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Abstract: Recent advances in human neuroimaging research have revealed that white-matter connec-
tivity can be described in terms of an integrated network, which is the basis of the human connectome.
However, the developmental changes of this connectome in childhood are not well understood. This
study made use of two independent longitudinal diffusion-weighted imaging data sets to characterize
developmental changes in the connectome by estimating age-related changes in fractional anisotropy
(FA) for reconstructed fibers (edges) between 68 cortical regions. The first sample included 237
diffusion-weighted scans of 146 typically developing children (4–13 years old, 74 females) derived
from the Pediatric Longitudinal Imaging, Neurocognition, and Genetics (PLING) study. The second
sample included 141 scans of 97 individuals (8–13 years old, 62 females) derived from the BrainTime
project. In both data sets, we compared edges that had the most substantial age-related change in FA
to edges that showed little change in FA. This allowed us to investigate if developmental changes in
white matter reorganize network topology. We observed substantial increases in edges connecting
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peripheral and a set of highly connected hub regions, referred to as the rich club. Together with the
observed topological differences between regions connecting to edges showing the smallest and largest
changes in FA, this indicates that changes in white matter affect network organization, such that highly
connected regions become even more strongly imbedded in the network. These findings suggest that
an important process in brain development involves organizing patterns of inter-regional interactions.
Hum Brain Mapp 39:157–170, 2018. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

In recent years, researchers have unraveled the macro-
scale network of projections that form the basis for interac-
tions between disparate brain regions, also referred to as
the human connectome [Sporns, 2011]. Neuroimaging
techniques, including diffusion weighted imaging (DWI),
have permitted researchers to map bundles of axons,
which have shown to be relatively compatible with major
fiber tracts. Herewith, the macroscale layout of the human
connectome can be estimated in vivo, which has resulted
in the characterization of individual anatomical connectiv-
ity with predictive power for cognitive abilities [Kim et al.,
2016; Koenis et al., 2015; Li et al., 2009; Sporns, 2011] and
mental health outcomes [Kaufmann et al, 2017; Collin
et al., 2015]. In the last years, there have been strong
advances in studying the adult human connectome, but
less is known about how this connectome changes during
childhood, even though it is well known that this is a time
period of substantial changes in brain development and
white-matter volume [Brouwer et al., 2012; Giedd et al.,
2015; Hagmann et al., 2010]. During primary school age
years, children show large changes in cognitive abilities,
and researchers have speculated that these arise from the
interaction of disparate brain regions [Johnson, 2011].

Prior research showed that childhood is characterized by
widespread changes in FA and white matter volume
[Brouwer et al., 2012; Giedd et al., 2015; Hagmann et al.,
2010; Muetzel et al. 2015]. In addition, different maturation
rates across various brain regions have been observed [Lebel
et al., 2008; Tamnes et al., 2010; Brouwer et al., 2012;
Simmonds et al., 2014; Krogsrud et al., 2016; Pohl et al.,
2016]. However, it is currently not well understood if
these white matter changes in childhood reflect substantial
reorganization of network topology, or whether they merely
contribute to a global increase in network efficiency.

Grey matter development studies showed specific
regional change during child development [Gogtay et al.,
2004; Giedd et al., 1999; Sowell et al., 2001; Wierenga et al.,
2014]. Functional neuroimaging studies in primary school
children suggest that refinement of the brain network is
driven by a dual process of integration (increased neural
synchrony as modeled by increased functional correlation
strength) and segregation (decreased functional correlation
strength) [Brown et al., 2005; Fair et al., 2009; Schlaggar

et al., 2002; Supekar et al., 2009]. These functional connec-
tivity studies measure activity in the cortex and assume its
connections based on correlated activity. In contrast, DWI
assesses tissue properties of the white-matter connections
directly, which may add important information on devel-
opmental changes in the brain network. The present study
was designed to test these issues by examining developmen-
tal changes in the organization of DWI derived network
reconstructions.

Previous studies applied graph theoretical analyses to
study developmental changes in network topology [van den
Heuvel et al., 2015; Wierenga et al., 2015; Dennis et al., 2013].
Initial evidence that there may be systematic regional devel-
opmental changes in the human connectome comes from
studies focusing on adolescents. In adolescence, white-
matter connections showed substantial changes among a set
of densely connected hub regions [Baker et al., 2015; Kauf-
mann, 2017], which have been called the “rich club” [van
den Heuvel & Sporns, 2011]. This study extends these initial
studies by testing human connectome development in child-
hood, which is the time period presumably characterized by
changes in interactive specialization [Johnson, 2011]. More-
over, important advances can be made by using longitudinal
data sets which have proven to (1) have more power to
detect changes by including within person change, (2)
reduce cohort effects and thereby noise, and (3) tests for
change rather than cross-sectional differences [Mills and
Tamnes, 2014]. This study capitalizes on these methods by
applying complex network analysis to two independent sets
of DWI data including a total of 243 children aged 4–13.5
years old including serial data resulting in a total of 378
scans.

The first question addressed in this study concerns the spa-
tial pattern of age effects in macro-scale structural connectiv-
ity. We hypothesize that this age period is characterized by a
selective regional specific pattern of development, which
would appear in different anatomical network layouts and
topology for different developmental rates. To assess if there
is indeed a regional specific maturational pattern of connec-
tome development, we examined the anatomical layout and
network topology of connections (edges) that show the most
substantial change in FA. We tested if this set of edges differ-
entiated from edges that did not show substantial develop-
mental changes. To do so, we compared edges showing the
largest level of change to edges showing the smallest level of
change in FA. We hypothesize that large changes favor a
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specific set of edges between rich-club regions, as previously
observed in adolescence [Baker et al., 2015]. This is thought to
support the developmental change in functional integration
that marks the change in patterns of activity from adolescence
into adulthood [Fair et al., 2009].

The second question that is addressed concerns the under-
lying biology that gives rise to the patterns of change. We
hypothesized that long fibers show the largest change in FA,
as previously reported in a smaller cross-sectional dataset
[Hagmann et al., 2010]. This hypothesis is in line with find-
ings of resting-state functional imaging studies, where func-
tional correlations showed age related decreases in short
range connectivity and age related increases in long-range
connectivity [Supekar, Musen, & Menon, 2009; but see
Power et al., 2012]. Finally, we explored the link between
developmental changes in network topology and the age-
dependent change in fibers traced from their corresponding
cortical region [Jeon et al., 2015]. We test for consistency and
replicability of our results by analyzing two independent
datasets [Poldrack et al., 2017; see Tamnes et al. 2017 and
van den heuvel et al., 2013].

MATERIALS AND METHODS

The Human Research Protections Program and institu-
tional review board at the University of California, San
Diego (UCSD) approved the research protocol to collect
and share the data of the Pediatric Longitudinal Imaging,
Neurocognition, and Genetics (PLING) study. The Brain-
Time study was approved by the Institutional Review
Board at Leiden University Medical Center.

Participants

This PLING sample included 237 scans of 146 typically
developing children between 4 and 13.5 years of age (74
females) recruited in the greater San Diego area by the
Center for Human Development at UCSD (see Table I for
demographics). Participants were recruited through local
postings, outreach activities, and through school and com-
munity contacts in San Diego, CA, USA. Participants had

no diagnosis of neurological disorders; history of head
trauma; preterm birth (<36 weeks); diagnosis of autism
spectrum disorder, bipolar disorder, schizophrenia, mental
retardation, or contraindications for MRI (such as dental
braces, metallic or electronic implants, or claustrophobia).
Data acquisition procedures for the PLING study were
similar to the PING study, which has been described in
detail [Jernigan et al., 2016]. Written parental informed
consent was obtained from all participants, in addition
child assent was obtained for all participants older than
7 years.

The BrainTime sample included 141 scans of 97 individ-
uals (62 females) aged between 8 and 13.5 years old. This
is a subsample of a large accelerated longitudinal research
project as described previously [Braams et al., 2015, Ach-
terberg et al., 2016; Peper et al., 2015] (see Table I for dem-
ographics). Subjects were recruited through schools in
Leiden, the Netherlands. Self-report questionnaires were
administered to confirm the absence of psychopathology,
neurological, or mental health problems or the use of
psychotropic medication. Written informed consent was
obtained from all participants and their parents.

Data Acquisition

To reduce data loss and maximize subject comfort and
compliance, a variety of procedures were developed.
These procedures were applied depending on the subject’s
needs and included exposure and habituation to the scan-
ner, parent, or technician accompaniment in the scanning
environment and extra rests in between scans.

For the PLING dataset, all participants had an MRI scan
on a GE 3T Signa HDx 3T Discovery 7503 scanner (GE
Healthcare, Waukesha, WI) using an eight-channel phased
array head coil. The imaging sequences included a high-
resolution 3D T1-volume and a set of diffusions-weighted
scans. The T1-weighted volume was optimized for maxi-
mum grey/white matter contrast and acquired using pro-
spective motion correction (PROMO) and a magnetization
prepared rapid gradient echo sequence (flip angle 5 88;
receiver bandwith 5 631.25 kHz, freq 5 256, phase 5 192,

TABLE I. Participant characteristics

PLING BrainTime

Characteristics Males Females Total Males Females Total

Number of individuals, n 79 67 146 35 62 97
Total number of scans, n 125 112 237 56 85 141
Number of scans by wave, n

Wave 1 (age range) 79 (4.2–12.9) 67 (4.5–12.4) 146 35 (8.2–13.2) 62 (8.2–13.4) 97
Wave 2 (age range) 35 (5.8–10.8) 34 (5.5–11.3) 69 16 (10.5–13.1) 18 (10.2–13.5) 34
Wave 3 (age range) 9 (6.9–10.8) 8 (6.6–10.8) 17 5 (12.5–13.5) 5 (13.5–13.4) 10
Wave 4 (age range) 2 (8.5–9.6) 3 (8.8–9.0) 5

r Longitudinal Changes in Brain Network Architecture r

r 159 r



slice thickness 5 1.2 mm, FoV 5 24 cm; TE 5 3.5 ms;
TR 5 8.1 ms; TI 5640 ms).

Furthermore, a set of axial diffusion-weighted scans were
collected with integrated B0 distortion correction (DISCO)
(30 directions, b value 5 1,000 s/mm2) together with two
sets of diffusion-unweighted scans (b value 5 0 s/mm2, flip
angle 908, FOV 24 3 24 cm, freq 5 96, phase 5 96, slice
thickness 5 2.5 mm, TE 5 83 ms; TR 5 13,600 ms) were
acquired. Standardized quality control procedures were fol-
lowed including computer algorithms and visual inspection
ratings by trained imaging technicians at the Center for
Human Development. Subjects that showed excessive head
movement were excluded.

For the BrainTime dataset, MRI scans were acquired on
a 3 T Philips Achieva scanner, using a six-element SENSE
receiver head coil (Philips, Best, The Netherlands) at Lei-
den University Medical Centre. The image sequence
included a high-resolution 3D T1-weighted volume (flip
angle 5 88, slice thickness 5 1.2 mm, FoV 5 24 cm; TE 5 4.6
ms; TR 5 9.8 ms) and two transverse diffusion-weighted
scans (30 directions, b value 5 1,000 s/mm2) and 5 sets of
diffusion-unweighted scans (b value 5 0 s/mm2, flip angle
908, FOV 240 3 240 mm, freq 5 96, phase 5 96, slice
thickness 5 2 mm, TE 5 69 ms; TR 5 7,315 ms). Visual
inspection ratings by trained imaging technicians at Leiden
University were performed, and subjects that showed
excessive movement were excluded.

Data Preprocessing; T1 Data

Within each individual dataset, we used the T1 images for
anatomical reference and the selection of brain network nodes.
Tissue classification and anatomical labeling was performed
on the basis of the T1-weighted MR image using the well-
validated and well-documented Freesurfer v5.3.0 software
(http://surfer.nmr.mgh.harvard.edu/). Technical details of
the automated reconstruction scheme are described elsewhere
[Dale, Fischl, & Sereno, 1999].

DWI Data Preprocessing

The full protocol for the DWI preprocessing pipeline has
been described elsewhere [Romme, 2017]. In short, it
involved the following steps: First, both DWI sets were
realigned and corrected for common distortions [Ander-
sson & Skare, 2002]. Second, diffusion images were cor-
rected for eddy-current distortions and realigned to the
b 5 0 image. Third, we fitted a diffusion profile within
each voxel using the two sets of 30 weighted images and
the average b 5 0 image from each subject. From the result-
ing tensor, the main diffusion direction in each voxel was
selected as the principal eigenvector resulting from the
eigenvalue decomposition of the fitted tensor, marking the
preferred diffusion direction in each voxel. For each voxel
in the brain mask, the FA values were computed, indicat-
ing the level of anisotropic diffusion [Basser & Pierpaoli,

1996; Beaulieu & Allen, 1994]. Fourth, information on the
preferred diffusion direction was extracted within each
voxel in the brain mask to reconstruct streamlines based
on deterministic fiber tracking using the FACT algorithm
(fiber assignment by continuous tracking) [Mori & van
Zijl, 2002; Mori et al., 1999; van den Heuvel et al., 2009].
DTI has shown relative high specificity of connection
reconstruction as compared to other, more advanced algo-
rithms for the estimation of the diffusion profile, which is
indicated to be important when studying the topological
structure of networks [Zalesky et al., 2016; Van den Heu-
vel et al. 2017]. Streamlines were reconstructed by starting
eight seeds in each voxel; these seeds were evenly distrib-
uted across the volume of the voxel. A streamline was
started from each seed following the main diffusion direc-
tion (selected as the principal eigenvector) until the
streamline entered a voxel with a low level of diffusion
preference (FA< 0.1), made an unexpected sharp angular
turn (angle> 458), or left the brain mask.

Network Reconstruction

Each reconstructed network per time point of each indi-
vidual was represented as a graph, matrix M. This matrix
includes 68 cortical brain regions defined as the nodes of the
graph and the edges between nodes i and j (i.e., brain region
i and region j). These edges are based on the streamlines that
were reconstructed as described above, and an example of a
representative subject can be observed in Figure 1.

Network Node Definition

The 68 nodes of the networks were represented by brain
regions that were automatically segmented with Freesurfer
v5.3.0 software using the Desikan–Killiany atlas [Desikan
et al., 2006]. Individual T1-weighted images were co-
registered to the b 5 0 images (rigid transformations using
mutual information). This procedure has been previously
described [van den Heuvel et al., 2008, 2009].

To assess the robustness of results, we additionally
examined the impact of an alternative network node defi-
nition using higher resolution parcellation of the brain
from the Lausanne atlas (219 cortical nodes) [Cammoun
et al., 2012].

Network Edge Definition

The FACT algorithm is sensitive to image resolution and
noise and hence there is the possibility of tracing pseudo-
streamlines (e.g., false positives). To minimize the number
of false positives, we included edges if two regions were
connected by at least three fiber streamlines [Li et al.,
2009; Lo et al., 2010; Shu et al., 2009]. This cutoff did not
affect our measure of interest (mean FA) as the mean
number of streamlines was not related to mean FA
(PLING: P value 5 0.891; BrainTime P value 5 0.597).
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The connection strength of each edge was assessed by
the mean FA of values in each voxel along the stream-
lines [van den Heuvel et al., 2008, 2009]. Variation in FA
has been associated with physical properties of the fiber
bundles, such as packing density, myelination, and axon
diameter [Beaulieu, 2002]. Although FA is affected by
either one or a composite of these measures, they have in
common that they reflect tissue characteristics that have
functional relevance [Wolff & Balaban, 1994]. Therefore,
our measure of interest was mean FA, and the weights of
each edge were set as such.

There was variability in edge topology between subjects;
hence, we estimated age-related change only for those
edges that were present in a minimum number of partici-
pants. This variability was not related to age. We set this
threshold at 60%, as this has been shown to minimalize
the balance between false positives and false negatives [de
Reus & van den Heuvel, 2013].

Network Analysis

For graph theoretical analysis, we used the Brain Con-
nectivity Toolbox [Rubinov & Sporns, 2010]. Each matrix
M was used to compute the measures described below:

Number of edges, the total count of edges included in
each un-thresholded binary matrix M for each lth individ-
ual and mth time point.

Node degree, the number of edges k connected to each
node i in matrix M.

Node strength, the sum of weights (mean FA) of all edges
to each node i in matrix M.

Path length, the minimum number of binary steps to get
from one node i to another node j, averaged over all nodes j.

Normalized clustering coefficient gamma (g), the ratio of
number of edges between direct neighbors of a given node
i and the total number of possible edges between these
neighbors [Watts & Strogatz, 1998]. Because this measure
is highly related to the degree k of each node, we com-
pared the cluster coefficient of node i to the average clus-
ter coefficients of its corresponding node in 500 random
graphs. These random graphs were constructed by redis-
tributing edge weights of each matrix M while keeping the
degree distribution intact [Maslov and Sneppen, 2002;
Rubinov and Sporns, 2010]. Next, normalized clustering
gamma (g) is estimated as the cluster coefficient relative to
clustering in the random networks.

Rich club classification, nodes with a high node degree
that display more connectivity than one would expect on
the basis of their degree alone are said to form a rich club
core. This study used rich club classification based on pre-
vious studies in children, adults and clinical groups [Baker
et al., 2015; Ball et al., 2014; Daianu et al., 2015; Grayson
et al., 2014; van den Heuvel and Sporns, 2011;van den
Heuvel et al., 2012]. This a priori definition of rich club
regions is an unbiased method and permits comparison
with the literature. Regions included bilateral superior
frontal gyrus, precuneus, superior parietal gyrus, and
insula. Nodes in the network were classified as rich club
or peripheral nodes. Next, edges were categorized into
rich club edges (between rich club nodes), feeder edges
(nonrich club to rich club nodes), and local edges (between
nonrich club nodes).

Functional modules, each network node was assigned a
priori to one of the functional network modules defined
by Yeo et al. [2011]. Baum et al. [2017] showed that even
though these module partitions were defined using func-
tional imaging, the modularity quality of the functional
partition showed to fit structural connectivity data.

Figure 1.

Representation of reconstructed anatomical parcellation of freesurfer (A), DWI streamlines (B),

and graph representation (C) for one representative subject of the BrainTime dataset. D shows

a single-subject connectome as a connectivity matrices with rows and columns depicting source

(i) and target regions (j). Pathways are grouped by hemisphere colors represent mean FA values

ranging from 0.1 (grey) to 0.7 (black). [Color figure can be viewed at wileyonlinelibrary.com]
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Statistical Analysis

Age-related change in total number of edges, total num-
ber of streamlines, global mean FA, streamline length, and
each edge in matrix M were assessed using linear mixed
modeling. This model accounts for irregular intervals
between measures, missing data and within person depen-
dence, and was therefore particularly suited for our data-
sets. More formally, each dependent measure y of the lth

individual and mth time point was modeled as follows:

ylm5Interceptl1dl1bage3Agelm1elm

Here, Agelm denotes the age of the lth individual at the mth

time of his/her scan. The dependent variable is modeled
as a function age (bage) plus a random person effect (dl)
plus error (elm). Intercept and age, were fixed effects, while
within person dependence (dl) was modeled as a random
effect. Nonlinear models including cubic and quadratic
age terms did not improve model fit and were therefore
not used in further analyses. We did not include gender in
our model as it did not improve model fit. This is in line
with previous observations of no to limited gender effects
on DWI measures [Wierenga et al., 2015; Krogsrud et al.,
2015].

For assessment of the anatomical distribution of edges
and anatomical layout of nodes, a v2 analysis was used.
Furthermore, for the analysis of network topology,
ANOVA analysis was performed.

Selection of Edges

We estimated age-related changes in FA (bage) for each
edge included in our group level analyses with the statisti-
cal model described above. We were interested in edges
showing either substantial or little change in FA, as an
increase in FA for all edges would not per se result in
changes in network topology and organization but could
merely result in a global change in network efficiency.
Rather a spatial heterogeneous pattern of change would
affect network topology and organization. To address this
pattern, we classified edges into different categories: edges
that showed the largest change in FA and edges that
showed the smallest change in FA. Edges were defined as
largest or smallest change in FA when they had a bage of
one SD above or below the average bage, respectively.

To improve power, we selected only those edges within
the edge categories that formed an interconnected struc-
ture, that is, connected component. This method is compa-
rable to cluster-extent-based methods that are often used
in functional neuroimaging studies to account for the mul-
tiple comparison problem [Bullmore, Suckling, & Over-
meyer, 1999]. Rather than selecting a (unknown) threshold
for component size we only included the largest
connected-components observed in the sets of largest and
smallest change.

RESULTS

Global Changes in Number of Edges,

Streamlines, and Mean FA

First, we addressed the question if the structural layout
is stable across the age range. For this goal, we assessed
the total number of edges for each matrix M and observed
that indeed this did not change with age in both data sets,
see results in Table II. Furthermore, there were no signifi-
cant developmental changes in the mean number of
streamlines in both data sets.

Next, we examined the global developmental change in
FA. To do so, we estimated mean FA for each network M

at each time point (l) of each individual (m) and observed
that mean FA increased with age in both data sets
(PLING: P< 0.001; BrainTime: P< 0.001). Mean FA was not
mediated by intracranial volume (PLING: P value< 0.001;
BrainTime: P value< 0.001). Similar results were found
when using the Lausanne 219 cortical parcellation schedule
(P value< 0.001).

Anatomical Distribution of Edges

The anatomical layout of the connected components
including edges showing the largest change in FA and
smallest changes in FA are displayed in Figure 2. First, the
overlap in anatomical layout of the largest component of
the two datasets were compared to the overlap in 10 000
random networks. This analysis confirmed the stability of
these components across the datasets where the overlap
showed to be significant (large change component:
P value< 0.0001; small change component: P value 5

0.0058).

TABLE II. Global age-related changes

PLING BrainTime BrainTime parc 219

bage df t P value bage df t P value bage df t P value

Total number of edges 1.887 90 1.164 0.247 3.266 37 1.450 0.155 23.378 37 20.307 0.761
Mean NOS 0.916 90 1.806 0.074 20.046 37 20.065 0.948 0.034 37 0.105 0.917
Mean FA 0.002 90 4.506 <0.001 0.004 37 6.398 <0.001 0.004 37 7.157 <0.001
Mean FA 1 ICV 0.002 90 4.387 <0.001 0.004 37 6.396 <0.001 0.004 37 7.154 <0.001
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Figure 2.

Connected components of largest (red) and smallest changes

(blue) in FA frontal lobe at the top of the image. The PLING

dataset is represented in the top row and the BrainTime dataset

in the bottom row. Nodes (circles) and edges (lines) are dis-

played for the reconstructed thresholded group averaged brain

networks. The histogram shows bage values for all edges in the

group network. Edges that showed an age-related change of 1

SD smaller than the mean change in FA are displayed in blue

(small D FA). Connections larger than 1 SD above mean change

in FA are displayed in red (large D FA). The largest two

connected components were selected for both sets of edges.

Rich-club nodes are represented by large circles. [Color figure

can be viewed at wileyonlinelibrary.com]
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We next addressed the question if large changes in FA favor
a specific set of edges. As shown in Figure 3 and Table III, the
large change component included a greater number of feeder
edges than the small change component, which reached signif-
icance in the BrainTime dataset (P value 5 0.001), but not the
PLING dataset (P value 5 0.223). As only 8 of 68 nodes were
labeled as rich club regions, the number of possible rich club
and feeder edges was smaller than the possible number of
peripheral edges. To control for this, we compared the
observed number of edges in the largest and smallest change
components to the total possible number of edges. A v2 analy-
sis indicated that there was a significant effect for edges with
large change compared to all possible connections (PLING: P

value< 0.001; BrainTime: P value< 0.001) but not for edges
with the smallest change in FA in the BrainTime dataset (Brain-
Time; P value 5 0.812). The PLING dataset did show a signifi-
cant difference between the small change component and the
total possible number of edges (PLING: P value< 0.001). The
Lausanne parcellation in the BrainTime dataset confirmed the
pattern in the Desikan–Killiany parcellation.

Streamline Length

The next questions we addressed concerns the underly-
ing biology associated with these patterns of change. Edge
categories showed to differ in mean streamline length (see
results Table IV): edges that showed large changes in FA
were longer (PLING: M 5 51.979, SD 5 32.150; BrainTime:

M 5 51.939, SD 5 35.658) than edges that showed small
changes in FA (PLING: M 5 25.377, SD 5 23.289; Brain-
Time: M 5 16.104, SD 5 13.619), this difference was signifi-
cant in both datasets (PLING: P value< 0.001; BrainTime:
P value <0.001) and the Lausanne 219 parcellation (P
value <0.001). This effect remained significant when we
accounted for average FA for each edge. Together, these
findings demonstrate particularly strengthening of long-
range connectivity.

Anatomical Layout

In the following section, we mapped the anatomical lay-
out of cortical regions and age-dependent change in fibers
traced from these regions. To do so, we identified three
sets of nodes: (i) nodes connecting to edges that showed
large change, (ii) nodes connecting to edges that showed
small change, and (iii) nodes connecting to both edge
categories.

In the BrainTime dataset, the anatomical layout across
the four lobes significantly differed between nodes con-
nected to edges showing large age-related change in FA (i)
and nodes that connected to edges showing small changes
in FA, as shown by a v2 analysis (P value 5 0.015). Large
change was observed for a relative large number of nodes
in the parietal and frontal lobes, while small changes were
observed for a relative large number of nodes in the occip-
ital lobe. This difference was not significant in the PLING

Figure 3.

Percentage of anatomical distribution of rich club, feeder, and

local edges in red, orange, and yellow, respectively. The middle

graph shows a schematic representation of the group averaged

reconstructed brain network. Nodes (circles) represent brain

regions where rich club nodes are indicated by red circles. The

bar graphs on the left (PLING set) and right (BrainTime set)

indicate that a larger proportion of feeder and hub edges and a

smaller proportion of peripheral edges were observed in the

edges showing large age-related changes in FA (large D FA) com-

pared to the distribution of edges showing the smallest change

in FA (small D FA) and compared to the distribution of edge

categories for all possible edges. [Color figure can be viewed at

wileyonlinelibrary.com]

r Wierenga et al. r

r 164 r

http://wileyonlinelibrary.com


dataset (P value 5 0.905). Table V shows the relative con-
tribution by the number of nodes identified in each node
category divided by the number of nodes in each lobe.

We next investigated the anatomical layout of edges in
functional networks: the limbic system showed mostly
small changes in FA while visual regions showed predom-
inantly large changes in FA (Fig. 4). Furthermore, regions
in somatomotor and sensory systems (insula, pre- and
postcentral gyrus, paropercularis, paracentral region, supe-
rior temporal and transverse temporal region), and default
mode network (inferior parietal cortex, middle temporal
cortex, cingulate cortex, precuneus and superior frontal
cortex) showed a larger proportion of edges with the larg-
est change compared to edges with the smallest change in
FA, this pattern was more pronounced in the BrainTime
dataset. The visual system showed a similar number of
edges showing large and small changes.

Network Topology

We next compared the topological properties of nodes
that were uniquely connected to either large (i) or small (ii)
changing edges or to both edge categories (iii) to further
address the question if development of the connectome is
region specific (see results in Table VI). In the BrainTime

data set, it was observed that nodes that were connected
to edges with large changes in FA (i) had greater average
node strength (P value 5 0.002) and shorter path length
(P value< 0.001) compared to nodes solely connected to
edges showing small change in FA (ii). Gamma also signifi-
cantly differed between node categories, where larger gamma
was observed for nodes connecting to large changing edges
(P value 5 0.003). This effect was not replicated in the PLING
dataset. The Lausanne parcellation showed significant effects
of node strength and gamma, but not path length.

Furthermore, we tested how the two components (large
and small changes in FA) related to developmental
changes in the topological organization of the network.
Age-related changes in node strength, path length, and
gamma did not show significant differences between node
groups (P value> 0.05).

DISCUSSION

This study investigated the spatial pattern of human
connectome development in two independent longitudinal
datasets of 4–13-year-old children. These white-matter con-
nections may represent potential routes of information
flow between pairs of brain regions and herewith may
contribute to information processing and synchronization

TABLE III. Anatomical distribution of edges

PLING BrainTime BrainTime parc 219

v2 df N P value v2 df N P value v2 df N P value

Hub/feeder/rich club
Large D FA vs small D FA 4.982 2 88 0.223 16.216 2 73 0.001 6.100 2 384 0.047
Large D FA vs total 55.13 2 1198 <0.001 49.202 2 1198 <0.001 25.739 2 23072 <0.001
Small D FA vs total 16.66 2 1202 <0.001 0.956 2 1187 0.812 0.0414 2 22968 0.813

TABLE IV. Streamline length

PLING BrainTime BrainTime parc 219

F df P value F df P value F df P value

Large D FA> small D FA 40.00 174 <0.001T 49.82 144 <0.001T 101.7 447 <0.001T

T 5 significant after covarying for mean FA.

TABLE V. Anatomical distribution of nodes connecting to edges with the smallest and largest changes in FA

PLING BrainTime BrainTime parc 219

Lobe Large D FA Small D FA Both Large D FA Small D FA Both Large D FA Small D FA Both

Frontal, % 27 35 31 12 19 35 34 26 33
Parietal, % 29 43 29 50 0 50 23 30 37
Temporal, % 25 30 20 20 20 5 17 28 37
Occipital, % 12 38 25 0 38 12 13 48 30

%5 percentage of nodes connected to edges categories; D 5 age related change.
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patterns between distant regions [Singer, 1993]. We
observed that there is a selective regional specific pattern
of network development, as edges that show substantial

change across age differ in anatomical layout and network
topology from edges that show little change. We further-
more confirmed previous findings that long fibers show

Figure 4.

Subnetworks for the PLING (top) and BrainTime (bottom) datasets showing percentage of edges

that had large change (dark grey/red) and small changes (light grey/blue) in FA connecting to nodes

in one of the following subnetwork: cortical limbic network, somato-motor network, default mode

network, and visual network (left to right). [Color figure can be viewed at wileyonlinelibrary.com]
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larger changes in FA than short fibers [Hagmann et al.,
2010]. Together these findings are interpreted to suggest
that developmental changes in white-matter connections
may promote developmental changes in the brain network
that are marked by simultaneous progressive and regres-
sive neurobiological changes [Rubinov & Sporns, 2010].

The primary aim of this study was to test if the connec-
tivity network follows global or specific developmental
changes. A robust finding across the two samples, was
that the brain network follows a heterogeneous pattern of
development in childhood and herewith extends previous
findings that show different rates of development in major
white matter tracts [Dean et al., 2015; Lebel et al., 2008].
The observations in this study contrast findings in previ-
ous studies that suggested a rather global pattern of white
matter development [Brouwer et al., 2012; Giedd et al.,
2015; Hagmann et al., 2010; Muetzel et al. 2015]. This
study made use of advanced analysis methods and longi-
tudinal data sets and therefore had increased power to
detect region specific and heterogeneous change, consis-
tent with the hypothesis that developmental progressions
occur through interactive specialization [Johnson et al.,
2011].

Interestingly, edges that showed large and small
changes in FA had different anatomical layouts. The fron-
tal and parietal lobes had a substantial large number of
edges that showed large increases in FA values. In addi-
tion, edges within the cortical limbic network predomi-
nantly showed small changes in FA values. This spatial
heterogeneous developmental pattern is in line with find-
ings of connectome development in a smaller cross-
sectional sample of toddlers where efficiency in medial
nodes significantly increased with age, while in lateral
located nodes decreases were observed [Huang et al.,
2015]. Furthermore, the pattern of development observed
in this study indicates that a considerably large number of
feeder edges, connecting peripheral to rich club regions,
showed the largest changes in FA. Although speculative,
this may indicate that childhood development is character-
ized by changes in the ability to integrate complex infor-
mation, as rich club regions are known to process
information from multiple functional modalities [van den
Heuvel and Sporns, 2011]. Developmental changes in

connectivity between peripheral and rich club regions may
also be reflected in cognitive changes during this age
period, such as changes in attention and working memory
processes [Diamond et al., 2013], as these processes are
dependent on the efficient integration of information from
multiple regions [Braun et al., 2015]. An outstanding ques-
tion for future research concerns how development of
white-matter connectivity correlates with developmental
advances in cognitive control.

The second question we addressed concerned the under-
lying biology that gives rise to the patterns of change. We
extend previous findings by showing that longer fibers
had larger changes in network topology than shorter fibers
[Hagmann et al., 2010]. This finding may indicate that
long-range connectivity shows a delayed maturational pat-
tern compared to short-range connectivity, as previously
reported in functional imaging studies [Supekar, Musen, &
Menon, 2009, but see Power et al., 2012; van Dijk et al.,
2012]. Together these findings suggest that childhood is
marked by both progressive and regressive neurobiologi-
cal processes that lead to some cortical regions being more
strongly embedded in the brain network while other
regions are subtracted from the brain network through the
course of development.

The last question we addressed concerns how these
changes in FA relate to network topology. We observed in
the BrainTime dataset that network topology differed
between edges showing large and small changes in FA,
where edges showing substantial changes connected to
regions with higher node strength, path length and
gamma than edges showing little change. Note that these
results could not be replicated across the two datasets and
should therefore be interpreted with care.

A strength of this study is the use of two large indepen-
dent longitudinal samples, that allow for unambiguous
replication and the assessment of within subject changes
[Poldrack et al., 2017]. Several findings showed to be
robust across the two datasets and parcellation of cortical
nodes. These results included; mean FA showed age-
related increases in both datasets, as expected. Also, no
age-effects in global number of edges and mean number
of streamlines was observed. This result supports previous
observations that the majority of tracts are already present

TABLE VI. Topology of nodes across node groups

PLING Brain Time Brain Time parc 219

F df P value F df P value F df P value

Average node strength 0.298 56 0.744 7.149 41 0.002 4.894 192 0.008
Path length 0.611 56 0.546 10.446 41 <0.001 0.210 192 0.811
Gamma 1.068 56 0.351 6.939 41 0.003 3.381 192 0.036
Change in node strength 0.117 56 0.890 1.667 41 0.201 1.361 192 0.259
Change in path length 0.323 56 0.725 1.661 41 0.203 0.366 192 0.694
Change in gamma 0.441 56 0.645 2.429 41 0.101 0.997 192 0.371
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early in development [Ball et al., 2014; van den Heuvel
et al., 2015; Wierenga et al., 2015]. Furthermore, the ana-
tomical distribution of edges that showed the largest and
smallest change in FA significantly overlapped between
the datasets, and both datasets revealed that edges show-
ing large changes had larger streamline length than edges
showing small changes. In addition, both datasets showed
that cortical limbic structures connected to a larger num-
ber of small change edges. Furthermore, the BrainTime
dataset showed a pattern where large changing edges
included a larger number of feeder and hub edges, this
effect was not significant in the PLING dataset. Also, the
observation that the large and small change components
showed significant differences in anatomical distribution
between lobes and differences in network topology was
significant in the BrainTime but not PLING dataset; hence,
these results should be interpreted with caution.

Several limitations should be considered when interpret-
ing the results. First, DWI is known to be sensitive to
motion artifacts [Yendiki et al., 2013]. This was partially
tackled with integrated distortion correction algorithms in
the PLING dataset and the quality assessment on all scans,
where subjects that showed excessive movement were
excluded. Second, the spatial resolution of our imaging
technique makes it currently unfeasible to trace short corti-
cal U-fibers. Thus, our fiber-tracing technique may identify
only a fraction of the actual neural interactions involved
[Sporns 2011]. Third, it should be kept in mind that the
main communication path between two regions can also
occur via a third region; this may best be detected with
functional correlation analysis. Therefore, the integration
between distant regions through synchronization cannot
be apparently manifested solely based on DWI-based net-
works used in this study.

An interesting question for future research will be to
unravel the underlying biological conditions that are
related to the age-related variability in FA. Although FA
has one of the highest correlations with myelin water frac-
tion, in comparison with other diffusion measures [M€adler
et al., 2008], a number of other biological conditions may
effect FA, including physical properties of the fiber bun-
dles (e.g., changes in axonal diameter and packing density)
or their environment (e.g., angiogenesis). Moreover, a com-
posite of these factors that differ per region may be at
play. However, some of these conditions may be more
plausible in relation to the developmental changes
observed in this study than others. For example, changes
in the axon packing density is an unlikely candidate for
the observed developmental changes in this study as an
increase in the number of axons in this age range is not in
line with findings in animal models [Price et al., 2006].
Alternative measures, such as T1-weighted T2-weighted
ratio, might provide additional information on changes in
myelin deposition [Ganzetti et al., 2014; Glasser and Van
Essen, 2011]. Combining these measures into multimodal
approaches is recommended for future studies.

In summary, we showed that refinement of the brain
network in childhood is a selective systematic region spe-
cific process, supporting the notion that this developmen-
tal period is characterized by large changes in interactive
specialization [Johnson, 2011]. This was supported by the
finding that substantial differences in anatomical layout
and topological organization were observed between edges
that showed the largest increase in FA compared to edges
that showed the smallest change in FA. Mapping the spe-
cific developmental pattern of the connectome may help
us better understand the processes essential for childhood
cognitive development [Diamond et al., 2013] and may
ultimately predict vulnerability and guide interventions.
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