UC Davis

Neurology

Title

Quantifying How Early Environment Shapes Connectivity and Organization of Corticospinal Tract: Impact & Methodology

Permalink

https://escholarship.org/uc/item/0tw2m6cd

Authors

Urreola, Gabriel Gomez, Fernando Krubitzer, Leah

Publication Date

2023

Data Availability

The data associated with this publication are not available for this reason: NA

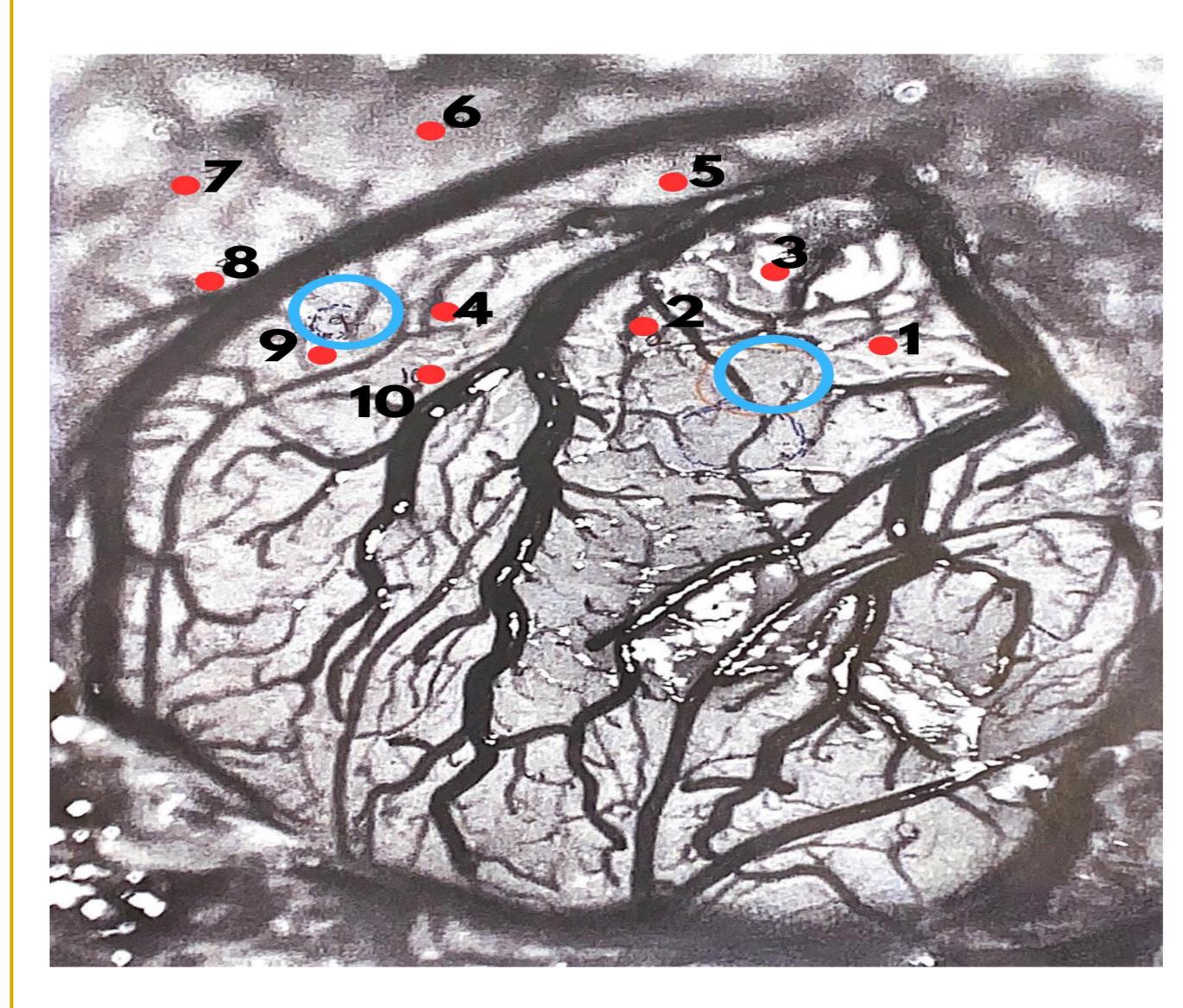
SCHOOL OF MEDICINE

Quantifying How Early Environment Shapes Connectivity and Organization of Corticospinal Tract: Impact & Methodology

Center for Neuroscience, University of California Davis; University of California Davis School of Medicine Gabriel Urreola, Fernando Gomez, Leah Krubitzer

Introduction

- Our early sensory experiences and ability to explore our environment shapes our brain, perceptions and behavior
- Active exploration provides kinematic and sensory feedback which drives movement that are distributed in neural networks
- Deprivation and unnatural environments effect fine motor precision, manual dexterity, bilateral coordination, balance and motor limb coordination.
- On the contrary, naturalistic environments are key for cognitive function, stress regulation, and motor development
- Our study looks to quantify functional brain organization, motor cortex connectivity, corticospinal tract connectivity and use statistical analysis to correlate/predict neural or behavioral phenotypes that are demonstrated by the environment


Control/Hypothesis

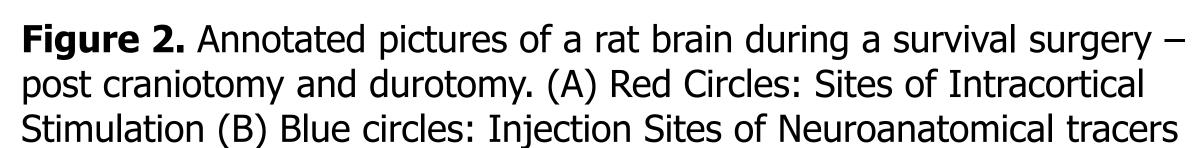

- Control Group: Norwegian Brown (NB) rats raised from birth in standard laboratory housing [Lab (L) rats]
- **Experimental Group**: NB rats raised in super-enriched, semi-natural environments in outdoor field pends (3000 times larger than standard housing) [Field Pen (FP) rats]
- **Hypothesis:** Environmental and behavioral differences will correlate with differences in intrinsic connections of M1, specifically the corticospinal tract

Figure 1. (A) Aerial view of field pens (B) Depiction of field pens near Putah Creek Riparian Reserve Field (Dimensions: 9.75 x 2.5 x 2.5 m). (C) View inside the field pends and the rats nest box (D) View inside the nest boxes where the rats typically sleep (E-G) Depictions of the rats maneuvering around the field pen, performing complex movements and behaviors. These field pens are open to natural weather (e.g. 12 – 44°C; 4–100% humidity), day/night length and sun/moon light

Design/Methodology

Figure 3. Visual Representation of Forelimb and Hindlimb movements which were evoked during ICMS mapping. Data Source: (Drew et al, 2020)

Preliminary Results

Intracortical Microsimulation Brain Map								
Site #	Depth (μm)	Voltage (mA)	Evoked Movements	Hindlimb	Forelimb	Torso	Head/Face	Tail
1	1,200	300	Ankle MovementToe Movement	×				
2	1,200	300	 Leg Movement Arm Movement Tail Movement Torso Movement 	×	×	×		×
3	1,200		 Hip Flexion 	X				
4	1,200	500	NCM					
5	1,200	300	Arm MovementLeg MovementTorso Movement	×	×	×		
6	1,200	300	 Whisker Movement 				×	
7	1,200	500	WhiskerMovementTorso Movement			×	×	
8	1,200	300	ShoulderAbductionWrist Extension		×			
9	1,200	300	 Elbow Flexion 		X			
10	1,200	300	 Elbow Flexion 		×			

Table 1. Description of the intracortical microsimulation experimental outcomes. 10 sites were stimulated at a depth of 1,200 µm with evoked responses resulting from voltages ranging from 300 – 500 mA. Examples of evoked Movements are visually represented in Figure 3. and during the experiment encompassed movements in the hindlimb, forelimb, torso, head/face and tail.

Design/Analysis

- 1.) Motor Maps will be generated via Intracortical Microsimulation (ICMS), generating functional movement representation in M1 & allow for precision of neuroanatomical tracers and connections
- 2.) Small volumes (0.02-0.05 µl) of fast neuroanatomical transport tracers (Fluro-ruby (FR) or Cholera Toxin B (CTB) will be injected in desired motor representations via survival surgery
- 3.) After retrograde transport of the tracers (6-8 days) the spinal Cord will be sectioned horizontally and mounted for fluorescent microscopy
- 4.) Retrogradely labeled cells of the corticospinal tract will be plotted using X/Y stage encoding and the connections will be quantified

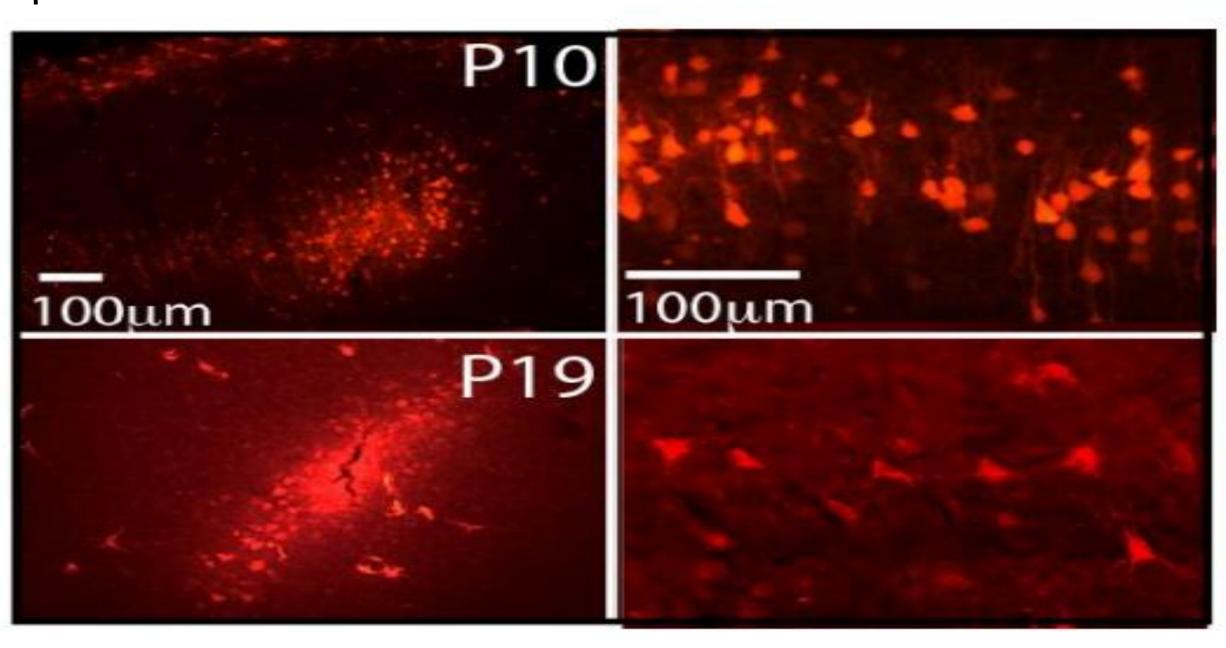


Figure 4. Examples of injections and cells retrogradely labeled with Fluoro-ruby

Conclusions/Further Study

- We are the first to rear rats in housing 3,000 times larger than standard housing providing insight into how environmental design can impact future studies in neuroscience
- We expect FP rats to evoke more complex, multi-joint movements of the hindlimb/tail, more evoked synergies of the hindlimb and forelimb over a large region of cortex, and novel evoked synergies.
- We expect corticospinal axons from forelimb, hindlimb and tail representations in cortex will project over a larger number of spinal segments in FP rats compared to L rats.
- Our study provides insight into how early environment effects neurodevelopment and organization – highlighting the potential need for early environmental interventions in patients with congenital neurological disease and children in underserved communities

References

- 1. Halley, Andrew C., et al. "Distributed motor control of limb movements in rat motor and somatosensory cortex: the sensorimotor amalgam revisited." *Cerebral Cortex* 30.12 (2020) 6296-6312.
- 2. Seelke, Adele MH, et al. "Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster)." *Journal of Comparative Neurology* 524.3 (2016): 564-577.

Acknowledgements

We would like to thank the Krubitzer Lab of Evolutionary Neurobiology at the UC Davis Center for Neuroscience