when loading OS.js, and are therefore left to

be downloaded on a synchronous request. However, as shown in Figure 4.6, generally the same

amount of data is downloaded from the baseline and our LiveJS server. This is because, unlike

for Amazon.com, OS.js’s non-JavaScript data is all immediately visible and used right away.

Therefore, LiveJS does not provide as much speedup with OS.js as it does with Amazon.com

or Google Calendar.

4.3.4 Facebook.com

The speedup provided by LiveJS for Facebook.com is similar to, but not as drastic, as

the speedup observed for the Amazon.com benchmark. Comparing the amount of data trans-

ferred during loads of Facebook.com in Figure 4.7 and for Amazon.com in Figure 4.5 as well

as observing the reduction in load times for both websites in Figure 4.1, shows similar behavior

between the two. Facebook.com also relies on JavaScript in order to populate the website, and
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Figure 4.7: Total data transfer while loading Facebook.com. As the network speed increased,
there was a greater difference between the amount loaded using LiveJS and without.

thus any rarely-used functionality will never be downloaded. However, unlike Amazon.com

which encourages navigation between many separate pages, the Facebook webpage is designed

such that a user spends a long time on a single page, with functionality to interact with each

element - such as “liking” or commenting - as well as embedded pop-up windows. Since much

of the same functionality, and therefore the same code, is used on the readily available elements

as well as the hidden or unimportant elements, the code must be available early. Thus, it is in-

tuitive that the LiveJS speedup for Facebook.com is less significant than that for Amazon.com,

but manifests in a similar manner.

4.3.5 CNN.com

Using LiveJS with CNN.com provided a load time that was least 20% faster for all

four bandwidths, and the speedup remained a relatively consistent percentage. Upon observa-

tion, we can determine that the speedup comes from delaying the download of hidden images

and functionality from the webpage. As mentioned before, much of the data downloaded by
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Figure 4.8: Total data downloaded from the server when loading CNN.com with and without
LiveJS. When using LiveJS, less data is transferred than the baseline.

CNN.com is JavaScript used for the initial page render, but the website also features many large

images that limit how much speedup LiveJS can provide without sacrificing aesthetics. Further-

more, we can determine that the speedup remains consistent across connection speeds due to the

fact that the functions get split up for transmission to the client in the same way for each band-

width, as shown in Figure 4.3. This is because the way CNN.com is designed, the JavaScript

functions used for rendering do not overlap with the functions used for functionality, so there

is a clear distinction between which functions should be sent inline with the original response

and which functions should be sent asynchronously later. The amount of data transferred when

loading CNN.com is shown in Figure 4.8.

4.3.6 Twitter.com

The lack of speedup provided by LiveJS for Twitter.com was a direct result of how

the webpage is rendered. The JavaScript code for the original website is not used to render

the webpage, and thus the download of the JavaScript code can occur in parallel with the other
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content. Therefore, although LiveJS does not inhibit the load time of Twitter.com, it does not

provide any improvement in load times.
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Chapter 5

Related Work

This chapter will describe the current work done for JavaScript optimizations. A

majority of JavaScript optimizations have been done to improve the run-time, the most notable

of which is compiling the scripts and running them natively instead of using an interpreter.

However, recently some work has been done to improve load-time as well.

Most load time optimizations have been done in an attempt to minimize the total

amount of data being sent for the same amount of code such as shortening the names of the

functions and variables [2], or compressing objects before transmission [1]. However, some

work has been done in parallelization [16, 20] and inlining [17] of JavaScript downloads.

Recently, Google has succeeded in improving the load-time of websites using JavaScript.

These optimizations are both done on the client-side and were released in recent Chrome up-

dates [14]. In March, 2015, they added two new techniques: Script Streaming and Code

Caching. Additionally, in early 2016, some work was done on load-time dependencies by MIT

and Harvard [18].
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5.1 JavaScript Dependency Tracking: Polaris

Polaris is a client-side scheduler designed to modify normal webpages in order to

determine which objects to load using a fine-grained dependency graph [18]. Using a depen-

dency tracker subjects Polaris to certain constraints; it cannot support certain JavaScript func-

tion calls such as eval() and with(). As LiveJS does not utilize a dependency tracker, these

JavaScript features remain available to developers.

Additionally, Polaris focuses on the reordering of JavaScript between multiple files,

whereas LiveJS only reorders the functions contained within a single file. As such, these two

tools can work in tandem, providing further speedups.

5.2 Script Inlining: Silo

Silo looks to aggressively inline JavaScript code in order to minimize HTTP fetches

and improve the loading time of webpages [17]. This tool aims to download the script content

as early as possible by reordering all the website code including HTML and CSS.

Although Silo aims to minimize fetches for load time improvements and LiveJS per-

forms additional fetches to the same end, both tools are actually compatible. If the LiveJS tool

is used on a website, the total amount of JavaScript per .js file sent to the client is decreased.

Thus, if the Silo framework is used after utilizing LiveJS, the amount of script data being inlined

by Silo has also decreased, and so the speedup provided by Silo would also increase. Addition-

ally, the XHRs for the asynchronous and synchronous function loads from LiveJS would still

be functional, and therefore the improvements from LiveJS would remain without sacrificing
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functionality.

5.3 Parallelization of Downloads

One tool available to web developers currently is HeadJS, which looks to optimize

websites [20]. HeadJS focuses on improving the load time of websites by loading the JavaScript

asynchronously in parallel while still executing all the functions in order. Additionally, it at-

tempts to universalize websites by determining the browser type of the client, and applying

dedicated JavaScript logic for that specific platform.

HeadJS is an optimization that allows developers to write lighter code, as this plugin

deals with the browser-specific intricacies. Therefore, there is less total JavaScript to download

when loading the webpage, and thus the webpage will have a shorter load time. Additionally,

with the parallel download capabilities, HeadJS provides a reasonable speedup for JavaScript

website load times.

The parallelization of JavaScript downloads is reminiscent of the asynchronous XHR

in LiveJS, but ultimately the web developer is accountable for implementing this functionality in

HeadJS, whereas LiveJS will perform its optimizations automatically. Additionally, the LiveJS

functionality should be unaffected by the parallelizations available in HeadJS, and thus the two

tools can be used together for greater improvements.
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5.4 JavaScript Code Size Reduction

UglifyJS [2], JSCompress [25], and JavaScript Minifier [5] are just a few of the nu-

merous tools available to web developers that reduce the size of their JavaScript code. Es-

sentially, all of these tools run the JavaScript code through a parser and rename the variables

and functions to short names and/or remove extra white space or unnecessary symbols without

changing the shape of the AST and thus any of the functionality or even the flow of the code.

That is, these tools only remove unnecessary characters in the source code.

Google Closure Compiler: Developed by Google engineers, the Closure Compiler

is an application designed for web developers to optimize their code [8]. The idea is that the

developers will run their code through the Closure Compiler, and the code will be made more

streamlined. This allows for less code volume (as all the variables names have been shortened,

etc), and therefore less code to download at load time. Cutting down the download time will

effectively shorten the load time of a webpage. The Closure Compiler boasts of helping the

developer further by providing warnings for illegal JavaScript code or dangerous operations.

However, it is ultimately similar to previous projects such as UglifyJS and others.

When rebuilding the JavaScript code before sending it to the client, LiveJS uses the

size reduction techniques available in Escodegen that are comparable to an UglifyJS type opti-

mization in addition to its own unique reordering techniques.
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5.5 Google Script Streaming

With the addition of Script Streaming in Chrome version 41, the browser now uses

two threads for page loads: a main thread and a parser thread [14]. As previously, the main

thread begins downloading the JavaScript code from the server, but now as the main thread is

downloading, the parser thread starts parsing the downloaded code. As the download occurs,

the parser thread only works on asynchronous and deferred scripts, but when the download

completes, the parser finishes all of the code. Once all the code has been parsed, the parser

thread is done and the main thread resumes, beginning with the compile phase and continuing

with execution.

As we used a newer version of the Google web browser, all of the results in this work

utilize this technique for both LiveJS and the baseline measurements. Thus, all the improve-

ments shown are in addition to the benefits of Script Streaming.

5.6 Google Code Caching

In version 42, Chrome started performing code caching as well as script stream-

ing [14]. Code caching focuses on speeding up page loads for repeated visits to the same page.

In previous versions, Chrome discarded the compiled JavaScript code for a webpage once a

user had navigated away. However, with the introduction of code caching, Chrome now stores

a local copy of the compiled code in order to skip the download, parse, and compile phases of a

page load. This saves about forty percent of compile time across all page loads.

LiveJS provides load time improvements the first time a webpage is loaded, which
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is impossible to do with a caching technique. However, all of the caching benefits would still

apply to a LiveJS website, as all of the necessary data is eventually sent to the web browser and

therefore can be cached.

5.7 Runtime Optimizations

Most of the JavaScript optimization work has been done for run-time. Large cor-

porations such as Mozilla and Google are releasing browsers that incorporate many run-time

optimizations, but there are also tools that assist web developers in optimizing their code as

well. [6, 10, 11, 19, 21, 26].

As LiveJS is aimed at load time optimizations while still keeping the functionality the

same, LiveJS’s benefits do not affect the runtime optimizations.
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Chapter 6

Conclusions and Future Work

As the evaluation shows, LiveJS is able to speedup heavily optimized websites like

Amazon and Google Calendar. Using the LiveJS test setup, we were able to observe a speedup

in every benchmark we tested, including heavily optimized websites, as well as over many

different bandwidth speeds using multiple different web browsers. LiveJS provides an average

speedup of 60% in the latest clients for Google Chrome and Firefox.

Other websites with less optimized code could potentially benefit even more. The

most used JavaScript library in less optimized websites is JQuery [22] but most websites do not

use all its functionality. This type of optimization will benefit even more these websites. We

have not done this type of unoptimized websites because they have many other techniques like

asynchronous loads and it would be harder to provide a breakdown without understanding each

one of them.

Besides the load time optimizations provided by LiveJS, it is a novel solution to im-

proving the load time of webpages. Not only for the techniques deployed but the observation
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and mechanism to detect functions that are needed for later in the execution time. This obser-

vation opens the opportunity to other optimizations not analyzed in this chapter like on-the-fly

compilation once the code is sorted by usage.

LiveJS is the first tool that provides the client with the JavaScript functions in a spe-

cific order in each file, allowing the web browser to start running the necessary code before

the rest of the functions have even begun downloading. LiveJS allows web developers to make

no changes when designing and creating webpages, but still allows for a decrease in load time

when a website is implemented. As LiveJS is client-independent, it works with multiple web

browsers and multiple platforms without any change in performance.

As websites continue to become more complex, the code contained within each web-

site will increase. However, not all of this code is necessary immediately, and thus LiveJS

allows for a web developer to ensure that his webpage is provided to the client in a practical

way. Load times decrease, as the initial responses for JavaScript files are smaller, therefore al-

lowing the client to start compiling and/or interpreting the code necessary for page loads sooner.

Additionally, it parallelizes the requests for JavaScript functionality: the asynchronous request

may occur simultaneously with a request for another JavaScript file. That is, instead of having

to wait for the previous file to have fully downloaded prior to downloading the next script file,

LiveJS will download a shorter version, but still have all the necessary functions.

As LiveJS is completely implemented on the server, future work can include a client-

side component. The inclusion of a client component to LiveJS can provide more speedups, by

compiling the asynchronously and synchronously downloaded code, eliminating the necessity

of the costly eval() function call.
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