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ABSTRACT OF THE DISSERTATION 

 

A Deep Learning Framework for Precipitation Estimation  

from Bispectral Satellite Information 

By 

Yumeng Tao 

Doctor of Philosophy in Civil Engineering  

 University of California, Irvine, 2017 

Professor Soroosh Sorooshian, Chair 

 

Compared to ground-based precipitation measurements, satellite-based precipitation 

estimates have the advantage of global coverage and high spatiotemporal resolutions. 

However, the accuracy of satellite-based precipitation observations is still insufficient to 

serve many weather, climate, and hydrologic applications. In the development of a 

satellite-based precipitation product, the two most important aspects are the provision of 

sufficient precipitation-related information in the selected satellite data and the use of the 

proper methodologies to extract such information and link it to precipitation estimates.  

In this dissertation, a state-of-the-art deep learning framework for precipitation estimation 

using bispectral satellite information, Infrared (IR) and water vapor (WV) channels, is 



xx 

 

developed. I explore the effectiveness of deep learning techniques in extracting useful 

features from the satellite information and demonstrate the value of incorporating multiple 

satellite channels.  

Specifically, I first provide a bias reduction model for satellite-based precipitation products 

using deep learning approaches to demonstrate their capability of extracting additional 

useful information from the satellite data. I then design a two-stage framework for 

precipitation estimation from bispectral information, consisting of an initial rain/no-rain 

(R/NR) binary classification, followed by a second stage estimating the non-zero 

precipitation amount. In the first stage, the model aims to eliminate the large fraction of NR 

pixels and to precisely delineate precipitation regions. In the second stage, the model aims 

to estimate the point-wise precipitation amount accurately while preserving its 

heavy-tailed distribution. Stacked denoising auto-encoders (SDAEs), a commonly used 

deep learning method, are applied in both stages.  

The operational product, Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks Cloud Classification System (PERSIANN-CCS), serves as a 

baseline model throughout this dissertation. I evaluate performance along a number of 

common performance measures, including both R/NR and real-valued precipitation 

accuracy. Case studies focusing on the model’s performance for specific events are also 

included. The experiments show that our proposed two-stage model outperforms original 
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PERSIANN-CCS in different verification periods over the central United States and in 

large-scale application. Therefore, the two-stage deep learning framework has the potential 

to serve as a more accurate and more reliable satellite-based precipitation estimation 

algorithm. 
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Chapter 1 

 

Introduction 

                                     

 

1.1 Satellite-Based Precipitation 

Weather forecasts, climate variability, hydrology, and water resource management require 

sufficient information regarding precipitation, which is one of the most active variables in 

the natural water cycle. Precipitation observing, monitoring, and analyzing tools provide 

fundamental information needed for society to manage the recent increased number of 

extreme hydrometeorological events of recent decades. For instance, prediction and 

management of flooding events, the leading cause of severe-weather-related deaths, 

require instant and reliable precipitation information in high-spatiotemporal resolution, 

such as rainfall intensity and duration (AghaKouchak and Nakhjiri, 2012; Ajami et al., 2008; 

Anderson et al., 2008). Therefore, it is essential to provide near-real-time, accurate 

precipitation measurements with high resolution and near-global coverage. 

Most common precipitation measurements consist of ground-based measurements, 

including gauge networks and radars and satellite-based measurements. Traditional 
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ground-based precipitation measurements suffer from restricted coverage and fail to 

provide precipitation data with a high-spatiotemporal resolution, especially for remote and 

unequipped regions (Ajami et al., 2008; Bellerby and Sun, 2005; Habib et al., 2014; Huffman 

et al., 2007; Nasrollahi et al., 2013). More specifically, gauges and radars are distributed 

unevenly with a positive correlation with population density, and there is little to no 

coverage over the ocean and sparsely populated areas. In addition, radar suffers from 

blockages in mountainous regions, such as the Western United States, and provides limited 

coverage in such regions. In extreme events, gauges and radars are likely to fail due to 

damage caused by the event. 

By contrast, near-real-time satellite-based precipitation estimation products show the 

advantage of providing global fine-resolution precipitation maps, including oceans and 

developing regions. Unlike ground-based measurements, satellite instruments can monitor 

the full evolutionary picture of an extreme event without being affected by the event itself 

(Nguyen et al., 2014; Scofield and Kuligowski, 2003). For example, Nguyen et al. (2014) 

emphasized the value of satellite-based precipitation during Super Typhoon Haiyan in 

November, 2013, when all the ground-based measuring facilities were destroyed. 

Near-real-time satellite-based precipitation estimation products can provide valuable 

information for global weather and climate monitoring and for disaster planning and 

management. 
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To retrieve precipitation values, the most commonly used satellite information includes 

infrared (IR) data from geosynchronous-Earth-orbiting (GEO) satellites and passive 

microwave (PMW) data from low-Earth-orbiting (LEO) satellites (Hsu et al., 1997; Weng et 

al., 2003). PMW data have the advantage of being directly retrieved from actual 

hydrometeor content, whereas IR data are limited to cloud-top information (Behrangi et al., 

2009a; Kummerow and Giglio, 1995). However, one main drawback of PMW data is their 

low-temporal resolution (Marzano et al., 2004). IR data have high spatial and temporal 

resolution and thus can monitor the complete evolution of a local precipitation event 

(Behrangi et al., 2009b). Many satellite-based precipitation estimation products have been 

developed and made operational in the past few years with the general concept of 

combining IR and PMW data (Hong et al., 2004; Hsu et al., 1997; Huffman et al., 2007; Joyce 

et al., 2004; Kidd et al., 2003; Kuligowski, 2002). In addition, most algorithms estimate 

precipitation from IR information and then post-process it with PMW information. With 

their high-spatiotemporal resolutions, GEO satellite observations continuously serve as 

fundamental sources in precipitation estimation (Behrangi et al., 2009b; Huffman et al., 

2007).  

Some studies have incorporated multiple channels of GEO satellite data because IR 

cloud-top brightness temperature data alone do not contain sufficient information for 

accurate precipitation retrieval (Ba and Gruber, 2001; Behrangi et al., 2009b; Behrangi et 
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al., 2010). One common choice is visible (VIS) wavelength cloud albedo data because of the 

data’s high quality in daytime (Behrangi et al., 2010; Capacci and Conway 2005; Cheng et 

al., 1993; Grassotti and Garand, 1994; Griffith et al., 1978; Hsu et al., 1999). The obvious 

drawback for VIS data is that they are not available at nighttime. On the other hand, WV 

channel information has also proven to be quite effective for precipitation retrieval by a 

few previous studies, especially when used in combination with IR data (Behrangi et al., 

2009a; Martin et al., 2008; Tjemkes et al., 1997). 

One other important component for a satellite-based precipitation estimation product is its 

algorithms to produce precipitation estimations from the input data. Several studies 

emphasize that the key to making the best use of these datasets is to promote advanced 

methods that better assist in the extraction of valuable information from the raw data than 

the existing algorithms (Nasrollahi et al., 2013; Sorooshian et al., 2011). In recent years, 

deep learning techniques, also known as deep neural networks (DNNs), have been 

developed and widely applied in the machine learning and computer vision areas, 

constituting a breakthrough in managing large and complex datasets, especially for feature 

extraction from a large amount of image data (Bengio, 2009; Hinton et al., 2006; LeCun et 

al., 2015; Lee et al., 2007; Zhao et al., 2014). The techniques have proven to be effective in 

managing many real-world data mining problems (Glorot et al., 2011a; Hinton et al., 2006; 

Lu et al., 2013; Vincent et al., 2008). One particular advantage of a DNN is that it helps 
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extract representative features automatically and further assists estimation. The power of 

deep learning for image processing and feature extraction provides an opportunity to 

improve the accuracy of satellite-based precipitation estimation.  

 

1.2 Research Motivation and Objectives 

As various satellites’ information and techniques to link such information to precipitation 

are available, the goal of this research is to develop a satellite-based precipitation 

estimation product with high accuracy and reliability. In this dissertation, I explore the 

application of state-of-the-art deep learning techniques and develop a framework for 

precipitation estimation from bispectral satellite information (IR and WV channels).  

Specifically, this dissertation addresses the following objectives:  

1) Demonstrate the effectiveness of deep learning algorithms for 

precipitation-related information extraction from satellite infrared imageries by 

developing a bias reduction system on satellite-based precipitation estimation 

products. 
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2) Design a deep learning framework that extracts useful features from bispectral 

satellite information to produce a consistent and high-quality precipitation 

estimation product. 

3) Evaluate the effectiveness of the methodology and the value of additional 

satellite information on both binary precipitation identification and precipitation 

amount estimation by comparing its performance with operational products. 

4) Evaluate the performance of the developed DNN model at a large-scale 

application and thus demonstrate its potential of future use at a near-global scale. 

5) Assess the advantages and limitations of the developed DNN structure and 

identify potential future developments and investigations for operational 

applications. 

 

1.3 Organization of the Dissertation 

The general outline and dependence of this dissertation is described in Figure 1-1. The 

remainder of this dissertation is organized into six chapters. Chapter 2 summarizes related 

background information on precipitation estimation and deep learning techniques. Then, 

Chapters 3–6 describe the main novel contributions of this dissertation. Finally, summary, 

conclusions, and future directions are discussed in Chapter 7. 
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Figure 1-1 Outline and dependence of the dissertation 

More specifically, each chapter contains the following materials: 

Chapter 2 provides background information on properties of precipitation data, 

satellite-based precipitation estimation products, and recent development of deep 

learning techniques. I first introduce the high imbalance of precipitation and the 

difficulties of its estimation. Then I overview the previous work on satellite-based 

precipitation estimation products and discuss in detail the operational product used as a 
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baseline model in this study. Current development on DNNs is then discussed with a focus 

on stacked denoising auto-encoders (SDAEs), which is the primary training technique 

used in this study. Finally, the main study region and data used are described. 

Chapter 3 explores the effectiveness of DNNs for precipitation-related information 

extraction. As a first step, I take advantage of precipitation estimation made available by 

current satellite-based precipitation estimation products and produce a bias reduction 

process without adding extra satellite information. The current products are used to 

eliminate most no-rain samples and thus the DNN model can focus on capturing the 

residuals of the samples with a non-zero precipitation amount. I conclude with 

experiments that the DNN model can extract additional information from the same input 

data to reduce bias on the current products. Thus, by properly designing and training a 

DNN, a more effective satellite-based precipitation estimation model can be developed. 

Chapter 4 develops a rain/no-rain (R/NR) binary classification neural network. This is 

the first step of the two-stage precipitation estimation model. This step focuses on 

correctly classify pixels to rain or no-rain pixel and thus eliminate the massive amount of 

no-rain cases. I first experimentally demonstrate the effectiveness of a DNN structure on 

the R/NR classification compared to the baseline model. Then I incorporate additional 

satellite information (water vapor channel) and adjust the DNN structure accordingly. 
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The further improvement in the classification results proves the value of the additional 

information, which is the foundation of the bispectral precipitation estimation. 

Chapter 5 focuses on the part of real-valued precipitation amount estimation of the 

two-stage precipitation estimation model. As the second step of the two-stage model, I 

only deal with pixels classified as with a precipitation in the first step. The main challenge 

in this step is that the highly skewed the precipitation amount generally prevents 

data-driven model predicting large rainfall amount. To tackle with this issue, I 

incorporate the Kullback-Leibler divergence (KL divergence) as part of the objective 

function of the DNN and combine its effect with the conventional mean squared error 

(MSE). Combining with the binary classification structure, this is the complete two-stage 

model for precipitation estimation from bispectral satellite information. I then present 

experimental results to demonstrate the effectiveness of this model and compare it with 

the baseline model. 

Chapter 6 presents a large-scale application of the developed two-stage model. One 

important property of satellite-based precipitation estimation products is their 

near-global coverage. Therefore, it is important to extend the‎model’s‎ application‎ and‎

evaluation beyond its main study region. I verify the model in the coverage of the whole 

United States with its calibration remained in the central United States to demonstrate its 

capability to preserve cloud and precipitation relationship regardless of experiment 
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regions. It shows the potential of the model to serve as an operational product with 

near-global coverage. 

Chapter 7 gives the summary of the dissertation, the main conclusions, and the potential 

future research directions for the model further development and for preparation of an 

operational product.  
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Chapter 2 

 

Background 

                                     

 

2.1 Challenges for Satellite-Based Precipitation Estimation  

2.1.1 Imbalance of Precipitation Data 

Satellite-based precipitation estimation products require high-spatiotemporal resolution, 

often at hourly scale and finer than 0.25° × 0.25° (approximately 25 km × 25 km) longitude 

and latitude. At this scale, the precipitation amount is expectably highly skewed. No rain is 

expected in most cases while heavy rain (> 10 mm/hr) is very unlikely to happen.  

Table 2-1 Rainfall intensity percentages of radar observations of the central United States in 

summer 2013 

 Intensity Percentage 

No Rain 0 – 0.1 mm/hr * 95.21% 

Light Rain 0.1 – 2.5 mm/hr 3.59% 

Moderate Rain 2.5 – 10 mm/hr 0.95% 

Heavy Rain > 10 mm/hr 0.25% 

* 0.1 mm/hr is commonly used as a threshold to determine if there is precipitation due to radar sensors’ 

uncertainty in very light rainfall. 
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As an example, Table 2-1 provides rainfall intensity spreads of radar observation of the 

central United States (30–45 N°, 90–105 W°) in summer (Jun.–Aug.) 2013. As shown in 

Table 2-1, over 95.2% of pixels show no rain (< 0.1 mm/hr), while only 1.2% of pixels show 

moderate to heavy rain (> 2.5 mm/hr, 0.95% of pixels at 2.5–10 mm/hr and 0.25% of 

pixels at > 10 mm/hr). 

Such imbalance of precipitation data is one large challenge in applying the data-driven 

method towards precipitation estimation. Specifically, it makes the MSE, the most 

commonly used objective measure in supervised machine learning models, not suitable to 

work as the sole optimization objective for precipitation estimation. Optimized by the MSE 

solely, the models tend to be conservative and avoid predicting large rainfall amounts with 

great uncertainties. However, one main purpose of the satellite-based precipitation 

estimation is to track rainfall events, especially extreme events that may lead to floods and 

other environmental disasters. Therefore, in previous studies, the use of advanced machine 

learning approaches usually was limited to auxiliary steps, such as cloud unsupervised 

clustering. On the other hand, idealized assumptions are often imposed to ensure that large 

values can be predicted by the models. For example, PERSIANN assumes strictly that pixels 

with lower brightness temperature at the top of clouds have heavier precipitation on the 

ground (Arkin and Meisner, 1987; Hsu et al., 1997). 
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2.1.2 Multiple Objectives of Precipitation Estimation 

Because of the imbalance of precipitation data and the use of precipitation observation, a 

reliable satellite-based precipitation estimation product needs to satisfy multiple 

objectives, including accurate binary R/NR identification, minimal error in pixel-wise point 

estimates, and similarly distributed as skewed precipitation observations. First, a 

successful precipitation estimation model needs to be capable of distinguishing R/NR 

pixels, which are usually measured by probability of detection (POD) and false alarm ratio 

(FAR). Then, such model needs to minimize the point-wise differences, which are usually 

measured by MSE, while predicting extreme events by capturing the distribution of 

precipitation values.  

To develop a reliable structure of satellite-based precipitation estimation product, multiple 

objectives need to be considered and multiple performance measurements are provided. 

Table 2-2 provides the commonly used performance verification measurements for 

precipitation estimation, including performance for R/NR classification and precipitation 

amount estimation regression. These measurements are used to evaluate the performance 

of a precipitation estimation model with a reference to ground observation. In this 

research, the National Centers for Environmental Prediction (NCEP) Stage IV Radar and 

Gauge Precipitation Data (Stage IV) is served as ground observation (Lin and Mitchell, 

2005; http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/).  

http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
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Table 2-2 Common verification measurements for satellite-based precipitation estimation 

products 

 
Verification Measures Formulas 

Range and 

Desirable Value 
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Probability of Detection 

 (POD) 
𝑃𝑂𝐷 =

𝑇𝑃

𝑇𝑃 + 𝑀𝑆
  

Range: 0 to 1 

Desirable Value: 1 

False Alarm Ratio  

(FAR) 
𝐹𝐴𝑅 =

𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

Range: 0 to 1 

Desirable Value: 0 

Critical Success Index  

(CSI) 
𝐶𝑆𝐼 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑀𝑆
 

Range: 0 to 1 

Desirable Value: 1 

Heidke Skill Score  

(HSS) 

𝐻𝑆𝑆 =
2(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝑀𝑆)

[(𝑇𝑃 + 𝑀𝑆)(𝑀𝑆 + 𝑇𝑁)

+(𝑇𝑃 + 𝐹𝑃)(𝐹𝑃 + 𝑇𝑁)]

 Range: -∞ to 1 

Desirable Value: 1 

Frequency Bias 

 (FBI) 
𝐹𝐵𝐼 =

𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝑀𝑆
 

Range: 0 to +∞ 

Desirable Value: 1 
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Bias 𝐵𝑖𝑎𝑠 =  𝑥̅ − 𝑦̅ 
Range: -∞ to +∞ 

Desirable Value: 0 

Mean Squared Error  

(MSE) 
𝑀𝑆𝐸 =

1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)2 

Range: 0 to +∞ 

Desirable Value: 0 

Pearson’s Correlation 

Coefficient 

(COR) 

𝐶𝑂𝑅 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2√∑(𝑦𝑖 − 𝑦̅)2
 

Range: -1 to 1 

Desirable Value: 1 

TP denotes the number of true positive events, MS denotes the number of missing events, FP denotes the 

number of false positive events, TN denotes the number of true negative events, 𝑥̅ denotes estimation 

average, 𝑦̅ denotes observation average, 𝑥𝑖  denotes pixel estimation, 𝑦𝑖  denotes pixel observation, and N 

denotes amount of observations. 
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2.2 Overview of Satellite-Based Precipitation Estimation 

In this section, I give a brief overview of important previous development on 

satellite-based precipitation estimation products. In addition, I review in detail one of the 

most widely used satellite-based precipitation estimation products, Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud 

Classification System (PERSIANN-CCS), since it is used as a baseline model in this research. 

In this dissertation, the precipitation estimates from the operational PERSIANN-CCS is used 

for comparison. Appendix A provides details on the PERSIANN-CCS reproduced on the 

main study region and study periods and its comparison with operational product. 

Several operational satellite precipitation estimation products are available for public use 

through their open websites. The Climate Prediction Center morphing method (CMORPH), 

developed by the National Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center, uses precipitation estimates derived from low-orbiter satellite PMW and 

IR data to transport the PMW precipitation features during periods when microwave data 

are not available at a given location (Joyce et al., 2004). The Tropical Rainfall Measuring 

Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) blended IR information and 

PMW estimates and available rain gauge analyses to produce the final product with a 

calibration traceable to the single “best” satellite estimate (Huffman et al., 2007). Other 

satellite-based precipitation estimation products include the PMW-calibrated IR algorithm 
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(PMIR; Kidd et al., 2003), the Precipitation Estimation from Remotely Sensed 

Self-Calibrating Multivariate Precipitation Retrieval algorithm (SCaMPR; Kuligowski, 

2002), and the Naval Research Laboratory Global Blended-Statistical Precipitation Analysis 

(NRLgeo; Turk and Miller, 2005). 

The PERSIANN product takes advantage of machine learning techniques to estimate 

precipitation rates with features extracted from IR grids and a window of grids 

surrounding them (Hsu et al., 1997). Similarly, the PERSIANN-CCS, a revised PERSIANN 

product with finer resolution, also applies artificial neural networks to classify clouds 

based on IR information and estimate precipitation (Hong et al., 2004). A detailed 

description of PERSIANN-CCS can be found in Hong et al., 2004. Roughly speaking, there 

are two steps involved in the process: the unsupervised clustering of clouds using 

Self-Organizing Feature Map (SOFM) and the precipitation estimation of pixels using the 

probability-matching method and the exponential regression. 

In the unsupervised clustering step, nine features are extracted from the cloud patches, as 

shown in Table 2-3. The features are designed to describe the temperature, geometric, and 

textural properties for the clouds and served as inputs to a 20 × 20 SOFM to cluster the 

cloud patches (Hong et al., 2004). One source of the bias in satellite-based precipitation 

estimation is that a few statistics of an IR image, such as mean and standard deviation of 
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nearby pixels, do not provide as much information as the raw image itself, where the full 

cloud-shape information is contained.  

Table 2-3 Cloud features used for PERSIANN-CCS 

Coldness Features  
Minimum temperature* of a cloud patch 

Mean temperature of a cloud patch 

Geometric Features 
Cloud-patch area 

Cloud-patch shape index 

Texture Features  

Standard deviation of cloud-patch temperature 

Mean value of local standard deviation of cloud temperature 

Standard deviation of local standard deviation of cloud 

Gradient of cloud-top temperature 

Gray-image texture  

(maximum angular second moment) 

* Temperature refers to the cloud-top brightness temperature provided by the satellite imagery. 

After the clusters are developed, the probability-matching method is applied to each cluster 

respectively. In each cluster, the cloud-top brightness temperatures and the observed rain 

rates of the pixels are first redistributed separately and then re-matched with the 

assumption that pixels with lower cloud-top brightness temperature associate with higher 

rain rates. Then, an exponential regression is used to fit this relationship. One advantage of 

this process is that it preserves the ability of estimating extreme but rare events, which is 

substantial for the use of the precipitation values. However, the critical assumptions used 
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in this step are not necessarily true, since heavy rain rates may occur at the edges of a cloud 

patch, where the brightness is often not lower than that inside the patch. 

Various validation studies have been conducted to address the errors in satellite-based 

precipitation estimation products and to investigate potential approaches to improve the 

algorithms (AghaKouchak et al., 2011; Bellerby and Sun, 2005; Moazami et al., ,2014; Tian 

et al., 2009). Overestimation with many false alarms is identified as a common drawback 

for most satellite-based precipitation estimation products, especially in warm seasons 

(Sapiano and Arkin, 2009). In addition, precipitation from warm clouds is often missed in 

satellite-based products (Behrangi et al., 2009a; Nasrollahi et al., 2013). 

 

2.3 Overview of Deep Neural Networks 

Deep learning techniques are a new version of artificial neural networks, breaking the 

traditional limitation of the number of hidden layers and hidden nodes. The deep learning 

algorithms aim at learning feature hierarchies with features from higher levels of the 

hierarchy formed by the composition of lower-level features (Bengio, 2009). In other 

words, instead of depending on human-crafted features, DNNs are capable of automatically 

extracting useful features from raw information, especially for image data. Additionally, 

such models are designed to learn complex functions that directly map the original input to 
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the output. This deep architecture corresponds to the mammalian brain, where an image is 

processed in sequence of stages: detection of edges, primitive shapes, and moving up to 

gradually more complex visual shapes (Bengio, 2009). 

Successful use of a DNN depends largely on how well to optimize the parameters (weights) 

of neural nodes and calibrate a neural network with given data samples. In general, the 

parameter values are established through supervised or unsupervised training, which the 

former requires data samples of input-output pairs and an effective search program to 

calculate the parameter values, while the latter only needs input data samples and a 

self-organization program to set the parameters. Because of the large number of 

parameters in a DNN, the traditional supervised training process could use a large amount 

of time and may not successfully optimize the parameters from a random initialization 

(Glorot and Bengio, 2010). To obtain better estimates, unsupervised pre-training 

techniques were developed in recent years to initialize the weights to capture information 

in the input data (Bengio et al., 2007; Bengio, 2009; Vincent et al., 2008). Afterwards, the 

traditional supervised gradient-based backpropagation is applied to fine-tune the whole 

neural network (Bengio, 2009; Rumelhart et al., 1986; Vincent et al., 2008). A detailed 

review of deep learning methodologies and their applications can be found in Bengio 

(2009). 
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Specifically, SDAEs, widely used deep learning technique introduced by Vincent et al. 

(2008, 2010), are used here. SDAEs have been proven to effectively construct high-level 

representations from image patches (Glorot et al., 2011b; Lu et al., 2014; Netzer et al., 

2011; Vincent et al., 2010; Wang and Yeung, 2013; Xie et al., 2012; Zhou and Lee, 2012). 

The method mainly involves two steps: (1) unsupervised feature extraction pre-training; 

and (2) supervised neural network fine-tuning. 

The first step of the SDAEs is the unsupervised feature extraction process. The structure of 

neural networks for the process is an Auto-Encoder (AE), as shown in Figure 1. It uses a set 

of weights to convert the input vector 𝒙 into an internal representation (the hidden 

nodes) 𝒉 and then another set of weights to produce 𝒙̂, the reconstructed estimate of 𝒙 

(Hinton and Zemel, 1993). The process can be expressed by 

𝒉 = 𝑓(𝒙) = 𝑠(𝑾𝟏𝟐𝒙 + 𝒃𝟏)  

and 

𝒙̂ = 𝑔(𝒉) = 𝑠(𝑾𝟐𝟑𝒉 + 𝒃𝟐) 

where 𝑓(·) and 𝑔(·) are deterministic mappings and 𝑠 is a non-linear operator, known 

as the activation function; 𝑾𝟏𝟐 denotes the weights between the input and hidden layers; 

𝑾𝟐𝟑 denotes the weights between the hidden and output (reconstruction) layers; and 𝒃𝟏 

and 𝒃𝟐  are offset vectors. Common choices of activation functions include sigmoid, 
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hyperbolic tangent, and rectified linear functions. In this study, I chose the rectified linear 

function, since it has been proven to be effective for deep architectures, especially in 

regression problems (Zeiler et al., 2013). When used as a pre-training process for a DNN, 

the representations are commonly designed to be over-complete (𝐡 has higher dimension 

than 𝐱) but sparse (Le et al., 2011; Ranzato et al., 2007). 

 

Figure 2-1 Structure of an Auto-Encoder (AE), which reconstructs the input information by 

learning the internal representations (hidden layer) 

To extract sparse yet informative features, rather than “simply copy the input,” a DAE is 

designed based on the idea that robust representations can reconstruct the input from a 

corrupted version of it (Vincent et al., 2010). In other words, the input layer of a DAE is the 

raw data with extra noise. It learns the hidden representations by “de-noising” it to a clean 

version. There are multiple ways to do the corruption, as suggested in (Vincent et al., 

2010). In this study, I used “masking noise,” which randomly forces a fraction of the input 
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elements to be 0. When DAEs are combined in a stacked fashion, it is called SDAEs (Hossain 

et al., 2015; Vincent et al., 2010). Starting from the input layer, a DAE is applied to initialize 

weights between it and the first hidden layer. Afterwards, the trained first hidden layer is 

taken as the input layer to the next DAE. The process runs sequentially until it reaches the 

last hidden layer.  

The unsupervised layer-wise pre-training is computationally efficient but does not provide 

the optimal weights for the overall prediction task (Hinton et al., 2006). Thus, the 

fine-tuning step is applied to optimize the whole neural network by updating all the 

weights jointed using the labeled data. In this step, uncorrupted data is used as the input 

(Vincent et al., 2010).  

In this dissertation, for the classification and regression problems, the activation functions 

used are sigmoid and rectified linear functions, respectively. The activation functions 

remain the same for all internal nodes. In pre-training, the masking fraction is 40%, where 

masked pixels are randomly selected. The objective function used in pre-training is the 

mean squared error between the raw and reconstructed images. In both steps, we used 

mini-batch gradient descent optimization algorithm with mini-batch size of 10,000. The 

learning rates for the classification and regression are 0.001 and 0.0001, respectively. 

These parameters are used in the rest of this research, unless otherwise stated. This work 

was implemented in Matlab. 
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2.4 Data Used and Study Region 

The data used in this research incorporates satellite imageries, ground observations, and 

precipitation estimates from operational products. The satellite imageries are the inputs of 

the precipitation estimation model. The IR (10.8 µm) channel from the Geostationary 

Operational Environmental Satellite (GOES), capturing cloud-top brightness temperature, 

is the primary input in this research and most operational products. In addition, WV (6.7 

µm) channel is used as supplementary inputs to IR data, since they are proven to be helpful 

for precipitation identification and estimation in conjunction with IR data (Ba and Gruber, 

2001; Behrangi et al., 2009a; Behrangi et al., 2009b; Kurino, 1997). More specifically, the 

conversion of water vapor is a necessary condition in precipitation formation. By adding 

satellite precipitable water measurement, which measures the vertical integral of water 

vapor, the performances of precipitation estimation products are expected to improve. 

Specifically, both channels’ data are processed to the hourly scale in this research. The 

Stage IV at the same spatial and temporal resolution serves as ground observations. As 

mentioned in Section 2.2, PERSIANN-CCS serves as a baseline model in the performance 

comparisons. 
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Table 2-4 Basic statistics of PERSIANN-CCS and Stage IV for the warm seasons 

 June–August 2012 June–August 2013 

Ave. Precip. 

(mm/hr) 

PERSIANN-CCS 0.100 0.185 

Stage IV 0.077 0.116 

Max. Precip. 

(mm/hr) 

PERSIANN-CCS 55.0 75.2 

Stage IV 85.1 112.0 

 

Table 2-5 Basic statistics of PERSIANN-CCS and Stage IV for the cold seasons 

 
December 2012–

February 2013 

December 2013–

February 2014 

Ave. Precip. 

(mm/hr) 

PERSIANN-CCS 0.104 0.100 

Stage IV 0.080 0.040 

Max. Precip. 

(mm/hr) 

PERSIANN-CCS 51.2 62.56 

Stage IV 48.4 34.1 

 

To properly validate the methodologies, I divided the data into training and verification 

datasets. This structure remains the same for the following sections. During the training 

process, the training datasets are used to calibrate the parameters and prevent overfitting. 

More specifically, the model is trained with 75% of the training data, and measures are 

calculated with the 25% hold-out data to determine the performances of the different 
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combination of hyper-parameters. The data of the summer and winter seasons of 2012–

2013 are used to calibrate the models, and the data of the next year serve as verification 

data. I did not distinguish between the seasons for the models, because the potential uses 

of such models are global. In other words, such climate differences are left for the models to 

detect based on the satellite information. 

 

Figure 2-2 Map of the main study region, the central United States 
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Chapter 3 

 

Exploration of Deep Neural Networks 

and Bias Reduction of Satellite-Based 

Precipitation Estimation 

                                     
 

3.1 Introduction 

To develop a deep learning framework for satellite-based precipitation estimation, the first 

step is to demonstrate of the effectiveness of DNNs in the application of satellite imageries. 

More specifically, I want to explore the DNNs’ capability of extracting the useful 

precipitation information buried in the satellite imageries. In this Chapter, I develop a bias 

reduction model for satellite-based precipitation estimation products using DNNs without 

incorporating additional input-data sources. 

As discussed in Section 2.2, the accuracy of current satellite-based products remains 

insufficient, despite the efforts of linking multiple satellite information to surface 

precipitation in various ways. To manage this problem, a variety of bias correction methods 

have been developed, mainly by incorporating additional available datasets, such as rain 

gauge or radar information (Boushaki et al., 2009; McCollum et al., 2002). However, 
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ground-based measurements are only available in specific regions with a sufficient number 

of instruments. Therefore, several proposed bias correction methodologies are limited to a 

regional scale and are very difficult to extend to global applications. On the other hand, 

research also requires more satellite datasets to help reduce biases in the products. For 

instance, Behrangi et al. (2009) used multi-spectral data from GOES and proved their 

effectiveness in precipitation detection. Li et al. (2007) and Nasrollahi et al. (2013) also 

showed the value of the moderate resolution imaging spectroradiometer (MODIS) in 

identifying high clouds and thus reducing false alarms.  

In this section, I reduce the bias of satellite-based precipitation estimation products with a 

focus on taking advantage of advanced machine learning algorithms instead of 

incorporating additional observations. The power of deep learning techniques for image 

processing and feature extraction provides an opportunity to improve the accuracy of 

satellite-based precipitation estimation. As preliminary DNN exploration, I aim to perform 

the following tasks: (1) develop a bias correction system focusing on overestimation and 

false alarms, with a case study on the PERSIANN-CCS product; (2) demonstrate the 

effectiveness of deep learning for precipitation-related information extraction from 

satellite infrared imagery without adding any extra data from other sources; and (3) 

evaluate and analyze the case study results in the summer and winter seasons, 

respectively.  
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The remainder of this section is organized as follows. Section 3.2 describes the detailed 

methodology and model setup for this study. Section 3.3 presents a comparison between 

the output of this study and the original satellite product. Finally, the main conclusions are 

summarized in Section 3.4. 

 

3.2 Methodology and Model Setup 

The design of the process is presented in Figure 3-1. In this study, the input data for the 

DNN is IR imagery, which is the same raw information used by PERSIANN-CCS. Instead of 

using cloud image features designed by researchers, as used in PERSIANN-CCS, I allow the 

neural network to extract a useful representation for precipitation estimation by itself. As 

shown in Figure 3-1, the input to DNN is a matrix T15×15 containing the IR image in a 15 × 15 

pixel window centered in pixel t8,8, at which PERSIANN-CCS indicates a positive 

precipitation rate rp. To produce a training data pool, the window is moved across the 

image sequentially, shifting the location one grid-box at a time in each hourly IR image of 

the study region.  
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The outputs/targets (at the same spatiotemporal resolutions as the input data) are the 

differences between the PERSIANN-CCS estimates and the Stage IV observations. The 

output is the value of the centered pixel of the 15 × 15 pixel window. In other words, it is 

the adjusted quantity needed for the PERSIANN-CCS estimate to match the Stage IV 

observed rate (rs) at pixel t8,8 (Δr = rp - rs). The reason I choose the differences, instead of 

directly estimating the Stage IV precipitation rates, is that PERSIANN-CCS, as well as other 

satellite-based products, has successfully screened out a large number of no-rain pixels 

 

Figure 3-1 Experimental design process: the input to the neural network is the IR image, 

and the output is the difference between the PERSIANN-CCS estimates and the Stage IV 

measurements  
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(Hong et al., 2007). Therefore, the input data are much more balanced and, thus, benefit the 

training process. However, the disadvantage of this design is that it does not help reduce 

the missing cases in PERSIANN-CCS. In addition, both inputs and outputs of the training 

data are normalized before training to shrink the range of the quantity and make it easier 

to operate. 

After being properly trained, the DNN produces Δr̂ (estimated difference) given the IR 

imagery without information from Stage IV and PERSIANN-CCS. With this property, the 

model can be potentially applied to areas without Stage IV information and thus can offer 

global bias correction. On the other hand, the use of Δr (real difference) during the training 

process, which optimizes MSE between Δr̂ and Δr, is shown in Figure 3-1. Lastly, when 

producing adjusted precipitation, all negative values are forced to zero. 

In addition to the main study region introduced in Section 2.4, to demonstrate the 

effectiveness of the methodology with variability in space, three extra regions with Stage IV 

measurements are selected for additional verification. These regions are (1) the Colorado 

area (35–40°N, 105–110°W), (2) the Arizona area (30–35°N, 110–115°W), and (3) the 

Georgia area (30–35°N, 80–85°W), which the maps of the regions are shown in Figure 3-2. 
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Figure 3-2 Maps of selected additional validation regions  

The objective function of the SDAEs is to obtain the optimal weight values of MSE on the 

output. In addition, in this study, I use the rectified linear activation function, which is the 

most popular choice for real-value estimation (Glorot et al., 2011b). After various 

combinations were tested and compared, a 4-layer neural network with 1,000 hidden 

nodes for each hidden layer with 40% input corruption in the training was selected for this 

study. Table 3-1 gives some common hyper-parameters needed for training a DNN with 

SDAEs. The choices considered in this study are typical choices for the corresponding 

parameters (Vincent et al., 2010). In addition, I only considered neural networks with an 

equal number of hidden nodes at all hidden layers for processing convenience. The result 

should not be fundamentally different from other possible combinations. Other potential 

hyper-parameters, such as learning rate and training iterations, were decided manually to 

optimize the result within the training process.  
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Table 3-1 Hyper-parameters considered for the SDAEs in this section 

Hyper Parameter Description Considered Value 

nHLayers Number of hidden layers {1, 2, 3} 

nHNodes Number of hidden nodes {500, 1,000, 2,000} 

pCorruption Percentage of corruption for pre-training {0.1, 0.2, 0.4} 

 

3.3 Results and Discussion 

The results presented here show the performances of the SDAEs model in the verification 

periods (summer 2013 and winter 2013–2014) in comparison with the original 

PERSIANN-CCS data. The evaluation includes detection of R/NR pixels and intensity of the 

precipitation amount for warm and cold seasons. In addition, as an example, results of the 

rainfall event on August 4, 2014 are analyzed and compared with both PERSIANN-CCS 

estimation and Stage IV observation. In this section, “DNN-corrected” refers to the 

bias-corrected precipitation using SDAEs. 

3.3.1 Rain/No-Rain Classification 

Table 3-2 provides the binary R/NR detection performance of PERSIANN-CCS and 

DNN-corrected precipitation, including the average hourly number of precipitation pixels, 

false positive pixels, and misclassified pixels. The performance is evaluated for hourly 
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estimation on the study area and averaged over the validation periods for warm and cold 

seasons separately. The bias correction process is very effective at identifying false alarm 

pixels and balancing the number of precipitation pixels. Specifically, the average hourly 

number of false alarm pixels drops from 395 to 264 and from 598 to 339 for summer and 

winter (i.e., 33% and 43% correction), respectively. The model also properly reduced the 

overestimation of the number of pixels with precipitation in PERSIANN-CCS (30% more to 

3% less and 90% more to 14% more relative to Stage IV observations).  

The overall number of misclassified pixels is reduced for both warm and cold seasons (i.e., 

13% and 28% correction), respectively. The Heidke skill score of DNN-corrected is similar 

to PERSIANN-CCS in summer and slightly better in winter. The model’s incapability of 

dealing with missing cases may prevent it from improving the score and thus shows the 

necessity of moving on to a DNN that directly estimates precipitation from IR imagery. 

Moreover, the frequency bias shows that the forecast biases are reduced for both seasons 

compared to PERSIANN-CCS. This suggests that the model can identify false alarm pixels in 

the original PERSIANN-CCS.  
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Table 3-2 R/NR classification performance of PERSIANN-CCS and DNN-corrected 

precipitation* 

* Values in the parenthesis are the relative performance of DNN-corrected and PERSIANN-CCS. The same 

definition applies to all the following tables in this section. 

** Number of misclassified pixels includes both false positive (false alarm) and false negative (missing) events. 

 

Season Summer Winter 

Number of precipitation 

pixels (/hour) 

Stage IV 533 358 

PERSIANN-CCS 
694 

(30% more) 

681 

(90% more) 

DNN-corrected 
516 

(3% less) 

409 

(14% more) 

Number of false positive 

pixels (/hour) 

PERSIANN-CCS 395 598 

DNN-corrected 
264 

(33% corrected) 

339 

(43% corrected) 

Number of misclassified 

pixels** (/hour) 

PERSIANN-CCS 629 873 

DNN-corrected 
545 

(13% corrected) 

627 

(28% corrected) 

Heidke Skill Score 
PERSIANN-CCS 0.478 0.148 

DNN-corrected 0.473 0.174 

Frequency Bias 
PERSIANN-CCS 1.27 1.86 

DNN-corrected 0.93 1.09 
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3.3.2 Precipitation Amount 

Table 3-3 Average bias, variance, and MSE of PERSIANN-CCS and DNN-corrected 

precipitation 

 

Figure 3-3 presents maps of the bias of PERSIANN-CCS and DNN-corrected precipitation 

over the study region averaged on the warm and cold verification periods, respectively. 

The white color indicates very small bias and shows that the DNN model has made 

relatively significant corrections to the PERSIANN-CCS precipitation pixels, especially in 

the summer season, and the overestimation produced by the PERSIANN-CCS product is 

mostly removed, which specific calculations are displayed in Table 3-3. The average biases 

are only 0.002 mm/day and 0.012 mm/day after bias correction, compared to 0.091 

Season Summer Winter 

Average bias 

      

PERSIANN-CCS 0.091 0.054 

DNN-corrected 
0.002 

(98% corrected) 

0.012 

(78% corrected) 

Average 

variance 

(mm/hr)2 

PERSIANN-CCS 2.330 0.442 

DNN-corrected 
1.596 

(31% corrected) 

0.306 

(31% corrected) 

Average MSE 

(mm/hr)2 

PERSIANN-CCS 2.338 0.445 

DNN-corrected 
1.596 

(32% corrected) 

0.306 

(31% corrected) 
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mm/day and 0.054 mm/day before bias correction for summer and winter (98% and 78% 

correction), respectively. 

 

Figure 3-3 Average Bias (mm/hr) of PERSIANN-CCS [(a), (c)] and DNN-corrected [(b), (d)] 

output over the central United States (30–45N, 90–105°W): (a), (b) summer (June–August 

2013); (c), (d) winter (December 2013–February 2014) 
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Figure 3-4 Average MSE ([mm/hr]2) of PERSIANN-CCS [(a), (c)] and DNN-corrected [(b), (d)] 

output over the central United States (30–45°N, 90–105°W): (a), (b) summer (June–August 

2013); (c), (d) winter (December 2013–February 2014) 

Similar results can be seen in Figure 3-4, which shows the MSE of PERSIANN-CCS and 

DNN-corrected precipitation over the study region averaged over the verification periods. 

The warm colors indicate strong differences compared to Stage IV observations, while the 

cold colors indicate small differences. The heavy errors shown in PERSIANN-CCS over the 
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summer verification period (Figure 3-4(a)) are strongly reduced by the model (Figure 

3-4(b)). Similar results can also be observed for the winter period (Figure 3-4(c, d)). 

However, as Table 3-3 shows, over 30% correction in average MSE is observed for both 

seasons, and the absolute improvement in summer is more significant. The results indicate 

the model’s ability to correct the bias of the overall precipitation intensity for both warm 

and cold seasons by automatically extracting useful features from satellite data. 

3.3.3 Case Studies 

 

Figure 3-5 Cumulative precipitation amounts (mm/day) of PERSIANN-CCS estimation, 

DNN-corrected estimation, and Stage IV observation on August 4, 2014, over the central 

United States (30–45°N, 90–105°W): (a) PERSIANN-CCS; (b) DNN-corrected; and (c) Stage IV 
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Table 3-4 Performance of PERSIANN-CCS and DNN-corrected on August 4, 2014  

Number of precipitation pixels 

(/hour) 

Stage IV 1,433 

PERSIANN-CCS 1,732 (22% more) 

DNN-corrected 1,450 (2% more) 

Number of false positive pixels 

(/hour) 

PERSIANN-CCS 805 

DNN-corrected 622 (23% corrected) 

Number of misclassified pixels 

(/hour) 

PERSIANN-CCS 1,311 

DNN-corrected 1,227 (6% corrected) 

Average bias 

(mm/hr)  

PERSIANN-CCS 0.398 

DNN-corrected 0.164 (58% corrected) 

Average MSE 

(mm/hr)2 

PERSIANN-CCS 8.267 

DNN-corrected 4.875 (41% corrected) 

 

To demonstrate how SDAEs have significantly improved the estimates of individual 

precipitation events, Figure 3-5 and Table 3-4 present the analysis of a rainfall event on 

August 4, 2014. The event is randomly selected from noticeable rainfall events within the 

validation periods. The cumulative amounts of the rainfall event for PERSIANN-CCS, 

DNN-corrected, and Stage IV precipitation are all displayed in Figure 3-5. The figure shows 

that overestimation in the original PERSIANN-CCS is reduced remarkably, while the rainfall 

distribution pattern is also adjusted towards the observation to some extent. This effect is 

quantified in Table 3-4 for both R/NR detection and intensity. As for detection 

performance, the number of precipitation pixels in PERSIANN-CCS is reduced from 22% 



40 

 

overestimated to just 2%, while around 23% of false positive pixels are corrected. As for 

intensity, average bias and MSE decrease from 0.398 and 8.267 to 0.164 and 4.875 (i.e., 

58% and 41% correction), respectively. This example demonstrates the effectiveness of the 

model in improving the precipitation estimation for typical storm events. Meanwhile, the 

scheme is unable to deal with the missing precipitation of the original PERSIANN-CCS. An 

area of future research for us will be to apply the method to direct precipitation estimation 

to start addressing this issue. 

To validate the effectiveness of the methodology when the coefficients are applied in other 

locations, Table 3-5 summarizes average bias, variance, and MSE of DNN-corrected and 

PERSIANN-CCS precipitation over three areas outside of the study region on the warm and 

cold validation periods, respectively.  

Generally, the model works effectively to reduce bias and variance of the original 

PERSIANN-CCS. For the Colorado area (35–40°N, 105–110°W) and the Arizona area (30–

35°N, 110–115°W), MSEs are improved at least 29% for both warm and cold seasons, while 

improvement is only around for 4% for summer for the Georgia area (30–35°N, 80–85°W). 

One possible reason for this is that the original PERSIANN-CCS has a relatively large 

amount of missing and underestimation in this area. Therefore, our model is not helpful in 

those situations, as discussed above. 
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Table 3-5 Average bias, variance and MSE of PERSIANN-CCS and DNN-corrected precipitation 

over areas outside of the study region 

Season Summer Winter 

Colorado 

Area 

Average bias 

(mm/hr)  

PERSIANN-CCS 0.091 0.062 

DNN-corrected 
0.002 

(99% corrected) 

-0.005 

(92% corrected) 

Average variance 

(mm/hr)2 

PERSIANN-CCS 0.738 0.722 

DNN-corrected 
0.498 

(32% corrected) 

0.421 

(42% corrected) 

Average MSE 

(mm/hr)2 

PERSIANN-CCS 0.746 0.725 

DNN-corrected 
0.498 

(33% corrected) 

0.421 

(42% corrected) 

Arizona 

Area 

Average bias 

(mm/hr)  

PERSIANN-CCS 0.028 0.085 

DNN-corrected 
0.004 

(86% corrected) 

0.002 

(98% corrected) 

Average variance 

(mm/hr)2 

PERSIANN-CCS 0.331 0.778 

DNN-corrected 
0.235 

(29% corrected) 

0.437 

(44% corrected) 

Average MSE 

(mm/hr)2 

PERSIANN-CCS 0.332 0.785 

DNN-corrected 
0.235 

(29% corrected) 

0.437 

(44% corrected) 

Georgia 

Area 

Average bias 

(mm/hr)  

PERSIANN-CCS -0.039 0.017 

DNN-corrected 
-0.052 

(33% worse) 

-0.016 

(6% corrected) 

Average variance 

(mm/hr)2 

PERSIANN-CCS 0.911 0.862 

DNN-corrected 
0.875 

(4% corrected) 

0.655 

(24% corrected) 

Average MSE 

(mm/hr)2 

PERSIANN-CCS 0.911 0.862 

DNN-corrected 
0.878 

(4% corrected) 

0.657 

(24% corrected) 
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3.4 Conclusion 

The aim of this chapter is to apply a DNN framework to satellite-based precipitation 

estimation products to correct the estimation bias in a data-driven manner by extracting 

more useful features from satellite imagery. More specifically, SDAEs, a popular technique 

in image recognition, are employed to improve the PERSIANN-CCS product. The model is 

trained in 2012–2013 and evaluated during the 2013–2014 summer and winter seasons. 

Verification studies show improved results in both R/NR detection and precipitation 

intensity over the validation period for both seasons. Binary R/NR detection resulted in the 

correction of a significant number of false alarm pixels, especially in the cold season. For 

precipitation intensity, the average daily biases are corrected by as much as 98% and 78% 

in the validation warm and cold seasons, respectively. These results are also illustrated for 

a specific rainfall event on August 4, 2014, for which visualization of the cumulative rainfall 

amount demonstrates the model’s ability to correct false alarms and overestimation. 

The results verify that useful information is available in IR imagery and can help improve 

the quality of satellite precipitation estimation products with respect to detecting R/NR 

pixels and quantifying the precipitation rates. More importantly, such useful information 

for precipitation estimation can be extracted automatically by DNNs. Moreover, the 

methodology can be easily integrated into near-real-time operational precipitation 

estimation products and help extract additional features from satellite datasets to reduce 
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bias. Meanwhile, the application of the technique is not limited to IR imagery, but should be 

extendable to multiple satellite datasets due to its ability to automatically extract 

information. The case study of PERSIANN-CCS proves its advantage compared to a few 

manually designed features. 

In addition, our results suggest that GOES cloud IR imagery still contains valuable 

information that has not been utilized by most satellite-based precipitation retrieval 

algorithms. Our experiment demonstrates that the cloud IR image from a 15 × 15 pixel 

window is more informative than the nine IR statistic features used in PERSIANN-CCS as 

the input data for precipitation estimation. Such information can be extracted 

automatically by a well-designed DNN.  

A natural next step for this work is to explore the possibility of using deep learning 

techniques to produce a precipitation estimation product directly instead of using it in a 

bias correction manner. In the next two chapters, I introduce a carefully designed 

two-stage DNN structure to fulfill the needs of direct precipitation estimation. 
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Chapter 4 

 

Two-Stage Model Part I:  

Rain/No-Rain Classification 

                                     
 

4.1 Introduction 

Chapter 3 demonstrated the DNN models’ capability of extracting additional useful features 

from satellite information for precipitation estimation. The next goal is to design a 

structure to properly use such models to develop a precipitation estimation product. As 

discussed in Section 2.1, the imbalance nature of precipitation and multi-objective needs of 

precipitation estimation products make it difficult to directly apply of data-driven methods. 

To fulfill these needs, a two-stage model is considered. The first stage is a binary R/NR 

classification model, which focuses on correctly identifying pixels with precipitation and 

eliminating the massive amount of no precipitation pixels. The second stage is a 

precipitation amount regression model, which focus on estimating precipitation amount 

accurately by properly adjusting the objective function. 
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On the other hand, as discussed in Section 1.1, satellite information, in addition to IR 

imageries, is helpful for precipitation estimation. Various previous studies have 

demonstrated that additional satellite channels may help better estimate precipitation by 

providing supplementary cloud characteristics or delineating the precipitation regions 

(Arking and Childs, 1985; Inoue and Aonashi, 2000; Lensky and Rosenfeld, 2003; Levizzani 

and Setva ḱ, 1996; Pilewskie and Twomey, 1987; Rosenfeld and Gutman, 1994; Turk and 

Miller, 2005; Tsonis et al., 1985). Most common choices include VIS and WV data from GEO 

satellites and PMW from LEO satellites (Ba and Gruber, 2001; Behrangi et al., 2010; Capacci 

and Conway, 2005; Hsu et al., 1999; Hong et al., 2004; Hsu et al., 1997; Huffman et al., 2007; 

Joyce et al., 2004; Kidd et al., 2003; Kuligowski, 2002). PMW is recognized as direct and 

reliable precipitation measurements from space (Adler et al., 2001; Ebert et al., 1996). VIS 

channel data measures cloud albedo and is often considered effective in assisting 

precipitation estimation in daytime (Behrangi et al., 2010; Capacci and Conway, 2005; 

Cheng et al., 1993; Grassotti and Garand, 1994; Griffith et al., 1978; Hsu et al., 1999; Lovejoy 

and Austin, 1979; O’Sullivan et al., 1990; Tsonis and Isaac, 1985). In this research, I used 

WV channel data as the supplementary data source for the model because of its availability 

in high-spatiotemporal resolution. More specifically, compared to WV channel data, PMW 

data suffer from low-temporal resolution, while VIS channel data is unavailable during 

night time and may cause consistency issues for the model (Marzano et al., 2004).  
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In this and the next chapters, I explore the application of deep learning techniques to 

precipitation estimation with bispectral information (IR and WV channels). In this chapter, 

I focus on R/NR identification because accurate precipitation areal delineation is essential 

for a precipitation estimation product and helps eliminate an extensive amount of NR 

pixels. Specifically, I aim to perform the following tasks: (1) design a DNN that can manage 

satellite imageries from multiple channels; (2) demonstrate the effectiveness of the 

methodology on precipitation identification by comparing its performance with an 

operational product, PERSIANN-CCS; (3) evaluate the value of adding data sources in 

addition to IR imageries; and (4) evaluate and analyze the case study results in the summer 

and winter seasons, respectively. 

The remainder of this section is organized as follows. Section 4.2 describes the detailed 

methodology and model setup for the binary R/NR classification part of the two-stage 

model. In Section 4.3, the model is verified by comparisons between the outputs of this 

model using only IR information, this model using both IR and WV information, and the 

estimates from PERSIANN-CCS product. Finally, the main conclusions are summarized in 

Section 4.4. 
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4.2 Methodology and Model Setup 

The overview of the experimental design is presented in Figure 4-1. In this study, two 

models are built to explore the effectiveness of the deep learning approaches and the 

additional information provided by the WV channel. Specifically, model 1 applies SDAEs to 

IR patches alone as input and predicts R/NR for the centered pixel. Model 1 (structure 

shown in Figure 4-2) is referred to as DL-IR only for the remainder of this dissertation. 

Model 2 is built on the well-calibrated model 1 and incorporates WV imageries as a 

combined neural network, as shown in Figure 4-3. Hereafter, model 2 is referred to as 

DL-IR+WV.  

As shown in Figure 4-1, for both IR and WV images, the unsupervised feature extraction 

pre-training step of SDAEs is applied first. For the DL-IR only model (model 1), the 

supervised fine-tuning step is then applied to connect the IR images to the R/NR 

information for the centered pixel extracted from the Stage IV data. For the DL-IR+WV 

model (model 2), I combine the WV imageries and their extracted features into the 

calibrated DL-IR only model with the design shown in Figure 4-2 and apply the supervised 

fine-tuning step to it. The input layer includes two patches and connects to the first hidden 

layer separately to produce their extracted features, respectively. Then, all features act 

together to eventually produce R/NR predictions. I start with the DL-IR only model to take 
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advantage of the calibrated parameters, which contain more effective information to 

transform IR patches to R/NR probability compared to random parameter initialization.  

 

Figure 4-1 Overview of the model training and verification process: Model 1 is a DNN with 

only IR imageries as input, as shown in Figure 4-2. Model 2 is a combined DNN with both IR 

and WV imageries as inputs, as shown in Figure 4-3 
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Figure 4-2 Structure of a four-layer, fully connected neural network: the first layer is the input 

layer, which is the IR patches used in this study; the next two layers are the hidden layers, 

which can be interpreted as extracted features; the last layer is the output layer, which 

contains the probabilities of R/NR for the centered pixel 

Here, each input patch is a 15 × 15 pixel IR or WV patch, which covers approximately 120 

km × 120 km. The patches are selected with overlapping pixels. The number of hidden 

nodes for the DL-IR only model is 1,000 for both hidden layers. Thus, the number of hidden 

nodes for the first hidden layer for the DL-IR+WV is 2,000, with 1,000 nodes connected to 

each input patch. The second layer remains 1,000 hidden nodes. The output layer for both 

models has two nodes, predicting the probability of R/NR for the centered pixel of the 15 × 

15 pixel input patch. These hyper-parameters are selected based on previous study 
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parameter selection results and experiments with different number combinations (Tao et 

al., 2016a; Tao et al., 2016b; Vincent et al., 2010).  

 

Figure 4-3 Structure of a four-layer neural network with bispectral imageries: the input layer 

has two images, which connect to half of the hidden nodes in the first hidden layer separately 

 

4.3 Results and Discussion 

In this section, I evaluate the performance of the DL-IR model and the DL-IR+WV model to 

validate the effectiveness of the deep learning techniques and additional information 

contains in the WV channel. The results of both models are compared with the data of 

PERSIANN-CCS, a current operational precipitation estimation product introduced in 

Section 2. The validation measurements I used to evaluate precipitation identification 
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performance are POD, FAR, CSI, and the performance gain of these measurements with 

respect to PERSIANN-CCS. The definition of performance gain is presented in Table 4-1. In 

addition, a few case studies are provided as examples to analyze the precipitation 

identification performance difference between the models. All evaluations are conducted 

for the verification periods (winter and summer 2013–2014). 

Table 4-1 Definition of performance gain for POD, FAR, and CSI 

Verification Measures Formulas 
Range and Desirable 

Value 

Performance Gain for 

POD and CSI 
𝑃𝐺 =

𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙 − 𝑉𝑎𝑙𝑟𝑒𝑓

𝑉𝑎𝑙𝑟𝑒𝑓
× 100% 

Range: -1 to +∞ 

Desirable Value: +∞ 

Performance Gain for 

FAR 
𝑃𝐺 =

𝑉𝑎𝑙𝑟𝑒𝑓 − 𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙

𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙
× 100% 

Range: -1 to +∞ 

Desirable Value: +∞ 

POD, FAR, and CSI are defined in Table 2-2;  

Valmodel denotes the value of a measurement for a model; Valref denotes the value of a measurement for a 

reference. 

4.3.1 Rain/No-Rain Classification 

Table 4-2 provides the overall performances of PERSIANN-CCS, the DL-IR only model, and 

the DL-IR+WV model over the verification periods. Both models show improvement in all 

measurements compared to PERSIANN-CCS. In addition, the DL-IR+WV model has the best 

performance among them. Specifically, the DL-IR only model and the DL-IR+WV model 
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have 14.83% and 29.41% performance improvement in POD compared to PERSIANN-CCS, 

respectively (0.449 and 0.506 compared to 0.391). At the same time, these two models 

have 9.86% and 20.75% performance improvement in FAR, respectively (0.620 and 0.564 

compared to 0.681). These improvements result in significant increases (21.60% and 

43.66%) in CSI performance for the models (0.259 and 0.306 compared to 0.213). The 

improvement of the DL-IR only model, compared to PERSIANN-CCS, demonstrates the 

effectiveness of the deep learning techniques in automatically extracting useful features for 

precipitation identification from the raw IR images. The DL-IR+WV model outperforms 

both PERSIANN-CCS and the DL-IR only model, which shows that the WV channel contains 

additional information to better support delineating precipitation areas and that the 

methodology can take advantage of such information. 

Table 4-2 Summary of R/NR classification performance over the verification periods 

(including both summer 2013 and winter 2013–2014) 

 PERSIANN-CCS 
DL-IR only 

(Model 1) 

DL-IR+WV 

(Model 2) 

POD 
Value 0.391 0.449 0.506 

Performance Gain  - 14.83% 29.41% 

FAR 
Value 0.681 0.620 0.564 

Performance Gain  - 9.68% 20.74% 

CSI 
Value 0.213 0.259 0.306 

Performance Gain - 21.60% 43.66% 
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Table 4-3 Summary of R/NR classification performance for summer 2013 and winter 2013–

2014, respectively 

 
PERSIANN-CCS 

DL-IR only 

(Model 1) 

DL-IR+WV 

(Model 2) 

Summer Season (June–August 2013) 

POD 
Value 0.486 0.556 0.608 

Performance Gain  - 14.40% 25.10% 

FAR 
Value 0.552 0.575 0.554 

Performance Gain  - -4.00% -0.36% 

CSI 
Value 0.304 0.317 0.346 

Performance Gain - 4.28% 13.82% 

Winter Season (December 2013–February 2014) 

POD 
Value 0.275 0.323 0.386 

Performance Gain  - 17.45% 40.36% 

FAR 
Value 0.804 0.687 0.581 

Performance Gain  - 17.03% 38.38% 

CSI 
Value 0.129 0.189 0.251 

Performance Gain - 46.51% 94.57% 

 

More detailed performances of the models over different seasons in the verification periods 

are provided in Table 4-3. Compared to PERSIANN-CCS, the overall improvements shown 

in CSI are much higher for the winter (46.51% and 94.57% performance gains, 

respectively) than the summer (4.28% and 13.82% performance gains, respectively) for 
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both the DL-IR only model and the DL-PR WV model. One reason for these improvements is 

that the performance of PERSIANN-CSS in the summer (CSI: 0.304) is much better than it is 

in the winter (CSI: 0.129) for the central United States because the strong convective 

storms in the summer are relatively easy to detect.  

Figures 4-4 and 4-5 present the maps of POD, FAR, and CSI of the models in the warm and 

cold verification periods, respectively. The warm colors indicate high measurement values, 

while cold colors indicate low measurement values, which high values are desirable for 

POD and CSI, while low values are desirable for FAR. 

Figure 4-4(a–c) shows that the DL-IR+WV model outperforms the other two in the summer, 

especially in Kansas, Missouri, and Oklahoma. For FAR (Figure 4-4(d–f)), no significant 

difference can be distinguished between the models, which is consistent with the FAR 

values presented in Table 4-3 (0.552, 0.575, and 0.554 for PERSIANN-CCS, the DL-IR only 

model, and the DL-IR+WV model, respectively). An ascending order can be observed in the 

maps of CSI of PERSIANN-CCS, the DL-IR only model, and the DL-IR+WV model (Figure 

4-4(g–i)). 
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Figure 4-4 POD, FAR, and CSI of PERSIANN-CCS, the DL-IR only model, and the DL-IR+WV 

model over the central United States for summer 2013 (June–August). (a)–(c): POD; (d)–(f) 

FAR; (g)–(i) CSI 
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Figure 4-5 POD, FAR, and CSI of PERSIANN-CCS, the DL-IR only model, and the DL-IR+WV 

model over the central United States for winter 2013–2014 (December 2013–February 2014). 

(a)–(c): POD; (d)–(f) FAR; (g)–(i) CSI. The white color means that less than 50 precipitation 

pixels in the location were observed within the corresponding periods 
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Figure 4-5 shows very similar but more significant improvements in the winter. Moreover, 

noticeable decreases in FAR for the DL-IR only model and DL-IR+WV model can be 

observed, compared to PERSIANN-CCS (Figure 4-5(d–f)). Overall, performance 

improvements are consistent geographically for both models in both seasons. Furthermore, 

the DL-IR+WV model has the best performance for both seasons. 

4.3.2 Case Studies 

Table 4-4 Summary of R/NR classification performance in the case studies 

  
PERSIANN-CCS 

DL-IR only 

(Model 1) 

DL-IR+WV 

(Model 2) 

7/26/13 19:00 UTC 

POD 
Value 0.265 0.258 0.554 

Performance Gain  - -2.64% 109.06% 

FAR 
Value 0.456 0.396 0.237 

Performance Gain  - 15.15% 92.41% 

CSI 
Value 0.217 0.221 0.473 

Performance Gain - 1.84% 117.97% 

12/21/13 21:00 UTC 

POD 
Value 0.459 0.702 0.844 

Performance Gain  - 52.94% 83.88% 

FAR 
Value 0.099 0.125 0.153 

Performance Gain  - -20.80% -35.29% 

CSI 
Value 0.437 0.638 0.733 

Performance Gain - 46.00% 67.73% 
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To further investigate how the models identify precipitation pixels from the IR and WV 

channels for precipitation events, Figures 4-6 and 4-7 provide visualizations of two case 

studies in the summer and winter, respectively. The two case studies selected help to 

reason the improvement of the performance of the DL-IR only and DL-IR+WV models, 

compared to PERSIANN-CCS. Their performance statistics are presented in Table 4-4.  

 

Figure 4-6 Visualization of WV and IR imageries and precipitation identification performance 

of PERSIANN-CCS, the DL-IR only model, and the DL-IR+WV model over the central United 

States for July 26, 2013, 19:00 UTC. (a), (b): snapshots of WV and IR channels; (c): radar R/NR 

observation; (d)–(f) hits, false alarms, and misses maps. Green, red, and blue indicate hits, 

false alarms, and misses, respectively 
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Figure 4-6 presents WV and IR imageries, Stage IV R/NR observations, and R/NR 

identification results for all models for a rainfall event on July 26, 2013, 19:00 UTC. The 

cloud patch on the east of the map is relatively warm with only a few cold pixels, as shown 

in Figure 4-6(b). Hence, only small sections of rainfall are correctly identified by 

PERSIANN-CCS (the green pixels in Figure 4-6(d)), while there is a large rainy area over 

Missouri and Arkansas captured by Stage IV observations (Figure 4-6(c)). On the other 

hand, the cold cloud over the northeast part (Figure 4-6(b)) leads to false alarms in 

PERSIANN-CCS (the red pixels in Figure 4-6(d)). Figure 4-6(e) shows that the DL-IR only 

model reduced the false alarm pixels while successfully identifying similar amounts of 

precipitation pixels. However, the overall improvement is marginal compared to 

PERSIANN-CCS (CSI performance gain: 1.84%). Nevertheless, the DL-IR+WV model shows 

a significant improvement in delineating the precipitation area (the green area in Figure 

4-6(f)). Figure 4-6(d–f) shows that the DL-IR+WV model successfully connects the large 

area of precipitation captured by Stage IV observations instead of only identifying small 

sections similar to PERSIANN-CCS and the DL-IR model, especially the warm cloud over the 

center of Arkansas and the eastern region of Oklahoma. Moreover, the DL-IR+WV model 

avoided the false alarms on the northeast part of the map. The overall improvement is 

significant compared to PERSIANN-CCS (CSI performance gain: 117.97%). This case study 

shows supplementary information confirming that the WV channel supports precipitation 

identification. 
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Figure 4-7 Visualization of WV and IR imageries and precipitation identification performance 

of PERSIANN-CCS, the DL-IR only model, and the DL-IR+WV model over the central United 

States for December 21, 2013, 21:00 UTC. (a)-(b): snapshots of WV and IR channels; (c): radar 

R/NR observation; (d)-(f) hits, false alarms, and misses maps. Green, red, and blue indicate 

hits, false alarms, and misses, respectively 

Similarly, Figure 4-7 shows WV and IR imageries, Stage IV R/NR observation, and R/NR 

identification results for all models of a rainfall event on December 21, 2013, 21:00 UTC. As 

shown in Figure 4-7(d), PERSIANN-CCS misses a large area of precipitation in Oklahoma 
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and Texas, where the cloud is not as cold as that in the eastern part of the map (Figure 

4-7(b)). 

As shown in Figure 4-7(e), the DL-IR only model can extend the hits pixels in most parts of 

Texas, but still misses the pixels over the midwestern section of the map, where the cloud 

brightness temperatures are relatively high (Figure 4-7(b)). The overall improvement is 

already quite significant compared to PERSIANN-CCS (CSI performance gain: 46.00%). This 

proves the capability of the deep learning techniques to extract additional information in IR 

data, compared to PERSIANN-CCS. On the other hand, Figure 4-7(f) shows that the 

DL-IR+WV model almost correctly captures the entire precipitation region (green) with 

only a few false alarms and misses at the edges (blue and red). Its CSI performance gain is 

67.73% regarding PERSIANN-CCS. It again shows value of the WV channel information. 

 

4.4 Conclusion 

As the first stage of the two-stage precipitation estimation model, this chapter explores the 

application of the deep learning techniques on precipitation identification with bispectral 

information (IR and WV channels). Two models are built to evaluate the effectiveness of 

the methodology and the value of the additional information provided by the WV channel. 

The first model, referred to as the DL-IR only model in this paper, applies deep learning 
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techniques to IR imageries to automatically extract useful features for precipitation 

identification. The second model, referred to as DL-IR+WV, incorporates WV imageries and 

its extracted features into the calibrated DL-IR only model to further improve the 

performance. Results of both models are compared with PERSIANN-CCS, an operational 

satellite-based precipitation estimation product. 

The experiments show significant improvements for both models in R/NR detection 

compared to PERSIANN-CCS. The performance gains in CSI are 21.60% and 43.66% over 

the verification periods for the DL-IR only model and the DL-IR+WV model, respectively. 

For the winter, the performance gains in CSI are as high as 46.51% and 94.57% for the 

models. In addition, case studies in both seasons show that the deep learning techniques 

and the WV channel information can help delineate precipitation regions with relatively 

warm clouds, while reducing false alarms with cold clouds.  

The improved performance of the DL-IR only model demonstrates that sparse 

automatically extracted features from the IR imageries can assist in better detecting 

precipitation compared to a limited number of hand-designed features. On the other hand, 

the significant improvement in the DL-IR+WV model, compared to both PERSIANN-CCS and 

the DL-IR only model, verifies that the information contained in WV imageries supplements 

the IR data to better delineate precipitation regions. The case studies show that the 
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additional WV information can help capture warm-cloud precipitation likely to be missed 

by other models and identify non-raining cold clouds. 

With an effective R/NR binary classification model, the next step is to implement a DNN to 

estimate precipitation amount of the pixels classified with precipitation and eventually 

provide a complete satellite-based precipitation estimation product. In the next chapter, I 

illustrate the second stage of the two-stage precipitation estimation model that focuses on 

precipitation amount regression for those pixels with precipitation. 
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Chapter 5 

 

Two-Stage Model Part II: 

Precipitation Amount Regression 

                                     
 

5.1 Introduction 

Chapter 4 introduced the motivation and background of developing a two-stage model for 

precipitation estimation from bispectral satellite information and then described and 

demonstrated the first step of the model, R/NR binary classification. In this chapter, I focus 

on the description of the second step of the model, precipitation amount regression.  

As discussed in Section 2.1, in estimating the precipitation amount, there are multiple 

objectives: accurate R/NR classification, minimize point-wise differences, and preserve the 

distribution of the precipitation values that can capture large to extreme events. In Chapter 

4, I focused on the first objective and eliminated a large amount of NR pixels. In this section, 

I explore the capability of DNNs to work as a regression model to estimate the real-valued 

precipitation amount. 
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In the development of DNNs in the field of machine learning and computer vision, DNNs are 

demonstrated to be very effective in classification problems (Ciregan et al., 2012; He et al., 

2015; Karpathy et al., 2014; Krizhevsky et al., 2012; Sun et al., 2014; Szegedy et al., 2015). 

In contrast, there are relatively few regression applications for DNNs, especially for the 

highly skewed datasets. More specifically, for satellite-based precipitation estimation, the 

overall use of data-driven methods is still limited (Tao et al., 2016b). It is challenging to 

design the structure, objective function, and training process of DNNs to fit the needs of 

such problems. 

In this chapter, I explore the application of the deep learning techniques to real-valued 

precipitation amount estimation with bispectral information (IR and WV channels), 

followed by the R/NR classification described in Chapter 4. Specifically, I aim to accomplish 

the following tasks: (1) manage the highly skewed distribution of precipitation data by 

properly modifying DNN’s objective function; (2) demonstrate the effectiveness of the 

overall two-staged model by comparing its performance with an operational product, 

PERSIANN-CCS; and (3) evaluate and analyze the case study results in the summer and 

winter seasons. 

The remainder of this section is organized as follows. Section 5.2 describes the detailed 

methodology and model setup for the non-zero precipitation amount estimation part of the 

two-stage model. In Section 5.3, the model is verified by comparisons between the outputs 



66 

 

of this model and the estimates from PERSIANN-CCS product using multiple common 

verification measures for precipitation estimation products. Finally, the main conclusions 

are summarized in Section 5.4. 

 

5.2 Methodology and Model Setup 

5.2.1 Objective Function 

MSE is the most commonly used objective function in supervised learning problems. It is a 

reasonable performance measure for many real valued problems. However, the imbalance 

of the precipitation makes MSE not suitable to work as the sole optimization objective. 

Optimized by MSE only, the models tend to avoid predicting large rainfall while the one of 

the main uses of satellite-based precipitation estimation is to track large rainfall events, as 

discussed in Section 2.1.  

Despite the efforts of incorporating data-driven approaches in previous studies, 

overviewed in Section 2.1, idealized assumptions are imposed to ensure that large values 

can be predicted by the model. In this section, I add a KL divergence term to the MSE in the 

loss function, aiming to minimize the estimation error while preserving the distribution of 

the rainfall amount. Specifically, in the fine-tuning step of the training process, a mini-batch 

gradient descent algorithm is applied. For each mini-batch, I estimate the KL divergence 
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between the distributions of the estimates and the target values. First, the density functions 

are estimated by using a normal kernel function to smooth the samples. The bandwidth 

used for the kernel smoothing window is 5 mm/hr. Then the KL divergence can be 

estimated as 

𝐷𝐾𝐿(𝑃||𝑄) ≈ ∑ 𝑝(𝑥) log 𝑝(𝑥)
𝑥

− ∑ 𝑝(𝑥) log 𝑞(𝑥)
𝑥

 

where 𝑃 and 𝑄 are the distributions of the target values and of the estimated values, 

respectively; 𝑝 and 𝑞 are corresponding density functions; and 𝑥 denotes a sequence of 

values across the range of the precipitation value (0 to 100 mm/hr). Then the loss function 

is a weighted average of the MSE and the KL divergence  

𝐿 =
1

2𝑛
||𝒚 − 𝒚̂||

2
+ 𝛼𝐷𝐾𝐿(𝑃||𝑃̂) 

where y and ŷ are vectors of target values and their estimates; α is the weight of the KL 

divergence term while fixing the weight of the average MSE term to be 1; DKL(P||P̂) is the 

KL divergence from the distribution of precipitation amount estimates P̂ to the true 

distribution of target values. 

When applying backpropagation, the mini-batch gradient descent is applied since the 

process of estimating p and q requires multiple data points. In this research, the mini-batch 

size selected is 1000. Then the derivative of the KL divergence can be expressed as  
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𝐷𝐾𝐿′(𝑃||𝑄) ≈ ∑ 𝑝′(𝑥) (log
𝑝(𝑥)

𝑞(𝑥)
+ 1

𝑥
) − ∑ 𝑞′(𝑥)

𝑝(𝑥)

𝑞(𝑥)𝑥
 

where 𝑝′(𝑥) and 𝑞′(𝑥) can be easily estimated by using a finite difference estimate of the 

derivative. 

5.2.2 Experimental Design 

 

Figure 5-1 Overview of the precipitation estimation process of the two-stage model: the inputs 

to the precipitation amount estimation model are IR and WV imageries of the pixels classified 

as with precipitation in the R/NR model 

The overview of the experimental design is presented in Figure 5-1. Figure 5-1 shows the 

whole process of the two-stage model (left part) and the detailed training process for the 
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second step of the model (right part). As the second step of the two-stage model, I build a 

non-zero precipitation amount estimation model, referred as DL-Regression in the 

remainder of this dissertation, using bispectral information only dealing with pixels 

classified as with precipitation in the first stage (DL- IR + WV). The structure of the DL –

Regression model is similar to DL – IR + WV but in a design of regression instead of 

classification, as shown in Figure 5-2. 

 

Figure 5-2 Structure of a four-layer neural network with bispectral imageries: the input layer 

has two images that connect to half of the hidden nodes in the first hidden layer separately; 

the next two layers are the hidden layers, which can be interpreted as extracted features; the 

last layer is the output layer, which contains the precipitation amount for the centered pixel 
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Here, each input patch is a 15 × 15 pixel IR or WV patch, which covers approximately 120 

km × 120 km. The training data pool is created by a 15 × 15 pixel window moving around 

the study region with overlap. The number of hidden nodes for the first hidden layer for 

the DL-Regression is 2,000, with 1,000 nodes connected to each input patch. The second 

layer contains 1,000 hidden nodes. The output layer contains one real-valued node, 

predicting the actual amount of precipitation for the centered pixel of the 15 × 15 pixel 

input patch. These hyper-parameters are selected based on the previous study parameter 

selection results and experiments with different number combinations (Tao et al., 2016a; 

Tao et al., 2016b; Vincent et al., 2010). One additional hyper-parameter needed is the 

weights of the KL divergence term and the MSE term. For this parameter, I considered the 

coefficient of KL divergence in the pool of 0.1, 1, 10, 100, and 1000 while maintaining the 

coefficient of MSE as 1. Additionally, it was experimentally selected to be 100:1. 

 

5.3 Results and Discussion 

In this section, I evaluate the performance of the DL-Regression model in the verification 

periods (summer 2013 and winter 2013–2014) in comparison with the data of 

PERSIANN-CCS. The validation measurements I used to evaluate precipitation amount 

estimation performance are average bias, average MSE, COR, and the performance gain of 

these measurements with respect to PERSIANN-CCS. The definition of performance gain is 
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presented in Table 5-1. Notice that the DL-Regression model is the second step of the 

two-stage model. Thus, the precipitation estimation amount is a result from the combined 

actions of the two steps. In other words, the evaluation is towards the overall two-stage 

model, instead of the sole second step. In addition, a few case studies are provided as 

examples to analyze the precipitation estimation performance between the two-stage 

model and PERSIANN-CCS. 

Table 5-1 Definition of performance gain for MSE, Bias, and COR* 

Verification Measures Formulas 
Range and Desirable 

Value 

Performance Gain for 

MSE 
𝑃𝐺 =

𝑉𝑎𝑙𝑟𝑒𝑓 − 𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙

𝑉𝑎𝑙𝑟𝑒𝑓
× 100% 

Range: -∞ to 1 

Desirable Value: 1 

Performance Gain for 

Bias 
𝑃𝐺 =

|𝑉𝑎𝑙𝑟𝑒𝑓| − |𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙|

|𝑉𝑎𝑙𝑟𝑒𝑓|
× 100% 

Range: -∞ to 1 

Desirable Value: 1 

Performance Gain for 

COR 
𝑃𝐺 =

𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙 − 𝑉𝑎𝑙𝑟𝑒𝑓

𝑉𝑎𝑙𝑟𝑒𝑓
× 100% 

Range: -∞ to +∞ 

Desirable Value: +∞ 

* MSE, Bias, and COR are defined in Table 2-2;  

𝑉𝑎𝑙𝑚𝑜𝑑𝑒𝑙  denotes the value of a measurement for a model; 𝑉𝑎𝑙𝑟𝑒𝑓 denotes the value of a measurement for a 

reference. 
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5.3.1 Precipitation Amount Estimation 

Table 5-2 provides the overall performances of PERSIANN-CCS and the two-stage model 

over the verification periods. The two-stage model shows obvious improvement in all three 

measurements compared to PERSIANN-CCS. Specifically, the two-stage model reduces 

average bias and average MSE by 40.58% and 51.84%, respectively (0.041 compared to 

0.069 and 0.641 compared to 1.331, respectively). Meanwhile, the two-stage model has a 

decent increase in COR compared to PERSIANN-CCS (23.49%; 0.410 compared to 0.332), 

which is indirectly optimized in the model. The performance of the two-stage model 

demonstrates the effectiveness of the design of the two stages and DNN structures of the 

both DL - IR + WV (described in Section 4.2) and DL-Regression. In addition, the WV 

channel data also contribute to improving the performance. 

Table 5-2 Summary of precipitation estimation performance over the verification periods 

(including both summer 2013 and winter 2013–2014) 

 PERSIANN-CCS Two-stage Model 

Average Bias 
Value  0.069  0.041  

Performance Gain  -  40.58%  

Average MSE 
Value  1.392  0.641  

Performance Gain  -  53.95%  

COR 
Value  0.332  0.410  

Performance Gain  -  23.49%  
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Figure 5-3 presents maps of the average bias of PERSIANN-CCS and the two-stage model 

precipitation over the study region averaged on the warm and cold verification periods, 

respectively. The white color indicates very small bias and shows that the two-stage model 

outperforms the PERSIANN-CCS model significantly, especially in the summer season.  

 

Figure 5-3 Average Bias (mm/hr) of PERSIANN-CCS [(a), (c)] and the two-stage model [(b), 

(d)] output over the central United States (30–45°N, 90–105°W): (a), (b) summer (June–

August 2013); (c), (d) winter (December 2013–February 2014) 
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Figure 5-4 Average MSE ([mm/hr]2) of PERSIANN-CCS [(a), (c)] and the two-stage model [(b), 

(d)] output over the central United States (30–45°N, 90–105°W): (a), (b) summer (June–

August 2013); (c), (d) winter (December 2013–February 2014) 

Specifically, the overestimation produced by the PERSIANN-CCS product is mostly removed 

in the two-stage model for the summer period (Figure 5-3 (a, b)). For winter period, the 

two-stage model reduces the overestimation in PERSIANN-CSS over the southwestern area 
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but slightly increases the underestimation in the northeastern area in the study region. 

Specific calculations are displayed in Table 5-3. 

Similar results can be seen in Figure 5-4, which shows the average MSE of PERSIANN-CCS 

and the two-stage model precipitation over the study region averaged on the warm and 

cold verification periods, respectively. The warm colors indicate strong differences 

compared to Stage IV observations, while the cold colors indicate small differences. 

Compared to PERSIANN-CCS, Figure 5-4 shows that errors in both summer and winter 

periods strongly decrease in the two-stage model. For the summer period, the heavy error 

over Oklahoma and Texas are strongly reduced in the two-stage model (Figure 5-4(a, b)). 

For the winter period, the MSEs are smaller than 0.4 [mm/hr]2 for most pixels for the 

two-stage model (Figure 5-4(d)), and specific calculations are displayed in Table 5-3. 

Table 5-3 provides detailed values for of average bias, average MSE, and COR for 

PERSIANN-CCS and the two-stage model over different seasons in the verification periods. 

The average biases are 0.063 mm/day and 0.018 mm/day for the two-stage model, 

compared to 0.091 mm/day and 0.054 mm/day before bias correction for summer and 

winter (30.77% and 66.26% performance gain), respectively. There are over 50% 

improvement in average MSE for both seasons (51.63% and 66.29% for summer and 

winter, respectively). Compared to PERSIANN-CCS, the COR for the two-stage model is 

66.40% higher in the winter season and 18.58% higher in the summer season. In addition, 
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the overall performance gain is higher for the winter season (66.26%, 66.29%, and 66.40% 

for average bias, average MSE, and COR, respectively) than the summer season (30.77%, 

51.63%, and 18.58% for average bias, average MSE, and COR, respectively). This is similar 

to the results showed in Section 4.3. 

Table 5-3 Summary of precipitation estimation performance for summer 2013 and winter 

2013–2014, respectively 

 PERSIANN-CCS Two-stage Model 

Summer Season (June–August 2013) 

Average Bias 
Value 0.091 0.063 

Performance Gain  - 30.77% 

Average MSE 
Value 2.338 1.131 

Performance Gain  - 51.63% 

COR 
Value 0.350 0.415 

Performance Gain - 18.58% 

Winter Season (December 2013–February 2014) 

Average Bias 
Value 0.054 0.018 

Performance Gain  - 66.26% 

Average MSE 
Value 0.445 0.150 

Performance Gain  - 66.29% 

COR 
Value 0.211 0.351 

Performance Gain - 66.40% 
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5.3.2 Case Studies 

To demonstrate the performance of the two-stage model for specific events, Figure 5-5 

presents snapshots from an event on Jun. 1st, 2013 13:00 UTC. The two-stage model 

(Figure 5-5(b)) captures well the narrow shape of the rainfall over Kansas and Missouri 

and the separate small region with precipitation on the border of Missouri and Arkansas. In 

contrast, PERSIANN-CCS (Figure 5-5 (a)) presents a fatter shape of the rainfall and misses 

the precipitation on the east.  

 

Figure 5-5 Snapshots (mm/hr) of PERSIANN-CCS, the two-stage model, and the radar 

observation over the central United States for June 1st, 2013, 13:00 UTC. (a) PERSIANN-CCS; 

(b) the two-stage model; and (c) Radar Observation 

This shift of the rainfall shape might be due to its critical assumption of low brightness 

temperature leading to high rain rates. It also demonstrates that the two-stage model is 
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capable of better capturing the shape of the precipitation and its peak from the cloud 

information with the flexibility in the model. In addition, it can extract more useful 

precipitation-related features and capture some rainfall that PERSIANN-CCS fails to extract. 

 

5.4 Conclusion 

This chapter described the second step of the two-stage model: non-zero precipitation 

amount estimation. I explore the application of DNN for precipitation amount regression 

with bispectral information (IR and WV channels). The basic structure of the model is 

similar to the R/NR binary classification model. However, due to the challenging imbalance 

and high skew in the precipitation data, I incorporate a KL divergence term, in addition to 

the MSE term, in the objective function. Thus, the model can produce low point-wise 

estimation error while preserving the distribution of the rainfall amounts. After several 

combinations of hyper-parameters were tested, the weights of the KL divergence term and 

the MSE term were set to 100:1 to best balance the needs of different objectives. 

In the comparison with PERSIANN-CCS, the two-stage model is 40.58% lower in average 

bias, 53.95% lower in average MSE, and 23.49% higher in COR in the overall verification 

periods. Specifically, the improvement is greater for the winter season than the summer 
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season. In addition, the case studies suggest that the two-stage model can better capture 

the shape and the peak of the rainfall event from the satellite information. 

Combining with the results showed in Section 4.3, I demonstrated the effectiveness of the 

two-stage deep learning framework for precipitation estimation from bispectral satellite 

information in both R/NR classification and real-value amount estimation. The 

contribution of the improvement includes the additional information provided by WV 

channel, the capability of deep learning techniques to extract useful features from the raw 

satellite inputs, and the proper design of neural networks to separately tackle precipitation 

identification and the amount estimation.  

To serve as an operational product, it is essential to validate the model at a large scale to 

demonstrate its capability to eventually serve at a global coverage. With our experiments in 

the central United States in Chapter 4 and Chapter 5, the next step is to enlarge this 

verification coverage. In the next chapter, I apply the developed model to a large coverage 

of the United States to evaluate the performance of the two-stage model in the areas 

outside its calibration region. 
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Chapter 6 

 

Large-Scale Application 

                                     
 

6.1 Introduction 

As discussed in Section 1.1, one of the most important properties of satellite-based 

precipitation estimation products is their global application. This is essential for weather 

and climate analysis at a large scale or focusing on remote regions. Therefore, in developing 

satellite-based precipitation estimation models, the evaluation of large-scale application is 

necessary before promoting such models to near-real-time operational products (Tao et al., 

2017). In this Chapter, I focus on the evaluation of the developed two-stage model at a large 

scale to further demonstrate the potential of the model to serve as an operational product. 

In Section 4.3 and Section 5.3, I experimentally demonstrated the effectiveness of the 

design of the two-stage model, structure of the DNNs, and the value of the WV channel data 

in addition to the IR channel. The study region, as introduced in Section 2.4, is the central 

United States. In other words, both training and test data come from pixels within this 

region but with different time periods. 
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In this section, to demonstrate the two-stage model’s capability to generalize to large-scale 

application, I use the calibrated two-stage model from Chapter 4 and Chapter 5 and apply it 

directly to a larger region with ground observation for verification. The study region 

selected is the stable coverage of Stage IV data (30–45°N, 85–115°W), as shown in Figure 

6-1. 

 

Figure 6-1 Map of the large-scale application region 

The remainder of this section is organized as follows. Section 6.2 presents a comparison 

between the output of the two-stage model and PERSIANN-CCS, using Stage IV data as 

reference. Finally, the main conclusions are summarized in Section 6.3. 
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6.2 Results and Discussion 

In this section, I evaluate the performance of the two-stage model in the verification 

periods (summer 2013 and winter 2013-2014) over a large-scale coverage of United States, 

in comparison with the data of PERSIANN-CCS. The verification includes both precipitation 

identification and real-valued amount estimation. The validation measurements I used to 

evaluate precipitation identification performance are POD, FAR, and CSI. The estimation 

amount measurements used are average bias, average MSE, and COR. The definitions of the 

measurements are presented in Section 2.1. For all measurements, the performance gains 

with respect to PERSIANN-CCS are also presented. 

6.2.1 Rain/No-Rain Classification 

Table 6-1 summarizes the overall R/NR classification performances of PERSIANN-CCS and 

the two-stage model over the verification periods of the large coverage of the United States 

(30–45°N, 85–115°W). The two-stage model shows significant performance gain (32.56% 

in CSI) in precipitation identification compared to PERSIANN-CCS. More specifically, the 

two-stage model has 23.30% performance improvement in POD compared to 

PERSIANN-CCS (0.418 compared to 0.339) while the performance improvement of FAR is 

19.32% (0.528 compared to 0.630). Compared to the results presented in Table 4-2, the 

overall improvement is not as significant as the verification on the main study region 

(32.56% compared to 43.66% in CSI). This is understandable since now I apply the model 
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to areas it was not trained on, which introduces more errors and uncertainty. However, the 

overall promising performance demonstrates the capability of the two-stage model in 

delineating precipitation regions correctly, even in the model’s unfamiliar areas. 

Table 6-1 Summary of R/NR classification performance of PERSIANN-CCS and the two-stage 

model over the verification periods (including both summer 2013 and winter 2013–2014) of 

the large coverage of the United States (30–45°N, 85–115°W) 

 PERSIANN-CCS Two-Stage Model 

POD 
Value 0.339 0.418 

Performance Gain  - 23.30% 

FAR 
Value 0.630 0.528 

Performance Gain  - 19.32% 

CSI 
Value 0.215 0.285 

Performance Gain - 32.56% 

Table 6-2 provides specific details on performances of the models over different seasons in 

the verification periods and over the large coverage of the United States.   . In the summer 

and winter seasons, over 20% increases in POD can be detected in the two-stage model 

compared to PERSIANN-CCS (22.57% and 21.02% performance gains, respectively), while 

FAR remains similar to PERSIANN-CCS for the summer season (2.09% performance gain) 

but has a significant improvement for the winter season (40.85% performance gain). 

Similar to the pattern found in Table 4-3, compared to PERSIANN-CCS, the overall 

improvements shown in CSI are higher for the winter (45.45% performance gain) than the 
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summer (16.67% performance gain). These performances are highly consistent with the 

model’s performances in the main study region, which proves the model’s capability of 

extending to unfamiliar regions. In addition, the performance gains over the large coverage 

of the United States are less than the performance gains for the central United States for 

both seasons, which is consistent with the results presented in Table 6-1. 

Table 6-2 Summary of precipitation estimation performance of PERSIANN-CCS and the 

two-stage model over the large coverage of the United States for summer 2013 and winter 

2013–2014, respectively 

 PERSIANN-CCS Two-Stage Model 

Summer Season (June–August 2013) 

POD 
Value 0.381 0.467 

Performance Gain  - 22.57% 

FAR 
Value 0.537 0.526 

Performance Gain  - 2.09% 

CSI 
Value 0.264 0.308 

Performance Gain - 16.67% 

Winter Season (December 2013–February 2014) 

POD 
Value 0.295 0.357 

Performance Gain  - 21.02% 

FAR 
Value 0.662 0.470 

Performance Gain  - 40.85% 

CSI 
Value 0.187 0.272 

Performance Gain - 45.45% 
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Figure 6-2 POD, FAR, and CSI of PERSIANN-CCS and the two-stage model over the large 

coverage of the United States for summer 2013 (June–August). (a), (b): POD; (c), (d) FAR; (e), 

(f) CSI. The white color means that less than 50 precipitation pixels in the location are 

observed within the corresponding periods 



86 

 

 

Figure 6-3 POD, FAR, and CSI of PERSIANN-CCS and the two-stage model over the large 

coverage of the United States for winter 2013–2014 (December 2013–February 2014). (a), 

(b): POD; (c), (d) FAR; (e), (f) CSI. The white color means that less than 50 precipitation pixels 

in the location are observed within the corresponding periods 
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Figures 6-2 and 6-3 present the maps of POD, FAR, and CSI of the PERSIANN-CCS and the 

two-stage model over the large coverage in the summer and winter verification periods, 

respectively. The region between the black dotted lines is the main study region, where the 

model was trained in. The warm colors indicate high measurement values, while cold 

colors indicate low measurement values. The white color indicates that less than 50 

precipitation pixels in the location are observed within the corresponding periods. High 

values are desirable for POD and CSI, while low values are desirable for FAR. Figure 6-2(a, 

b) shows that the two-stage model uniformly outperforms PERSIANN-CCS over the middle 

to east part. For FAR (Figure 6-2(c, d)), the performance of the two models are almost the 

same, which is consistent with the FAR values presented in Table 6-2 (0.537 and 0.526 for 

PERSIANN-CCS and the two-stage model, respectively). Compared to PERSIANN-CCS, the 

two-stage model shows an obvious improvement in CSI (Figure 6-2(e, f)), especially in the 

middle to east part. More specifically, 84.4% of the pixels show better performances in CSI 

with the two-stage model, compared to PERSIANN-CCS, as presented in Table 6-3. The 

improved performances found in the northeast and southeast particularly demonstrate the 

model’s capability of extending to unfamiliar regions. However, in the west part, no 

significant improvement can be visually distinguished. This might be because the model 

was not trained in this region and thus fails to capture the forms of rainfall in this region. 

Similarly, Figure 6-3 presents the results for winter season. In CSI, an obvious 

improvement can be found over the mid-east part of the map, centered with Illinois. There 
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are also identifiable improvements in the northwest part of the map, where enough 

precipitation pixels are in the verification period. Specifically, 80.7% of the pixels show 

better performance in CSI with the two-stage model, compared to PERSIANN-CCS, as 

presented in Table 6-3. Overall, performance improvements are significant and consistent 

geographically for both seasons. 

Table 6-3 Percentage of pixels with better performance in the two-stage model, compared to 

PERSIANN-CCS model over the large coverage of the United States for summer 2013 and 

winter 2013–2014, respectively 

 Summer Winter 

POD 89.4% 75.8% 

FAR 62.9% 77.3% 

CSI 84.4% 80.7% 

6.2.2 Precipitation Amount Estimation 

Table 6-4 provides the overall performances of PERSIANN-CCS and the two-stage model 

over the verification periods of the large coverage of the United States (30–45°N, 85–

115°W). The two-stage model has significant improvement in all three measurements 

compared to PERSIANN-CCS. The two-stage model reduces average bias and average MSE 

by 23.40% and 44.52%, respectively (0.036 compared to 0.047 and 0.562 compared to 

1.013, respectively). At the same time, the two-stage model has 27.21% higher COR 

compared to PERSIANN-CCS (0.374 compared to 0.294). Compared to the results 
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presented in Table 5-2, the improvement in average bias and average MSE are not as 

significant as over the main study region (23.40% compared to 40.58% and 44.92% 

compared to 53.95%, respectively), which is expected. However, the performance gain of 

COR in the larger coverage is slightly higher than the main study region (27.21% compared 

to 23.49%), which states that the two–stage model is capable of consistently capturing the 

pattern of the precipitation amount. Additionally, the overall performance demonstrates 

the capability of the two-stage model in accurately estimating precipitation amount, even 

in the model’s unfamiliar areas.  

Table 6-4 Summary of precipitation estimation performance of PERSIANN-CCS and the 

two-stage model over the large coverage of the United States (including both summer 2013 

and winter 2013–2014) 

 PERSIANN-CCS Two-Stage Model 

Average Bias 
Value  0.047 0.036 

Performance Gain  - 23.40% 

Average MSE 
Value  1.013 0.562 

Performance Gain  - 44.52% 

COR 
Value  0.294 0.374 

Performance Gain  - 27.21% 
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Figure 6-4 Average Bias (mm/hr) of PERSIANN-CCS [(a), (c)] and the two-stage model [(b), 

(d)] output over the large coverage of the United States (30–45°N, 85–115°W): (a), (b) 

summer (June–August 2013); (c), (d) winter (December 2013–February 2014) 

Figure 6-4 presents maps of the average bias of PERSIANN-CCS and the two-stage model 

precipitation over the large coverage of the United States averaged on the warm and cold 

verification periods. The region between the black dotted lines is the main study region, 

where the model was trained in. In the summer (Figure 6-4(a, b)), the two-stage model 

outperforms PERSIANN-CCS and reduces the overestimation in the northwest and the 
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south areas, while both models show similar patterns of underestimation in the southeast 

area. In the winter (Figure 6-4(c, d)), the two-stage model reduces the overestimation in 

the middle to west area but introduces more underestimation in the east area of the map 

compared to PERSIANN-CCS. The Specific performance measures for both seasons are 

displayed in Table 6-4. Moreover, as presented in Table 6-6, compared to PERSIANN-CCS, 

59.3% and 62.8% of the pixels show better performance in average bias with the two-stage 

model in the summer and winter seasons, respectively. 

Figure 6-5 presents the average MSE of PERSIANN-CCS and the two-stage model 

precipitation over the large coverage of the United States averaged on the warm and cold 

verification periods. The region between the white dotted lines is the main study region, 

where the model was trained in. The warm colors indicate strong differences compared to 

Stage IV observations, while the cold colors indicate small differences. Figure 6-5(a, b) 

shows the significant decreases in MSE throughout the whole enlarged coverage for the 

two-stage model in summer season compared to PERSIANN-CCS. Besides the main study 

region, the central United States, significant improvements can be found in northwest and 

northeast regions. Specifically, MSEs are less than 3 [mm/hr]2 for most pixels for the 

two-stage model (Figure 6-5(b)). Similarly, Figure 6-5(c, d) shows significant 

improvements of the two–stage model in the winter season, especially in the middle to 

west area, where the most pixels’ MSE are less than 0.4 [mm/hr]2 for the two-stage model 
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(Figure 6-5(d)). In the east, improvement can also be identified by the reduced area with 

MSEs larger than 0.8 [mm/hr]2. In summary, a consistent and significant improvement can 

be found in MSE of the two-stage model in the enlarged coverage, compared to 

PERSIANN-CCS, which specific calculations are displayed in Table 6-5. Moreover, as 

presented in Table 6-6, compared to PERSIANN-CCS, nearly all (96.0% and 97.9% for the 

summer and winter seasons, respectively) pixels show better performance in average bias 

with the two-stage model. 

 

Figure 6-5 Average MSE ([mm/hr]2) of PERSIANN-CCS [(a), (c)] and the two-stage model [(b), 

(d)] output over the large coverage of the United States (30–45°N, 85–115°W): (a), (b) 

summer (June–August 2013); (c), (d) winter (December 2013–February 2014) 
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Table 6-5 Summary of precipitation estimation performance of PERSIANN-CCS and the 

two-stage model over the large coverage of the United States for summer 2013 and winter 

2013–2014, respectively 

 PERSIANN-CCS Two-stage Model 

Summer Season (June–August 2013) 

Average Bias 
Value 0.040 0.036 

Performance Gain  - 10.00% 

Average MSE 
Value 1.468 0.884 

Performance Gain  - 39.80% 

COR 
Value 0.319 0.388 

Performance Gain - 5.96% 

Winter Season (December 2013–February 2014) 

Average Bias 
Value 0.055 0.036 

Performance Gain  - 34.55% 

Average MSE 
Value 0.560 0.240 

Performance Gain  - 57.14% 

COR 
Value 0.218 0.311 

Performance Gain - 42.66% 

Table 6-5 provides detailed values for of average bias, average MSE, and COR for 

PERSIANN-CCS and the two-stage model in different seasons over the large coverage of the 

United States. There are 10.00% and 34.55% increases in the average biases for the 

two-stage model for summer and winter seasons compared to PERSIANN-CCS (0.036 

compared to 0.040 and 0.036 compared to 0.055, respectively). More obvious 



94 

 

improvement can be found in MSEs, where the two-stage model has 39.80% and 57.14% 

decreases in summer and winter season, respectively. In addition, compared to 

PERSIANN-CCS, the COR for the two-stage model is 57.14% higher in the winter season and 

5.96% higher in the summer season. Similar to the results presented in Table 5-3 for the 

main study region, the overall performance gain is higher for winter season than summer 

season, which shows the consistency of the model when applied to unfamiliar regions. 

Table 6-6 Percentage of pixels with better performance in the two-stage model, compared to 

PERSIANN-CCS model over the large coverage of the United States for summer 2013 and 

winter 2013–2014, respectively 

 Summer Winter 

Average Bias 59.3% 62.8% 

Average MSE 96.0% 97.9% 

 

6.3 Conclusion 

This chapter presented the results of the application of the developed two-stage deep 

learning framework for precipitation estimation from bispectral satellite, introduced in 

Chapter 4 and Chapter 5, over a large area. The objective was to evaluate its reliability and 

consistency for areas outside the original region where the two-stage model was developed 

and trained. Specifically, I directly apply the previously well-trained two-stage model to a 
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larger coverage of the United States (30–45°N, 85–115°W), where reliable Stage IV data are 

available. This large-scale evaluation is particularly important for the future operational 

global application of the model. 

The experiments show significant improvements for the two-stage model in both R/NR 

classification and precipitation amount estimation compared to PERSIANN-CCS at the 

enlarged coverage of the United States. In R/NR classification, the performance gain in CSI 

for the two-stage model is 31.50% compared to PERSIANN-CCS. In precipitation amount 

estimation, the two-stage model is 23.40% lower in average bias, 44.52% lower in average 

MSE, and 27.21% higher in COR. In addition, the improvement is greater for the winter 

season than the summer season. These results are highly consistent with the findings 

presented in Chapter 4 and Chapter 5 for the main study region, though the performance 

gains are generally slightly lower. 

The experiment results demonstrate the effectiveness of the two-stage deep learning 

framework for precipitation estimation from bispectral satellite information over 

unfamiliar areas in R/NR classification and real-valued amount estimation. The model can 

capture the relationship between the satellite information and the precipitation regardless 

of geographic locations, which is an important prerequisite for a model to serve as a 

satellite-based precipitation estimation product with global coverage. 
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The current application is an initial step for the large-scale application. Further 

experiments are extremely important for the preparation of the model to serve as an 

operation product. For example, it is necessary to calibrate the parameters with samples 

from a larger study region, such as the continental United States, to better capture the 

variability in the forms of precipitation. The model should then evaluate multiple locations, 

within the United States and abroad, to better evaluate the global performance of the 

model. 
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Chapter 7 

 

Summary and Conclusions 

                                     

 

7.1 Dissertation Summary 

Compared to traditional ground-based precipitation measurements, near-real-time 

satellite-based precipitation estimation products have the advantage of providing instant 

global precipitation estimation at high-spatiotemporal resolution. However, the undesired 

accuracy and stability of satellite-based precipitation estimation products prevent them 

from serving as the main measurements for weather, climate, and hydrologic applications. 

In developing satellite-based precipitation estimation products, it is necessary to 

incorporate satellite data with sufficient precipitation-related information and use effective 

methodologies to extract such information and eventually provide accurate precipitation 

estimates.  

In this dissertation, a state-of-the-art deep learning framework for precipitation estimation 

from bispectral satellite information, the IR and WV channels, was developed. I first 

verified the effectiveness of deep learning techniques in extracting useful features from the 
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satellite information by applying them toward operational satellite products as a bias 

reduction model without adding extra information. I then designed a two-stage deep 

learning framework for direct precipitation estimation from the bispectral satellite 

information. The first stage is binary precipitation identification, serving to optimize 

objectives for delineating precipitation regions and eliminate the massive amount of NR 

pixels. The second stage is non-zero precipitation amount estimation, serving to estimate 

the point-wise precipitation amount accurately while preserving its highly skewed 

distribution. For both stages, I evaluated the models with various common performance 

measurements and compared their performances with PERSIANN-CCS, an operational 

satellite-based precipitation estimation product. In addition, I explored the two-stage 

model’s performance at large scale to demonstrate its potential to be further developed to 

an operational product with global coverage. 

 

7.2 Conclusions 

At a high level, the main contributions of this dissertation are as follows: 

1) Introduced state-of-the-art deep learning techniques to the field of 

satellite-based precipitation estimation. Moreover, it is concluded that these 
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data-driven methodologies can benefit many fields of weather forecasting, climate 

variability, hydrology, and water resource management. 

2) Developed a deep learning precipitation estimation model that has the potential 

to serve as a near-real-time operational product at global coverage with 

high-spatiotemporal resolution. 

3) Provided an effective framework, the two-stage structure, for precipitation 

estimation using data-driven methods that can handle the highly skewed 

distribution of precipitation and fulfill the needs of multiple objectives, which 

offered many possibilities for future works.  

Specifically, the following objectives outlined in Chapter 1 are addressed throughout the 

dissertation:   

1) Demonstrate the effectiveness of deep learning algorithms for 

precipitation-related information extraction from satellite infrared imageries by 

developing a bias reduction system on satellite-based precipitation estimation 

products. 

In Chapter 3, the bias reduction model for satellite-based precipitation estimation 

products without adding extra data sources was presented. The experiments show the 

capability of deep learning techniques to extract additional useful information from the 
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raw input data and help reduce bias in the precipitation estimation. In this process,   

advantage was taken of the R/NR prediction made by the product to reduce the large 

amount of NR pixels and focused on reducing false alarms and correcting biases in 

pixels with precipitation. 

The main contribution of this study is to provide preliminary verification of the 

effectiveness of DNNs in the application of satellite-based precipitation estimation. It 

was also demonstrated that IR imageries still contain valuable information for 

precipitation retrieval. Additionally, a bias reduction model that may post-process 

operational products for better estimation was provided.  

2) Design a deep learning framework that extracts useful features from bispectral 

satellite information to produce a consistent and high-quality precipitation 

estimation product. 

In Chapter 4 and Chapter 5, details of a two-stage deep learning framework for 

precipitation estimation from bispectral satellite information (IR and WV channels) 

were introduced. This is the primary work of this dissertation. The first stage of the 

model is an R/NR binary classification process. Pixels classified with precipitation are 

then fed into the second stage of the model, which estimates the real-valued 

precipitation amount. At both stages, DNNs serve as the basic structure to extract 
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precipitation-related information from IR and WV channels and connect it to 

precipitation identification and amount estimation. 

This two-stage prototype is designed to tackle the challenge of the imbalance of 

precipitation data and to fulfill the needs of multiple objectives for precipitation 

estimation, including accurate R/NR classification, minimal error in point-wise 

estimates, and similarly distributed of the skewed precipitation observations. This 

prototype also provides many opportunities to apply other advanced machine learning 

models and further improve the performance of the estimation. 

3) Evaluate the effectiveness of the methodology and the value of additional 

satellite information on both binary precipitation identification and precipitation 

amount estimation by comparing its performance with operational products. 

In Chapter 4 and Chapter 5, the results of experiments designed to evaluate the 

two-stage model were presented. Common performance measurements for both 

binary precipitation identification and precipitation amount estimation were produced, 

and all measurements were compared with PERSIANN-CCS, a commonly used 

operational product. In addition, multiple case studies to explore the model’s actual 

performances for specific events were presented. 
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In R/NR classification, a 43.66% performance gain can be detected in CSI over the 

verification periods for the two-stage model compared to PERSIANN-CCS. In 

real-valued precipitation amount estimation, the two-stage model is 40.58% lower in 

average bias, 53.95% lower in average MSE, and 23.49% higher in COR over the 

verification periods. These values prove the effectiveness of the two-stage deep 

learning framework for precipitation estimation from bispectral satellite information 

in both R/NR classification and real-value amount estimation. 

4) Evaluate the performance of the developed DNN model at a large-scale 

application and thus demonstrate its potential of future use at a near-global scale. 

As a necessary step towards an operational product with global coverage, the results of 

preliminary large-scale applications covering an expanded region of the United States 

(30–45°N, 85–115°W) were presented in Chapter 6. The results still show significant 

improvements for the two-stage model in both R/NR classification and precipitation 

amount estimation compared to PERSIANN-CCS. 

In R/NR classification, a 32.56% performance gain can be detected in CSI for the 

two-stage model compared to PERSIANN-CCS. In real-valued precipitation amount 

estimation, the two-stage model is 23.40% lower in average bias, 44.52% lower in 

average MSE, and 27.21% higher in COR. These values are consistent with the findings 

for the main study region, though the performance gains are generally slightly lower. 
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They demonstrated the effectiveness of the two-stage model, in both R/NR 

classification and real-valued amount estimation, outside the original region where the 

model was developed and trained,   

 

7.3 Future Directions 

As mentioned in Section 7.1, the two-stage deep learning framework developed in this 

dissertation offers many potential directions for future research. Improvements can come 

from research in  three areas: additional data sources, further model development, and 

operational application. 

7.3.1 Additional Data Sources 

As demonstrated in Chapter 4, additional satellite channels, such as WV channel, can 

provide additional precipitation-related information and help improve the precipitation 

estimation performance. There are other satellite channels, such as the VIS channel, that 

has been proven to be effective in improving the accuracy of precipitation estimation 

(Behrangi et al., 2010; Capacci and Conway, 2005; Zinner et al., 2008). Moreover, there are 

many other satellite datasets available that provide valuable information for precipitation 

estimation, such as Global Precipitation Measurement (GPM), Moderate resolution Imaging 
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Spectroradiometer (MODIS), and CloudSat (Hou et al., 2008; Jensen, 2007; Weisz et al., 

2007). 

The additional datasets should not be limited to satellite datasets when other data sources 

are also beneficial. For example, Numerical Weather Prediction (NWP) models provide 

predictions on many related factors, including short-term precipitation forecast, 10-meter 

vertical velocity, relative humidity, and convective available potential energy (Ghil et al., 

1981; Lorenc, 1986; Shapiro and Thorpe, 2004; Thielen et al., 2008). In addition, surface 

physical characteristics, such as digital elevation of land surface, can be very helpful to 

better capture the rainfall in the mountainous areas (Gesch et al., 1999; Zhang and 

Montgomery, 1994).  

On the other hand, there may be some improvements by using  the ground measurements 

to serve in calibrating the parameters. For example, the hourly satellite snapshots and 

hourly cumulative radar observations may not be the best pairs to draw a relationship. One 

way to solve this mismatch is upgrading the ground-based observation data to a higher 

temporal resolution for experiments, such as the new 5-min Next-Generation Radar 

(NEXRAD) data (Heiss et al., 1990; Zhang et al., 2011). Meanwhile, mountainous areas may 

need more careful considerations in the choices of ground measurements for the model to 

be accurate (Daly et al., 1994; Germann et al., 2009). 
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7.3.2 Model Development 

Throughout this dissertation, SDAEs, which are described in Section 2.3, served as the basic 

model structures for both stages of the two-stage model. With the rapid development in the 

field of deep learning, many other effective neural network structures were developed that 

might fit our problem even better. Convolutional neural networks (CNNs), a type of neural 

network considering connectivity pattern between its neurons, are widely used in image 

and video recognition (Donahue et al., 2014; Krizhevsky et al., 2012; LeCun et al., 1995; 

Simonyan and Zisserman, 2014). Its capability of extracting high-level patterns from 

images is suitable for dealing with satellite imageries. Recurrent neural networks (RNNs), 

taking dynamic temporal behavior into account, is also a design with great potential for this 

problem since the temporal information is critical in the formation of precipitation 

(Barbounis et al., 2006; Funahashi and Nakamura, 1993; Lukoševičius and Jaeger, 2009).  

Additionally, there is room for further investigation and development in the design and 

calibration process of the neural networks. For instance, more experiments on parameter 

tuning might lead to an improved model, because neural networks are often combined with 

many hyper-parameters. In particular, activation functions can be further designed and 

tested, which can lead to improved accuracy in other problems in computer vision (Chen 

and Manning, 2014; Hornik, 1991; Maas et al., 2013). 
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In addition, probabilistic graphic models (PGMs) also have the potential to serve as base 

models for the two-stage framework, at least for the classification stage. Specifically, 

conditional random fields (CRFs) provide structured predictions instead of independently 

treating each pixel (Ihler et al., 2005; Ping et al., 2014; Sudderth et al., 2010), and this might 

be a great fit in delineating the precipitation regions. 

Another fundamental method to improve precipitation estimation is to design the 

integrated model’s performance measures or objective functions. As discussed in Section 

2.1, it is hard to define good performance for a precipitation estimation model due to the 

imbalance nature of precipitation data and the needs of multiple objectives for 

precipitation estimation products. However, a properly designed performance measure is 

essential for comparing different products. One preliminary idea for the measurement is 

the earth mover’s distance (EMD), which measures the distance between two probability 

distributions over a region D (Levina and Bickel, 2001; Rubner et al., 2000).  

7.3.3 Operational Application 

As I discussed in Chapter 6, additional experiments are needed to prepare the model for a 

near-real-time operational precipitation estimation product. Studies should be conducted 

on a larger region with longer training and verification periods to investigate the stability 

of the model. For example, one could obtain some ground observations from other 



107 

 

countries and geographic regions to train and evaluate at a global scale, instead of limiting 

it to the United States.  

Moreover, it is necessary to test the model’s estimates in hydrological applications, which is 

one of the main uses of satellite-based precipitation estimation products. The model’s 

performance in hydrological models should be compared with other current operational 

products. In addition, it is a good idea to investigate the model’s performance on extreme 

events, which is essential for disaster monitoring and preparation. 
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Appendix A 

 

Reproduced PERSIANN-CCS 

                                     

 

In this section, I provide details on the results of reproduced PERSIANN-CCS for the main 

study regions and periods and compare it with the operational PRSIANN-CCS to 

demonstrate its methodology’s stability. The methodology is described in section 2.2. And 

the training and verification data are described in section 2.4. The verification 

measurements are introduced in section 2.1. 

Table A-1 provides performance measurements of the operational PERSIANN-CCS and the 

reproduced PERSIANN-CCS over the verification periods. For classification, the operational 

PERSIANN-CCS performs slightly better than the reproduced PERSIANN-CCS (0.213 and 

0.202 in CSI for the operational and reproduced PERSIANN-CCS, respectively). For 

regression, the performances of the average MSEs are similar, which demonstrates the 

stability of the PERSIANN-CCS algorithm. The reproduced PERSIANN-CCS outperforms the 

operational one in average bias (0.069 and 0.041 for the operational and reproduced 

PERSIANN-CCS, respectively) while its performance in COR is worse (0.332 and 0.281 for 

the operational and reproduced PERSIANN-CCS, respectively). The overall performances 
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are comparable, which demonstrates the stability of the algorithm for difference 

observation data. 

Table A-1 Summary of performance over the verification periods for the operational and the 

reproduced PERSIANN-CCS (including both summer 2013 and winter 2013–2014) 

  PERSIANN-CCS 

(Operational) 

PERSIANN-CCS 

(Reproduced) 

C
la

ss
if

ic
at

io
n

 

POD 0.391 0.390 

FAR 0.681 0.705 

CSI 0.213 0.202 

R
eg

re
ss

io
n

 Average Bias 0.069 0.041 

Average MSE 1.392 1.324 

COR 0.332 0.281 

 

Figure A-1 provides the performance of CSI for the operational and the reproduced 

PERSIANN-CCS in the validation periods for both winter and summer seasons. As Figure 

A-1 shown, the geophysical distribution of the performances are very similar to each other 

for both seasons for the operational and the reproduced PERSIANN-CCS. For the summer 

season, the performance of the reproduced PERSIANN-CCS is slightly worse than the 

original PERSIANN-CCS. For the winter season, the performances of the original and the 

reproduced PERSIANN-CCS are quite similar. 
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Figure A-1 CSI of the operational PERSIANN-CCS [(a), (c)] and the reproduced PERSIANN-CCS 

[(b), (d)] over the central United States (30–45°N, 90–105°W): (a), (b) summer (June–August 

2013); (c), (d) winter (December 2013–February 2014) 

Figure A-2 shows average MSE for the operational and the reproduced PERSIANN-CCS in 

the validation periods for both winter and summer seasons. As Figure A-2(a, b) shown, the 

overall geophysical pattern of the performances are quite similar. The reproduced version 
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performs slightly worse in the southwest corner. On the other hand, for the winter season, 

the overall performance for the reproduced PERSIANN-CCS is better than the operational 

version. The spatial consistency validates the stability of the PERSIANN-CCS algorithm. 

 

Figure A-2 Average MSE ([mm/hr]2) of the operational PERSIANN-CCS [(a), (c)] and the 

reproduced PERSIANN-CCS [(b), (d)] over the central United States (30–45°N, 90–105°W): 

(a), (b) summer (June–August 2013); (c), (d) winter (December 2013–February 2014) 
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In this section, I provided the performance of the reproduced PERSIANN-CCS, compared to 

the operational version. The performances of the two versions are comparable to each 

other, which demonstrate the algorithm’s stability to difference calibration datasets. In the 

rest of the dissertation, I use the data from the operational PERSIANN-CCS as our baseline 

performance, due to its accessibility. 




