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Abstract
Languages often express grammatical information through
inflectional morphology, in which grammatical features are
grouped into strings of morphemes. In this work, we propose
that cross-linguistic generalizations about morphological fu-
sion, in which multiple features are expressed through one
morpheme, can be explained in part by optimization of pro-
cessing efficiency, as formalized using the memory–surprisal
tradeoff of Hahn, Degen, and Futrell (2021). We show in a
toy setting that fusion of highly informative neighboring mor-
phemes can lead to greater processing efficiency under our
processing model. Next, based on paradigm and frequency data
from four languages, we consider both total fusion and gradable
fusion using empirical measures developed by Rathi, Hahn, and
Futrell (2021), and find that the degree of fusion is predicted
by closeness of optimal morpheme ordering as determined by
optimization of processing efficiency. Finally, we show that
optimization of processing efficiency can successfully predict
typological patterns involving suppletion.
Keywords: language processing; morphology; information
theory; memory–surprisal tradeoff

Introduction
In human language, grammatical information is often ex-
pressed via inflectional morphology, in which a set of gram-
matical features are encoded in wordforms. For example, in
the English word walked, the suffix –ed expresses the tense fea-
ture PAST; we say that the word consists of two morphemes,
the root walk plus the suffix –ed.

Morphological systems have long held a fascination for
the field of linguistics, because they differ widely across lan-
guages, while also showing clear universal tendencies. They
are often the target of theoretical models aiming to quantify
their complexity (for example, del Prado Martı́n, Kostić, &
Baayen, 2004; Baerman, Brown, & Corbett, 2015; Bentz,
Ruzsics, Koplenig, & Samardžić, 2016) and to explain their
properties in terms of constraints on complexity (for exam-
ple, Ackerman & Malouf, 2013; Cotterell, Kirov, Hulden, &
Eisner, 2019).

In this work, we focus on cross-linguistic generalizations
about how information is packaged into morphemes, and in
particular cases where multiple features are expressed simulta-
neously in a single morpheme—a phenomenon called fusion.1

1The term ‘fusion’ is used with different senses in the linguistic
literature (Plank, 1999; Brown, 2010). The two major senses are
phonological fusion—when two morphemes appear to be merged
together because of the action of phonological rules—and polyexpo-
nence: when a single morpheme expresses multiple features. Our
usage is more aligned with the latter sense.

We argue that key properties of fusion can be explained in
terms of a recently-introduced theory of linguistic complexity
called the memory–surprisal tradeoff (Hahn et al., 2021),
which is based in information theory and models of online lan-
guage processing. Previous work has argued that the memory–
surprisal tradeoff can explain certain aspects of the ordering of
morphemes within words (Hahn et al., 2021; Hahn, Mathew,
& Degen, 2022).

Intuitively, the memory–surprisal tradeoff measures how the
predictability of a form trades off with the memory resources
required for processing it. We say a morphological system is
efficient when it allows for favorable tradeoffs. We propose
that cross-linguistic patterns of fusion arise from a pressure for
efficiency in the sense of the memory–surprisal tradeoff—i.e.
that the ETH can predict which features tend to be fused—and
provide empirical evidence to support this hypothesis.

First, we present a model simulation showing how fusion
is related to our notion of efficiency. We demonstrate that
morphological systems are efficient when highly correlated
features are expressed simultaneously as one morpheme; i.e.
when they are polyexponent.

Next, we focus on informational fusion (Rathi et al., 2021),
a graded measure of the extent to which a set of features are ex-
pressed together in an unanalyzable morpheme (Brown, 2010;
Bickel, 2001). We show that the memory–surprisal tradeoff
can accurately explain which pairs of features have higher
levels of informational fusion. Furthermore, across languages,
we are able to predict which sets of three features will be
polyexponent, such as tense–aspect–mood (TAM) markers.

Finally, we consider the case of suppletion, in which the
form of a root changes unpredictably based on grammatical
features (Veselinova, 2013). We treat suppletion as fusion
of a grammatical feature with the root, and show that cross-
linguistic patterns of which features are suppletive can be
predicted via the memory–surprisal tradeoff on a sample of 17
languages.

The remainder of the paper is structured as follows. First,
we introduce the memory–surprisal tradeoff as a theory of
linguistic complexity, how it can be calculated from linguistic
datasets, and what properties we generally expect from linguis-
tic systems that optimize the tradeoff. Next, we present our
simulations and computational studies in four experiments;
these sections also review the relevant linguistic phenomena.
In the conclusion we discuss the implications of our results.
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The Memory–Surprisal Tradeoff
The memory–surprisal tradeoff describes the complexity of
incremental language processing in terms of two factors: (1)
the difficulty of predicting upcoming material, and (2) the dif-
ficulty of maintaining memory representations of past material.
These two factors trade off: a high-fidelity representation of
past material enables accurate predictions about future mate-
rial, but at the cost of higher investment of memory resources.
The Efficient Tradeoff Hypothesis (ETH; Hahn et al., 2021)
holds that languages are structured so that favorable tradeoffs
of these two factors are possible: that is, so that upcoming ma-
terial is highly predictable even given very little information
stored in memory.

The memory–surprisal tradeoff is grounded in the Surprisal
theory of online language comprehension (Hale, 2001; Levy,
2008), which holds that the processing difficulty of word (or
any linguistic unit) wt in context w1 . . .wt−1 is proportional to
its surprisal, which is the negative log probability of the word
in context:

S =− log p(wt | w1 · · ·wt−1). (1)

Surprisal, as measured by n-gram, PCFG, or neural models,
has been shown to accurately predict word-by-word reading
times (Demberg & Keller, 2008; Smith & Levy, 2013; Good-
kind & Bicknell, 2018; Wilcox, Gauthier, Hu, Qian, & Levy,
2020; Frank & Ernst, 2019; Rathi, 2021) (but see van Schijn-
del & Linzen, 2021). Within this paradigm, Futrell, Gibson,
and Levy (2020) argue that the context accessible to the pro-
cessor is best thought of as a lossy memory representation mt
of the true context:

SM =− log p(wt | mt), (2)

where the memory representation mt =M(w1 . . .wt−1) is given
by some memory encoding function M.

The core idea of the memory–surprisal tradeoff is that with
more information in the memory mt , the average surprisal
achieved will be lower. That is, more precise memory leads to
more precise predictions and lower processing difficulty. We
can quantify the average amount of information stored in the
memory state as HM , the entropy of the memory state:

HM =−∑
mt

p(mt) log p(mt). (3)

The memory–surprisal tradeoff curve quantifies the lowest
achievable average surprisal SM given a particular average
amount of information stored in memory HM . It is a form
of the ‘predictive information bottleneck’ curve studied in
information theory (Still, 2014). With a steeper curve, lower
processing difficulty can be achieved with less memory re-
sources, i.e. while storing less information in memory. Thus,
a steeper curve is more efficient.

Given this setting, Hahn et al. (2021) formalize the ETH as
follows: “the order of elements in natural language is charac-
terized by a distinctively steeper memory–surprisal tradeoff
curve compared to other possible orders.” For example, in
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Figure 1: Sample memory–surprisal tradeoff curves of two
hypothetical languages, Language A and Language B. The
curve for Language A is steeper, and thus we would say it is
more efficient in terms of the cognitive resources required.

Figure 1, Language A has a steeper curve than Language B
and would thus be more efficient, as we would expect a natural
language to be. Hahn et al. (2021) furthermore show that an
efficient tradeoff is generally achieved when languages fol-
low the information locality principle (Futrell, 2019), which
states that atomic units that predict each another will be close
in linear order (cf Behaghel, 1930). It can be formalized by
measuring predictivity using mutual information (MI), an
information-theoretic measure of statistical dependence.

While the ETH was defined in previous work as a theory
of word and morpheme order, we use it here as a theory of
how grammatical information is packaged into morphemes,
that is, a theory of why multiple features might be expressed
in a single morpheme, and which features are likely to be
fused in this way. We hypothesize that attested morphological
systems (conceived of generally as mappings from sets of fea-
tures to wordforms) achieve more favorable memory–surprisal
tradeoffs than alternative systems. The information locality
principle carries over into this domain in a modified form: we
generally predict that features are likely to be expressed by a
single morpheme when they statistically depend on each other.

Our general approach, therefore, is to calculate the memory–
surprisal tradeoff for attested morphological systems and to
compare against other possible systems. We hypothesize that
the attested systems will enable more efficient tradeoffs, quan-
tified as the area under the curve of the memory–surprisal
tradeoff.
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Calculation of the memory–surprisal tradeoff
It is straightforward to calculate a lower bound on memory–
surprisal tradeoff curve from corpus data. In particular, Hahn
et al. (2021) demonstrate that a lower bound on the curve
can be calculated by fitting a series of incremental language
models that use successively more context to predict upcoming
material. To calculate the lower bound, first we need a quantity

It = St−1 −St , (4)

where St is the average surprisal of a language model which
sees a context of size t, for example an n-gram model which
sees only the t previous words. The quantity It is the mutual
information between words at a distance of t words. Then for
all timescales T , for any memory entropy satisfying

HM ≤
T

∑
t=1

tIt , (5)

the average surprisal is lower-bounded as

SM ≥ S+
∞

∑
t=T+1

It . (6)

The lower bound on the whole curve can be computed by
sweeping out values of T = 0,1,2, . . . .2

For our purposes and given datasets available to us, we
measure the memory–surprisal tradeoff at the level of abstract
sequences of morphemes. Forms are represented as a sequence
consisting a root and a series of affixes: for example, the En-
glish form goes is represented as ROOT-3-SG-PRS, indicating
it expresses the features of third person, singular, and present
tense. This representation abstracts away from any ambiguity
that might exist in wordforms, and also abstracts away from
the length of individual morphemes.

Estimation of optimal orderings
We estimate optimized orderings by optimizing for the area
under the memory–surprisal tradeoff curve (AUC). Each or-
dering corresponds to a potential curve, with the lowest AUC
curve being the most “efficient.” We use a modified version of
the hill climbing method of Gildea and Jaeger (2015): weights
in [0,1] are initially randomly assigned to each feature, and
then are iteratively adjusted to reduce AUC. For each iteration,
we randomly select one feature, and determine the AUC for
each way of ordering it with respect to two other morphemes;
we then change the weights to the lowest AUC ordering. We
optimize this approximately (only guaranteeing convergence
to local rather than absolute minima) by restricting this cal-
culation to morphemes that occurred at least 10 times in the
dataset for 95% of iterations, and to 10% of possible orderings
for each iteration. This value converged after a few hundred
iterations; we iterated 1,000 times for each language.

2In the experiments below, we determine It using n-gram models
with Kneser-Ney smoothing trained on a training set, and estimate
average surprisal St as cross-entropy on a test set. To mitigate overfit-
ting with larger values of t, we estimate Ŝt as mint≤n St , where St is
the cross-entropy on the t’th order Markov model.

Experiment 1: Polyexponence Model Simulation
We first discuss how optimization of the memory-surprisal
tradeoff could in principle lead to fusion of features that are
informative about each other. In this section, by ‘fusion,’ we
refer to polyexponence, where multiple features are expressed
in a single morpheme in a way that cannot be decomposed.

To compare the optimality of paradigms with different
kinds of fusion, we simulated a language where forms ex-
press the features Past/Present Tense, 2nd/3rd Person, and
Singular/Plural Number. In order to induce nontrivial proba-
bilistic structure, we (arbitrarily) assigned higher frequency to
2nd Singular and 3rd Plural features than to others; our con-
clusions do not depend on this particular choice. Thus, in the
distribution over features in this simulated language, there is
high mutual information between person and number, and low
mutual information between tense and person/number. Using
this distribution over features, we simulated two languages: in
the Low MI language, Tense and Person are fused into a single
morpheme; in the High MI language, Person and Number are
fused.

According to the information locality principle, the high-MI
morphemes should be ordered close to each other in order to
optimize the memory–surprisal tradeoff; we hypothesize that,
as an analogue for closeness, they should also be fused to-
gether. This intuition is borne out in the simulations. Memory–
surprisal tradeoff curves for these languages are shown in Fig-
ure 2. The High MI language shows a more efficient tradeoff
at all but very high memory capacities. This happens because
fusion of features that are predictive about each other into a sin-
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Figure 2: Memory-surprisal tradeoffs with fusion of low or
high mutual information pairs in the model simulations in
Experiment 1.
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gle morpheme reduces the entropy of individual morphemes
more than fusion of morphemes that share no information.

Experiment 2: Pairwise Informational Fusion
In the simulation above, we found that fusion of morpholog-
ical features is most optimal when those features are highly
correlated with each other. Here, we explore whether the
memory–surprisal tradeoff can more generally predict degrees
of morphological fusion in real languages. We use the recently-
introduced concept of informational fusion as a graded em-
pirical measure of the extent to which multiple features are
expressed in a single morpheme. We show that the Efficient
Tradeoff Hypothesis can predict the degree of fusion of for
pairs of features in four languages, such that features close
together in optimal order under the ETH are more likely to be
fused.

Informational Fusion Rathi et al. (2021) recently intro-
duced a graded measure of morphological fusion called infor-
mational fusion. Informational fusion intuitively measures
the extent to which a set of features is expressed on a wordform
in a way that is unanalyzable: that is, the wordform cannot be
decomposed into any morphemes or morphological processes
corresponding to subsets of the features in question. For exam-
ple, the fusion of Latin form servı̄s should be high, since the
suffix –ı̄s expresses both dative and plural features, while the
fusion of Hungarian embereknek should be low, since –eknek
can be split into –ek (the plural) and –nek (the dative).

More precisely, informational fusion measures the bits of
information required to specify a form for a given set of fea-
tures, beyond what would be required for any subset of the
features. Formally, the informational fusion of a surface form
w in a language with respect to feature set σ and lemma ℓ is

ϕ(w) =− log p(w | L−σ,σ, ℓ), (7)

where L−σ is a dataset consisting of all wordforms in the
language along with their features, having removed all occur-
rences of feature set σ.

If a form is highly predictable based on the rest of the forms
in the language, then it will have low informational fusion;
on the other hand, if a form is not predictable, it will have
high informational fusion. Rathi et al. (2021) show that the
measure ϕ produces numbers that match linguistic intuitions
about morphological fusion across a wide variety of languages
when the distribution p(w | L−σ,σ, ℓ) is estimated using a
neural seq2seq architecture (Sutskever, Vinyals, & Le, 2014).

We are interested in predicting degrees of fusion for pairs
of features, as opposed to entire slots, so we adapt the idea of
informational fusion to study pairs of features in the following
way. For a form w with features σ, and a pair of features
f1, f2 ∈ σ, we define the 2-feature informational fusion ϕ2(w)
as

ϕ2(w) =− log p(w | L−( f1, f2),σ, ℓ). (8)

To get a summary measure for a feature pair f1, f2, we cal-
culate the average ϕ2(w) across forms w expressing those

SG PL

NOM servus servı̄
GEN servı̄ servōrum
DAT servō servı̄s
ACC servum servōs
ABL servō servı̄s
VOC serve servı̄

Table 1: The second declension Latin noun paradigm for serv,
‘servant.’ Syncretic forms are color-coded.

SG PL

NOM ember emberek
ACC embert embereket
DAT embernek embereknek
ALL emberhez emberekhez
ABL embertől emberektől
. . . . . . . . .

Table 2: A subset of the Hungarian noun paradigm for ember,
‘person.’ Morphemes are color-coded by feature.

features; we denote this summary measure ϕ2( f1, f2). This
gives us an average informational fusion value for each pair
of features in L . For example, the fusion of the feature pair
(2, PL) would be the average surprisal of any 2nd person plural
form, conditional on all forms in L that are not 2nd person
plural.3

Fusion and the Memory–Surprisal Tradeoff We can con-
struct a memory–surprisal tradeoff curve for any possible per-
mutation of morpheme order. Under the Efficient Tradeoff
Hypothesis, we would expect the order that creates the steep-
est curve to be the order used in natural language. Here, we
hypothesize that fusion can be predicted by closeness in opti-
mal order. If a pair of features are close together in optimal
order, under the ETH, they should therefore be more fused.

Methods
For all feature pairs f1, f2 in each language, we estimate ϕ2
using an LSTM sequence-to-sequence model with attention
(Sutskever et al., 2014; Kann & Schütze, 2016; Bahdanau,
Cho, & Bengio, 2016). We extract data from UniMorph
(Sylak-Glassman, Kirov, Yarowsky, & Que, 2015; McCarthy
et al., 2020), transliterating Arabic with the ALA-LC standard.

The model takes as input the lemma ℓ, the featureset σ,
and the part-of-speech tag, and produces the form w in char-
acters as output. We represent both the input and output as
strings. For example, for the Latin form w = pugnabāmur,
the input would be p u g n o V 1 PL PST IPFV PASS and
the target string would be p u g n a b ā m u r. Then, we

3This notion of ϕ2 can be generalized such that for any n ≥ 2,
ϕn(w) is the informational fusion of n features.
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Figure 3A: Arabic (p < 0.001)
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Figure 3B: Latin (p < 0.001)
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Figure 3C: Spanish (p < 0.01)
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Figure 3D: Portuguese (p < 0.005)

Figure 3: Tradeoffs between difference in rank and average fusion. Each point represents two features ( f1, f2), plotting
(ϕ2( f1, f2),R( f1, f2)). Step curve indicates Pareto curve. All tradeoffs are significant (p < 0.01) by permutation test for the area
under the Pareto curve.

estimate the surprisal of the form as

− log p(w | ℓ,σ) =−∑
t

log pθ(wt | w<t , ℓ,σ), (9)

where θ refers to the model parameters.4 We train a model for
each feature combination in L .

For each optimized ordering, morphemes are ordered by
optimal rank; we average out the ranks of each feature by fea-
ture category to determine the optimal category ordering, with
categories as determined by UD classification. We use cate-
gories rather than individual ‘fine-grained’ features in order
to prevent noise in the form of repeated items from interfer-
ing. Then, for each pair ( f1, f2), we compute the difference in
rank R = |r( f1)− r( f2)| of their categories in the optimized
ordering, and plot this against the fusion ϕ2( f1, f2).

Results
We trained models for the verbal paradigms of a set of four
languages: Arabic, Latin, Spanish, and Portuguese. These lan-

4We used batch size 512, embedding dimension 128, and learning
rate 0.001, and trained for 10 passes through the training data with
early stopping. Models were not used if the average cross-entropy
loss on the final epoch exceeded 0.1.

guages were chosen based on the size of the datasets available
(both from UniMorph and Universal Dependencies) and the
variation of their verbal paradigms. Languages with low vari-
ation in fusion have little to be explained, and thus were not
used. Verbal paradigms were chosen over noun paradigms due
to their size and range of degrees of fusion; for example, Latin
verbs range from fusional in the present tense to agglutinative
in the perfect.5

As shown in Figure 3, we find that there is an “empty” upper-
right quadrant in all language tested. This means that there
are no feature combinations which are both highly fused and
far apart in the optimal ordering. To test this for significance,
we use a nonparametric permutation test for area under the
Pareto curve, as in Cotterell et al. (2019). We stochastically
permute y-values of the set of points {(x1,y1),(x2,y2), . . .} to
create {(x1,yσ(1),(x2,yσ(2)), . . .}. The p-value is the probabil-
ity that the area under this randomly permuted curve is less
than that of the empirical curve; we estimate this using 10,000
permutations; for all languages, we find at least p < 0.01. The
results support the ability of the ETH to predict morphological

5We used the Arabic PADT treebank, Latin PROIEL treebank,
Spanish AnCora treebank, and Portuguese Bosque treebank.
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fusion, going beyond predicting only morpheme order.

Experiment 3: Triple Exponence
Here we study whether the ETH can predict generalizations
about when sets of three features are expressed together in a
morpheme. We refer to this phenomenon as triple exponence.

Crosslinguistically, some features tend to be expressed more
often than others in this configuration. The most prominent ex-
amples are fusion of tense, aspect, and mood (TAM) markers,
and the fusion of person, number, and gender (PNG) markers
in verbal paradigms. If the ETH is a general predictor of mor-
phological fusion, then we would expect triply-exponential
features such as TAM and PNG to be close together in the opti-
mized ordering determined by the memory–surprisal tradeoff.

We evaluated this hypothesis in a set of 15 languages with
PNG features and 13 languages with TAM features. For each
language, we calculated the optimal ordering of its morphemes.
Then we calculated the standard deviation of the three ranks of
the relevant features in the optimal ordering. If this standard
deviation is low, that means that the three features are close
together in the optimal ordering. We normalized this value
by the number of feature categories in the language; thus, if a
language has a large number of features, chance variation in
the distance between features is controlled for. We performed
this procedure for all possible combinations of three features,
limiting our data to those combinations which had at least 7
languages represented.

Results are shown in Figure 4. Both sets of triply-
exponential features had very low normalized standard de-
viations compared to random sets of three features, with
p < 0.001 for both TAM and PNG by one-sample t-test. The
results indicate that TAM and PNG tend to cluster together in
optimized order, confirming the prediction of the ETH.

Experiment 4: Suppletion
Suppletion is a phenomenon in which a given root can take
two or more forms when inflected for a particular grammatical
feature (Veselinova, 2013). For example, the English root
GO is expressed as go in the present and future tenses, but as
went in the past tense. Occasionally, suppletion can be used
almost entirely for inflection (e.g. plurality in Dinka; see Ladd,
Remijsen, and Manyang (2009)), however, it is usually limited
to a few forms. While suppletion is rare, it does exist in the
paradigms of a small number of lexemes in some languages
and is systematic (Bybee, 1985; Markey, 1985; Aski, 1995;
Fertig, 1998).

Cross-linguistically, it is known that some features are more
likely to lead to suppletion than others. Notably, in nouns,
suppletion to express number is more common that suppletion
to express case (Moskal, 2015). Here, we study if this trend
can be predicted by the ETH. We treat suppletion as a form
of fusion between the feature and the root. Thus, applying
the ETH, we would expect features that commonly drive sup-
pletion to be more closely positioned to the root in optimal
ordering than those that do not cause suppletion. We gener-
ate optimal orderings by feature category using the method
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Figure 4: Average separation in optimal ordering (as measured
by normalized standard deviation) of three-feature combina-
tions with greater than 7 data points. PNG is colored red, TAM
is colored blue; diamond indicates mean, open circle indicates
median. Error bars indicate 95% confidence interval.

described in Experiment 3. We then compare the position of
number, which frequently drives suppletion, to case, which
does not.

We find that of the 17 languages tested, in 15, number tends
to be closer to the root in optimal ordering than case. Thus,
we observe that suppletion can be explained by the ETH, with
p < 0.005 by binomial test (the null hypothesis being that they
are equally likely).

Conclusion
We studied cross-linguistic properties of morphological fusion.
We found that both fine-grained quantitative measures such as
informational fusion, and major cross-linguistic typological
generalizations such as the existence of tense–aspect–mood
markers, can be explained in terms of optimization of the
tradeoff of predictability and memory complexity (Hahn et al.,
2021).

Intuitively, the theory predicts that features that are highly
correlated with each other in usage are more likely to be fused.
In doing so, it provides a possible formal foundation for a
recurring intuition about the structure of linguistic systems,
according to which aspects of meaning which are ‘related’ or
‘mentally close’ are expressed close together or simultaneously
(Behaghel, 1930; Bybee, 1985; Givón, 1985).

Because the Efficient Tradeoff Hypothesis is grounded in
theories of language processing, our work adds to a growing
body of work that suggests that typological generalizations
about languages arise out of a need for efficient cognitive
processing (Hawkins, 1994; Jaeger & Tily, 2011; Gibson et
al., 2019; Hahn, Jurafsky, & Futrell, 2020; Mollica, Bacon,
Xu, Regier, & Kemp, 2020).
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