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Our previously developed finite-element/ discrete variable representation in prolate spheroidal
coordinates is extended to two-electron systems with a study of double ionization of H2 with fixed-
nuclei. Particular attention is paid to the development of fast and accurate methods for treating
the electron-electron interaction. The use of exterior complex scaling in the implementation offers a
simple way of enforcing Coulomb boundary conditions for the electronic double continuum. While
the angular distributions calculated in this study are found to be completely consistent with our
earlier treatments that employed single-center expansions in spherical coordinates, we find that the
magnitude of the integrated cross sections are sensitive to small changes in the initial-state wave
function. The present formulation offers significant advantages with respect to convergence and
efficiency and opens the way to calculations on more complicated diatomic targets.
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I. INTRODUCTION

The implementation of advanced nonperturbative
methods for solving either the time-independent [1–3] or
time-dependent [4–6] Schrödinger equation has made it
possible to obtain essentially exact wave functions on a
numerical grid for atoms with two active electrons. These
methods have been particularly successful for studying
the response of simple atoms when exposed to intense,
ultrashort xuv laser pulses [7, 8]. While there have been
some efforts to extend such studies to simple diatomic
molecules in recent years [9–11], the nonspherical nature
of the interaction potentials necessarily complicates the
implementation. Indeed, fully differential double ioniza-
tion cross sections on molecule other than H2 have yet to
appear.

In molecular applications, some consideration should
be given to the underlying representation that is used:
for diatomic targets, prolate spheroidal coordinates are
a natural choice, as we have shown in two earlier pa-
pers [12, 13] (referred to hereafter as I and II, respec-
tively) where we developed a finite-element/ discrete vari-
able representation (FEM/DVR) in those coordinates
and presented results for the single-electron case of H+

2 .
Our purpose here is to extend the FEM/DVR treat-
ment in prolate spheroidal coordinates to the case of
molecular hydrogen. As in our earlier studies of H2

double ionization based on single-center expansions in
spherical coordinates [9, 14, 15] we use exterior complex
scaling (ECS)[1] to simplify the imposition of outgoing-
wave Coulomb boundary conditions. In this connec-
tion, we must mention the recent work of Serov and
Joulakian [16], who have also studied H2 double ion-
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ization in prolate spheroidal coordinates using an ECS
method. Their prolate spheroidal exterior complex scal-
ing (PSECS) approach differs from ours by using a B-
spline, rather than FEM/DVR, basis to expand the wave
function, as well as a different prescription for computing
the one-electron (H+

2 ) testing functions that are needed
to construct the double ionization amplitudes. The nu-
merical results we obtain are somewhat different from
theirs, as are the conclusions about convergence of the
methods.

We will show that the use of FEM/DVR gives simple
formulas for constructing matrix elements of the elec-
tronic repulsion potential, 1/|r1 − r2| which are diago-
nal in the indices corresponding to the FEM/DVR mesh
points. These properties, combined with the more rapid
convergence of the wave function in prolate spheroidal
coordinates than in spherical coordinates, give a very ef-
ficient method for treating the electronic double contin-
uum with diatomic targets.

The outline of this paper is as follows. The theoretical
treatment is outlined in Sec. II. Section III details the
basis set and grid parameters used in the numerical cal-
culations and Sec. IV presents results and comparisons
with earlier work. We conclude with a brief discussion.

II. THEORY

A. FEM/DVR for H2 in prolate spheroidal
coordinates

Procedures for constructing a grid-based set of func-
tions using finite-elements and the DVR in prolate
spheroidal coordinates, along with explicit formulas for
matrix elements of all required one-body operators, have
been given in I, so only a brief summary will be given
here. The electronic Hamiltonian for H2 with fixed inter-
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nuclear vector R is given as (atomic units throughout)

H(r1, r2) = − 1

2
∇2

1 −
1

2
∇2

2 −
1

|r1 − R

2 |
− 1

|r1 + R

2 |

− 1

|r2 − R

2 |
− 1

|r2 + R

2 |
+

1

|r1 − r2|
.

(1)

Prolate spheroidal coordinates (ξ, η, φ) are defined in the
usual way by rotating a two-dimensional elliptical coor-
dinate system (ξ, η) about the focal axis of the ellipse:

ξ =
|r − R

2 | + |r + R

2 |
R

(1 ≤ ξ ≤ ∞)

η =
|r − R

2 | − |r + R

2 |
R

(−1 ≤ η ≤ 1) ,

(2)

where φ(0 ≤ φ ≤ 2π) is the azimuthal angle. The Lapla-
cian in these coordinates is

∇2 = 4
R2(ξ2−η2)

[

∂
∂ξ (ξ2 − 1) ∂

∂ξ + ∂
∂η (1 − η2) ∂

∂η (3)

+
(

1
(ξ2−1) + 1

(1−η2)

)

∂2

∂φ2

]

, (4)

and the volume element is

dV = (R/2)6(ξ21 − η2
1)(ξ

2
2 − η2

2)dξ1dξ2dη1dη2dφ1dφ2 (5)

while the electron-nuclear attraction is

− 1

|r − R

2 |
− 1

|r + R

2 |
= − 4ξ

R(ξ2 − η2)
. (6)

The amplitude for double ionization is obtained by
solving a driven equation for the first-order wave func-
tion obtained when the radiation field is treated pertur-
batively:

(E0 + ω −H)Ψ+
sc = ǫ · µΨ0, (7)

where Ψ0 is the wave function for the initial state of H2

with energy E0, ω is the photon energy, ǫ is the polariza-
tion unit vector and µ is the electronic dipole operator.
To solve this equation, we expand Ψ+

sc (and Ψ0) in a
product basis of functions of the electronic coordinates
of each electron. For the “angular ” variables , we use
ordinary spherical harmonics Y m

l (η, φ) in the variables
cos−1(η) and φ, while the “radial variables” ξ1 and ξ2
are discretized using FEM/DVR:

Ψ+
sc =

∑

i,j,l1,l2,m

Cijl1l2mΦil1m(r1)Φjl2M−m(r2) , (8)

where

Φilm(r) ≡ χim(ξ)Y m
l (η, φ) , (9)

where χim is a DVR basis function and where we have
used the fact that the component of total electronic angu-
lar momentum, M , along the internuclear axis is a good
quantum number.

As outlined in I, specification of the elementary DVR
functions [17] depends on whether m is even or odd. For
even m, we chose

χim(ξ) =
1√
wi

N
∏

j 6=i

ξ − ξj
ξi − ξj

, (10)

where (ξj , wj) are the points and weights associated
with an N -point Gauss quadrature. In the FEM/DVR
scheme, the ξ grid, which runs from 1 to some speci-
fied maximum value ξmax, is divided into subintervals.
In the first interval, we use Gauss-Radau quadrature,
which excludes the point ξ = 1 as a quadrature point;
Gauss-Lobatto quadrature, which includes the endpoints
as quadrature points, is used in the other intervals, which
insures continuity across element boundaries.

For odd m the DVR functions are modified to account
for the non-analytic behavior of the wave function at ξ =
1 [18, 19]:

χim(ξ) =
(ξ2 − 1)1/2

√

wi(ξ2i − 1)

N
∏

j 6=i

ξ − ξj
ξi − ξj

. (11)

The DVR functions so defined have the property of dis-
crete orthonormality at the quadrature points,

χim(ξj) = δij/
√
wi , (12)

and provide a diagonal representation of any local oper-
ator when the matrix elements are evaluated using the
underlying Gauss quadrature rule,

∫

χim(ξ)f(ξ)χjm(ξ)dξ ≈
∑

k

χim(ξk)f(ξk)χjm(ξk)wk

= δijf(ξi) .
(13)

However, as noted in I and II, the product basis defined
in Eq. (31) is not orthogonal in l1 and l2 because of the
volume element:

< Φil1m1
Φjl2m2

|Φi′l′
1
m′

1
Φj′l′

2
m′

2
>=

(R/2)6δii′δjj′δm1m′

1
δm2m′

2
Sm1l1l′

1
(ξi)Sm2l2l′

2
(ξj)
(14)

where

Smll′(ξ) ≡
∫

Y m∗
l (η, φ)Y m

l′ (η, φ)(ξ2 − η2)dηdφ

= δll′

(

ξ2 − 2l2 − 2m2 + 2l− 1

(2l+ 3)(2l − 1)

)

− δll′−2
1

(2l + 3)

×
(

(l +m+ 1)(l −m+ 1)(l +m+ 2)(l −m+ 2)

(2l + 1)(2l+ 5)

)1/2

− δll′+2
1

(2l + 1)

×
(

(ℓ+m− 1)(l −m− 1)(l +m)(l −m)

(2l − 1)(2l+ 3)

)1/2

(15)
For notational simplicity, we will not display integration
limits, with the understanding that the implied limits on
ξ, η and φ are [1, ξmax], [−1, 1] and [0, 2π], respectively.



3

B. Electron-electron repulsion integrals

Our strategy for evaluating matrix elements of the elec-
tron repulsion operator parallels, as closely as possible,
the procedure we developed for FEM/DVR in a spherical
basis. The two-electron integral we seek to evaluate is

I ≡
∫

Φ̄il1m1
(ξ1η1φ1)Φ̄jl2m2

(ξ2η2φ2)
1

|r1 − r2|
× Φi′l′

1
m′

1
(ξ1η1φ1)Φj′l′

2
m′

2
(ξ2η2φ2)dV

(16)

where the bar on Φ indicates complex conjugation only
of its associated spherical harmonic. We begin with the

Neumann expansion of 1/r12 in prolate spheroidal coor-
dinates [20]:

1

|r1 − r2|
=

8π

R

∞
∑

l=0

l
∑

m=−l

(−1)m (l −m)!

(l +m)!

× Pm
l (ξ<)Qm

l (ξ>)Y m
l (η1, φ1)Y

m∗
l (η2, φ2)

(17)
where Pm

l and Qm
l are the regular and irregular associ-

ated Legendre functions [21], respectively. Substituting
the Neumann expansion of Eq. (17) into Eq. (16) gives

I =

(

R

2

)6
8π

R

∞
∑

l=|m|

(−1)m (l −m)!

(l +m)!

∫

χim1
(ξ1)χi′m′

1
(ξ1)χjm2

(ξ2)χj′m′

2
(ξ2)

× Pm
l (ξ<)Qm

l (ξ>)J lm
l1m1l′

1
m′

1

(ξ1)J̄
lm
l2m2l′

2
m′

2

(ξ2)dξ1dξ2

(18)

where

J lm
l1m1l′

1
m′

1

(ξ) =

∫

Y m1∗
l1

(η, φ)Y m
l (η, φ)Y

m′

1

l′
1

(η, φ)(ξ2 − η2)dηdφ

J̄ lm
l2m2l′

2
m′

2

(ξ) =

∫

Y m2∗
l2

(η, φ)Y m∗
l (η, φ)Y

m′

2

l′
2

(η, φ)(ξ2 − η2)dηdφ

(19)

Note that there is no sum over m in Eq. (18) since it is
fixed by the selection rule m = m1 −m′

1 = m′
2 −m2.

The angular integrals J lm
l1m1l′

1
m′

1

and J̄ lm
l2m2l′

2
m′

2

(ξ) can

be done analytically. Because of the factor (ξ2 − η2) in
the volume element, the required angular integrals are of
two general types:

A
m1mm′

1

l1ll′
1

=
∫

Y m1∗
l1

(η, φ)Y m
l (η, φ)Y

m′

1

l′
1

(η, φ)dηdφ

= (−1)m1

√

(2l1+1)(2l+1)(2l′
1
+1)

4π

×
(

l1 l l′1
0 0 0

) (

l1 l l′1
−m1 m m′

1

)

(20)

and

B
m1mm′

1

l1ll′
1

=

∫

η2Y m1∗
l1

(η, φ)Y m
l (η, φ)Y

m′

1

l′
1

(η, φ)dηdφ .

(21)
To evaluate the B integrals, we can use η2 = 1

3 + 4
3

√

π
5Y

0
2

along with the identity

Y m
l Y 0

2 = (−1)m
|l+2|
∑

j=|l−2|

√

5(2l+1)(2j+1)
4π

×
(

2 l j
0 0 0

)(

2 l j
0 m −m

)

Y m
j (22)

to write

B
m1mm′

1

l1ll′
1

=
1

3
A

m1mm′

1

l1ll′
1

+
4

3

√

π

5
(−1)m

|l+2|
∑

j=|l−2|

√

5(2l + 1)(2j + 1)

4π

(

2 l j
0 0 0

) (

2 l j
0 m −m

)

×A
m1mm′

1

l1jl′
1

.

(23)
The complete angular integrals are

J lm
l1m1l′

1
m′

1

(ξ) = ξ2A
m1mm′

1

l1ll′
1

−B
m1mm′

1

l1ll′
1

J̄ lm
l2m2l′

2
m′

2

(ξ) = (−1)m(ξ2A
m2−mm′

2

l2ll′
2

−B
m2−mm′

2

l2ll′
2

)
(24)

The integrals over the radial variables in Eq. (18) can-
not be approximated accurately by Gauss quadrature
over the DVR mesh points because of the derivative dis-
continuity in Pm

l (ξ<)Qm
l (ξ>). We can however restore

the validity of the underlying quadrature with an ap-
proach similar to that employed in our earlier studies
that use a spherical coordinate basis [1]. The approach is
based on solving Poisson’s equation. We begin by defin-
ing the radial densities ρim1i′m′

1
(ξ) ≡ χim1

(ξ)χi′m′

1
(ξ)

and ρjm2j′m′

2
(ξ) ≡ χjm2

(ξ)χj′m′

2
(ξ). We then define

the potential V
l2m2l′

2
m′

2

jj′ at r1 due to the distribution
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ρjm2j′m′

2
Y m2

l2
Y

m′

2

l′
2

:

V
l2m2l′

2
m′

2

jj′ (r1) =

∫ ρjm2j′m′

2
(ξ2)Y

m2∗
l2

(η2, φ2)Y
m′

2

l′
2

(η2, φ2)

|r1 − r2|
(ξ22 − η2

2)dξ2dη2dφ2 , (25)

so that

I =

∫

ρim1i′m′

1
(ξ)Y m1∗

l1
(η, φ)Y

m′

1

l′
1

(η, φ)

× V
l2m2l′

2
m′

2

jj′ (ξ, η, φ)(ξ2 − η2)dξdηdφ .

(26)
Since the Green’s function for Poisson’s equation in pro-
late spheroidal coordinates satisfies

∇2 1

|r1 − r2|
= −

(

2

R

)3
4π

ξ2 − η2
δ(ξ−ξ′)δ(η−η′)δ(φ−φ′),

(27)

it follows that the potential V
l2m2l′

2
m′

2

jj′ satisfies

∇2V
l2m2l′

2
m′

2

jj′ (r) =

−
(

2

R

)3

4πρjm2j′m′

2
(ξ)Y m2∗

l2
(η, φ)Y

m′

2

l′
2

(η, φ) .
(28)

We next expand V
l2m2l′

2
m′

2

jj′ in spherical harmonics:

V
l2m2l′

2
m′

2

jj′ (r) =

∞
∑

l=0

l
∑

m=−l

v
l2m2l′

2
m′

2

jj′ ;lm (ξ)Y m
l (η, φ) . (29)

Substituting this expansion into Eq. (28), integrating
from the left with

∫

Y m∗
l (η, φ)(ξ2 − η2)dηdφ and using

Eq. (3) gives

[

∂

∂ξ
(ξ2 − 1)

∂

∂ξ
− l(l + 1) − m2

(ξ2 − 1)

]

v
l2m2l′

2
m′

2

jj′ ;lm (ξ) =

− 8π

R
ρjm2j′m′

2
(ξ)J̄ lm

l2m2l′
2
m′

2

(ξ)

(30)

To solve Eq. (30), we begin by expanding v
l2m2l′

2
m′

2

jj′ ;lm (ξ)

in the FEM/DVR basis

v
0 l2m2l′

2
m′

2

jj′ ;lm (ξ) =
∑

i

diχim(ξ) . (31)

Substituting the above expansion into Eq. (30), mul-
tiplying from the left with another DVR basis function
and integrating over ξ, using the Gauss quadrature rule,
gives a set of linear equations that can be solved for the
coefficients [d] :

di = −8π

R

∑

j

[Tlm]−1
i,j

δjj′√
wj
J̄ lm

l2m2l′
2
m′

2

(ξj), (32)

where Tlm is the matrix representation of the operator
that appears on the LHS of Eq. (30) in the DVR basis,
whose elements are given by:

[Tlm]i,j = −
∫

∂χi(ξ)

∂ξ

∂χj(ξ)

∂ξ
(ξ2 − 1)dξ

− δij

(

l(l+ 1) − m2

ξ2i − 1

)

.

(33)

The function v
0 l2m2l′

2
m′

2

jj′ ;lm (ξ) vanishes at the endpoints
of the ξ-grid. The physical solution we seek, on the other
hand, is finite at the grid endpoint, ξmax. Its value at
ξmax, obtained by substituting Eqs. (17) and (31) into
Eq. (25), is

v
0 l2m2l′

2
m′

2

jj′ ;lm (ξmax) =
8π

R
Qm

l (ξmax)
(l −m)!

(l +m)!

×
∫

Pm
l (ξ)ρjm2j′m′

2
(ξ)J̄ lm

l2m2l′
2
m′

2

(ξ)dξ

(34)

We can construct a solution with the proper boundary

conditions by adding to v
0 l2m2l′

2
m′

2

jj′ ;lm (ξ) components of the

homogeneous equation corresponding to Eq. (30), which
is just the Legendre equation. We can therefore write the
general solution to Eq. (30) as

v
l2m2l′

2
m′

2

jj′ ;lm (ξ) = v
0 l2m2l′

2
m′

2

jj′ ;lm (ξ)

+ αlm
jl2m2j′l′

2
m′

2

Pm
l (ξ) + βlm

jl2m2j′l′
2
m′

2

Qm
l (ξ) .

(35)
We can take βlm

jl2m2j′l′
2
m′

2

= 0 because the physical solu-

tion must be regular at ξ = 1. αlm
jl2m2j′l′

2
m′

2

is determined

by the value of v
l2m2l′

2
m′

2

jj′ ;lm (ξ) at the grid endpoint, i.e. at
ξ = ξmax and is therefore found to be

αlm
jl2m2j′l′

2
m′

2

=
8π

R

Qm
l (ξmax)

Pm
l (ξmax)

(−1)m (l −m)!

(l +m)!

×
∫

Pm
l (ξ)ρjm2j′m′

2
(ξ)J̄ lm

l2m2l′
2
m′

2

(ξ)dξ

=
8π

R

Qm
l (ξmax)

Pm
l (ξmax)

(−1)m (l −m)!

(l +m)!
δjj′P

m
l (ξj)

× J̄ lm
l2m2l′

2
m′

2

(ξj)

(36)
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and we can assemble the entire potential as

V
l2m2l′

2
m′

2

jj′ (ξ, η, φ) =

∑

l,m

[

∑

i

−8π

R
[Tlm]−1

i,j

δjj′√
wj
J̄ lm

l2m2l′
2
m′

2

(ξj)χim(ξ)

+ αlm
jl2m2j′l′

2
m′

2

Pm
l (ξ)

]

Y m
l (η, φ) .

(37)

We can now complete the desired expression for the two-
electron integral. Substituting Eq. (37) into Eq. (26) and
using Eqs. (12) and (13) to simplify the integration over
ξ give the final working expression:

I =

(

R

2

)6 ∫

ρim1i′m′

1
(ξ)Y m1∗

l1
(η, φ)Y

m′

1

l′
1

(η, φ)V
l2m2l′

2
m′

2

jj′ (r)(ξ2 − η2)dξdηdφ

=
πR5

8

lmax
∑

l=0

δii′δjj′J
lm
l1m1l′

1
m′

1

(ξi)

[

−
[Tlm]−1

i,j√
wiwj

+ (−1)m (l −m)!

(l +m)!

Qm
l (ξmax)

Pm
l (ξmax)

Pm
l (ξi)P

m
l (ξj)

]

J̄ lm
l2m2l′

2
m′

2

(ξj),

(38)

where lmax = min(l1+l′1+2, l2+l
′
2+2), the latter identity

following from the properties of the 3 − j symbols that
appear in Eqs. (20) and (23).

C. Double ionization amplitude

The procedure for constructing the double ionization
amplitude follows the development outlined in ref. [9].
The amplitude that gives the triple differential cross sec-
tion (TDCS) for double photoionization is

f(k1,k2) =
〈

Φ(−)(k1, r1)Φ
(−)(k2, r2)

∣

∣

∣

[

E +
1

2
∇2

1 +
1

2
∇2

2 +
1

|r1 − R

2 |
+

1

|r1 + R

2 |

+
1

|r2 − R

2 |
+

1

|r2 + R

2 |

]

∣

∣

∣
Ψ+

sc(r1, r2)
〉

≡
〈

Φ(−)(k1, r1)Φ
(−)(k2, r2)

∣

∣

∣
E −H0|Ψ+

sc(r1, r2)
〉

,

(39)

where E = k2
1/2 + k2

2/2 is the total photoelectron en-
ergy, Ψ+

sc is the first-order wave function of Eq. (7) and
Φ(−)(k, r) = Φ(+)∗(−k, r) is an H+

2 continuum eigen-
function with incoming momentum k. The integral in
Eq. (39) is performed over the finite, real portion of the
underlying grid, i.e. −1 ≤ η1, η2 ≤ 1, 0 ≤ φ1, φ2 ≤ 2π,

1 ≤ ξ1, ξ2 ≤ ξ0, where ξ0 lies on the real portion of the
ECS grid. Equation (39) has been shown to produce the
physical breakup amplitude as ξ0 is increased, aside from
a knowable, but irrelevant, overall phase [22]. The use of
H+

2 continuum eigenfunctions in Eq. (39) is essential for
producing numerically stable results, since their orthog-
onality to the bound states of H+

2 eliminates spurious
contributions of the single ionization channels that can
contaminate the results.

Computation of the H+
2 continuum eigenfunctions

in prolate spheroidal coordinates was detailed in I.
Φ(−)(k, r) is first partitioned into unperturbed and scat-
tered wave components

Φ
(+)
k

(ξ, η, φ) = Φ
(+)
0 (ξ, η, φ) + Φsc(ξ, η, φ) , (40)

to get

(

H − k2

2

)

Φsc(ξ, η, φ) =

(

k2

2
−H

)

Φ
(+)
0 (ξ, η, φ) .

(41)

We use that fact that the asymptotic form of Φ
(+)
0 is de-

termined by the long-range behavior of the Coulomb in-
teraction and must coincide, for large ξ, with the atomic

Coulomb function, ψ
(+)
c (k, r), with Z = 2, corresponding

to an electron with incoming momentum k. The explicit

choice for Φ
(+)
0 is

Φ
(+)
0 (ξ, η, φ) =

(

2

π

)1/2
∑

l,m

ileiηl

kr(ξ, η)
g(ξ)φ

(c)
l,k (r(ξ, η))Y m

l (r̂(ξ, η, φ))Y m∗
l (k̂) , (42)

where φ
(c)
l,k is the partial-wave Coulomb function, ηl is the

Coulomb phaseshift, g(ξ) is a cutoff function that goes to

zero as ξ → 1, and the mapping between spherical and
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prolate spheroidal variables is given through

r = a
√

ξ2 + η2 − 1

cos θ =
ξη

√

ξ2 + η2 − 1
.

(43)

The function g(ξ) is introduced in oprder to cut off Φ
(+)
0

near the one-center singularity at r = 0 (ξ = 1, η = 0),
which is not removed by the use of prolate spheroidal
coordinates. With this choice, we can solve the driven
equations obtained from Eq. (41) for each partial wave

and then construct Φ
(+)
k

(ξ, η, φ) any direction of k. Our

approach differs from earlier work on H+
2 continuum

states using prolate spheroidal coordinates, as well as
the recent work of Serov and Joulakian on H2 DPI,
where the asymptotic behavior of the one-electron contin-
uum states was expressed in terms of two-center phase-
shifts [16, 19, 23–25].

The evaluation of Eq. (39) is simplified by taking ad-
vantage of the fact that the operator (E − H0) in that

equation gives zero when operating to the left. With
Ψ+

sc(r1, r2) expanded as in Eq. (31) along with an analo-
gous expansion of Φ(−)(k1, r1)Φ

(−)(k2, r2),

(

Φ(−)(k1, r1)Φ
(−)(k2, r2)

)∗

=
∑

ijl1l2m

i−(l1+l2)eiηl1
+iηl2×

Yl1m(k̂1)Yl2M−m(k̂2)c
k1

il1mc
k2

jl2M−mΦil1m(r1)Φjl2M−m(r2)

(44)
the six-dimensional volume integral can thereby be con-
verted into a five-dimensional surface integral, as was
done previously in spherical polar coordinates [1, 2]. The
integrals in η1, φ1, η2, φ2 can be performed analytically,
leaving a surface integral in ξ1 and ξ2. However in this
case, instead of reducing the integral to an integral over
an arc of constant

√

ξ21 + ξ22 by analogy to the polar co-
ordinates formulation, we choose to make the surface
a rectilinear one. The surface segments are the lines
1 < ξ1 < ξ0, ξ2 = ξ0 and 1 < ξ2 < ξ0, ξ1 = ξ0. Equa-
tion (39) can then be evaluated as,

f(k1,k2) =
〈

Φ(−)(k1, r1)Φ
(−)(k2, r2)|E −H0|Ψ+

sc(r1, r2)
〉

=
∑

ijl1l2m

∑

i′j′l′
1
l′
2

ck1

il1mc
k2

jl2M−mCi′j′l′
1
l′
2
m i−(l1+l2)eiηl1

+iηl2Yl1m(k̂1)Yl2M−m(k̂2)

× δl2,l′
2

R4

32

∫

χim(ξ)χi′m(ξ)Sml1l′
1
(ξ)dξ(ξ20 − 1)

[

χjM−m(ξ0)
dχj′M−m

dξ

∣

∣

ξ=ξ0

− χj′M−m(ξ0)
dχjM−m

dξ

∣

∣

ξ=ξ0

]

+ 1 ↔ 2 ,

(45)

where we have used Eq. (15) in the integration over the
angular variables and integration by parts, retaining only
the surface terms, for integrals involving derivative terms
in ξ.

We conclude this section with the working expressions
for the DPI cross sections expressed in the velocity gauge.
The TDCS for double photoionization of the fixed-nuclei,
aligned molecule is given by

d3σ

dE1dΩ1dΩ2
=

4π2

ωc
k1k2

∣

∣f(k1,k2)
∣

∣

2
, (46)

while the corresponding single differential (SDCS) or en-
ergy sharing cross section is obtained by integrating the
TDCS over the ejection angles of the photoelectrons:

dσ

dE1
=

∫

dΩ1dΩ2
d3σ

dE1dΩ1dΩ2
. (47)

The SDCS is easily evaluated as the sum of the squared
moduli of the partial-wave amplitudes that determine
f(k1,k2). For linearly polarized incident radiation and
randomly oriented molecules, the physical SDCS is ob-

tained as the weighted average of Σ and Π contributions:

dσphys

dE1
=

1

3

(

dσ(Σ)

dE1
+ 2

dσ(Π)

dE1

)

. (48)

The total cross section is the integral of this SDCS from
0 to E, the latter being the total photoelectron energy.
Note that we differ from some other authors who define
the SDCS so that it gives the total cross section when
integrated from 0 to E/2.

III. COMPUTATIONS

To facilitate comparisons with earlier work, we have
carried out fixed-nuclei calculations of H2 DPI at its equi-
librium, R=1.4 bohr, for 75 eV photon energy. We have
performed calculations at the equilibrium H2 geometry,
R=1.4 bohr, to compare with our earlier calculations.
The ξ grid for these calculations was subdivided into 8
evenly spaced real intervals, each of length 8.0, running
from 1.0 to 65.0 and an additional complex element of
length 15.0 and a rotation angle of 30◦. We use 14th-
order DVR in each interval. For the angular expansion,
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FIG. 1: (Color online) TDCS for double photoionization of
H2 for 75 eV photon energy. The molecule, ejected electrons,
and polarization vector are coplanar. All angles are mea-
sured from the polarization axis.The angle between molecule
and polarization axis is θmol = 20◦; the angle between fixed
electron (with 80 percent of available energy) and polariza-
tion axis is θ1 = 40◦; the angle between the molecule and the
fixed electron is 20◦.

we retained terms up to lmax = 6. The ground-state
H2 energy, obtained using only the first two real ξ ele-
ments, was -1.17442 hartree, in excellent agreement with
the accurate value of -1.17447 hartree results of Wol-
niewitz [26]. We note that calculations in spherical coor-
dinates reported in ref. [9] using a single-center expansion
with lmax = 7 give a target energy of -1.16908 hartree,
which is 0.15 eV higher than the accurate value.

IV. RESULTS

Figure 1 shows TDCS results for a case previously con-
sidered. The two photoelectrons both lie in the plane
defined by the molecule and the polarization axis. The
angle between the molecule and the polarization axis is
20◦, while the fixed electron, with 80 percent of the avail-
able energy, is at 40◦ to the polarization axis. For this
arrangement, the TDCS is small and has roughly equal
contributions from the Σu and Πu components of the
wave function. Evidently, the present results are uni-
formly smaller than those we reported in ref. [9], which
were obtained using a single-center expansion in spheri-
cal coordinates. Curiously, a single scaling factor of 1.23
bring the two results into perfect agreement.

It turns out that for any geometry, a simple renormal-
ization of the earlier single-center results brings them into
perfect agreement with the present calculations. This
is demonstrated with the results displayed in Figs. 2-4,
which show results for different orientations of the fixed
electron and different energy sharings. The scaling factor
needed to bring the present and the earlier calculations
into agreement only depends on the energy sharing. That
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FIG. 2: (Color online) TDCS for double photoionization of
H2 for 75 eV photon energy. The molecule, ejected electrons,
and polarization vector are coplanar. The fixed electron, with
20 percent of the available energy, is perpendicular to the
polarization axis. ΘN indicates angle between polarization
and molecular axis.
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FIG. 3: (Color online) As in Fig. 2, except fixed electron has
50 percent of the available energy.

factor varies from 1.34 for equal energy sharing to 1.23
for 20 percent energy sharing, independent of the relative
orientation of photoelectrons and molecular orientation
with respect to the polarization axis.

The present results could not be changed by increasing
the grid size, the DVR order or the number of angular
terms retained in solving for the scattered wave or the
H+

2 continuum functions. A careful convergence study
had also been carried out in the earlier single-center ECS
study, so the differences seen in the absolute magnitude
of TDCS from the two studies was surprising. The ob-
served differences led us to suspect that they might be
attributable to differences in the initial-state target wave
functions. There is 0.15 eV difference in the ground-
state target energies. Since both calculations were car-
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FIG. 4: (Color online) As in Fig. 3, except fixed electron is
parallel to polarization axis.
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FIG. 5: (Color online) TDCS for 75 eV photon energy and
equal energy sharing, with fixed electron perpendicular to
molecular axis. Present result is compared with those of ref.
9 and with a calculation in which the initial state is calculated
using lmax = 2 in prolate coordinates.

ried out at 75 eV photon energy, this difference results
in a slightly smaller total photoelectron energy in the
present calculations. However, we checked that chang-
ing the photoelectron energy could not account for the
observed differences.

Single-center expansions are notoriously difficult to
converge and first-order changes in the wave function
only change the energy in second-order. This observa-
tion, coupled with the fact that the amplitude for double
ionization is a sensitive probe of electron correlation, be-
ing effectively zero in an independent particle treatment,
led us to suspect that the differences we were observing
might be attributable to small differences in the initial
state wave functions themselves. To test this hypothe-
sis, we recomputed the initial-state target wave function
using lmax = 2 in the angular expansion, which gave an
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FIG. 6: (Color online) SDCS and β parameter for H2 DPI
at 75 eV photon energy. Present results are compared with
those of ref. 9.

energy of -1.1732 hartree, only one millihartree higher
than the original value. We then solved the driven equa-
tion for the scattered wave using this initial-state wave
function, but with the original basis set parameters and
angular terms up to lmax = 6 in both Ψ+

sc and Φ(−).
The results in Fig. 5 show a significant rise in the magni-
tude of the TDCS resulting from the change in the target
state wave function, giving values much closer to those
reported in ref. [9]. We conclude that magnitude of the
TDCS depends very sensitively on the quality of the ini-
tial state wave function, while the relative shape of the
angular distribution is less sensitive to small changes in
the target-state wave function.

Figure 6 compares the calculated Σ and Π components
of the SDCS, as well as the β-parameter, with the earlier
results. It is easy to verify that the SDCS values differ
by precisely the same factors reflected in the TDCS. At
equal energy sharing, the ratio is 1.34, while at 20/80 per-
cent energy sharing, the ratio is 1.23. The β-parameter
depends only on a ratio of cross sections and thus the
present results for this quantity agree well with our ear-
lier values.

The only other theoretical treatments of differential
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DPI cross sections available for comparison are the time-
dependent close-coupling (TDCC) treatment of Colgan,
Pindzola and Robicheaux [10] and the recent PSECS
study of Serov and Joulakian [16]. The TDCC study
presented TDCS results for the same kinematic arrange-
ments shown in Figs. 2-4. Those results are in excellent
agreement with present results in shape, while the mag-
nitudes of the TDCC TDCS are somewhat larger than
the present values, but generally smaller than those pre-
sented in ref. [9]. Colgan et al. report a value of −0.802
for the β-parameter at equal energy sharing, which is
within 1% of what we find. However, since they do not
report values for the SDCS, we cannot see whether the
scaling we have found between integrated cross sections
and TDCS applies to their results. The only TDCS val-
ues reported by Serov and Joulakian are for the single
case shown in Fig. 1. Curiously, their results are in al-
most perfect agreement, in shape and magnitude, with
our earlier single-center ECS results, while their SDCS
results are ∼8% larger than the single-center values, or
∼38% larger than the present results. While we can point
to an inconsistency between the magnitudes of the TDCS
and SDCS reported in the PSECS study, we are at a loss
to explain its origin.

V. DISCUSSION

The present study extends our development of an ex-
terior scaled, finite-element/ discrete variable represen-
tation in prolate spheroidal coordinates to study dou-
ble ionization of two-electron molecular targets. The
present development retains much of the simplicity and
efficiency of the FEM/DVR in spherical coordinates. We
have shown that an analogous approach for construct-
ing matrix elements of the electronic repulsion poten-
tial, 1/|r1 − r2|, based on solving Poisson’s equation in
spheroidal coordinates gives a representation which is
diagonal in the radial DVR indices and a correspond-
ingly sparse representation of the Hamiltonian. Prolate
spheroidal coordinates are a natural choice for studying
diatomic targets and the angular expansion of the wave
function converges very rapidly in this coordinate system.

We have found that, while the shapes of the fully dif-
ferential double ionization cross sections converge rapidly
and are completely consistent with our earlier calcula-
tions, the magnitude of the DPI cross sections shows a
surprising sensitivity to small changes in the target wave
functions.

To extend the present development to more complex

molecular targets, we could adopt an approach similar
to that outlined in our two recent studies of double pho-
toionization of Be and Li [27, 28]. The idea would be
to use a hybrid basis where all but two active electrons
are described using molecular orbitals, while the two ac-
tive electrons are described using primitive FEM/DVR
functions. The molecular orbitals would be expanded in
the same underlying DVR basis, but since their radial
extent in limited, we could exploit the finite element as-
pect of the FEM/DVR to use DVR functions that span
only the first few elements in constructing the molecular
orbitals. The remainder of the DVR grid representation
is left untouched and describes the continuum portions
of the wave function. Such an approach retains much of
the simplicity of the original FEM/DVR approach, while
allowing for a straightforward extension of the method
to study double ionization of targets with more than two
electrons.
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