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Summary
Background Deep learning has shown potential in various scientific domains but faces challenges when applied to
complex, high-dimensional multi-omics data. Alzheimer’s Disease (AD) is a neurodegenerative disorder that lacks
targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to
improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics.

Methods The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a
three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation.
Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and
Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final
classification.

Findings The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for
distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169
increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of
1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6).

Interpretation Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying
potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant
further investigation.

Funding The specific funding of this article is provided in the acknowledgements section.
*Corresponding author. Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, 355 W
16th St. Methodist hospital, GH 4101, Indianapolis, IN, 46202, USA.
**Corresponding author. Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, 355 W
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mData used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As
such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis
or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf.
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Evidence before this study
A PubMed search up to August 7, 2023, using the terms
“deep learning” “machine learning” "Alzheimer’s Disease”
“metabolomics” and “lipidomics” yielded studies that mainly
applied traditional machine learning algorithms and
neuroimaging techniques for diagnosing and understanding
Alzheimer’s Disease (AD). While there has been interest in
applying deep learning to metabolomics and multi-omics
data, these efforts often overlook the importance of feature
correlations, which could potentially improve the accuracy of
predictive models. Additionally, deep learning models struggle
with high-dimensional, complex data sets like those
commonly found in multi-omics research, particularly when
data are sparse.

Added value of this study
We introduced a three-step deep learning method, the
circular-Sliding Window Association Test (c-SWAT),
specifically designed to account for correlated features and
improve model performance. The method was applied to
serum-based lipidomics data from 997 individuals to predict
AD. c-SWAT achieved an accuracy of up to 80.8% and an Area

Under the Curve (AUC) of 0.808, outperforming models not
using c-SWAT by 9.4% in accuracy and 0.169 in AUC.
Moreover, c-SWAT identified key lipids correlated with AD,
including Cer(d16:1/22:0), PI(37:6), CE (20:4) [+OH], and LPE
(20:4) [sn1], which have biological implications related to
neural cell membranes, microglial signaling, cholesterol
storage, and glycerophospholipid metabolism. These lipids
showed a 1.27%–3.23% increase in AD samples compared to
cognitively normal older adults (CN).

Implications of all the available evidence
The c-SWAT approach offers a notable advancement in the
application of deep learning to multi-omics data, particularly
for complex diseases like AD. The method not only improves
predictive accuracy but also offers insights into potential
biomarkers crucial for understanding AD pathophysiology.
The identified lipids offer new possibilities for targeted
research and therapeutic interventions. Furthermore, the
approach has the potential to be adapted to other types of
biological data and diseases, contributing to the development
of personalized medicine for a range of conditions.
Introduction
Deep learning is able to recognize complex patterns in
input data by weighting key features during
backpropagation.1–3 Because deep learning can handle
large volumes of data without feature selection proced-
ures,4 researchers have been using it to uncover new
biological phenomena,5,6 develop new drugs,7 and find
important clues to help delineate diseases.8,9 Deep
learning excels when applied to data with complex
structures such as images10 and language.11 However, its
application to tabular data,12 which often has a smaller
sample size and a more straightforward feature set, has
not consistently shown effectiveness. In light of the
widespread use of tabular data in genomic and multi-
omics studies,13 it is imperative to refine deep learning
applications for this type of data. Therefore, we devel-
oped the circular- Sliding Window Association Test (c-
SWAT), an advanced variant of SWAT,14 initially
designed for genetic data and adapted to accommodate
the specificities of multi-omics data. Our c-SWAT
method enhances the efficiency of the deep learning
algorithm in classifying data by incorporating correlated
feature groups within each flexible-sized window. This
study reports on the application of this method to lip-
idomic data, a subfield of metabolomics, to detect
Alzheimer’s disease, as well as identify metabolites
associated with the disease.

Alzheimer’s disease (AD) is a neurodegenerative
disorder leading to conditions such as dementia, per-
sonality changes, impairment of judgment and speech,
and memory loss.15,16 In the preclinical phase of AD,
patients’ function declines steadily for more than 10
years.17 However, no clinical evidence enables a diag-
nosis of AD, and there are no targeted pharmacological
interventions or prophylactic interventions to treat
AD.18,19 A further understanding of the underlying cause
of AD is therefore essential to identifying new treatment
targets. Neurofibrillary tangles and amyloid plaques are
two typical AD pathological lesions.20 When the disease
advances, there are also changes in the structure of the
brain, glucose metabolism, and measurements of bio-
markers in circulating blood.21,22 In recent years,
metabolomics technologies have been used to identify a
number of disease-specific biomarkers, enabling in-
sights into the pathophysiology of diseases like AD, type
2 diabetes, and cancer.23–31

Metabolites, products of biological cascades that
include DNA, transcripts, and proteins, may have
beneficial properties which may help identify AD bio-
markers. In this paper, we present a three-step deep
www.thelancet.com Vol 97 November, 2023
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learning approach for detecting AD using lipidomic
data, a specific aspect of the broader metabolomics data.

We used serum-based metabolomics data from 997
participants from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI). c-SWAT, an extension of
SWAT, calculates the phenotype influence score (PIS),
which represents the association between the metabo-
lites and the phenotype of interest, based on the corre-
lation between these metabolites using deep learning.
Using weighted gene co-expression network analysis
(WGCNA),32 the correlation between features was
calculated and feature groups were created. WGCNA is
utilized in our study to uncover highly correlated clus-
ters of features among metabolites. We then implement
a flexible windowing approach, choosing the most
influential features within each feature group and
thereby defining the structure for input into the Con-
volutional Neural Networks (CNN). The purpose of this
process is not simply to filter the data, but rather to
determine the structured input, based on feature cor-
relations, for our deep learning model. The structure
required by CNN is maintained in this approach, with
dense layers becoming more appropriate due to the
derived correlations from the WGCNA and SWAT pro-
cesses. Subsequently, CNN is employed to classify AD
from cognitively normal older adults (CN).
Methods
Data acquisition
The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort served as the source for all study partic-
ipants. This cohort included 382 cognitively normal in-
dividuals (CN), 212 individuals with early mild cognitive
impairment (EMCI), 254 with late mild cognitive
impairment (LMCI), and 149 with Alzheimer’s Disease
(AD). For the EMCI, LMCI, and AD groups, only those
with confirmed amyloid-β positivity were included.
Overall, our investigation involved a total of 997 fasted
individuals. The metabolomics data used in this study
was obtained from the ADNI database (http://adni.loni.
usc.edu/). The ADNI, launched in 2003 as a public-
private partnership and led by Principal Investigator
Michael W. Weiner, MD, has been primarily concerned
with testing whether the progression of AD can be
effectively measured using serial magnetic resonance
imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsy-
chological assessment.

Extension of SWAT to c-SWAT
We developed an innovative method named c-SWAT, a
variation on the original Sliding Window Association
Test (SWAT)14 approach we previously developed. The
original SWAT was proposed as a three-step, deep
learning-based procedure to identify informative single
nucleotide polymorphisms (SNPs) and create
www.thelancet.com Vol 97 November, 2023
classification models for phenotypes of interest. This
process, as shown in Fig. 1, was initiated by dividing the
whole genome into optimally sized, non-overlapping
fragments, upon which deep learning algorithms were
employed to select phenotype-associated fragments con-
taining relevant SNPs. SWAT then computed a PIS for
each SNP within a fragment. When the kth SNP is Sk, the
PIS in SWAT is calculated using the following formula:

PISSWAT = ∑k+w−1
k=k−w+1

Sk
k+w−1

In this process, the fragment length is denoted as ‘w’.
A window of length ‘w-1’ is initially positioned at the first
SNP of the fragment. The window then slides one SNP at
a time until it reaches the end of the fragment. This
SWAT procedure is implemented across all selected
fragments, leading to the calculation of a PIS for each
SNP involved. This score reflected the association be-
tween the SNP and the phenotype of interest, aiding in
the identification of the most informative SNPs. Notably,
in a real-world application to Alzheimer’s disease, this
deep learning approach using SWAT succeeded in
identifying significant genetic loci for the disease and
achieved a higher classification accuracy than existing
machine learning methods. While SWAT proved effec-
tive for high-dimensional data, it is not as well-suited for
the tabular data formats frequently found in multi-omics
studies, which often have a smaller set of features. These
data types inherently constrain the range and number of
features that can be analyzed effectively.

To improve upon these limitations, c-SWAT was
developed. Fig. 2 illustrates an overview of c-SWAT,
designed to enhance the learning effect by grouping
related input features. While SWAT demonstrates high
efficiency with complex, unfiltered data, it may
encounter limitations with tabular data possessing fewer
features, mainly due to constraints in acquiring a suf-
ficient number of windows for PIS computation. To
address this, c-SWAT computes the PIS for each group,
as demonstrated in Fig. 2a, distinguishing itself from
SWAT by constructing a circular window that links the
start and end of all features. This window size is
uniquely tailored for each group. As seen in Fig. 2b, we
applied the WGCNA to determine these feature groups.
Each group, represented by a circle in the figure, en-
compasses correlated metabolite features. Variable-sized
sliding windows captured their collective properties, and
based on these arrangements and the class of each lipid,
a PIS for each metabolite is calculated. These PIS values
then subsequently inform the classification of AD.

Deep learning for phenotype influence score (PIS)
calculation in c-SWAT
In the stages of c-SWAT that required the calculation of
PIS, we employed CNN as our base classifier. As illus-
trated in Fig. 3, the CNN consists of a convolutional layer
3
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Fig. 1: The figure illustrates the original Sliding Window Association Test (SWAT) in Genome-Wide Association Studies (GWAS). SWAT begins
by partitioning the entire genome into smaller, nonoverlapping fragments. For every fragment, SWAT employs a sliding window technique in
conjunction with a Convolutional Neural Network (CNN) to compute a phenotype influence score (PIS) for each Single Nucleotide Poly-
morphism (SNP). This computation considers ‘w’, the number of SNPs in a fragment, and ‘Sk’, the position of each SNP. By distinguishing SNPs
with significant PIS values, SWAT efficiently identifies phenotype-associated genetic variants.
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containing 64 filters with a kernel size of 5, applying
ReLU33 activation function, followed by a global max
pooling layer. Subsequent to the pooling, four dense
layers with units of the corresponding number of fea-
tures, 32, 16, and 8 respectively, are implemented, all
utilizing ReLU activation functions. The final output layer
is tailored for binary AD classification, containing 2 units
and employing a softmax activation function. We utilized
Adam (preprint34) as the optimizer within the context of
deep learning. Each input value was initially rescaled
using the log(x) transformation. The robustness of our
model was confirmed using 5-fold cross-validation.

Step1: grouping correlated metabolites
To detect network modules in metabolomics data, we used
the WGCNA R package, which utilizes hierarchical clus-
tering and dynamic tree cut algorithm (preprint34). We
used the biweight mid-correlation method to calculate the
correlation between lipids with a soft-thresholding power
of 7. The minimum number of lipids within modules was
set to 5. The levels of lipids in a module were represented
by the module eigen-lipid value (ME), which is defined as
the first principal component of the lipid matrix of the
corresponding module.

Step2: calculating phenotype influence score based
on deep learning
The importance of each feature group was determined
using a modified k-fold Cross-Validation approach. In
this approach, each feature group was left out once, and
the model was trained on the remaining feature groups.
The performance was then averaged across the k folds to
provide an estimate of the feature group’s importance.
The error for this method can be represented by the
following formula:

ModuleImpactj = 1
k
∑k
k′ =1

( ∑
i∈Fold k′

(yi− f̂i )2)
−
1
k
∑k
k′ =1

( ∑
i∈Fold k′

(yi− f̂i−j)2)

Here, n represents the total number of feature mod-
ules, yi denotes the actual value of the ith data, and f̂i
refers to the predicted value obtained by feeding the ith
data into the model trained using all other data, and k’
serves as the index for each individual fold in k-fold
Cross-Validation. j is the index for the feature group,
defined either through WGCNA or though lipid clas-
ses. The PIS is the value obtained by applying the above
formula to the feature groups defined by WGCNA, and
to the pre-defined lipid classes. Specifically,
ModuleImpacti,WGCNA represents the CV-based module
impact for the ith feature module defined using
WGCNA, and ModuleImpacti,Lipid represents the CV-
based module impact for the ith feature module
divided according to the group subclasses given in
ADNI data. In addition to the CV approach, Random
www.thelancet.com Vol 97 November, 2023
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Fig. 2: Overall structure of the c-SWAT. The phenotype influence score for the feature groups was calculated as shown in (a). Sliding windows of
varying sizes overlap all feature groups except one to perform the classification prediction, thereby determining the importance of the excluded
group. WGCNA was used to determine the group as shown in (b). Based on these results and the lipid classes, PIS for each metabolite was
calculated and used to classify AD.

Fig. 3: An overview of how a deep learning approach was implemented in steps 1 and 3. Our model utilizes three main hidden layers, with
the number of nodes in these layers optimized from 32 down to 8 using a grid search approach. The classification between AD and CN was
performed with top-ranked features from each group using the CNN algorithm, and the performance was assessed by a 5-fold cross-
validation.
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Forest’s feature importance, denoted as fii, was
employed to further assess the relevance of each
feature in the model. This process can be represented
as follows:

PISc−SWAT ,i = 1
2
(ModuleImpacti,WGCNA

+ModuleImpacti,Lipid)+fii

Step3: classifying Alzheimer’s disease (AD) from
cognitively normal older adults (CN)
After computing the PIS in the second step, we applied
the Random Forest algorithm for AD-CN classification.
This process was conducted using 10-fold cross-
validation with stratification, utilizing the features with
the highest PIS from each feature group. Our Random
Forest model consists of 100 decision trees. The final
prediction is obtained by aggregating the results from
individual trees using majority voting. To evaluate the
performance of our model, we used both average accu-
racy and average AUC as primary metrics, computed
over the 10 validation folds.

Ethics
For the ADNI data used in this study, all participants
provided written informed consent approved by the
institutional review board of each participating
institution.

Statistics
To assess the effectiveness of the c-SWAT approach,
the model’s performance was compared against a
baseline where an equal number of features were
randomly selected. This choice of comparison was
made to evaluate the impact of feature selection by c-
SWAT in a controlled setting. The classification accu-
racy and the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) were primary met-
rics, calculated using a 10-fold cross-validation
approach. Additionally, the Precision-Recall (PR)
curve was employed to provide a comprehensive
assessment of the model’s performance. A p-value of
approximately 1.04 × 10−4 was obtained, confirming the
statistical significance of the improvement in classifi-
cation accuracy. The sample size for the study was
determined by the availability of multi-omics data for
each participant in the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database, totaling 997 par-
ticipants. No further inclusion or exclusion criteria
were applied. Randomization was applied in the se-
lection of features for the baseline comparison model.
All data used are publicly available and there are no
restrictions on their availability.
Role of funders
The funders had no role in the design and conduct of
the study; collection, management, analysis, and inter-
pretation of the data; preparation, review, or approval of
the manuscript; and decision to submit the manuscript
for publication.

Results
In our c-SWAT approach, we used serum metabolomics
data from 997 ADNI participants. WGCNA identified 48
network modules (feature groups) from 781 metabolites.
The modified CV approach identified the influential fac-
tors of each lipid within their respective feature groups,
which enabled us to assess each metabolite’s impact on
classification. Utilizing a CNN model with a 5-fold cross
validation method, we calculated the PIS for each
metabolite. Finally, metabolites with higher PIS values
were used to construct a robust AD classification model.

The overall result of a 10-fold cross-validation is
shown in Fig. 4a. With c-SWAT, the Random Forest
model could classify AD from CN with a highest accu-
racy of 0.808 when using 22 features, compared to an
accuracy of 0.714 when the same number of features
were randomly applied without using PIS. The differ-
ence in accuracy between the two methods was found to
be statistically significant with a p-value of approxi-
mately 1.04 × 10−4. Fig. 4b shows the accuracies for AD/
CN classification, using subsets containing the top 1 to
781 features based on PIS. A blue dot represents a
testing accuracy on a number of feature sets after
applying c-SWAT, and a red dot represents a testing
accuracy without c-SWAT. When features with high PIS
rankings were applied, the classification accuracy
improved, and as the number of features increased, the
differences between classifiers narrowed.

Fig. 5a displays the Receiver Operating Character-
istic (ROC) curve for the classification capability using
three sets of features: the top features selected by c-
SWAT, randomly selected features, and the least
associated features determined by c-SWAT. Utilizing a
10-fold cross-validation, the highest average Area Un-
der the Curve (AUC) achieved with the top features was
0.808 when using 22 features. For a similar set of 22
features chosen randomly, the AUC was 0.639. In stark
contrast, the AUC for the same number of least asso-
ciated features was significantly lower at 0.478. Fig. 5b
further explores the Precision-Recall (PR) curve for
these different sets of features. The top features
selected by c-SWAT consistently showed higher preci-
sion and recall values when compared to both
randomly selected and least associated features. This
underscores the predictive proficiency of the top fea-
tures in AD classification.

We also conducted a comprehensive analysis on the
classification accuracy across distinct stages of
www.thelancet.com Vol 97 November, 2023
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Fig. 4: Visualization of AD/CN classification results. (a) Bar graph on the y-axis representing the average accuracy of a 10-fold cross validation.
With c-SWAT, the Random Forest model could classify AD from CN with a highest accuracy of 0.807 when using 22 features, compared to an
accuracy of 0.714 when the same number of features were randomly applied without using PIS. (b) The y-axis presents the accuracy for AD/CN
classification in each subset, both with and without the implementation of c-SWAT, considering subsets ranging from the top 1 to 781 features.
An outer circle represents the number of metabolite features utilized. Blue dots indicate classification accuracy when incorporating the results of
PIS with c-SWAT, while red dots represent cases without the application of c-SWAT.
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Alzheimer’s disease, focusing on the top features
selected by c-SWAT, as they showed superior perfor-
mance. By applying these top features to each Alz-
heimer’s disease stage (Alzheimer’s Disease [AD], Late
Mild Cognitive Impairment [LMCI], Early Mild Cogni-
tive Impairment [EMCI], and Cognitively Normal [CN]),
we developed classification models. Fig. 6a presents the
AUC values for various Alzheimer’s disease stages, and
Fig. 6b showcases the ROC curves for different disease
stage comparisons. Our analysis revealed that the clas-
sification of AD from CN had the highest accuracy.
Following the AD vs CN comparison in accuracy
ranking, the next best classifications were AD vs ENCI,
then LMCI vs CN, followed by AD vs LMCI, and lastly
EMCI vs CN.

Using PIS obtained through c-SWAT, we identified
highly AD-associated lipids. In Table 1, the highest
scoring lipids are listed, with Cer(d16:1/22:0), PI(37:6),
CE (20:4) [+OH], and LPE (20:4) [sn1] being the top-
ranking lipid classes.
Discussion
In this study, we developed and evaluated a deep
learning-based approach to select phenotype-related
features and construct an AD classification model us-
ing feature correlations. This approach was applied to
www.thelancet.com Vol 97 November, 2023
serum-based metabolomics data related to AD. From
our analysis, we discerned specific features with a
strong correlation to AD. Using these features enabled
more accurate classification and played a crucial role in
enhancing the accuracy of classification across various
Alzheimer’s Disease stages.

Our findings highlight the effectiveness of our
method in isolating metabolites that correlate with AD
(Table 1). By analyzing these associations, we can better
understand the role of lipidomic data, a subset of
metabolomics, in the broader context of AD’s
pathophysiology.

Based on our results, Cer(d16:1/22:0), known as N-
docosanoyl-hexadecasphing-4-enine, emerged as one of
the metabolites with elevated PIS values. This ceramide is
notably found in cell membranes, especially in peripheral
nerve cells and the central nervous system. Its roles in
fundamental cellular processes like cell division, differ-
entiation, and cell death are significant. Changes in levels
of ceramides like Cer(d16:1/22:0) have been observed in
neurodegenerative diseases like AD.35,36 They might be
involved in AD-related pathways, including inflammation
in the brain, neuronal damage and death, and the for-
mation of amyloid-beta plaques.37,38 PI(37:6), a member of
the phosphatidylinositols family, has been reported to be
integral to microglial signaling pathways. These phos-
phatidylinositols, recognized as essential secondary
7
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Fig. 5: Performance comparison between top features, randomly selected features, and least associated features in AD classification. (a)
The Receiver Operating Characteristic (ROC) curve illustrates the classification capability using the top features selected by c-SWAT,
randomly selected features, and the least associated features determined by c-SWAT. The highest average Area Under the Curve (AUC)
from a 10-fold cross-validation for the top features reached 0.808 with 22 features. When randomly selecting the same number of 22
features, the AUC was 0.639. In comparison, the AUC for the same number of least associated features was significantly lower at 0.478.
(b) The Precision-Recall (PR) curve showcases the predictive performance of these feature sets, including the top features selected by c-
SWAT, randomly selected features, and the least associated features determined by c-SWAT. The top features consistently exhibited
higher precision and recall values relative to the randomly selected and least associated features, underscoring their enhanced predictive
proficiency in AD classification.

ba

Fig. 6: Classification accuracy across Alzheimer’s Disease stages. (a) Bar chart illustrating the area under the curve (AUC) values for the clas-
sification among different Alzheimer’s disease stages. (b) ROC curves representing classification performance for various disease stage com-
parisons, with each curve displaying the relationship between the true positive rate and false positive rate.
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Identifier Full name Category Class PIS

CER.D16.1.22.0 Cer (d16:1/22:0) sphingolipids ceramide 0.158

PI.37.6 PI (37:6) glycerophospholipids phosphatidylinositol 0.157

CE.20.4....OH CE (20:4) [+OH] Neutral/Other oxidised lipids 0.155

LPE.20.4...SN1 LPE (20:4) [sn1] glycerophospholipids Lysophosphatidylethanolamine 0.144

PE.P.19.0.20.4...A PE (P-19:0/20:4) (a) glycerophospholipids alkenylphosphatidylethanolamine 0.142

PE.P.17.0.20.4...A PE (P-17:0/20:4) (a) glycerophospholipids alkenylphosphatidylethanolamine 0.139

PC.O.16.0.20.3 PC (O-16:0/20:3) glycerophospholipids alkylphosphatidylcholine 0.133

CER.D18.1.20.0 Cer (d18:1/20:0) sphingolipids ceramide 0.126

CER.D19.1.20.0 Cer (d19:1/20:0) sphingolipids ceramide 0.118

PI.34.1 PI (34:1) glycerophospholipids phosphatidylinositol 0.115

PE.P.15.0.20.4...B PE (P-15:0/20:4) (b) glycerophospholipids alkenylphosphatidylethanolamine 0.114

PE.P.16.0.20.5 PE (P-16:0/20:5) glycerophospholipids alkenylphosphatidylethanolamine 0.110

CER.D18.1.24.1 Cer (d18:1/24:1) sphingolipids ceramide 0.109

LPE.20.4...SN2 LPE (20:4) [sn2] glycerophospholipids Lysophosphatidylethanolamine 0.101

PE.P.18.0.22.5...N6 PE (P-18:0/22:5) (n6) glycerophospholipids alkenylphosphatidylethanolamine 0.101

PC.P.16.0.20.5 PC (P-16:0/20:5) glycerophospholipids alkenylphosphatidylcholine 0.100

LPE.18.2...SN1 LPE (18:2) [sn1] glycerophospholipids Lysophosphatidylethanolamine 0.097

DE.20.4 DE (20:4) Neutral/Other dehydrocholesteryl ester 0.097

Using the phenotype influence score obtained through c-SWAT, highly AD-associated lipids were identified.

Table 1: Lipids with the highest PIS scores.

Articles
messenger lipids, are notably affected by amyloid-β pro-
tein deposits in AD.39 Originating from various phos-
phatidylinositol kinases, the significance of their
phosphorylation state in their functional roles has been
emphasized. CE (20:4) is a cholesteryl ester involved in
cholesterol movement and storage. Recent studies found
that certain cholesteryl esters, including CE (20:4), have
decreased levels in Alzheimer’s disease patients. This
observation hints at a possible connection between these
esters and the disease, though the exact role is still being
explored.40 LPE (20:4) [sn1] is a component in the Glyc-
erophospholipid metabolism pathway and interacts with
specific enzymes. Studies suggest that variations in such
lipids could be associated with brain health and condi-
tions like AD, with peroxisomal function potentially be-
ing a key factor.41 In AD samples, the levels of key
metabolites—Cer(d16:1/22:0), PI(37:6), CE (20:4) [+OH],
and LPE (20:4) [sn1]—were found to be 1.27%, 3.23%,
1.54%, and 1.49% higher, respectively, compared to CN
samples. deDE (18:2) and deDE (20:4) from the Dehy-
drodesmosteryl ester class showed high associations.
While these compounds showed a strong correlation with
AD, the potential effects of medications, such as done-
pezil, on these associations should be taken into account.
Further research and interpretation are essential to
confirm this correlation.

In instances where the dataset may not be suffi-
ciently extensive for exhaustive learning, our approach,
c-SWAT, has proven adept at confronting these limita-
tions effectively. This efficacy can be largely attributed to
our pre-processing stage, where we leverage feature
correlations to tactically arrange our data. Our approach
is engineered to diminish the weight of less pertinent
www.thelancet.com Vol 97 November, 2023
features during the training phase, with an objective of
filtering out unnecessary noise and thereby minimizing
the risk of overfitting. Essentially, this phase plays a
critical role in safeguarding our model against the po-
tential negative influence of extraneous features on its
performance. This element of our work, in particular,
demonstrates the potential of c-SWAT to operate effec-
tively even under less than ideal conditions, thus
underscoring its value in the pursuit of improving deep
learning methodologies.

Conclusion
We developed a deep learning-based approach, c-SWAT,
which uses the strength of feature correlations to
maximize the predictive capabilities of tabular datasets.
A key feature of c-SWAT is its ability to handle corre-
lations inherent in biological data and incorporate them
into the learning process, contributing to improved
predictive performance. In the research area of AD, a
neurodegenerative disorder marked by progressive
cognitive impairment, c-SWAT appear promising for
identifying potentially AD-related lipids and building
predictive models for AD. It’s important to note that
while our results using c-SWAT appear promising,
these findings are needed to be validated using large
independent data sets. Furthermore, c-SWAT’s ability to
efficiently identify meaningful patterns from complex
biological data, especially when the dataset may not be
large enough for exhaustive learning, underscores the
potential of this method. In the future, this method will
be applied to large-scale metabolite datasets to further
refine its predictive capabilities. Quantitative endophe-
notypes will also be leveraged to evaluate the early stages
9
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of AD, including mild cognitive impairment (MCI),
providing insights into the preclinical phase of the dis-
ease. Thus, by utilizing the advantages of deep learning
and innovative feature correlation methods, c-SWAT
offers a significant opportunity to enhance disease pre-
diction and biomarker discovery in AD and beyond.
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