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ABSTRACT OF THE DISSERTATION

Contributions to Research on Machine Translation

by

David Kauchak
Doctor of Philosophy in Computer Science

University of California San Diego, 2006

Professor Charles Elkan, Chair

In the past few decades machine translation research has madr progress. A re-
searcher now has access to many systems, both commerciadéseatch, of varying
levels of performance. In this thesis, we describe differeathods that leverage these
pre-existing systems as tools for research in machinelatms and related fields.

We first examine techniques for improving a translationesystising additional text.
The first method uses a monolingual corpus. Discrepancgesiantified by translating
a word list to a foreign language and back again. Entries evtiex original word and
its double translation differ are used to learn word-leww@rection rules. The second
method uses parallel bilingual data consisting of sournguage/target language sen-
tence pairs. The source sentences are translated usingskatian system, and a partial
alignment is identified between the machine-translatetesers and the corresponding
human-translated sentences in the target language. Téusrant is used to generate
phrase-level correction rules. Experimentally, both wigncel and phrase-level correc-
tion rules result in improved translation performance. THa@ned word-level correction
rules make 24,235 corrections on 20,000 Spanish to Enghsislated sentences, with
high accuracy. The learned phrase-level rules improvertreskation performance (as
measured by BLEU) of a French to English commercial syster@d¥g, and of a state
of the art phrase-based system in a statistically signifigaray.
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To train current statistical machine translation systdmisgual examples of paral-
lel sentences are used. Generating this data is costly,uarehtly feasible only in lim-
ited domains and languages. A fundamental question is whetlery potential example
is equally useful. We describe a ranking method for exantplssscores individual sen-
tence pairs based on the performance of translation systamed on random subsets
of the examples. When used to train a translation systemtofheanking examples
result in a significantly better performing system than mandselection of examples.
Given these ranked examples, a model of example usefulaagzotentially be learned
to select the most useful unlabeled examples. Initial expeErts show two previously
used example features are good candidates for identifygatuiexamples.

In the last part of this thesis we describe how automaticpgyaesing methods can
be used to improve the accuracy of evaluation measures fonimatranslation. Given
a human-generated reference sentence and a machinetgdrieaaslated sentence, we
present a method that finds a paraphrase of the referen@nserthat is closer in word-
ing to the machine output than the original reference is. Ndsvghat using paraphrased
reference sentences for evaluating a translation systépuioresults in better correla-
tion with human judgement of translation adequacy thanguie original reference
sentences.

Xiv



Introduction

Machine translation systems are commonplace. A searcheoiéb reveals many
commercial translation systems available in a wide arrajanfiluages In addition,
over a dozen different research systems are currently lEagloped In this thesis,
we examine the use of these pre-existing machine transl@d) systems as research
tools for improving and analyzing MT and related fields.

All translation systems have the same goal: translatertiee language into text in
a second language. The methods by which they accomplisgdhlsare different. Most
commercial systems use a set of dictionaries containimglation, semantic, syntactic
and morphological information in combination with humagngrated rules to trans-
late. This results in efficient, general-purpose transtesystems. Recently, data-driven
methods have become increasingly popular. Given a set afiplaoilingual sentences,
these methods learn a probabilistic translation model.eG& foreign sentence, the
translation process is a search for the most likely Englesitence according to the
model.

Most research in machine translation focuses on buildiregt@bprobabilistic model.
Each year adaptations to previous models are suggested tasxperimental inade-

L Afrikaans, Bulgarian, Chinese, Dutch, English, Finniskerfeh, German, Greek, Hungarian, Ice-
landic, Italian, Japanese, Malay, Norwegian, Korean,dRplPortuguese, Russian, Serbian, Slovenian,
Spanish, Swahili, Swedish, Tswana, Ukrainian and Welsh.

Zhttp://www.nist.gov/speech/tests/mt/mt05ewtficial_resultsrelease20050801v3.html



guacies and linguistic intuition. In this thesis, we takefiedent approach. We leverage
existing translation systems both to build better systenasta explore research ques-
tions related to translation. Initially, we only assumettiva can translate foreign text
with a system. Using additional text resources, we explaedifferent methods for
learning correction rules. Research systems are traimabhelingual data. Using this
additional functionality, we then investigate examplefubeess for training a translation
system. Finally, we use the output of many translation syst® examine paraphras-
ing for automatic evaluation measures. In this chapter we gibrief overview of the
problems and methods discussed throughout this thesis.

1.1 Translation Improvement

One use of a translation system is to identify current tiiesh mistakes. This data
can then be used to improve the performance of that systentraBglating text where
the correct translation is known, differences between thelmme translation and this
ground truth point to possible mistakes made by the traoslatystem. The advantage
of this type of approach is that it does not rely on knowleddew the system translates
and only assumes access to the translation system.

We examine the translation improvement problem for bothroencial systems and
statistical phrase-based systems. Although in some d@caimmercial systems tend
to produce inferior translations, they have other bene@ismmercial translation sys-
tems are general-purpose and work well in many domains whteetraining data is
available for statistical systems. Also, commercial syst@re very efficient and trans-
late orders of magnitude faster. Finally, commercial systéend to be more robust
than research systems, which can falil to translate proltietexts. Because of the var-
ied uses of translation systems, we consider improving bothmercial and statistical
systems.

The first improvement method we examine only uses monolingug one of the
most prevalent natural language resources. Given Englidhwe generate an English



English | translated foreign translated English
dog perro dog
scroll rollo rollo
abstractness abstractness abstractness
metro metro meter
cupful taza cup

Figure 1.1 Example output from translating an English wastlitb Spanish and then
back to English.

word list. We then translate this list to a foreign languagd hack to English. This

results in triplets of English, foreign and double-tratstBEnglish. Figure 1.1 shows
example triplets translated using the SDL Internatiorastation system. Depending
on the knowledge in the translation systems, different @&ges arise. Only the first

example has both the original and double-translated wagdsle Entries where the
original word is not the same as the double-translated wogdest possible mistakes.
Using these entries, we generate a list of foreign words asdiple English transla-

tion options. Then, using an English corpus, we learn wewll correction rules. In

cases where only one English translation option exists eraption is predominant,

we learn a context-independent rule. For ambiguous wordsdsvthat co-occur with

the alternate translation options are identified using @iliood ratio significance test.
Context-dependent rules are constructed using thesdisagrtiwords to select between
the different translation options.

This method learns correction rules based on knowledgerdiites between the
foreign to English translation system and the English teifgr translation system. By
itself, monolingual data does not contain translationnmfation. Translation informa-
tion is available in parallel bilingual data, which consisf foreign sentences and the
English translations of those sentences. This data is theitoy block for statistical
translation systems.

Parallel bilingual data can also be used to identify andemdrthe mistakes of a
translation system. By translating the foreign text to Esiglwe again obtain a parallel



Commercial: | Themeeting begins agaiat 8 hours.

Rule corrected]| TheHouse resumedat 8 hours.

Commercial: || | find interesting to note that certain members of
the American Congressesem to divide this opinion, but contrary.
Rule correctedi| | find interesting to note that certain members of
Congressseem to divide this opinion, but contrary.
Commercial: Is theRoom lends to deci@e

Rule correctedi| Is theHouse ready for the questior?

Figure 1.2 Example commercial translations corrected mgecd-independent phrase
rules learned by our method. Changed phrases aitalics and replaced by those in
bold.

data set with machine-translated English and human-atetsIEnglish. Differences
between these sentence pairs identify possible mistakesn @ese pairs, we generate
a partial monotone alignment between the two sentencesevamdy lexically identical
words are aligned. An alignment specifies portions of thdiEhgext that are translation
of portions of the foreign text, and is commonly used in tiragnstatistical translation
systems. A partial alignment only specifies alignments tone portions of the text
and a monotone alignment does not allow crossing alignmesgsg this alignment,
we extract the unaligned phrase pairs as candidate pheaskcbrrection rules. These
candidate rules are scored and filtered to generate the énexd-independent phrase-
level correction rules. The learned correction rules angiegp to unseen translated
examples to improve the translation performance.

This type of approach is most useful on commercial systemshndre often rule
based and general domain and therefore receive the moditbeora data-driven cor-
rection. Even statistical translation systems trainedhensame parallel data benefit.
Translation from foreign to English introduces additioregjularity that may not be ac-
cessible in the original foreign/English data. Applyingsk rule correction approaches
to commercial systems retains their computational andstoless benefits, while mov-
ing the translation performance towards that of statistigatems.

Figure 1.2 shows corrected sentences using learned plesadaules. Using the



Monsieur I'Orateur, ma question est simple.
Mr. Speaker, my question is simple.

M. Roch La Salle (Joliette) propose:
Mr. Roch La Salle (Joliette) moved:

...beauty is life when life unveils her holy face.
...beauty is life when life unveils her holy face.

D

D

Figure 1.3 Three foreign/English parallel bilingual exdesdfrom Canadian parliamen-
tary proceedings. The first line is French and second Englible third example is an
English quote and is therefore the same in French and English

Systran translation system, we identify over 70,000 ctimeaules. When applied to

a test corpus, these rules improve the BLEU score, the stami@asure of translation
performance, of the test data by 30%. Using the same rulaifeaprocedure, we

also statistically significantly improve the translatiogrfprmance of a state of the art
phrase-based statistical translation system.

1.2 Learning Example Usefulness

The methods we have discussed have only assumed that weacatate text us-
ing the translation system. Research systems are alsalaeawhere, given bilingual
examples of parallel sentences, a translation systenrisddaThese examples are time-
consuming to generate and are only available in limited dosa@n important question
is whether all these examples are equally useful for trgiaitranslation system.

Figure 1.3 shows three different bilingual examples. Altloése examples show
inferior characteristics. The first example is a straightird, literal translation. How-
ever, the example does not provide new information in theesdrof other training
examples. In a sample of 50,000 examples, 4,285 contairhtiase ‘Mr. Speaker’, 279
contain the phrase ‘my question is’ and 93 contain the wardpse’. The second and
third examples suffer from a different lack of informatioim both cases, the English



examples translation scored

systems subset:
BLEU

f1 s(f1)

fj s(fi)

m s(im)

Figure 1.4 Process for generating scored example subsetetas training data for
ranking example usefulness. Random subsets of the exam@eselected. Each of
these subsets is used to train a translation system, whilsnsautomatically evaluated.

and French are similar. In the second, this occurs becawgpeipnames are often the
same in languages with similar character sets. The thirchplais an English quote
and is therefore the same in both languages.

The examples in Figure 1.3 highlight just a few causes formga inferiority. In
this thesis, we describe a framework that given a set of elesgmpirically ranks the
examples based on usefulness. Because no prior examplagamkist, an important
step is generating usefulness data for training. We canimettty obtain individual
example scores, but can obtain usefulness scores for sei@oifples. Given a set of
examples, random example subsets are selected and usadhttranslation systems.
These systems are automatically evaluated resulting iresdor the random subsets.
Figure 1.4 shows this process. These subset/score paire dbé training data for
learning usefulness scores for the individual examples.

We assume that the score for an example subset is a lineairtatoh of the exam-
ple scores in that subset. For phrase-based systems, vaotrexample is broken into
a finite number of phrases, this assumption is reasonableseTtandom subset/score
pairs then define a set of linear constraints. We calculagxample’s score as the aver-



No Signal from ESA's Beagle 2 Probe Since Its Landing on Mars
Contacts Lost with Europe’s Mars Probe Beagle 2 After Lagdin
No News from The European Mars Probe - Beagle 2 after It Landed
European Mars Probe Beagle 2 Remains Silent after Landing

Figure 1.5: Four human translations of the same Chinesdihead

age of the subset scores that example occurs in. This soh#®the advantage of being
efficient to calculate and theoretical analysis shows ti@sblution is near correct.

The examples are then ranked based on the learned usefabmses. Given this
ranking, we show that on a large test set a system trainededmgihest-ranking exam-
ples consistently performs better than systems trainedrandom selection of exam-
ples. An important application for the ranked examples isuitd a model of example
usefulness. This model can potentially be used to idens&ful example characteristics
and for selecting unlabeled examples that are most usefuh fkst step towards build-
ing this model, we examine features previously suggestedrdoslation confidence
estimation for correlation with the learned ranking.

1.3 Improving Automatic Evaluation Methods

One of the challenges for many natural language applicai®that there are many
correct solutions to the same problem. This complicatesitrggand evaluation. Figure
1.5 shows four different human translations of the same €3arheadline. Each of the
translations conveys the same meaning: Europe sent a grabahded on Mars, the
probe is named Beagle 2 and since landing on Mars, the prabeden out of com-
munication contact. However, the words used to convey ttigiination are different
between the different sentences.

Natural language applications such as machine translatidnrsummarization rely
on automatic evaluation measures that compare a methdgstda a human-generated
reference example. There have been a number of differepppenl methods for mak-



Ref: | Filipino Communists Refuse Talks with Arroyo’s Government and Launc
New Guerrilla Attacks

Para:| Philippine Communists Refuse Talks with Arroyo’s Government and Launc
New Guerrilla Attacks

Ref: | The economy in oucountrycontinued to maintain a nice growth trend.
Para:| The economy in ounation continued to maintain a nice growth trend.
Ref: | As at end of 2003, Mongolia had 255.6 thousand camels, 1.96{8n
horses, 1.7843 millioosows 10.7062 million sheep and 10.6034 million
goats.

Para:| As at end of 2003, Mongolia had 255.6 thousand camels, 1.86{8n
horses, 1.7843 milliopattle, 10.7062 million sheep and 10.6034 million
goats.

Figure 1.6 Paraphrases of human reference translationsl oy our proposed para-
phrasing algorithm. The first line is the reference and seqmaraphrased reference.
Paraphrases are showndald.

ing this comparison, but they all rely on an analysis of mgraverlap between the
machine-generated text and the human-generated text. Agavim the example, even
among human translations, there are still many gaps in tedagybetween sentences.
A comparison of 10,728 human reference translation paed usthe NIST 2004 ma-
chine translation evaluation reveals only 21 (less thafo)that are identical and 60%
that differ in at least 11 words.

Because of this flexibility, human references rarely capthe full range of correct
solutions. The use of multiple references has been sugbasta solution to this prob-
lem, but generating this data is expensive and only resumlts partial solution. We
explore the use of paraphrasing to address this problemenGvhuman-generated
reference sentence and a machine-generated sentencegkveodind a word-level
paraphrase of the reference sentence that is closer in mgptdithe machine output
than the original reference. For all words in the refererex@ence that do not occur
in the machine-generated sentence, candidate paraplar@asssggested using existing
lexico-semantic resources, such as WordNet. These caadiaad paraphrases repre-
sent context-independent choices and are not appropniak sentences. To address
this, for each candidate paraphrase, we learn a model obtitexts that word occurs in.



The candidate paraphrase is only substituted if the likelhof the word in the context
of the reference sentence is acceptable according to timetkanodel.

Figure 1.6 shows reference sentences and the paraphrabes®ftentences gener-
ated using our proposed method. All of the reference paasglsrincrease the overlap
with the machine translation output. We show experimeynthtt using the paraphrased
references increases the evaluation performance of atimevaluation methods. We
also show a connection between paraphrase quality and atitoevaluation perfor-
mance: better paraphrases result in better automaticagi@iperformance.

1.4 Outline

Before discussing these methods in more detail, in Chapter frst discuss back-
ground material and data and software resources. In Chaipteruse monolingual data
to learn word-level correction rules to improve a transkatsystem. We continue the
translation improvement problem in Chapter 4 by learningpé-level correction rules
using parallel bilingual data. In Chapter 5 we switch to thabtem of ranking bilingual
examples based on usefulness. Finally, in Chapter 6 we zm#ig effect of paraphras-
ing on automatic evaluation measures. We conclude with amsamnof the key findings
in this thesis and suggested future research directions.
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Background

2.1 Translation Systems

Many different types of machine translation systems ekisthis section we briefly
overview current translation systems available. Classifyhese different systems is
problematic, particularly for commercial systeémgVe loosely divide the systems into
rule-based systems and data-driven approaches.

2.1.1 Rule-based approaches

During the inception of machine translation, methods werguistically driven,
rule-based approaches. Today, most research methodstardrd@n and only com-
mercial translation systems still use rule-based appesmdbommercial systems can be
purchased for home or office use and are publicly availablautgh a number of web
portals. These systems are efficient and general-purposest ddmmercial systems
translate by combining translation dictionaries, idioimakpressions, semantic dictio-
naries and homograph resolution with human generated. fa@gdiscusses a number
of commercial systems in detail and individual papers can bk found for some sys-

tems, for example [60].

Traditionally, commercial systems were rule-based. Riéygehere have been a number of commer-
cial systems introduced that have been based on statisacalation approaches.

10
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interlingua
semantics semantics
syntax syntax
phrases phrases
words words
foreign translation >English

Figure 2.1 Translation method categorization pyramid. nlaion occurs by trans-
ferring language information in the foreign language frdra keft to English language
information on the right.

Rule-based approaches can be subdivided based on the tygerafiation that is
used when translating between languages. Figure 2.1 sihenar¢hetypal translation
method pyramid. At the very top are interlingua approachi@stranslate from a for-
eign language to English, the foreign text is first translatgo a language independent
knowledge representation. From this knowledge represenidhe English text is then
generated [45]. This framework proved difficult and genguaipose interlingua meth-
ods have not emerged.

Moving down the pyramid are transfer methods, both semamitsyntactic [27].
Rather than translating the foreign text into a languagepeddent representation, lan-
guage specific semantic or syntactic knowledge is extrdntedthe text. Rules are then
applied that convert this foreign representation into agliSh representation. From
this English representation, the final English text is gatest. As with interlingua ap-
proaches, general-purpose transfer approaches havearosbecessful.

2.1.2 Data-driven approaches

In the last 10 years, research systems have made subsprogedss. This progress
can be attributed to a shift from rule-driven approachesta-driven approaches. These
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data-driven approaches have been greatly assisted bygss@ computational power
and data availability. The two data-driven approaches dgnatcurrently popular are
example-based methods and statistical methods.

Example-based systems Given a large bilingual data set of foreign sentences with
associated English translations, example-based trasiaethods translate a new for-
eign text fragment by finding the fragment in the data setithatost similar to the new
foreign sentence [11, 63]. Example-based machine tramslatethods differ in the size
of the fragment, post-processing after matching and thetmreg criteria, which may
incorporate syntactic information [28] or other lingugsitnformation. [63] gives a good
historical review of example-based translation methods.

Statistical systems Given the same bilingual data set, statistical machinestaéion

methods take a different approach. A probabilistic modééasned,p(e|f), that de-
scribes the process of translating a foreign sentence tddbngGiven a new foreign
sentencef, translation occurs by finding the most likely English sests given that
foreign sentence

arg max p(el f)

The foundation of statistical machine translation rede& the noisy channel model
[9]. Rather than directly modelinge| f) we apply Bayes rule:
p(fle)p(e)

plelf) = NOn

wherep(f|e) is the translation modeh(e) is the language model of the English sen-
tence ang( f) is ignored sincef is given and does not affeet Each of these models
are trained individually and then combined during transfat The translation model
describes how a foreign sentence gets translated to ansBrsgintence. The language
model describes what English sentences look like. The caatibn of these two mod-
els results in a much more robust translation system thangtryp model the entire
translation process indivisibly.
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In practice, an extension of the original noisy channel moalparameterized log-
linear model, is used:

logp(e|f) = Arlog(p(fle)) + Aalog(p(e)) + Azgi(f,e) + ... + Augn(f€)

whereg; are additional feature functions such as the sentencehlenginber of words
found in a bilingual dictionary, etc. andl; are model weighting parameters. These
feature functions complicate the translation processf{neding the most likely English
sentence according to the model), but allow additionakddtto be included in the
translation process.

For the language model, an n-gram model is most commonly. UElee probabil-
ity of a sentence is broken down into individual word prolitibs [41]. We assume
that the probability of a word occurring is only dependentaosmall number of the
previous words. For example, a bigram language model mdldelprobability of a
word in a sentence given only the previous word. Specifictily probability of a sen-
tencep(ey, es, ..., e,) = pler|(start))p(es|er)...p(enlen_1)p({end)|e,). These individ-
ual probabilities are estimated from a corpus. For thosestasion models that include
syntactic information, a syntax-based language modelad usaddition to the n-gram
model [12]. These syntax-based models determine the pildbald an entire syntax
tree by similarly decomposing the tree into smaller compise

The main differentiating factor between statistical ttahen approaches is the trans-
lation model. The first models were word-level translatiordels [9]. Each word in the
foreign sentence is translated to zero or more English warthsword reordering. To
obtain reasonable performance, these word level modetsttene complicated. The
problem is that translation is rarely word for word. To motlet, some words are trans-
lated to multiple different words, some words disappearndutranslation and some
words randomly appear during translation. All these saesaomplicate the transla-
tion model.

The best performing models are phrase-based models. Abaasd models take a
similar approach to word models, but the translation conepors the phrase. A foreign
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sentence is broken into phrases and each of those phrasaaskted to an English
phrase with reordering [50, 33, 42, 65]. Because the trosle phrase-level, many of
the complications seen in the word-level models do not arise

Recently, models incorporating syntactic informationdnbeen suggested. [67, 68,
24] suggest probabilistic models that transform a syrtantie in the foreign language
into a syntactic tree in English. A number of “tree-to-sffimodels have also been pro-
posed that translate a foreign sentence to an English diotieee [69, 24, 22]. Models
that do not depend on explicit syntactic structure, butlvedierarchical structure have
also received some interest [13].

2.1.3 Machine translation evaluation

Evaluating the performance of natural language methodsfisult. Traditionally,
machine translation methods were evaluated by human judd¢esigh human judging
still occurs, for most uses, it is too slow and expensivetelad, automatic evaluation
measures are used that judge the performance of a macheeaged translation with
respect to a human-generated reference translation [4634.3

Throughout this thesis, we use the BLEU evaluation meth8{ [BLEU is the geo-
metric average of the n-gram precisions of the machinestated sentences with respect
to the corresponding human-translated reference sersigiroes a brevity penalty. The
BLEU score is computed as

BLEU =

B —

wherep,, is the n-gram precision; is the number of words in the machine-generated
text andr is the number of words in the shortest reference text. Theamgrecision

is the proportion of n-grams in the machine-translatedesed that are found in the
reference sentence. These precisions are calculatedn@ventire test set. The brevity
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penalty B penalizes translations that are too short by discountiagghranslations that
are shorter than the shortest reference translation. Téngpts “gaming” of the metric,
for example just outputting “the” which tends to have a highqgision.

t-test Animportant question for any empirical study that companesdifferent meth-
ods is whether the difference between the performance ah#t@ods is significantly
different. In this thesis, we often use the paired t-testi@dnine to what extent this is
true. The t-test asks whether two paired sets are signiljcdifterent assumingndi-
vidual scores are independent and normally distributed.

Let X andY be sets of data points where each poinKircorresponds to a unique
pointinY . In the case of algorithmic differentiation, these poiesresent two different
methods trained on the same data and scored using an evaloegtric. The t-score for
the difference between these two sets is

= (X-7) _nn=1)
Y (X =Xi) = (Y = Y)))?

whereX andY are the means of the sets ani the number of pairs. Given the t-score,
the probability that the two sets are significantly diffdrean be looked up in a t-table
under(n — 1) degrees of freedom.

The t-test assumes that the points are independent. As¢iri]quit, this is rarely the
case for when using the t-test to compare different algmsth16] suggests a number of
alternative tests; however, for machine translation, thing/testing setup is different
than most supervised scenarios and the alternate testsstad@re not appropriate. In
practice, non-independence leads to fewer degrees ofdineed

2.1.4 Corpora

We use a number of different corpora in this thesis for tragrand evaluation. All of
these corpora are publicly available, though some requambership to the Linguistic
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Data Consortiurh(LDC) or to have participated in a particular event.

Hansard corpus The Hansard corpus is a Canadian French/English pardliegbal
corpus. The corpus contains 2.87 million aligned senteaas ponsisting of 70 million
words transcribed from the Canadian parliamentary pranged Although the corpus
only contains parliamentary proceedings, a wide varietjopfcs are discussed. The
corpus was obtained through the LDC.

PAHO corpus The Pan American Health Organization (PAHO) Conferencd<Gan-
eral Services Division parallel texts consists of 616 tlamaswords divided into 180
pairs of documents in English and Spanish [51]. The 180 decusnwere automati-
cally segmented into 20 thousand sentences, identified fiydse(minus a number of
abbreviations). The sentences were NOT aligned. This sdgpavailable onling

Europarl corpus The European Parliament Proceedings Parallel Corpusinert@
million words of paragraph-aligned transcriptions in 1lré&pean languages (French,
Italian, Spanish, Portuguese, English, Dutch, German,idbarswedish, Greek and
Finnish) [31]. The text was automatically extracted frore prarliamentary proceed-
ings from 1996-2003. This corpus is available ontine

NIST 2004 The National Institute of Standards and Technology (NIS&)fgrms
yearly evaluation of submitted machine translation systefihese systems include
commercial and research systems. We use the Chinese poftible 2004 data set
which consists of 200 Chinese documents subdivided int@ E&§ments. Each seg-
ment is translated to English by 10 machine translationesystand by four human
translators. A quarter of the machine translated segmeatsared by human eval-
uators on a one to five scale along two dimensions: adequatfliancy. Adequacy

Zhttp://www.ldc.upenn.edu
3http://crl.nmsu.edu/cgi-bin/Tools/CLR/clrcat
“http://people.csail.mit.edu/koehn/publications/quand/
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measures how well the content is preserved while fluency uneaghe quality of the
English. The corpus is available to participants of the 2B(&T evaluations.

North American News Text Corpus The North American News Text Corpus con-
tains English news articles on a wide range of topics fromltbg Angeles Times,
Washington Post, New York Times, Reuters and Wall Streetnzypublished from
1994-1997 and contains 350 million words of text. The cornwas obtained through
the LDC.

2.1.5 Software resources

Much of the work done in this thesis relies on previously dewed machine trans-
lation systems. These systems are composed of a combirddtidifferent software
components. All of the software used in this thesis is plyphawailable.

Pharaoh For the statistical phrase-based translation system wthadeharaoh train-
ing algorithn® and decoder [32]. This is a state of the art system that pegf@ompet-
itively in the yearly NIST evaluations. Included in this gage is an implementation of
maximum BLEU discriminative training for learning modelrpmeters [48].

GIZA++ GIZA++ is a method for learning word-level statistical tstation models
[49]. Given a parallel corpus, the procedure learns a pritibad alignment between
the words in the aligned sentences using the EM algorithmTék most likely word
alignment is then used as input to the phrase-based tremstyistem.

SRILM toolkit  For the statistical systems, a language model is also edjie used
the SRI language modeling toolkit. The toolkit is an n-gramnguage model package
with many different smoothing techniques implemefted

Shttp://www.iccs.informatics.ed.ac.uk/"pkoehn
Shttp://www.speech.sri.com/projects/srilm/
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Carmel Carmelis a finite state transducer progfa@iven a trained translation model
from the phrase-based system, Carmel is used to generateeshe translations of
a foreign sentence under that model. This n-best list ofstetions is then used for
optimizing model parameters [48].

BoosTexter BoosTexter is a classification program that learns a boostéaf de-
cision stumps [59]. BoosTexter is particularly well suited many natural language
classification tasks since it is very efficient and can hatalige data sets with many

features.

Commercial translation systems We used two different commercial translation sys-
tems in our experiments. In Chapter 3 we use translationgged online from SDL
Internationdl. These translations were obtained in February, 2003. Iipteha, we
examine Systran Professional version 4.0.0.

"http://www.isi.edu/licensed-sw/carmel/
8http://www.freetranslation.com
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Learning Word-Level Correction Rules

Most machine translation research requires bilingual datsisting of parallel sen-
tences. The produced systems have good translation penfieen but rely on an ex-
pensive data source. Parallel bilingual data is time-comsg to generate and is only
available in limited domains. In this chapter, we proposesthod for improving exist-
ing translation systems using monolingual data, which imdhntly available in many
domains.

3.1 Introduction

Machine translation systems are often available in bothctions of a language
pair. In commercial settings, these systems are develgradiadependently and the
dictionaries used by each are different. This results infi@réince in the knowledge
built into each system. By analyzing translations made bytistems in both directions,
these differences can be identified and used to learn cmeties.

To improve a foreign-to-English translation system, wetstdgth an English word
list. We translate the words in the list to the foreign langiand back again to Eng-
lish. The original English word list defines a ground truthtlee double-translated list
of words. Deviations from this ground truth point to casesmhthe system can be
improved. From these translated lists, we generate a ligtrefgn words and possible

19
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English translation options. For those foreign words wimety one translation option
exists, context-independent rules are learned. For foreigrds with multiple possi-
ble translations, a corpus is used to identify words thatiaantly co-occur with each
translation option using a likelihood ratio test. Thesengigant words are used to de-
fine context-dependent rules that disambiguate betweguosble English translation
options.

There are many advantages to learning word correction nues other types of
approaches. Rule learning approaches have proved suddassther natural language
problems and produce efficient and understandable rulesAl@ough the rules only
change the translation output one word at a time, word-fggeklation occurs in most
commercial systems and word-based research systems apetidre. Also, [34] show
that 90% of the words in a corpus can be translated using veonddrd translation.

In Section 3.2 we discuss the rule learning algorithm inicigdhe rule format, the
data generation process and the method for dealing withqumabs translations. To
evaluate the performance of the learned rules, in Sect®w8.apply the learned rules
to a commercial system translation of a Spanish corpus aadhiee the number of
changes made as well as the precision of these changes. \Wked®m Section 3.4

with future work.

3.2 Algorithm

A machine translation system translates from one natungllage to a second. We
define f to be a translation system that translates from Englishttetdreign text and
f' a system that translates in the reverse direction. We asthahee have unlimited
access to the translation systems, but not to the detailswtline systems operate. We
also assume that we have a large amount of monolingual ta®ahbie in the languages
that the machine translation systems translate between.

The input to our algorithm consists of the two translatiosteyns (foreign-to-English
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and English-to-foreign) and text resources: an EnglistiMist, a foreign word listand
an English corpus. The output is word-level correctionsuleat improve the foreign-
to-English translation system. Figure 3.2 outlines thpster learning these correction
rules. In this section, we look at each of the steps in moraildet

3.2.1 Rule format

We learn word-level rules of the form:
g(s,t, context(r)) =r

wheres is a foreign input word¢ is a system translated English word afnhtext(r)

is an English context. We use a bag of words representatiahifocontext. Although
this loses positional information, it is a simple repreaéinn that reduces the number
of parameters required during learning.

A context-independent rule is one that does not contain géegbfdenoted []) and
applies anytime occurs in the foreign sentence and is translated @ke application of
the rule changesto r. A context-dependent rule adds the restriction that thesteded
sentence must also contain one of the words in the learngéxdmf the rule to apply.
Figure 3.1 shows an example application of the contextpaddent rule:

g(alquitran, alquitran, [])- tar

which changes “alquitran” to “tar”.

The context-dependent rules have the possibility of inalgidoth an input context
and an output context. In practice, only context in the inpubutput language is nec-
essary. In our case, for foreign-to-English improvememiglish text is more readily
available, so only the output contexts are learned. Thegédbrcontexts are different
than the actual contexts used when applying the rules, wdoakist of foreign words

Lf unavailable, the foreign word list is not required for auethod. The addition of a foreign word
lists allows us to learn additional correction rules, butagarity of the rules are learned using only English
resources.
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foreign:

El contenido delquitr an en los cigarrillos de tabaco negro sin filtro es mayor que smdstantes tipos
de cigarrillos y son aquellos precisamente los de mayorwoosen la poblacién, lo que aumenta la
potencialidad del tabaquismo como factor de riesgo.

Original translation:

The content ofilquitr an in the black cigarettes of tobacco without filter is greabkattin the remaining
types of cigarettes and are those precise the of greateuepti®n in the population, what enlarges the
potencialidad of the tabaquismo as factor of risk.

Improved translation:

The content ofar in the black cigarettes of tobacco without filter is greakettin the remaining types
of cigarettes and are those precise the of greater consumiptthe population, what enlarges the poten-
cialidad of the tabaquismo as factor of risk.

Figure 3.1 Example application of the rujéalquitran, alquitran, [[)— tar. The first
sentence is the original Foreign sentence to be translateti¢ case, Spanish). The
second sentence is the translation made by the commersiainsy The final sentence
is the translation after the rule is applied. The changediwsin bold.

translated to English by the system. In our experimentshérefit of a large English
data set outweighs the downsides of using translated Engpistexts. Also, the bag of
words representation minimizes problems due to irreguwatexts by not considering
higher order n-grams or positional information.

3.2.2 Generating training data

Monolingual resources, such as a word list, do not contaimstation information.
We use the word list to extract translation information frdma English-to-foreign and
foreign-to-English translation systems. Given translagystemg and f’ and an Eng-
lish word list, we calculate translatiorf$w) and f'( f (w)) for every wordw in the list.
By translating words, rather than larger text fragmentsawad the alignment problem
of determining which translated words are associated. Rhase translations, we ob-
tain a list of foreign words and possible English transkatptions, which is then used
for rule learning.

We examine the SDL International translation system traatsiates in both direc-
tions between English and Spanish. Table 3.1 shows a sunwhéng data generated
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Algorithm Input/Output
Input:
English word list
foreign word list (optional)
English corpus
Output:
context-independent and context-dependent correctides rto improve the foreign-to-English
translation system
Generate training data
- Translate English word list to the foreign language anckitad&nglish
- Translate foreign word list to English and back to the fgndanguage
- Generaténput word s (foreign),current translationt andcorrect translation- (English) triplets using
the rules in Table 3.2
- For all wordsw in the corpus, generate frequency countsint(w)
- Let optiony, options, ..., option,, be all possible Englishorrect translationgor a giveninput word
Learn context-independent rules for non-ambiguous words
- Identify non-ambiguous words by finding atliput wordswith only a single translation option (i.e.
n=1)
- Generate context-independent rules of the form:
g(s,t.[) —r
Learn context-independent rules fork-dominant words
- Identify all k.-dominantinput wordswhere
count(option,) > k andcount(options) = 0 forall p # ¢
- Generate context-independent rules of the form:
g(s,t, [1) — option,
Learn context-dependent rules for ambiguous words
- Get the possible context wordsfor eachoption,, for the remaining ambiguousput words
- In the English corpus, find sentences whesgon,, appears
- Get all possible context words as the words surroundingtion,,
- For eachoption,,, generate the contextontext(option,), as allw that pass the significance lewel
threshold for the likelihood ratio test
- Learn context-dependent rules of the form:

g(s, t, context(option,)) — option,

Figure 3.2 Outline of algorithm to learn rules to improvedign-to-English translation.

The preprocessing steps generate the initial data for usaining the rules. The fol-

lowing three sets of steps describe the algorithms for legrthe context-independent
and context-dependent rules.
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Table 3.1 Exhaustive list of the different possible tratista equalities/inequalities
given a word (v), the foreign translation of that word (w)) and the translation back to

English ('(f(w))).

Occurrences Examplew, f(w), f'(f(w))
w = f'(f(w)) # f(w) 9,330| dog, perro, dog
w = f(w) # f'(f(w)) 278 | metro, metro, meter
w# f(w) = f'(f(w)) 8,785| scroll, rally, rollo
w= f(w) = f'(f(w)) 11,586 abstractness, abstractness, abstractness
w# f(w) # f'(f(w)) #w 14,523| cupful, taza, cup

from translations in February 2003 of 45,192 English wot®.[ A partition (i.e. non-
overlapping, exhaustive set) of the possible outcomesasvsh In this section, we
examine each of these cases and describe the informati@naged for improving the
translation systems. For most machine translation systérasiefault behavior when
the translation for a wora is unknown is to translate the word as(i.e. f(w) = w).
We assume that equality implies that the system could naskage the word. A message
or flag issued by the system could be used instead, if availabl

o w=[f(f(w))# f(w)
w is translated to a different string{w), in the foreign language and th¢ifw)
is translated back to the original word In this situation the machine translation
system is likely translating these words correctly. Mistlkan still occur here
if there are complementary mistakes in the translatioresyséxicons. In either
case, we do not learn any information.

o w=f(w)# ['(f(w)
w is translated to the same string in the foreign language. ddew it is then
translated to a different string when it is translated bacthe original language.
This happens whew is a word in both languages (possibly with different mean-
ings) and the English-to-foreign systerf) does not know the correct translation
(for examplew = arena,f(w) = arena,f’(f(w)) = sand). From these examples,
we learn that the translation systefrshould translate’(f(w)) to f(w). This
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information may or may not be useful. We can quérp see if this information
is already known.

o w# f(w) = f(f(w))
w is translated to a different word in the foreign languagé jtas then translated
as the same word when translated back to English. There areases where this
happens.

1. The most likely situation is that there is a problem witle floreign-to-
English system (). In this case, two pieces of information are learned.
First, if f(w) is seen on the input and is translatedftof (w)) then a mis-
take has occurred. We can also suggest the correct tramsl&iven a sen-
tences, if word s is translated ta ands = f'(f(w)), thens was incorrectly
translated and the correct translatiomis

2. The second case, which is less likely, is tlifét) is a word that, when
translated back to English, is the same string (this is sinid case 2 below
ofw = f(w) = f'(f(w))). Forexamplew = abasef(w) = degrade (present
subjunctive form of degradar, to degradg).f (w)) = degrade. We learn that
f(w) is an ambiguous word that can be translated as eithar f'( f(w)).

o w= f(w)=f'(f(w))
In this case, all the words are the same. There are two finsthere this can
occur;

1. If the translation forw in the second language is then the translation is
correct. This is common with proper names (for example,Madrid, f (w)
= Madrid, f'( f(w)) = Madrid). In this case, no information is learned.

2. If the English-to-foreign systenf) is unable to translate, thenw = f(w).
If this is the case, it is unlikely thab will actually be a valid word in the
foreign language (as shown above, this does happen 278 45182 times,
where thef (w) is translated to something different if). Sincew is not a
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valid foreign word, it is again translated asfrom foreign-to-English (for
examplew = matriarchal,f (w) = matriarchal,f’( f(w)) = matriarchal). In
this case, the translation systgihmakes a mistake on word.

o w# f(w)# f'(f(w)) #w
There are two situations that can cause this to happésa synonym forf’( f (w))
or there is at least one error in the translation systems. elfagsume that the
knowledge in the translation systems is accurate, then dahd f/(f(w)) are
appropriate translations fgf(w). These two cases can be disambiguated using
contextual information.

One last piece of information can be obtained whéw) # f'(f(w)). In these
cases, some translation was done fby We assume thaf’(f(w)) is a word in the
original language and can extend the word list in the oridaraguage.

Table 3.2 summarizes the information that is used to geméhattraining data from
these translated word lists. Thput wordsare foreign words. Theurrent translations
are the words expected to be seen in the output of the foteifmglish translation
system being improved. Finally, tleerrect translationsndicate which word theurrent
translationsshould be changed to.

3.2.3 Rule learning

Using the method described in the previous section, we mhthst of foreign words
and possible English translations for each foreign wordhihsection, we describe how
to use this data to learn correction rules to improve theigoro-English translation
system.

Non-ambiguous words

For non-ambiguous foreign words where only one translatpiion exists, a context-
independent rule of the form(s, ¢, [|) = r is learned, where = foreign input word¢ =
current English translation and= correct translation. Almost all non-ambiguous words
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Table 3.2 Patterns for generating training data for le@ynithes to improve the foreign-
to-English system. For each different translation listaiy option, we learn that when
“input word” is translated as “current translation” thersitould be translated as one of
the “correct translations”. Most of the information for ingping the foreign-to-English
translation system is learned from the English words listglish/foreign/English ex-
amples), but some information can also be learned from agiorgord list if available
(foreign/English/foreign examples).

Case input current correct
word translation | translation

English foreign English f(w) f'(f(w)) w

w# f(w)= f(f(w))

f(w) is not an English word

English foreign English f(w) f'(f(w)) w

w# fw) = f'(f(w)) fw) | FUw) | W)

f(w) is an English word

English foreign English f(w) ' (f(w)) w

w# f(w) £ f1(f(w)) fw) | FUw) | (S w)

foreign English foreign F @) [ FOFw)) | Flw)

w= fw)# f(f(w))

F/(f(w) = f(F(f(w)))

foreign English foreign FF@) [ FCFw)) | Flw)

w= fw) # f'(f(w)) FCFw) | U @) | U w)))

F/(f () # FU () # f(w)
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are generated from the case when# f(w) = f/'(f(w)). In this case the English-to-
foreign system knows that should be translated g§w), but this knowledge is absent
from the foreign-to-English system.

Ambiguous words

Many of the entries in Table 3.2 are inherently ambiguoushsas whenw
f(w) # f'(f(w)). For the remaining ambiguous foreign words where at least tw
correct translations for the same foreign word exist, wetrdaside between the possi-
ble translation options. We suggest two methods that bot#rdge an English corpus to
distinguish between translation options.

k-dominant words We would like to identify as many non-ambiguous words in the
data as possible, since these result in simpler rules. Bogiéncies in a corpus of the
translation options gives some indication about the Iii@did of the options. We define
a foreign word asc.-dominant if one translation option occurs at leadimes in the
corpus and all other options do not appear at all. When a woktddominant, it is
reasonable to assume that the input word should always h&ldtad as the dominant
option. For allk-dominant options, we learn a context-independent rule dlveays
changes the current translation to the dominant translaguion.

Determining significant context words For the remaining foreign words where mul-
tiple translation options exists and no one optiok-ominant, context is used to disam-
biguate between the options. Given an ambiguous input watdoption, ..., option,,

as possible correct translations, the goal is to learn aegbfdr each translation option
that disambiguates it from the other options. For each katios option, we collect all
wordsw from the English corpus that occur in the same sentences aption. We then
determine which of these context words significantly couoagith the option. These
significant words then become contextual triggers for thsicrating between the differ-
ent translation options for the context-dependent rules: af the words in the learned
context must occur in the sentence to be corrected for thiexbdependent rule to fire.
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Given a translation optiooption; and a context worah we want to determine ifv
occurs significantly in the same sentences as the optiony khethods have been pro-
posed for discovering co-occurrences such as frequenceyts,auean and variance tests,
t-test,y? test and likelihood ratio test [41]. The likelihood ratistéas been suggested
as the most appropriate for this problem since it does natmass normal distribution
like the t-test nor does it make assumptions about minim@aguiency counts like the
x? test [17].

Let S; be the set of sentences that contain the translation optitinn; andS; be
the set of sentences that do not contain the translationropfor each context word
in the sentences belonging 6, we use the likelihood ratio test to determine whether
or not that word significantly occurs ifi;. If w passes this test, then it significantly
co-occurs with the translation option and is added to thess@rdependent rule for that
option.

The likelihood ratio test tests an alternate hypothesigaga null hypothesis. The
null hypothesis is that the occurrence countsvah the two sets (sentences with and
without option;) come from the same distribution. The alternate hypothedisat the
occurrence counts are different in the two sets. We alsosafwe further constraint that
w must be more likely to occur in sentencesSyf since we are interested in positively
correlated co-occurrences.

For each set, the occurrencewfis modeled using the binomial distribution. For
both hypotheses, the likelihood equatior is p(S;; 6;)p(S;; 62). For the null hypothe-
sis, the assumption is that the counts come from the samébdigtn andd, = 0, = 6.
The maximum likelihood estimates of the parameters are used

_ count(w, S; U S;) _ count(w, S;) _ count(w, S;)
sl S © [l

wherecount(w, S) is the number of times occurs inS (for space, below we abbreviate
this asC'(w, S)). Using these parameter estimations and the binomial gssom the
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likelihood ratio can be calculated in a similar fashion t@Jf1

y = PSi01)p(Si;62)
¢ C(w,S5:) w, ER Si Si|—-C(w,S;
(C(‘qugi))ol( (1 — ) Usi=c S))(C| s_) WS (1 _ gy)(ISil=Clw,50)
B Si w w, Si w, Si|—-C(w,S;
(o)) 0CSO (1 = g)Usii=Clwso (| ‘S_)QC( (1 — §)(5i-C(w5D)

alc‘(w,si)(l 91)(\S| C(wS))@C(ws )(1 0y )(lS\ C(w,57))
g (w.5:) (1 — )(IS:|=C(w,8:)) gC (w, Si i)(1— 9)(\3 il—=C(w,5:))
gf(“’vsi)(l — 91)(\&IfC(w,Si))QQC(“’vSi)(1 _ 92)(|S_i\70(w13_i))

gC (w,5:USi) (1 — ) (ISi|+]Si|=C(w,S:U80))

In practice,—2log \ is used since it follows thg? distribution asymptotically:
—2log A = C(w, S;) log 01 + (|Si| — C(w, S;)) log(1 — 64)

+ C(w, (S))1log By + (|Si] — C(w, S;) log(1 — )

— C(w, S; + S;) log§ — (|S;| + |Si| — C(w, S; + S;) log(1 — )

We compare this value with a significance lewe),to make a decision about the
significance of the co-occurrence. We do this for all wordsantences that contain the
translation option. A separate context-dependent rulemegated for each translation
option. All words that pass the significance test are addéuetset of words that define
the rule contexteontext(option;). For our experiments, a significance lewet 0.001
is used. Intuitively, there is a one in a thousand chance adralidate word being
misclassified as significant.

To improve the generality of the contexts learned, we perftire test on stemmed
versions of the words and generate context-dependentusileg these stemmed words.
The Porter stemmer [54] is used to stem the words. For theingl@aof the chapter,

the results provided are for the stemmed versions.
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3.3 Experiments

To evaluate the performance of our rule learning method, xeenéned a commer-
cial Spanish-to-English translation system. We learndesrusing a 45,192 English
word list [56], a 29,977 word Spanish word list and 5.1 milliénglish sentences from
the North American News Text Corpus. We learn context-iedejent rules for non-
ambiguous words ank-dominant words withk = 5. For ambiguous words, we learn
context-dependent rules witlh = 0.001 used to test the significance of the context
words.

We applied the learned rules to the Spanish portion of the Afaarican Health
Organization (PAHO) Conferences and General servicedl@lacarpus. We evaluated
the impact of the rules using two measures. To evaluate therage of the rules, we
measure the number of rule changes made over the corpusallm&ythe accuracy of
the rules, 600 random rule firings were manually evaluateal hgtive English speaking
judge. The judge was asked to choose between the origimalateon and the corrected
translation for each rule firing.

3.3.1 Applying word correction rules

Each Spanish sentence in the PAHO corpus is translated t@rgpmmercial sys-
tem to get the initial translation. Then, the rules learnsidgithe algorithm in Section
3.2 are applied to correct the sentences. Table 3.3 showsithber of rules learned us-
ing our method. We learned 6,783 context-independent witese only a single trans-
lation option existed and an additional 809 context-indejeat rules fork-dominant
words. To correct the ambiguous foreign words, we learn885Lcontext-dependent
rules. Table 3.3 also shows the results from applying theles to the translations of
the Spanish sentences. The rules change 22,206 words B21a¥,94% of the sentences
from the translated PAHO data set.
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Table 3.3 Summary of results for word correction rules gaieel from a word list with
45,192 entries applied to the PAHO data set.

Rule type Rules| Avg. # words| Rules| Words

learned| in context used| changed
Context-independent 6,783 - 701 5,022
Context-independent, dominakt5 809 - 191 4,768
Context-dependent, signif. =.001| 1,355 5 301| 12,416

Table 3.4 Proportion of correct rule changes for both canteependent and context-
dependent rules as measured by a native English speakefaarfom changes.

Rule type Proportion correct
Context-independent 0.99
Context-dependent 0.79

3.3.2 Rule precision

A native English speaking judge manually evaluated a ransample of 600 rule
changes. For each change, the judge was asked to deterntiveeafiginal machine
translation or the corrected translation is correct. The#eons were presented ran-
domly to the judge to avoid any bias. Figure 3.4 shows thequtam of correct rule fir-
ings for the context-independent and context-dependésg.rlihe context-independent
rules have very high precision. This occurs since a majofithe context-independent
rules represent changes where the original system doesowtdny English translation.
In addition, the context-independent rules are corredtioge words that were found to
be non-ambiguous by the rule learning system. For the ctdependent rules, the
rules must choose between multiple translation optiorssitieag in lower precision.

3.3.3 Using extended word lists

The methods in this chapter use an English word list to géadraining data. In
this section, we present two methods for extending this wstdOne of the advantages
of the rule learning method described above is that it is sbtmuerroneous words in the
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Table 3.5 Summary of results for word correction rules geteet using a general word
list with 45,192 entries plus 419 learned words and 5,21 5aioispecific words applied
to the PAHO data set.

Rule type Rules| Avg. # words| Rules| Words

learned| in context used| changed
Context independent 7,155 - 903 6,526
Context independent, dominakt5 816 - 200 5,038
Context dependent, signif. =.001| 1,444 5 327| 12,671

word list. If the system does not recognize a word in the waatdthen it will not get
translated, as is the case where= f(w) = f'(f(w)). No learning is done in this case,
S0 erroneous words are filtered by translation system.

When translating to f(w) and back to the original language 8§/ (w)), if f(w) #
f'(f(w)) then some translation was done betw¢én) and f'( f(w)). We assume that if
the machine translation system translatés) to f'( f(w)), thenf’(f(w)) is an English
word. Using this method, 419 additional words not in the ioag English word list are
learned.

In many circumstances, translation systems are to be usedpecific domain (for
example medicine, politics, public health, etc.). The PA#i@a set contains documents
in the public health domain. To improve the recall of the miaetranslation system
we can incorporate more rules that contain terminologyigeglevant to this domain.
For the PAHO data set, the English translations of the Shatosuments are available.
Using this English data we add an additional 5,215 new wardbke original English
word list.

Table 3.5 shows the rule results with the original 45,192ds@lus the additional
419 learned words and the 5,215 domain specific words. Thié@ual words add 468
new rules. Although these new rules only constitute a smadition of the total rules
(5%) they account for over 8% of the changes. In particut@rdiomain specific context-
independent rules fire over four times more often than tresrigarned from the generic
word list. Because these additional rules are learned wkngain specific words, they
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are much more likely to apply for translating text in thattgardar domain. With the
addition of these new rules, 78% of the sentences are cedégtthe rules.

3.4 Discussion

In this chapter, we have examined a technique for improvingaehine translation
system using only monolingual text. Unlike parallel biluad data, monolingual data
is available in a wide range of domains [40]. Our method oelyuires access to the
translation system and makes no assumptions about the ftyqamslation system.

By translating English words to a foreign language and backnglish, differ-
ences in information between the foreign-to-English angliEh-to-foreign translation
systems are isolated. Using this information, correctioles are learned. Context-
independent rules are learned where only a single traoslaption exists. When there
is ambiguity about the correct translation, the likelihaatio test is used to identify
words that co-occur significantly with each translationappt

Using the learned rules, over 24,235 words are changed ompasof 616,000
translated words. On a random sample, 99% and the contgp&mdent rule firings
were correct. The context-independent rules achieved arlpercision of 79% even
though a significance level of 0.001 was used. The main refasahis lower precision
is that the likelihood ratio can suggest co-occurrencesatesignificant, but that are
not useful for ambiguity resolution. This is attenuated wkige counts are very small
or when the ambiguous translation is common and the couetBigh. In these cases,
common words such as “is”, “that”, “it”, “have”, etc. can lentified as significant.

Another problem is the rule representation chosen. Theegbulependent rules use
a bag of words representation. This representation lo$asnation such as word order
and does not include additional information such as syntasemantics, which can be
useful for discriminating significant co-occurrences. Egample, when deciding be-
tween “another” and “other” in the sentence fragment “Arotimportant coordination
type...”, the location of “type” and the fact that it is singusuggests “another” as the
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correct translation, but our existing method cannot detest

One final problem is that stemming can cause undesired delgt®in the contexts
learned. As seen in the sentence fragment above, pluralityportant, particularly
when deciding between two translations that only differ hyrgity. Unfortunately,
stemming, in attempting to improve generality, removesphueality of a word. The
combination of these problems leads to a lower precisiorntercontext-dependent
rules. Future research should be directed towards emga@lternate rule representa-
tions and alternate collocation techniques such as in [35].
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Learning Phrase-Level
Correction Rules

In the previous chapter, we described a method for imprositrginslation system
using only monolingual data. Monolingual data is widelyikaae, but does not contain
any novel translation information. Parallel bilingual @abntains sentence fragments
in two languages and is commonly used to train statistiealdiiation systems. Parallel
data is more expensive to generate, but is available in mamyulges and domains.
In this chapter, we continue to examine translation systapravement and describe a
method for learning phrase-level correction rules usinglilingual data.

4.1 Introduction

Figure 4.1 shows a foreign sentence, and machine and huamestetions of that sen-
tence. The machine translation is a literal, word for woeth&lation, but the meaning
is not well preserved. In this chapter, we learn phrasetleweection rules to correct
the machine translation output. In the exam@i#ting is openedshould be changed
to House metand hoursshould be changed tp.m Rather than training on the for-
eign/English pairs, we instead train on the machine trénsidouman translated pairs.
Training on these English-only pairs allows us to apply rod#ithat utilize lexical sim-

36
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La séance est ouverte a 2 heures,
(a) The sitting is opened at 2 houts.
(b) The House met at 2 p.m.

Figure 4.1 Example French sentence with machine translé@ipand human transla-
tion (b).

ilarity by leveraging the translation capabilities of dig translation systems.

Given a translation system to be improved and a paralletdnial corpus, training
data is generated by translating the foreign sentenceg tissnsystem. This results
in a new corpus consisting of machine translated and hunaaslated sentence pairs.
Ignoring paraphrasing effects, differences in these septepoint to mistakes in the
translation system.

To identify these mistakes, a partial alignment is learnetivben lexically iden-
tical portions of the machine translated and human traeglaentences. Unaligned
phrase pairs are extracted based on this alignment as eamgidrase-level correction
rules. Statistics are gathered about these candidateinules corpus and used to filter
the rules based on their frequency and accuracy. Given ana@siated sentence, the
learned rules change one phrase to another phrase. Althpargphrases, rather than
corrections, can be identified by our proposed proceduey, dne often filtered out by
the filtering steps and those that do pass tend to be hightguzintext-independent
paraphrases and do not alter the quality of the translation.

The example highlights two reasons for applying an improeeetnmethod to ma-
chine translation. First, general performance improvamean be learned by training
on an additional bilingual corpus. This is particularly ionfant for commercial systems
that are often rule-based rather than data-driven, buswtalie for statistical systems
where improvements are also achieved. Second, trainingioguml data in a different
domain than the original system was trained allows dompeétisic knowledge, such as
House metto be incorporated into the end system.

Although the method we present is applicable to any machamslation system, the
biggest benefits are seen on commercial systems, which a@imed on the same data
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used for rule correction. In many settings, commercialesyst produce lower quality
translations, but they are not without their benefits. A caroial system can translate
10,000 sentences in 1 minute. The same sentences take 8esiiodranslate using a
phrase-based system (Pharaoh, [32]). Also, commercitdmmgstend to be more robust
and fail more gracefully than research systems.

In this chapter, we first discuss related work. In Sectionwie3describe the rule
learning algorithm, including the alignment procedure amé generation. In Section
4.4 we compare the results of a commercial translation syated a phrase-based sys-
tem improved with both the learned context independensraiel a baseline translation
improvement method. Finally, we conclude with a summaryowitabutions and future
work.

4.2 Related Work

Many research projects involve learning rules from texaddh Chapter 3 we use
monolingual resources to learn word correction rules fangtation systems ([30]). [5]
use documents translated from the same source to learnhpasag for use in other
applications such as interpretation and generation ofraltanguage. They iterate be-
tween learning phrase rules and context rules in a co-trgiftemework. For general-
ization, the rules include parts of speech in addition tdéeal component. This rule
generality was designed to cope with the wide variation®entered in the different
human translations. In our work, the translations are muckemsimilar and allow for
alignment based techniques. More general-purpose ruiaihggframeworks have also
been suggested [8].

Our work is related to many aspects of current statisticathnmee translation re-
search. One of the foundational components of statisti@astation systems is an align-
ment of parallel text. An alignment specifies pairs of wordplorases in the parallel
sentences that are translations. These alignments aréaiseltulate word translation
probabilities [9], phrase translation probabilities [&0]probabilistic syntax rules [22].
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We learn a partial alignment model that is related to phrhgeraent models [42]. Most
of the alignment models rely on some form of EM training tahetihe sentence align-
ments [42, 9]. Because we pose our problem as a same-lantpaagimg problem, we
can use simpler techniques to learn the alignments.

Besides alignments, our approach has a similar construitiiphrase-based transla-
tion models [50]. These approaches learn a probabilisticstation model with reorder-
ing. Ignoring reordering, the generative process of a ghb@sed system can be seen
as replacing foreign phrases with English phrases. In oukwee learn deterministic
rules that replace English phrases.

Finally, there has been some work on improving translatistesns to maximize
translation performance. [48] and [62] optimize model pagters on a development
set to maximize the BLEU score. These methods are only apptedor statistical
translation systems where multiple models are combinegnobabilistic or log-linear
model. We are interested in improvement procedures thatodlaety on particular
translation system characteristics.

4.3 Learning Phrase Rules

The input to the algorithm is a set of aligned bilingual pdis e;) and a machine
translation systenf, to be improved. Using this translation system, we first gatee
a set of training examples by translating the foreign sergen This results in Eng-
lish sentence pairs of the same foreign sentenfs; ), ¢;), where one translation was
generated by the translation system and the other by a human.

Differences between these pairs point to possible placesenthe translation system
is not translating correctly. To identify these differeaceve first learn a partial align-
ment between the machine-generated and human-generajéshEranslations. From
this alignment, we extract candidate context-indepenglerase rules. These candidate
rules are then scored and filtered to obtain the final set obwéction rules.
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4.3.1 Rule format

We learn context-independent phrase-level correcticsrof the fornp — p, where
bothp andp are non-empty strings. Given a translated sentence, a regeiffp occurs
in the sentence and replagewith p. For example, applying the rufe— p to the sen-
tencety, to, ..., p, ..., t,, results in the corrected senterigets, ..., p, ..., t,. The rules are
context-independent since every occurrencgisfreplaced, regardless of the context it
occurs in. This context independence assumption simpthiesearning procedure and
tends to work well in practice.

4.3.2 Learning an alignment

A key advantage of learning from sentence pairs that aredrsgime language is
that lexical cues can be used to assist the alignment digoritf a word occurs in both
sentences, it is very likely that those two occurrences lshioe aligned. We leverage
this information to generate the alignment between theepeets. For each sentence pair
in the machine translated/human translated English trginorpus, we learn the best
partial monotone alignment where only lexically equal weoade aligned. A monotone
alignment is an alignment where no two aligned pairs crogsecifically, given the
machine translated sentenget,, ..., t, and the human translated senteace., ..., e,,,
if ¢; is aligned tce;, then all words, such that > i can only be aligned te, such that
[ > j and all wordg,, such that: < ¢ can only be aligned te, such that < j. The best
alignment is the alignment that aligns the most words betvilee two sentences.

For sentences of lengih the best monotone alignment can be calculated optimally
using a dynamic programming method @n?) time. Figure 4.2 outlines the algo-
rithm to calculate the cost of the best alignment. As with tdy:iamic programming
methods, to calculate the actual alignment, backpointerst e kept and retraced once
the best cost has been found [14]. Figure 4.3 shows the atighproduced by this
algorithm for the sentences in Table 4.1.
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cost[0][j] =0
cost[i][0] =0

for ¢ = 1 to lengthf)
for j = 1 to length{)
cost[i][ 7] = max{cost[i-1][j], 1 + cost|i][k]}
Vk:S; = E,andk < j

Figure 4.2 Algorithm for determining the cost of the besttam®notone alignment
between machine translated sentef@nd human translated senterice

The House nmet at 2 p. m
| | I

The sitting is opened at 2 hours .

Figure 4.3 Word alignment learned by our method between tinean-translated sen-
tence (on top) and machine-translated sentence. Alignedsimoe denoted by|".

4.3.3 Generating rules

Once the alignment is learned, we extract phrase pairs weguretween aligned
words as candidate correction rules. Given the sentence{{§ai, ts, ..., t.), (e1, €2, ..., em) },
aligned wordg; with e; andt; with e, and the unaligned phrasg...t;,_;, we extract
the candidate correction rute,,...t;_y — ex41...¢.—1. For example, given the above
alignment, we extract the two candidate correction rulesu$eé met’— “sitting is
opened” and “p.m™ “hours”.

After generating the candidate correction rules, the finkd set is obtained by ap-
plying two filtering criteria to eliminate inappropriateles. First, the candidate rules
are filtered based on the number of times the phrase pairrectatigned in the training
data, i.e. whethetount(p — p) > t., t. is the count threshold. Filtering by count
assures that the phrases are not spuriously aligned anththatcuracy of the other
scoring criterion is meaningful. We also filter the rulesdzh®n an estimate of the
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Table 4.1 Sample phrase rules extracted for correctingahenercial system trained
on one million sentences. A rufe— p changes the phrageto p.

Rule score| count
how much costs some the ACD}; at what cost to CIDA 1.0 98
author of thelowest tender obtain low bidder awarded 1.0 22
offices secondary- sub-offices maintained 1.0 15
for lalre— the first 0.959| 304
meeting begins agai House resumed 0.895| 334
At 10 hours— Ten o’clock 0.867 13
With the order!— Order, please. 0.593 73
Dirty — Sales 0.286 2
, this evening;— tonight 0.094 8
financial— fiscal 0.092| 586

correction accuracy. This estimate is

_ count(p — p)
score(p — p) = —count(p)

wherecount(p) is the number of timeg occurs in the translated sentences. Figure 4.1
shows sample learned rules along with the rule count ane@ scor

4.4 EXxperiments

To evaluate the effectiveness of the phrase rule learnitbadeve applied the algo-
rithm to a modern commercial system and a state of the arspHyased system ([32]).
We measure improvement based on the BLEU evaluation metd@bso examine rule
accuracy, coverage and computation time.

4.4.1 Experimental setup

Data We used the Hansard Canadian French/English bilingualusarpour experi-
ments. The first 1 million sentences (20.1 million words)evesed as training data for
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the phrase correction rule learning. A 100 sentence deredopset was used during
training for parameter selection and ten 10,000 senterteeseéés were used for testing.

Translation systems We learn correction rules to improve a modern commerciaktra
lation system and a phrase-based translation system. &@htlase-based system, we
used the Pharaoh training algorithemd decoder [32] and trained on ts@mel million
sentences used for rule learning. We selected model pagesneting maximum BLEU
discriminative training [48]. For both the commercial ®rstand phrase-based system,
we measured translation performance and computation torethe statistical system,
there has been some research investigating greedy mettaddisade off translation per-
formance for faster translation times [67, 23]. For our eéxpents, we are interested in
higher translation quality and internal decoding paransetere selected appropriately.

Alternate improvement method Given pairs of system and human translated English
sentences we learn a set of improvementrules. For compavigoalso trained a phrase-
based “machine translated English to human translateddtrigtanslation system on
this same data. The one million translated English/humagli@insentence pairs used
for learning rules are used as training data. As above, we tePharaoh translation
system with maximum BLEU discriminative training. To carr@n unseen machine
translated sentence, the learned statistical model istos@@nslate” the sentence.

Evaluation metrics Our goal is to improve the translation output of a machinedra
lation system. We use BLEU to measure to what extent thisasraplished. One of the
main advantages of using commercial translation systeitigejstranslate much faster
than research systems. This is important in many data+dawd real-time applications.
For all of the methods, we measured the translation time laddrrection time.

To better understand the behavior of the rule learning nikthh@ also measured
the number of changes made, the fraction of those changearthknown correct and
incorrect, and the number of rules used. The number of dochemges is calculated as

Lhttp:/iwww.iccs.informatics.ed.ac.uk/"pkoehn
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the number of rule changes where the changed phrase is fodinel human translation.
Similarly, the number of incorrect changes is calculatethashnumber of rule changes
where the original phrase is found in the human translatowl, incorrectly changed
by the rule. In practice, there are still many changes thahalofall into either of
these categories for which we cannot determine the coesstbased on the human
translation.

Parameter estimation The last step in the phrase learning algorithm is to filter the
rules by occurrence count and by score. By varying thesshbtds the coverage and
the accuracy of the rule set is affected. For our experimedsare interested in max-
imizing the BLEU score. The BLEU score was calculated fortlaleshold values for
occurrence count $2, 3, 4, § and for the score threshold {9, .05,.1,...,1} on an
independent 100 sentence development set. The best peropair of parameters was
used during testing. For the commercial system, this wastce@ and score> 0.1 and

for the phrase-based system coun? and score> 0.25.

4.4.2 Improving MT systems

Translation performance Table 4.2 shows the average BLEU scores for the different
methods. For both the commercial system and phrase-bastsrsthe learned phrase
rules improve the translation performance. For the comialesystem, more than 5
BLEU points improvement is achieved; a 30% improvement.rkethe phrase-based
system, which is trained on the exact same data, the phrése result in a statisti-
cally significant improvement based on a paired t-test dverliO test sets. For both
translation systems, the phrase rules perform better tteambre complicated and time
consuming “translation” improvement process. On the phtessed system, learning
an improvement translation system fails to improve on thgimal system. Table 4.3
shows example corrections made to the commercial system.

The individual test scores for each of the 10 test sets anershoFigure 4.4. For
the commercial system, there is a clear separation betweseoriginal system, the
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Table 4.2 Average BLEU score and computation time over tsts tior the two dif-
ferent translation systems improved with the two correctieethods. “translation” is
a trained English to human English statistical phrasedbasslation improvement
method. “phrase rules” is improvement based on the phrdss generated by our
method. All BLEU scores are significantly different basechgraired t-test over the ten
tests, except “phrase none” vs. “phrase translation”.

MT system || correction | BLEU time
method

none 0.170 57s

commercial| translation | 0.204| 16,387s

phrase rules 0.221 8s

none 0.250| 5013s

phrase | translation | 0.250| 16,524s

phrase rules 0.252 6s

translation improved system and the phrase rule improvetesy A statistical test
of significance with a paired t-test over the 10 tests confitinese differences. For
the phrase-based system, the separation is not as cleag tisilearned phrase rules,
the improvement is consistent and significant. However tridweslation improvement
method only improves the BLEU score for 3 of the 10 tests aiisl ia perform better
on average.

Correction time Table 4.2 also shows the computation times for the diffeadg-
rithms. Besides resulting in better translations, the gpinalles are very efficient to
apply. In both the commercial and the phrase-based systgphyiag the correction
rules takes only a few seconds. Correcting the systems tisengtatistical translation
method took substantially longer. In fact, using “translat for correction tends to take
longer than translating from foreign to English.

One of the reasons for using a commercial translation systeime computation
advantage. The translation time of the commercial systesrdisrs of magnitude faster
than the phrase-based system. By applying the correcties,nwith just a few addi-
tional seconds of computation time, the translation pemtorce of the commercial sys-
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Table 4.3 Example sentences corrected by the learned rGleasnged phrases are in
italics and replaced by those bold.

0.26

0.24

BLEU

02 |

0.18

0.16

Human translated
Commercial:
Rule corrected:

Mr. Speaker, | will be very brief.

Mister theSpeaker, | will be verghort

Mr. Speaker, | will be veryrief.

Human translated
Commercial:
Rule corrected:

| really did not say that, even by implicatio
| really didnotmake it cleart either.

| really didnotsuggestt either.

=)

Human translated
Commercial:
Rule corrected:

Again | say they cannot have it both ways.

| repeat it it is one or the other.
| say, it is one or the other.

0.22

T T T T
phrase O
phrase rules X
translated ~ +
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Figure 4.4 BLEU scores for the commercial system (a) and tinege-based system (b)
for the 10 different test sets. For each of the systems timslaon improved system
and phrase rule improved system are also shown.
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Table 4.4 The number of changes made, number of rules usqat@pairtion of correct
and incorrect rule changes all averaged over ten 10,006rsemtest sets.

System known | known | number of| number of
improved | correct| incorrect| changes rules
commerciall 0.482 | 0.076 14130 3410
phrase 0.635 | 0.067 194.1 85

tem is improved drastically, approaching the performari¢ckestatistical phrase-based
system.

Rule statistics To better understand the behavior of the phrase rule imprenée
method, Table 4.4 shows statistics for our method applidzbtb the commercial sys-
tem and the phrase-based system. The rule correction methkek substantially more
changes to the commercial system with many more rules thaneophrase-based sys-
tem. With 14,130 changes over 10,000 sentences, the metkoabas more than one
correction per sentence.

In both systems, the proportion of changes known to be corsearound 0.5 to
0.6. The BLEU score still improves, though, since the nundfencorrect changes is
low. For the commercial system, 48% are known correct, 7.8%k@aown incorrect and
for the other 40% it is unknown whether they are correct ooirect. These unknown
changes occur when neither the original phrase nor theatedg@hrase is found in the
reference sentence. These unknown changes have only a imipact on the BLEU

score.

4.4.3 Rule filtering analysis

For the above experiments, we selected the threshold ptesrie maximize the
BLEU score on a development set. Depending on the desirddcaiypn, these para-
meters can be set manually, for example to increase the calegacy. To analyze the
relationship between the parameter settings and the ireprext performance, Figure
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4.5 show the BLEU score, correct proportion and number ohgha for the commercial
system on the first test $eSimilar trends were seen for correction rules learnedHer t
phrase-based system.

For all of the different measures, there is only a small difee between the varied
count threshold values. Increasing the rule count inceetiee rule accuracy and de-
creases the number of changes. The parameter that has thdraroatic effect on the
results is the score threshold. In Figure 4.5(a) we see hieatighest BLEU score for
this test set is at 0.1, which is the value learned on the dpwetnt set. Even though
the accuracy of the rules is lower at this level, we see in féigu5(c) that the actual
number of changes is much higher for lower thresholds. Astiteshold increases, the
number of changes decays exponentially. This exponeatitdff offsets the increase in
precision, resulting in lower BLEU scores.

For most of the range, as the threshold increases, the rcleaay also increases. If
high precision is desired, the score threshold can be a&djugt higher threshold only
changes the original translation system’s translationnathere is high confidence in
the correction rule. For example, selecting a score thidstfo0.4 results in 80% of
the rules making known correct choices, while still obtagha 3 BLEU point increase
(17% improvement).

4.5 Conclusions and Future Work

In this chapter we proposed a method for learning phrasa-tarrection rules to
improve the translation performance of a translation sysising a parallel bilingual
corpus. Aligned machine translated/human translatediginglaining data is gener-
ated by translating the foreign sentences to English. Usirsgdata, we learn a partial
monotone alignment. Based on this alignment, we learn coorerules. These learned
rules improve the performance of a commercial system by 3@#oamly minimal extra
computation time. Statistically significant improvemeaits also seen on a state of the

2For graph clarity, the score threshold of 0 is not shown, lmésdcontinue the trends seen in the
current graphs.
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Figure 4.5 BLEU score (a), proportion of rule correctionsttare correct changes (b),
and the number of rule changes (c) on the first 10,000 tesbtsdifferent rule filtering
thresholds.
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art phrase-based statistical system.

One possible improvement of the rule learning method is érthe construction.
We learn context-independent rules. While these are dfiti¢@learn, the context in-
dependence assumption is often not true. For example, Shehwould not always be
changed to “p.m.”. [30] propose contextual rules based gnifstantly co-occurring
context words, which could be added to the learned phrass.ridlternatively, rules
incorporating syntactic information could be used [5]. tRamrection based on syntax
is one method to retain the performance of a phrase-baseshsyshile incorporating
the theoretically well motivated syntactic informatior2]2

In this chapter, we have only looked at phrase-level caoeatules. Examining
translated and human English pairs can also be useful fer ttpes of correction. One
of the main criticisms with phrase-based translation m®aethe simplistic reordering
model. Rather than attempt to modify this model internablye solution is to post-
correct the sentence ordering based on additional infeemasuch as syntax. The
advantage of this type of approach is that there are many toots available when
dealing exclusively with English, such as parsers and tagge
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Learning Example Usefulness

So far, we have examined two different methods for improwtagk box machine
translation systems. The only assumption made was that evallawed to query the
translation of text using the machine translation systemthis chapter, we include the
additional ability to train translation systems based omabel bilingual examples. This
additional assumption allows us to analyze the usefulnégssdovidual examples for
training a translation system.

5.1 Introduction

Natural language processing techniques are becoming mdrenare data-driven.
Researchers rely on large data sets that often require manyhurs of annotation at
a considerable cost. Given this cost, an important quesiamether all examples are
equally useful.

In this chapter, we examine this question for machine tediwsl, though the meth-
ods we discuss are applicable in many other applicatioratis8tal machine transla-
tion methods are trained on parallel bilingual examplesistimg of pairs of sentences
in two languages. For popular languages, training datacgetgin on the order of
hundreds of millions of words. Even in these cases, thougta & rarely available in
domains outside of news or government proceedings and otlteedanguage pair is

51
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Monsieur I'Orateur, ma question est simple.
Mr. Speaker, my question is simple.

M. Roch La Salle (Joliette) propose:
Mr. Roch La Salle (Joliette) moved:

...beauty is life when life unveils her holy face.
...beauty is life when life unveils her holy face.

D

D

Figure 5.1 Three foreign/English parallel bilingual exdesp The first line is French
and second English (reprint of figure 5.1).

almost always English. For less popular languages, théittdesdata readily available.
Given this, along with the cost of generating training datantifying the most useful
examples is a crucial first step in minimizing the amount aiining data required.

In Chapter 1, we examined three parallel bilingual exampl@r convenience,
these examples are shown again in Figure 5.1.) Qualitgtihelse examples are poor
choices for training a translation system: the examplesadgrovide additional infor-
mation in the context of other examples. Many other examppgrties can also result
in inferior examples. For machine translation, like othatunal language processing ap-
plications, a large amount of data preprocessing is reduice example tokenization,
sentence splitting and sentence alignment. These pregsiogesteps introduce noise in
the data. Human translator performance also gives riseverlquality examples: trans-
lators make mistakes. This can occur due to human error bofdanguage familiarity
and results in poorly phrased translations or inapprapsahtence orderings. All these
factors can reduce the usefulness of an example for usegduaiming.

Given a set of training examples, t,, ..., t, our goal is to order these examples
based on their usefulness when used to train a statisticathimatranslation system.
We accomplish this by first automatically evaluating mu#imndom subsets of the ex-
amples. Given these example subsets and associated sherpspblem then becomes
a parameter estimation problem where the goal is to assigmgbe scores that best
explain the subset scores. The examples are then rankedl dratigese scores.
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In this chapter, we make three main contributions:

All examples are not equally useful We describe an algorithm for ranking examples
based on their usefulness for training a machine translatfstem. When used to train

a translation system, the top ranked examples performfgignily better than random
selection of examples.

Learning framework No ranking or score information is readily available for ex-
ample usefulness. We describe a framework for generataiging data for learning
example scores based on automatically scored random sudfgbe examples.

MT example feature analysis Using the learned ranking, we compare feature values
for the top ranking examples to a random set of examples. FEnisrcomparison, we
identify salient features for discriminating good labeted unlabeled examples.

Identifying the usefulness of examples builds an importamthdation for many av-
enues of future research. Given useful examples, a modebedmuilt and used to
identify those unlabeled examples (e.g. untranslatedeseas) worth labeling in a
framework similar to active learning. Also, given rankedaeples, we can identify
features of good and bad examples. These features can @uosedul insights into lan-
guage characteristics and help analyze the translatiagaraysarning method. Finally,
a model of example usefulness can also be used for outliectii@h to remove those
examples that are inappropriate.

In this chapter, we first discuss previous research. We tlesoribe our method
including theoretical analysis. In Section 5.4 we compaaemme translation systems
trained using the most useful examples with those trainehondomly selected exam-
ples. We conclude with a brief analysis of applications of thsearch.

5.2 Related Work

Although the question of example usefulness has not prelyidaeen explicitly ad-
dressed, there are many related problems that have beemexiam
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Active learning Active learning research attempts to find those examplésthanost
usefulgiventhe current trained model. In many different domains andiegions, re-
searchers have shown that given a partially trained modelesexamples are more use-
ful. Active learning techniques commonly use the uncetyatf the model on unseen
examples as a selection criterion [38]. Alternatively, noels have been proposed that
select examples with maximal disagreement to reduce treovespace [21] or select
examples to minimize an evaluation function on a test set [B&cause of the com-
plexity of current machine translation methods, these ousgtare not applicable. Our
approach differs from most active learning research becasesare interested in finding
universally good examples for a given training method,eathan for a partially trained
model.

Boosting Boosting continually reweights examples during trainiogdcus on those
examples that are more difficult [20]. As the boosting aldyon continuously reweights
the examples, the learning algorithm is forced to focus ablematic examples. While
the example weightings do provide a ranking, this rankirigriexample difficulty and
itis not clear how this relates to example usefulness. Al agtive learning techniques,
boosting reweights examples with respect to the currentein@dso, boosting requires
the training algorithm to accept weighted examples, whiaiat easily done for MT.

Feature selection Feature selection methods attempt to reweight featurds &7k
features [19] or find good subsets of features [7]. If we vieining examples as fea-
tures, many of the approaches suggested in the featurdigelbterature are relevant.
However, the techniques applied and data available foufeatelection is not appro-
priate for the example ranking problem. These methods melydulitional information,
such as class labels, or involve a search of the feature spadceh is not tractable for
machine translation.

Hypergraph approximation Hypergraphs are an extension of traditional graphs where
hyperedges describe the weighting between two or moreceerin the graph [1]. Since
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most graph algorithms function on traditional graphs, a @wam problem is to find a
traditional graph approximation of a given hypergraph. & view the set of examples
as graph edges and the selected subsets as defining hygenmredge graph, our pro-
posed framework is similar to a hypergraph approximatiabjam, where the goal is
to find the edge weights between individual vertices. Ouppsed solution is similar
to the commonly used Clique Expansion method.

5.3 Ranking Examples

The goal is to rank the examplés, ..., t, based on their usefulness in training a
translation system. Because of the time required to tratheamaluate a translation sys-
tem, methods that involve searching the space of examplbioations are not tractable
[7]. Instead, we rank the examples using a single pass métlavdnly requires an ini-
tial set of translation systems to be trained and evaluated.

5.3.1 Generating training data

One of the key challenges of this problem is that there is noai gxample rank-
ings or example scores to learn from. Information can, h@wnéwe obtained about the
performance of sets of examples. Given a set of exampleschingstranslation system
is trained. This system is then evaluated on a developmetd sbtain a score for that
set.

To generate the training data we seleatandom subsets aexamplesfi, f, ..., fi,
from then original examples. A machine translation system is trameeach of these
subsets and evaluated using an automatic evaluation nes@sgr BLEU using a devel-
opment set) to generate a score for each subsgt. To evaluate the general usefulness
of the examples, the development set must be large enougimimize increases in the
score due to spurious overlap between the randomly seleatexkts and the develop-
ment set. These subset/score pdifs s(f1)}, {f2, s(f2)}s ooy { fins S(fin)} define the
basic training data. This framework only requires that a ehgdn be trained and auto-
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matically evaluated and is therefore applicable to a widegesof applications besides
machine translation.

5.3.2 Modeling example contribution

Rather than directly learning a ranking of the examplesemh example we learn
a score,s(t;). We then sort the examples based on this score to obtain thkénca
Given the training data generated as described above, #heemnmaining component
required is a model of how training examples contribute éqarformance of the trained
system. Specifically, we need a model of how the example scelate to the automatic
evaluation score of a system trained using those examples.

Because of the complexity of the statistical translatiaycpss and because multiple
different models are combined during translation, it isetmtious how a single example
contributes to the final translation system score. Therebkas some research on the
computational complexity of translation [66, 23], but we anterested in the example
contribution during training, not runtime complexity.

We assume that the subset score is a linear combination ektraple scores:

s(f) = s(t)
ti€fj

This linearity assumption is reasonable for phrase-basedlation models. A number
of similar phrase translation models have been discussadatiyn a foreign phrase
with a distinct English phrase [42, 50]. During training¢ck@&xample in a phrase-based
system is decomposed into a finite number of phrases. Igndigtortion effects, each
of these phrases can be seen as contributing to the endrparfoe of the translation
system by adding a new, unseen phrase, or by increasing ttiel mi@cision for a seen
phrase pair. In either case, the contribution of a singlemgta is at most a constant
amount.
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5.3.3 Calculating example scores

The model described above, in combination with the traidiata,{ f1, s(f1)}. { fo.
s(f2)}, «o {fm, s(fm)}, defines a constraint satisfaction problem. We calculate an
example’s score as the average of the subset scores thaplexaroontained in

i(t) = w

whereT; is the set of subsets that containgdnd |T;| is the number of subsets that
containt;. This solution is intuitive, efficient to calculate and candnalyzed to better
understand the performance trade-offs for different mpaeameters. Other methods
do exist for solving this problem, such as linear prograngron perceptron learning,
however, initial investigation into these other methods/ed inferior or intractable.

5.3.4 Theoretical justification

In this section, we show that assuming each subset sggfg, is a linear combina-
tion of the example scores containedfin as the number of random subsets increases
the approximate example scoi&¢;), approaches the actual example sco(g,), plus
a constant and a small error factor that is dependent on tioeofahe subset size to the
total number of examples: as — oo, 5(t;) — s(t;) + C + . Since we are only inter-
ested in ranking the examples, the only factor that disisiges the estimated ranking
from the actual ranking is the

Starting with our example score approximation, we can éetve following:

§(t2) _ Zf]-eTi S(fj)
| T;]
ijeTi Ztkefj s(tr)
| T3]
Tl s(ti) + - s e, 2otpesmni S(th)
| T;]
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where C; is an example specific constant. The first step is derived Ipyyaqg the
linearity assumption. In the second step, since we knowdéelh subset iff; contains
the example;, we can separate the score contribution; dfom each of the subsets.

Although each example score approximation contains ardifteconstant, we can
show that these constants differ by only a small value. $ipally, asm — oo, the
difference between any two constants reduces to a smathetie, that isC, — C,| —

E.

Since the subsets are generated by randomly selecting éesmapcording to the
law of large numbers, as the number of subsetsicreases, the proportion of subsets
that a given example occurs in will approach the distributieean,:. The constant then
reduces to

Tl i 5(t)
T3]

= % > s(t)

tk k#l

and the difference between any two constants is

GGl = 153 ()~ 3 s(ae)]

ty:k#p l:k#q
= 5 (slty) 3 s0) — (—s(ta) + 3 (t4)

= 5 (s(tg) — 1) =<

Sincel < n the L reduces the possible error between the actual and apprxima
scores. This error factor quantifies an intuitive tradebsftween the precision of the
example score approximation and the number of subsetsicmmgadhat example. For
small, the% reduces the constant variability, thereby increasingigi@t of the ex-
ample score approximation. However, since the trainingssare small, the example
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occurs in fewer subsets. Furthermore, training and evalyiaach individual subset be-
comes less accurate since training a machine translatgiaraybecomes less accurate
as the training size decreases. On the other hand, for lgrgjee examples occur in
many more subsets and subset evaluation is more accurdieesBmating the example
score is more difficult. Subsets contain many examples dmetivmes more difficult to
associate the subset score with the many example scores sutbset.

5.4 Experiments

In Section 5.3, we describe a method for ranking examplesdas usefulness.
Without previous knowledge about example performancegrdening the quality of
this ranking is similar to determining the ranking itselistead, we examine the quality
of the most useful examples, as determined by the rankinghelfranking is good,
training on these examples should result in a superior parfig translation system
than a random selection of examples. This formulation al&sva us to answer the
guestion of whether all examples are equally useful.

We compare the translation performance of the most use&uhples to ten transla-
tion systems trained on randomly selected subsets of teg®ga. For consistency, both
the random subsets and the most useful examples contaimutine sumber otvords
This is critical since longer examples tend to perform bdttan shorter examples, but
require more effort to translate. The important questiowh&ther two training sets,
which took similar effort to construct, perform differentl

For any given test set, there are some training examplesailiatesult in better
performance due to phrasal overlap. We are not interestéaese local effects and
want to find examples that perform generally better on dsffietest sets. To accomplish
this, we tested on multiple large test sets.

We conclude this section with one application of the examguh&ing. Once “good”
examples have been learned, we can identify characteradttbese good examples. We
compare feature values for the top ranking examples andd@naselection of examples
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for previously proposed features.

5.4.1 Experimental setup

We selected the first = 47,282 unique sentence pairs (1.03 million words) from
the Hansard corpus as the set of examples to rank= 500 translation systems were
generated using 200,000 word (approximately 9500 examjpéering subsets selected
randomly and scored on a 10,000 sentence development seBlU. This data was
then used to generate the example ranks using the methadbéeiso Section 5.3.

After ranking, the best 200,000 word training set was ceb&tem the top ranked
examples. This was then used to generate a translatiomsystedenote “best”. For
comparison, we generated ten random systems trained onmaedample subsets of
200,000 words, denoted “randoft-10}".

We used the Pharaoh training algorithamd decoder [32] as the translation system
in all phases of the experiments. We selected model parasnetang maximum BLEU
discriminative training [48] run on the 47K sentence paind ghose parameters were
used for all of the translation systems.

5.4.2 Selecting the most useful examples

We tested the performance of the different translationesgston ten different test
sets of 10,000 sentences. If our ranking method performk theh the system trained
on the top ranked examples should perform better than tlased on randomly se-
lected examples. Table 5.1 shows the average BLEU scoredlm/¢en test sets for
“best” and the random systems.

The system trained on the top ranking examples performsBLEJ points higher
than any of the random systems and on average 0.34 BLEU gugtier. Given the
small training sizes used for these systems, these repedastantial differences. More
importantly, these differences are significant. Table st ahows the significance re-

thttp://lwww.iccs.informatics.ed.ac.uk/"pkoehn
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Table 5.1 Average score over the 10 test sets and the paiesd significance for the
“best” system compared to 10 random systems. One, two aed thangles indicate
significance at the 95%, 99%, 99.9% confidence level resjadzti

average t-test
score | vs. best

best 0.1800 -
random1 | 0.1750| AAA
random 2 | 0.1782| AAA
random 3 | 0.1777| AA
random4 | 0.1764| AAA
random5 | 0.1765 A
random6 | 0.1760| AAA
random7 | 0.1745| AAA
random8 | 0.1781| AA
random9 | 0.1769| AAA
random 10| 0.1766| AA

sults of a paired t-test between “best” and the random systs@r the 10 different test
sets. “best” performs significantly better than all of thedam systems.

Figure 5.2 shows a plot of all of the individual test scoreastie different systems.
Since we are only interested in comparing the top ranking¥gas to a random selec-
tion, the random systems are all plotted using the same dynmbalimost all of the test
sets, the “best” score is the highest score for the test st Be 100 different random
test scores (10 test sets with 10 random systems), the “besttiod performed better
on 97.

The “best” and the random systems are trained on 200,000 treirdng sets. To
attempt to quantify how much better the “best” examples laa@ random, we repeated
the random experiments on training sets of 215,000 and QQ0)@rd data sets. For
215,000 the average random test score is 0.1784 and for(2€h@ average score is
0.1804. The “best” example data set of size 200,000 word®meed better than a
random selection using 7.5% more data and only slightly e/titan a random selection
of examples 10% larger.
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Figure 5.2 Individual test scores for “best” and “rand¢ir10}” for the ten different
test sets. For clarity, all random scores are marked witlséinee symbol.

5.4.3 Analyzing example features

Once the examples are ranked, this information can be usedrfomber of differ-
ent applications. The learned example scores can be useediciexample usefulness
on unlabeledexamples. Features can be extracted from both the rankedpésand
unlabeled examples. These features can then be used in aangkeof learning frame-
works to identify unlabeled examples that most closelymdde the useful examples.
Also, extracted features are useful as an analytical toattaracterizing examples and
for better understanding statistical models. Finally,nexang features from different
portions of the ranking provides assurance that our raniethod is accomplishing
something non-trivial.

For each of the examples, we extracted eight different featurhese features have
previously been suggested for use in confidence estimatiolT [6]. We compared
the feature values of the top ranking set of examples and doraly selected set of
examples. If a feature is a good predictor of example usefsnthen the value of that
feature should be different between these two sets.

We analyzed eight features that highlight a wide range ofrgta characteristics.
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We intentionally tried to select those features that rely om the foreign portion of the
example, so that they may be of future use in selecting ulddiexamples. Only the
length ratio and overlap proportion feature use both theiforand English portion of
the example.

Some of the features characterize intrinsic propertiehefexamples such as the
length or the similarity between the foreign and English.t&ke language model prob-
ability features try and quantify the fluency of the text. Trhgram quartile features
capture the frequency characteristics of the foreign woisally, some of the fea-
tures assess how likely a given example is with respect tochima translation model.
We trained a model on the 47K training examples and usedrdmslation system to
translate the foreign portion of the examples and to gatheous translation statistics.

Length ratio Number of words in the English sentence divided by the nurabefords
in the foreign sentence.

Overlap proportion Proportion of the words in the foreign sentence that occuhén
English sentence.

Foreign length Number of words in the foreign sentence.

Foreign language model scoré.og probability of the foreign sentence based on a for-
eign trigram language model.

Translated sentence language model scoteg probability of the translated sentence
based on an English trigram language model.

Translation model probability Product of the translation rule probabilities for the
phrase rules used to translate the foreign senfence

Phrase rules usedNumber of phrase rules used to translate the foreign semtenc

n-gram quartiles Foreign word frequencies were counted on a corpus. Words onl
occurring once were removed. The words were then sortedil@séheir frequency

2This is different from the true translation model probapiince the phrase reording probabilities
are not included.
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and divided into four quartiles. The first quartile contathe quarter least frequent
words, second quartile the next quarter most frequent waids Given an example,
the proportion of words in the foreign sentence in each gaastrecorded as “Quartile
{1-4}".

Table 5.2 shows the average example feature scores forgin@rtked French/English
examples and a random set of examples both containing 20@,0@s. Only the trans-
lation rule probability is significantly different betweéme two sets. One cause for this
difference could be a length difference in examples. Loegamples on average require
more rules to be used, resulting in lower overall probabiktowever, since the lengths
and the number of rules are similar between the subsetg ihan inherent difference
in the translation model probability: the top ranking exdes@are more likely.

Though not significantly different, the other analyzeddeas may still provide use-
ful information. The second quartile of words was modeyagl < .25) different for
the two sets. Also, we only examined these features indatiglu Future analysis is
required to see if a combination of these features proves nmeful.

One final motivation for examining example features is tafyeghe quality of the
ranking algorithm. A good ranking algorithm should rank &xamples based on multi-
ple dimensions. It is therefore reassuring that none ofritlvidual features correlated
strongly with the learned ranking.

5.5 Future Work

There are a number of future directions for this researchieiGknowledge of what
good examples are, this information can be used as a stegpiuing for other applica-
tions. One of the main motivations for investigating the gjien of example usefulness
was to incorporate this knowledge in an active learning &anrk. Given a ranking of
examples, a model of useful examples can be learned baseatracted features [6, 47].
Given this model, unlabeled examples with similar char#sties can then be identified.

Throughout this chapter, we focused on training examplesfachine translation.
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Table 5.2 Average feature scores for “best” and “random ligniBcantly different
averages are shown bold and moderately significant differenceditalics.

best| random 1

Length ratio 1.025 1.021
Overlap 0.1375| 0.1381
Foreign length 21.98 21.92
Foreign LM -42.31 -42.07

Translated LM | -43.50 -43.37
Translation prob 0.0014| 0.0012

Rules used 7.123 7.110
Quartile 1 0.0098| 0.0093
Quartile 2 0.0047 0.0043
Quartile 3 0.0143| 0.0143
Quartile 4 0.9713] 0.9721

Our learning framework for ranking the examples only reggiithat random subsets of
the examples can be used to train a model and that the repibodel can be evaluated
automatically. There are many applications both in natlaraguage processing and
others that satisfy these requirements. An interestingtgureis how well this method
will perform on these different applications.

Besides applications of this method, there are still mamgnoguestions about the
performance of the method itself. On the development setpb#st ranking examples
score 0.1845, the worst ranking examples 0.1727 and aled3® random subsets used
for training fall in between these two scores. On the 10 t&sts, this ordering is not as
well preserved. As we saw in section 5.4, the best exampéesignificantly better than
all of the randomly subsets. However, the worst ranking extasare only significantly
worse than 6 of the 10 random subsets, with an average scOr&#d on the test sets.

There are many possible explanations for this behavioroiéteal analysis of the
method showed that the approximation accuracy dependedodadtors: 1) the number
of subsamples trained and evaluated and 2) the ratio ofdhrerig subset size to the total
number of examples. More analysis is needed, to determimpérieally how different
parameter settings affect performance.
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Another explanation are the model assumptions. We suggkséa model for
approximating the contribution of individual examples. ig'hnearity assumption is
reasonable for phrase-based systems, but not perfect.inda model assumes inde-
pendence between training examples, which is not the cassd®l that maintains the
linearity assumption, but better models example overlapdconprove ranking perfor-
mance.

5.6 Conclusion

In this chapter we have suggested a new framework for den@rgithe usefulness
of examples based on the evaluated performance of randosetsutf those examples.
For machine translation, we showed that all examples are &fdally useful. Using the
ranking obtained by our method, the most useful exampleslargified. When used to
train a new translation system these examples performfgignily better than a random
selection of examples on a large test set. We also providedtieal justification for our
method that shows as the number of example subsets incrdaseerformance of our
method is reasonable and predictable. Finally, we provatednalysis of a number of
features that identified both the translation probabilitgt a-gram quartiles as a possible
discriminating features for identifying “good” examples.
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Paraphrasing for Automatic
Evaluation

An important component for many natural language tasks atuation. Until re-
cently, evaluation of machine translation was done by hdndhe last few years, a
number of automatic evaluation measures have been proplstecorrelate well with
human evaluations. These evaluation measures have becanial components for
many stages in development. In this chapter, we examinecthefib of using paraphras-

ing to assist these evaluation measures.

6.1 Introduction

The use of automatic methods for evaluating machine gesgetakt is quickly be-
coming mainstream in natural language processing. The nodable examples in this
category include measures such as BLEU and ROUGE which drsearch in the ma-
chine translation and text summarization communities s€tmeethods assess the quality
of a machine generated output by considering its similéoity reference text written by
a human. Ideally, the similarity would reflect the semantmmmity between the two.

In practice, this comparison breaks dowmtgram overlap between the reference and

the machine output.
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Table 6.1 A reference sentence and corresponding machingldtion from the NIST
2004 MT evaluation. The two sentences share only auxiliamdg.

(a) However, Israel’s reply failed to completely
clear the U.S. suspicions.

(b) However, Israeli answer unable to fully
remove the doubts.

Consider the human translation and the machine translafieghe same Chinese
sentence shown in Table 6.1. While the two translations&ptive same meaning, they
share only auxiliary words. Clearly, any measure based od weerlap will penalize a
system for generating such a sentence. The question is @rtetbh cases are common
phenomena or infrequent exceptions. Empirical evidenppaus the former. Ana-
lyzing 10,728 reference translation paitssed in the NIST 2004 machine translation
evaluation, we found only 21 (less than 0.2%) that are areticiE. Moreover, 60%
of the pairs differ in at least 11 words. These statisticgssgthat without accounting
for paraphrases, automatic evaluation measures may reaah the accuracy of human
evaluation.

As a solution to this problem, researchers have suggesteg nmiltiple references
to refine automatic evaluation. [53] shows that expandirggrtmber of references
reduces the gap between automatic and human evaluationeugowery few human
annotated sets are augmented with multiple referencesharse that are available are
relatively small in size. Moreover, access to several ezfees does not guarantee that
the references will include the same words that appear irnmagenerated text.

In this chapter, we explore the use of paraphrasing methadsefinement of au-
tomatic evaluation techniques. Given a reference sentandea machine generated
sentence, we seek to find a paraphrase of the reference cetitanis closer in word-
ing to the machine output than the original reference. Fstaimce, given the pair of
sentences in Table 6.1, we automatically transform theert® sentence (a) into

However, Israel'sanswerfailed to completelyemovethe U.S. suspicions.

LEach pair included different translations of the same smmteproduced by two human translators.
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Thus, among many possible paraphrases of the referenceevamly interested in
those that use words appearing in the system output. Ouplpa@sing algorithm is
based on theubstitute in contexdtrategy. First, the algorithm identifies pairs of words
from the reference and the system output that could potnttam paraphrases. We
select these candidates using existing lexico-semarstourees such as WordNet. Next,
the algorithm tests whether the candidate paraphrase issithte in the context of the
reference sentence. Since even synonyms cannot be stdasirtany context [18], this
filtering step is necessary. We predict whether a word is@ppate in a new context by
analyzing its distributional properties in a large bodyeftt Finally, paraphrases that
pass the filtering stage are used to rewrite the referentersan

We apply our paraphrasing method in the context of macharestation evaluation.
Using this strategy, we generate a new sentence for everyphauman and machine
translated sentences. This synthetic reference thercespilae original human reference
in automatic evaluation.

The key findings of our work are as follows:

Automatically generated paraphrases improve the accuracgf the automatic evalu-
ation methods. Our experiments show that evaluation based on paraphrafsdmces
gives a better approximation of human judgments than etratuthat uses original ref-
erences.

The quality of automatic paraphrases determines their contibution to automatic
evaluation. By analyzing several paraphrasing resources, we foundhkeaaccuracy
and coverage of a paraphrasing method correlate with Itsydtir automatic MT eval-
uation.

Our results suggest that researchers may find it useful tmangstandard mea-
sures such as BLEU and ROUGE with paraphrasing informatiereby taking more
semantic knowledge into account.

In the following section, we provide an overview of existingrk on automatic
paraphrasing. We then describe our paraphrasing algogtiarexplain how it can be
used in an automatic evaluation setting. Next, we presenéxperimental framework
and data and conclude by presenting and discussing outgesul
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6.2 Related Work

Automatic Paraphrasing and Entailment Our work is closely related to research in
automatic paraphrasing, in particular, to sentence les@ghrasing [4, 52, 55]. Most of
these approaches learn paraphrases from a parallel or cabigpaionolingual corpora.
Instances of such corpora include multiple English trarnmia of the same source text
written in a foreign language, and different news articlesws the same event. For ex-
ample, Pang et al. [52] expand a set of reference transtatisimg syntactic alignment,
and generate new reference sentences that could be usadnmedic evaluation.

Our approach differs from traditional work on automaticggdrrasing in goal and
methodology. Unlike previous approaches, we are not aitoipgoduceanyparaphrase
of a given sentence since paraphrases induced from a paibeis do not necessarily
produce a rewriting that makes a reference closer to themsystutput. Thus, we focus
on words that appear in the system output and aim to deterwhether they can be
used to rewrite a reference sentence.

Our work also has interesting connections with researchutonaatic textual entail-
ment [15], where the goal is to determine whether a givereseatcan be inferred from
text. While we are not assessing an inference relation lmtweaeference and a system
output, the two tasks face similar challenges. Methods baikment recognition ex-
tensively rely on lexico-semantic resources [25, 26], ardelieve that our method for
contextual substitution can be beneficial in that context.

Automatic Evaluation Measures A variety of automatic evaluation methods have
been recently proposed in the machine translation commidtt 43, 53]. All these
metrics compute-gram overlap between a reference and a system output, lasumee
the overlap in different ways. Our method for reference plrasing can be combined
with any of these metrics. In this chapter, we report expents with BLEU due to its
wide use in the machine translation community.

Recently, researchers have explored additional knowlsdgeces that could en-
hance automatic evaluation. Examples of such knowledgeeesunclude stemming
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and TF-IDF weighting [2, 3]. Our work complements these apphes: we focus on
the impact of paraphrases, and study their contributiorhéoaccuracy of automatic
evaluation.

6.3 Algorithm

The input to our method consists of a reference senténeer; . . . r,, and a system-
generated sentend® = w, ...w, whose words form the sefé and)V respectively.
The output of the model is a synthetic reference sentépgethat preserves the mean-
ing of R and has maximal word overlap wit. We generate such a sentence by
substituting words fronRk with contextually equivalent words frofy .

Our algorithm first selects pairs of candidate word paraggsaand then checks the
likelihood of their substitution in the context of the reface sentence.

Candidate Selection We assume that words from the reference sentence thatwlread
occur in the system generated sentence should not be coetside substitution. There-
fore, we focus on unmatched pairs of the fofir, w)|r € R — W,w € W — R}.
From this pool, we select candidate pairs whose member$iekingh semantic prox-
imity. In our experiments we compute semantic similaritihgaNordNet, a large-scale
lexico-semantic resource employed in many NLP applicatfonsimilar purposes. We
consider a pair as a substitution candidate if its membersyaronyms in WordNet.

Applying this step to the two sentences in Table 6.2, we alitao candidate pairs
(home, place) and difficult , hard).

Contextual Substitution The next step is to determine for each candidate(paitv;)
whetherw; is a valid substitution for; in the context of-y ...r,_10r;1; ... 7y, Where
‘0" denotes the location of; and possible substitution location fay, in the sentence.
This filtering step is essential because synonyms are negrsailly substitutabfe Con-

2This can explain why previous attempts to use WordNet foegatiing sentence-level paraphrases [4,
55] were unsuccessful.
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Table 6.2 A reference sentence and a corresponding machimgdtion. Candidate
paraphrases are in bold.

(a) Itishard to believe that such tremendous
changes have takegaacefor those people and
lands that | have never stopped missing while
living abroad.

(b) For someone born here but has been
sentimentally attached to a foreign country
far fromhome, it is difficult to believe

this kind of changes.

sider the candidate paihd@me, place) from our example (see Table 6.2). Woldsme
andplaceare paraphrases in the sense of “habitat”, but in the redersentencegiace’
occurs in a different sense, being part of the collocatiakétplace”. In this case, the
pair (home, place) cannot be used to rewrite the reference sentence.

We formulate contextual substitution as a binary clasgiboaask: given a context
r1...7i—10r41 ... 7y, We aimto predict whethev,; can occur in this context at position
i. For each candidate word; we train a classifier that models contextual preferences
of w;. To train such a classifier, we collect a large corpus of seet® that contain
the wordw; and an equal number of randomly extracted sentences thaitdmntain
this word. The former category forms positive instances|enthe latter represents the
negative. For the negative examples, a random position entesce is selected for
extracting the context. This corpus is acquired automitiand does not require any
manual annotations.

We represent context by-grams and local collocations, features typically used in
supervised word sense disambiguation. Betirams and collocations exclude the word
w;. An n-gram is a sequence efadjacent words appearingif...r,_ 10741 ... 7.

A local collocation also takes into account the position wfragram with respect to
the target word. To compute local collocations for a word@ifon ¢, we extract all
n-grams ¢ = 1...4) beginning at position — 2 and ending at position+ 2. To make
these position dependent, we prepend each of them withrigéhl@nd starting position.
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Once the classifiéfor w; is trained, we apply it to the context. . . 7; 107 g . . . 7.
For positive predictions, we rewrite the stringras. . 7,_1w;741 . . . 7. In this formu-
lation, all substitutions are tested independently.

For the example from Table 6.2, only the palifficult , hard) passes this filter, and
thus the system produces the following synthetic reference

For someone born here but has been sentimentally attachedo@ign
country far from home, it ibiard to believe this kind of changes.

The synthetic reference keeps the meaning of the origifateece, but has a higher
word overlap with the system output.

One of the implications of this design is the need to devell@wge number of clas-
sifiers to test contextual substitutions. For each word tinberted into a reference
sentence, we need to train a separate classifier. In pratiserequirement is not a
significant burden. The training is done off-line and onlgenand testing for contex-
tual substitution is instantaneous. Moreover, the firstritly step effectively reduces
the number of potential candidates. For example, to appdyabproach to the 71,520
sentence pairs from the MT evaluation set (described in@e6t4.1), we had to train
2,380 classifiers.

We also discovered that the key to the success of this appisate size of the
corpus used for training contextual classifiers. We derivathing corpora from the
English Gigaword corpus, and the average size of a corpumclassifier is 255,000
sentences. We do not attempt to substitute any words thatléss than 10,000 appear-
ances in the Gigaword corpus.

6.4 EXxperiments

Our primary goal is to investigate the impact of machine gateel paraphrases on
the accuracy of automatic evaluation. We focus on autoneatituation of machine

3In our experiments, we used the publicly available Boosdiestassifier [59] for this task.
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translation due to the availability of human annotated datthat domain. The hy-
pothesis is that by using a synthetic reference translagatomatic measures better
approximate human evaluation. In Section 6.4.2, we testitjppothesis by comparing
the performance of BLEU scores with and without synthetienences.

Our secondary goal is to study the relationship between tiadity of paraphrases
and their contribution to the performance of automatic nraekranslation evaluation.
In Section 6.4.3, we present a manual evaluation of sevaraphrasing methods and
show a close connection between intrinsic and extrinsiesassents of these methods.

6.4.1 Experimental setup

We begin by describing the data set and the alternative peagsing methods con-
sidered in our experiments. BLEU is the basic evaluationsuesathat we use in our
experiments. To augment BLEU with paraphrasing infornratwee substitute each ref-
erence with the corresponding synthetic reference.

Data

We use the Chinese portion of the 2004 NIST MT dataset. Thisgmocontains
200 Chinese documents, subdivided into a total of 1788 setgndeach segment is
translated by ten machine translation systems and by famahuranslators. A quarter
of the machine-translated segments are scored by humamaéwa on a one-to-five
scale along two dimensions: adequacy and fluency. We useadatyuacy scores, which
measure how well content is preserved in the translation.

Alternative paraphrasing techniques

To investigate the effect of paraphrase quality on autareataluation, we consider
two alternative paraphrasing resources: Latent SemamttyAis (LSA), and Brown et
al. clustering [10]. These techniques are widely used in Idpplications, including
language modeling, information extraction, and dialogcpssing [25, 61, 44]. Both



75

Table 6.3 Sample of paraphrasings produced by each metised ba the correspond-

ing system translation. Paraphrased words almld and filtered words underlined
Reference | The monthly magazine “Choices” has won the deep trust of the

residents. The current Internet edition of “Choices” willgfull

play to its functions and will help consumers get quick asdes

market information.

System The public has a lot of faith in the “Choice” monthly magazared

the Council is now working on a web version. This will enhatioe

magazine’s function and help consumer to acquire more gate

market information.

WordNet The monthly magazine “Choices” has won the d&sefh of the

residents. The current Internetrsion of “Choices” will

give full play to its functions and will help consumesquire

quick access to market information.

ContextWN| The monthly magazine “Choices” has won the deep wiithe

residents. The current Internetrsion of “Choices” will give full

play to its functions and will help consumeasquire quick access to

market information.

LSA The monthly magazineChoicé’ has won the deep trust of the

residents. The curremteb edition of “Choice’ will give full

play to its functions and will helponsumerget quick access to

market information.

Brown The monthly magazine “Choices” has won the deep trust of the

residents. The current Internetrsion of “Choices” will give full

play to its functions and will help consumers get quick asdes

market information.
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techniques are based on distributional similarity. ThewBralustering is computed
by considering mutual information between adjacent wotdSA is a dimensionality
reduction technique that projects a word co-occurrenceixngt lower dimensions.
This lower dimensional representation is then used withdsited similarity measures
to cluster the data. Two words are considered to be a parsgbpar if they appear in
the same cluster.

We construct 1000 clusters employing the Brown method omiillbn words from
the North American News Text corpus. We keep the top 20 megtint words for each
cluster as paraphrases. To generate LSA paraphrases, wéhesimfomap software
on a 34 million word collection from the same corpusVe used the default parameter
settings: a 20,000 word vocabulary, the 1000 most frequentdsv(minus a stop-list)
for features, a 15 word context window on either side of a wartiOO feature reduced
representation, and the 20 most similar words as paraphrase

We experimented with several parameter settings for LSABrogn methods, but
do not claim that the selected settings are necessarilpnaptHowever, these methods
present sensible comparison points for understandingela¢ionship between para-
phrase quality and its impact on automatic evaluation.

Table 6.3 shows synthetic references produced by the eliffgraraphrasing meth-
ods.

Evaluating evaluation metrics

The standard way to analyze the performance of an automatiaagion metric in
machine translation is to compute the Pearson correlagbomden the automatic metric
and human scores [53, 33, 39, 64]. étandY be two sets of. data points where each
point in X corresponds to a unique point¥A The Pearson correlation between these

points is
S _ ZﬂcZy

i=1 LiLi

V(a2 — By (3 ot

‘htt p: / /i nf omap- nl p. sour cef or ge. net
5For computational reasons, a smaller set was used.
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Table 6.4 Pearson adequacy correlation scores for regimitding one and two refer-
ences, averaged over ten runs.

Method 1 reference 2 references
BLEU 0.9657 0.9743
WordNet 0.9674 0.9763
ContextWN 0.9677 0.9764
LSA 0.9652 0.9736
Brown 0.9662 0.9744

Pearson correlation estimates how linearly dependent étgodf values are. The Pear-
son correlation values range from 1, when the scores aregtigrfinearly correlated, to
-1, in the case of inversely correlated scores. For evalgatutomatic evaluation, the
correlation is calculated between the automatic evaloaoores and human evaluation
scores.

To calculate the Pearson correlation, we create a docunyecbiticatenating 300
segments. This results in a document for each of the ten Miesys This strategy
is commonly used in MT evaluation, because of BLEU’s welbkm problems with
documents of small size [53, 33]. For each of the ten MT systanslations, the evalu-
ation metric score is calculated on the document and thegponding human adequacy
score is calculated as the average human score over thersisgriilee Pearson corre-
lation is calculated over these ten automatic evaluati@mesbuman adequacy score
pairs [53, 64]. This process is repeated for ten differecudeents to obtain ten corre-
lation scores. A paired t-test is calculated over these ¢erelation scores to compute
statistical significance.

6.4.2 Impact of paraphrases on machine translation evaluain

Table 6.4 shows Pearson correlation scores for BLEU andtlvegplaraphrased aug-
mentations, averaged over ten ring all ten tests, our method based on contextual

SDepending on the experimental setup, correlation valuesaey widely. Our scores fall within the
range of previous researchers [53, 39].
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Table 6.5 Paired t-test significance for all methods congpar&LEU and our method

for one reference. Two triangles indicates significant at38% confidence level, one
triangle at the 95% confidence level and X not significantafigies point towards the
better method.

Method vs. BLEU | vs. ContextWN
WordNet < AN
ContextWN < -

LSA X AN
Brown < A

rewriting (ContextWN) improves the correlation with hunsoores over BLEU. More-
over, in nine out of ten tests ContextWN outperforms the ethased on WordNet
alone. The results of statistical significance testing anersarized in Table 6.5. All the
paraphrasing methods except LSA, exhibit higher cor@aivith human scores than
plain BLEU. Our method significantly outperforms BLEU, ariltlae other paraphrase-
based metrics. This consistent improvement confirms theitapce of contextual fil-
tering.

The third column in Table 6.4 shows that automatic paraphgasontinues to im-
prove correlation scores even when two human referencepaasephrased using our
method.

6.4.3 Evaluation of paraphrase quality

In the last section, we saw significant variations in MT eadilbn performance when
different paraphrasing methods were used to generate bedioteference. In this sec-
tion, we examine the correlation between the quality of euattically generated para-
phrases and their contribution to automatic evaluationawayze how the substitution
frequency and the accuracy of those substitutions coné#io a method’s performance.

We compute the substitution frequency of an automatic paesing method by
counting the number of words it rewrites in a set of referesepstences. Table 6.6
shows the substitution frequency and the correspondinglB&éore. The substitution
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Table 6.6 Scores and the number of substitutions made 788 segments, averaged
over the different MT system translations

Method Score | Substitutions
BLEU 0.0913 -
WordNet 0.0969 994
ContextWN| 0.0962 742
LSA 0.0992 2080
Brown 0.0921 117

Table 6.7 Accuracy scores by two human judges and the Kapp#fiaent of
agreement.

Method Judge 1| Judge 2| Kappa
accuracy| accuracy
WordNet 63.5% | 62.5% | 0.74
ContextWN | 75.0% | 76.0% | 0.69
LSA 30.0% | 31.5% | 0.73
Brown 56.0% | 56.0% | 0.72

frequency varies greatly across different methods — LSAyidan the most prolific
rewriter, while Brown produces very few substitutions. Agected, the more para-
phrases identified, the higher the BLEU score for the methdolvever, this increase
does not translate into better evaluation performanceinstaince, our contextual filter-
ing method removes approximately a quarter of the parapbrsisggested by WordNet
and yields a better evaluation measure. These results Siullpge the substitution fre-
guency cannot predict the utility value of the paraphrasmeghod.

Accuracy measures the correctness of the proposed stiosigin the context of
a reference sentence. To evaluate the accuracy of diffpeeaphrasing methods, we
randomly extracted 200 paraphrasing examples from eadmogheA paraphrase exam-
ple consists of a reference sentence, a reference word tarbplpased and a proposed
paraphrase of that reference (that actually occurred inm@sponding system transla-
tion). The judge was instructed to mark a substitution asecbonly if the substitution
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Table 6.8 Confusion matrix for the context filtering methaosorandom sample of 200
examples labeled by the first judge.

negative| positive
filtered 40 27
non-filtered 33 100

was both semantically and grammatically correct in the edraf the original reference
sentence.

Paraphrases produced by the four methods were judged byative English speak-
ers. The pairs were presented in random order, and the juegresnot told which sys-
tem produced a given pair. We employ a commonly used meakappa, to assess
agreement between the judges. We found that on all the fésitlse Kappa value was
around 0.7, which corresponds to substantial agreemeft [36

As Table 6.7 shows, the ranking between the accuracy of ffexeht paraphrasing
methods mirrors the ranking of the corresponding MT evabunamethods shown in
Table 6.4. The paraphrasing method with the highest acguCantextWN, contributes
most significantly to the evaluation performance of BLEUehestingly, even methods
with moderate accuracy, i.e. 63% for WordNet, have a pasitiluence on the BLEU
metric. At the same time, poor paraphrasing accuracy, ssitiSA with 30%, does hurt
the performance of automatic evaluation.

To further understand the contribution of contextual fitgr we compare the substi-
tutions made by WordNet and ContextWN on the same set of segge Among the 200
paraphrases proposed by WordNet, 73 (36.5%) were iden@Bddcorrect by human
judges. As the confusion matrix in Table 6.8 shows, 40 (54 w&e eliminated during
the filtering step. At the same time, the filtering erronep@diminates 27 positive ex-
amples (21%). Even at this level of false negatives, theifigehas an overall positive

effect.
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6.5 Conclusion and Future Work

This chapter presents a comprehensive study of the impgzarajphrases on the
accuracy of automatic evaluation. We found a strong commedtetween the quality
of automatic paraphrases as judged by humans and theirmdian to automatic eval-
uation. These results have two important implications:réfining standard measures
such as BLEU with paraphrase information moves the autenex@luation closer to
human evaluation and (2) applying paraphrases to MT evaluptovides a task-based
assessment for paraphrasing accuracy.

We also introduce a novel paraphrasing method based onxtoakesubstitution.
By posing the paraphrasing problem as a discriminative taslcan incorporate a wide
range of features that improve the paraphrasing accuraay.egperiments show im-
provement of the accuracy of WordNet paraphrasing and weuaethat this method
can similarly benefit other approaches that use lexico-sém@sources to obtain para-
phrases.

Our ultimate goal is to develop a contextual filtering methioat does not require
candidate selection based on a lexico-semantic resouroe. s@urce of possible im-
provement lies in exploring more powerful learning framekgoand more sophisticated
linguistic representations. Incorporating syntactic etegencies and class-based fea-
tures into the context representation could also incrdssadcuracy and the coverage
of the method. Our current method only implements rewriahthe word level. In the
future, we would like to incorporate substitutions at theeleof phrases and syntactic
trees.
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Contributions and Future Research
Directions

In the last 10 years the performance of machine translaasrdhastically increased.
Even from year to year, performance of the state of the atésysincreases noticeably.
These improvements come from many dimensions. Every yeae @ad more data
becomes available with faster and faster computers. Atemuimber of translation sys-
tems being developed, both commercially and in researclicgmaents, is increasing.
In 2004, 12 systems participated in the yearly NIST trarsta¢valuations. In 2005,
20 systems participated. This increasing interest in nmectranslation has resulted in
many translation systems available of differing design qudlity. In this thesis, we
have examined a number of uses for these existing MT sysi@medearch purposes.

7.1 Summary of Contributions

In Chapters 3 and 4 we suggest a framework for post-correoficmachine transla-
tion systems using translations made by the system to fgenistakes. By translating
data where a correct translation is known, differences &éetwthe translation and the
ground truth point to possible errors. Using only monolialgdata, we learn word cor-
rection rules. On a 20,000 sentence Spanish/English dat24s235 different word
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changes are made on 78% of the sentences, with high accuracy.

Given bilingual data, we describe a method that uses a paltggpment between
the machine translated sentence and human sentence tglease correction rules.
By generating machine translated/human translated Enghkss, a simplified align-
ment algorithm can be used that aligns lexically identicatds. Using this alignment,
context-independent phrase correction rules are learbd.learned correction rules
improve the BLEU score of a commercial system by 30% andssieily significantly
improve the performance of a state of the art statisticadgdubased system.

In Chapter 5 we showed quantitatively that all MT exampleshat equally useful.
We describe a method for generating example usefulnessigaiata that is applicable
in many domains since it only requires trainability and aashbility. Random subsets
of the examples are used to train translation systems. Hyssems are evaluated using
BLEU on a development set, resulting in score/subset padwen these pairs, we
proposed a method that efficiently determines the examplkengs based on the average
of the subset scores a given example occurs in. Theoretedyss of this method
shows only minor deviations from the correct ranking. Udimg method, we ranked
47,282 machine translation examples. The top ranked exangarform significantly
better on a large test set than randomly selecting exampleseliminary study of the
most useful examples also shows a number of possible fedturdiscriminating useful
examples.

Finally, using the output from many different machine ttatien systems we ana-
lyze the impact of paraphrasing on automatic evaluationsomes. We show that para-
phrasing does improve automatic evaluation measures. pEnfermance increase re-
sults from the ability to identify alternate appropriaterd® that occur in the machine
translation, but not in the reference translations. Besiogroving automatic evalua-
tion measures, this problem provides a new quantitatikeftasevaluating paraphrasing
performance. We showed strong correlation between theowepnent of the automatic
evaluation methods and paraphrase accuracy.

In the process of analyzing these different applicationwgaislation systems, we
described two novel methods for determining whether a werdubstitutable in the
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context of a particular sentence. Given a corpus, we idetitdse words that co-occur
significantly with the word in question using the likelihooatio test. Given a new
sentence, if one of the significant words occurs in that seetethen the substitution
is considered appropriate. The second method trains awidiodi classifier for each
word. Given sentences that a word occurs in and does not ogdaatures are extracted
based on position dependent and independent occurrenoegrams. Using this data,
a classifier is learned to identify the contexts that the veana occur in.

7.2 Future Research Directions

In each chapter, we suggested continuations of the worleptes in that chapter. To
conclude, we summarize these suggestions and mentionfotbe research directions
that utilize pre-existing translation systems.

Learning an active learner

In Chapter 5 we described a method that, given a set of faliengilish sentence
examples, ranked those examples based on their usefulressaihing a translation
system. One use of this ranking is for learning a model of g@tarasefulness. This
model could then be used to identify useful foreign sentencenave translated by a
human translator in an active learning framework. The fieg $or this type of method
is to suggest candidate features. [6] suggest feature®fdidence estimation and [47]
for n-best list reranking that can be used here.

In this thesis, we did a preliminary study to identify feasithat correlated with the
example ranking. This idea could be continued in futureardeto learn a model of
example usefulness based on the ranking. Given examplabamrdtracted features, a
ranking or regression method could be applied to learn a hufagexample usefulness.
This model would then be used to identify the most usefulifpreentences to translate.
For machine translation, where examples are expensiverniotaie and still relatively
rare in many languages and domains, an algorithm that cact$ké most useful foreign
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sentences to generate examples from would be invaluabsm, lis type of approach
has not previously been explored and may prove useful in rodrgr domains.

Evaluating automatic evaluation measures

One of the challenges in developing automatic evaluatiothaus such as BLEU
is evaluating these evaluation measures. The standardaghpm machine translation
is to measure the Pearson correlation between the autoscaties and human scores.
There are a number of problems with this approach. Firstassemption of linearity is
overly restrictive. The key component of an evaluation rodtis whether it ranks meth-
ods appropriately. The distance between scores does prswide information, but this
distance does not necessarily need to correlate lineattylwiman scores. Isotonic re-
gression [57] is an alternative method that assumes moiedigribut does not require
the the relationship is linear. Also, Spearman rank catimehas been suggested as a
possibility. Even using Pearson correlation, there atenséiny free parameters: what
size documents are used, how many documents are used, hao\wlennbiman scores
should be incorporated and how significance should be medsidihese experimental
variations are rarely discussed in detail in papers, bwfldtct comparisons.

Improved phrase rules

In Chapter 4 we learned context-independent rules. BeaHubkes context indepen-
dence assumption, many rules were eliminated in order @imbtasonable correction
accuracy, particularly when improving the statisticalage-based system. These rules
could also be extended with context information. In Chapttris allowed for a larger
rule set to be learned. In Chapter 6 a contextual filteringhoektvas used to increase
the rule accuracy. In addition to lexical information, ileould also use syntactic or
semantic information. For systems that were word or phrased this would allow
additional information not available to the original syst® be incorporated.
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