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All-Pay Auctions Versus Lotteries as Provisional Fixed-Prize

Fundraising Mechanisms: Theory and Evidence∗

John Duffy† Alexander Matros‡

August 8, 2021

Abstract

We compare two fixed-prize mechanisms for funding public goods, an all-pay auction and
a lottery, where public good provision can only occur if the participants’ contributions equal
or exceed the fixed-prize value. We show that the provisional nature of the fixed-prize means
that efficiency and endowment conditions must both be satisfied to assure positive public good
provision. Our main finding is that provisional fixed-prize lotteries can outperform provisional
fixed-prize all-pay auctions in terms of public good provision in certain cases where efficiency
holds and endowments are large relative to prize values. We test these predictions in a laboratory
experiment where we vary the number of participants, the marginal per capita return (mpcr)
on the public good, and the mechanism for awarding the prize, either a lottery or an all-pay
auction. Consistent with the theory, we find that the mpcr matters for contribution amounts
under the lottery mechanism. However, inconsistent with the theory, bids are significantly higher
than predicted and there is no significant difference in the level of public good provision under
either provisional, fixed-prize mechanism. We consider several different modifications to our
framework that might help to explain these departures from theoretical predictions.
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1 Introduction

How should a public good be financed? Since Morgan (2000) first demonstrated that fixed-prize
charitable lotteries could yield greater contributions to a public good than the voluntary contribu-
tion mechanism (VCM), several papers have sought to confirm this result in the laboratory and the
field, see, e.g., Morgan and Sefton (2000), Lange et al. (2007), Orzen (2008), Schram and Onder-
stal (2009), Corazzini et al. (2010), and Onderstal et al. (2013) among others. Moreover, several
studies, see Orzen (2008), Schram and Onderstal (2009), Corazzini et al. (2010), and Onderstal et
al. (2013) compare public good provision under fixed-prize lotteries and various types of fixed-prize
auctions. A common, (though not universal) finding in this literature is that fixed-prize fundraising
mechanisms generally outperform the VCM in terms of raising funds, though the various studies
do not all agree on which mechanism for awarding the fixed-prize works best.

In this paper, we compare the performance of two provisional fixed-prize fundraising mechanisms
– a lottery and an all-pay auction – where the value of the fixed prize must be financed by the
fundraising mechanism itself. Under the provisional, self-financing fixed prize mechanisms we study,
if efficiency does not hold, endowments are not sufficiently large or if the mechanism does not raise
funds sufficient to cover the amount of the fixed prize, then there is no public good provision and any
contributions are refunded. Such provisional, self-financing fixed-prize mechanisms are attractive,
as the fund-raiser does not bear any risk as to whether the cost of the prize awarded (e.g., a car) can
be covered by the contributions of participants.1 Indeed, we do not observe non-provisional fixed-
prize charitable fundraising mechanisms in the field unless the prize itself is a charitable donation.
For instance, many charitable fundraising mechanisms have the structure of parimutuel-betting
systems in that the prize amount is endogenously determined and equal to some fixed percentage
of the total amount raised by the mechanism (typically a lottery). For example, in the U.S. many
small charitable organizations sell tickets to “50-50” lotteries where the endogenously determined
monetary prize is 50 percent of the total value of all tickets sold; the remaining 50 percent goes to
the charity.

However, as Morgan (2000) has clearly shown, pure parimutuel prized-based lottery mechanisms
have the disadvantage that they generate contribution incentives equivalent to those of the VCM,
that is, the equilibrium public good provision under a parimutuel-prize lottery mechanism is the
same as under the VCM. Morgan shows that an alternative mechanism that avoids this problem is
a provisional but fixed -prize fundraising mechanism and this type of mechanism is the focus of our
paper. Provisional fixed-prize fundraising mechanisms are also found in the field. A typical setting
is a fundraising drive by a local charitable organization that asks for donations from a small, finite
population of n potential contributors and offers a fixed cash prize or a prize of fixed value (e.g., a
car) provided that funds are raised that are sufficient to cover the value of the prize. For example,
the Rotary Club of Pawtucket, Rhode Island holds an annual fundraiser in the form of a raffle. In
the May 2011 raffle2 the grand prize was fixed at $10,000 cash. Three hundred tickets were offered
at $100 each and all ticketholders were also invited to a luncheon. The contest rules clearly state
that “If less than 150 tickets are sold, all ticket money will be refunded and the drawing will not

1Indeed, these provisional fixed-prize mechanisms are similar to non-prize-based provision-point public good mech-
anisms (e.g. Bagnoli and Lipman, 1989) in which the public good is not provided unless contributions exceed a certain
threshold.

2Details available at http://pawtucketrotaryfundraiser.eventbrite.com/
Rotary clubs are charitable organizations of business and professional leaders that are devoted to providing health

and education services and to alleviating poverty.
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take place.” In this contest, 276 tickets were sold so the raffle was held. After subtracting the
$10,000 prize, the charity netted $17,600 less the cost of the luncheon. This is an example of the
kind of provisional fixed-prize lottery mechanism that we study in this paper.

Our main focus is on whether lottery or all-pay auction provisional fixed-prize mechanisms
are better for public good provision in settings where all players are ex-ante identical and have
equal budget constraints. In this setting we provide an overview of theoretical results showing
that a necessary condition for positive public good provision under both provisional fixed-prize
mechanisms is that the endowments of the n contributors must be sufficiently high to finance the
prize and that public good provision must be efficient. If public good provision is not efficient or
if the endowment conditions are not satisfied, then equilibrium contributions to the public good
will be zero under both provisional fixed-prize mechanisms (lottery or all-pay auction).3 We further
calculate the prize value that maximizes public good contributions under both provisional fixed
prize mechanism. Finally, we demonstrate that if public good provision is efficient and if individual
endowments are very large relative to the provisional fixed-prize amount, then any pure or mixed
strategy equilibrium under the all-pay auction mechanism will involve zero public good provision
while the unique symmetric pure strategy equilibrium under the lottery mechanism under these
same endowment and efficiency conditions will always yield positive public good provision. That is,
our main theoretical finding is that under certain empirically plausible endowment conditions, the
use of a provisional-fixed prize lottery mechanism can outperform the use of a provisional fixed prize
all-pay auction mechanism in terms of public good provision. This finding is new to the literature.
It stands in contrast to results (discussed in section 2) showing that all-pay auctions for awarding
exogenously given fixed prizes generate greater public good provision than do lotteries. The key
reason for our different finding is the assumption that the fixed-prize is not exogenously given, but
is only provisionally provided if contributions equal or exceed the value of the fixed-prize. Based on
our theoretical findings, we argue that when endowments are large relative to prize values, which in
many instances may be a reasonable assumption (e.g., if endowments are viewed as liquid assets),
then lotteries might be preferred to all-pay auctions as fundraising mechanisms in the provisional,
fixed-prize environment that we study.

In addition to pointing out some theoretical differences between self-financed (provisional) and
exogenous (non-provisional) fixed-prize fundraising mechanisms, we have also conducted an exper-
iment to test some of the comparative statics implications of the theory that we developed for
provisional, fixed-prize fundraising mechanisms. We use a 2 × 2 × 2 experimental design where
the treatment variables are: (1) all-pay auction or lottery rules to determine the prize winner; (2)
group size n = 2 or n = 10 and (3) marginal per capita return (mpcr) on the public good, β = .25
or β = .75. A novelty of our study over existing experimental studies is that we vary both the
group size, n, and the mpcr, β, in addition to comparing the two different provisional, fixed prize
fundraising mechanisms and we also consider the role of efficiency.

Our theoretical findings indicate that, under certain conditions, public good provision can be
greater under the provisional, fixed-prize lottery mechanism than under the corresponding all-pay
auction mechanism for the same number of participants, n, and marginal per capita return (mpcr)
on the public good. Under other conditions, the reverse is true – see the discussion in section 3.
We focus on the environment where the lottery is predicted to outperform the all-pay auction.

3Under an alternative assumption of exogenously given (non-provisional) fixed prizes, the use of lotteries or all-pay
auctions to award the exogenously given fixed prize does not require that public good provision be efficient for there
to exist an equilibrium with positive public good provision.

2



Our experiment has yielded the following findings. First, consistent with the theory, contribu-
tions to the public good increase with the mpcr under the provisional fixed-prize lottery mechanism.
However, opposite to the theory, contributions to the public good increase with the mpcr in the
all-pay auction mechanism and, for a given mpcr, the average amount bid by each participant in-
creases with the total number of participants, n, under both fixed-prize mechanisms. Consequently,
public good provision also increases with n, a finding that is consistent with theoretical predictions
for the lottery mechanism but is inconsistent with theoretical predictions for the all-pay auction
mechanism; in the latter, for a given mpcr, expected public good provision should remain at zero as
n increases. Further, for most values of n and the mpcr considered in this experiment, the amounts
bid are significantly greater than theoretical predictions, though there is some decline in bids as
subjects gain experience. Finally, and most significantly, for any given mpcr and n, we find no
significant difference in the amount of public good provision under either provisional, fixed-prize
mechanism. Thus, despite a theoretical prediction of zero contributions under the parameterization
of the all-pay auction mechanism that we study, we find that contributions under that mechanism
are significantly positive and no different from those under the lottery mechanism where positive
contributions are predicted. We offer several explanations for the excessive contributions that
we observe and for the absence of any difference in bidding behavior across the two mechanisms.
These include learning, risk aversion, joy-of-winning preferences, departures from expected utility
maximization and biased judgments about the game being played.

The rest of this paper is organized as follows. Section 2 situates our paper in the theoretical
and experimental literature. Section 3 presents the theory. Section 4 describes our experimental
design and section 5 reports our main experimental findings. Section 6 discusses the relationship
between our experimental findings and the theoretical predictions, and how differences might be
resolved, and section 7 provides a summary and conclusions.

2 Related Literature

There are several prior theoretical and experimental studies of lotteries and/or auctions as fundrais-
ing mechanisms that we build upon or that are related to this paper. Morgan (2000) initiated the
literature by exploring the performance of both provisional and non-provisional fixed-prize and
parimutuel lottery mechanisms and he provides conditions under which fixed-prize lotteries outper-
form the VCM in public good provision. Morgan and Sefton (2000) provide experimental evidence
in support of Morgan’s (2000) theoretical predictions. Importantly, Morgan and Sefton (2000)
adopt an experimental design where the fixed prize offered is not provisional on contributions
being sufficient to cover that prize amount. They note (in footnote 6, p. 787) that “while this
assumption [of a non-provisional prize] is patently unrealistic, the results are unchanged by more
realistically allowing the raffle [lottery] to be called off and the bets returned in the event that
insufficient wagers are made.” While it is possible that results are unchanged by making the fixed-
prize provisional, this is not a general result. Morgan (2000)’s results clearly require that public
good provision be efficient for the fixed-prize mechanism to generate positive public good provision.
Here we emphasize the importance of this efficiency condition, showing that it plays a critical role
in public good provision under provisional fixed-prize mechanisms, and in our experiment, we also
consider treatments where public good provision is or is not efficient.

Goeree et al. (2005) compare lotteries with auctions in the case where bidders have independent
private values for a prize object and where all proceeds from the fundraising mechanism accrue
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to a public good (charity) for which all bidders derive some benefit. In their setting, the prize
object is exogenously given (e.g., a donated good) and thus not provisional on the amounts bid.4

They observe that while lotteries may be preferred to winner-pay auctions, lotteries are always
inefficient and may generate less revenue when compared with k-price all–pay auctions, where the
winner is the individual submitting the highest bid, the k highest bidders pay the k-th highest bid
and all other (lower) bidders pay their bids. Goeree et al. provide conditions under which the
lowest-price all pay auction is the optimal fundraising mechanism in that it generates the most
revenue and assures that the prize is awarded to the individual with the highest valuation. Schram
and Onderstal (2009) experimentally compare lotteries, winner-pay and all-pay auctions where, as
in Goeree et al. (2005), participants have independent private values for a non-provisional prize
good. Schram and Onderstal report that all-pay auctions outperform the other two mechanisms in
charitable fundraising. By contrast, our paper compares lotteries and first-price all–pay auctions
under complete information, where all participants are certain of the value that others assign to
winning the provisional fixed prize. This setting, while simple, allows us to derive equilibrium
predictions for bidding strategies and expected public good provision levels as functions of the
number of bidders, n, and the marginal per capita return on the public good, β.

Orzen (2008) theoretically and experimentally compares the VCM with non-provisional lotteries
and all-pay auctions. His theoretical findings for the all-pay auction are different from ours as he
allows negative public good provision, i.e., if the prize is not covered by contributions, the public
good provided can be negative. Moreover, the setting of Orzen’s experiment is also different. He
considers a single parameterization of the model, β = 0.5 and n = 4 and compares how different
fundraising mechanisms perform for those parameters. Like us, he finds no significant difference
between lotteries and all-pay auctions for the parameterization that he studies. Corazzini et al.
(2010) also compare the VCM with non-provisional lotteries and all-pay auctions when β = 0.5 and
n = 4, but they are more interested in the effect of heterogeneity in individual endowments. They
report that in their setting contributions are significantly higher under the non-provisional fixed-
prize lottery than under the non-provisional fixed-prize all-pay auction. Faravelli and Stanca (2014)
compare non-provisional lotteries and all–pay auctions with or without a public good component.
They find (as we do) that the difference in bidding behavior between the two mechanisms is greatly
reduced when bidding is for a public good that enters into players’ payoff functions relative to
the other case they study of pure rent-seeking contests (no public good). Damianov and Peeters
(2018) report on an experiment similar to Orzen’s, but in a setting where there are some bystander
bidders who have no budget to contribute to the public good but who benefit from it nonetheless.
In this setting they show theoretically that the lowest bid, all pay auction maximizes expected
revenue relative to a lottery or an own-bid all pay auction and they provide experimental evidence
in support of these predictions.

In all of these prior experimental studies the prizes are exogenously given (non-provisional).
The importance of making the fixed prize provisional is demonstrated by the findings of Landry et
al. (2006) and Lange et al. (2007). In a field experiment, Landry et al. (2006) report that total
individual donations were less than the non-provisional fixed-prize value; for instance, their $1,000
fixed-prize lottery treatment raised just $688 in total contributions! A similar finding is reported
in Lange et al. (2007) who use β = 0.3 and n = 4 in their experiments. They find that under a

4The assumption of an exogenously given prize (auction object) that is already in the possession of the charity
(seller) follows the tradition in the auction literature. However, in a charity auction this assumption is not necessarily
appropriate, for instance, if the charity does not initially have a prize to offer or must buy a prize.
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non-provisional fixed-prize lottery mechanism, total contributions were insufficient to finance the
non-provisional fixed prize (total contributions averaged about one-half of the prize value). These
findings point to the importance of considering provisional fixed-prize mechanisms. Indeed, the
main difference in our experimental design from all prior experimental studies in the literature on
prize-based mechanisms is that we award the fixed prize only if contributions to the public good
equal or exceed the amount of the fixed prize.

Among other related papers, Giebe and Schweinzer (2012) devise lottery schemes that use taxes
on private goods to finance efficient allocations to a public good in a manner that does not distort
consumption of the private good. Davis et al. (2006) compare lotteries to English (winner-pay)
auctions. They find that lotteries generally outperform English auctions in public good provision
despite the fact that revenues are predicted to be the same under these two mechanisms. Carpenter
et al. (2008) compare first price all-pay charity auctions with first- and second-price charity auctions
in a field experiment and report that the first-price charity auction revenue dominates the all-
pay charity auction counter to theoretical predictions. They attribute their finding to greater
participation in the first-price as opposed to the all-pay auction formats by the bidders in their study
who (unlike this study) could decide whether or not to participate in charity auctions. Carpenter
and Matthews (2017) generalize the Morgan (2000) model replacing the linear raffle contest success
function with a generalized Tullock (1980) contest success function and, in a field experiment, vary
whether the chances of winning accrue faster (convex case) or slower (concave case) as bidders
bid more. They find that revenues are highest in the convex case and this design, as convexity
increases is, in the limit an all-pay auction. Onderstal et al. (2013) compare the VCM, fixed-prize
private value lottery and fixed-prize private value all-pay auction mechanisms in a field experiment.
They report that the VCM raises the most money, the fixed prize lottery raises the next greatest
amount and the all-pay fixed prize auction raises the least. They suggest that the prize they
offered (a Nintendo DS game console and software valued at e169) in their lottery and all-pay
auction treatments may have crowded out intrinsic, pro-social motivations for giving among the
300 participants in each contest.

Finally, we note that Dechenaux et al. (2015) provide a survey of this experimental literature
in the context of the broader contest literature. Relevant to this paper, there is already substantial
evidence for bidding in excess of Nash equilibrium predictions in lottery and all-pay auction ex-
periments without a public good component. For instance. Davis and Reilly (1998) find pervasive
overbidding in all-pay auctions which diminishes but does not disappear with experience. They
rule out risk aversion as an explanation; indeed, over-bidding would generally require risk-loving
preferences. Gneezy and Smorodinsky (2006), test the notion that overbidding in all-pay auctions
is due to mistakes which aggregate with the size of the group, but in their experiment they find that
seller revenue is largely independent of group size. Lugovskyy et al. (2010) show that over-bidding
in all-pay auctions can only be eliminated with a combination of substantial experience, a partners
matching protocol and a change in the strategy space that permits negative bids. In the lottery
contest literature, Sheremata and Zhang (2010) show that groups are less prone to overbidding
than are individuals. Sheremata (2011) explores how bounded rationality and the size of the en-
dowment can explain over-bidding. Overbidding has also been attributed to non-monetary utility
from winning Schmitt et al. (2004), Sheremata (2010). Finally, overbidding may be due to social
preferences, in particular inequality aversion and spiteful preferences. (Herrmann and Orzen (2008)
Bartling et al.(2009),
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3 Theory

We consider how two different n-player fixed-prize mechanisms affect public good provision. We
first explore the case where the fixed prize, V , is awarded to the mechanism-determined winner
regardless of whether total contributions less or more than V . Formally, in this “exogenous” or “
non-provisional” fixed-prize case, player i maximizes her expected payoff, which is given by:

ui (xi, x−i;n, β,M) = (e− xi) + β

 n∑
j=1

xj

+M (xi, x−i;n)V, (1)

by choosing her contribution level xi ≤ e, where e > 0 is player i’s endowment (e is assumed to be
the same for all n participants), 0 < β < 1 is the marginal per capita return on the public good
(also the same for all participants), and V > 0 is the fixed-prize amount awarded to the winner
under the mechanism, M, which is either a lottery or an all-pay auction. We will call problem (1)
the exogenously given (or non-provisional) fixed-prize mechanism.

We next consider the self-financing, provisional fixed-prize mechanism that is the focus of this
paper. We assume that player i maximizes her expected payoff which is given by:

πi (xi, x−i;n, β,M) ={
(e− xi) + β

(∑n
j=1 xj − V

)
+M (xi, x−i;n)V, if

∑n
j=1 xj ≥ V,

e, if
∑n

j=1 xj < V,
(2)

by choosing her contribution level xi ≤ e, and V is the fixed-prize amount provisionally awarded
to the winner under the self-financing mechanism M . Note that the threshold level for public good
provision is V . If this threshold level is not reached, then the fixed prize amount V is not awarded
and all contributions are refunded so that each player’s payoff is equal to her endowment, e.5 If
the threshold level is reached,

∑n
j=1 xj ≥ V , then the prize, V , is financed first and awarded to the

winner and the remaining amount,
(∑n

j=1 xj − V
)

, goes toward public good provision. We will

call problem (2) the self-financed, provisional fixed-prize mechanism.

3.1 Lottery

If the mechanism, M , for awarding the non-provisional fixed prize is a lottery, then (1) becomes

ui (xi, x−i;n, β,Lottery) = (e− xi) + β

 n∑
j=1

xj

+

(
xi∑n
j=1 xj

)
V.

It is well-known, see Morgan and Sefton (2000) and Orzen (2008), that there exists a unique
symmetric pure-strategy equilibrium where each player spends

x∗ = min

{
(n− 1)

n2
V

(1− β)
, e

}
, (3)

5We assume there are no credibility issues with respect to whether the prize amount is raised or not, which is
analogous to the standard assumption that there is no credibility issue with whether the public good is provided.
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and public good provision is equal to

G = nx∗ = min

{
(n− 1)

n

V

(1− β)
, ne

}
.

Now consider the self-financing, provisional fixed-prize lottery mechanism. In that case, (2) becomes

πi (xi, x−i;n, β,Lottery) ={
(e− xi) + β

(∑n
j=1 xj − V

)
+
(

xi∑n
j=1 xj

)
V, if

∑n
j=1 xj ≥ V,

e, if
∑n

j=1 xj < V.

3.1.1 No Public Good Provision

First note that under the provisional, fixed-prize mechanism, the endowment size and the fixed-
prize value become important considerations in whether the public good is provided or not. If the
symmetric endowment amount e, is too small, or alternatively, if the fixed prize value, V, is too
large then players cannot collect enough funds to finance the fixed-prize (even if they spend their
entire endowment). In such situations, when V > ne, the public good is never provided. This
problem does not arise under the non-provisional fixed prize mechanism because in that case the
prize is exogenously given and any positive contribution leads to public good provision.

Consider next the case where V < ne so that the fixed-prize value can be covered and public
good provision becomes a possibility. In this case there remains what can be termed a “public-
good-game” effect. The typical public good game has an equilibrium where each player contributes
nothing. It turns out that the provisional fixed-prize lottery mechanism has this property as well.
To summarize,

Proposition 1 Consider the self-financing provisional fixed-prize lottery mechanism.

1. Suppose that the symmetric endowment is too small, or

0 < e ≤ V

n
. (4)

Then, any strategy profile (x1, ..., xn) is a Nash equilibrium.

2. Suppose that the symmetric endowment is

e >
V

n
. (5)

Then, there exists a set of pure-strategy Nash equilibria.6 This set can be characterized in the
following way {

(x1, ..., xn) : max
i
X−i ≤ (1− β)V and xi +X−i ≤ V

}
,

where X−i =
∑

j 6=i xj.

6Of course, there is a continuum of mixed-strategy equilibria, where each player randomizes among her strategies
in this equilibrium set.
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The public good is not provided in all of these equilibria.

The proof is straightforward and is thus omitted.

The second part of the proposition is intuitive: given the contributions of the other players −i,
player i is indifferent between contributing nothing or contributing the amount (V −X−i) which
is exactly enough to finance the prize in any equilibrium in the set of equilibria. This indifference
property holds for all players in all equilibria in Proposition 1. Contributing more than (V −X−i)
is dominated by contributing (V −X−i).

Proposition 1 contrasts with the equilibrium of the non-provisional fixed-prize lottery mecha-
nism. Recall that under the latter mechanism there is a unique equilibrium where the public good
is always provided and there is no public-good-game effect. The intuition for this result is easy
to comprehend: since the prize is given, if all other players contribute nothing, a player prefers to
contribute a small amount and therefore to win the prize and to benefit from public good provision
instead of making a zero contribution.7

3.1.2 Public Good Provision

It turns out that the provisional fixed-prize lottery mechanism does have a unique, symmetric
pure-strategy equilibrium where the public good is provided. A necessary condition for such an
equilibrium is the efficiency condition:

βn > 1. (6)

Note that the efficiency condition (6) does not play any role under the exogenously given fixed-prize
lottery mechanism – see expression (3). The following result is a version of Morgan (2000).8

Proposition 2 Consider the self-financing provisional fixed-prize lottery mechanism. The endow-
ment condition (5) and the efficiency condition (6) both hold if and only if there exists a unique
pure-strategy Nash Equilibrium (NE) (x1, ..., xn), where the public good is provided and

xi = min

{
(n− 1)

n2
V

(1− β)
, e

}
.

Public good provision (less the fixed-prize value V ) is given by:

G̃ = nx∗ − V = min

{
(βn− 1)

n (1− β)
V, ne− V

}
> 0. (7)

From (7) we see that in the efficient case, public good provision is increasing in both n and β.
However, in the inefficient case, where condition (6) does not hold, the public good is not provided
under the provisional fixed-prize lottery mechanism though it would be provided if the prize were
exogenously given. This difference is intuitive. If the prize is exogenously given, then players can

7Morgan (2000) assumes that ”wealth constraints are ... to be non-binding for all consumers” and analyzes when
public good is provided in an equilibrium. See his footnote 9.

8Morgan (2000) as well as Orzen (2008) only focus on the efficient case when condition (6) holds. Note that if
the efficiency condition (6) does not hold, then all contributions are refunded and public good provision is equal to
zero under a provisional, self-financed lottery. Public good provision is negative in Morgan and Sefton (2000) if the
efficiency condition (6) does not hold.
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not only win the prize, (as they do in a standard non-public good lottery), but they can also receive
benefits from the public good. As a result, players find it optimal to bid positive amounts and the
public good is provided. However, if the fixed prize is provisional and self-financed, then total
spending has to be high enough to finance the fixed prize which can only happen if it is efficient
to provide the public good in the first place. Note that the endowment also plays an important
role in the success of the self-financing mechanism: the endowment must be large enough to allow
players to finance the prize. The endowment size does not matter in the case of an exogenously
given prize.

Proposition 2 shows that there is a unique symmetric pure-strategy equilibrium under the
provisional fixed-prize lottery mechanism involving public good provision for any fixed-prize value
V < ne in the efficient case. Morgan (2000) discusses the optimal prize value in the case of
quasi-linear preferences. He shows that the higher is the prize, the closer is the outcome to the
first-best. An obvious question in our setting with budget constraint is: given the endowment e, and
assuming that efficiency holds, what prize value, V , maximizes public good provision? By contrast
with Morgan’s case without budget constraints, there are two competing effects in determination
of the optimal prize value. First, a higher prize encourages higher individual contributions; this is
captured by the term (βn−1)

n(1−β)V in (7). Second, a higher prize value means that less will be spent
for public good provision as individuals’ contributions have to finance that higher prize value first;
this is captured by the term ne − V in (7). Since public good provision is the smaller of these
two terms, the optimal prize makes these two competing effects equal. The following corollary of
Proposition 2 answers the question.

Corollary 2.1 Consider the self-financing, provisional fixed-prize lottery mechanism. Suppose that
the endowment condition (5) and the efficiency condition (6) both hold. Then, for a given number
of participants, n, and endowment e,

V L =
n2

(n− 1)
(1− β) e

is the prize value that maximizes public good provision. The highest possible public good provision
(less the fixed-prize V ) is:

G̃L =
n

(n− 1)
(βn− 1) e.

Proof. See Appendix A.

3.2 All-Pay Auction

If the mechanism M is an all-pay auction9, then (1) becomes

πi (bi, b−i;n, β,All-pay auction) =
V + (e− bi) + β

(∑n
j=1 bj

)
, if bi > bj for any j 6= i,

V
K + (e− bi) + β

(∑n
j=1 bj

)
, if i ties (K − 1) others for the high bid,

(e− bi) + β
(∑n

j=1 bj

)
, if bi < bj for some j 6= i.

(8)

9See Baye et al. (1996) for a complete characterization of equilibria in the complete information version of the
first price all-pay auction without a public good component.

9



Note that we use b rather than x to denote “bids” under the all-pay auction mechanism. In this
case, Orzen (2008) proves10 that if

0 < e ≤ V

(1− β)n
,

then there exists a symmetric pure-strategy equilibrium where each player bids his entire endow-
ment, e. He also demonstrates that if

e ≥ V

(1− β)
, (9)

then there exists a symmetric mixed-strategy equilibrium where each player bids in the interval[
0, V

1−β

]
according to the following distribution function:

F (b) =

(
(1− β)

b

V

) 1
n−1

. (10)

Note that expected public good provision in the latter case is positive and is given by:

EG = n

∫ V
1−β

0
bdF (b) =

V

1− β
.

Finally, if
V

(1− β)n
< e <

V

(1− β)
,

then there exists a symmetric mixed-strategy equilibrium where each player bids his entire endow-

ment, e, with probability p and bids in the interval
[
0, (1−p)

n−1V
1−β

]
according to the distribution

function F in (10) with probability (1− p), where probability 0 < p < 1 is a unique positive
solution of the following equation:

1− (1− p)n

p
=

(1− β)n

V
e.

We now turn to the self-financing provisional fixed-prize all-pay auction mechanism that is the
focus of this paper. In that case, (2) becomes

πi (bi, b−i;n, β,All-pay auction) = (11)
V + (e− bi) + β

(∑n
j=1 bj − V

)
, if bi > bj for any j 6= i and

∑n
j=1 bj ≥ V ,

V
K + (e− bi) + β

(∑n
j=1 bj − V

)
, if i ties (K − 1) others for the high bid and

∑n
j=1 bj ≥ V ,

(e− bi) + β
(∑n

j=1 bj − V
)

, if bi < bj for some j 6= i and
∑n

j=1 bj ≥ V ,

e, if
∑n

j=1 bj < V.
10Orzen considers self-financing mechanisms, see his equation (1). However, his results are correct only in the case

where the fixed prize is exogenously given. Therefore, we view Orzen (2008) as studying the case of non-provisional
fixed prizes, i.e., the setting with the payoff function (8).
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3.2.1 No Public Good Provision

As in our analysis of the provisional fixed-prize lottery, we first consider the role of the endowment,
e, relative to the fixed prize value, V . If condition (4) holds, then the prize value is so high that
players do not have enough resources to finance the prize and, as a result, the public good is never
provided in any equilibrium in this case.

Second, we consider the public-good-game effect. It turns out that the self-financed provisional
fixed-prize all-pay auction also has this property. The intuition is clear: if all other players con-
tribute nothing or very little, then a player has to finance the prize (almost) alone in order to get
it. Formally,

Proposition 3 Consider the self-financing provisional fixed-prize all-pay auction mechanism.

1. (x1, ..., xn) = (0, ..., 0) is a pure-strategy NE.

2. Suppose that condition (4) holds. Then, any strategy profile (x1, ..., xn) is a Nash equilibrium.

3. Suppose that the endowment condition

V

n
< e < V

holds. Then, there exists a set of pure-strategy Nash equilibria.11 This set can be characterized
in the following way {

(x1, ..., xn) : max
i
X−i < V − e

}
,

where X−i =
∑

j 6=i xj.

The public good is not provided in all of these equilibria.

The proof is straightforward and is thus omitted.

The intuition for the second part of the proposition is straightforward: given the contributions
of the other players, −i, player i does not have enough resources (her endowment is too small) to
finance the prize and, therefore, she is indifferent among all her choices in any equilibrium in the
set of equilibria. This indifference property holds for all players in all equilibria in Proposition 3.
Note that the endowment has to satisfy the condition e < V in Proposition 3.

By contrast, the non-provisional fixed-prize all-pay auction does not have a public-good-game
effect. Again, the intuition is clear: since the prize is given, if all other players contribute nothing,
a player prefers to contribute a small amount and therefore to win the prize and to benefit from
public good provision instead of making a zero contribution.

11Of course, there is a continuum of mixed-strategy equilibria, where each player randomizes among her strategies
in this equilibrium set.
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3.2.2 Public Good Provision

The provisional fixed-prize all-pay auction can also have equilibria where the public good is pro-
vided. As in the provisional fixed-prize lottery case, a necessary condition for such an equilibrium
under the all-pay auction mechanism is that the efficiency condition (6) holds. Note that the
efficiency condition (6) does not play any role in the exogenously given fixed-prize all-pay auction.

Proposition 4 Consider the self-financing provisional fixed-prize all-pay auction. Suppose that
the efficiency condition (6) and the following endowment condition

V

n
< e <

V

(1− β)n
(12)

both hold. Then, there exists a pure-strategy NE, (x1, ..., xn) = (e, ..., e), where the public good is
provided. Public good provision (less the fixed-prize value V ) is given by:

G̃ = ne− V > 0.

Suppose that the efficiency condition (6) does not hold. Then, the public good is not provided in
any pure-strategy equilibrium.

Proof: See Appendix A.

It turns out that if e = V
(1−β)n , then (x1, ..., xn) = (e, ..., e) is a pure-strategy NE, where the

public good is provided. However, (x1, ..., xn) = (0, e, ..., e) might also be a pure-strategy NE,
where the public good is provided, depending on parameters β and n. We consider the case of such
asymmetric pure-strategy NE in the following proposition.

Proposition 5 Consider the self-financing provisional fixed-prize all-pay auction. Suppose that
there exists k ∈ {1, ..., n− 2} such that the following endowment condition

V

(1− β) (n− k + 1)
< e ≤ V

(1− β) (n− k)
(13)

holds. If the following efficiency condition

β (n− k) > 1 (14)

holds, then there exist Ckn = n!
k!(n−k)! asymmetric pure-strategy NE, where (n− k) players bid their

entire endowment, e, while the other k players bid zero. Public good provision (less the fixed-prize
value V ) is given by:

G̃ = (n− k) e− V > 0.

Suppose that V
2(1−β) < e, then the public good is not provided in any pure- or mixed-strategy equi-

librium.

Proof: See Appendix A.

Figure 1 illustrates the endowment and efficiency conditions for the set of equilibria characterized
in Propositions 4 and 5. Note that in all equilibria where the public good is provided, each player
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Figure 1: Illustration of Equilibrium Possibilities involving Positive Public Good Provision under
the Provisional Fixed Prize All-Pay Auction Mechanism.

either contributes nothing or their whole endowment. Players cannot contribute “small” amounts
in equilibrium because a small bid means that the player loses the auction (i.e., does not win the
prize). Therefore, the highest payoff such a player can get is −b + βb = (–1 + β)b < 0 for any
0 < b < e. Hence, bidding zero is strictly better than bidding a small amount.

Propositions 3 - 5 characterize the range of parameters under which the provisional, fixed-prize
all-pay auction mechanism yields public good provision. First, if the endowment is too small, i.e., if
0 < e ≤ V

n , then the public good is never provided, from Proposition 3. Second, if the endowment
is too large, e > V

2(1−β) , then the public good is again never provided, from Proposition 5. This
means that the public good can be provided only if the endowment is in the intermediate range,
V
n < e ≤ V

2(1−β) . We shall refer to endowments in this range as a being “medium” endowments.
Moreover, Propositions 4 and 5 demonstrate that public good provision depends on efficiency as
well. If it is efficient to provide the public good even for just two players, i.e., if 2β > 1, then for

any endowment in the range
(
V
n ,

V
2(1−β)

]
the public good is provided in a pure-strategy equilibrium,

from Propositions 4 and 5. If it is efficient to provide the public good for three or more players,

3β > 1 > 2β, then for any endowment in the smaller range
(
V
n ,

V
3(1−β)

]
the public good is provided

in a pure-strategy equilibrium, and so on. Finally, if it is efficient to provide the public good only

for all n players, nβ > 1 > (n− 1)β, then for any endowment in the smallest range
(
V
n ,

V
n(1−β)

]
the public good is provided in a pure-strategy equilibrium, from Proposition 4. Note that if it is
inefficient to provide the public good even for all n players, i.e., if nβ < 1, then for any endowment,
the public good is not provided in any equilibrium.

Proposition 5 describes asymmetric pure-strategy equilibria with public good provision for en-
dowments that are larger than those allowed in Proposition 4 for the case of symmetric pure-strategy
equilibria. The following two corollaries help to further clarify Proposition 5. Corollary 5.1 de-
scribes asymmetric, pure-strategy equilibria with public good provision that involve (n− 1) active
players and the corresponding restriction that must be imposed on endowments. Corollary 5.2
describes the largest endowment for which asymmetric pure-strategy NE with positive public good
provision exist.

Corollary 5.1 Consider the self-financing provisional fixed-prize all-pay auction. Suppose that the
following efficiency condition

β (n− 1) > 1
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and the following endowment condition

V

(1− β)n
< e ≤ V

(1− β) (n− 1)

both hold. Then, there exist n asymmetric pure-strategy NE, (xi, x−i), where xi = 0 and xj = e if
j 6= i, and the public good is provided. Public good provision (less the fixed-prize value V ) is given
by:

G̃ = (n− 1) e− V > 0.

Corollary 5.2 Consider the self-financing provisional fixed-prize all-pay auction. Suppose that the
following efficiency condition

2β > 1

holds. If there exists k ∈ {1, ..., n− 2} such that the following endowment condition

V

(1− β) (n− k + 1)
< e ≤ V

(1− β) (n− k)

holds, then there exist Ckn = n!
(k)!(n−k)! asymmetric pure-strategy NE, where (n− k) players bid their

entire endowment, e, while the other k players bid zero. Public good provision (less the fixed-prize
value V ) is given by:

G̃ = (n− k) e− V > 0.

Given our findings of asymmetric pure-strategy equilibria where players bid either zero or their
entire endowment, it is natural to expect multiple mixed-strategy equilibria where the public good
is provided. Since the endowment condition

V

n
< e <

V

2 (1− β)

has to hold in all such mixed-strategy equilibria, we do not describe these equilibria here because
we already know that the public good can be provided for this endowment condition under a pure
strategy NE.

We find that if the endowment is very large relative to the value of the prize – the case we
study in our experiment – then the unique (symmetric) equilibrium prediction is for all players to
contribute zero, resulting in zero public good provision. By sharp contrast, under the exogenously
given fixed-prize all-pay auction mechanism where the endowment is again very large relative to
value of the prize, specifically for any e satisfying condition (9), there continues to exist a symmetric
mixed strategy equilibrium where expected public good provision is positive. In this mixed-strategy
equilibrium, players submit bids from a bounded, continuous interval from 0 on up to some upper
bound. This upper bound is fixed at V

1−β for any e > V
1−β and players are indifferent among all

bids in the interval [0, V
1−β ].

The latter type of equilibrium does not exist when the fixed-prize is provisional on contributions
equaling or exceeding V . For some intuition, consider a “small” bid – a bid between 0 and V

n .
A bid of zero will dominate any small bid: If a player wins with a small bid, the prize is not
provided since, from our definition of a small bid, the provisional threshold will not have been
reached. If a player loses with a small bid, he has to pay that small bid and is worse off relative to
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a bid of zero. Suppose next that participants consider bidding on a bounded continuous interval
strictly greater than 0. In that case, bids at the left boundary always lose under an all-pay auction
and such bids are costly to the bidder as they are strictly greater than zero. Essentially there is
no left boundary such that individuals are indifferent among bids over some bounded continuous
interval. The only exception arises if players randomize between a zero bid and a bid of their entire
endowment. However, if the endowment is sufficiently large relative to the prize, then even this
mixed equilibrium ceases to exist and the unique equilibrium prediction calls for zero contributions
by all participants in the all-pay auction with a provisional fixed-prize. In that case, the use of the
all-pay auction mechanism to award a provisional but fixed prize transforms the game so that its
incentives are equivalent to those of the VCM where the dominant equilibrium strategy is for all
to contribute nothing.

Proposition 4 shows that there exists a symmetric pure-strategy equilibrium involving positive
public good provision for any prize value, V , that satisfies condition (12). As in the case of
the lottery mechanism, we can again ask: given endowments e, what prize value, V , maximizes
public good provision under the provisional, fixed-prize all-pay auction mechanism? We answer
this question in the following proposition.

Proposition 6 Consider the self-financing provisional fixed-prize all-pay auction mechanism. Sup-
pose that efficiency condition (6) and the endowment condition (12) both hold. Then, for a given
number of participants, n, and endowment e,

V A = (1− β)ne

is the prize value that maximizes public good provision. The highest possible public good provision
(less the prize V ) is:

G̃A = ne− V A = βne.

Proof. See Appendix A.
It is straightforward to see from Corollary 2.1 and Proposition 6 that even though the optimal

prizes are different, the optimal all-pay auction always generates more public goods than the optimal
lottery.

Corollary 6.1 Consider the self-financing provisional fixed-prize all-pay auction and lottery mech-
anisms. Suppose that efficiency condition (6) and the endowment condition (12) both hold. Then,
for a given number of participants, n, and endowment e, the highest possible public good provision
(less the prize V ) is:

G̃A = βne >
n

(n− 1)
(βn− 1) e = G̃L.

4 Experimental Design and Predictions

We have designed an experiment to test some of the comparative statics implications of the theory
developed in the previous sections. In our experiment the commonly known fixed prize, V , is
always provisional and must be financed by subject contributions. Thus, the payoff function for
each subject i is given by an equation of the form (2). We use a 2 × 2 × 2 experimental design
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where our treatment variables are (1) the mechanism, M – either the all-pay auction or lottery
rules determine the prize winner; (2) the group size, n = 2 or n = 10; and (3) the marginal per
capita return (mpcr) on the public good, β = .25 or β = .75. We chose to vary n and β so as to also
test some comparative statics predictions of the theory under the two different provisional prize
mechanisms, particularly under the lottery mechanism. We chose values for n and β that are found
in the existing literature.12 All other model parameters, i.e., the fixed prize value of V = 100 and
the individual endowment of e = 400 were kept fixed across all rounds of all experimental sessions
of our experiment so as to focus attention on the role played by the three treatment variables.13

We chose to set e = 4V as we think it is realistic to assume that for the small charitable fund-
drives we have in mind, the value of the prize offered is considerably less than any single participant’s
endowment.14 Further, with these choices for e and V , and for all four {n, β} treatment pairs that
we consider, it is always the case that the unique equilibrium prediction under the provisional fixed-
prize all-pay auction mechanism is for all players to bid zero and thus there should be zero public
good provision. The reason is that e is too large relative to V to satisfy any of the conditions for
positive public good provision given in the propositions of section 3.2.2. In particular, according to
Proposition 5, if V

2(1−β) < e, as is the case in for all four treatment pairs under our fixed-prize all-pay
auction mechanism, then there does not exist an equilibrium with positive public good provision.
By contrast, for three of the four {n, β} treatment pairs in our experimental design, the provisional
fixed-prize lottery mechanism has a symmetric pure strategy equilibrium involving positive bids and
positive public good provision (in addition to the symmetric zero-bid/zero-provision equilibrium
as well). Thus, our experimental design provides a stark predicted difference between the two
provisional fixed-prize mechanisms in terms of bidding behavior and public good provision. We
also explore whether the efficiency condition (6) plays the important role that is predicted by
the theory. For three of our four treatment pairs for {n, β}, our experimental parameterization
corresponds to the efficient case, where condition (6) holds; these are the same three cases where
the provisional fixed-prize lottery mechanism has a symmetric pure strategy equilibrium involving
positive bids and public good provision. In the one treatment where n = 2 and β = .25, the
efficiency condition (6) does not hold and so it is inefficient to provide the public good under
either the provisional fixed-prize lottery or all-pay auction mechanisms. Thus, the latter treatment
allows us to examine whether the efficiency condition matters for public good provision under the
fixed-prize lottery mechanism, as the theory predicts.

Given our parameter choices, equilibrium bid and public good predictions for our experimental
design are given in Table 1. For the provisional fixed-prize lottery mechanism we focus on the
symmetric pure-strategy Nash equilibrium where the public good is provided if such equilibria
exist under the conditions detailed in Proposition 2. Recall from Proposition 1 that there will
always exist a set of Nash equilibria where the public good is not provided under the provisional
fixed-prize lottery mechanism for all treatment conditions of our experiment. Note that in one of
our four provisional fixed-prize lottery mechanism treatments, the one where n = 2 and β = .25, the
efficiency condition that βn > 1 is not satisfied so that Proposition 2 does not apply. Thus, for this

12For instance, Isaac et. al. (1984) study a VCM using a 2 × 2 design with n = 4 or 10 and β = .3 or .75.
13In future research it would be of interest to set V equal to the values that maximize public good provision (for

given e, n and β) as stated in Corollary 2.1 and Proposition 6. However as these two values for V differ from one
another (varying also with e, n and β) and the main focus of this paper is on the effect of the two different provisional
prize mechanisms (as well as variations in n and β) on contributions to a public good, we chose to keep V (and e)
fixed across all treatment conditions.

14This is a reasonable assumption if the endowment is viewed as the participant’s liquid assets.
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one treatment, consistent with Proposition 1, there exist many pure strategy equilibria where all n
players bid an amount xi ∈ [0, 75] and where x1 +x2 ≤ V = 100. However, in all of these equilibria,
the NE prediction for public good provision net of the prize amount, G̃, is unambiguously 0, as total
bids can never exceed V = 100. Notice finally that for the provisional fixed-prize all-pay auction
mechanism, the equilibrium bid and public good provision levels are always zero regardless of the
different treatment values for n and β. As noted above, this prediction arises because condition

V
2(1−β) < e always holds in our experimental design, i.e., the endowment e, is too large relative to
the prize value V and we know from Proposition 5 that in this case there are no equilibria with
public good provision.

Lottery All-Pay Auction

β = .25 xi = min
{
n−1
n2

V
1−β , e

}†
G̃ = min

{
(βn−1)
n(1−β)V, ne− V

}†
xi = 0 G = 0

n = 2 xi ∈ [0, 75]‡ 0 0 0
n = 10 12 20 0 0

β = .75 xi = min
{
n−1
n2

V
1−β , e

}†
G̃ = min

{
(βn−1)
n(1−β)V, ne− V

}†
xi = 0 G = 0

n = 2 100 100 0 0
n = 10 36 260 0 0

† If βn > 1. There will also exist a set of equilibrium where the public good is not provided.
‡ Since βn < 1, according to Proposition 1, there exists a set of pure-strategy equilibria where
xi ∈ [0, (1− β)V ] and x1 + x2 ≤ V = 100 so that public good provision is 0.

Table 1: Equilibrium predictions under the provisional fixed-prize model (2) for the parameteriza-
tion where e = 400 and V = 100

It is instructive to compare the equilibrium predictions for the self-financing, provisional fixed-
prize model we study as reported in Table 1 with the non-provisional model where the fixed prize is
exogenously given (model (1)). Table 2 provides these predictions. In the non-provisional exogenous
fixed prize case, the all-pay auction is predicted to result in positive bids and public good provision
under all treatment conditions and at levels that in expectation exceed the bids and public good
provision generated by the non-provisional fixed prize lottery mechanism. Further, with a non-
provisional exogenous fixed prize, the lottery mechanism is predicted to yield positive public good
provision in all cases, even the inefficient case where n = 2 and β = .25.

We report data from 16 experimental sessions, each involving 20 subjects, for a total of 320
subjects. Each session involves a within-subject design where either the all-pay auction or the
lottery mechanism was used to determine the prize winner in each group of size n = 2 or 10 over
the first 15 rounds.15 Over the remaining 15 rounds, the other mechanism was used to determine
the prize winner in each group of size n. The change in the mechanism was not announced in
advance. For each session, we used a single fixed parameter set for {n, β}, either {2, .25}, {2, .75},
{10, .25}, or {10, .75} for all 30 rounds (i.e., under both mechanisms). Thus the single, one-time
treatment change within a session was only in the mechanism used to determine the prize winner.
To minimize the consequences of possible order effects, we reversed the order of the mechanisms

15We chose a within-subject design because such designs are statistically more powerful than between-subject
designs; in a within-subject design, each subject serves as their own control, thereby minimizing the effects of
individual differences (see, e.g., Camerer 2003 pp. 41-42).
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Lottery All-Pay Auction

β = .25 xi = min
{
n−1
n2

V
1−β , e

}
G = min

{
n−1
n

V
1−β , ne

}
F (b) =

(
(1− β) b

V

) 1
n−1 EG = V

1−β
n = 2 100

3
200
3

(
3b
400

)
400
3

n = 10 12 120
(

3b
400

) 1
9 400

3

β = .75 xi = min
{
n−1
n2

V
1−β , e

}
G = min

{
n−1
n

V
1−β , ne

}
F (b) =

(
(1− β) b

V

) 1
n−1 EG = V

1−β
n = 2 100 200

(
b

400

)
400

n = 10 36 360
(
b

400

) 1
9 400

Table 2: Equilibrium predictions under the non-provisional exogenous fixed-prize model (1) for the
parameterization where e = 400 and V = 100

used in the first and last 15 rounds across sessions involving the same {n, β} treatment conditions.
Specifically, two sessions of each {n, β} treatment used the lottery mechanism in the first 15 rounds
followed by 15 rounds of the all-pay auction mechanism. The other two sessions use the all-pay
auction mechanism in the first 15 rounds followed by 15 rounds of the lottery mechanism.

A summary of the session characteristics is provided in Table 3.

Lottery First 15 Rounds Auction First 15 Rounds Total
Auction Last 15 Rounds Lottery Last 15 Rounds Sessions

n = 2, β = .25 2 Sessions 2 Sessions 4

n = 2, β = .75 2 Sessions 2 Sessions 4

n = 10, β = .25 2 Sessions 2 Sessions 4

n = 10, β = .75 2 Sessions 2 Sessions 4

Table 3: Experimental Design

In the n = 2 treatment, the 20 subjects were randomly paired at the start of each of the 30
rounds to form 10 groups of size 2. In the n = 10 treatment, the 20 subjects were randomly
matched into two groups of size 10 at the start of each of the 30 rounds so that there were 2 groups
of size 10. We used random matching each round so as to avoid any repeated game effects.

Subjects were University of Pittsburgh undergraduates with no prior experience with our ex-
periment. No subject participated in more than one experimental session. Subject interactions
and decision-making were anonymous and were conducted using networked PCs in the Pittsburgh
Experimental Economics Laboratory. Prior to the first round of play, subjects were given written
instructions that were also read aloud in an effort to induce common knowledge of endowments,
the prize, the mechanism for winning the prize and the value of tokens in terms of dollars. Follow-
ing 15 rounds of play, continuation instructions were provided and read aloud; these continuation
instructions explained that the only change relative to the first 15 rounds of play would be in the
mechanism used to determine the prize winner and that this new mechanism would be in effect for
the final 15 rounds of play. The instructions used in n = 10, β = .75 treatment, where the lottery
mechanism was used in the first 15 rounds and the all-pay auction mechanism was used in the final
15 rounds, are provided in Appendix C; other instructions are similar, differing only in the values
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for n and β or in the order of the two mechanisms.
The sequence of play of each round of a session was as follows. Each subject was endowed with

400 tokens. They were instructed that they could bid any number of these tokens for a provisional,
fixed prize of 100 tokens. The winner in their group of size n (2 or 10) was determined according to
the mechanism that was in place for that round. Specifically, subjects were instructed that when
the all-pay auction was the mechanism, the winner was the player who bid the most tokens and
that in the event of a tie, the winning bidder would be randomly chosen from among all those
who bid the most tokens. When the lottery was the mechanism, subjects were instructed that
the winner was chosen randomly from all members of their n member group who bid at least 1
token and that each bidder’s chance of winning was set equal to the ratio of their bid to the total
tokens bid by all n members of their group in that round.16 Importantly, subjects were instructed
that if the total amount bid for the prize by all n members of their group did not equal or exceed
the fixed prize value of 100 tokens, then the prize would not be offered. In that case, all bids
were returned and subjects ended the round with their endowment, e, of 400 tokens. If the total
amount bid for the prize by all n group members equaled 100 or more, then the prize was awarded
according to the mechanism that was in place for that round. Finally, subjects were instructed that
amounts bid in excess of the V = 100 token prize would be placed in a “group account”. Subjects
were informed that all members of their group of size n, even those who did not bid any tokens
toward the 100 token prize, could earn additional tokens based on the total number of tokens in
their group’s account. Specifically, subjects were informed that the amount of additional tokens
each group member could receive from the group account was determined by the amount of tokens

remaining in the group account after the prize was paid out,
(∑n

j=1 bj − 100
)

, and by the mpcr, β,

and was given by β
(∑n

j=1 bj − 100
)

if
∑n

j=1 bj ≥ 100 and was 0 otherwise. (Here bj denotes the

amount bid by individual j in a group of size n in either the lottery or all-pay auction treatments).
Subjects were also given a table showing how many additional tokens each group member could
earn if their group account reached various token levels of 100 or more. Subjects were instructed
that their earnings in each round were the sum of three numbers: 1) the amount of tokens remaining
in their “private account,” i.e., their endowment of 400 tokens for the round less any tokens they
bid in that round (provided that

∑n
j=1 bj ≥ 100); 2) their prize winnings of V = 100 tokens if (and

only if) they were the prize winner in their n member group for that round and 3) their payoff in
tokens from their n-member group account for that round.

At the end of each session, two rounds were randomly chosen, one from the first 15 rounds of
the session and one from the last 15 rounds of the session, as these sets of rounds involved two
different mechanisms. Subjects’ total token amounts from the 2 randomly chosen rounds were
converted into dollars at the known and fixed rate of 1 token = $0.01 (1 cent). In addition,
subjects were guaranteed $5.00 for showing up on time. Each subject’s total earnings for this 90
minute experiment depended on the treatment. For each of the {n, β} pairs average total earnings
per subject (across all sessions of that treatment pair) were as follows: {2, .25}: $12.82; {2, .75}:
$14.47; {10, .25}: $15.45; and {10, .75}: $39.20. Notice that by not bidding in any round of any
treatment, a subject could guarantee him/herself a payment of at least $13.00 and possibly more
depending on whether others placed bids and the prize threshold was met.17

16We avoided use of the terms “lottery” and “auction” and simply explained to subjects how the two different
mechanisms determined a prize winner in each round.

17By not bidding in the first and last 15 rounds, subjects earn their endowment of 400 tokens twice, or $8.00 at
the .01 conversion rate plus a $5.00 show-up payment for a total of $13.00. In addition, subjects could get additional
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5 Experimental Findings

We begin by considering whether and how behavior varies across the treatments of our 2 × 2 × 2
experimental design. For each session of each treatment, we calculated the average amount bid,
denoted by ‘Avg. Bid’, and the average amount of public good provision less the prize (if awarded)
which we refer to as ‘Avg. G’ separately for each provisional fixed-prize mechanism (lottery, all-pay
auction). The variable Avg. Bid is calculated by first taking the average amount bid in each group
of size n and then calculating the average of all such group averages. This ‘Avg. Bid’ number can
be compared with the theoretical predictions for xi as given in Table 1.18 The session-level average
contribution to the public good, Avg. G, excludes the prize amount of V = 100 if the prize was
awarded and is equal to 0 if the prize was not awarded or if the sum of a group’s bids was exactly
equal to 100. This ‘Avg. G’ number can be compared with the theoretical predictions for G̃ or G
as given in Table 1.

Table 4 provides an overview of our main findings using pooled data from all four sessions of
each treatment, {M,n, β} over all 15 rounds of each mechanism, Lottery or Auction. This table
reports for each treatment, the average amount bid, Avg. Bid (and this average bid as percentage
of the endowment of 400, % End.), the average amount of public good provided less the prize, Avg.
G, and the frequency of time the public good was provided, Prov. For convenience, Table 4 also
reports the Nash equilibrium (NE) bid, the NE public good amount less the prize predictions under
the headings and the NE prediction regarding public good provision under the headings ‘NE Bid’,
‘NE G’, and ‘NE Prov.’ which were reported earlier in Table 1 for the model parameterization of
our experiment.

Tables B1–B4 in Appendix B report on disaggregated session-level observations for Avg. Bid
and Avg. G less the 100 token prize for each treatment, {M,n, β}, over various intervals of time,
T , specifically over all rounds, 1 − 15 (as in Table 4) but also for round 1 only, for rounds 1 − 5,
6− 10, 11− 15 and for the final round 15 only.

Based on the numbers shown in these tables we can report a number of different findings.

Finding 1 Average bids and public good provision (less the prize amount) are greater than theo-
retical predictions.

Support for this finding can be found in Table 4 which suggests that both Avg. Bid and Avg. G
are always greater than Nash equilibrium predicted values (NE Bid and NE G, respectively) under
both self-financed provisional fixed-prize mechanisms.19

Consider first the n = 2, β = .25 treatment of the provisional fixed prize lottery mechanism.
In that treatment, the efficiency condition (βn > 1) is not satisfied so the theoretical prediction
(from Proposition 2) is that bids should be strictly less than 75, the sum of the two players’ bids
should not exceed 100 and as a consequence there should be 0 public good provision as the prize
value, V = 100, cannot be covered by two such bids. Table 4 indicates that bids over all rounds
in this treatment averages 59.3. Further, the public good provision threshold of 100 is met and the

earnings from the public good if it was provided.
18The average bid actually paid may be less than Avg. Bid, depending on whether contributions exceeded the

prize level, V = 100, or not. However, the theoretical predictions in Table 1 for xi are for this ‘ex-ante’ bid amount,
the same amount that is reported in Tables 4, and in B1 and B2 in Appendix B. By contrast, the Avg. G measure,
described below takes account of whether each group of n players met the prize threshold or not, again consistent
with theoretical predictions for G̃ or G as given in Table 1.

19Further support for this finding at the session-level is provided in Tables B1–B4.
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Lottery
n β Avg. Bid (% End.) NE Bid Avg. G NE G Prov. NE Prov. %

2 .25 59.3 (.148) xi ∈ [0, 75] 36.4 0.0 0.63 0.00
2 .75 148.6 (.371) 100.0 207.9 100.0 0.80 1.00
10 .25 86.6 (.216) 12.0 767.6 20.0 0.98 1.00
10 .75 201.8 (.504) 36.0 1918.0 260.0 1.00 1.00

All-Pay Auction
n β Avg. Bid (% End.) NE Bid Avg. G NE G Prov. NE Prov. %

2 .25 67.9 (.170) 0.0 56.2 0.0 0.69 0.00
2 .75 159.3 (.398) 0.0 230.3 0.0 0.82 0.00
10 .25 87.0 (.218) 0.0 772.5 0.0 0.98 0.00
10 .75 210.8 (.527) 0.0 2008.0 0.0 1.00 0.00

Table 4: Average Bids and Public Good Provision Across Treatments Relative to Theoretical
Predictions, Averages From All Periods of All Sessions of Each Treatment

public good is provided 63% of the time so that Avg. G for this treatment is 36.4. Using the four
session-level observations for Avg. Bid over rounds 1-15 for the {2, .25} (second column of Table
B1) a one-sample upper-tailed Wilcoxon signed rank test indicates that we cannot reject the null
hypothesis that the median of the mean bids is less than or equal to 75 (p = .98) in favor of the
alternative that it is strictly greater than 75. Still, we observe that Avg. G over all 15 rounds (or
even the last 5 rounds) is strictly greater than 0 in all four sessions of the {2, .25} treatment as
indicated in the second (or sixth) column of Table B3. We do note that there is evidence of a steep
decline in Avg. G from 59.7 in the first round to 18 in the final 15th round, which suggests that
subjects may be learning (albeit slowly) the equilibrium prediction of zero public good provision
for this treatment.

Consider next the provisional prize lottery mechanism in the three treatment conditions where
it is efficient to provide the public good (βn > 1). In that case there exists a symmetric Nash
equilibrium with positive bids and positive public good provision as reported in the second column
of Table B1 (as well as a symmetric equilibrium with zero bids and zero public good provision),
i.e., the treatments where {n, β} = {2, .75}, {10, .25}, or {10, .75}. Using the four session-level
observations on Avg. Bid over rounds 1-15 for each of these treatments (second column of Table
B1) a one-sample two-tailed Wilcoxon signed rank test allows us to reject the null hypothesis that
the median of the Avg. Bids is equal to the positive NE Bid as reported in Table 4 (p < .10) for two
of the three treatment conditions (3 tests); the sole exception is for the n = 2, β = .75 treatment
where the NE Bid prediction is 100; in that case, for three of the four session-level observations,
bid averages are greater than the NE prediction of 100 while one session-level observations is less
than 100 (session 3, Avg. Bid= 81.3) so that we cannot reject the null hypothesis of no difference
from the NE Bid prediction of 100 (p = .14). Not surprisingly, a similar finding holds if we use
the four session level observations on Avg. G over rounds 1-15 as reported in the second column of
Table B3 and test the null hypothesis that the median of the Avg. G observations equals the NE
G prediction for these same three treatments. These same conclusions would remain unchanged if
we used as our session level observations the values of Avg. Bid or Avg. G over just the final 5
rounds, 11-15, of the lottery mechanism (as reported in the sixth column of Tables B1 and B3).
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We further observe that public good provision is high in these three lottery treatments at 82% for
{2, .75} treatment and close to or at 100% for the {10, .25} and {10, .75} treatments.

Consider next the provisional fixed prize all-pay auction mechanism. We cannot similarly test
the NE prediction that Avg. Bid = Avg. G = 0 under the all-pay auction mechanism as such
predictions lie at the boundary of feasible bids and public good provision levels. Nevertheless, it
seems clear from Tables B2 and B4 that the experimental evidence runs counter to the prediction
of 0 bids and public good provision as both Avg. Bid and Avg. G are, for all {n, β} treatments
and all sessions of the all-pay auction mechanism, substantially greater than zero. We note further,
as revealed in Table 4, that the frequency with which the public good is actually provided (i.e.,
the frequency with which contributions exceed the prize level) averages 69 percent or higher in the
all-pay auction treatments and, as was found under the lottery mechanism, is generally increasing
in n or β; in the case where n = 10, the frequency of public good provision is very close or equal
to 100 percent, even though it is predicted to be zero. Summarizing, we find that in most cases
bids and public good provision differ from NE predictions under the provisional fixed prize lottery
mechanism and are strictly greater than the NE prediction of zero under the provisional fixed prize
all-pay auction mechanism.

The over-provision of public goods is also observed in the experimental literature using the
VCM, which differs from our setup by the absence of a provisional fixed prize and any mechanism
for awarding that prize, i.e., the VCM omits the last term on the right hand size of equation (1). In
VCM experiments, see e.g., Isaac and Walker (1988), the marginal per capita return, β ∈ (1/n, 1)
so the Nash equilibrium prediction is that xi = 0 for all i and so G = 0. Nevertheless, as we found
under our provisional fixed prize mechanisms, subjects in VCM experiments typically bid in excess
of this lower bound Nash equilibrium prediction. For instance, in a meta-study of linear VCM
experiments, Zelmer (2003) reports that contributions as a percentage of total endowment average
37.7%, across 27 studies where the mean parameter values are n = 6.6, β = .40 and T = 10.4
periods. Closer to our design, Isaac and Walker (1988) report on 10-round VCM experiments with
different values for n and β. In the four treatments of their design most comparable to our own,
they find average contributions to the public good as a percentage of endowment to be 26.4% when
β = .3 and n = 4; 32.88% when β = .3 and n = 10; 65.1% when β = .75 and n = 4 and 65.1% when
β = .75 and n = 10. From Table 4 we see that for the All-Pay auction, where the NE predicted
bid is always 0 (as in the VCM), that contributions as a percentage of endowment range from 17%
to 53%. Further, consistent with Isaac and Walker, bids as a percentage of endowment are lower
(greater) in the treatments with the lower (greater) value for β. The latter finding also applies to the
Lottery treatment. The excess bidding observed in the Lottery treatment can also be compared
to nonlinear VCM experiments that admit interior (i.e. non-0) NE contribution amounts. For
example, Keser (1996) reports on a study where the interior NE under the VCM was to contribute
35% of one’s endowment. Nevertheless, average contributions over all rounds were in excess of this
prediction averaging 51.5% of endowment which is similar to what we observe, e.g., in our Lottery
n = 2, β = .75 treatment. Thus, the over-contribution phenomena we observe is comparable in
magnitude to what is observed in VCM experiments and varies similarly with changes in treatment
parameters such as n and β.

We note that there is some evidence of treatment order effects in bids and public good provision
net of the prize. In particular, as Tables B1-B4 reveal, mean bids are often (but not always) higher
for the lottery (all-pay auction) treatment if the lottery (all-pay auction) treatment was played in
the first 20 rounds rather than in the last 20 rounds. This finding is a natural consequence of our
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within-subject design and the common pattern of decay over time in public good contributions by
a fixed cohort of increasingly experienced subjects. In an effort to mitigate the role of possible
order effects on our aggregate analysis of bids and public good provision, we did vary the order
of the two treatments so that the lottery mechanism was played in the first 20 rounds of half of
all sessions of our four treatments and the all pay auction was played in the first 20 rounds of the
other half of all sessions of our four treatments.

Our next finding concerns a test of one of the comparative statics predictions of our provisional
fixed prize theory. Specifically, if we hold the group size, n, fixed and focus on the symmetric
NE with positive public good provision, then a larger β should result in higher individual bids
and greater public good provision under the provisional lottery mechanism and indeed this is the
case. By contrast, under the provisional all-pay auction mechanism if we hold n fixed then a
larger β should not result in higher individual bids or greater public good provision. Note that
the latter comparative static prediction for the all-pay auction would also hold if the fixed prize
was exogenously given (see Table 2) and public good provision was predicted to be non-zero.
Inconsistent with this theoretical prediction, we find that for fixed n, an increase in β leads to
higher individual bids and greater public good provision under the all-pay auction mechanism just
as we found for the case of the lottery mechanism. We summarize this as follows:

Finding 2 For a fixed group size n, a larger β leads to higher individual bids and to higher public
good provision under both mechanisms.

Support for Finding 2 is found in Figures 2 - 3 and Table 4. See also Tables B1 - B4 in Appendix
B. When n = 2, a switch from β = .25 to β = .75 causes G to increase, on average, by a factor of
5.7 in the lottery treatment and by a factor of 4.1 in the all-pay auction treatment. Similarly, when
n = 10, a switch from β = .25 to β = .75 leads G to increase, on average, by a factor of 2.5 in the
lottery treatment and by a factor of 2.6 in the auction treatment. For each mechanism, if we fix
n at 2 or 10, the amount of G is always significantly higher when β = .75 as compared with when
β = .25 according to non-parametric Mann-Whitney tests of the null hypothesis of no difference
using the session-level averages (p = .02 – lowest possible p-value – for all four tests n = 2 and
n = 10; lottery, all-pay auction).

Our third finding considers the other comparative statics prediction, namely the impact of
group size, n, holding β fixed. According to the theory (see again Table 1), for fixed β, a larger
group size n should lead to: 1) lower individual bids but higher public good provision under the
lottery mechanism (focusing on the symmetric NE with positive public good provision) and 2) zero
individual bids and zero public good provision under the all-pay auction mechanism. With regard
to these predictions we have:

Finding 3 For a fixed β, a larger n does not reduce the individual amounts bid but does result in
higher public good provision under both mechanisms.

Support for Finding 3 is again found in Figures 2 - 3 and Table 4. See also Tables B1 - B4 in
Appendix B.

Consider first the session-level observations for Avg. Bid over rounds 1-15 (as reported in the
second columns of Tables B1 and B2. Suppose we hold β fixed at either .25 or .75 and we consider
whether average bids are different when n = 2 as compared with when n = 10. For three of the
four treatment conditions, lottery with β = .25, lottery with β = .75, and all-pay auction with
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Figure 2: Average G less prize across treatments, all data from all treatments and 95% confidence
intervals. Note the change in the vertical scale as n increases from 2 to 10.

Figure 3: Average Bids across treatments, all data from all treatments and 95% confidence intervals
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Figure 4: Cumulative distribution of individual bids as a percentage of endowment, lottery versus
all-pay auction under each treatment condition.

β = .75, non-parametric Mann-Whitney tests indicate that we cannot reject the null hypothesis of
no difference in average bids across the two different values for n (p > .10 for all three tests). For
the all-pay auction with β = .25, we can reject the null hypothesis of no difference in favor of the
alternative that bids are significantly higher when n = 10 than when n = 2 (p = .08).

While average bids should decrease as n increases holding β fixed, under the lottery mechanism,
the NE prediction calls for G to nevertheless increase in this same scenario. This aspect of the
lottery theory does find support in the experimental data. Intuitively, as we found no decrease in
the individual amounts bid as n increases from 2 to 10, it should come as no surprise that G is
higher under both mechanisms as n is increased from 2 to 10.

Confirmation again comes from non-parametric Mann-Whitney tests using session level data
from tables B3 and B4). Fixing β = .25 or .75, an increase in n from 2 to 10 leads to significantly
higher public good provision G under both mechanisms (the null hypothesis of no difference in G
is rejected, p = .02 – lowest possible p-value – for all four tests, β = .25, β = .75; lottery, all-pay
auction).

We note further that non-provision of the public good is predicted under the lottery mechanism
when n = 2 and β = .25, however as Table 4 indicates, public good provision actually occurred
an average of 63 percent of the time in this treatment. Indeed, holding β fixed, provision of
the public good increased as n is increased under both mechanisms. Recall from Finding 3 that
individual bid amounts did not generally change for fixed β as n was increased. Nevertheless, having
more individual bidders (larger n) bidding similar amounts ensures that the provision point where
contributions exceeded the prize level of V = 100 is more likely to be achieved as n is increased.

We now turn to the important question of whether bidding behavior was different between
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the two mechanisms for the same {n, β} treatment conditions. We explore this issue at both
the individual and aggregate level. We start by looking at the distribution of individual bids
as a percentage of individual endowments over all 15 rounds of the lottery and all-pay auction
mechanisms under each of our four treatment conditions. Figure 4 shows the cumulative distribution
functions of bids as a percentage of each individual’s endowment for each {n, β} pair using pooled
data from all sessions of the four treatments. This figure reveals that the distribution of bids
between the lottery and all-pay auction mechanisms are quite similar to one another under all four
treatment conditions. We summarize this result as:

Finding 4 Holding n and β constant, there is little difference in the distribution of individual bids
between the two provisional fixed-prize mechanisms.

We next address whether there is an aggregate difference in the level of public good provision
(net of the prize if awarded) between the two mechanisms for the same {n, β} pair. According to the
theory, for fixed n and β, the lottery design may result in higher public good provision because the
all-pay auction mechanism should result in zero public good provision under all parameterization
of our experimental environment. However, as we have already seen in the individual analysis of
bidding behavior, there is no difference in bid distributions between the two mechanisms for fixed
n and β. Perhaps not surprisingly, we can report that:

Finding 5 For fixed n and β, public good provision (net of the prize, if awarded) is insignificantly
different between the two provisional fixed-prize mechanisms.

Support for finding 5 is again found in Figure 2. Statistical support for finding 5 is found
by conducting four Mann-Whitney tests using the four session-level observations for Avg. G for
each treatment (auction or lottery) for the same pairs of values for {n, β}. Using the session-level
observations for Avg. G over all 15 rounds as reported in Tables B3 and B4 a Mann-Whitney
test indicates that we cannot reject the null hypothesis of no difference in public good provision in
any pairwise test between the lottery and all-pay auction mechanisms for the same {n, β} values
(p > .10 for all four tests). This same conclusion of no difference in Avg. G between mechanisms
would continue to hold if we used as our session-level observations the values of Avg. G over the
final five rounds, 11-15, of each session as reported in the sixth column of Tables B3 and B4.

A typical pattern of behavior in public good games is a decline in contributions over time as
individuals learn to give less. We also find evidence for such learning behavior in our experimental
data. Figure 5 illustrates the average value of G (net of the prize, if awarded) over rounds 1,2,...15
as a percentage of total endowment using all data from all sessions of each treatment, {M,n, β}.
Further evidence for a decline in bids and public good provision over time can be found in Tables
B1-B2 which report average bids over all rounds 1-15, in round 1 alone, over rounds 1-5, 6-10,
11-15, and in the final round 15 alone. Tables B3-B4 do the same for public good provision levels
(Avg. G).

Since overall average bids (over all rounds 1-15) as reported in Table 4 were found to have
generally exceeded Nash equilibrium predictions, this decay in bids and public good provision over
time serves to bring behavior closer to equilibrium predictions by the final rounds of each session
of each treatment. We summarize this finding as follows:

Finding 6 We observe a decline in both the average individual amount bid and in public good
provision in the last 5 rounds as compared with the first five rounds under both mechanisms.
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Figure 5: Average Public Good Provision G Less Prize as a Percent of Total Endowment Over
Rounds 1-15. Averages are from all 4 Sessions of Each Treatment (M ,n,β).

Statistical support for Finding 6 comes from Wilcoxon signed-rank test for matched pairs on
the four session-level observations per treatment for the first and last five rounds of data. We can
reject the null hypothesis of no difference in average bids over rounds 1-5 as compared with average
bids over rounds 11-15 in the same session in favor of the alternative that average bids are lower in
the final 5 rounds as compared with the first five rounds in seven of our eight treatments (p < .10
in seven tests): 1) lottery, n = 2, β = .25; 2) lottery n = 2, β = .75; 3) lottery n = 10, β = .25;
4) auction n = 2, β = .25; 5) auction n = 2, β = .75; 6) auction n = 10, β = .25; 7) auction
n = 10, β = .75. The sole exception is the lottery n = 10, β = .75 treatment where we cannot
reject the null hypothesis of no difference (p = .14). However, the exception arises because in just
one session of that treatment (session 4), average bids in the last 5 rounds were higher than in the
first 5 rounds while in the other sessions of that treatment they were lower.

Consider next the session-level average amounts of public good provision in rounds 1-5 versus
rounds 11-15 under the various treatments of the lottery or auction mechanisms, columns 4 and 6
of Tables B3 and B4. Here the results mirror those found for average individual bids. There is a
statistically significant decrease in public good provision G less the 100 token prize from the first 5
to the last 5 rounds of all sessions of all treatments (p < .10) except in the lottery n = 10, β = .75
treatment where we cannot reject the null hypothesis of no difference (p = .14).

While the decline over time in average individual bids and public good provision brings behavior
more in line with NE predictions, there remains, in the last 5 rounds, substantial over-bidding and
over-provision of the public good relative to equilibrium predictions. Indeed recall that Finding 1
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remains unchanged if attention is restricted to average individual bids and public good provision
G less the prize in the last five rounds 11-15 instead of over all rounds 1-15. The two exceptions
are for the provisional lottery mechanism where n = 2 and β = .25 or .75. In these two treatments
we cannot reject the null hypothesis of no difference between average behavior and the NE bid
predictions in the final 5 rounds using the Wilcoxon signed-ranks test (p > .10 for all tests). Recall
that for the all-pay auction mechanism, we cannot perform a statistical test as the NE bid and
public good provision are at the zero lower bound. However it is apparent from Figure 5 and Tables
B2 and B4 that bids and public good provision generally remain greater than 0 even in the final 5
rounds of all of the all-pay auction sessions.

6 Discussion

Our experimental findings are inconsistent with theoretical predictions on two related dimensions.
First, contributions to the public good are excessive relative to theoretical predictions. Second,
there is no difference in contributions between the two self-financing fixed prize mechanisms despite
the theoretical prediction of zero contributions under the parameterization we adopt for the all-
pay auction mechanism implemented in the laboratory. In this section we offer some possible
explanations for these anomalous findings.

6.1 Excessive contributions

The pattern of excessive contributions to the public good under both mechanisms and the decline
in such contributions as participants gain experience (see Figure 5), is a pattern commonly found
in the literature on VCM games (see, e.g., Isaac et al. (1984)), lottery contests (e.g., Sheremeta
(2018)) and in the literature on non-provisional fixed-prize fundraising mechanisms as well (see,
e.g., Corazzini et al. (2010)). Excess contributions might be explained by a variety of factors
including bounded rationality and learning, non-risk neutral preferences, or non-expected utility
maximization.

We have already seen evidence favoring bounded rationality and learning as an explanation in
our observation that mean bids do decline over time in the direction of NE bids and public good
provision levels as subjects gain experience. However, with the exception of the two n = 2 lottery
treatments (where β = .25 or .75) this decline does not begin to approximate Nash equilibrium
predictions by the end of our treatments. We speculate that in larger lottery groups of size 10 or
in the less familiar all-pay auction setting this equilibration process might take a longer period of
time than was allowed in our laboratory setting.

To address this possibility, we conducted two additional “long” sessions of the n = 10, β = .25
version of the lottery and all-pay auction treatments. Specifically, we eliminated the within-subject
design, where we switched from one prize mechanism to the other after 15 rounds of play and
instead conducted a full, 30 round of play under a single mechanism/treatment condition, i.e.,
either lottery or all-pay auction. There were no other changes in the design: in each session, 20
subjects were randomly matched at the start of each of the 30 rounds to form 2 groups of size
10, the model was parameterized as before (e = 400 and V = 100) and subjects were paid for
two randomly chosen rounds from the first and from the last 15 rounds, so that payoff incentives
were similar to the prior, shorter sessions. The results from these two long sessions are reported in
Table 5 and illustrated in Figure 6. The results indicate that doubling subjects’ experience with a
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Treatment Cond. One Long Session All Short Sessions Nash Eq.
n = 10, β = .25 Avg. Bid Avg. G Prov. Avg. Bid Avg. G Prov. Bid G Prov.

Lottery 134.8 1248.1 1.0 86.6 767.6 0.98 12.0 20.0 0.0
All-Pay Auction 137.7 1276.7 1.0 87.0 772.5 0.98 0.0 0.0 0.0

Table 5: Average Bids, Public Good Less Prize (G) and Provision Frequencies (Prov.) in One Long
(30 Round) Session of the n = 10, β = .25 Lottery and All-Pay Auction Treatments as Compared
with the Shorter (15 Round) Sessions of the Same Treatments.

Figure 6: Mean Bids Over Time in One Long (30 Round) Session and Four Short (15 Round)
Sessions of the n = 10, β = .25 Lottery and All-Pay Auction Treatments.

particular mechanism does not move behavior closer to NE predictions; as Table 5 reveals, subjects’
bids and public good provision levels in the Long, 30 Round sessions are, on average, further away
from NE predictions. Nevertheless, as Figure 6 makes clear, there is a pronounced decline in those
average bids over time so that behavior in the final, 30th round of the Long sessions is similar to
behavior in the final, 15th round of the Short sessions.

A second possible explanation is that players are not risk neutral with respect to uncertain
money amounts as the theory supposes. To explore this possibility let u(m) denote a players’
utility from monetary earnings m, so that the maximization problem under the Lottery mechanism
now becomes:

max
xi

πi (xi, x−i;n, β,Lottery) =
(

xi∑n
j=1 xj

)
u
[
(e− xi) + β

(∑n
j=1 xj − V

)
+ V

]
+(

1−
(

xi∑n
j=1 xj

))
u
[
(e− xi) + β

(∑n
j=1 xj − V

)]
,

if
∑n

j=1 xj ≥ V,

u (e) , if
∑n

j=1 xj < V.

(15)

Consider the case of a symmetric pure strategy equilibrium where the fixed prize amount is
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raised and the public good is provided
(∑n

j=1 xj > V
)

. Combining the first order condition from

the above maximization problem with the symmetry condition x1 = ... = xn = x, we have:

n− 1

n2x
u [(e− x) + β (nx− V ) + V ] + (β − 1)

(
1

n

)
u′ [(e− x) + β (nx− V ) + V ]

=
n− 1

n2x
u [(e− x) + β (nx− V )]− (β − 1)

(
n− 1

n

)
u′ [(e− x) + β (nx− V )] . (16)

Now suppose that we choose the standard, constant relative risk aversion specification for u,
i.e., u(m) = m1−r

1−r so that u′ (m) = m−r. The risk neutral agents of the theory have r = 0, but we
now allow for risk-loving (r < 0) or risk-averse (r > 0) subjects.

Recall that for the four treatments of our fixed-prize lottery mechanism average bids (as reported
earlier in Table 4) were given by: Using this data we ask is: can any of the four average bid amounts

Lottery β = .25 β = .75

n = 2 59.3 148.6

n = 10 86.6 201.8

Table 6: Average Bids in the Four Treatments of the Lottery Mechanism

as reported in Table 6 be consistent with a symmetric equilibrium of the model for some choice of
r, the coefficient of relative risk aversion? That is, we substitute each of four average bid amounts
as given in Table 6 into equation (16) in place of x and attempt to numerically solve for the value
of r that would satisfy equation (16). We find that for each of the four {β, n} Lottery mechanism
treatment conditions, there is no value for r satisfying equation (16). Intuitively, one might think
that some value for r < 0, implying risk-loving behavior, might work to rationalize the observed
over-bidding but the average bids in the experiment are so large and the expected payoffs are so
negative that it is not possible to vary r in a way that can rationalize the bids we observe as
corresponding to any symmetric equilibrium.

A third possibility is that subjects have a utility for winning above and beyond the monetary
prize value.20 In this case, we return again to the case of linear utility (risk neutrality). Consider the
self-financing provisional fixed-prize all-pay auction mechanism in particular (a similar argument
can be applied to the lottery mechanism). Let us assume that players who win the prize receive
the monetary utility value V , as well as some “emotional” or “joy-of-winning”, utility value W .21

In this case, (2) becomes
πi (bi, b−i;n, β,All-pay auction) =

(V +W ) + (e− bi) + β
(∑n

j=1 bj − V
)

, if bi > bj for any j 6= i and
∑n

j=1 bj ≥ V ,

(V+W )
K + (e− bi) + β

(∑n
j=1 bj − V

)
, if i ties (K − 1) others for the high bid and

∑n
j=1 bj ≥ V ,

(e− bi) + β
(∑n

j=1 bj − V
)

, if bi < bj for some j 6= i and
∑n

j=1 bj ≥ V ,

e, if
∑n

j=1 bj < V.

20Indeed, a number of studies have linked over-bidding in auctions (Goeree et al. 2002; Cooper and Fang, 2008)
and contests (Parco et al., 2005; Sheremeta 2010) to such “joy–of–winning” motivations.

21Note that another interpretation of W can be that players have to raise V in order to get a prize of value (V +W ),
where the extra W is a matching donation.
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As we have already seen in section 3.2.2, Propositions 4 and 5 that there are a variety of different
pure-strategy (symmetric or asymmetric) equilibria involving positive bids and public good provi-
sion under the all-pay auction mechanism provided that an efficiency condition holds and that the
endowment is not too large, i.e. V

n ≤ e ≤
V

2(1−β) . With the addition of joy of winning motivations,

the latter endowment condition changes to V+W
n ≤ e ≤ V+W

2(1−β) . Given our parameterization of
the experiment, where V = 100 and e = 400, we can estimate the minimum value of W necessary
for the existence of pure-strategy equilibria involving positive bids and public good provision. For
example, in our treatment where n = 2 and β = .75, in order to obtain positive bids in the interval
[0, 400], we must have that e = 400 ≤ 100+W

2(1−.75) or that W ≥ 100. Similarly, for n = 10 and β = .75,
there exist pure-strategy asymmetric equilibria with two active players if W ≥ 100, while for n = 10
and β = .25, the same type of asymmetric equilibria would require that e = 400 ≤ 100+W

2(1−.25) , or that
W ≥ 500. Thus, in principle one can rationalize the positive bidding behavior that we observe in
our all-pay auction treatment with a sufficiently high value for W .

A difficulty with this rationalization is that the bidding behavior in the symmetric equilibria
involves all players bidding their endowment amount e = 400. In the asymmetric equilibria, the
active players bid e = 400 while the inactive players bid 0. The evidence for such equilibrium
behavior (symmetric or asymmetric) is mixed. For instance in the n = 2, β = .75 all-pay auction
treatment, the symmetric equilibrium strategy where both players bid e = 400 is played just 5.67
percent of the time, while the asymmetric equilibrium strategy where one player bids 400 while the
other bids 0 is played 9.33 percent of the time. Thus, for the n = 2, β = .75 treatment, we could
potentially explain an additional 15 percent of the observed outcomes by adding a joy-of-winning
motivation. By contrast, for this same treatment, we observe that the symmetric equilibrium
where both players bid 0 occurs just 5.67 percent of the time; of course the latter equilibrium exists
regardless of whether or not there is a joy-of-winning motivation. Thus, in total, it is possible to
account for 20.67 percent of the observed outcomes in the n = 2, β = .75 all-pay auction treatment
by adding the joy-of-winning motivation.

For the two n = 10 treatments, the symmetric equilibrium wherein all players bid e = 400
is never observed. In these treatments there are many more pure-strategy asymmetric equilibria
to consider, but we don’t typically observe (perfect) play of such equilibria either.22 A more
typical outcome involves many players bidding their endowment, many bidding 0 and some bidding
intermediate amounts. We conclude that for the two n = 10 treatments, we cannot explain the
positive bids and public good provision using a joy-of-winning motivation.

A fourth possibility is that over-bidding is due to social or other regarding preferences. To
consider this possibility, we consider the n = 2 case where the two players i, j have inequity averse
preferences of the commonly studied Fehr and Schmidt (1999) variety:

ui(xi, xj) = πi − εi max(πj − πi, 0)− γi max(πi − πj , 0)

Fehr and Schmidt assume that the disutility from envy, εi ≥ γi, the disutility from guilt and that
1 > γi ≥ 0. Using such social preferences and assuming for simplicity that εi = εj = ε and
γi = γj = γ, the maximization problem for the 2-player Lottery treatment becomes:

max
xi

πi (xi, xj ; 2, β,Lottery) =

22Asymmetric equilibria where k active players bid e = 400 while n − k inactive players bid 0 are observed just
1.67 percent of the time in the n = 10, β = .75 treatment and just 0.83 percent of the time in the n = 10, β = .25
treatment.
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e− xi + β(xi + xj − V )
− xj
xi+xj

ε(V + xi − xj) + xi
xi+xj

(V − γ(V − xi + xj)) if xi + xj ≥ V,
e, if xi + xj < V.

If xi + xj ≥ V , the FOC is:

0 = −1 + β − εxj(2xj − V )

(xi + xj)
2 +

γx2i + 2γxixj − γ
(
x2j + V xj

)
+ V xj

(xi + xj)
2

Using symmetry, xi = xj = x we have:

[4(1− β) + 2ε− 2γ]x2 = εV x+ (V − V γ)x

or

x =
V (1 + ε− γ)

2(2− 2β + ε− γ)

Notice that when ε = γ = 0, the NE bid function is that predicted by the Lottery, n = 2 model
without social preferences.

Let ∆ = ε− γ ≥ 0. Then

d

d∆

[
V (1 + ∆)

2(2− 2β + ∆)

]
= − V (2β − 1)

2 (2− 2β + ∆)2
.

Thus, in the 2-player lottery treatment, if subjects are inequity averse and β < .5, the inefficient
case, then equilibrium bids should be greater than the NE. However, in the efficient case where
β > .5, equilibrium bids should be less than the NE. As we always observe bids in excess of the
NE, regardless of the value for β, the social preference explanation does not provide a consistent
explanation for the overbidding phenomenon.

The fifth, final and most promising explanation for overbidding is that agents acted as non-
expected utility maximizers. In particular, subjects may use a distorted probability weighting
function, ω(p), of the true probabilities, p, in making their choices under uncertainty, which is
a standard feature of many non-expected utility models including Prospect Theory and Rank-
Dependent Utility. This distorted probability weighting function has an “inverted S-shape” : (see,
e.g., Prelec (1998) for an axiomatization of this type of probability weighting function) for low
probability events such as winning a lottery, individuals overweight the probability of winning, i.e.,
ω(pl) > pl, while for higher probability events, they under-weight the probability of winning, i.e.
ω(ph) < ph.

Let us consider application of the probability weighting approach to our provisional, fixed-
prize lottery fundraising mechanism with the aim of understanding how it can explain observed
overbidding. Specifically, suppose that subjects used some continuous, increasing, and differentiable
function, ω(p), to weight the probabilities of winning the fixed prize under the lottery mechanism;
we will not impose any further restrictions on ω(p). In that case, the individual maximization
problem is altered as follows:

max
xi

πi (xi, x−i;n, β,Lottery,ω) ={
(e− xi) + β

(∑n
j=1 xj − V

)
+ ω

(
xi∑n
j=1 xj

)
V, if

∑n
j=1 xj ≥ V,

e, if
∑n

j=1 xj < V.
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Focusing again on the case of symmetric pure strategy equilibrium where the fixed prize amount

is raised and the public good is provided
(∑n

j=1 xj > V
)

, the first order condition combined with

the symmetry constraint, x1 = ... = xn = x∗ yields:

β − 1 + ω′
(

1

n

)
(n− 1)

n2x∗
V = 0,

or

x∗ = min

{
ω′
(

1

n

)
(n− 1)

n2
V

(1− β)
, e

}
.

We can regard the case where n = 10 as representing the relatively lower probability of winning the
prize (in the symmetric equilibrium) relative to the n = 2 case where there is the highest possible
probability of winning the prize.

We again use each of the four average bids from the Lottery treatments as reported above in
Table 6 and the fact that V = 100 to make some inferences about ω′

(
1
n

)
. Consider first the case

where n = 2. If β = .25 then

ω′
(

1

2

)
× 100

3
= 59.3, or ω′

(
1

2

)
= 1.779,

while if β = .75 then

ω′
(

1

2

)
× 100 = 148.6, or ω′

(
1

2

)
= 1.486.

Notice that both values for ω′
(
1
2

)
are relatively close to one another.

Consider next the case where n = 10. If β = .25 then

ω′
(

1

10

)
× 12 = 86.6, or ω′

(
1

10

)
= 7.217,

while if β = .75 then

ω′
(

1

10

)
× 36 = 201.8, or ω′

(
1

10

)
= 5.606.

Notice that these last two values for ω′
(

1
10

)
are not so close to one another. However, in all four

cases the implied slope of the probability weighting function is greater than 1, which indicates that
there is always over -weighting of the objective probability of winning the prize in all of our lottery
treatments. This over-weighting of the probability of winning can explain why bids are in excess
of equilibrium predicted levels. Furthermore, the comparative statics implication of a change in n
is also consistent with the inverted S-shape form of the probability weighting function in that for
either value of β we have

ω′
(

1

10

)
> ω′

(
1

2

)
,

which means that individuals overestimate smaller probabilities of winning the prize much more
than they overestimate higher probabilities of wining the prize under the lottery mechanism. This
last insight can explain why bids do not decline as n increases from 2 to 10, despite the objective
decrease in the probability of winning the fixed prize in any symmetric equilibrium as n increases.
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We note that our approach to probability weighting is quite general and does not require that we
specify a particular form of the weighting function ω (p); our data are consistent with any inverted
S-shape probability weighting function.23

As our mechanisms also have a public good element, it is possible that the probability weighting
function also depends on the marginal per capital return β, i.e., ω (p, β). Indeed, our experimental
findings as discussed above suggest that ωβ (p, β) < 0; as β increases, the public good component
of players’ payoffs increases and so there may be less concern for winning the fixed prize and
consequently less over-weighting of the probability of winning that prize.

6.2 No difference in bidding behavior across mechanisms

The absence of any difference in bids or public good provision levels across the two mechanisms
(lottery, auction) for the same (β, n) parameterization suggests that subjects are not considering
how the provisional nature of the prize should alter their strategic best response in the all-pay
auction relative to the case where the prize is exogenously given. Recall from Table 2 that in
the case where there is an exogenously given fixed prize, the expected bid amounts under the all-
pay auction are always strictly positive and not very different (though strictly greater) than the
predicted bid amounts under the lottery mechanism. Recall also that for the lottery mechanism,
whether the fixed prize is exogenously given or is provisional on contributions equaling or exceeding
the prize value is of no consequence for theoretical predictions regarding bids.

The apparent disregard of subjects for the strategic consequences of making the fixed-prize pro-
visional under the all-pay auction mechanism is consistent with the notion, advanced by Leininger
(2000), that players view first price all-pay auctions as a kind of binary lottery. Since in the com-
plete information all-pay auction that we study all bids are paid and the prize (if offered) has a
known value V , each bidder’s expected payoff does not depend on information held by other bid-
ders. From the individual bidder’s perspective, this version of an all–pay auction is effectively an
opportunity to buy, at a fixed price equivalent to the bidder’s bid bi, a lottery with a known payoff
of V with some probability p̃ and a payoff of 0 with probability 1 − p̃. Viewed this way, there is
not much difference, from the player’s perspective, between our first price all-pay auction and the
lottery mechanism and it seems plausible that subjects in our experiment may have adopted this
view. In that case, it is less surprising that there is little difference in bidding behavior across the
two mechanisms.

7 Conclusions

We have studied two provisional fixed-prize mechanisms for raising charitable contributions, a lot-
tery and an all-pay auction.24 Both mechanisms are self–financing ; the total endowment of the n
players must be sufficient to finance the prize and total contributions must equal or exceed the prize

23We note that Baharad and Nitzan (2008) also analyze equilibrium in contests under distorted probabilities, but
they consider a specific probability weighting function of the form

$ (p) =
pα

[pα + (1 − p)α](1/α)

and use that function to describe rent dissipation in their standard contest environment (without public goods).
24These are the most popular mechanisms. We leave the study of other public good provision mechanisms to the

future research.
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level, V , for the fixed prize to be awarded. Public good provision is thus the net value (G− V ) if
positive and 0 otherwise. We emphasize that the existence of equilibria with positive public good
provision under both self-financing fixed-prize mechanisms requires that certain endowment condi-
tions are satisfied and that public good provision is efficient, i.e., that βn > 1. Our main finding
is that, under certain plausible conditions for the value of the fixed-prize relative to endowments,
the provisional fixed-prize lottery mechanism can generate greater public good provision than the
provisional fixed-prize all-pay auction mechanism. The latter result is new to the literature on
public good fixed-prize fundraising mechanisms.

We have also conducted an experimental test of some of our theoretical predictions, imple-
menting for the first time in the laboratory, these provisional fixed-prize mechanisms for raising
contributions to a public good. The main innovation of our experimental design is that we have
varied both the group size, n, and the marginal per capital return on the public good, β, which en-
ables us to consider some of the important comparative statics implications of the Nash equilibrium
predictions, e.g., the role of efficiency, which have not previously been addressed in the literature.
Relative to theoretical predictions, we find over-bidding and over-provision of the public good un-
der both provisional fixed-prize mechanisms. However, there is also evidence that individuals learn
over time to bid less under all treatment conditions so that over-bidding and over-provision decline
with experience. Still, final amounts bid and levels of public good provision remain substantially
greater than theoretical predictions in most of our treatments.

In contrast to our theoretical prediction of zero bids and zero public good provision we find that
bids are always large and positive under the provisional fixed-prize all-pay auction mechanism.
Under the lottery mechanism we find more consistency with our theory: for fixed n, bids and
public good provision increase as β increases and for fixed β public good provision increases as n
increases. However we also observe that for fixed β, bids do not decrease as n increases a finding that
is inconsistent with the theory. Perhaps most importantly, despite the prediction that the lottery
will yield greater public good provision given our choices for e, V , and for all {n, β} treatment
conditions, we find absolutely no difference in public good provision between the lottery and the
all-pay auction provisional fixed-prize mechanisms.

Toward an explanation of why our findings depart from theoretical predictions, we have consid-
ered the possibility that subjects have non risk neutral risk preferences or joy-of-winning motivations
or inequity averse social preferences or that they are non-expected utility maximizers. Of all of these
explanations, the most promising seems to be the latter one where subjects use a distorted proba-
bility weighting function that overweights low probability events and underweights high probability
events. Regarding the lack of any difference in public good provision between the two mechanisms
which is also at odds with the theory, we hypothesize that subjects do not properly account for the
provisional nature of the prize in their bidding behavior and view the all-pay auction mechanism
as just another type of binary lottery.

Finally, we note that our findings yield important practical insights for designers of prize-based
fundraising mechanisms. First, our theoretical findings suggest that both the efficiency of public
good provision and the size of the fixed prize relative to participants’ endowments are important
considerations if a provisional fixed-prize mechanism is to be adopted. If public good provision is
efficient and if the prize value is small relative to endowments, then there is a theoretical argument
in favor of adopting a lottery mechanism for awarding the provisional, fixed-prize. Second, we
also characterize the optimal prize value given the environment, and in future research it would
be good to explore this prediction further. Third, our provisional mechanisms do fix the negative
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public good provision problem described in Landry et al. (2006) and Lange et al. (2007). Under
the provisional fixed-prize mechanisms we study, the prize is never paid out in those instances
(particularly in the n = 2 and β = .25 treatment) where contributions are insufficient to fund
the prize. Finally, our experimental finding of no difference in behavior under the two fundraising
mechanisms should be treated with great caution as we are considering the case where participation
in the two mechanisms is required. As Carpenter et al. (2008) report in their field study that allowed
for endogenous participation, participants are significantly less likely to participate in an all-pay
charity auction than in a first-price charity auction. If participation were endogenous and if the
provisional lottery mechanism led to greater participation than the provisional all-pay auction
mechanism, then our result showing that public good provision is increasing in the group size, n,
would imply that a provisional fixed-prize lottery mechanism would be the preferred choice. We
leave to future research the important questions of endogenous participation and the performance
of provisional fixed-prize mechanisms in the field.
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Appendix A: Proofs

Proof of Proposition 2.
Consider player i’s best reply correspondence when her opponents spend

∑
j 6=i xj = X−i:

BRi (X−i) =


[0,min {V −X−i, e}] , if 0 ≤ X−i ≤ (1− β)V,

min
{√

V
(1−β)X−i −X−i, e

}
, if (1− β)V < X−i ≤ V

(1−β) ,

0, if X−i >
V

(1−β) .
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Suppose thatX−i ≤ (1− β)V . Then, player i’s best reply is the whole interval [0,min {V −X−i, e}].
Therefore, any pure strategy profile (x1, ..., xn), such that 0 ≤ xi ≤ min {(1− β)V, e}, maxiX−i ≤
(1− β)V , and

∑n
i=1 xi ≤ V , is a Nash equilibrium. �

Proof of Corollary 2.1.
From Proposition 2, in particular expression (7), we have to consider the following maximization

problem in order to find the prize value that maximizes public good provision:

max
V ∈[0,ne]

(
min

{
(βn− 1)

n (1− β)
V, ne− V

})
.

Hence, we must have
(βn− 1)

n (1− β)
V = ne− V,

or

V =
n2

(n− 1)
(1− β) e.

The highest public good provision (less the prize, V ) is thus:

G̃∗ = min

{
(βn− 1)

n (1− β)
V, ne− V

}
=

n

(n− 1)
(βn− 1) e. �

Proof of Proposition 4.
Suppose that there exists a pure-strategy equilibrium where the public good is provided and

that (b1, ..., bn) is such an equilibrium. Let

max
j
bj = b < e. (A1)

Then, there exist players l and k such that bl = b ≥ bk. First, suppose that bk = b. Then, consider
player k’s payoff, if she bids b+ ε < e:

πk
(
b+ ε, B−k

)
=
(
e−

[
b+ ε

])
+ V + β(

[
b+ ε+B−k

]
− V ),

where ε is ”a very small amount” and B−k = b1+...+bk−1+bk+1+...+bn. Note that πk
(
b+ ε, B−k

)
>

πk
(
b, B−k

)
.

Second, suppose that 0 < bk < b, then πk (0, B−k) > πk (bk, B−k).
Third, suppose that bk = 0. Then, πk (0, B−k) = e+ β(B−k − V ). However,

πk
(
b+ ε, B−k

)
− πk (0, B−k) =

V − (1− β)
[
b+ ε

]
> V − (1− β) e ≥ n− 1

n
V > 0.

Therefore, condition (A1) cannot hold in a pure-strategy equilibrium where the public good is
provided.

Suppose that (b1, ..., bn) is a pure-strategy equilibrium where the public good is provided and

max
j
bj = e.

39



Then, there exist players l and k such that bl = e ≥ bk.
First, suppose that 0 < bk < e, then πk (0, B−k) > πk (bk, B−k).
Second, suppose that bk = 0. Then, πk (0, B−k) = e+ β(B−k − V ). However,

πk (e,B−k)− πk (0, B−k) ≥
V

n
− (1− β) e > 0.

Hence, (e, ..., e) is the only candidate for the pure-strategy NE. If (e, ..., e) is indeed a NE, then a
zero” deviation does not increase a player’s payoff, or{

e+ β((n− 1)e− V ) ≤ (V/n) + β(ne− V ), if (n− 1)e ≥ V,
e ≤ (V/n) + β(ne− V ), if (n− 1)e < V .

Therefore, {
e ≤ V

n(1−β) , if e ≥ V
(n−1) ,

(βn− 1) e ≥ (βn−1)
n V, if e < V

(n−1) .
(A2)

Note that the first condition in (A2) implies that:

V

(n− 1)
≤ e ≤ V

n(1− β)
, (A3)

or
βn > 1,

which means that it is efficient to provide the public good.
Similarly, consider the second inequality in (A2). Then,

V

n
≤ e < V

(n− 1)
, if βn > 1, (A4)

and

e < min

{
V

(n− 1)
,
V

n

}
=
V

n
, if βn < 1. (A5)

The endowment in (A5) is too small for there to be public good provision. Therefore, we have to
consider only cases (A3) and (A4). Note that in both cases the efficiency condition (6) holds. Hence,
there exists a symmetric pure strategy equilibrium where each player bids his entire endowment,
b∗ = e, if inequalities (A3) and (A4) hold, which together imply that:

V

n
≤ e ≤ V

(1− β)n
. �

Proof of Proposition 5.
Suppose that the following efficiency condition

(n− 1)β > 1 (A6)

and the following endowment condition

V

n (1− β)
≤ e ≤ V

(n− 1) (1− β)
(A7)
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both hold. This is the case of k = 1 in the statement of the proposition. Then, (0, e, ..., e) is a
pure-strategy NE if no player has a profitable deviation. In particular, a zero” deviation for any
player except player 1 does not increase her payoff25, or{

e+ β((n− 2)e− V ) ≤ (V/ (n− 1)) + β((n− 1) e− V ), if (n− 2)e ≥ V,
e ≤ (V/ (n− 1)) + β((n− 1) e− V ), if (n− 2)e < V .

Therefore, {
e ≤ V

(n−1)(1−β) , if e ≥ V
(n−2) ,

e ≥ V
(n−1) , if e < V

(n−2) .
(A8)

Note that the first condition in (A8) implies that:

V

(n− 2)
≤ e ≤ V

(n− 1) (1− β)
. (A9)

Similarly, consider the second inequality in (A8). Then,

V

n− 1
≤ e < V

(n− 2)
. (A10)

Note that in both cases (A9) and (A10) efficiency condition (A6) has to hold. From (A9) and (A10)
we get

V

(n− 1)
≤ e ≤ V

(n− 1) (1− β)
. (A11)

If (0, e, ..., e) is a pure-strategy NE, then a e” deviation for player 1 does not increase her payoff, or{
e+ β((n− 1)e− V ) ≥ (V/n) + β(ne− V ), if (n− 1)e ≥ V,
e ≥ (V/n) + β(ne− V ), if (n− 1)e < V .

Therefore, {
e ≥ V

n(1−β) , if e ≥ V
(n−1) ,

e ≤ V
n , if e < V

(n−1) .
(A12)

Note that the first condition in (A12) implies that:

e ≥ max

{
V

(n− 1)
,

V

n (1− β)

}
=

V

n (1− β)
. (A13)

Similarly, consider the second inequality in (A12). Then,

e < min

{
V

(n− 1)
,
V

n

}
=
V

n
.

This means that the endowment is too small and the public good is not provided.
Hence, from (A11) and (A13) we get

V

n (1− β)
≤ e ≤ V

(n− 1) (1− β)
.

25”Zero” deviation is the most profitable deviation. See the proof of Proposition 4 for the similar argument.
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Hence, if efficiency condition (A6) and endowment condition (A7) both hold, then there exists
n pure-strategy equilibria where (n− 1) players bid their entire endowment, and one player bids
zero.

Suppose that conditions (13) and (14) hold, then, analogously to the case of k = 1, it is
straightforward to check that if (n− k) players bid their entire endowment, e, while the other k
players bid zero, then we get an asymmetric pure-strategy NE where the public good is provided.

Suppose that e > V
2(1−β) , then (e, ..., e) is the only candidate for a pure-strategy NE where

public good is provided. The logic here is the same as it is in the proof of Proposition 4. However,
it is easy to check that given that all other players bid their entire endowment, e, the best choice
is to bid zero instead of e. Hence, there is no pure-strategy NE where the public good is provided.

Suppose that there exists a mixed-strategy equilibrium where the public good is provided and
e > V

2(1−β) .
First, note that there cannot be any positive bid mass points below the endowment amount e:

each player has an incentive to increase his bid by ε > 0 at the mass point.
Second, note that the winning bid must be at least V

n because we assume that the public good
will be provided. It follows that no player bids in the interval

(
0, Vn

)
in the equilibrium.

Third, suppose that players randomize on an interval
[
b, b
]

in a mixed-strategy equilibrium

where the lower bound satisfies V
n ≤ b < e.

Consider bid b > 0. We assume here that if there are several intervals where players randomize,
then b is the lowest bound of all such intervals. Such a bid can only be a winning bid if all others
bid zero as there are no positive bid mass points from the first observation. Therefore any player
would prefer to bid zero instead of b > 0.

Next consider the case where players randomize on the non-closed interval
(
b, b
]

in a mixed-

strategy equilibrium, where the lower bound again satisfies V
n ≤ b < e, and if there are several

intervals where players randomize, then b is the lowest bound of all such intervals. Consider a bid
of b+ δ < b. Using (11) we have:

πi (b+ δ, b−i;n, β,All-pay auction) =
V + (e− (b+ δ)) + β

(∑n
j=1 bj − V

)
, if b+ δ > bj for any j 6= i and

∑n
j=1 bj ≥ V ,

V
K + (e− (b+ δ)) + β

(∑n
j=1 bj − V

)
, if i ties (K − 1) others for the high bid and

∑n
j=1 bj ≥ V ,

(e− (b+ δ)) + β
(∑n

j=1 bj − V
)

, if bi < bj for some j 6= i and
∑n

j=1 bj ≥ V ,

e, if
∑n

j=1 bj < V.

(A14)
Note that the probability of winning the prize or the probability of the eventb+ δ > bj for any j 6= i and

n∑
j=1

bj ≥ V


is proportional to δn−1. This is the probability to attach to the first two elements of the payoff
function (A14). At the same time, a probability of losing (not winning the prize) or the probability
of the event b+ δ < bj for some j 6= i and

n∑
j=1

bj ≥ V
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is proportional to
(
1− δn−1

)
. This is the probability to attach to the third element of the payoff

function (A14). Thus, via continuity, there exists a δ0 > 0 such that for any bid b + δ, where
0 < δ < δ0, we will have:

πi (0, b−i;n, β,All-pay auction) > πi (b+ δ, b−i;n, β,All-pay auction) ,

since

πi (0, b−i;n, β,All-pay auction) =

{
e+ β

(∑n
j=1 bj − V

)
, if

∑n
j=1 bj ≥ V ,

e, if
∑n

j=1 bj < V.

That is, taking into account expected payoffs, a bid of zero outperforms a bid of b + δ. Hence,
players cannot randomize on continuous intervals in any mixed-strategy equilibrium.

It follows that each player can only randomize between two bids: b = 0 and b = e. Since
e > V

2(1−β) , each player bids her dominant choice: zero and we obtain the equilibrium described in
Proposition 3. �

Proof of Proposition 6.
From Proposition 4, it follows that we have to consider the following maximization problem in

order to find the prize value that maximizes public good provision:

max
V is such that (12) holds

(ne− V ) .

In particular we are looking for the minimal value of V which satisfies inequalities (12). Then,
from (12), we get

(1− β)ne ≤ V < ne.

Hence, the optimal prize value is
V A = (1− β)ne,

and the highest possible public good provision (less the prize V ) is given by:

G̃A = ne− V A = βne. �

Appendix B: Additional Tables
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Lottery Mechanism Average Amount Bid in Round Number(s):
Session No., {n, β}, Order 1-15 1 1-5 6-10 11-15 15

1 {2, .25} Lottery, Auction 68.7 93.7 83.3 72.2 50.4 45.7
2 {2, .25} Auction, Lottery 53.9 63.4 59.8 49.9 52.1 48.8
3 {2, .25} Lottery, Auction 66.3 77.7 76.5 69.6 52.9 51.4
4 {2, .25} Auction, Lottery 48.3 51.0 54.6 46.4 43.8 46.2

Average of Sessions 1-4 59.3 71.4 68.6 59.5 49.8 48.0

1 {2, .75} Lottery, Auction 165.0 126.0 183.8 180.0 131.3 98.5
2 {2, .75} Auction, Lottery 135.6 143.7 133.9 129.1 124.0 248.0
3 {2, .75} Lottery, Auction 212.4 212.4 250.6 236.2 177.6 154.3
4 {2, .75} Auction, Lottery 81.3 91.7 95.4 80.4 68.0 81.2

Average of Sessions 1-4 148.6 143.4 165.9 156.4 125.2 145.5

1 {10, .25} Lottery, Auction 119.6 124.8 154.3 124.0 80.6 96.2
2 {10, .25} Auction, Lottery 50.2 78.9 70.9 46.4 33.1 17.4
3 {10, .25} Lottery, Auction 135.3 140.5 167.1 133.3 105.6 96.5
4 {10, .25} Auction, Lottery 41.3 114.9 69.3 29.5 25.1 45.8

Average of Sessions 1-4 86.6 114.8 115.4 83.3 61.1 64.0

1 {10, .75} Auction, Lottery 252.5 287.1 258.6 268.2 230.7 222.1
2 {10, .75} Lottery, Auction 235.2 170.6 233.5 251.4 220.6 240.5
3 {10, .75} Auction, Lottery 165.8 199.0 197.4 177.8 122.3 137.0
4 {10, .75} Lottery, Auction 153.6 102.7 146.5 158.4 156.0 171.6

Average of Sessions 1-4 201.8 189.8 209.0 213.9 182.4 192.8

Table B1: Session-Level Average Bids Under the Lottery Mechanism Over Various Intervals of
Time
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AP Auction Mechanism Average Amount Bid in Round Number(s):
Session No., {n, β}, Order 1-15 1 1-5 6-10 11-15 15

1 {2, .25} Lottery, Auction 51.1 62.9 56.7 55.7 40.8 29.0
2 {2, .25} Auction, Lottery 82.2 112.4 112.1 82.7 52.0 43.5
3 {2, .25} Lottery, Auction 58.3 76.5 67.7 60.0 47.1 42.0
4 {2, .25} Auction, Lottery 80.2 112.0 102.3 79.1 59.2 79.5

Average of Sessions 1-4 67.9 90.9 84.7 69.4 49.8 41.8

1 {2, .75} Lottery, Auction 171.7 172.2 170.2 184.5 160.3 129.5
2 {2, .75} Auction, Lottery 221.4 212.4 250.6 236.2 177.6 154.3
3 {2, .75} Lottery, Auction 135.7 209.3 145.2 144.5 117.3 96.4
4 {2, .75} Auction, Lottery 108.5 133.9 119.6 103.1 102.9 104.4

Average of Sessions 1-4 159.3 181.9 171.4 167.1 139.5 121.1

1 {10, .25} Lottery, Auction 72.3 160.7 107.8 73.1 36.0 31.5
2 {10, .25} Auction, Lottery 99.8 107.8 124.8 107.5 67.2 87.1
3 {10, .25} Lottery, Auction 88.7 117.7 106.9 92.5 66.8 52.9
4 {10, .25} Auction, Lottery 87.3 114.9 140.2 82.4 39.3 30.0

Average of Sessions 1-4 87.0 125.3 119.9 88.9 52.3 50.3

1 {10, .75} Auction, Lottery 254.7 274.0 265.8 260.1 238.0 263.6
2 {10, .75} Lottery, Auction 229.5 223.1 228.8 240.5 219.1 221.9
3 {10, .75} Auction, Lottery 209.7 131.9 210.4 227.6 191.2 216.0
4 {10, .75} Lottery, Auction 149.4 170.3 161.5 149.0 137.8 125.3

Average of Sessions 1-4 210.8 199.8 216.6 219.3 196.5 206.7

Table B2: Session-Level Average Bids Under the All-Pay Auction Mechanism Over Various Intervals
of Time
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Lottery Mechanism Average G Less Prize in Round Number(s):
Session No., {n, β}, Order 1-15 1 1-5 6-10 11-15 15

1 {2, .25} Lottery, Auction 49.4 95.2 72.2 51.8 24.2 10.2
2 {2, .25} Auction, Lottery 31.7 55.5 41.9 27.3 26.0 22.6
3 {2, .25} Lottery, Auction 42.4 63.2 57.0 47.5 22.8 16.2
4 {2, .25} Auction, Lottery 22.0 24.8 28.5 23.0 14.7 22.9

Average of Sessions 1-4 36.4 59.7 49.9 37.4 21.9 18.0

1 {2, .75} Lottery, Auction 233.1 151.9 267.5 262.2 169.6 102.4
2 {2, .75} Auction, Lottery 182.9 215.4 199.6 178.3 170.9 171.3
3 {2, .75} Lottery, Auction 326.7 341.9 398.5 306.0 275.7 353.9
4 {2, .75} Auction, Lottery 89.0 116.2 113.3 80.8 72.9 105.1

Average of Sessions 1-4 207.9 205.6 236.6 204.9 180.3 179.2

1 {10, .25} Lottery, Auction 1096.3 1147.5 1443.4 1139.5 706.0 862.0
2 {10, .25} Auction, Lottery 401.6 689.0 609.4 364.3 231.0 74.0
3 {10, .25} Lottery, Auction 1253.3 1305.0 1569.0 1232.6 956.0 865.0
4 {10, .25} Auction, Lottery 319.2 1048.5 592.9 204.6 160.2 357.8

Average of Sessions 1-4 767.6 1047.5 1053.7 735.3 513.3 539.7

1 {10, .75} Auction, Lottery 2425.0 2770.5 2486.1 2582.2 2073.4 2121.0
2 {10, .75} Lottery, Auction 2251.8 1606.0 2235.1 2414.3 2106.1 2305.0
3 {10, .75} Auction, Lottery 1558.2 1889.5 1874.0 1677.5 1123.1 1270.0
4 {10, .75} Lottery, Auction 1436.0 926.7 1364.7 1483.8 1420.5 1615.5

Average of Sessions 1-4 1918.0 1798.2 1990.0 2039.5 1680.8 1827.9

Table B3: Session-Level Average Group Contribution Less Prize Under the Lottery Mechanism
Over Various Intervals of Time
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AP Auction Mechanism Average G Less Prize in Round Number(s):
Session No., {n, β}, Order 1-15 1 1-5 6-10 11-15 15

1 {2, .25} Lottery, Auction 27.5 45.7 33.0 36.1 13.5 1.2
2 {2, .25} Auction, Lottery 82.6 124.8 131.1 80.2 36.6 26.0
3 {2, .25} Lottery, Auction 35.1 57.0 48.0 35.4 21.8 20.1
4 {2, .25} Auction, Lottery 79.5 144.0 114.1 74.0 50.5 88.1

Average of Sessions 1-4 56.2 92.9 81.6 56.4 30.6 33.9

1 {2, .75} Lottery, Auction 246.6 249.2 247.3 270.6 222.0 163.9
2 {2, .75} Auction, Lottery 348.4 324.8 403.2 378.3 262.9 221.1
3 {2, .75} Lottery, Auction 187.6 335.1 208.0 203.3 151.5 112.2
4 {2, .75} Auction, Lottery 138.6 183.1 157.4 131.8 126.6 128.7

Average of Sessions 1-4 230.3 273.1 254.0 246.0 190.8 156.5

1 {10, .25} Lottery, Auction 626.0 1507.0 977.7 631.0 269.5 264.5
2 {10, .25} Auction, Lottery 900.4 977.6 1148.2 975.3 577.7 800.5
3 {10, .25} Lottery, Auction 787.3 1077.0 969.0 824.7 568.4 429.0
4 {10, .25} Auction, Lottery 776.1 1049.0 1302.0 723.5 302.7 199.5

Average of Sessions 1-4 772.5 1152.7 1099.2 788.6 429.6 423.4

1 {10, .75} Auction, Lottery 2446.5 2639.5 2558.4 2501.1 2280.1 2536.0
2 {10, .75} Lottery, Auction 2194.8 2130.5 2188.4 2304.7 2091.4 2118.5
3 {10, .75} Auction, Lottery 1997.4 1218.5 2003.5 2176.2 1812.4 2060.0
4 {10, .75} Lottery, Auction 1394.0 1603.0 1514.5 1389.7 1277.7 1152.5

Average of Sessions 1-4 2008.0 1897.9 2066.2 2092.9 1865.4 1966.8

Table B4: Session-Level Average Group Contribution Less Prize Under the All-Pay Auction Mech-
anism Over Various Intervals of Time
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Appendix C: Instructions Used in the Auction-Lottery Treatment, n=10, β=.25 (Not 
Intended for Publication) 
 
Note: Other instructions are similar, changing only the order of the two mechanisms 
and/or the values of n, β.  
 
Overview 
 
Welcome to this experiment in the economics of decision-making.  Please read these instructions 
carefully as they explain how you earn money from the decisions you make in today’s session.  
There is no talking for the duration of this experiment. If you have a question, please raise your 
hand. 
 
Today’s experiment is divided into two parts, each consisting of 15 rounds.  In each round of the 
first part, you participate in a simple decision-making game that is described below. You will 
receive instruction for the second part of the experiment following the conclusion of the first part.  
You will make your decisions using the computer workstation, which will also provide you with 
feedback about the outcomes of those decisions. 
 
There are 20 participants in today’s experiment.  At the beginning of each round, you will be 
assigned randomly to one of two groups of 10 participants, either group 1 or 2.  The group to 
which you are randomly assigned each round is indicated on your screen.  While you may be 
assigned to the same group number (1 or 2) more than once in succession, the composition of 
participants in the group to which you are assigned will vary from round to round.  You will play 
each round only with the members of your group of size 10.  You will not be told the identity of 
any member of your group, nor will any of them know your identity even after the session is over. 
Your earnings will depend on the choices you make as well as the choices made by the other 
participants in your group. 
 
The Game 
 
At the start of each round, each member of your group including yourself is endowed with 400 
tokens.  You are asked whether you would like to contribute any number of your endowment of 
tokens toward the possibility of winning a prize of 100 tokens. Your token contribution decision 
is made anonymously; no participant can associate you with your decision. 
 
Specifically, on the decision screen for each round you are asked:  How many of your 400 tokens 
would you like to contribute?  In the input box, type in the number of tokens you want to 
contribute, any number between 0 and 400, inclusive. You can change your mind anytime prior to 
clicking the OK button.  When you are satisfied with your choice, click the OK button.  
 
After all participants have clicked the OK button, the computer program will calculate the total 
number of tokens that all members of your group of size 10 (including you) have contributed.  Let 
us call this number X.    
 
If X<100, then the 100 token prize is not awarded to any member of your group. Each group 
member gets back any of his/her 400 tokens contributed toward winning the prize.  Earnings for 
the round are 400 tokens for each subject. 
 



If X≥100, then the 100 token prize is won by the member of your group who contributed the most 
tokens toward winning the prize. If there is a tie, then one of the individuals contributing the most 
tokens toward winning the prize will be randomly selected and awarded the 100 token prize.  The 
more tokens you contribute, the greater is your chance of winning the 100 token prize.  Tokens 
that you do not contribute toward winning the 100 token prize remain in your “private” account.  
 
If X≥100, then the amount X-100 of tokens will be placed in a “group” account.  All 10 members 
of your group, even those who did not contribute any tokens toward winning the 100 token prize 
will earn additional tokens based on the number of tokens in the group account. 
 
Specifically, if X≥100, each member of the group will earn .25 ×(X-100) tokens.  These tokens 
are in addition to the tokens that remain in your private account (400-c) or the 100 token prize 
awarded to the winner.  The table below gives you a non-exhaustive list of your possible earnings 
from the group account. 
 

If X  
is 

then (X-100) 
is 

and the Tokens Earned by 
Each Member of the Group is 

100 0 0 
150 50 12.5 
200 100 25 
250 150 37.5 
300 200 50 
350 250 62.5 
400 300 75 
450 350 87.5 
500 400 100 

1000 900 225 
1500 1400 350 
2000 1900 475 
2500 2400 600 
3000 2900 725 
3500 3400 850 
4000 3900 975 

 
If X<100, no tokens are placed in the group account. 
 
Earnings 
 
Your total tokens for each round are the sum of three items.  
 

1. The number of tokens that remain in your private account. If X<100, the number of 
tokens in your private account will be set equal to your endowment of 400 tokens. 
Otherwise, if X≥100, the number of tokens in your private account is 400-c, where c is 
the number of tokens that you contributed toward winning the 100 token prize. 

2. If X≥100, AND you are the prize winner, then you receive an additional 100 token 
prize for that round. 

3. If X≥100, you and every other member of your group earns an additional .25 ×(X-100) 
tokens based on the number of tokens (X-100) in the group account. 

 



At the end of today’s experimental session, the computer program will randomly select two 
rounds: one from the first part (15 rounds) of today’s session and one from the second part. Your 
token total for the rounds selected will be converted into dollars at a rate of 1 token = $0.01 (1 
cent).  
 
Feedback 
 
At the end of each period your computer screen will report back to you: 
 

• The number of tokens you offered toward winning the prize, c 
• The total number of tokens submitted by all members of your group including you, X. 
• Whether the prize was awarded (if X≥100) or not (if X<100). 
• If X≥100, the number of tokens offered by the winner of the prize. 
• If X≥100, whether you won or lost the 100 token prize. 

 
You will also be shown the calculation of your total token earnings for the round. Specifically, 
you will learn: 

 
1. The number of tokens that remain in your private account, 400-c. 
2. Prize tokens: 100 if you won the prize, 0 otherwise. 
 
If X≥100, you will be told the number of tokens in the group account, X-100. This number is 
used to calculate:  
 
3.   The tokens you (and everyone in your group) earns from the group account, equal to 
.25×(X-100) tokens. 
 
• Finally, you will be told your total tokens earned for the round, which is the sum of the 

token amounts in items 1-3 above. 
 
Record Sheets 
 
Please record the information reported to you on the outcome of each round on your record sheet 
under the appropriate headings.  Be sure also to indicate on your record sheet your ID number. 
 
For your convenience, the history of information reported back to you at the end of each round 
will appear at the bottom of your first decision screen. 
 
Questions   
 
Are there any questions before we begin?



Instructions Part Two 
 

 
You are about to begin the second part of the experiment.  This part also consists of 15 rounds. 
 
As in the first part of today’s experiment, at the start of each round in this second part, the 
computer program will again randomly divide you up into two groups of 10 participants -- group 
1 or group 2. While you may be assigned to the same group number (1 or 2) more than once in 
succession, the composition of participants in the group to which you are assigned will vary from 
round to round.  You will play each round only with the members of your group of size 10.  You 
will not be told the identity of any member of your group, nor will any of them know your 
identity even after the session is over. Your earnings will depend on the choices you make as well 
as the choices made by the other participants in your group. 
 
The game is similar to the one played in the first part.  The only difference is that the 100 token 
prize, if offered, (X≥100), can be won by any member of the group who contributes more than 0 
tokens toward winning the prize. Your chance of winning the 100 token prize is equal to the 
number of tokens you contributed – call this c—divided by the total number of tokens 
contributed, X, that is, you have a c/X percent chance of winning the 100 token prize.  Thus, 
unlike the first part, it is no longer the case that the group member who contributes the most 
tokens automatically wins the prize; now anyone who contributes more than 0 tokens has some 
chance of winning the 100 token prize. Notice that the more tokens you contribute, c, relative to 
the total number of tokens contributed by all 10 members of your group (including you), X, the 
greater is your chance of winning the 100 token prize. 
 
Every other aspect of the decision-making game is the same as before. 
 
Specifically, on the decision screen for each round you are asked:  How many of your 400 tokens 
would you like to contribute?  In the input box, type in the number of tokens you want to 
contribute, any number between 0 and 400, inclusive.  You can change your mind anytime prior 
to clicking the OK button.  When you are satisfied with your choice, click the OK button 
 
After all participants have clicked the OK button, the computer program will calculate the total 
number of tokens that all members of your group of size 10 (including you) have contributed.  Let 
us call this number X.    
 
If X<100, then the 100 token prize is not awarded to any member of your group. Each group 
member gets back any of his/her 400 tokens contributed toward winning the prize.  Earnings for 
the round are 400 tokens for each subject. 
 
If X≥100, then the 100 token prize is randomly awarded to one (and only one) member of your 
group who contributed more than zero tokens toward winning the prize. While the computer 
program randomly selects one member of your group contributing more than zero tokens as the 
prize winner, your chance of winning the 100 token prize in this random selection is equal to the 
number of tokens you contributed toward winning the prize, c, divided by the total number of 
tokens contributed by all members of your group including you, X. That is, you have a c/X 
chance of winning the 100 token prize. The more tokens you contribute, c, relative to the total X, 
the greater is your chance of winning the 100 token prize.  But notice that each member of your 
10-person group who contributes more than 0 tokens toward winning the prize has some chance 
of winning the prize.  Tokens that you do not contribute toward winning the 100 token prize 
remain in your “private” account.  



 
If X≥100, then the amount X-100 of tokens will be placed in a “group” account.  All 10 members 
of your group, even those who did not contribute any tokens toward winning the 100 token prize 
will earn additional tokens based on the number of tokens in the group account. 
 
Specifically, if X≥100, each member of the group will earn .25 ×(X-100) tokens.  These tokens 
are in addition to the tokens that remain in your private account or the 100 token prize awarded to 
the winner.  The table below gives you a non-exhaustive list of your possible earnings from the 
group account. 
 

If X  
Is 

then (X-100) 
is 

and the Tokens Earned by 
Each Member of the Group is 

100 0 0 
150 50 12.5 
200 100 25 
250 150 37.5 
300 200 50 
350 250 62.5 
400 300 75 
450 350 87.5 
500 400 100 

1000 900 225 
1500 1400 350 
2000 1900 475 
2500 2400 600 
3000 2900 725 
3500 3400 850 
4000 3900 975 

 
If X<100, no tokens are placed in the group account. 
 
Total Earnings 
 
Your total tokens for each round are the sum of three items.  
 

1. The number of tokens that remain in your private account. If X<100, the number of 
tokens in your private account will be set equal to your endowment of 400 tokens. 
Otherwise, if X≥100, the number of tokens in your private account is 400-c, where c is 
the number of tokens that you contributed toward winning the 100 token prize. 

2. If X≥100, AND you are the prize winner, then you receive an additional 100 token prize 
for that round. 

3. If X≥100, you and every other member of your group earns an additional .25 ×(X-100) 
tokens based on the number of tokens in the group account. 

 
At the end of the experimental session, the computer program will randomly select two rounds: 
one from the first part (first 15 rounds) and one from the second part (last 15 rounds). The sum of 
tokens earned in these two rounds will be your total token earnings for the experiment.  At the 
end of the experiment your total token earnings will be converted into cash earnings at the rate of 
1 token = $0.01 (1 cent). 
 



Feedback 
 
At the end of each period your computer screen will report back to you: 
 

• The number of tokens you contributed toward winning the prize, c 
• The total number of tokens submitted by all members of your group including you, X. 
• Whether the prize was awarded, yes (if X≥100) or no (if X<100). 
• If X≥100, your percent chance of winning the prize, c/X (up to five decimal places). 
• If X>100, whether you won or lost the 100 token prize. 

 
You will also be shown the calculation of your total token earnings for the round. Specifically, 
you will learn: 

 
1. The number of tokens that remain in your private account, 400-c. 
2. Prize tokens: 100 if you won the prize, 0 otherwise. 
 
If X≥100, you will be told the number of tokens in the group account, X-100. This number is 
used to calculate:  
 
3.   The tokens you (and everyone else in your 10 member group) earns from the group 
account, equal to .25×(X-100) tokens. 
 
• Finally, you will be told your total tokens earned for the round, which is the sum of the 

token amounts in items 1-3 above. 
 
Record Sheets 
 
Please record the information reported to you on the outcome of each round on your record sheet 
under the appropriate headings.  Be sure also to indicate on your record sheet your player ID 
number. 
 
For your convenience, the history of information reported back to you at the end of each round 
will appear at the bottom of your first decision screen. 
 
Questions 
 
Are there any questions before we begin? 
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