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ABSTRACT OF THE DISSERTATION

Contributions to Research on Machine Translation

by

David Kauchak

Doctor of Philosophy in Computer Science

University of California San Diego, 2006

Professor Charles Elkan, Chair

In the past few decades machine translation research has made major progress. A re-

searcher now has access to many systems, both commercial andresearch, of varying

levels of performance. In this thesis, we describe different methods that leverage these

pre-existing systems as tools for research in machine translation and related fields.

We first examine techniques for improving a translation system using additional text.

The first method uses a monolingual corpus. Discrepancies are identified by translating

a word list to a foreign language and back again. Entries where the original word and

its double translation differ are used to learn word-level correction rules. The second

method uses parallel bilingual data consisting of source language/target language sen-

tence pairs. The source sentences are translated using a translation system, and a partial

alignment is identified between the machine-translated sentences and the corresponding

human-translated sentences in the target language. This alignment is used to generate

phrase-level correction rules. Experimentally, both word-level and phrase-level correc-

tion rules result in improved translation performance. Thelearned word-level correction

rules make 24,235 corrections on 20,000 Spanish to English translated sentences, with

high accuracy. The learned phrase-level rules improve the translation performance (as

measured by BLEU) of a French to English commercial system by30%, and of a state

of the art phrase-based system in a statistically significantly way.

xiii



To train current statistical machine translation systems,bilingual examples of paral-

lel sentences are used. Generating this data is costly, and currently feasible only in lim-

ited domains and languages. A fundamental question is whether every potential example

is equally useful. We describe a ranking method for examplesthat scores individual sen-

tence pairs based on the performance of translation systemstrained on random subsets

of the examples. When used to train a translation system, thetop ranking examples

result in a significantly better performing system than random selection of examples.

Given these ranked examples, a model of example usefulness can potentially be learned

to select the most useful unlabeled examples. Initial experiments show two previously

used example features are good candidates for identifying useful examples.

In the last part of this thesis we describe how automatic paraphrasing methods can

be used to improve the accuracy of evaluation measures for machine translation. Given

a human-generated reference sentence and a machine-generated translated sentence, we

present a method that finds a paraphrase of the reference sentence that is closer in word-

ing to the machine output than the original reference is. We show that using paraphrased

reference sentences for evaluating a translation system output results in better correla-

tion with human judgement of translation adequacy than using the original reference

sentences.
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1

Introduction

Machine translation systems are commonplace. A search of the web reveals many

commercial translation systems available in a wide array oflanguages1. In addition,

over a dozen different research systems are currently beingdeveloped2. In this thesis,

we examine the use of these pre-existing machine translation (MT) systems as research

tools for improving and analyzing MT and related fields.

All translation systems have the same goal: translate text in one language into text in

a second language. The methods by which they accomplish thisgoal are different. Most

commercial systems use a set of dictionaries containing translation, semantic, syntactic

and morphological information in combination with human-generated rules to trans-

late. This results in efficient, general-purpose translation systems. Recently, data-driven

methods have become increasingly popular. Given a set of parallel bilingual sentences,

these methods learn a probabilistic translation model. Given a foreign sentence, the

translation process is a search for the most likely English sentence according to the

model.

Most research in machine translation focuses on building a better probabilistic model.

Each year adaptations to previous models are suggested based on experimental inade-

1Afrikaans, Bulgarian, Chinese, Dutch, English, Finnish, French, German, Greek, Hungarian, Ice-
landic, Italian, Japanese, Malay, Norwegian, Korean, Polish, Portuguese, Russian, Serbian, Slovenian,
Spanish, Swahili, Swedish, Tswana, Ukrainian and Welsh.

2http://www.nist.gov/speech/tests/mt/mt05evalofficial resultsrelease20050801v3.html

1
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quacies and linguistic intuition. In this thesis, we take a different approach. We leverage

existing translation systems both to build better systems and to explore research ques-

tions related to translation. Initially, we only assume that we can translate foreign text

with a system. Using additional text resources, we explore two different methods for

learning correction rules. Research systems are trainableon bilingual data. Using this

additional functionality, we then investigate example usefulness for training a translation

system. Finally, we use the output of many translation systems to examine paraphras-

ing for automatic evaluation measures. In this chapter we give a brief overview of the

problems and methods discussed throughout this thesis.

1.1 Translation Improvement

One use of a translation system is to identify current translation mistakes. This data

can then be used to improve the performance of that system. Bytranslating text where

the correct translation is known, differences between the machine translation and this

ground truth point to possible mistakes made by the translation system. The advantage

of this type of approach is that it does not rely on knowledge of how the system translates

and only assumes access to the translation system.

We examine the translation improvement problem for both commercial systems and

statistical phrase-based systems. Although in some domains commercial systems tend

to produce inferior translations, they have other benefits.Commercial translation sys-

tems are general-purpose and work well in many domains wherelittle training data is

available for statistical systems. Also, commercial systems are very efficient and trans-

late orders of magnitude faster. Finally, commercial systems tend to be more robust

than research systems, which can fail to translate problematic texts. Because of the var-

ied uses of translation systems, we consider improving bothcommercial and statistical

systems.

The first improvement method we examine only uses monolingual text, one of the

most prevalent natural language resources. Given English text, we generate an English
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English translated foreign translated English
dog perro dog

scroll rollo rollo
abstractness abstractness abstractness

metro metro meter
cupful taza cup

Figure 1.1 Example output from translating an English word list to Spanish and then
back to English.

word list. We then translate this list to a foreign language and back to English. This

results in triplets of English, foreign and double-translated English. Figure 1.1 shows

example triplets translated using the SDL International translation system. Depending

on the knowledge in the translation systems, different scenarios arise. Only the first

example has both the original and double-translated words equal. Entries where the

original word is not the same as the double-translated word suggest possible mistakes.

Using these entries, we generate a list of foreign words and possible English transla-

tion options. Then, using an English corpus, we learn word-level correction rules. In

cases where only one English translation option exists or one option is predominant,

we learn a context-independent rule. For ambiguous words, words that co-occur with

the alternate translation options are identified using a likelihood ratio significance test.

Context-dependent rules are constructed using these significant words to select between

the different translation options.

This method learns correction rules based on knowledge differences between the

foreign to English translation system and the English to foreign translation system. By

itself, monolingual data does not contain translation information. Translation informa-

tion is available in parallel bilingual data, which consists of foreign sentences and the

English translations of those sentences. This data is the building block for statistical

translation systems.

Parallel bilingual data can also be used to identify and correct the mistakes of a

translation system. By translating the foreign text to English, we again obtain a parallel
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Commercial: Themeeting begins againat 8 hours.
Rule corrected: TheHouse resumedat 8 hours.
Commercial: I find interesting to note that certain members of

the American Congressesseem to divide this opinion, but contrary.
Rule corrected: I find interesting to note that certain members of

Congressseem to divide this opinion, but contrary.
Commercial: Is theRoom lends to decide?
Rule corrected: Is theHouse ready for the question?

Figure 1.2 Example commercial translations corrected by context-independent phrase
rules learned by our method. Changed phrases are initalics and replaced by those in
bold.

data set with machine-translated English and human-translated English. Differences

between these sentence pairs identify possible mistakes. Given these pairs, we generate

a partial monotone alignment between the two sentences where only lexically identical

words are aligned. An alignment specifies portions of the English text that are translation

of portions of the foreign text, and is commonly used in training statistical translation

systems. A partial alignment only specifies alignments for some portions of the text

and a monotone alignment does not allow crossing alignments. Using this alignment,

we extract the unaligned phrase pairs as candidate phrase-level correction rules. These

candidate rules are scored and filtered to generate the final context-independent phrase-

level correction rules. The learned correction rules are applied to unseen translated

examples to improve the translation performance.

This type of approach is most useful on commercial systems which are often rule

based and general domain and therefore receive the most benefit from data-driven cor-

rection. Even statistical translation systems trained on the same parallel data benefit.

Translation from foreign to English introduces additionalregularity that may not be ac-

cessible in the original foreign/English data. Applying these rule correction approaches

to commercial systems retains their computational and robustness benefits, while mov-

ing the translation performance towards that of statistical systems.

Figure 1.2 shows corrected sentences using learned phrase-level rules. Using the
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Monsieur l’Orateur, ma question est simple.
Mr. Speaker, my question is simple.

M. Roch La Salle (Joliette) propose:
Mr. Roch La Salle (Joliette) moved:

...beauty is life when life unveils her holy face.

...beauty is life when life unveils her holy face.

Figure 1.3 Three foreign/English parallel bilingual examples from Canadian parliamen-
tary proceedings. The first line is French and second English. The third example is an
English quote and is therefore the same in French and English.

Systran translation system, we identify over 70,000 correction rules. When applied to

a test corpus, these rules improve the BLEU score, the standard measure of translation

performance, of the test data by 30%. Using the same rule learning procedure, we

also statistically significantly improve the translation performance of a state of the art

phrase-based statistical translation system.

1.2 Learning Example Usefulness

The methods we have discussed have only assumed that we can translate text us-

ing the translation system. Research systems are also available where, given bilingual

examples of parallel sentences, a translation system is learned. These examples are time-

consuming to generate and are only available in limited domains. An important question

is whether all these examples are equally useful for training a translation system.

Figure 1.3 shows three different bilingual examples. All ofthese examples show

inferior characteristics. The first example is a straightforward, literal translation. How-

ever, the example does not provide new information in the context of other training

examples. In a sample of 50,000 examples, 4,285 contain the phrase ‘Mr. Speaker’, 279

contain the phrase ‘my question is’ and 93 contain the word ‘simple’. The second and

third examples suffer from a different lack of information.In both cases, the English
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Figure 1.4 Process for generating scored example subsets touse as training data for
ranking example usefulness. Random subsets of the examplesare selected. Each of
these subsets is used to train a translation system, which isthen automatically evaluated.

and French are similar. In the second, this occurs because proper names are often the

same in languages with similar character sets. The third example is an English quote

and is therefore the same in both languages.

The examples in Figure 1.3 highlight just a few causes for example inferiority. In

this thesis, we describe a framework that given a set of examples empirically ranks the

examples based on usefulness. Because no prior example rankings exist, an important

step is generating usefulness data for training. We cannot directly obtain individual

example scores, but can obtain usefulness scores for sets ofexamples. Given a set of

examples, random example subsets are selected and used to train translation systems.

These systems are automatically evaluated resulting in scores for the random subsets.

Figure 1.4 shows this process. These subset/score pairs define the training data for

learning usefulness scores for the individual examples.

We assume that the score for an example subset is a linear combination of the exam-

ple scores in that subset. For phrase-based systems, where each example is broken into

a finite number of phrases, this assumption is reasonable. These random subset/score

pairs then define a set of linear constraints. We calculate anexample’s score as the aver-
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No Signal from ESA’s Beagle 2 Probe Since Its Landing on Mars
Contacts Lost with Europe’s Mars Probe Beagle 2 After Landing
No News from The European Mars Probe - Beagle 2 after It Landed
European Mars Probe Beagle 2 Remains Silent after Landing

Figure 1.5: Four human translations of the same Chinese headline.

age of the subset scores that example occurs in. This solution has the advantage of being

efficient to calculate and theoretical analysis shows that the solution is near correct.

The examples are then ranked based on the learned usefulnessscores. Given this

ranking, we show that on a large test set a system trained on the highest-ranking exam-

ples consistently performs better than systems trained on arandom selection of exam-

ples. An important application for the ranked examples is tobuild a model of example

usefulness. This model can potentially be used to identify useful example characteristics

and for selecting unlabeled examples that are most useful. As a first step towards build-

ing this model, we examine features previously suggested for translation confidence

estimation for correlation with the learned ranking.

1.3 Improving Automatic Evaluation Methods

One of the challenges for many natural language applications is that there are many

correct solutions to the same problem. This complicates training and evaluation. Figure

1.5 shows four different human translations of the same Chinese headline. Each of the

translations conveys the same meaning: Europe sent a probe that landed on Mars, the

probe is named Beagle 2 and since landing on Mars, the probe has been out of com-

munication contact. However, the words used to convey this information are different

between the different sentences.

Natural language applications such as machine translationand summarization rely

on automatic evaluation measures that compare a method’s output to a human-generated

reference example. There have been a number of different proposed methods for mak-
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Ref: Filipino Communists Refuse Talks with Arroyo’s Government and Launch
New Guerrilla Attacks

Para: Philippine Communists Refuse Talks with Arroyo’s Government and Launch
New Guerrilla Attacks

Ref: The economy in ourcountrycontinued to maintain a nice growth trend.
Para: The economy in ournation continued to maintain a nice growth trend.
Ref: As at end of 2003, Mongolia had 255.6 thousand camels, 1.9583million

horses, 1.7843 millioncows, 10.7062 million sheep and 10.6034 million
goats.

Para: As at end of 2003, Mongolia had 255.6 thousand camels, 1.9583million
horses, 1.7843 millioncattle, 10.7062 million sheep and 10.6034 million
goats.

Figure 1.6 Paraphrases of human reference translations found by our proposed para-
phrasing algorithm. The first line is the reference and second paraphrased reference.
Paraphrases are shown inbold.

ing this comparison, but they all rely on an analysis of n-gram overlap between the

machine-generated text and the human-generated text. As wesee in the example, even

among human translations, there are still many gaps in the overlap between sentences.

A comparison of 10,728 human reference translation pairs used in the NIST 2004 ma-

chine translation evaluation reveals only 21 (less than 0.2%) that are identical and 60%

that differ in at least 11 words.

Because of this flexibility, human references rarely capture the full range of correct

solutions. The use of multiple references has been suggested as a solution to this prob-

lem, but generating this data is expensive and only results in a partial solution. We

explore the use of paraphrasing to address this problem. Given a human-generated

reference sentence and a machine-generated sentence, we seek to find a word-level

paraphrase of the reference sentence that is closer in wording to the machine output

than the original reference. For all words in the reference sentence that do not occur

in the machine-generated sentence, candidate paraphrasesare suggested using existing

lexico-semantic resources, such as WordNet. These candidate word paraphrases repre-

sent context-independent choices and are not appropriate in all sentences. To address

this, for each candidate paraphrase, we learn a model of the contexts that word occurs in.
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The candidate paraphrase is only substituted if the likelihood of the word in the context

of the reference sentence is acceptable according to the learned model.

Figure 1.6 shows reference sentences and the paraphrases ofthose sentences gener-

ated using our proposed method. All of the reference paraphrases increase the overlap

with the machine translation output. We show experimentally that using the paraphrased

references increases the evaluation performance of automatic evaluation methods. We

also show a connection between paraphrase quality and automatic evaluation perfor-

mance: better paraphrases result in better automatic evaluation performance.

1.4 Outline

Before discussing these methods in more detail, in Chapter 2we first discuss back-

ground material and data and software resources. In Chapter3 we use monolingual data

to learn word-level correction rules to improve a translation system. We continue the

translation improvement problem in Chapter 4 by learning phrase-level correction rules

using parallel bilingual data. In Chapter 5 we switch to the problem of ranking bilingual

examples based on usefulness. Finally, in Chapter 6 we analyze the effect of paraphras-

ing on automatic evaluation measures. We conclude with a summary of the key findings

in this thesis and suggested future research directions.
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Background

2.1 Translation Systems

Many different types of machine translation systems exist.In this section we briefly

overview current translation systems available. Classifying these different systems is

problematic, particularly for commercial systems1. We loosely divide the systems into

rule-based systems and data-driven approaches.

2.1.1 Rule-based approaches

During the inception of machine translation, methods were linguistically driven,

rule-based approaches. Today, most research methods are data-driven and only com-

mercial translation systems still use rule-based approaches. Commercial systems can be

purchased for home or office use and are publicly available through a number of web

portals. These systems are efficient and general-purpose. Most commercial systems

translate by combining translation dictionaries, idiomatic expressions, semantic dictio-

naries and homograph resolution with human generated rules. [27] discusses a number

of commercial systems in detail and individual papers can also be found for some sys-

tems, for example [60].

1Traditionally, commercial systems were rule-based. Recently, there have been a number of commer-
cial systems introduced that have been based on statisticaltranslation approaches.

10
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interlingua

Englishforeign translation

wordswords

phrasesphrases

syntaxsyntax

semanticssemantics

Figure 2.1 Translation method categorization pyramid. Translation occurs by trans-
ferring language information in the foreign language from the left to English language
information on the right.

Rule-based approaches can be subdivided based on the type ofinformation that is

used when translating between languages. Figure 2.1 shows the archetypal translation

method pyramid. At the very top are interlingua approaches.To translate from a for-

eign language to English, the foreign text is first translated into a language independent

knowledge representation. From this knowledge representation, the English text is then

generated [45]. This framework proved difficult and general-purpose interlingua meth-

ods have not emerged.

Moving down the pyramid are transfer methods, both semanticand syntactic [27].

Rather than translating the foreign text into a language independent representation, lan-

guage specific semantic or syntactic knowledge is extractedfrom the text. Rules are then

applied that convert this foreign representation into an English representation. From

this English representation, the final English text is generated. As with interlingua ap-

proaches, general-purpose transfer approaches have not been successful.

2.1.2 Data-driven approaches

In the last 10 years, research systems have made substantialprogress. This progress

can be attributed to a shift from rule-driven approaches to data-driven approaches. These
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data-driven approaches have been greatly assisted by increases in computational power

and data availability. The two data-driven approaches thatare currently popular are

example-based methods and statistical methods.

Example-based systems Given a large bilingual data set of foreign sentences with

associated English translations, example-based translation methods translate a new for-

eign text fragment by finding the fragment in the data set thatis most similar to the new

foreign sentence [11, 63]. Example-based machine translation methods differ in the size

of the fragment, post-processing after matching and the matching criteria, which may

incorporate syntactic information [28] or other linguistic information. [63] gives a good

historical review of example-based translation methods.

Statistical systems Given the same bilingual data set, statistical machine translation

methods take a different approach. A probabilistic model islearned,p(e|f), that de-

scribes the process of translating a foreign sentence to English. Given a new foreign

sentencef , translation occurs by finding the most likely English sentence, given that

foreign sentence

arg max
e

p(e|f)

The foundation of statistical machine translation research is the noisy channel model

[9]. Rather than directly modelingp(e|f) we apply Bayes rule:

p(e|f) =
p(f |e)p(e)

p(f)

wherep(f |e) is the translation model,p(e) is the language model of the English sen-

tence andp(f) is ignored sincef is given and does not affecte. Each of these models

are trained individually and then combined during translation. The translation model

describes how a foreign sentence gets translated to an English sentence. The language

model describes what English sentences look like. The combination of these two mod-

els results in a much more robust translation system than trying to model the entire

translation process indivisibly.
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In practice, an extension of the original noisy channel model, a parameterized log-

linear model, is used:

log p(e|f) = λ1 log(p(f |e)) + λ2 log(p(e)) + λ3g1(f, e) + ... + λngn(f, e)

wheregi are additional feature functions such as the sentence length, number of words

found in a bilingual dictionary, etc. andλi are model weighting parameters. These

feature functions complicate the translation process (i.e. finding the most likely English

sentence according to the model), but allow additional criteria to be included in the

translation process.

For the language model, an n-gram model is most commonly used. The probabil-

ity of a sentence is broken down into individual word probabilities [41]. We assume

that the probability of a word occurring is only dependent ona small number of the

previous words. For example, a bigram language model modelsthe probability of a

word in a sentence given only the previous word. Specifically, the probability of a sen-

tencep(e1, e2, ..., en) = p(e1|〈start〉)p(e2|e1)...p(en|en−1)p(〈end〉|en). These individ-

ual probabilities are estimated from a corpus. For those translation models that include

syntactic information, a syntax-based language model is used in addition to the n-gram

model [12]. These syntax-based models determine the probability of an entire syntax

tree by similarly decomposing the tree into smaller components.

The main differentiating factor between statistical translation approaches is the trans-

lation model. The first models were word-level translation models [9]. Each word in the

foreign sentence is translated to zero or more English wordswith word reordering. To

obtain reasonable performance, these word level models tend to be complicated. The

problem is that translation is rarely word for word. To modelthis, some words are trans-

lated to multiple different words, some words disappear during translation and some

words randomly appear during translation. All these scenarios complicate the transla-

tion model.

The best performing models are phrase-based models. Phrase-based models take a

similar approach to word models, but the translation component is the phrase. A foreign
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sentence is broken into phrases and each of those phrases is translated to an English

phrase with reordering [50, 33, 42, 65]. Because the translation is phrase-level, many of

the complications seen in the word-level models do not arise.

Recently, models incorporating syntactic information have been suggested. [67, 68,

24] suggest probabilistic models that transform a syntactic tree in the foreign language

into a syntactic tree in English. A number of “tree-to-string” models have also been pro-

posed that translate a foreign sentence to an English syntactic tree [69, 24, 22]. Models

that do not depend on explicit syntactic structure, but involve hierarchical structure have

also received some interest [13].

2.1.3 Machine translation evaluation

Evaluating the performance of natural language methods is difficult. Traditionally,

machine translation methods were evaluated by human judges. Though human judging

still occurs, for most uses, it is too slow and expensive. Instead, automatic evaluation

measures are used that judge the performance of a machine-generated translation with

respect to a human-generated reference translation [46, 43, 53].

Throughout this thesis, we use the BLEU evaluation method [53]. BLEU is the geo-

metric average of the n-gram precisions of the machine-translated sentences with respect

to the corresponding human-translated reference sentences, times a brevity penalty. The

BLEU score is computed as

BLEU = B · 4

√

√

√

√

4
∏

n=1

pn

B = min(1, e1−r/c),

wherepn is the n-gram precision,c is the number of words in the machine-generated

text andr is the number of words in the shortest reference text. The n-gram precision

is the proportion of n-grams in the machine-translated sentence that are found in the

reference sentence. These precisions are calculated over the entire test set. The brevity
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penaltyB penalizes translations that are too short by discounting those translations that

are shorter than the shortest reference translation. This prevents “gaming” of the metric,

for example just outputting “the” which tends to have a high precision.

t-test An important question for any empirical study that comparestwo different meth-

ods is whether the difference between the performance of themethods is significantly

different. In this thesis, we often use the paired t-test to determine to what extent this is

true. The t-test asks whether two paired sets are significantly different assumingindi-

vidual scores are independent and normally distributed.

Let X andY be sets of data points where each point inX corresponds to a unique

point inY . In the case of algorithmic differentiation, these points represent two different

methods trained on the same data and scored using an evaluation metric. The t-score for

the difference between these two sets is

t = (X − Y )

√

n(n − 1)
∑n

i=1((X − Xi) − (Y − Yi))2

whereX andY are the means of the sets andn is the number of pairs. Given the t-score,

the probability that the two sets are significantly different can be looked up in a t-table

under(n − 1) degrees of freedom.

The t-test assumes that the points are independent. As [16] point out, this is rarely the

case for when using the t-test to compare different algorithms. [16] suggests a number of

alternative tests; however, for machine translation, the training/testing setup is different

than most supervised scenarios and the alternate tests suggested are not appropriate. In

practice, non-independence leads to fewer degrees of freedom.

2.1.4 Corpora

We use a number of different corpora in this thesis for training and evaluation. All of

these corpora are publicly available, though some require membership to the Linguistic
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Data Consortium2 (LDC) or to have participated in a particular event.

Hansard corpus The Hansard corpus is a Canadian French/English parallel bilingual

corpus. The corpus contains 2.87 million aligned sentence pairs consisting of 70 million

words transcribed from the Canadian parliamentary proceedings. Although the corpus

only contains parliamentary proceedings, a wide variety oftopics are discussed. The

corpus was obtained through the LDC.

PAHO corpus The Pan American Health Organization (PAHO) Conferences and Gen-

eral Services Division parallel texts consists of 616 thousand words divided into 180

pairs of documents in English and Spanish [51]. The 180 documents were automati-

cally segmented into 20 thousand sentences, identified by periods (minus a number of

abbreviations). The sentences were NOT aligned. This corpus is available online3.

Europarl corpus The European Parliament Proceedings Parallel Corpus contains 28

million words of paragraph-aligned transcriptions in 11 European languages (French,

Italian, Spanish, Portuguese, English, Dutch, German, Danish, Swedish, Greek and

Finnish) [31]. The text was automatically extracted from the parliamentary proceed-

ings from 1996-2003. This corpus is available online4.

NIST 2004 The National Institute of Standards and Technology (NIST) performs

yearly evaluation of submitted machine translation systems. These systems include

commercial and research systems. We use the Chinese portionof the 2004 data set

which consists of 200 Chinese documents subdivided into 1788 segments. Each seg-

ment is translated to English by 10 machine translation systems and by four human

translators. A quarter of the machine translated segments are scored by human eval-

uators on a one to five scale along two dimensions: adequacy and fluency. Adequacy

2http://www.ldc.upenn.edu
3http://crl.nmsu.edu/cgi-bin/Tools/CLR/clrcat
4http://people.csail.mit.edu/koehn/publications/europarl/
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measures how well the content is preserved while fluency measures the quality of the

English. The corpus is available to participants of the 2004NIST evaluations.

North American News Text Corpus The North American News Text Corpus con-

tains English news articles on a wide range of topics from theLos Angeles Times,

Washington Post, New York Times, Reuters and Wall Street Journal published from

1994-1997 and contains 350 million words of text. The corpuswas obtained through

the LDC.

2.1.5 Software resources

Much of the work done in this thesis relies on previously developed machine trans-

lation systems. These systems are composed of a combinationof different software

components. All of the software used in this thesis is publicly available.

Pharaoh For the statistical phrase-based translation system we usethe Pharaoh train-

ing algorithm5 and decoder [32]. This is a state of the art system that performs compet-

itively in the yearly NIST evaluations. Included in this package is an implementation of

maximum BLEU discriminative training for learning model parameters [48].

GIZA++ GIZA++ is a method for learning word-level statistical translation models

[49]. Given a parallel corpus, the procedure learns a probabilistic alignment between

the words in the aligned sentences using the EM algorithm [9]. The most likely word

alignment is then used as input to the phrase-based translation system.

SRILM toolkit For the statistical systems, a language model is also required. We used

the SRI language modeling toolkit. The toolkit is an n-gram language model package

with many different smoothing techniques implemented6.

5http://www.iccs.informatics.ed.ac.uk/˜pkoehn
6http://www.speech.sri.com/projects/srilm/
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Carmel Carmel is a finite state transducer program7. Given a trained translation model

from the phrase-based system, Carmel is used to generate thebestn translations of

a foreign sentence under that model. This n-best list of translations is then used for

optimizing model parameters [48].

BoosTexter BoosTexter is a classification program that learns a boostedset of de-

cision stumps [59]. BoosTexter is particularly well suitedfor many natural language

classification tasks since it is very efficient and can handlelarge data sets with many

features.

Commercial translation systems We used two different commercial translation sys-

tems in our experiments. In Chapter 3 we use translations provided online from SDL

International8. These translations were obtained in February, 2003. In Chapter 4, we

examine Systran Professional version 4.0.0.

7http://www.isi.edu/licensed-sw/carmel/
8http://www.freetranslation.com
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Learning Word-Level Correction Rules

Most machine translation research requires bilingual dataconsisting of parallel sen-

tences. The produced systems have good translation performance, but rely on an ex-

pensive data source. Parallel bilingual data is time-consuming to generate and is only

available in limited domains. In this chapter, we propose a method for improving exist-

ing translation systems using monolingual data, which is abundantly available in many

domains.

3.1 Introduction

Machine translation systems are often available in both directions of a language

pair. In commercial settings, these systems are developed semi-independently and the

dictionaries used by each are different. This results in a difference in the knowledge

built into each system. By analyzing translations made by the systems in both directions,

these differences can be identified and used to learn correction rules.

To improve a foreign-to-English translation system, we start with an English word

list. We translate the words in the list to the foreign language and back again to Eng-

lish. The original English word list defines a ground truth for the double-translated list

of words. Deviations from this ground truth point to cases where the system can be

improved. From these translated lists, we generate a list offoreign words and possible

19
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English translation options. For those foreign words whereonly one translation option

exists, context-independent rules are learned. For foreign words with multiple possi-

ble translations, a corpus is used to identify words that significantly co-occur with each

translation option using a likelihood ratio test. These significant words are used to de-

fine context-dependent rules that disambiguate between thepossible English translation

options.

There are many advantages to learning word correction rulesover other types of

approaches. Rule learning approaches have proved successful in other natural language

problems and produce efficient and understandable rules [8]. Although the rules only

change the translation output one word at a time, word-leveltranslation occurs in most

commercial systems and word-based research systems are competitive. Also, [34] show

that 90% of the words in a corpus can be translated using word for word translation.

In Section 3.2 we discuss the rule learning algorithm including the rule format, the

data generation process and the method for dealing with ambiguous translations. To

evaluate the performance of the learned rules, in Section 3.3 we apply the learned rules

to a commercial system translation of a Spanish corpus and examine the number of

changes made as well as the precision of these changes. We conclude in Section 3.4

with future work.

3.2 Algorithm

A machine translation system translates from one natural language to a second. We

definef to be a translation system that translates from English textto foreign text and

f ′ a system that translates in the reverse direction. We assumethat we have unlimited

access to the translation systems, but not to the details of how the systems operate. We

also assume that we have a large amount of monolingual text available in the languages

that the machine translation systems translate between.

The input to our algorithm consists of the two translation systems (foreign-to-English
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and English-to-foreign) and text resources: an English word list, a foreign word list1 and

an English corpus. The output is word-level correction rules that improve the foreign-

to-English translation system. Figure 3.2 outlines the steps for learning these correction

rules. In this section, we look at each of the steps in more detail.

3.2.1 Rule format

We learn word-level rules of the form:

g(s, t, context(r)) = r

wheres is a foreign input word,t is a system translated English word andcontext(r)

is an English context. We use a bag of words representation for this context. Although

this loses positional information, it is a simple representation that reduces the number

of parameters required during learning.

A context-independent rule is one that does not contain a context (denoted []) and

applies anytimes occurs in the foreign sentence and is translated ast. The application of

the rule changest to r. A context-dependent rule adds the restriction that the translated

sentence must also contain one of the words in the learned context of the rule to apply.

Figure 3.1 shows an example application of the context-independent rule:

g(alquitrán, alquitrán, [])→ tar

which changes “alquitrán” to “tar”.

The context-dependent rules have the possibility of including both an input context

and an output context. In practice, only context in the inputor output language is nec-

essary. In our case, for foreign-to-English improvement, English text is more readily

available, so only the output contexts are learned. These English contexts are different

than the actual contexts used when applying the rules, whichconsist of foreign words

1If unavailable, the foreign word list is not required for ourmethod. The addition of a foreign word
lists allows us to learn additional correction rules, but a majority of the rules are learned using only English
resources.



22

foreign:
El contenido dealquitr án en los cigarrillos de tabaco negro sin filtro es mayor que en los restantes tipos
de cigarrillos y son aquellos precisamente los de mayor consumo en la población, lo que aumenta la
potencialidad del tabaquismo como factor de riesgo.

Original translation:
The content ofalquitr án in the black cigarettes of tobacco without filter is greater that in the remaining
types of cigarettes and are those precise the of greater consumption in the population, what enlarges the
potencialidad of the tabaquismo as factor of risk.

Improved translation:

The content oftar in the black cigarettes of tobacco without filter is greater that in the remaining types

of cigarettes and are those precise the of greater consumption in the population, what enlarges the poten-

cialidad of the tabaquismo as factor of risk.

Figure 3.1 Example application of the ruleg(alquitrán, alquitrán, [])→ tar. The first
sentence is the original Foreign sentence to be translated (in this case, Spanish). The
second sentence is the translation made by the commercial system. The final sentence
is the translation after the rule is applied. The changed word is inbold.

translated to English by the system. In our experiments, thebenefit of a large English

data set outweighs the downsides of using translated English contexts. Also, the bag of

words representation minimizes problems due to irregular contexts by not considering

higher order n-grams or positional information.

3.2.2 Generating training data

Monolingual resources, such as a word list, do not contain translation information.

We use the word list to extract translation information fromthe English-to-foreign and

foreign-to-English translation systems. Given translation systemsf andf ′ and an Eng-

lish word list, we calculate translationsf(w) andf ′(f(w)) for every wordw in the list.

By translating words, rather than larger text fragments, weavoid the alignment problem

of determining which translated words are associated. Fromthese translations, we ob-

tain a list of foreign words and possible English translation options, which is then used

for rule learning.

We examine the SDL International translation system that translates in both direc-

tions between English and Spanish. Table 3.1 shows a summaryof the data generated



23

Algorithm Input/Output

Input:

English word list

foreign word list (optional)

English corpus

Output:

context-independent and context-dependent correction rules to improve the foreign-to-English

translation system

Generate training data

- Translate English word list to the foreign language and back to English

- Translate foreign word list to English and back to the foreign language

- Generateinput words (foreign),current translationt andcorrect translationr (English) triplets using

the rules in Table 3.2

- For all wordsw in the corpus, generate frequency counts,count(w)

- Let option1, option2, ..., optionn be all possible Englishcorrect translationsfor a giveninput word

Learn context-independent rules for non-ambiguous words

- Identify non-ambiguous words by finding allinput wordswith only a single translation option (i.e.

n = 1)

- Generate context-independent rules of the form:

g(s, t, []) → r

Learn context-independent rules fork-dominant words

- Identify all k-dominantinput wordswhere

count(optionp) > k andcount(optionq) = 0 for all p 6= q

- Generate context-independent rules of the form:

g(s, t, []) → optionp

Learn context-dependent rules for ambiguous words

- Get the possible context wordsw for eachoptionp for the remaining ambiguousinput words:

- In the English corpus, find sentences whereoptionp appears

- Get all possible context wordsw as the words surroundingoptionp

- For eachoptionp, generate the context,context(optionp), as allw that pass the significance levelα

threshold for the likelihood ratio test

- Learn context-dependent rules of the form:

g(s, t, context(optionp)) → optionp

Figure 3.2 Outline of algorithm to learn rules to improve foreign-to-English translation.
The preprocessing steps generate the initial data for use inlearning the rules. The fol-
lowing three sets of steps describe the algorithms for learning the context-independent
and context-dependent rules.
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Table 3.1 Exhaustive list of the different possible translation equalities/inequalities
given a word (w), the foreign translation of that word (f(w)) and the translation back to
English (f ′(f(w))).

Occurrences Examplew, f(w), f ′(f(w))
w = f ′(f(w)) 6= f(w) 9,330 dog, perro, dog
w = f(w) 6= f ′(f(w)) 278 metro, metro, meter
w 6= f(w) = f ′(f(w)) 8,785 scroll, rally, rollo
w = f(w) = f ′(f(w)) 11,586 abstractness, abstractness, abstractness
w 6= f(w) 6= f ′(f(w)) 6= w 14,523 cupful, taza, cup

from translations in February 2003 of 45,192 English words [56]. A partition (i.e. non-

overlapping, exhaustive set) of the possible outcomes is shown. In this section, we

examine each of these cases and describe the information generated for improving the

translation systems. For most machine translation systems, the default behavior when

the translation for a wordw is unknown is to translate the word asw (i.e. f(w) = w).

We assume that equality implies that the system could not translate the word. A message

or flag issued by the system could be used instead, if available.

• w = f ′(f(w)) 6= f(w)

w is translated to a different string,f(w), in the foreign language and thenf(w)

is translated back to the original wordw. In this situation the machine translation

system is likely translating these words correctly. Mistakes can still occur here

if there are complementary mistakes in the translation system lexicons. In either

case, we do not learn any information.

• w = f(w) 6= f ′(f(w))

w is translated to the same string in the foreign language. However, it is then

translated to a different string when it is translated back to the original language.

This happens whenw is a word in both languages (possibly with different mean-

ings) and the English-to-foreign system (f ) does not know the correct translation

(for example,w = arena,f(w) = arena,f ′(f(w)) = sand). From these examples,

we learn that the translation systemf should translatef ′(f(w)) to f(w). This
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information may or may not be useful. We can queryf to see if this information

is already known.

• w 6= f(w) = f ′(f(w))

w is translated to a different word in the foreign language, but it is then translated

as the same word when translated back to English. There are two cases where this

happens.

1. The most likely situation is that there is a problem with the foreign-to-

English system (f ′). In this case, two pieces of information are learned.

First, if f(w) is seen on the input and is translated tof ′(f(w)) then a mis-

take has occurred. We can also suggest the correct translation. Given a sen-

tences, if word s is translated tos ands = f ′(f(w)), thens was incorrectly

translated and the correct translation isw.

2. The second case, which is less likely, is thatf(w) is a word that, when

translated back to English, is the same string (this is similar to case 2 below

of w = f(w) = f ′(f(w))). For example,w = abase,f(w) = degrade (present

subjunctive form of degradar, to degrade),f ′(f(w)) = degrade. We learn that

f(w) is an ambiguous word that can be translated as eitherw or f ′(f(w)).

• w = f(w) = f ′(f(w))

In this case, all the words are the same. There are two situations where this can

occur:

1. If the translation forw in the second language isw then the translation is

correct. This is common with proper names (for example,w = Madrid,f(w)

= Madrid,f ′(f(w)) = Madrid). In this case, no information is learned.

2. If the English-to-foreign system (f ) is unable to translatew, thenw = f(w).

If this is the case, it is unlikely thatw will actually be a valid word in the

foreign language (as shown above, this does happen 278 out of45,192 times,

where thef(w) is translated to something different byf ′). Sincew is not a
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valid foreign word, it is again translated asw from foreign-to-English (for

example,w = matriarchal,f(w) = matriarchal,f ′(f(w)) = matriarchal). In

this case, the translation systemf makes a mistake on wordw.

• w 6= f(w) 6= f ′(f(w)) 6= w

There are two situations that can cause this to happen:w is a synonym forf ′(f(w))

or there is at least one error in the translation systems. If we assume that the

knowledge in the translation systems is accurate, then bothw andf ′(f(w)) are

appropriate translations forf(w). These two cases can be disambiguated using

contextual information.

One last piece of information can be obtained whenf(w) 6= f ′(f(w)). In these

cases, some translation was done byf ′. We assume thatf ′(f(w)) is a word in the

original language and can extend the word list in the original language.

Table 3.2 summarizes the information that is used to generate the training data from

these translated word lists. Theinput wordsare foreign words. Thecurrent translations

are the words expected to be seen in the output of the foreign-to-English translation

system being improved. Finally, thecorrect translationsindicate which word thecurrent

translationsshould be changed to.

3.2.3 Rule learning

Using the method described in the previous section, we obtain a list of foreign words

and possible English translations for each foreign word. Inthis section, we describe how

to use this data to learn correction rules to improve the foreign-to-English translation

system.

Non-ambiguous words

For non-ambiguous foreign words where only one translationoption exists, a context-

independent rule of the formg(s, t, []) = r is learned, wheres = foreign input word,t =

current English translation andr = correct translation. Almost all non-ambiguous words
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Table 3.2 Patterns for generating training data for learning rules to improve the foreign-
to-English system. For each different translation list equality option, we learn that when
“input word” is translated as “current translation” then itshould be translated as one of
the “correct translations”. Most of the information for improving the foreign-to-English
translation system is learned from the English words list (English/foreign/English ex-
amples), but some information can also be learned from a foreign word list if available
(foreign/English/foreign examples).

Case input current correct
word translation translation

English foreign English f(w) f ′(f(w)) w

w 6= f(w) = f ′(f(w))
f(w) is not an English word
English foreign English f(w) f ′(f(w)) w

w 6= f(w) = f ′(f(w)) f(w) f ′(f(w)) f ′(f(w))
f(w) is an English word
English foreign English f(w) f ′(f(w)) w

w 6= f(w) 6= f ′(f(w)) f(w) f ′(f(w)) f ′(f(w))
foreign English foreign f ′(f(w)) f(f ′(f(w))) f(w)
w = f(w) 6= f ′(f(w))
f ′(f(w)) = f(f ′(f(w)))
foreign English foreign f ′(f(w)) f(f ′(f(w))) f(w)
w = f(w) 6= f ′(f(w)) f ′(f(w)) f(f ′(f(w))) f(f ′(f(w)))
f ′(f(w)) 6= f(f ′(f(w))) 6= f(w)
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are generated from the case whenw 6= f(w) = f ′(f(w)). In this case the English-to-

foreign system knows thatw should be translated asf(w), but this knowledge is absent

from the foreign-to-English system.

Ambiguous words

Many of the entries in Table 3.2 are inherently ambiguous, such as whenw 6=

f(w) 6= f ′(f(w)). For the remaining ambiguous foreign words where at least two

correct translations for the same foreign word exist, we must decide between the possi-

ble translation options. We suggest two methods that both leverage an English corpus to

distinguish between translation options.

k-dominant words We would like to identify as many non-ambiguous words in the

data as possible, since these result in simpler rules. The frequencies in a corpus of the

translation options gives some indication about the likelihood of the options. We define

a foreign word ask-dominant if one translation option occurs at leastk times in the

corpus and all other options do not appear at all. When a word is k-dominant, it is

reasonable to assume that the input word should always be translated as the dominant

option. For allk-dominant options, we learn a context-independent rule that always

changes the current translation to the dominant translation option.

Determining significant context words For the remaining foreign words where mul-

tiple translation options exists and no one option isk-dominant, context is used to disam-

biguate between the options. Given an ambiguous input word with option1, ..., optionn

as possible correct translations, the goal is to learn a context for each translation option

that disambiguates it from the other options. For each translation option, we collect all

wordsw from the English corpus that occur in the same sentences as the option. We then

determine which of these context words significantly co-occur with the option. These

significant words then become contextual triggers for discriminating between the differ-

ent translation options for the context-dependent rules: one of the words in the learned

context must occur in the sentence to be corrected for the context-dependent rule to fire.
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Given a translation optionoptioni and a context wordw we want to determine ifw

occurs significantly in the same sentences as the option. Many methods have been pro-

posed for discovering co-occurrences such as frequency counts, mean and variance tests,

t-test,χ2 test and likelihood ratio test [41]. The likelihood ratio test has been suggested

as the most appropriate for this problem since it does not assume a normal distribution

like the t-test nor does it make assumptions about minimum frequency counts like the

χ2 test [17].

Let Si be the set of sentences that contain the translation optionoptioni andSi be

the set of sentences that do not contain the translation option. For each context wordw

in the sentences belonging toSi, we use the likelihood ratio test to determine whether

or not that word significantly occurs inSi. If w passes this test, then it significantly

co-occurs with the translation option and is added to the context-dependent rule for that

option.

The likelihood ratio test tests an alternate hypothesis against a null hypothesis. The

null hypothesis is that the occurrence counts ofw in the two sets (sentences with and

without optioni) come from the same distribution. The alternate hypothesisis that the

occurrence counts are different in the two sets. We also impose the further constraint that

w must be more likely to occur in sentences ofSi, since we are interested in positively

correlated co-occurrences.

For each set, the occurrence ofw is modeled using the binomial distribution. For

both hypotheses, the likelihood equation isl = p(Si; θi)p(Si; θ2). For the null hypothe-

sis, the assumption is that the counts come from the same distribution andθ1 = θ2 = θ.

The maximum likelihood estimates of the parameters are used

θ =
count(w, Si ∪ Si)

|Si| + |Si|
θ1 =

count(w, Si)

|Si|
θ2 =

count(w, Si)

|Si|

wherecount(w, S) is the number of timesw occurs inS (for space, below we abbreviate
this asC(w, S)). Using these parameter estimations and the binomial assumption, the
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likelihood ratio can be calculated in a similar fashion to [17]:

λ =
p(Si; θ1)p(Si; θ2)

p(Si; θ)p(Si; θ)

=

( |Si|
C(w,Si)

)

θ
C(w,Si)
1 (1 − θ1)

(|Si|−C(w,Si))
( |Si|

C(w,Si)

)

θ
C(w,Si)
2 (1 − θ2)

(|Si|−C(w,Si))

( |Si|
C(w,Si)

)

θC(w,Si)(1 − θ)(|Si|−C(w,Si))
( |Si|

C(w,Si)

)

θC(w,Si)(1 − θ)(|Si|−C(w,Si))

=
θ

C(w,Si)
1 (1 − θ1)

(|Si|−C(w,Si))θ
C(w,Si)
2 (1 − θ2)

(|Si|−C(w,Si))

θC(w,Si)(1 − θ)(|Si|−C(w,Si))θC(w,Si)(1 − θ)(|Si|−C(w,Si))

=
θ

C(w,Si)
1 (1 − θ1)

(|Si|−C(w,Si))θ
C(w,Si)
2 (1 − θ2)

(|Si|−C(w,Si))

θC(w,Si∪Si)(1 − θ)(|Si|+|Si|−C(w,Si∪Si))

In practice,−2 log λ is used since it follows theχ2 distribution asymptotically:

−2 log λ = C(w, Si) log θ1 + (|Si| − C(w, Si)) log(1 − θ1)

+ C(w, (Si)) log θ2 + (|Si| − C(w, Si) log(1 − θ2)

− C(w, Si + Si) log θ − (|Si| + |Si| − C(w, Si + Si) log(1 − θ)

We compare this value with a significance level,α, to make a decision about the

significance of the co-occurrence. We do this for all words insentences that contain the

translation option. A separate context-dependent rule is generated for each translation

option. All words that pass the significance test are added tothe set of words that define

the rule context,context(optioni). For our experiments, a significance levelα = 0.001

is used. Intuitively, there is a one in a thousand chance of a candidate word being

misclassified as significant.

To improve the generality of the contexts learned, we perform the test on stemmed

versions of the words and generate context-dependent rulesusing these stemmed words.

The Porter stemmer [54] is used to stem the words. For the remainder of the chapter,

the results provided are for the stemmed versions.
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3.3 Experiments

To evaluate the performance of our rule learning method, we examined a commer-

cial Spanish-to-English translation system. We learned rules using a 45,192 English

word list [56], a 29,977 word Spanish word list and 5.1 million English sentences from

the North American News Text Corpus. We learn context-independent rules for non-

ambiguous words andk-dominant words withk = 5. For ambiguous words, we learn

context-dependent rules withα = 0.001 used to test the significance of the context

words.

We applied the learned rules to the Spanish portion of the PanAmerican Health

Organization (PAHO) Conferences and General services parallel corpus. We evaluated

the impact of the rules using two measures. To evaluate the coverage of the rules, we

measure the number of rule changes made over the corpus. To evaluate the accuracy of

the rules, 600 random rule firings were manually evaluated bya native English speaking

judge. The judge was asked to choose between the original translation and the corrected

translation for each rule firing.

3.3.1 Applying word correction rules

Each Spanish sentence in the PAHO corpus is translated usingthe commercial sys-

tem to get the initial translation. Then, the rules learned using the algorithm in Section

3.2 are applied to correct the sentences. Table 3.3 shows thenumber of rules learned us-

ing our method. We learned 6,783 context-independent ruleswhere only a single trans-

lation option existed and an additional 809 context-independent rules fork-dominant

words. To correct the ambiguous foreign words, we learned 1,355 context-dependent

rules. Table 3.3 also shows the results from applying these rules to the translations of

the Spanish sentences. The rules change 22,206 words in 14,952 or 74% of the sentences

from the translated PAHO data set.
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Table 3.3 Summary of results for word correction rules generated from a word list with
45,192 entries applied to the PAHO data set.

Rule type Rules Avg. # words Rules Words
learned in context used changed

Context-independent 6,783 - 701 5,022
Context-independent, dominantk=5 809 - 191 4,768
Context-dependent, signif. = .001 1,355 5 301 12,416

Table 3.4 Proportion of correct rule changes for both context-independent and context-
dependent rules as measured by a native English speaker on 600 random changes.

Rule type Proportion correct
Context-independent 0.99
Context-dependent 0.79

3.3.2 Rule precision

A native English speaking judge manually evaluated a randomsample of 600 rule

changes. For each change, the judge was asked to determine ifthe original machine

translation or the corrected translation is correct. Theseoptions were presented ran-

domly to the judge to avoid any bias. Figure 3.4 shows the proportion of correct rule fir-

ings for the context-independent and context-dependent rules. The context-independent

rules have very high precision. This occurs since a majorityof the context-independent

rules represent changes where the original system does not know any English translation.

In addition, the context-independent rules are correctingthose words that were found to

be non-ambiguous by the rule learning system. For the context-dependent rules, the

rules must choose between multiple translation options, resulting in lower precision.

3.3.3 Using extended word lists

The methods in this chapter use an English word list to generate training data. In

this section, we present two methods for extending this wordlist. One of the advantages

of the rule learning method described above is that it is robust to erroneous words in the
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Table 3.5 Summary of results for word correction rules generated using a general word
list with 45,192 entries plus 419 learned words and 5,215 domain specific words applied
to the PAHO data set.

Rule type Rules Avg. # words Rules Words
learned in context used changed

Context independent 7,155 - 903 6,526
Context independent, dominantk=5 816 - 200 5,038
Context dependent, signif. = .001 1,444 5 327 12,671

word list. If the system does not recognize a word in the word list then it will not get

translated, as is the case wherew = f(w) = f ′(f(w)). No learning is done in this case,

so erroneous words are filtered by translation system.

When translatingw tof(w) and back to the original language asf ′(f(w)), if f(w) 6=

f ′(f(w)) then some translation was done betweenf(w) andf ′(f(w)). We assume that if

the machine translation system translatesf(w) to f ′(f(w)), thenf ′(f(w)) is an English

word. Using this method, 419 additional words not in the original English word list are

learned.

In many circumstances, translation systems are to be used ina specific domain (for

example medicine, politics, public health, etc.). The PAHOdata set contains documents

in the public health domain. To improve the recall of the machine translation system

we can incorporate more rules that contain terminology thatis relevant to this domain.

For the PAHO data set, the English translations of the Spanish documents are available.

Using this English data we add an additional 5,215 new words to the original English

word list.

Table 3.5 shows the rule results with the original 45,192 words plus the additional

419 learned words and the 5,215 domain specific words. The additional words add 468

new rules. Although these new rules only constitute a small fraction of the total rules

(5%) they account for over 8% of the changes. In particular, the domain specific context-

independent rules fire over four times more often than the rules learned from the generic

word list. Because these additional rules are learned usingdomain specific words, they
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are much more likely to apply for translating text in that particular domain. With the

addition of these new rules, 78% of the sentences are corrected by the rules.

3.4 Discussion

In this chapter, we have examined a technique for improving amachine translation

system using only monolingual text. Unlike parallel bilingual data, monolingual data

is available in a wide range of domains [40]. Our method only requires access to the

translation system and makes no assumptions about the type of translation system.

By translating English words to a foreign language and back to English, differ-

ences in information between the foreign-to-English and English-to-foreign translation

systems are isolated. Using this information, correction rules are learned. Context-

independent rules are learned where only a single translation option exists. When there

is ambiguity about the correct translation, the likelihoodratio test is used to identify

words that co-occur significantly with each translation option.

Using the learned rules, over 24,235 words are changed on a corpus of 616,000

translated words. On a random sample, 99% and the context-independent rule firings

were correct. The context-independent rules achieved a lower percision of 79% even

though a significance level of 0.001 was used. The main reasonfor this lower precision

is that the likelihood ratio can suggest co-occurrences that are significant, but that are

not useful for ambiguity resolution. This is attenuated when the counts are very small

or when the ambiguous translation is common and the counts are high. In these cases,

common words such as “is”, “that”, “it”, “have”, etc. can be identified as significant.

Another problem is the rule representation chosen. The context-dependent rules use

a bag of words representation. This representation loses information such as word order

and does not include additional information such as syntax or semantics, which can be

useful for discriminating significant co-occurrences. Forexample, when deciding be-

tween “another” and “other” in the sentence fragment “Another important coordination

type...”, the location of “type” and the fact that it is singular suggests “another” as the
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correct translation, but our existing method cannot detectthis.

One final problem is that stemming can cause undesired side effects in the contexts

learned. As seen in the sentence fragment above, plurality is important, particularly

when deciding between two translations that only differ by plurality. Unfortunately,

stemming, in attempting to improve generality, removes theplurality of a word. The

combination of these problems leads to a lower precision forthe context-dependent

rules. Future research should be directed towards employing alternate rule representa-

tions and alternate collocation techniques such as in [35].
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Learning Phrase-Level

Correction Rules

In the previous chapter, we described a method for improvinga translation system

using only monolingual data. Monolingual data is widely available, but does not contain

any novel translation information. Parallel bilingual data contains sentence fragments

in two languages and is commonly used to train statistical translation systems. Parallel

data is more expensive to generate, but is available in many languages and domains.

In this chapter, we continue to examine translation system improvement and describe a

method for learning phrase-level correction rules using this bilingual data.

4.1 Introduction

Figure 4.1 shows a foreign sentence, and machine and human translations of that sen-

tence. The machine translation is a literal, word for word translation, but the meaning

is not well preserved. In this chapter, we learn phrase-level correction rules to correct

the machine translation output. In the example,sitting is openedshould be changed

to House metandhours should be changed top.m. Rather than training on the for-

eign/English pairs, we instead train on the machine translation/human translated pairs.

Training on these English-only pairs allows us to apply methods that utilize lexical sim-

36
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La séance est ouverte à 2 heures.
(a) The sitting is opened at 2 hours.
(b) The House met at 2 p.m.

Figure 4.1 Example French sentence with machine translation (a) and human transla-
tion (b).

ilarity by leveraging the translation capabilities of existing translation systems.

Given a translation system to be improved and a parallel bilingual corpus, training

data is generated by translating the foreign sentences using the system. This results

in a new corpus consisting of machine translated and human translated sentence pairs.

Ignoring paraphrasing effects, differences in these sentences point to mistakes in the

translation system.

To identify these mistakes, a partial alignment is learned between lexically iden-

tical portions of the machine translated and human translated sentences. Unaligned

phrase pairs are extracted based on this alignment as candidate phrase-level correction

rules. Statistics are gathered about these candidate rulesin the corpus and used to filter

the rules based on their frequency and accuracy. Given a new translated sentence, the

learned rules change one phrase to another phrase. Althoughparaphrases, rather than

corrections, can be identified by our proposed procedure, they are often filtered out by

the filtering steps and those that do pass tend to be high-quality, context-independent

paraphrases and do not alter the quality of the translation.

The example highlights two reasons for applying an improvement method to ma-

chine translation. First, general performance improvements can be learned by training

on an additional bilingual corpus. This is particularly important for commercial systems

that are often rule-based rather than data-driven, but is also true for statistical systems

where improvements are also achieved. Second, training on bilingual data in a different

domain than the original system was trained allows domain-specific knowledge, such as

House met, to be incorporated into the end system.

Although the method we present is applicable to any machine translation system, the

biggest benefits are seen on commercial systems, which are not trained on the same data
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used for rule correction. In many settings, commercial systems produce lower quality

translations, but they are not without their benefits. A commercial system can translate

10,000 sentences in 1 minute. The same sentences take 83 minutes to translate using a

phrase-based system (Pharaoh, [32]). Also, commercial systems tend to be more robust

and fail more gracefully than research systems.

In this chapter, we first discuss related work. In Section 4.3we describe the rule

learning algorithm, including the alignment procedure andrule generation. In Section

4.4 we compare the results of a commercial translation system and a phrase-based sys-

tem improved with both the learned context independent rules and a baseline translation

improvement method. Finally, we conclude with a summary of contributions and future

work.

4.2 Related Work

Many research projects involve learning rules from text data. In Chapter 3 we use

monolingual resources to learn word correction rules for translation systems ([30]). [5]

use documents translated from the same source to learn paraphrases for use in other

applications such as interpretation and generation of natural language. They iterate be-

tween learning phrase rules and context rules in a co-training framework. For general-

ization, the rules include parts of speech in addition to thelexical component. This rule

generality was designed to cope with the wide variations encountered in the different

human translations. In our work, the translations are much more similar and allow for

alignment based techniques. More general-purpose rule learning frameworks have also

been suggested [8].

Our work is related to many aspects of current statistical machine translation re-

search. One of the foundational components of statistical translation systems is an align-

ment of parallel text. An alignment specifies pairs of words or phrases in the parallel

sentences that are translations. These alignments are usedto calculate word translation

probabilities [9], phrase translation probabilities [50]or probabilistic syntax rules [22].
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We learn a partial alignment model that is related to phrase alignment models [42]. Most

of the alignment models rely on some form of EM training to learn the sentence align-

ments [42, 9]. Because we pose our problem as a same-languagelearning problem, we

can use simpler techniques to learn the alignments.

Besides alignments, our approach has a similar construction to phrase-based transla-

tion models [50]. These approaches learn a probabilistic translation model with reorder-

ing. Ignoring reordering, the generative process of a phrase-based system can be seen

as replacing foreign phrases with English phrases. In our work, we learn deterministic

rules that replace English phrases.

Finally, there has been some work on improving translation systems to maximize

translation performance. [48] and [62] optimize model parameters on a development

set to maximize the BLEU score. These methods are only appropriate for statistical

translation systems where multiple models are combined in aprobabilistic or log-linear

model. We are interested in improvement procedures that do not rely on particular

translation system characteristics.

4.3 Learning Phrase Rules

The input to the algorithm is a set of aligned bilingual pairs(si, ei) and a machine

translation systemf , to be improved. Using this translation system, we first generate

a set of training examples by translating the foreign sentences. This results in Eng-

lish sentence pairs of the same foreign sentence, (f(si), ei), where one translation was

generated by the translation system and the other by a human.

Differences between these pairs point to possible places where the translation system

is not translating correctly. To identify these differences, we first learn a partial align-

ment between the machine-generated and human-generated English translations. From

this alignment, we extract candidate context-independentphrase rules. These candidate

rules are then scored and filtered to obtain the final set of of correction rules.
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4.3.1 Rule format

We learn context-independent phrase-level correction rules of the form̃p → p, where

both p̃ andp are non-empty strings. Given a translated sentence, a rule fires if p̃ occurs

in the sentence and replacesp̃ with p. For example, applying the rulẽp → p to the sen-

tencet1, t2, ..., p̃, ..., tn, results in the corrected sentencet1, t2, ..., p, ..., tn. The rules are

context-independent since every occurrence ofp̃ is replaced, regardless of the context it

occurs in. This context independence assumption simplifiesthe learning procedure and

tends to work well in practice.

4.3.2 Learning an alignment

A key advantage of learning from sentence pairs that are in the same language is

that lexical cues can be used to assist the alignment algorithm. If a word occurs in both

sentences, it is very likely that those two occurrences should be aligned. We leverage

this information to generate the alignment between the sentences. For each sentence pair

in the machine translated/human translated English training corpus, we learn the best

partial monotone alignment where only lexically equal words are aligned. A monotone

alignment is an alignment where no two aligned pairs cross. Specifically, given the

machine translated sentencet1, t2, ..., tn and the human translated sentencee1, e2, ..., em,

if ti is aligned toej , then all wordstk such thatk > i can only be aligned toel such that

l > j and all wordstk such thatk < i can only be aligned toel such thatl < j. The best

alignment is the alignment that aligns the most words between the two sentences.

For sentences of lengthn, the best monotone alignment can be calculated optimally

using a dynamic programming method inO(n3) time. Figure 4.2 outlines the algo-

rithm to calculate the cost of the best alignment. As with most dynamic programming

methods, to calculate the actual alignment, backpointers must be kept and retraced once

the best cost has been found [14]. Figure 4.3 shows the alignment produced by this

algorithm for the sentences in Table 4.1.
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cost[0][j] = 0
cost[i][0] = 0

for i = 1 to length(S)
for j = 1 to length(E)

cost[i][j] = max{cost[i-1][j], 1 + cost[i][k]}
∀k : Si = Ek andk ≤ j

Figure 4.2 Algorithm for determining the cost of the best cost monotone alignment
between machine translated sentenceS and human translated sentenceE.

The House met at 2 p.m.
| | | |
The sitting is opened at 2 hours .

Figure 4.3 Word alignment learned by our method between the human-translated sen-
tence (on top) and machine-translated sentence. Aligned words are denoted by ‘| ’.

4.3.3 Generating rules

Once the alignment is learned, we extract phrase pairs occurring between aligned

words as candidate correction rules. Given the sentence pairs{(t1, t2, ..., tn), (e1, e2, ..., em)},

aligned wordsti with ej andtk with el and the unaligned phraseti+1...tj−1, we extract

the candidate correction ruleti+1...tj−1 → ek+1...el−1. For example, given the above

alignment, we extract the two candidate correction rules “House met”→ “sitting is

opened” and “p.m”→ “hours”.

After generating the candidate correction rules, the final rule set is obtained by ap-

plying two filtering criteria to eliminate inappropriate rules. First, the candidate rules

are filtered based on the number of times the phrase pair occurred aligned in the training

data, i.e. whethercount(p̃ → p) > tc, tc is the count threshold. Filtering by count

assures that the phrases are not spuriously aligned and thatthe accuracy of the other

scoring criterion is meaningful. We also filter the rules based on an estimate of the
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Table 4.1 Sample phrase rules extracted for correcting the commercial system trained
on one million sentences. A rulẽp → p changes the phrasẽp to p.

Rule score count
how much costs some the ACDI,→ at what cost to CIDA ( 1.0 98
author of thelowest tender obtain→ low bidder awarded 1.0 22
offices secondary→ sub-offices maintained 1.0 15
for la1re→ the first 0.959 304
meeting begins again→ House resumed 0.895 334
At 10 hours→ Ten o’clock 0.867 13
With the order!→ Order, please. 0.593 73
Dirty → Sales 0.286 2
, this evening,→ tonight 0.094 8
financial→ fiscal 0.092 586

correction accuracy. This estimate is

score(p̃ → p) =
count(p̃ → p)

count(p̃)

wherecount(p̃) is the number of times̃p occurs in the translated sentences. Figure 4.1

shows sample learned rules along with the rule count and score.

4.4 Experiments

To evaluate the effectiveness of the phrase rule learning method we applied the algo-

rithm to a modern commercial system and a state of the art phrase-based system ([32]).

We measure improvement based on the BLEU evaluation metric and also examine rule

accuracy, coverage and computation time.

4.4.1 Experimental setup

Data We used the Hansard Canadian French/English bilingual corpus in our experi-

ments. The first 1 million sentences (20.1 million words) were used as training data for
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the phrase correction rule learning. A 100 sentence development set was used during

training for parameter selection and ten 10,000 sentence data sets were used for testing.

Translation systems We learn correction rules to improve a modern commercial trans-

lation system and a phrase-based translation system. For the phrase-based system, we

used the Pharaoh training algorithm1 and decoder [32] and trained on thesame1 million

sentences used for rule learning. We selected model parameters using maximum BLEU

discriminative training [48]. For both the commercial system and phrase-based system,

we measured translation performance and computation time.For the statistical system,

there has been some research investigating greedy methods that trade off translation per-

formance for faster translation times [67, 23]. For our experiments, we are interested in

higher translation quality and internal decoding parameters were selected appropriately.

Alternate improvement method Given pairs of system and human translated English

sentences we learn a set of improvement rules. For comparison, we also trained a phrase-

based “machine translated English to human translated English” translation system on

this same data. The one million translated English/human English sentence pairs used

for learning rules are used as training data. As above, we used the Pharaoh translation

system with maximum BLEU discriminative training. To correct an unseen machine

translated sentence, the learned statistical model is usedto “translate” the sentence.

Evaluation metrics Our goal is to improve the translation output of a machine trans-

lation system. We use BLEU to measure to what extent this is accomplished. One of the

main advantages of using commercial translation systems isthey translate much faster

than research systems. This is important in many data-driven and real-time applications.

For all of the methods, we measured the translation time and the correction time.

To better understand the behavior of the rule learning method, we also measured

the number of changes made, the fraction of those changes that are known correct and

incorrect, and the number of rules used. The number of correct changes is calculated as

1http://www.iccs.informatics.ed.ac.uk/˜pkoehn



44

the number of rule changes where the changed phrase is found in the human translation.

Similarly, the number of incorrect changes is calculated asthe number of rule changes

where the original phrase is found in the human translation,and incorrectly changed

by the rule. In practice, there are still many changes that donot fall into either of

these categories for which we cannot determine the correctness based on the human

translation.

Parameter estimation The last step in the phrase learning algorithm is to filter the

rules by occurrence count and by score. By varying these thresholds the coverage and

the accuracy of the rule set is affected. For our experiments, we are interested in max-

imizing the BLEU score. The BLEU score was calculated for allthreshold values for

occurrence count ={2, 3, 4, 5} and for the score threshold ={0, .05, .1, ..., 1} on an

independent 100 sentence development set. The best performing pair of parameters was

used during testing. For the commercial system, this was count≥ 2 and score≥ 0.1 and

for the phrase-based system count≥ 2 and score≥ 0.25.

4.4.2 Improving MT systems

Translation performance Table 4.2 shows the average BLEU scores for the different

methods. For both the commercial system and phrase-based system the learned phrase

rules improve the translation performance. For the commercial system, more than 5

BLEU points improvement is achieved; a 30% improvement. Even on the phrase-based

system, which is trained on the exact same data, the phrase rules result in a statisti-

cally significant improvement based on a paired t-test over the 10 test sets. For both

translation systems, the phrase rules perform better than the more complicated and time

consuming “translation” improvement process. On the phrase-based system, learning

an improvement translation system fails to improve on the original system. Table 4.3

shows example corrections made to the commercial system.

The individual test scores for each of the 10 test sets are shown in Figure 4.4. For

the commercial system, there is a clear separation between the original system, the
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Table 4.2 Average BLEU score and computation time over ten tests for the two dif-
ferent translation systems improved with the two correction methods. “translation” is
a trained English to human English statistical phrase-based translation improvement
method. “phrase rules” is improvement based on the phrase rules generated by our
method. All BLEU scores are significantly different based ona paired t-test over the ten
tests, except “phrase none” vs. “phrase translation”.

MT system correction BLEU time
method
none 0.170 57s

commercial translation 0.204 16,387s
phrase rules 0.221 8s
none 0.250 5013s

phrase translation 0.250 16,524s
phrase rules 0.252 6s

translation improved system and the phrase rule improved system. A statistical test

of significance with a paired t-test over the 10 tests confirmsthese differences. For

the phrase-based system, the separation is not as clear. Using the learned phrase rules,

the improvement is consistent and significant. However, thetranslation improvement

method only improves the BLEU score for 3 of the 10 tests and fails to perform better

on average.

Correction time Table 4.2 also shows the computation times for the differentalgo-

rithms. Besides resulting in better translations, the phrase rules are very efficient to

apply. In both the commercial and the phrase-based system, applying the correction

rules takes only a few seconds. Correcting the systems usingthe statistical translation

method took substantially longer. In fact, using “translation” for correction tends to take

longer than translating from foreign to English.

One of the reasons for using a commercial translation systemis the computation

advantage. The translation time of the commercial system isorders of magnitude faster

than the phrase-based system. By applying the correction rules, with just a few addi-

tional seconds of computation time, the translation performance of the commercial sys-
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Table 4.3 Example sentences corrected by the learned rules.Changed phrases are in
italics and replaced by those inbold.

Human translated: Mr. Speaker, I will be very brief.
Commercial: Mister theSpeaker, I will be veryshort.
Rule corrected: Mr. Speaker, I will be verybrief .
Human translated: I really did not say that, even by implication.
Commercial: I really didnotmake it clearit either.
Rule corrected: I really didnotsuggestit either.
Human translated: Again I say they cannot have it both ways.
Commercial: I repeat it, it is one or the other.
Rule corrected: I say, it is one or the other.
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Figure 4.4 BLEU scores for the commercial system (a) and the phrase-based system (b)
for the 10 different test sets. For each of the systems the translation improved system
and phrase rule improved system are also shown.
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Table 4.4 The number of changes made, number of rules used andproportion of correct
and incorrect rule changes all averaged over ten 10,000 sentence test sets.

System known known number of number of
improved correct incorrect changes rules
commercial 0.482 0.076 14130 3410
phrase 0.635 0.067 194.1 85

tem is improved drastically, approaching the performance of the statistical phrase-based

system.

Rule statistics To better understand the behavior of the phrase rule improvement

method, Table 4.4 shows statistics for our method applied toboth the commercial sys-

tem and the phrase-based system. The rule correction methodmakes substantially more

changes to the commercial system with many more rules than onthe phrase-based sys-

tem. With 14,130 changes over 10,000 sentences, the method averages more than one

correction per sentence.

In both systems, the proportion of changes known to be correct is around 0.5 to

0.6. The BLEU score still improves, though, since the numberof incorrect changes is

low. For the commercial system, 48% are known correct, 7.6% are known incorrect and

for the other 40% it is unknown whether they are correct or incorrect. These unknown

changes occur when neither the original phrase nor the corrected phrase is found in the

reference sentence. These unknown changes have only a minorimpact on the BLEU

score.

4.4.3 Rule filtering analysis

For the above experiments, we selected the threshold parameters to maximize the

BLEU score on a development set. Depending on the desired application, these para-

meters can be set manually, for example to increase the rule accuracy. To analyze the

relationship between the parameter settings and the improvement performance, Figure
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4.5 show the BLEU score, correct proportion and number of changes for the commercial

system on the first test set2. Similar trends were seen for correction rules learned for the

phrase-based system.

For all of the different measures, there is only a small difference between the varied

count threshold values. Increasing the rule count increases the rule accuracy and de-

creases the number of changes. The parameter that has the most dramatic effect on the

results is the score threshold. In Figure 4.5(a) we see that the highest BLEU score for

this test set is at 0.1, which is the value learned on the development set. Even though

the accuracy of the rules is lower at this level, we see in Figure 4.5(c) that the actual

number of changes is much higher for lower thresholds. As thethreshold increases, the

number of changes decays exponentially. This exponential factor offsets the increase in

precision, resulting in lower BLEU scores.

For most of the range, as the threshold increases, the rule accuracy also increases. If

high precision is desired, the score threshold can be adjusted. A higher threshold only

changes the original translation system’s translation when there is high confidence in

the correction rule. For example, selecting a score threshold of 0.4 results in 80% of

the rules making known correct choices, while still obtaining a 3 BLEU point increase

( 17% improvement).

4.5 Conclusions and Future Work

In this chapter we proposed a method for learning phrase-level correction rules to

improve the translation performance of a translation system using a parallel bilingual

corpus. Aligned machine translated/human translated English training data is gener-

ated by translating the foreign sentences to English. Usingthis data, we learn a partial

monotone alignment. Based on this alignment, we learn correction rules. These learned

rules improve the performance of a commercial system by 30% with only minimal extra

computation time. Statistically significant improvementsare also seen on a state of the

2For graph clarity, the score threshold of 0 is not shown, but does continue the trends seen in the
current graphs.
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Figure 4.5 BLEU score (a), proportion of rule corrections that are correct changes (b),
and the number of rule changes (c) on the first 10,000 test set for different rule filtering
thresholds.
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art phrase-based statistical system.

One possible improvement of the rule learning method is in the rule construction.

We learn context-independent rules. While these are efficient to learn, the context in-

dependence assumption is often not true. For example, “hours” should not always be

changed to “p.m.”. [30] propose contextual rules based on significantly co-occurring

context words, which could be added to the learned phrase rules. Alternatively, rules

incorporating syntactic information could be used [5]. Post-correction based on syntax

is one method to retain the performance of a phrase-based system, while incorporating

the theoretically well motivated syntactic information [22].

In this chapter, we have only looked at phrase-level correction rules. Examining

translated and human English pairs can also be useful for other types of correction. One

of the main criticisms with phrase-based translation models is the simplistic reordering

model. Rather than attempt to modify this model internally,one solution is to post-

correct the sentence ordering based on additional information, such as syntax. The

advantage of this type of approach is that there are many moretools available when

dealing exclusively with English, such as parsers and taggers.



5

Learning Example Usefulness

So far, we have examined two different methods for improvingblack box machine

translation systems. The only assumption made was that we are allowed to query the

translation of text using the machine translation system. In this chapter, we include the

additional ability to train translation systems based on parallel bilingual examples. This

additional assumption allows us to analyze the usefulness of individual examples for

training a translation system.

5.1 Introduction

Natural language processing techniques are becoming more and more data-driven.

Researchers rely on large data sets that often require many man hours of annotation at

a considerable cost. Given this cost, an important questionis whether all examples are

equally useful.

In this chapter, we examine this question for machine translation, though the meth-

ods we discuss are applicable in many other applications. Statistical machine transla-

tion methods are trained on parallel bilingual examples consisting of pairs of sentences

in two languages. For popular languages, training data setscontain on the order of

hundreds of millions of words. Even in these cases, though, data is rarely available in

domains outside of news or government proceedings and one ofthe language pair is

51
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Monsieur l’Orateur, ma question est simple.
Mr. Speaker, my question is simple.

M. Roch La Salle (Joliette) propose:
Mr. Roch La Salle (Joliette) moved:

...beauty is life when life unveils her holy face.

...beauty is life when life unveils her holy face.

Figure 5.1 Three foreign/English parallel bilingual examples. The first line is French
and second English (reprint of figure 5.1).

almost always English. For less popular languages, there islittle data readily available.

Given this, along with the cost of generating training data,identifying the most useful

examples is a crucial first step in minimizing the amount of training data required.

In Chapter 1, we examined three parallel bilingual examples. (For convenience,

these examples are shown again in Figure 5.1.) Qualitatively these examples are poor

choices for training a translation system: the examples do not provide additional infor-

mation in the context of other examples. Many other example properties can also result

in inferior examples. For machine translation, like other natural language processing ap-

plications, a large amount of data preprocessing is required, for example tokenization,

sentence splitting and sentence alignment. These preprocessing steps introduce noise in

the data. Human translator performance also gives rise to lower quality examples: trans-

lators make mistakes. This can occur due to human error or lack of language familiarity

and results in poorly phrased translations or inappropriate sentence orderings. All these

factors can reduce the usefulness of an example for use during training.

Given a set of training examplest1, t2, ..., tn our goal is to order these examples

based on their usefulness when used to train a statistical machine translation system.

We accomplish this by first automatically evaluating multiple random subsets of the ex-

amples. Given these example subsets and associated scores,the problem then becomes

a parameter estimation problem where the goal is to assign example scores that best

explain the subset scores. The examples are then ranked based on these scores.
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In this chapter, we make three main contributions:

All examples are not equally useful We describe an algorithm for ranking examples

based on their usefulness for training a machine translation system. When used to train

a translation system, the top ranked examples perform significantly better than random

selection of examples.

Learning framework No ranking or score information is readily available for ex-

ample usefulness. We describe a framework for generating training data for learning

example scores based on automatically scored random subsets of the examples.

MT example feature analysis Using the learned ranking, we compare feature values

for the top ranking examples to a random set of examples. Fromthis comparison, we

identify salient features for discriminating good labeledand unlabeled examples.

Identifying the usefulness of examples builds an importantfoundation for many av-

enues of future research. Given useful examples, a model canbe built and used to

identify those unlabeled examples (e.g. untranslated sentences) worth labeling in a

framework similar to active learning. Also, given ranked examples, we can identify

features of good and bad examples. These features can provide useful insights into lan-

guage characteristics and help analyze the translation system learning method. Finally,

a model of example usefulness can also be used for outlier detection to remove those

examples that are inappropriate.

In this chapter, we first discuss previous research. We then describe our method

including theoretical analysis. In Section 5.4 we compare machine translation systems

trained using the most useful examples with those trained onrandomly selected exam-

ples. We conclude with a brief analysis of applications of this research.

5.2 Related Work

Although the question of example usefulness has not previously been explicitly ad-

dressed, there are many related problems that have been examined.
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Active learning Active learning research attempts to find those examples that are most

usefulgiventhe current trained model. In many different domains and applications, re-

searchers have shown that given a partially trained model, some examples are more use-

ful. Active learning techniques commonly use the uncertainty of the model on unseen

examples as a selection criterion [38]. Alternatively, methods have been proposed that

select examples with maximal disagreement to reduce the version space [21] or select

examples to minimize an evaluation function on a test set [58]. Because of the com-

plexity of current machine translation methods, these methods are not applicable. Our

approach differs from most active learning research because we are interested in finding

universally good examples for a given training method, rather than for a partially trained

model.

Boosting Boosting continually reweights examples during training to focus on those

examples that are more difficult [20]. As the boosting algorithm continuously reweights

the examples, the learning algorithm is forced to focus on problematic examples. While

the example weightings do provide a ranking, this ranking isfor example difficulty and

it is not clear how this relates to example usefulness. As with active learning techniques,

boosting reweights examples with respect to the current model. Also, boosting requires

the training algorithm to accept weighted examples, which is not easily done for MT.

Feature selection Feature selection methods attempt to reweight features [37], rank

features [19] or find good subsets of features [7]. If we view training examples as fea-

tures, many of the approaches suggested in the feature selection literature are relevant.

However, the techniques applied and data available for feature selection is not appro-

priate for the example ranking problem. These methods rely on additional information,

such as class labels, or involve a search of the feature space, which is not tractable for

machine translation.

Hypergraph approximation Hypergraphs are an extension of traditional graphs where

hyperedges describe the weighting between two or more vertices in the graph [1]. Since
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most graph algorithms function on traditional graphs, a common problem is to find a

traditional graph approximation of a given hypergraph. If we view the set of examples

as graph edges and the selected subsets as defining hyperedges in this graph, our pro-

posed framework is similar to a hypergraph approximation problem, where the goal is

to find the edge weights between individual vertices. Our proposed solution is similar

to the commonly used Clique Expansion method.

5.3 Ranking Examples

The goal is to rank the examplest1, t2, ..., tn based on their usefulness in training a

translation system. Because of the time required to train and evaluate a translation sys-

tem, methods that involve searching the space of example combinations are not tractable

[7]. Instead, we rank the examples using a single pass methodthat only requires an ini-

tial set of translation systems to be trained and evaluated.

5.3.1 Generating training data

One of the key challenges of this problem is that there is no a priori example rank-

ings or example scores to learn from. Information can, however, be obtained about the

performance of sets of examples. Given a set of examples, a machine translation system

is trained. This system is then evaluated on a development set to obtain a score for that

set.

To generate the training data we selectm random subsets ofl examples,f1, f2, ..., fm,

from then original examples. A machine translation system is trainedon each of these

subsets and evaluated using an automatic evaluation measure (e.g. BLEU using a devel-

opment set) to generate a score for each subset,s(fj). To evaluate the general usefulness

of the examples, the development set must be large enough to minimize increases in the

score due to spurious overlap between the randomly selectedsubsets and the develop-

ment set. These subset/score pairs{f1, s(f1)}, {f2, s(f2)}, ..., {fm, s(fm)} define the

basic training data. This framework only requires that a model can be trained and auto-
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matically evaluated and is therefore applicable to a wide range of applications besides

machine translation.

5.3.2 Modeling example contribution

Rather than directly learning a ranking of the examples, foreach example we learn

a score,s(ti). We then sort the examples based on this score to obtain the ranking.

Given the training data generated as described above, the one remaining component

required is a model of how training examples contribute to the performance of the trained

system. Specifically, we need a model of how the example scores relate to the automatic

evaluation score of a system trained using those examples.

Because of the complexity of the statistical translation process and because multiple

different models are combined during translation, it is notobvious how a single example

contributes to the final translation system score. There hasbeen some research on the

computational complexity of translation [66, 23], but we are interested in the example

contribution during training, not runtime complexity.

We assume that the subset score is a linear combination of theexample scores:

s(fj) =
∑

ti∈fj

s(ti)

This linearity assumption is reasonable for phrase-based translation models. A number

of similar phrase translation models have been discussed that align a foreign phrase

with a distinct English phrase [42, 50]. During training, each example in a phrase-based

system is decomposed into a finite number of phrases. Ignoring distortion effects, each

of these phrases can be seen as contributing to the end performance of the translation

system by adding a new, unseen phrase, or by increasing the model precision for a seen

phrase pair. In either case, the contribution of a single example is at most a constant

amount.
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5.3.3 Calculating example scores

The model described above, in combination with the trainingdata,{f1, s(f1)}, {f2,

s(f2)}, ..., {fm, s(fm)}, defines a constraint satisfaction problem. We calculate an

example’s score as the average of the subset scores that example is contained in

s̃(ti) =

∑

fj∈Ti
s(fj)

|Ti|

whereTi is the set of subsets that containedti and |Ti| is the number of subsets that

containti. This solution is intuitive, efficient to calculate and can be analyzed to better

understand the performance trade-offs for different modelparameters. Other methods

do exist for solving this problem, such as linear programming or perceptron learning,

however, initial investigation into these other methods proved inferior or intractable.

5.3.4 Theoretical justification

In this section, we show that assuming each subset score,s(fj), is a linear combina-

tion of the example scores contained infj, as the number of random subsets increases

the approximate example score,s̃(ti), approaches the actual example score,s(ti), plus

a constant and a small error factor that is dependent on the ratio of the subset size to the

total number of examples: asm → ∞, s̃(ti) → s(ti) + C + ε. Since we are only inter-

ested in ranking the examples, the only factor that distinguishes the estimated ranking

from the actual ranking is theε.

Starting with our example score approximation, we can derive the following:

s̃(ti) =

∑

fj∈Ti
s(fj)

|Ti|

=

∑

fj∈Ti

∑

tk∈fj
s(tk)

|Ti|

=
|Ti|s(ti) +

∑

fj∈Ti

∑

tk∈fj :k 6=i s(tk)

|Ti|

= s(ti) + Ci
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whereCi is an example specific constant. The first step is derived by applying the

linearity assumption. In the second step, since we know thateach subset inTi contains

the exampleti, we can separate the score contribution ofti from each of the subsets.

Although each example score approximation contains a different constant, we can

show that these constants differ by only a small value. Specifically, asm → ∞, the

difference between any two constants reduces to a small error value, that is|Cp−Cq| →

ε.

Since the subsets are generated by randomly selecting examples, according to the

law of large numbers, as the number of subsetsm increases, the proportion of subsets

that a given example occurs in will approach the distribution mean,l
n
. The constant then

reduces to

Ci =
|Ti|

l
n

∑

tk :k 6=i s(tk)

|Ti|

=
l

n

∑

tk:k 6=i

s(tk)

and the difference between any two constants is

|Cp − Cq| = |
l

n

∑

tk :k 6=p

s(tk) −
l

n

∑

tk :k 6=q

s(tk)|

= |
l

n
(−s(tp) +

∑

tk

s(tk) − (−s(tq) +
∑

tk

s(tk)))|

= |
l

n
(s(tq) − s(tp))| ≡ ε

Sincel < n the l
n

reduces the possible error between the actual and approximate

scores. This error factor quantifies an intuitive trade-offbetween the precision of the

example score approximation and the number of subsets containing that example. For

small l, the l
n

reduces the constant variability, thereby increasing precision of the ex-

ample score approximation. However, since the training sizes are small, the example
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occurs in fewer subsets. Furthermore, training and evaluating each individual subset be-

comes less accurate since training a machine translation system becomes less accurate

as the training size decreases. On the other hand, for largerl, the examples occur in

many more subsets and subset evaluation is more accurate. But, estimating the example

score is more difficult. Subsets contain many examples and itbecomes more difficult to

associate the subset score with the many example scores in that subset.

5.4 Experiments

In Section 5.3, we describe a method for ranking examples based on usefulness.

Without previous knowledge about example performance, determining the quality of

this ranking is similar to determining the ranking itself. Instead, we examine the quality

of the most useful examples, as determined by the ranking. Ifthe ranking is good,

training on these examples should result in a superior performing translation system

than a random selection of examples. This formulation also allows us to answer the

question of whether all examples are equally useful.

We compare the translation performance of the most useful examples to ten transla-

tion systems trained on randomly selected subsets of the examples. For consistency, both

the random subsets and the most useful examples contain the same number ofwords.

This is critical since longer examples tend to perform better than shorter examples, but

require more effort to translate. The important question iswhether two training sets,

which took similar effort to construct, perform differently.

For any given test set, there are some training examples thatwill result in better

performance due to phrasal overlap. We are not interested inthese local effects and

want to find examples that perform generally better on different test sets. To accomplish

this, we tested on multiple large test sets.

We conclude this section with one application of the exampleranking. Once “good”

examples have been learned, we can identify characteristics of these good examples. We

compare feature values for the top ranking examples and a random selection of examples
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for previously proposed features.

5.4.1 Experimental setup

We selected the firstn = 47,282 unique sentence pairs (1.03 million words) from

the Hansard corpus as the set of examples to rank.m = 500 translation systems were

generated using 200,000 word (approximately 9500 examples) training subsets selected

randomly and scored on a 10,000 sentence development set with BLEU. This data was

then used to generate the example ranks using the method described in Section 5.3.

After ranking, the best 200,000 word training set was created from the top ranked

examples. This was then used to generate a translation system we denote “best”. For

comparison, we generated ten random systems trained on random example subsets of

200,000 words, denoted “random{1-10}”.

We used the Pharaoh training algorithm1 and decoder [32] as the translation system

in all phases of the experiments. We selected model parameters using maximum BLEU

discriminative training [48] run on the 47K sentence pairs and those parameters were

used for all of the translation systems.

5.4.2 Selecting the most useful examples

We tested the performance of the different translation systems on ten different test

sets of 10,000 sentences. If our ranking method performs well, then the system trained

on the top ranked examples should perform better than those trained on randomly se-

lected examples. Table 5.1 shows the average BLEU scores over the ten test sets for

“best” and the random systems.

The system trained on the top ranking examples performs 0.18BLEU points higher

than any of the random systems and on average 0.34 BLEU pointshigher. Given the

small training sizes used for these systems, these represent substantial differences. More

importantly, these differences are significant. Table 5.1 also shows the significance re-

1http://www.iccs.informatics.ed.ac.uk/˜pkoehn
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Table 5.1 Average score over the 10 test sets and the pairedt-test significance for the
“best” system compared to 10 random systems. One, two and three triangles indicate
significance at the 95%, 99%, 99.9% confidence level respectively.

average t-test
score vs. best

best 0.1800 -
random 1 0.1750 △△△

random 2 0.1782 △△△

random 3 0.1777 △△

random 4 0.1764 △△△

random 5 0.1765 △

random 6 0.1760 △△△

random 7 0.1745 △△△

random 8 0.1781 △△

random 9 0.1769 △△△

random 10 0.1766 △△

sults of a paired t-test between “best” and the random systems over the 10 different test

sets. “best” performs significantly better than all of the random systems.

Figure 5.2 shows a plot of all of the individual test scores for the different systems.

Since we are only interested in comparing the top ranking examples to a random selec-

tion, the random systems are all plotted using the same symbol. In almost all of the test

sets, the “best” score is the highest score for the test set. Over the 100 different random

test scores (10 test sets with 10 random systems), the “best”method performed better

on 97.

The “best” and the random systems are trained on 200,000 wordtraining sets. To

attempt to quantify how much better the “best” examples are than random, we repeated

the random experiments on training sets of 215,000 and 220,000 word data sets. For

215,000 the average random test score is 0.1784 and for 220,000 the average score is

0.1804. The “best” example data set of size 200,000 words performed better than a

random selection using 7.5% more data and only slightly worse than a random selection

of examples 10% larger.
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Figure 5.2 Individual test scores for “best” and “random{1-10}” for the ten different
test sets. For clarity, all random scores are marked with thesame symbol.

5.4.3 Analyzing example features

Once the examples are ranked, this information can be used for a number of differ-

ent applications. The learned example scores can be used to predict example usefulness

on unlabeledexamples. Features can be extracted from both the ranked examples and

unlabeled examples. These features can then be used in a widerange of learning frame-

works to identify unlabeled examples that most closely resemble the useful examples.

Also, extracted features are useful as an analytical tool for characterizing examples and

for better understanding statistical models. Finally, examining features from different

portions of the ranking provides assurance that our rankingmethod is accomplishing

something non-trivial.

For each of the examples, we extracted eight different features. These features have

previously been suggested for use in confidence estimation for MT [6]. We compared

the feature values of the top ranking set of examples and a randomly selected set of

examples. If a feature is a good predictor of example usefulness, then the value of that

feature should be different between these two sets.

We analyzed eight features that highlight a wide range of example characteristics.
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We intentionally tried to select those features that rely only on the foreign portion of the

example, so that they may be of future use in selecting unlabeled examples. Only the

length ratio and overlap proportion feature use both the foreign and English portion of

the example.

Some of the features characterize intrinsic properties of the examples such as the

length or the similarity between the foreign and English text. The language model prob-

ability features try and quantify the fluency of the text. Then-gram quartile features

capture the frequency characteristics of the foreign words. Finally, some of the fea-

tures assess how likely a given example is with respect to a machine translation model.

We trained a model on the 47K training examples and used this translation system to

translate the foreign portion of the examples and to gather various translation statistics.

Length ratio Number of words in the English sentence divided by the numberof words

in the foreign sentence.

Overlap proportion Proportion of the words in the foreign sentence that occur inthe

English sentence.

Foreign lengthNumber of words in the foreign sentence.

Foreign language model scoreLog probability of the foreign sentence based on a for-

eign trigram language model.

Translated sentence language model scoreLog probability of the translated sentence

based on an English trigram language model.

Translation model probability Product of the translation rule probabilities for the

phrase rules used to translate the foreign sentence2.

Phrase rules usedNumber of phrase rules used to translate the foreign sentence.

n-gram quartiles Foreign word frequencies were counted on a corpus. Words only

occurring once were removed. The words were then sorted based on their frequency

2This is different from the true translation model probability since the phrase reording probabilities
are not included.
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and divided into four quartiles. The first quartile containsthe quarter least frequent

words, second quartile the next quarter most frequent words, etc. Given an example,

the proportion of words in the foreign sentence in each quartile is recorded as “Quartile

{1-4}”.

Table 5.2 shows the average example feature scores for the top ranked French/English

examples and a random set of examples both containing 200,000 words. Only the trans-

lation rule probability is significantly different betweenthe two sets. One cause for this

difference could be a length difference in examples. Longerexamples on average require

more rules to be used, resulting in lower overall probability. However, since the lengths

and the number of rules are similar between the subsets, there is an inherent difference

in the translation model probability: the top ranking examples are more likely.

Though not significantly different, the other analyzed features may still provide use-

ful information. The second quartile of words was moderately (p < .25) different for

the two sets. Also, we only examined these features individually. Future analysis is

required to see if a combination of these features proves more useful.

One final motivation for examining example features is to verify the quality of the

ranking algorithm. A good ranking algorithm should rank theexamples based on multi-

ple dimensions. It is therefore reassuring that none of the individual features correlated

strongly with the learned ranking.

5.5 Future Work

There are a number of future directions for this research. Given knowledge of what

good examples are, this information can be used as a steppingstone for other applica-

tions. One of the main motivations for investigating the question of example usefulness

was to incorporate this knowledge in an active learning framework. Given a ranking of

examples, a model of useful examples can be learned based on extracted features [6, 47].

Given this model, unlabeled examples with similar characteristics can then be identified.

Throughout this chapter, we focused on training examples for machine translation.
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Table 5.2 Average feature scores for “best” and “random 1”. Significantly different
averages are shown inbold and moderately significant differences initalics.

best random 1
Length ratio 1.025 1.021
Overlap 0.1375 0.1381
Foreign length 21.98 21.92
Foreign LM -42.31 -42.07
Translated LM -43.50 -43.37
Translation prob 0.0014 0.0012
Rules used 7.123 7.110
Quartile 1 0.0098 0.0093
Quartile 2 0.0047 0.0043
Quartile 3 0.0143 0.0143
Quartile 4 0.9713 0.9721

Our learning framework for ranking the examples only requires that random subsets of

the examples can be used to train a model and that the resulting model can be evaluated

automatically. There are many applications both in naturallanguage processing and

others that satisfy these requirements. An interesting question is how well this method

will perform on these different applications.

Besides applications of this method, there are still many open questions about the

performance of the method itself. On the development set, the best ranking examples

score 0.1845, the worst ranking examples 0.1727 and all of the 500 random subsets used

for training fall in between these two scores. On the 10 testssets, this ordering is not as

well preserved. As we saw in section 5.4, the best examples are significantly better than

all of the randomly subsets. However, the worst ranking examples are only significantly

worse than 6 of the 10 random subsets, with an average score of0.176 on the test sets.

There are many possible explanations for this behavior. Theoretical analysis of the

method showed that the approximation accuracy depended on two factors: 1) the number

of subsamples trained and evaluated and 2) the ratio of the training subset size to the total

number of examples. More analysis is needed, to determine empirically how different

parameter settings affect performance.



66

Another explanation are the model assumptions. We suggest alinear model for

approximating the contribution of individual examples. This linearity assumption is

reasonable for phrase-based systems, but not perfect. The linear model assumes inde-

pendence between training examples, which is not the case. Amodel that maintains the

linearity assumption, but better models example overlap could improve ranking perfor-

mance.

5.6 Conclusion

In this chapter we have suggested a new framework for determining the usefulness

of examples based on the evaluated performance of random subsets of those examples.

For machine translation, we showed that all examples are NOTequally useful. Using the

ranking obtained by our method, the most useful examples areidentified. When used to

train a new translation system these examples perform significantly better than a random

selection of examples on a large test set. We also provide theoretical justification for our

method that shows as the number of example subsets increases, the performance of our

method is reasonable and predictable. Finally, we providedan analysis of a number of

features that identified both the translation probability and n-gram quartiles as a possible

discriminating features for identifying “good” examples.
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Paraphrasing for Automatic

Evaluation

An important component for many natural language tasks is evaluation. Until re-

cently, evaluation of machine translation was done by hand.In the last few years, a

number of automatic evaluation measures have been proposedthat correlate well with

human evaluations. These evaluation measures have become crucial components for

many stages in development. In this chapter, we examine the benefit of using paraphras-

ing to assist these evaluation measures.

6.1 Introduction

The use of automatic methods for evaluating machine generated text is quickly be-

coming mainstream in natural language processing. The mostnotable examples in this

category include measures such as BLEU and ROUGE which driveresearch in the ma-

chine translation and text summarization communities. These methods assess the quality

of a machine generated output by considering its similarityto a reference text written by

a human. Ideally, the similarity would reflect the semantic proximity between the two.

In practice, this comparison breaks down ton-gram overlap between the reference and

the machine output.

67



68

Table 6.1 A reference sentence and corresponding machine translation from the NIST
2004 MT evaluation. The two sentences share only auxiliary words.

(a) However, Israel’s reply failed to completely
clear the U.S. suspicions.
(b) However, Israeli answer unable to fully
remove the doubts.

Consider the human translation and the machine translationof the same Chinese

sentence shown in Table 6.1. While the two translations convey the same meaning, they

share only auxiliary words. Clearly, any measure based on word overlap will penalize a

system for generating such a sentence. The question is whether such cases are common

phenomena or infrequent exceptions. Empirical evidence supports the former. Ana-

lyzing 10,728 reference translation pairs1 used in the NIST 2004 machine translation

evaluation, we found only 21 (less than 0.2%) that are are identical. Moreover, 60%

of the pairs differ in at least 11 words. These statistics suggest that without accounting

for paraphrases, automatic evaluation measures may never reach the accuracy of human

evaluation.

As a solution to this problem, researchers have suggested using multiple references

to refine automatic evaluation. [53] shows that expanding the number of references

reduces the gap between automatic and human evaluation. However, very few human

annotated sets are augmented with multiple references and those that are available are

relatively small in size. Moreover, access to several references does not guarantee that

the references will include the same words that appear in machine generated text.

In this chapter, we explore the use of paraphrasing methods for refinement of au-

tomatic evaluation techniques. Given a reference sentenceand a machine generated

sentence, we seek to find a paraphrase of the reference sentence that is closer in word-

ing to the machine output than the original reference. For instance, given the pair of

sentences in Table 6.1, we automatically transform the reference sentence (a) into

However, Israel’sanswerfailed to completelyremovethe U.S. suspicions.

1Each pair included different translations of the same sentence, produced by two human translators.
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Thus, among many possible paraphrases of the reference, we are only interested in

those that use words appearing in the system output. Our paraphrasing algorithm is

based on thesubstitute in contextstrategy. First, the algorithm identifies pairs of words

from the reference and the system output that could potentially form paraphrases. We

select these candidates using existing lexico-semantic resources such as WordNet. Next,

the algorithm tests whether the candidate paraphrase is admissible in the context of the

reference sentence. Since even synonyms cannot be substituted in any context [18], this

filtering step is necessary. We predict whether a word is appropriate in a new context by

analyzing its distributional properties in a large body of text. Finally, paraphrases that

pass the filtering stage are used to rewrite the reference sentence.

We apply our paraphrasing method in the context of machine translation evaluation.

Using this strategy, we generate a new sentence for every pair of human and machine

translated sentences. This synthetic reference then replaces the original human reference

in automatic evaluation.

The key findings of our work are as follows:

Automatically generated paraphrases improve the accuracyof the automatic evalu-

ation methods.Our experiments show that evaluation based on paraphrased references

gives a better approximation of human judgments than evaluation that uses original ref-

erences.

The quality of automatic paraphrases determines their contribution to automatic

evaluation. By analyzing several paraphrasing resources, we found thatthe accuracy

and coverage of a paraphrasing method correlate with its utility for automatic MT eval-

uation.

Our results suggest that researchers may find it useful to augment standard mea-

sures such as BLEU and ROUGE with paraphrasing information thereby taking more

semantic knowledge into account.

In the following section, we provide an overview of existingwork on automatic

paraphrasing. We then describe our paraphrasing algorithmand explain how it can be

used in an automatic evaluation setting. Next, we present our experimental framework

and data and conclude by presenting and discussing our results.
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6.2 Related Work

Automatic Paraphrasing and Entailment Our work is closely related to research in

automatic paraphrasing, in particular, to sentence level paraphrasing [4, 52, 55]. Most of

these approaches learn paraphrases from a parallel or comparable monolingual corpora.

Instances of such corpora include multiple English translations of the same source text

written in a foreign language, and different news articles about the same event. For ex-

ample, Pang et al. [52] expand a set of reference translations using syntactic alignment,

and generate new reference sentences that could be used in automatic evaluation.

Our approach differs from traditional work on automatic paraphrasing in goal and

methodology. Unlike previous approaches, we are not aimingto produceanyparaphrase

of a given sentence since paraphrases induced from a parallel corpus do not necessarily

produce a rewriting that makes a reference closer to the system output. Thus, we focus

on words that appear in the system output and aim to determinewhether they can be

used to rewrite a reference sentence.

Our work also has interesting connections with research on automatic textual entail-

ment [15], where the goal is to determine whether a given sentence can be inferred from

text. While we are not assessing an inference relation between a reference and a system

output, the two tasks face similar challenges. Methods for entailment recognition ex-

tensively rely on lexico-semantic resources [25, 26], and we believe that our method for

contextual substitution can be beneficial in that context.

Automatic Evaluation Measures A variety of automatic evaluation methods have

been recently proposed in the machine translation community [46, 43, 53]. All these

metrics computen-gram overlap between a reference and a system output, but measure

the overlap in different ways. Our method for reference paraphrasing can be combined

with any of these metrics. In this chapter, we report experiments with BLEU due to its

wide use in the machine translation community.

Recently, researchers have explored additional knowledgesources that could en-

hance automatic evaluation. Examples of such knowledge sources include stemming
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and TF-IDF weighting [2, 3]. Our work complements these approaches: we focus on

the impact of paraphrases, and study their contribution to the accuracy of automatic

evaluation.

6.3 Algorithm

The input to our method consists of a reference sentenceR = r1 . . . rm and a system-

generated sentenceW = w1 . . . wp whose words form the setsR andW respectively.

The output of the model is a synthetic reference sentenceSRW that preserves the mean-

ing of R and has maximal word overlap withW . We generate such a sentence by

substituting words fromR with contextually equivalent words fromW .

Our algorithm first selects pairs of candidate word paraphrases, and then checks the

likelihood of their substitution in the context of the reference sentence.

Candidate Selection We assume that words from the reference sentence that already

occur in the system generated sentence should not be considered for substitution. There-

fore, we focus on unmatched pairs of the form{(r, w)|r ∈ R − W, w ∈ W − R}.

From this pool, we select candidate pairs whose members exhibit high semantic prox-

imity. In our experiments we compute semantic similarity using WordNet, a large-scale

lexico-semantic resource employed in many NLP applications for similar purposes. We

consider a pair as a substitution candidate if its members are synonyms in WordNet.

Applying this step to the two sentences in Table 6.2, we obtain two candidate pairs

(home, place) and (difficult , hard).

Contextual Substitution The next step is to determine for each candidate pair(ri, wj)

whetherwj is a valid substitution forri in the context ofr1 . . . ri−12ri+1 . . . rm, where

‘2’ denotes the location ofri and possible substitution location forwj in the sentence.

This filtering step is essential because synonyms are not universally substitutable2. Con-

2This can explain why previous attempts to use WordNet for generating sentence-level paraphrases [4,
55] were unsuccessful.
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Table 6.2 A reference sentence and a corresponding machine translation. Candidate
paraphrases are in bold.

(a) It is hard to believe that such tremendous
changes have takenplacefor those people and
lands that I have never stopped missing while
living abroad.
(b) For someone born here but has been
sentimentally attached to a foreign country
far fromhome, it is difficult to believe
this kind of changes.

sider the candidate pair (home, place) from our example (see Table 6.2). Wordshome

andplaceare paraphrases in the sense of “habitat”, but in the reference sentence “place”

occurs in a different sense, being part of the collocation “take place”. In this case, the

pair (home, place) cannot be used to rewrite the reference sentence.

We formulate contextual substitution as a binary classification task: given a context

r1 . . . ri−12ri+1 . . . rm, we aim to predict whetherwj can occur in this context at position

i. For each candidate wordwj we train a classifier that models contextual preferences

of wj. To train such a classifier, we collect a large corpus of sentences that contain

the wordwj and an equal number of randomly extracted sentences that do not contain

this word. The former category forms positive instances, while the latter represents the

negative. For the negative examples, a random position in a sentence is selected for

extracting the context. This corpus is acquired automatically, and does not require any

manual annotations.

We represent context byn-grams and local collocations, features typically used in

supervised word sense disambiguation. Bothn-grams and collocations exclude the word

wj. An n-gram is a sequence ofn adjacent words appearing inr1 . . . ri−12ri+1 . . . rm.

A local collocation also takes into account the position of an n-gram with respect to

the target word. To compute local collocations for a word at position i, we extract all

n-grams (n = 1 . . . 4) beginning at positioni− 2 and ending at positioni + 2. To make

these position dependent, we prepend each of them with the length and starting position.
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Once the classifier3 for wj is trained, we apply it to the contextr1 . . . ri−12ri+1 . . . rm.

For positive predictions, we rewrite the string asr1 . . . ri−1wjri+1 . . . rm. In this formu-

lation, all substitutions are tested independently.

For the example from Table 6.2, only the pair (difficult , hard) passes this filter, and

thus the system produces the following synthetic reference:

For someone born here but has been sentimentally attached toa foreign
country far from home, it ishard to believe this kind of changes.

The synthetic reference keeps the meaning of the original reference, but has a higher

word overlap with the system output.

One of the implications of this design is the need to develop alarge number of clas-

sifiers to test contextual substitutions. For each word to beinserted into a reference

sentence, we need to train a separate classifier. In practice, this requirement is not a

significant burden. The training is done off-line and only once, and testing for contex-

tual substitution is instantaneous. Moreover, the first filtering step effectively reduces

the number of potential candidates. For example, to apply this approach to the 71,520

sentence pairs from the MT evaluation set (described in Section 6.4.1), we had to train

2,380 classifiers.

We also discovered that the key to the success of this approach is the size of the

corpus used for training contextual classifiers. We derivedtraining corpora from the

English Gigaword corpus, and the average size of a corpus forone classifier is 255,000

sentences. We do not attempt to substitute any words that have less than 10,000 appear-

ances in the Gigaword corpus.

6.4 Experiments

Our primary goal is to investigate the impact of machine generated paraphrases on

the accuracy of automatic evaluation. We focus on automaticevaluation of machine

3In our experiments, we used the publicly available BoosTexter classifier [59] for this task.
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translation due to the availability of human annotated datain that domain. The hy-

pothesis is that by using a synthetic reference translation, automatic measures better

approximate human evaluation. In Section 6.4.2, we test this hypothesis by comparing

the performance of BLEU scores with and without synthetic references.

Our secondary goal is to study the relationship between the quality of paraphrases

and their contribution to the performance of automatic machine translation evaluation.

In Section 6.4.3, we present a manual evaluation of several paraphrasing methods and

show a close connection between intrinsic and extrinsic assessments of these methods.

6.4.1 Experimental setup

We begin by describing the data set and the alternative paraphrasing methods con-

sidered in our experiments. BLEU is the basic evaluation measure that we use in our

experiments. To augment BLEU with paraphrasing information, we substitute each ref-

erence with the corresponding synthetic reference.

Data

We use the Chinese portion of the 2004 NIST MT dataset. This portion contains

200 Chinese documents, subdivided into a total of 1788 segments. Each segment is

translated by ten machine translation systems and by four human translators. A quarter

of the machine-translated segments are scored by human evaluators on a one-to-five

scale along two dimensions: adequacy and fluency. We use onlyadequacy scores, which

measure how well content is preserved in the translation.

Alternative paraphrasing techniques

To investigate the effect of paraphrase quality on automatic evaluation, we consider

two alternative paraphrasing resources: Latent Semantic Analysis (LSA), and Brown et

al. clustering [10]. These techniques are widely used in NLPapplications, including

language modeling, information extraction, and dialog processing [25, 61, 44]. Both
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Table 6.3 Sample of paraphrasings produced by each method based on the correspond-
ing system translation. Paraphrased words are inbold and filtered words underlined.
Reference The monthly magazine “Choices” has won the deep trust of the

residents. The current Internet edition of “Choices” will give full
play to its functions and will help consumers get quick access to
market information.

System The public has a lot of faith in the “Choice” monthly magazineand
the Council is now working on a web version. This will enhancethe
magazine’s function and help consumer to acquire more up-to-date
market information.

WordNet The monthly magazine “Choices” has won the deepfaith of the
residents. The current Internetversionof “Choices” will
give full play to its functions and will help consumersacquire
quick access to market information.

ContextWN The monthly magazine “Choices” has won the deep trustof the
residents. The current Internetversionof “Choices” will give full
play to its functions and will help consumersacquire quick access to
market information.

LSA The monthly magazine “Choice” has won the deep trust of the
residents. The currentweb edition of “Choice” will give full
play to its functions and will helpconsumerget quick access to
market information.

Brown The monthly magazine “Choices” has won the deep trust of the
residents. The current Internetversionof “Choices” will give full
play to its functions and will help consumers get quick access to
market information.



76

techniques are based on distributional similarity. The Brown clustering is computed

by considering mutual information between adjacent words.LSA is a dimensionality

reduction technique that projects a word co-occurrence matrix to lower dimensions.

This lower dimensional representation is then used with standard similarity measures

to cluster the data. Two words are considered to be a paraphrase pair if they appear in

the same cluster.

We construct 1000 clusters employing the Brown method on 112million words from

the North American News Text corpus. We keep the top 20 most frequent words for each

cluster as paraphrases. To generate LSA paraphrases, we used the Infomap software4

on a 34 million word collection from the same corpus5. We used the default parameter

settings: a 20,000 word vocabulary, the 1000 most frequent words (minus a stop-list)

for features, a 15 word context window on either side of a word, a 100 feature reduced

representation, and the 20 most similar words as paraphrases.

We experimented with several parameter settings for LSA andBrown methods, but

do not claim that the selected settings are necessarily optimal. However, these methods

present sensible comparison points for understanding the relationship between para-

phrase quality and its impact on automatic evaluation.

Table 6.3 shows synthetic references produced by the different paraphrasing meth-

ods.

Evaluating evaluation metrics

The standard way to analyze the performance of an automatic evaluation metric in

machine translation is to compute the Pearson correlation between the automatic metric

and human scores [53, 33, 39, 64]. LetX andY be two sets ofn data points where each

point in X corresponds to a unique point inY . The Pearson correlation between these

points is

r =

∑n
i=1 xixi −

P
x
P

y
n

√

(
∑

x2 − (
P

x)2

n
)(

∑

y2 − (
P

y)2

n
)

4http://infomap-nlp.sourceforge.net
5For computational reasons, a smaller set was used.
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Table 6.4 Pearson adequacy correlation scores for rewriting using one and two refer-
ences, averaged over ten runs.

Method 1 reference 2 references
BLEU 0.9657 0.9743
WordNet 0.9674 0.9763
ContextWN 0.9677 0.9764
LSA 0.9652 0.9736
Brown 0.9662 0.9744

Pearson correlation estimates how linearly dependent two sets of values are. The Pear-

son correlation values range from 1, when the scores are perfectly linearly correlated, to

-1, in the case of inversely correlated scores. For evaluating automatic evaluation, the

correlation is calculated between the automatic evaluation scores and human evaluation

scores.

To calculate the Pearson correlation, we create a document by concatenating 300

segments. This results in a document for each of the ten MT systems. This strategy

is commonly used in MT evaluation, because of BLEU’s well-known problems with

documents of small size [53, 33]. For each of the ten MT systemtranslations, the evalu-

ation metric score is calculated on the document and the corresponding human adequacy

score is calculated as the average human score over the segments. The Pearson corre-

lation is calculated over these ten automatic evaluation score/human adequacy score

pairs [53, 64]. This process is repeated for ten different documents to obtain ten corre-

lation scores. A paired t-test is calculated over these ten correlation scores to compute

statistical significance.

6.4.2 Impact of paraphrases on machine translation evaluation

Table 6.4 shows Pearson correlation scores for BLEU and the four paraphrased aug-

mentations, averaged over ten runs.6 In all ten tests, our method based on contextual

6Depending on the experimental setup, correlation values can vary widely. Our scores fall within the
range of previous researchers [53, 39].
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Table 6.5 Paired t-test significance for all methods compared to BLEU and our method
for one reference. Two triangles indicates significant at the 99% confidence level, one
triangle at the 95% confidence level and X not significant. Triangles point towards the
better method.

Method vs. BLEU vs. ContextWN
WordNet ⊳⊳ △△

ContextWN ⊳⊳ -
LSA X △△

Brown ⊳⊳ △

rewriting (ContextWN) improves the correlation with humanscores over BLEU. More-

over, in nine out of ten tests ContextWN outperforms the method based on WordNet

alone. The results of statistical significance testing are summarized in Table 6.5. All the

paraphrasing methods except LSA, exhibit higher correlation with human scores than

plain BLEU. Our method significantly outperforms BLEU, and all the other paraphrase-

based metrics. This consistent improvement confirms the importance of contextual fil-

tering.

The third column in Table 6.4 shows that automatic paraphrasing continues to im-

prove correlation scores even when two human references areparaphrased using our

method.

6.4.3 Evaluation of paraphrase quality

In the last section, we saw significant variations in MT evaluation performance when

different paraphrasing methods were used to generate a synthetic reference. In this sec-

tion, we examine the correlation between the quality of automatically generated para-

phrases and their contribution to automatic evaluation. Weanalyze how the substitution

frequency and the accuracy of those substitutions contributes to a method’s performance.

We compute the substitution frequency of an automatic paraphrasing method by

counting the number of words it rewrites in a set of referencesentences. Table 6.6

shows the substitution frequency and the corresponding BLEU score. The substitution
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Table 6.6 Scores and the number of substitutions made for all1788 segments, averaged
over the different MT system translations

Method Score Substitutions
BLEU 0.0913 -
WordNet 0.0969 994
ContextWN 0.0962 742
LSA 0.0992 2080
Brown 0.0921 117

Table 6.7 Accuracy scores by two human judges and the Kappa coefficient of
agreement.

Method Judge 1 Judge 2 Kappa
accuracy accuracy

WordNet 63.5% 62.5% 0.74
ContextWN 75.0% 76.0% 0.69
LSA 30.0% 31.5% 0.73
Brown 56.0% 56.0% 0.72

frequency varies greatly across different methods — LSA is by far the most prolific

rewriter, while Brown produces very few substitutions. As expected, the more para-

phrases identified, the higher the BLEU score for the method.However, this increase

does not translate into better evaluation performance. Forinstance, our contextual filter-

ing method removes approximately a quarter of the paraphrases suggested by WordNet

and yields a better evaluation measure. These results suggest that the substitution fre-

quency cannot predict the utility value of the paraphrasingmethod.

Accuracy measures the correctness of the proposed substitutions in the context of

a reference sentence. To evaluate the accuracy of differentparaphrasing methods, we

randomly extracted 200 paraphrasing examples from each method. A paraphrase exam-

ple consists of a reference sentence, a reference word to be paraphrased and a proposed

paraphrase of that reference (that actually occurred in a corresponding system transla-

tion). The judge was instructed to mark a substitution as correct only if the substitution
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Table 6.8 Confusion matrix for the context filtering method on a random sample of 200
examples labeled by the first judge.

negative positive
filtered 40 27
non-filtered 33 100

was both semantically and grammatically correct in the context of the original reference

sentence.

Paraphrases produced by the four methods were judged by two native English speak-

ers. The pairs were presented in random order, and the judgeswere not told which sys-

tem produced a given pair. We employ a commonly used measure,Kappa, to assess

agreement between the judges. We found that on all the four sets the Kappa value was

around 0.7, which corresponds to substantial agreement [36].

As Table 6.7 shows, the ranking between the accuracy of the different paraphrasing

methods mirrors the ranking of the corresponding MT evaluation methods shown in

Table 6.4. The paraphrasing method with the highest accuracy, ContextWN, contributes

most significantly to the evaluation performance of BLEU. Interestingly, even methods

with moderate accuracy, i.e. 63% for WordNet, have a positive influence on the BLEU

metric. At the same time, poor paraphrasing accuracy, such as LSA with 30%, does hurt

the performance of automatic evaluation.

To further understand the contribution of contextual filtering, we compare the substi-

tutions made by WordNet and ContextWN on the same set of sentences. Among the 200

paraphrases proposed by WordNet, 73 (36.5%) were identifiedas incorrect by human

judges. As the confusion matrix in Table 6.8 shows, 40 (54.5%) were eliminated during

the filtering step. At the same time, the filtering erroneously eliminates 27 positive ex-

amples (21%). Even at this level of false negatives, the filtering has an overall positive

effect.
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6.5 Conclusion and Future Work

This chapter presents a comprehensive study of the impact ofparaphrases on the

accuracy of automatic evaluation. We found a strong connection between the quality

of automatic paraphrases as judged by humans and their contribution to automatic eval-

uation. These results have two important implications: (1)refining standard measures

such as BLEU with paraphrase information moves the automatic evaluation closer to

human evaluation and (2) applying paraphrases to MT evaluation provides a task-based

assessment for paraphrasing accuracy.

We also introduce a novel paraphrasing method based on contextual substitution.

By posing the paraphrasing problem as a discriminative task, we can incorporate a wide

range of features that improve the paraphrasing accuracy. Our experiments show im-

provement of the accuracy of WordNet paraphrasing and we believe that this method

can similarly benefit other approaches that use lexico-semantic resources to obtain para-

phrases.

Our ultimate goal is to develop a contextual filtering methodthat does not require

candidate selection based on a lexico-semantic resource. One source of possible im-

provement lies in exploring more powerful learning frameworks and more sophisticated

linguistic representations. Incorporating syntactic dependencies and class-based fea-

tures into the context representation could also increase the accuracy and the coverage

of the method. Our current method only implements rewritingat the word level. In the

future, we would like to incorporate substitutions at the level of phrases and syntactic

trees.
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7

Contributions and Future Research

Directions

In the last 10 years the performance of machine translation has drastically increased.

Even from year to year, performance of the state of the art systems increases noticeably.

These improvements come from many dimensions. Every year more and more data

becomes available with faster and faster computers. Also, the number of translation sys-

tems being developed, both commercially and in research environments, is increasing.

In 2004, 12 systems participated in the yearly NIST translation evaluations. In 2005,

20 systems participated. This increasing interest in machine translation has resulted in

many translation systems available of differing design andquality. In this thesis, we

have examined a number of uses for these existing MT systems for research purposes.

7.1 Summary of Contributions

In Chapters 3 and 4 we suggest a framework for post-correction of machine transla-

tion systems using translations made by the system to identify mistakes. By translating

data where a correct translation is known, differences between the translation and the

ground truth point to possible errors. Using only monolingual data, we learn word cor-

rection rules. On a 20,000 sentence Spanish/English data set 24,235 different word

83
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changes are made on 78% of the sentences, with high accuracy.

Given bilingual data, we describe a method that uses a partial alignment between

the machine translated sentence and human sentence to learnphrase correction rules.

By generating machine translated/human translated English pairs, a simplified align-

ment algorithm can be used that aligns lexically identical words. Using this alignment,

context-independent phrase correction rules are learned.The learned correction rules

improve the BLEU score of a commercial system by 30% and statistically significantly

improve the performance of a state of the art statistical phrase-based system.

In Chapter 5 we showed quantitatively that all MT examples are not equally useful.

We describe a method for generating example usefulness training data that is applicable

in many domains since it only requires trainability and evaluatability. Random subsets

of the examples are used to train translation systems. Thesesystems are evaluated using

BLEU on a development set, resulting in score/subset pairs.Given these pairs, we

proposed a method that efficiently determines the example rankings based on the average

of the subset scores a given example occurs in. Theoretical analysis of this method

shows only minor deviations from the correct ranking. Usingthis method, we ranked

47,282 machine translation examples. The top ranked examples perform significantly

better on a large test set than randomly selecting examples.A preliminary study of the

most useful examples also shows a number of possible features for discriminating useful

examples.

Finally, using the output from many different machine translation systems we ana-

lyze the impact of paraphrasing on automatic evaluation measures. We show that para-

phrasing does improve automatic evaluation measures. Thisperformance increase re-

sults from the ability to identify alternate appropriate words that occur in the machine

translation, but not in the reference translations. Besides improving automatic evalua-

tion measures, this problem provides a new quantitative task for evaluating paraphrasing

performance. We showed strong correlation between the improvement of the automatic

evaluation methods and paraphrase accuracy.

In the process of analyzing these different applications oftranslation systems, we

described two novel methods for determining whether a word is substitutable in the
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context of a particular sentence. Given a corpus, we identify those words that co-occur

significantly with the word in question using the likelihoodratio test. Given a new

sentence, if one of the significant words occurs in that sentence, then the substitution

is considered appropriate. The second method trains an individual classifier for each

word. Given sentences that a word occurs in and does not occurin, features are extracted

based on position dependent and independent occurrences ofn-grams. Using this data,

a classifier is learned to identify the contexts that the wordcan occur in.

7.2 Future Research Directions

In each chapter, we suggested continuations of the work presented in that chapter. To

conclude, we summarize these suggestions and mention otherfuture research directions

that utilize pre-existing translation systems.

Learning an active learner

In Chapter 5 we described a method that, given a set of foreign/English sentence

examples, ranked those examples based on their usefulness for training a translation

system. One use of this ranking is for learning a model of example usefulness. This

model could then be used to identify useful foreign sentences to have translated by a

human translator in an active learning framework. The first step for this type of method

is to suggest candidate features. [6] suggest features for confidence estimation and [47]

for n-best list reranking that can be used here.

In this thesis, we did a preliminary study to identify features that correlated with the

example ranking. This idea could be continued in future research to learn a model of

example usefulness based on the ranking. Given examples andthe extracted features, a

ranking or regression method could be applied to learn a model of example usefulness.

This model would then be used to identify the most useful foreign sentences to translate.

For machine translation, where examples are expensive to annotate and still relatively

rare in many languages and domains, an algorithm that can select the most useful foreign
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sentences to generate examples from would be invaluable. Also, this type of approach

has not previously been explored and may prove useful in manyother domains.

Evaluating automatic evaluation measures

One of the challenges in developing automatic evaluation methods such as BLEU

is evaluating these evaluation measures. The standard approach in machine translation

is to measure the Pearson correlation between the automaticscores and human scores.

There are a number of problems with this approach. First, theassumption of linearity is

overly restrictive. The key component of an evaluation method is whether it ranks meth-

ods appropriately. The distance between scores does provide some information, but this

distance does not necessarily need to correlate linearly with human scores. Isotonic re-

gression [57] is an alternative method that assumes monotonicity, but does not require

the the relationship is linear. Also, Spearman rank correlation has been suggested as a

possibility. Even using Pearson correlation, there are still many free parameters: what

size documents are used, how many documents are used, how multiple human scores

should be incorporated and how significance should be measured. These experimental

variations are rarely discussed in detail in papers, but allaffect comparisons.

Improved phrase rules

In Chapter 4 we learned context-independent rules. Becauseof this context indepen-

dence assumption, many rules were eliminated in order to obtain reasonable correction

accuracy, particularly when improving the statistical phrase-based system. These rules

could also be extended with context information. In Chapter3 this allowed for a larger

rule set to be learned. In Chapter 6 a contextual filtering method was used to increase

the rule accuracy. In addition to lexical information, rules could also use syntactic or

semantic information. For systems that were word or phrase based, this would allow

additional information not available to the original system to be incorporated.
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