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Collective dynamics and long-range order in
thermal neuristor networks

Yuan-Hang Zhang 1 , Chesson Sipling 1, Erbin Qiu1,2, Ivan K. Schuller 1 &
Massimiliano Di Ventra 1

In the pursuit of scalable and energy-efficient neuromorphic devices, recent
research has unveiled a novel category of spiking oscillators, termed “thermal
neuristors.” These devices function via thermal interactions among neighboring
vanadium dioxide resistive memories, emulating biological neuronal behavior.
Here, we show that the collective dynamical behavior of networks of these
neurons showcases a rich phase structure, tunable by adjusting the thermal
coupling and input voltage. Notably, we identify phases exhibiting long-range
order that, however, doesnot arise fromcriticality, but rather fromthe timenon-
local response of the system. In addition, we show that these thermal neuristor
arrays achieve high accuracy in image recognition and time series prediction
through reservoir computing,without leveraging long-rangeorder.Ourfindings
highlight a crucial aspect of neuromorphic computing with possible implica-
tions on the functioning of the brain: criticality may not be necessary for the
efficient performance of neuromorphic systems in certain computational tasks.

Neuromorphic computing, a field inspired by brain functionality,
represents a powerful approach to tackle a wide range of information
processing tasks that are not instruction-based, such as those typical
of artificial intelligence and machine learning1–3. Unlike traditional
computers that use the von Neumann architecture, separating mem-
ory and computing, neuromorphic systems utilize artificial neurons
and synapses. These components can be implemented using
diverse physical systems, such as photonics4, spintronics5, resistive
switching materials6,7, and electrochemical devices8.

In neuromorphic systems, regardless of the underlying physical
framework, information processing is executed via a spiking neural
network9. Neurons in this network emit spikes in response to specific
external stimuli. These spikes travel through synapses, either exciting
or inhibiting downstream neurons. During training for a particular
task, synaptic weights are iteratively updated, guided by either
biologically-inspired algorithms like spike timing-dependent
plasticity10 and evolutionary algorithms11 or adaptations of traditional
machine learning algorithms like backpropagation12.

The collective, as opposed to the individual behavior of the neu-
rons in the network, facilitates the aforementioned tasks. This collec-
tive behavior may also be essential for the functioning of the animal

brain. For instance, the critical brain hypothesis suggests that the brain
operates in a state of criticality; namely, it is poised at a transition point
between different phases13–17. This critical state is believed to be opti-
mal for the brain’s response to both internal and external stimuli, due
to its structural and functional design. Yet, despite the popularity of
the hypothesis, questions and doubts remain, and some argue that the
brain is not truly critical or not critical at all15,18–20.

In our present study, we do not aim to directly tackle the critical
brain hypothesis. Rather, we approach the subject from a different
angle: we examine a neuromorphic system that exhibits brain-like
features. With similar working principles, one can then naturally
extend the critical brain hypothesis to neuromorphic systems and
question whether spiking neural networks also function at a critical
state. This topic remains contentious, and arguments supporting21,22

and opposing23 the notion have been reported, each presenting
slightly different definitions and perspectives.

In this work, we show that a neuromorphic system may support
long-range ordered (LRO) phases, without criticality. The origin of this
LRO is the time non-local (memory) response of the system to external
perturbations. On the other hand, we show that such LRO is not
necessary for certain computational tasks, such as classification and
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time series predictions. These results may provide some hints on the
functioning of biological brains.

As a specific example, we consider a neuromorphic system com-
prised of thermal neuristors7,24, based on vanadium dioxide (VO2)
spiking oscillators that communicate via heat signals. The properties
of the individual oscillators (which take advantage of the hysteric
metal-insulator transition of VO2) and their mutual interactions have
been experimentally validated earlier7,24. These earlier studies form the
basis of our numerical model of a large-scale network, which allows us
to numerically analyze the collective dynamics of the system. We find
that the different phases can be tuned by varying the thermal coupling
between the neurons and the input voltage. We apply this system to
image recognition tasks using reservoir computing25 and explore the
relationship between performance and collective dynamics. We find
that LRO does not necessarily enhance the performance in tasks like
image recognition, a result in line with the findings of ref. 23.

Results
VO2-based oscillators have been utilized as artificial neurons in many
previous studies7,24,26–30, each featuring slightly different designs,
mechanisms, and applications. In particular, we focus on thermal neur-
istors, a concept pioneered in ref. 7, which effectively reproduces the
behavior of biological neurons. These neuristors are not only straight-
forward to manufacture experimentally but also exhibit advantageous
properties such as rapid response times and low energy consumption.

Figure 1a presents the design and circuitry of the thermal neuristor,
featuring a thin VO2 film connected in series to a variable load resistor.
VO2 undergoes an insulator-to-metal transition (IMT) at approximately
340 K31, with different resistance-temperature heating and cooling
paths, which leads to a hysteresis loop, as depicted in Fig. 1b. Addi-
tionally, the system includes a parasitic capacitance resulting from the
cable connections, which is vital for the neuristor’s operation.

The behavior of the circuit displayed in Fig. 1a closely resembles a
leaky integrate-and-fire neuron32. The capacitor C is charged up by the
voltage source, Vin, and slowly leaks current through R. When the
voltage across VO2 reaches a threshold, joule heating initiates the IMT,
drastically reducing resistance in the VO2 which causes C to discharge,
leading to a current spike. At the same time, the reduced resistance
leads to reduced joule heating, which is then insufficient to maintain
themetallic state, causing the VO2 film to revert to its insulating phase.
This process repeats, producing consistent spiking oscillations.

We have experimentally fabricated and evaluated this system of
VO2-based thermal neuristors. The spiking behavior of a single neur-
istor is shown in Fig. 1c. With insufficient heating, the neuristor does

not switch from the insulating state whereas excessive heating keeps it
perpetually in themetallic state. As a consequence, no spiking patterns
emerge when the input voltage is too low or too high. Numerical
simulations, using the model described in the next section, corrobo-
rate this behavior, mirroring the experimental findings.

Distinct from biological neurons that communicate via electrical
or chemical signals, thermal neuristors interact through heat. As illu-
strated in Fig. 1a, adjacent neuristors, while electrically isolated, can
transfer heat via the substrate. Each current spike produces a heat
spike, which spreads to nearby neuristors, reducing their IMT thresh-
old voltage, thereby causing an excitatory interaction. Conversely,
excessive heat can cause neighboring neuristors to remain metallic
and cease spiking, akin to inhibitory interactions between neurons.
Further experimental insights on neuristor interactions are detailed in
Appendix B the supplementary information (SI).

Although we have experimentally shown that a small group of
thermal neuristors can mirror the properties of biological neurons,
effective computations require a vast network of interacting neurons.
Before building a complex system with many neuristors, we first
simulate a large array of thermal neuristors, providing a blueprint for
future designs.

Theoretical model
The theoreticalmodel builds upon the framework established in ref. 7,
with some minor adjustments. The system is built of identical neur-
istors, uniformly spaced in a regular 2-dimensional array. Their beha-
vior is governed by the following equations:

C
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Equation (1) describes the current dynamics, with each variable
corresponding to those shown in Fig. 1a. Equation (2) describes the
thermal dynamics, including the coupling between nearest-neighbor
neuristors. Here, T0 represents the ambient temperature, Cth is the
thermal capacitance of each neuristor, Se denotes the thermal con-
ductance between each neuristor and the environment, and Sc refers
to the thermal conductance between adjacent neuristors. ηi(t) repre-
sents a Gaussian white noise variable for each neuristor that satisfies
hηiðtÞηjðt0Þi= δi,jδðt � t0Þ, and σ is the noise strength. Detailed values of
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Fig. 1 | Overviewof the thermalneuristormodel. a Schematic and circuit diagram
of two neighboring thermal neuristors. Each neuristor is modeled as an RC circuit,
which undergoes stable spiking oscillations with proper external input. Neighbor-
ing neuristors are electrically isolated but communicate with each other through
thermal interactions. b The resistance-temperature characteristic of the VO2 film,
denoted by the variable resistor R in (a). VO2 exhibits an insulator-to-metal tran-
sition at approximately 340 K, characterized by distinct heating and cooling

trajectories, thus forming a hysteresis loop. c Illustration of stable spiking oscilla-
tions in a single neuristor across various input voltages, with the y-axis range for
each plot set between 0 and 5 mA. Numerical simulations based on Eqs. (1) and (2)
align well with experimental data, demonstrating stable spiking patterns within a
certain input voltage range and an increase in spiking frequencyproportional to the
input voltage. Source data are provided in the Source Data file.
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these constants are provided in the methods section. Ri is the resis-
tance of the VO2 film, which depends on temperature and its internal
state, ormemory, following the hysteresis loopdepicted in Fig. 1b. This
memory factor is pivotal in determining the collective behavior of
thermal neuristors. We utilize the hysteresis model formulated in
ref. 33, with comprehensive details available in the methods section.

Numerical results
We used the theoretical model to simulate an L × L square lattice
comprised of identical thermal neuristors, whose dynamics are gov-
erned by Eqs. (1) and (2). Different input voltages Vin produce a diverse
array of oscillation patterns, as illustrated in Fig. 2. At very low (9V) or
high (15V) input voltages, the system remains inactive, as found in
individual neuristors. With a 12 V input voltage, synchronization
develops, with nearly all neuristors spiking in unison, creating a phase
of rigid states. A phase transition occurs slightly belowVin = 10V,where
clusters of correlated spikes start to form, then gradually turn into
system-wide activity waves (10.4 V and 10.6 V). Another phase transi-
tion occurs slightly above Vin = 13.4 V, where the synchronized rigid
oscillations start to fracture into smaller clusters until the individual
spikes become uncorrelated (14 V).

Analytical understanding
The emergenceof a broad range of phases and long-range correlations
in our system, despite only diffusive coupling existing between neu-
rons, is a point of significant interest. Diffusive coupling is typically
associatedwith short-range interactions,making thediscoveryof long-
range correlations particularly intriguing.

It iswell-established that long-range correlations canemerge from
local interactions in various systems such as sandpiles34, earthquake
dynamics35, forest fires36, and neural activities37. These systems exhibit
avalanches-cascades triggered when one unit’s threshold breach cau-
ses successive activations-manifesting as power-law distributions of
event sizes, indicative of scale-free or near scale-free behaviors.

Such spontaneously emerging long-range correlations are often
described under the framework of self-organized criticality34,35. How-
ever, this term may be misleading. Criticality suggests a distinct

boundary, characterized by a phase above and below it, as seen in the
sandpile model where an appropriately defined order parameter
undergoes a second-order phase transition38,39. In contrast, systems
like earthquakes, while displaying power-law behaviors, do not exhibit
true scale-invariance40 and canbedescribed asundergoing continuous
phase transitions without clear critical boundaries39.

We argue that the observed LRO in our system, similar to those in
systems without genuine scale-free behaviors, is induced by memory
(time non-local) effects stemming from a separation of time scales: a
slow external drive contrasts sharply with fast avalanche dynamics. In
our system, we identified three distinct time scales: the metallic RC
time (τmet =RmetC ~ 187 ns), the insulatingRC time (τins =RinsC ~ 7.57 μs),
and the thermal RC time (τth = RthCth = Cth/(Sc + Se) ~ 241 ns). We
observe that τmet⪅ τth≪ τins. As the spiking and avalanchedynamics are
primarily controlled by τmet and τth, and the driving dynamics by τins,
our system does exhibit an approximate separation of time scales.

This separation allows us to conceptualize the slower time scale as
memory, which retains long-term information about past states and
remains relatively constant within the faster time scale, capable of
preserving non-local temporal correlations. As a consequence, neur-
istors that are spatially distant are progressively coupled, resulting in
long-range spatial correlations.This concept is systematically explored
in a spin glass-inspiredmodel41, and similarbehavior is alsoobserved in
a class of dynamical systemswithmemory (memcomputingmachines)
used to solve combinatorial optimization problems42. In Appendix A in
the SI, we provide an analytical derivation of this phenomenon using a
slightly simplified version of our model.

Consequently, altering the memory strength, specifically through
adjustments of the thermal time scale τth by varying Cth (the thermal
capacitance of each neuristor), should result in changes to the oscil-
lation patterns and the presenceor absenceof long-range correlations.
Indeed, we find that by modifying Cth, we can control the rate of heat
dissipation, effectively influencing the memory’s response time.
Additionally, in Appendix C5 of the SI, we present another example
where increasing the ambient temperature reduces the insulating
RC time, thereby diminishing memory and minimizing long-range
correlations.

Voltage (V)

9 10.4 12 14

10 10.6 13.4 15

Fig. 2 | Snapshots of different oscillation patterns in a 64 × 64 array of thermal
neuristors. In each panel, color indicates current level: white signifies no current,
while shades of blue denote current spikes. The main panels show collective
current-time plots for the first 1024 neuristors (concatenated from the first 16
rows), and each inset captures a specific moment in the 64 × 64 array. The system
exhibits no activity at very low input voltages. As the voltage increases, a sequence

of dynamic phases unfolds, including correlated clusters (10 V and 13.4 V), system-
wide waves (10.4 V and 10.6 V), synchronized rigid states (12 V), and uncorrelated
spikes (14 V), culminating again in inactivity at excessively high voltages. The
thermal capacitance, Cth, is fixed at the experimentally estimated value. Detailed
simulation parameters can be found in the methods section, and dynamic visuali-
zations of these spiking patterns are available in Supplementary Movie 1.
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Avalanche size distribution
Toverify thepresenceof LRO inour system,we analyzed the avalanche
size distribution of current spikes. Here, we define an avalanche as a
contiguous series of spiking events occurring in close spatial (nearest
neighbor) and temporal (400 ns) proximity. The heat generated by
each spiking event transfers to the neighboring neuristors, making
their IMTmore likely and thus triggering a cascade of spikes. Figure 3a
andb showsexamplesof avalanche size distributions inwhichapower-
law distribution is observed, indicative of LRO. The methodology for
identifying these avalanches is detailed in the methods section.

We varied the input voltage and thermal capacitance, Cth, to
generate the phase diagramdepicted in Fig. 3c. Here, the y-axis reflects
Cth’s relative value against the experimentally estimated one. Similar to
observations in Fig. 2, both a synchronized rigid state, characterizedby
collective neuristor firing, and a quiescent state, with no spiking
activity, are found. Around the phase boundaries, a wide range of
parameters leads to a power-law distribution in avalanche sizes across
several orders of magnitude, confirming the existence of LRO. This is
further supported in Fig. 3d, where we compute avalanche sizes for
each point in the parameter space and plot the absolute value of the
exponent from the fitted power-law distribution. Areas without a
colored box indicate an unsuccessful power-law fit, with themaximum
exponent limited to 6 to remove outliers.

While we empirically observe power-law scaling in avalanche
sizes, onemight question if this implies criticality and scale-invariance.
The numerical evidence presented here suggests otherwise. First,
the power-law distributions in Fig. 3a and b do not align with the finite-
size scaling ansatz39,43, which predicts diminishing finite-size effects
with increasing system size. Furthermore, a rescaling based on the
system size should collapse all curves onto one21,39 for scale-invariant
systems, but such an effect is notably missing in our system,

contradicting finite-size scaling expectations. In Supplementary Fig. 9,
we present the results of attempted finite-size scaling, which clearly
imply a lack of scale-invariance.

Despite the absence of criticality, can the system still perform
some computing tasks effectively? Is the LRO observed in these ther-
mal neuristor arrays even necessary for such tasks?We demonstrate in
the following section that for classification, LRO, let alone criticality, is
not necessary, as anticipated in23.

Role of LRO in reservoir computing classification tasks
We apply our thermal neuristor array to reservoir computing (RC) to
answer the above questions. RC differentiates itself from traditional
neural networkmodelsbynot requiring the reservoir - thenetwork’s core
- to be trained. The reservoir is a high-dimensional, nonlinear dynamical
system. It takes an input signal,x, and transforms it into anoutput signal,
y = f(x). A simple output function, usually a fully connected layer, is then
trained to map this output signal, y, to the desired output, ẑ= gðyÞ.
Training typically involves minimizing a predefined loss function
between the predicted output ẑ and the actual label z, associated with
the input x, using backpropagation and gradient descent. If the output
function is linear, training can be reduced to a single linear regression.

The reservoir’s transfer function f can be arbitrary, with its main
role being to project the input signal x into a high-dimensional feature
space. Since the reservoir doesn’t require training, employing an
experimentally designed nonlinear dynamical system like our thermal
neuristor array for RC is both effective and straightforward.

As a practical demonstration, we applied RC using thermal neur-
istors to classify handwritten digits from the MNIST dataset44. Each
28 × 28 grayscale pixel image, representing digits 0 to 9, is converted
into input voltages through a linear transformation. The system is then
allowed to evolve for a specific time, during which we capture the

a b

c d

Fig. 3 | Avalanche size distributions and phase structures in 2D thermal neur-
istor arrays of different sizes. a, b Two different avalanche size distributions at
phase boundaries, with both distributions obtained at Cth = 1, but different input
voltages (Vin = 9.96 V for (a), and 13.46 V for (b)). c Phase diagram of the thermal
neuristor array, with the y-axis depicting the relative value of Cth compared to its
experimentally estimated level. We observe synchronized rigid states with collec-
tive spiking and quiescent states with no spikes (no activity). Near the phase

boundaries, a robust power-law distribution in avalanche sizes is noted across
various parameters, signaling the existence of LRO. d Exponents of the power-law
fit of the avalanche size distributions (omitting the negative signs for clarity). The
phase diagram from (c) is superimposed for enhanced visualization. Regions
lacking a colored box signify a failed power-law fit, and exponents are capped at 6
to exclude outliers. Source data are provided in the Source Data file.
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spiking dynamics as output features from the reservoir. Subsequently,
a fully connected layer with softmax activation is trained to predict the
digit. This process is schematically represented in Fig. 4.

The output layer was trained over 20 epochs, as shown in the
bottom-left panel of Fig. 4. The test loss stabilized after approximately
10 epochs, and due to the network’s simple architecture, overfitting
was avoided. Ultimately, the test set accuracy reached 96%. Further
training details can be found in the methods section.

In this experiment, we treated the voltage transformation, ther-
mal capacitance Cth, and noise strength σ as adjustable hyperpara-
meters. This allowed us to check which region of phase space would
produce optimal results. We found that the parameters that yielded
optimal performance were an input voltage range between 10.5 V and
12.2 V, Cth = 0.15, and noise strength σ = 0.2μJ ⋅ s−1/2. These settings
placed us within the synchronized rigid phase, not the LRO one, with
the input voltage variations introducing complex oscillatory patterns.
In fact, choosing the parameters in the LRO phase produced worse
results. We show this in Appendix C4 of the SI. The phase diagram
relating to noise strength can be found in Supplementary Fig. 10, and
videos of collective oscillations under image inputs are available in
Supplementary Movie 2.

To further explore the role of LRO in reservoir computing tasks,
Appendix C5 of the SI details our efforts to eliminate LRO within the
reservoir by either removing interactions between neurons altogether
or by reducing memory. We quantified LRO using the avalanche size
distribution under these various settings. The findings reveal that even
when the reservoir operates in a rigid or non-interacting state, long-
range structures inherited from the dataset are still apparent. How-
ever, no relation between LRO and computational performance was
observed. Videos demonstrating collective oscillations under these
conditions are available in Supplementary Movies 3 and 4.

As further verification, Appendix C6 of the SI documents an
additional experiment involving the prediction of chaotic dynamics
governed by the 2D Kuramoto-Sivashinsky equations45. The results
corroborate our primary findings: optimal performance in reservoir
computing is achieved without the presence of LRO within the
reservoir.

In conclusion, the spiking dynamics of the optimally performing
reservoir in our study are not characterized by an LRO state. This
observation aligns with the findings in23, and challenges the well-
accepted critical brain hypothesis14 and theories suggesting that near-
critical states enhance computational performance46,47. However, our
results do not directly contradict the critical brain hypothesis, since it
is possible that long-range correlations are effectively encapsulated
within the feed-forward layer. Despite this possibility, our findings
highlight a crucial aspect: criticality is not a prerequisite for effective
computational performance in such tasks.

Discussion
In this study, we have developed and experimentally validated VO2-
based thermal neuristors that exhibit brain-like features. We then
formulated a theoreticalmodel grounded in our experimental findings
to facilitate large-scale numerical simulations. These simulations
revealed a variety of phase structures, notably thosewith LRO, across a
broad spectrum of parameters. Our analysis suggests that this LRO
stems from the time-nonlocal response of the system and is not
associated with criticality. Significantly, we demonstrate that this fea-
ture does not impair the system’s computational abilities. In fact, it
does not even seem to be necessary in some tasks, such as classifica-
tion and time series prediction, aswehave shown by using our thermal
neuristor array in reservoir computing.

The thermal neuristor represents an innovative artificial neuron
model, and our research offers insights into the collective dynamics of
artificial neuronal activities.Our findings suggest that criticality is not a
prerequisite for effective information processing in such systems. This
challenges the critical brain hypothesis and its applicability to neuro-
morphic systems, indicating that even non-critical systems can excel in
some computational tasks. We then advocate for a broader explora-
tion of non-critical dynamical regimes that might offer computational
capabilities just aspowerful, if notmore so, than those found ator near
a critical state.

Moreover, ourwork highlights the potential of VO2-based thermal
neuristors in computing applications, setting the stage for more
extensive experiments. Given the growing need for innovative hard-
ware in neuromorphic computing, our VO2-based thermal neuristor
system is a promising candidate for advancing next-generation hard-
ware in artificial intelligence.

Methods
Fabrication of VO2 thermal neuristor arrays
Epitaxial VO2 thin film growth. We employed reactive RF magnetron
sputtering to deposit a 100-nm thick VO2 film onto a (012)-oriented
Al2O3 substrate. Initially, the substrate was placed in a high vacuum
chamber, achieving a base pressure of around 10−7 Torr, and heated
to 680 °C. The chamberwas then infusedwith pure argon at 2.2 s.c.c.m
and a gas mix (20% oxygen, 80% argon) at 2.1 s.c.c.m. The sputtering
plasma was initiated at a pressure of 4.2 mTorr by applying a forward
power of 100 W to the target, corresponding to approximately
240 V. Post-growth, the sample holder was cooled to room tempera-
ture at a rate of 12 °C/min. Specular x-ray diffraction analysis of the
film revealed textured growth along the (110) crystallographic
direction.

VO2 thermal neuristor arrays fabrication. For patterning the VO2

neuristor arrays, Electron BeamLithography (EBL)was employed. Each

Input Dynamics

Prediction: 3

Fully-connected
output layer

Fig. 4 |Overviewofour reservoir computing implementationwitha 2D thermal
neuristor array. The MNIST handwritten digit dataset44 is used as a benchmark.
Each image from the dataset is translated into input voltages for a 28 × 28 thermal
neuristor array. The array’s spiking dynamics are gathered as the reservoir output.

A fully connected output layer, enhanced with softmax nonlinearity, is trained to
classify the digit. The bottom-left panel illustrates the training process, displaying
both loss and accuracy, culminating in a final test set accuracy of 96%. Source data
are provided in the Source Data file.
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neuristor, sized at 100 × 500 nm2, was delineated with 500 nm gaps.
The initial lithography pattern defined electrodes by depositing a 15
nm Ti layer followed by a 40 nm Au layer. To investigate thermal
interactions between neuristors, a second lithography and etching
step was necessary. We utilized a reactive-ion etching system to etch
the exposed VO2 films between devices, as per the second-step litho-
graphy patterns, while the negative resist shielded the electrodes and
devices from etching.

Transport measurements. Transport measurements were conducted
in a TTPX Lakeshore probe station equipped with a Keithley 6221
current source, a Keithley 2812 nanovoltmeter, a Tektronix Dual
Channel Arbitrary Function Generator 3252C, and a Tektronix Oscil-
loscope MSO54. The current source and nanovoltmeter were utilized
to gauge the device’s resistance versus temperature. The Arbitrary
Function Generator (AFG) was employed to apply either DC or pulse
voltage bursts, while the oscilloscope monitored the output signals.
Notably, the impedance for the channel assigned to measure voltage
dynamics was set at 1 MΩ, and the channel for capturing spiking cur-
rent dynamics was configured to 50 Ω.

Details of numerical simulations
Model details and constant parameters. The constants in Eqs. (1) and
(2) are crucial in our simulations, as they depend on specific experi-
mental setups. Following the approach in7, we optimized these para-
meters to closely replicate the experimental results. The chosen values
are summarized in Table 1.

The resistance of the VO2 film, R, is modeled based on the hys-
teresis model introduced in ref. 33, described by the equations:

RðTÞ=R0 exp
Ea

T

� �
FðTÞ+Rm,

FðTÞ= 1
2
+
1
2
tanh β δ

w
2
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T � T r
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 !" #( ) !
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2
+Tc �

1
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½2FðT rÞ � 1� � T r,

PðxÞ= 1
2

1� sin γxð Þ 1 + tanh π2 � 2πx
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:
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Each component of Eq. (3) is detailed in ref. 33. The term Tr
denotes the reversal temperature, marking the most recent transition
betweenheating and cooling processes.Here, δ equals 1 on the heating
branch and -1 on the cooling branch, with all other symbols repre-
senting constant parameters. These constants were selected in
accordance with7 to accurately reflect the experimentally observed
hysteresis loop, and their values are compiled in Table 1.

The noise strength σ was chosen to facilitate a diverse range of
phase structures. We conducted preliminary tests on the phase dia-
gram by varying σ, with the results detailed in Appendix C3 in the SI.

Numerical methods. For the numerical integration of Eqs. (1) and (2),
we employed the Euler-Maruyama method48 with a fixed time step of
dt = 10 ns. The current-time trajectories were recorded, and current
spikes were identified by locating the local maxima within these
trajectories.

To analyze the avalanche size distribution, we first defined an
avalanche as a contiguous series of spiking events occurring within a
certain spatial and temporal proximity. We determined a specific
window length for both spatial and temporal dimensions and
then coarse-grained the spiking trajectories, categorizing each spiking
event into a corresponding window. This process resulted in a D + 1-
dimensional lattice (D spatial and 1 temporal dimensions), where
each lattice site denoted the number of spikes within its window.
Following this, the Hoshen-Kopelman algorithm49 was applied to
identify clusters of spiking activities within the lattice. Each identified
cluster was considered as one distinct avalanche, in line with our
defined criteria.

The avalanche size distribution is influenced by the chosen win-
dow size. Generally, the temporal window length should be sig-
nificantly longer than the duration of each spike but shorter than the
interval between consecutive spikes. For all results presented in this
paper, the temporal window length was set at 400 ns. In terms of
spatial window length,we focusedon immediate neighbors (length = 1)
of each neuristor for cluster identification.

After identifying the avalanches, we computed the histogram of
avalanche sizes using a logarithmic binning scheme50, where bins are
uniformly distributed on a logarithmic scale. The sizes of these bins
were determined according to Scott’s normal reference rule51. To
characterize the avalanche size distributions presented in Fig. 3, we
applied a power-law fit to each histogram, excluding the tails for more
accurate modeling.

Reservoir setup
In employing thermal neuristors for reservoir computing, we consider
the entire neuristor array as the reservoir. The input voltages serve as
the reservoir input, and the resultant spike trains are recorded as the
output.

For theMNIST dataset44, the reservoir’s parameters are detailed in
the main text. To record the spike trains, we simulate the system
dynamics for 10 μs, extracting spikes using themethod outlined in the
previous section. These spike trains are then coarse-grained with a
time window of Δt = 500 ns. Each time window is assigned a binary
value indicating the presence or absence of a spike. This process
results in a 28 × 28 × 20 binary array representing the reservoir’s spike
train output. This array is then flattened into a one-dimensional
sequence of 15680 elements. A fully connected layer with dimensions
15680 × 10 is trained to map the reservoir output to the ten digit
classes. At the final stage, a softmax nonlinearity is applied to trans-
form the output layer’s results into predicted probabilities. Although
activation functions are not typically standard in reservoir computing
tasks, we still implemented the softmax activation in conjunction with
negative log-likelihood loss, as it demonstrated enhanced perfor-
mance compared to mean-square-error loss without an activation
function.

Table 1 | Parameters utilized in the numerical simulations for
Eqs. (1)–(3)

Param Value Physical meaning

C 145 pF Capacitance

Rload 12.0 kΩ Load resistance

Cth 49.6 pJ/K Thermal capacitancea

Se 0.201 mW/K Thermal conductance to
environment

Sc 4.11 μW/K Thermal conductance to neighbor

T0 325 K Ambient temperature

σ 1 μJ ⋅ s−1/2 Noise strength

R0 5.36 mΩ Insulating resistance prefactor

Ea 5220 K VO2 activation energy

Rm 1286 Ω Metallic resistance

w 7.19 K Width of the hysteresis loop

Tc 332.8 K Center of the hysteresis loop

β 0.253 Fitting parameter in hysteresis

γ 0.956 Fitting parameter in hysteresis

Rload and T0 are taken from experiment, while other parameters are optimized to align the
numerical model as closely as possible to the experimentally measured data.
aFigures show relative values to this.
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For training this fully connected output layer, we utilized the
Adam optimizer52 with a learning rate of 10−3. The corresponding loss
curve is depicted in the bottom-left panel of Fig. 4.

Data availability
The MNIST handwritten digit dataset can be accessed at ref. 44. All
experimental and raw data depicted in the figures are included in the
Source Data file. Due to their large size, trajectories and snapshots of
the dynamics are not stored as files but can be reproduced using the
code provided at ref. 53. Source data are provided with this paper.

Code availability
A demo code to reproduce the results in this work can be found at
ref. 53.
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