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Abstract

State redistribution is an algorithm that stabilizes cut cells for embedded bound-
ary grid methods. This work extends the earlier algorithm in several important
ways. First, state redistribution is extended to three spatial dimensions. Second,
we discuss several algorithmic changes and improvements motivated by the more
complicated cut cell geometries that can occur in higher dimensions. In particu-
lar, we introduce a weighted version with less dissipation in an easily generalizable
framework. Third, we demonstrate that state redistribution can also stabilize a
solution update that includes both advective and diffusive contributions. The stabi-
lization algorithm is shown to be effective for incompressible as well as compressible
reacting flows. Finally, we discuss the implementation of the algorithm for several
exascale-ready simulation codes based on AMReX, demonstrating ease of use in
combination with domain decomposition, hybrid parallelism and complex physics.

Keywords— state redistribution, cut cells, embedded boundary, small cell problem

1 Introduction

Embedded boundary grids are useful for solving partial differential equations on complex engi-
neering domains since mesh generation is robust and automatic. These grids are composed of
regular Cartesian cells away from the boundary, covered cells that do not participate in the so-
lution procedure, and irregular cut cells that intersect the embedded boundary. It is well known
that the cut cells can be arbitrarily small, thus care must be taken when using explicit time
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stepping methods on these grids. Many different approaches that address the small cell problem
have been proposed over the years. Most intuitive with a lot of recent progress is cell merging [1].
The interesting work in [2] is dimensionally split, but not that accurate at the cut cells. H-box
methods [3] have nice theoretical properties but seem difficult to implement in three dimensions.

One technique that has been successfully used in three dimensions on complex geometries
is called flux redistribution (FRD) [4, 5]. The idea is that each cell takes its maximum stable
time step, then excess flux is redistributed to neighboring cells to maintain conservation. This
approach is attractive because it is simple to implement as a postprocessing step. However,
the downside is that there is a loss of accuracy at the cut cells and the scheme is not linearity
preserving. Recently, a new approach called state redistribution (SRD) was proposed for finite
volume methods on two-dimensional cut cell grids [6]. This is a minimally invasive stabilization
technique that is linearity preserving, conservative, and straightforward to implement in two
dimensions for hyperbolic conservation laws. Inspired by flux redistribution, SRD postprocesses
the numerical solution by accurately redistributing the solution states in a way that maintains
conservation.

This work builds on [6] in several important ways. The work in [6] was in two space dimen-
sions. As we show here, the extension to 3D was straightforward. We propose a weighted version
of SRD with reduced dissipation, that smoothly activates depending on the volume fraction of
a cut cell. The framework of this weighted algorithm will help to generalize to other types of
weightings, e.g., to preserve monotonicity. We discuss some of the design choices made for easier
implementation in a 3D parallel production code. Previous work on SRD focused on the Euler
equations of gas dynamics. We show here that SRD is simple enough to apply to many types of
equations. The extensions shown later include compressible reacting flow and low Mach num-
ber multiphase flow. Finally, the algorithm has been incorporated into AMReX-Hydro, a set
of modules based on AMReX [7]. This is a software framework that supports the development
of block-structured adaptive mesh refinement (AMR) algorithms for solving systems of partial
differential equations on simple or complex geometries, using machines from laptops to exascale
architectures. While all these examples use finite volume schemes on the embedded boundary
mesh, we mention that SRD has also been extended to discontinuous Galerkin schemes in two
dimensions [8], and research on higher order finite volume SRD schemes is in progress.

The rest of this paper is organized as follows. In section 2 we set the stage for the geometry
representation, and outline the three dimensional version of the original algorithm in [6]. Section
3 discusses a generalization of SRD that smoothly activates as the volume fraction decreases
below a threshold. It is presented in a general framework which reveals the constraint that the
weights must satisfy for conservation. Section 4 presents implementation details in AMReX.
Section 5 discusses some particular choices that go into the extensions to other sets of equations.
Computational examples are in section 6. Conclusions and directions for future research are in
section 7.

2 Preliminaries

We briefly describe the the embedded boundary representation and geometry generation to give
the reader an idea of the context in which State Redistribution is applied. We then present the
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extension to 3D of the original SRD algorithm, both the pre- and post- processing. This will
provide a basis for comparison when the new weighted version is presented in section 3.

2.1 Embedded Boundary Data Structures

When an embedded boundary (EB) is present in the domain, there are three types of cells:
regular, cut and covered. AMReX provides data structures for accessing EB information, which
is precomputed and stored in a distributed database at the beginning of the calculation. It
is available for AMR meshes at each level and for coarsened meshes in multigrid solvers. The
information includes cell type, cell centroid, volume fraction, face area fractions and face cen-
troids. For cut cells, the information also includes the centroid, normal and area of the EB face.
There is at most one EB face per cell; this is enforced at the time the geometry is generated.
Additionally, there is connectivity information between neighboring cells.

2.2 Geometry Generation

AMReX uses an implicit function approach for generating the geometry information. The im-
plicit function describes the surface of the embedded object. It returns a positive value, a
negative value or zero, for a given position inside the body, inside the fluid, or on the boundary,
respectively. Implicit functions for various simple shapes such as boxes, cylinders, spheres, etc.,
as well as a spline based approach, are provided. Furthermore, basic operations in constructive
solid geometry (CSG) such as union, intersection and difference are used to combine objects
together. Geometry transformations (e.g., rotation and translation) can also be applied to these
objects. In addition to an implicit function, an application code can also use its own approach
to generate the geometric information and store it in AMReX’s EB database. In the current
AMReX mesh generator, split cells and tunnel cells are not supported. Multivalued cells and
edges with multiple cuts are not allowed.

2.3 3D SRD Algorithm

We describe here the original SRD algorithm extended to three dimensions. The algorithm
comprises a mesh preprocessing step and a solution postprocessing step. The next section will
introduce some improvements and generalizations.

2.3.1 Preprocessing

Before the time stepping portion of the finite volume solver begins, the mesh is preprocessed by
associating a merging neighborhood with each cell in the base grid, both whole and cut. Small
cut cells are merged with their neighbors until the volume of the neighborhood is at least

Vtarget = ∆x∆y∆z/2,

a threshold informed by results in [9]. This is illustrated in two space dimensions in Figure 1a,
where cell (i + 1, j − 1) merges with cell (i + 1, j) to form neighborhood Mi+1,j−1, highlighted
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Figure 1: Merging neighborhoods (highlighted in green) and overlap counts of cells in
the neighborhood of a corner geometry. a) Mi+1,j−1 in green, and Ni+1,j−1 = 1 because
(i+1, j−1) is not in any of the other neighborhoods; b) Mi,j−1 in green, and Ni,j−1 = 1
because (i, j−1) is not in any of the other neighborhoods; c) Mi,j in green, and Ni,j = 3
because (i, j) is in the neighborhoods shown in (b) and (d); d) Mi+1,j in green, and
Ni+1,j = 2 because (i+ 1, j) is in the neighborhood of (i+ 1, j − 1) as shown in (a).

in green. Similarly, cell (i, j − 1) merges with cell (i, j) to form Mi,j−1’s neighborhood, shown
in Figure 1b. A cell with a volume larger than the threshold value does not merge with any
neighboring cells, thus its merging neighborhood only contains itself, like cell (i, j) in Figure 1c.
Cell (i+ 1, j) merges with cell (i, j), shown in Figure 1d.

The number of neighborhoods that contain cell (i, j, k), called the overlap count Ni,j,k, is also
indicated in Figure 1 in two space dimensions. Cell (i, j) is contained in two other neighborhoods,
that of cell (i, j− 1) and (i+ 1, j), plus it is in its own neighborhood by definition, so its overlap
count is three (Figure 1c).

There are several possible ways to choose which neighbors a cut cell merges with. In this
example, a cell merges in the direction closest to the boundary normal. In the AMReX-Hydro
implementation, if merging with the one cell in the direction closest to the normal does not
result in a neighborhood with a volume greater than Vtarget, the neighbor in the direction of
the next largest component of the normal is added to the neighborhood. In order to not create
an “L-shaped” neighborhood we then automatically add the cell in the same plane as the two
neighbors that defines the neighborhood as a 2 × 2 box. In 3D if this neighborhood is still not
large enough, we then add the remaining four cells to have a 2 × 2 × 2 box. This is done for
aesthetic reasons; an L-shaped domain would still be stable. This is illustrated in Figure 3d,
where normal merging for cell 9 is insufficient and a larger neighborhood must be used. This
neighborhood is useful in cases where it is desireable to preserve symmetries in the numerical
solution, e.g., when the embedded boundary forms exactly a 45◦ angle with the background
Cartesian grid.

Another alternative is called central merging, where a cut cell is merged with all flow cells
that lie on a 3 × 3 × 3 tile centered on that cut cell. This is neighborhood is larger and more
diffusive than normal merging or the 2 × 2 × 2 box discussed above. We will use central merging
in some two-dimensional numerical examples (section 3.2).
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In AMReX-Hydro we also made a design decision to preserve spatial symmetries whenever
possible. For example, if the boundary normal in a cut cell points has identical components with
nx = ny > nz, we create a neighborhood that is larger than strictly necessary on volumetric
considerations alone, to avoid directional bias in a possibly otherwise symmetric geometry and
solution. In the above case the neighborhood would include all fluid cells in a 2 × 2 × 1 region
in the cut cell’s merging neighborhood. If nx = ny = nz then the neighborhood would include
all fluid cells in a 2 × 2 × 2 region in the cut cell’s merging neighborhood.

Once the neighborhoods have been identified, we define a neighborhood’s weighted volume
V̂i,j,k using the standard cell volume Vi,j,k by

V̂i,j,k =
∑

(r,s,t)∈Mi,j,k

Vr,s,t
Nr,s,t

, (1)

and a weighted centroid

(x̂i,j,k, ŷi,j,k, ẑi,j,k) =
1

V̂i,j,k

∑
(r,s,t)∈Mi,j,k

Vr,s,t
Nr,s,t

(xr,s,t, yr,s,t, zr,s,t), (2)

where (xi,j,k, yi,j,k, zi,j,k) is the standard cell centroid, and Mi,j,k is the set of cells (r, s, t) in
the neighborhood of cell (i, j, k). In the above, cell volumes are weighted by the inverse of their
overlap counts. A cell’s overlap count, as well as the weighted volume and centroid associated
to neighborhoods are required during the state redistribution postprocessing step, which we
describe below.

2.3.2 Postprocessing

State redistribution is implemented as a postprocessing step acting on cell averages updated by
a finite volume scheme. (The finite volume scheme itself needs to be modified for the presence
of cut cells to preserve accuracy, but not stability, since that is handled by SRD.) Thus, the first
step of the algorithm is to compute a provisional, but possibly unstable cell update

Ûi,j,k = Uni,j,k −
∆t

Vi,j,k

∑
`∈faces

F∗` · n`A`, (3)

where A` is a face area, F∗` is the numerical flux, and n` is the outward pointing normal. This
update is computed on all cells using a time step ∆t that is proportional to the size of cells in
the background Cartesian grid.

The next step is to compute a weighted solution average on each merging neighborhood

Q̂i,j,k =
1

V̂i,j,k

∑
(r,s,t)∈Mi,j,k

Vr,s,t
Nr,s,t

Ûr,s,t. (4)

For second order accuracy, a gradient is reconstructed in all cells (i, j, k) for which Mi,j,k has
at least two cells ((i, j, k) itself and at least one other). This results in a linear function for
neighborhood (i, j, k) of the form

q̂i,j,k(x, y, z) = Q̂i,j,k + σ̂x,i,j,k(x− x̂i,j,k) + σ̂y,i,j,k(y − ŷi,j,k) + σ̂z,i,j,k(z − ẑi,j,k), (5)
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where σ̂ is the gradient obtained with a least squares approach. For this step the least squares
equations are centered on the weighted neighborhood centroids (x̂i,j,k, ŷi,j,k, ẑi,j,k), not the orig-
inal cell centroids (xi,j,k, yi,j,k, zi,j,k).

In each coordinate direction, we compute the maximum distance between the weighted cen-
troids of the neighborhoods in the reconstruction stencil to the weighted centroid of the neighbor-
hood on which the reconstruction is centered. When the reconstruction stencil does not include
points further than a threshold in any one coordinate direction, we grow the extent of the stencil
in that coordinate direction as described in [6]. The threshold distances are defined as ∆x/2,
∆y/2, ∆z/2, in the x, y, and z directions, respectively. For example, if the reconstruction stencil
is initially the 3× 3× 3 block, and the maximum distance in the x-direction maxm6=i |x̂i − x̂m|,
for cells m in the reconstruction stencil, is not larger than ∆x/2, then the stencil is increased to
5× 3× 3. We also point out that the 3× 3× 3 block may not contain 27 cells as it could contain
covered cells that are not included in the stencil. If the larger stencil still does not contain
not enough cells, a well-conditioned gradient reconstruction is not possible, and we drop to first
order.

We have also experimented with the less restrictive criterion of requiring the difference be-
tween the maximum and minimum centroid values in the stencil to be greater than half the
mesh width. More experience in complicated geometries in three dimensions are necessary to
ensure this is sufficiently stable. If necessary, a Barth-Jespersen-style limiting is performed in
the neighborhood gradient reconstruction step as well.

The final step is to use the neighborhood polynomial to compute the final solution update

Un+1
i,j,k =

1

Ni,j,k

∑
(r,s,t)∈Wi,j,k

q̂r,s,t(xi,j,k, yi,j,k, zi,j,k). (6)

where Wi,j,k is the set of neighborhood indices that include cell (i, j, k) in their neighborhood.
In words, the stabilized neighborhood solution replaces the unstable finite volume update in a
conservative and accurate manner. In the above formula, the stabilized solution average on a
cell in the base grid is obtained by averaging the centroid values of the overlapping merging
neighborhood polynomials. As in the two-dimensional algorithm, SRD can be used with either
a method of lines integration in which the SRD algorithm is applied at each stage or with
second-order Godunov type approach that directly computes fluxes at the n+ 1

2 level.

This postprocessing procedure is also applied to the initial data, before any time steps have
been taken. This is akin to pre-merging when using cell merging. It is also analogous to the
procedure in incompressible flow, where the initial conditions have an initial projection before
time stepping begins. We have found that our test cases have better monotonicity properties
with this additional step.

Remark: This procedure can also be applied to a diffusive flux written in finite volume
form. Consider the heat equation ut = uxx. For this one-dimensional model problem we put one
small cut cell at the left boundary of size αh in an otherwise uniform grid with mesh width h,
as shown in Figure 2. One possible (though not very accurate) finite volume discretization is

un+1
0 = un0 +

∆t

αh

(
(un1 − un0 )

(1 + α)h/2
− fB)

)
. (7)

where fB is a specified boundary flux. Note that it is α(1 + α)h2/2 and not (αh)2 that appears
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u1 u2

αh h h

u0 u3

h

Figure 2: Notation for 1D model problem with one cut cell at the boundary.

in the denominator. Hence the same SRD procedure that eliminates α from the denominator
for advective updates can be used here too. As α → 0, the coefficients of the stabilized finite
volume scheme remain bounded. Numerical experiments for this model problem confirm this. A
3D example including a diffusive flux will be presented in sections 5.1 and 6.

3 Generalizing State Redistribution

We present here an improvement to the original algorithm, as just described, which addresses
several issues. The original algorithm has a sharp cutoff when the volume fraction of a cut cell
reaches 0.5 and the stencil abruptly shifts. A transition that gracefully shuts off the amount
of redistribution would be smoother and introduce less numerical dissipation. It also opens the
door to consideration of weightings for other purposes (section 3.1). The second issue is that the
preprocessing step described earlier might generate neighborhood volumes that are overly large,
resulting in more redistribution than is necessary for stability. The modification described below
addresses both these issues. The computational results in section 6 use this modification.

3.1 A Weighted SRD Algorithm

The main idea is that a large cut cell that is just below the threshold volume requires less
stabilization from its neighbors. We use the notation M−i,j,k = Mi,j,k − {(i, j, k)}, i.e. M−i,j,k is
the set of cells contained in the neighborhood of cell (i, j, k) with the exception of cell (i, j, k) itself.
As before, Wi,j,k is the set of Ni,j,k indices (r, s, t) containing cell (i, j, k) in their neighborhood,
i.e. so that cell (i, j, k) is in Mr,s,t. We again set W−i,j,k = Wi,j,k − {(i, j, k)}.

For the weighted version of SRD, we define two new scalars for each cell, αi,j,k and βi,j,k,
which are used as weights for the relative contributions of cell (i, j, k) and its neighbors to the
solution at (i, j, k). In cells with volume Vi,j,k < Vtarget we define

βi,j,k = (Vtarget − Vi,j,k) /
∑

(r,s,t)∈M−
i,j,k

Vr,s,t ; (8)

and then

αi,j,k = 1 − 1

Ni,j,k

∑
(r,s,t)∈W−

i,j,k

βr,s,t . (9)

The idea of β is to control the contribution a cut cell gets from its merging neighborhood. If
a cut cell has volume Vi,j,k ≥ ∆x∆y∆z/2, we set βi,j,k = 0. Equations (8) and (9) imply that
0 ≤ αi,j,k, βi,j,k ≤ 1.
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As Vi,j,k becomes larger, the weighted algorithm increases the dependence of the solution

in cell (i, j, k) on Ûi,j,k relative to the original SRD algorithm. Notice that this version is
not equivalent to the original SRD algorithm and may have some different stability properties,
especially for one-dimensional test cases that are not representative of Cartesian cut cell meshes
in higher dimensions.

All the preprocessing formulas are now modified to pull the cut cell out of the expressions and
weight it by α, with the rest weighted by β. Instead of Equation (1), we define a neighborhood’s

weighted volume V̂i,j,k using the standard cell volume Vi,j,k by

V̂i,j,k = αi,j,kVi,j,k + βi,j,k
∑

(r,s,t)∈M−
i,j,k

Vr,s,t
Nr,s,t

. (10)

Instead of Equation (2) we use

(x̂i,j,k, ŷi,j,k, ẑi,j,k) =
1

V̂i,j,k

(
αi,j,kVi,j,k(xi,j,k, yi,j,k, zi,j,k) +

βi,j,k
∑

(r,s,t)∈M−
i,j,k

Vr,s,t
Nr,s,t

(xr,s,t, yr,s,t, zr,s,t)

) (11)

to define the weighted centroid.

In the postprocessing step, instead of Equation (4), we define the weighted solution average
on each merging neighborhood as

Q̂i,j,k =
1

V̂i,j,k

αi,j,kVi,j,kÛi,j,k + βi,j,k
∑

(r,s,t)∈M−
i,j,k

Vr,s,t
Nr,s,t

Ûr,s,t

 . (12)

Slopes are computed as in the original algorithm, and we use Equation (5) to construct q̂
as before. The final step is to use the neighborhood polynomial to compute the final solution
update. Instead of Equation (6) we use

Un+1
i,j,k = αi,j,k q̂i,j,k +

1

Ni,j,k

∑
(r,s,t)∈W−

i,j,k

βr,s,t q̂r,s,t(xi,j,k, yi,j,k, zi,j,k). (13)

We will show that this new variant retains the linearity and conservation properties of the original
algorithm.

To show conservation, define the matrix A such that

V̂ = AV,

where V is the vector of cell volumes and V̂ is the vector of neighborhood volumes. To make
it concrete, for the case considered in Figure 3, the matrices A for the original and weighted
algorithms are given by
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cell index

(a)

1 2 3

4 5 6

7 8 9

(b)

8

(c)

6

(d)

9

merging neighborhoods

Figure 3: Figure (a) illustrates a configuration where cell 3 is merged with cell 2, cell 6
is merged with cell 5, cell 7 is merged with cell 4, cell 8 is merged with cell 5 and cell
9 is merged with cells 5, 6 and 8. Cell 5 is contained in 3 other neighborhoods as well
as its own, resulting in an overlap count of 4. Cell 1 is in only its own neighborhood.
Figures (b), (c), and (d) indicate the merging neighborhoods associated with cells 6, 8,
and 9, respectively. For cells 6 and 8, normal merging is sufficient. However, for cell
9, normal merging results in the neighborhood indicated by the red dashed line in (d).
When normal merging is insufficient, we use the larger green neighborhood instead.

Aorig =



1 0 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0 0

0 1
2 1 0 0 0 0 0 0

0 0 0 1
2 0 0 0 0 0

0 0 0 0 1
4 0 0 0 0

0 0 0 0 1
4

1
2 0 0 0

0 0 0 1
2 0 0 1 0 0

0 0 0 0 1
4 0 0 1

2 0

0 0 0 0 1
4

1
2 0 1

2 1


and Awght =



1 0 0 0 0 0 0 0 0

0 α2 0 0 0 0 0 0 0

0 β3

2 1 0 0 0 0 0 0

0 0 0 α4 0 0 0 0 0

0 0 0 0 α5 0 0 0 0

0 0 0 0 β6

4 α6 0 0 0

0 0 0 β7

2 0 0 1 0 0

0 0 0 0 β8

4 0 0 α8 0

0 0 0 0 β9

4
β9

2 0 β9

2 1


.

In Aorig the entries aij are the inverse of cell j’s overlap count, if cell i is in cell j’s neigh-
borhood. In Awght, the generalized weights correspond to the previously defined α and β. The
key property of both matrices A is that the columns sum to 1,

eTA = eT ,

where e is a vector of all 1’s. This is the property that any state redistribution method must
satisfy to be conservative. We then have that

Q̂ = Diag(V̂ )−1A Diag(V )Û .

9



Furthermore, if slopes are zeroed in Eq. (5) then

Un+1 = AT Q̂.

Conservation then follows from

V TUn+1 = V TAT Diag(V̂ )−1A Diag(V )Û = V̂ T Diag(V̂ )−1A Diag(V )Û ,

= eTA Diag(V )Û = V T Û .

Including the slopes in Eq. (5) redistributes mass to preserve linearity but does not alter the
conservation properties of the method. Continuing, in matrix form using (5) the update with
slopes can be written as

Un+1 = ATQ+
[
Diag(x)AT −ATDiag(x̂)

]
σx +

[
Diag(y)AT −ATDiag(ŷ)

]
σy

+
[
Diag(z)AT −ATDiag(ẑ)

]
σz,

where x, y, z are the centroids of the original cells, x̂, ŷ, ẑ are the weighted centroids of the
neighborhoods and σx, σy, σx are the slopes in the neighborhood reconstruction. We then note
that

V T
[
Diag(x)AT −ATDiag(x̂)

]
σx =

[
xTDiag(V )AT − V TATDiag(x̂)

]
σx

=
[
x̂TDiag(V̂ )− V̂ TDiag(x̂)

]
σx = 0.

Although not pursued here, the structure suggests that any collection of weights with eTA =
eT can be used to define the SRD algorithm. This opens the possibility of more sophisticated
approaches, including ones that might depend on the local solution or maintain monotonicity.

3.2 Two-dimensional numerical examples

We present two two-dimensional examples showing the performance of weighted SRD. First, we
solve the linear advection equation and show the superior performance of both the original and
weighted SRD algorithms relative to flux redistribution, which was the stabilization technique in
AMReX. We also show that the weighted algorithm smoothly activates as the volume fraction
decreases below a threshold value. For a discontinuous solutions, this will prevent O(1) changes
in the numerical solution under O(ε) changes to the mesh. Second, we present a convergence
study using an analytic solution of the Euler equations, showing that the error can be reduced
by a factor of between 2 and 3 for central merging when using the weighted algorithm. We
even observe a 10 to 15% reduction in the error when using the less diffusive normal merging
neighborhood. Finally, we show that both original and weighted algorithms converge at the same
rate as the base finite volume scheme.

Linear advection

In this example, we consider linear advection of a passive scalar in the presence of a ramp (Figure
4a), with cut cells where they intersect the ramp. We consider several different angles of tilt
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(θ = 40, 45 and 50 degrees) and different combinations of volume fractions. The velocity vector
v in each numerical test is parallel to the ramp. The initial condition for the advected scalar is
a discontinuous Heaviside function; the scalar has concentration 1 to the left of the discontinuity
and 0 to the right. The flux through the embedded boundary is zero since the advection velocity
is parallel to the wall. The values of 1 and 0 are applied to ghost cells on the left (inflow)
and right (outflow) boundaries respectively. We use constant extrapolation along the bottom
boundary.

In Figures 4b, 4c, the solution in the cut cells is reconstructed linearly to the centroid of the
embedded boundary face in each cut cell. Figure 4b shows the solution on a 40 degree ramp, so
that the merging neighborhood is in the vertical direction. Figure 4c shows the solution for a 50
degree ramp, so that the merging neighborhood is in the horizontal direction. In both examples
the results after 10 time steps are shown. None of the algorithms guarantee monotonicity. We
see however that in both the 40 degree and 50 degree cases that FRD generates overshoots and
undershoots while both the original and weighted SRD algorithm do not. The new weighted
algorithm is seen to be less dissipative than the original.
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(c) Solution along θ = 50◦
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Figure 4: Linear advection of a passive scalar along a slanted wall. FRD shows under-
shoots and overshoots, whereas both SRD algorithms do not. The profiles are taken
after 10 time steps.

In the next linear advection test we compare the original and weighted SRD algorithm
for same discontinuous flow problem as above, but for a ramp at exactly 45 degrees from the
horizontal. If the ramp exactly bisects the Cartesian cells (assuming equal mesh widths), the cut
cell volume fraction is exactly 0.5, so neither the original or weighted SRD algorithms are invoked.
If the wall is shifted down by O(10−7)∆y, the volume fractions of cut cells are either slightly
below 0.5 or almost 1. The 2×2 merging neighborhood for this case is shown in Figure 5a. Recall
that the original algorithm has a sharp cutoff when the volume fraction of a cut cell decreased
below 0.5 and abruptly activates, while the weighted version activates gradually. In Figure 5b
the maximum difference between the solutions is 0.132, whereas in Figure 5c it is O(10−8), and
the unshifted and shifted solutions are visually indistinguishable. Even with smaller merging
neighborhoods, e.g. if the original algorithm merges only in the vertical direction or only in the
horizontal direction, the maximum difference in the solution is respectively 0.0051, and 0.1165.
This is still orders of magnitude larger than the O(10−8) change in the solution from the weighted
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(c) Wtd. SRD changes by
O(10−8) with the shifted wall.

Figure 5: Change in solution with 2 × 2 merging when a 45◦ ramp is shifted vertically
down by O(10−7). In (b), we observe that the original SRD solution is diffused in the
shifted configuration. In (c), no additional diffusion is introduced by the stabilization.

Supersonic vortex

In this example, we solve the Euler equations for supersonic flow through a quarter annulus
(Figure 6 left), with inner radius, ri = 1.0, and outer radius ro = 1.384. This problem has the
exact solution [10]

ρ = ρi

{
1 +

γ − 1

2
M2
i

[
1−

(ri
r

)2]} 1
γ−1

(14)

and u = aiMi ( rir ) sin(θ), v = −aiMi

(
ri
r

)
cos(θ), and p = ργ/γ. We set γ = 1.4, ρi = 1, and

the Mach number on the inner circle Mi = 2.25. At the inflow and outflow boundaries, the exact
solution is prescribed in ghost cells. The curved inner and outer walls are reflecting, where the

the flux along the boundary is set to be F∗ =
[
0, pnx, pny, 0

]T
. Here p is the pressure of the

numerical solution at the boundary, and n = (nx, ny) is the outward pointing normal. We solve
this problem on a sequence of embedded boundary grids on the domain [0, 1.43]× [0, 1.4301].

Figure 6 right shows a convergence study for both the original and weighted algorithms,
where we provide the L1 error of density, ρ, measured in the volume

∑
i,j |ei,j |Vi,j and on the

boundary
∑
i,j∈bdry. |ei,j |Ai,j , where Vi,j is the cell area and Ai,j is the boundary edge segment

length. The error, ei,j , in the volume and boundary formula is computed by taking the difference
between the solution average on i, j and the exact solution at i, j’s centroid.

We observe that the original algorithm is highly sensitive to the neighborhood sizes. The
larger neighborhoods of central merging result in much larger errors. The weighted algorithm
avoids this problem. The error is reduced by a factor between 2 and 3 using the weighted
algorithm with central merging neighborhoods. The weighted algorithm reduces the dissipation
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to a level comparable with normal merging. We even observe a 15% improvement in the boundary
error on coarse grids and a 10% improvement in the volume when using weighted SRD with
normal merging. On all the grids, only a small number of cut cells had volume fractions between
0.3 and 0.5, where the weighted algorithm is most effective. In these runs, we used second order
accurate gradients at the cut cells.

In all cases shown in Figure 6b, the L1 norm of the solution converges with second order;
the rate at the boundary drops to approximately 1.4. Loss of accuracy in the numerical solution
at the embedded boundary has been reported before in [6, 11, 12] and is due to the irregularity
of the mesh at the cut cells.

(a) Computational mesh using a 27× 27
background grid and plot of density ρ in
exact solution.
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slope 1.4

(b) L1 errors in density for both weighted and
original algorithms on the volume and along
boundary using both central and normal merg-
ing neighborhoods.

Figure 6: Supersonic vortex test problem set up and convergence study. For central
merging, the weighted algorithm reduces the error by a factor between 2 and 3 relative
to the original algorithm. Even for the less diffusive normal merging neighborhoods, the
error is improved by 10-15%. The weighted algorithm is much less sensitive to the size
of the merging neighborhood than the original algorithm.

4 AMReX Implementation Details

The generalized SRD algorithm is implemented for two and three spatial dimensions in C++ in
the AMReX1 software framework [13]. It is publicly available in the open source AMReX-Hydro2

collection of routines. AMReX-Hydro includes modules for flux redistribution as well as state

1https://github.com/AMReX-Codes/AMReX, 2021
2https://github.com/AMReX-Codes/AMReX-Hydro, 2021
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redistribution; the redistribution modules are used by compressible and low Mach number flow
codes and the examples given in this paper all use this implementation.

The fundamental data structure in AMReX contains multi-dimensional arrays on logically
rectangular patches within the computational domain. AMReX distributes patches of data to
different MPI ranks; communication between patches at the same refinement level occurs most
frequently by filling ghost cells (also known as halo cells); the SRD algorithm exploits the native
AMReX routines for doing so.

While the SRD algorithm can be used in a simulation code that computes the solution on
an AMR hierarchy, the current implementation assumes that the coarse-fine boundary does not
cross any cut cells. Thus the SRD algorithm is effectively used one level at a time, and is exactly
the same as it would be in a code with uniform mesh resolution.

To implement the SRD algorithm on a set of rectangular patches that are all at the same level,
we must know how many ghost cells need to be filled for each type of data. The version of the
SRD algorithm implemented in AMReX starts with a 3×3×3 set of neighborhoods, no neighbor
is more than one cell away in any coordinate direction. If necessary, the slope computation can
increase in a direction up to a 5× 5× 5 stencil if doing so does not require additional ghost cells.
We break the SRD algorithm into two sections for this purpose. In the preprocessing step of
SRD, we compute the necessary geometric information such as neighborhood volumes, centroid
locations, number of neighbors, etc. This information does not change between time steps unless
a regridding operation is performed in an AMR simulation.

The stencil width for the preprocessing step is determined by how many cells are required in
postprocessing, so we count that first using only one direction. To update Un+1

i,j,k we may need the
neighborhood value q̂i+1,j,k(xijk, yijk, zijk), for example with central merging. (Central merging
uses a 3 × 3 × 3 neighborhood around cell (i, j, k)). To obtain a slope on the neighborhood

associated with cell (i + 1, j, k) we need the neighborhood average Q̂i+2,j,k. This latter value

may have needed Ûi+3,j,k, again if using central merging. So the stencil for postprocessing can
be up to three cells in every direction.

To provide Q̂i+2,j,k for the postprocessing step the term Ûi+3/Ni+3 was needed (simplifying
subscripts from now on). Ni+3 could depend on whether neighborhood i+ 4 overlaps cell i+ 3.
So we have to know the details of i + 4’s neighborhood, which may depends on i + 5. This is
the worst case stencil, depicted in Figure 7. This determines how many halo cells are needed to
preprocess without any additional communication between patches during single time step. Of
course in the simplest case, normal merging will suffice and fewer cells are required. There is
also a trade-off between using fewer ghost cells but communicating more often. However in the
example shown later we preprocess using this maximum number of ghost cells without additional
communication.

It may happen that there are not enough cells in a stencil for gradient reconstruction on merg-
ing neighborhoods. For example, cell (i+5, j) in Figure 7 has no y neighbors in its stencil. For this
reason the original finite volume scheme also cannot compute an accurate and well-conditioned
y slope. Note that body-fitted meshes at an internal cusp could also have this problem. If a
well-conditioned gradient for the base finite volume scheme cannot be reconstructed, then locally
the solver and the SRD algorithm drop to first order.
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i+ 1, j i+ 2, j

i+ 3, j i+ 4, j

(a)
Q̂i+1 and gradient needed
to update cell i.

(b)
Q̂i+2 needed to compute gradient
of i+ 1 neighborhood.

(c)
Q̂i+2 needs Ûi+3 and overlap count
Ni+3 to form its neighborhood.

(d)
Ni+3 needs to know i+ 4 neighborhood,
which may need i+ 5 cell volume.

Figure 7: For illustrative purposes, we assume central merging neighborhoods are used
for all cells. Each of the neighborhoods is illustrated.

5 SRD Applications

The SRD approach was originally applied to hyperbolic conservation laws in two dimensions.
Here we describe how the SRD methodology is incorporated into a multi-physics solver with a
more complex time stepping algorithm. We consider the compressible multi-component Navier-
Stokes equations with chemical reactions, and low Mach number models where the flow evolves
subject to a constraint. The computational results in section 6 will demonstrate some of these
extensions in two geometries of interest.

5.1 Compressible Reacting Flows

For compressible flows, the following conservation equations for mass, species mass fractions,
momentum, and energy with a finite rate evaluation of chemistry are solved [14]:

∂
∂t (ρ) +∇ · (ρu) = 0, (15)

∂
∂t (ρYm) +∇ · (ρuYm) = −∇ ·Fm + ρω̇m, m = 1, · · · , Ns (16)

∂
∂t (ρu) +∇ · (ρu⊗ u) +∇p = ∇ · τ , (17)

∂
∂t (ρE) +∇ · (ρuE + pu) = −∇ ·Q +

∑
m hm(T )Fm, (18)
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where ρ is the density, u is the velocity vector, p is the pressure of the mixture, ρE is the total
energy, Ns is the number of species, and Yk is the mass fraction of the k-th species. It is assumed
that the species of the gaseous mixture are in thermal equilibrium, at a common temperature
T . τ is the viscous stress tensor given by:

τ = η
(
∇u + (∇u)T

)
+

(
κ− 2

3
η

)
(∇ · u) I, (19)

where η is the shear viscosity and κ is the bulk viscosity. The diffusive transport flux of the m-th
species, Fm, is approximated using a mixture-averaged diffusion process. ω̇m is the chemical
species reaction source term for the m-th species. Q is the thermal conduction heat flux and hm
is the specific enthalpy of species m.

The system (15)-(18) includes both advective and diffusive fluxes and includes reactions that
are potentially stiff on the time scale of advection and diffusion. The overall integration treats
advection and diffusion explicitly and integrates the reactions using a stiff ODE solver. The
time integrator for the compressible equations is a standard second order predictor-corrector
approach with an optional fixed point iteration that can be used to tightly couple the reaction
and transport terms in the equations, that is similar in spirit to spectral deferred corrections.

Let IR represent the cell update due to reactions, and IAD represents the advective and
diffusive update over a time step. The reactions terms are computed pointwise by integrating
the ODE representing the reactions. Initially at the start of the simulation IR is obtained by
integrating the reaction terms without advection or diffusion. For later steps, IR is initialized
to the final value from the previous time step; i.e., In,0R = In−1,MR as defined below. State
redistribution is used to stabilize small cells for advection and diffusion as shown below.

Step 1: Initialize In,0R as discussed above.

Step 2: Compute advective and diffusive fluxes, F∗` at centroids of faces and evaluate preliminary
update using Eq. (3) to obtain

Û = Un − 1

Vi,j,k

∑
`∈faces

F∗` · n`A`.

Details of the flux computation are given below.

Step 3: Apply state redistribution and compute InAD (but omitting the cell indices) using

InAD =
SRD(Û)− Un

∆t
.

Step 4: Define
Un+1,0 = Un + ∆t(InAD + In,0R ).

Steps 5-7 are repeated M times to couple advection, diffusion and reactions. Formal second
order accuracy requires M of at least 1.

Step 5: Evaluate fluxes at face centroids using Un+1,m−1 and form the flux divergence

In+1,m
AD,i,j,k = − 1

Vi,j,k

∑
`∈faces

F∗` · n`A`,
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and form
Ûm = Un+1,m−1 + ∆tIn+1,m

AD,i,j,k,

and apply state redistribution to obtain

In+1,m
AD :=

SRD(Ûm)− Un+1,m−1

∆t
.

Step 6: Update the reaction term

In,mR = ER
(
Un,

1

2
(InAD + In+1,m

AD )

)
,

where ER(U, S) evolves the reactions from tn to tn+1 with initial condition U and a constant
source term S and then computes the average change due to reactions over the time interval.

Step 7: Finally we compute the update

Un+1,m = Un + ∆t

(
In,mR +

1

2
(InAD + In+1,m

AD )

)
.

The explicit treatment of both advection and diffusion necessitates constraints on the time
step for stability. Using the notation u = (u, v, w), we require for each cell in the domain

(‖u‖∞ + c)∆t

h
≤ 1

3
,
η∆t

ρh2
≤ 1

2d
,

along with similar restrictions for thermal conductivity and species diffusion. In the above, d is
the spatial dimension of the problem and h = min(∆x,∆y,∆z). We note that in practice, the
first constraint is the most restrictive. Although the diffusive time step restriction scales with
∆x2, it generally does not constrain the time step, and the convective time step is the most
restrictive.

For the spatial discretization we perform a limited extrapolation of the characteristic variables
to the centers of the cell faces using a standard van Leer MUSCL limiter. If one of the cells in
the slope computation is completely covered then the one-sided slope in that direction is zeroed.
A two-shock approximation Riemann solver is used at face centroids. A normal Riemann solver
is used to compute the flux at the EB face.

For the diffusive fluxes, derivatives at cell faces are approximated with a centered second
order finite-volume discretization. At cut faces with area fraction less than one, the stencil is
modified to evaluate the fluxes at face centroids. At the embedded boundary face, we cast a
ray into the interior of the domain and interpolate values onto that ray to compute a one-sided
diffusive flux. By formulating the diffusion in a finite volume form, SRD stabilizes this term too
(see the remark in section 2.3.2).
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5.2 Low Mach Number Flow

Next we show how SRD is applied to generic low Mach number flows of the form

∂ρ

∂t
+∇ · (ρu) = 0,

∂u

∂t
+ u · ∇u +

1

ρ
∇π =

1

ρ
∇ · τ ,

∂ρφ

∂t
+∇ · (ρuφ) = Rφ,

evolving subject to the constraint
∇ · u = S. (20)

Here φ corresponds to some set of additional variable such as species mass fractions, enthalpy or
an advected scalar, and Rφ represents additional source terms such as diffusion or reactions. The
velocity satisfies an inhomogeneous constraint where S is specified in terms of thermodynamic
variables so that the system maintains thermodynamic pressure. The perturbational pressure,
π, can be thought of as a Lagrange multiplier that ensures that the evolution of the momentum
field is consistent with the constraint.

For this set of equations, SRD only needs to be applied to the convective terms, since the
reaction terms are evaluated pointwise in each cell, and the diffusive term is treated implicitly.
This results in a time step restriction that requires

∆t ‖u‖∞
h

≤ 1

3

at each point in the domain. We give an overview of the time advance and indicate at which
point SRD is applied.

The equations are discretized using a predictor-corrector method-of-lines approach with an
approximate projection (see [15] for details). In the predictor we define provisional values at
time tn+1 by solving

ρP = ρn −∆t Anρ ,

uP,∗ = un −∆t Anu +
∆t

ρ
Dn − ∆t

ρ
Gπn−

1/2,

(ρφ)P = (ρφ)n −∆t Anρφ + ∆t Rnφ.

Here Anρ is a discretization of (∇ · (ρu))n, Anu is a discretization of (u · ∇u)n, and Anρφ is a

discretization of (∇ · (ρφu))n; Gπn−1/2 is an approximation to ∇πn−1/2, and Dn is an approx-
imation to (∇ · τn). After constructing uP,∗, we perform an approximate projection to enforce
the constraint (20) for uP and define πn+1/2,∗.
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In the corrector step, we define the solution at tn+1 by solving

ρn+1 = ρn − ∆t

2
(Anρ +APρ ),

un+1,∗ = un − ∆t

2
(Anu +APu ) +

∆t

2ρ
(Dn +Dn+1,∗)− ∆t

ρ
Gπn+

1/2,∗,

(ρφ)n+1 = (ρφ)n − ∆t

2
(Anρφ +APρφ) +

∆t

2
(Rnφ +Rn+1

φ ),

where the advective terms are defined using the results of the predictor step. We then apply
another approximate nodal projection to enforce the constraint (20) for un+1 and define πn+1/2.
We emphasize that the SRD step modifies the advective update prior to enforcing the constraint.
The nodal projection, which is applied after the advective and diffusive updates, approximately
(to second order in mesh spacing) imposes the constraint regardless of exactly how the advec-
tive/diffusive updates were constructed. Thus, the SRD step does not impact the degree to
which the nodal projection enforces the constraint.

In both the predictor and corrector steps outlined above, we construct the advective terms
as follows.

Step 1: Predict, and if necessary limit, the normal velocity on every cell face with non-zero area.
For cut faces, this involves all components of the velocity gradient, since the cut face centroid is
not coordinate-aligned with the cell centroid. Given left and right states at each face, solve the
Riemann problem with upwinding based on the reconstructed velocities uL and uR.

Step 2: Project the normal velocities to satisfy the constraint (20). This defines uMAC .

Step 3: Predict all quantities s on faces, similarly to Step 1. Here s represents ρ, φ and all three
velocity components. At each face solve a Riemann problem with upwinding based on uMAC .

Step 4: For s = ρ or s = ρφ, we construct

A∗s =
(

(ai+ 1
2 ,j,k

uMAC
i+1/2,j,k

si+1/2,j,k − ai− 1
2 ,j,k

uMAC
i−1/2,j,k

si− 1
2 ,j,k

)∆y∆z

+ (ai,j+ 1
2 ,k

vMAC
i,j+1/2,k

si,j+ 1
2 ,k
− ai,j− 1

2 ,k
vMAC
i,j−1/2,k

si,j− 1
2 ,k

)∆x∆z

+ (ai,j,k+ 1
2
wMAC
i,j,k+1/2

si,j,k+ 1
2
− ai,j,k− 1

2
wMAC
i,j,k−1/2

si,j,k− 1
2
)∆x∆y

)
/ Vi,j,k,

where a’s are the area fractions of the cut faces. If s is one of the velocity components, an
additional source, si,j,k(DuMAC), is added to the right hand side. These formulas do not include
an embedded boundary face since the flux is zero there.

Step 5: Apply state redistribution. To isolate the effect of SRD to the advective terms, first
define

s† = sn −∆t A∗s for s = ρ, u, ρφ.

We then apply SRD to s† to give
sSRD = SRD(s†)

and define

As = −s
SRD − sn

∆t
.
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Figure 8: Schematic of the piston bowl geometry, based on a production turbocharged
diesel engine.

Time stepping then continues with the next predictor or corrector step.

As with the other examples, we also apply SRD to the initial data at the start of the
simulation. In this case the initial data is simply replaced by the redistributed data.

6 Computational Examples

We present 3D results from fluid flow simulations in engineering geometries to demonstrate
SRD in settings with advective, diffusive and reacting updates. The examples in sections 6.1
and 6.2 rely respectively on the compressible reacting flow and low Mach number flow models
introduced in sections 5.1 and 5.2. The SRD algorithm is implemented in AMReX-Hydro as well
as a number of other codes including the incompressible flow code IAMR3, the Pele4 suite of
3 codes, which includes a low-Mach reacting code, a compressible reacting code, and a physics
library, and MFIX-EXA5, a computational fluid dynamics–discrete element model (CFD-DEM)
code for low Mach number reacting multiphase flows [15]. All of these codes, including the SRD
implementation, run on hybrid architectures; the SRD implementation itself runs on both CPUs
and GPUs.

6.1 Compressible Fuel Injection in a Piston-bowl Geometry

To demonstrate the effectiveness of the state redistribution scheme for compressible flows, PeleC
was used in a simulation of fuel injection in a piston bowl geometry. Complex geometries that

3https://github.com/AMReX-Codes/IAMR, 2021
4https://github.com/AMReX-Combustion, 2021
5https://github.com/AMReX-Codes/MFIX-Exa
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(a) t = 0.000 09 s. (b) t = 0.000 18 s.

(c) t = 0.000 22 s. (d) t = 0.000 31 s.

[cm/s]

Figure 9: Isosurface of methane mass fraction at 0.1 colored by the magnitude of velocity.

concentrate and enhance the flow structure are typical in combustion engines. The geometry
used in this work resembles a production turbocharged diesel engine, shown in Figure 8. The
physical domain size is 2.6 cm in the x and y directions and 0.975 cm in the z-direction. In
compression ignition engines, a multi-hole injector is typically used to inject fuel at the end of
the compression stroke. In this work, four discrete gas-phase fuel jets (methane) are injected
at the top z boundary into a high temperature oxidizer (oxygen and nitrogen). The inflow
velocity conditions for the jets are taken from a turbulent pipe flow precursor simulation. The
temperature of the fuel is 300 K. The fuel is injected for 0.000 14 s at the start of the simulation.
The chemistry kinetics model in this simulation is DRM19 (21 species, 84 reactions) subset of
the GRI-Mech 1.2 methane mechanism [16, 17]. The ideal gas model equation of state is used
to close the equation system.

The simulation domain is discretized on the base level with 128 × 128 × 48 cells, leading
to a base level grid size of 0.02 cm. The simulation is performed with 2 levels of refinement
(effective grid resolution of 0.005 cm) and, when the jets impact the piston bowl side walls, there
are 11 million cells on the finest level. This simulation is not possible with the standard flux
redistribution scheme as it leads to unphysical solution values (e.g. concentrations less than 0
or > 1). The smallest volume fraction allowed in the calculation was 10−6 to avoid issues with
the AMReX EB geometry generation. The SRD algorithm is a negligible portion of the total
runtime, typically not exceeding 2%.
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(d) t = 0.000 31 s.

Figure 10: Pseudocolors of velocity magnitude (left) and methane mass fraction (right)
at y = 0 cm.

Simulation results are shown at different times in Figures 9 and 10. The velocity of the fuel
is initially high as the jet penetrates into the domain. The different fluid densities of the oxidizer
and fuel lead to characteristic Kelvin-Helmholtz roll-ups at the jet tips, Figures 9a and 10a. As
the fuel jets hit the piston bowl side walls, the fuel is redirected towards the top and the towards
the bottom of the bowl, Figures 9b and 10b. As can be seen in the mass fraction contours in
Figure 10b, the fuel concentration at the inlet has decreased since the fuel stops being injected
starting at t = 0.000 14 s. After impacting the side walls of the piston bowl and interacting
with the sides walls, Figures 9c and 10c, the jets break up and mix into the background fluid,
Figures 9d and 10d.

6.2 Circulating Fluidized Bed Geometry

Fluidization is the phenomenon by which solid particles are converted to a fluid-like phase
through the introduction of gas. The resultant mixing of gas and particles provides favor-
able heat and mass transfer within the system. Such systems are commonly encountered in
drying, granulation, coating, heating, and cooling, and over a wide range of industries such as
food, agriculture, pharmaceutical, energy and mining. The circulating fluidized bed (CFB) is a
type of fluidized bed system that utilizes a recirculating loop for even greater mixing efficiency
between the particles and gas. One CFB configuration consists of four main sections – riser,
standpipe, loop seal and cyclone. Fluidizing air is introduced primarily from the bottom of the
riser. Secondary inflows at lower velocities are also introduced at the bottom of the loop seal
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and standpipe sections. The gas exits via the cyclone on the top after flowing over the dense
particle phase near the bottom. The loop seal returns the particles to the bottom of the riser as
they get collected in the standpipe.

MFIX-Exa [15] was used to simulate such a circulating fluidized bed (CFB) geometry, but
without any particles since the focus of this study was only on the fluid phase. (See [15] for a dis-
cussion on how particles are treated in an embedded boundary setting.) In this three-dimensional
configuration (Figure 11a), the riser, standpipe and loop seal sections have a rectangular cross
section, whereas the cyclone has a cylindrical cross section.

The CFD model for the fluid uses an incompressible flow formulation and employs the SRD
algorithm for velocity redistribution. No heat transfer or chemical reactions were considered.
The domain of size 3.2 m in x direction, 1.6 m in the y direction and 8 m in the z direction
is resolved by a 2.5 cm mesh. Cells whose volume fractions are less than 10−6 are treated as
covered cells in this simulation, due to difficulties in the linear solver that will be the subject of
future research. The gas inflow velocity in the riser is increased from 2.5 m/s to 9 m/s after 1 s.
The secondary inflows in the loop seal and standpipes are 0.25 m/s and 0.15 m/s respectively.
Figure 11b shows an instantaneous snapshot of the gas velocity magnitude distribution along a
vertical slice at y = 0.8 m and t = 1.8 s.

Riser

Standpipe

Loopseal

Cyclone

(a) CFB geometry

0

10

20

[m/s]

(b) Gas velocity distribution y = 0.8 m

Figure 11: Circulating fluidized bed simulation in MFIX-Exa.

The smallest cut cell in this computation had a volume fraction of 9.4× 10−6. Zooms of the
grid around the loop seal and the area below the cyclone are shown in Figure 12.
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Figure 12: Zoom of grid cross-sections, with colorbar showing cut cell volume fractions.

7 Conclusions and Future Work

We have extended the state redistribution algorithm in several important ways. We introduced
a framework to develop new state redistribution methods, and proposed a new variant that
activates smoothly with cut cell volume fraction. The new weighted algorithm is much less
sensitive to the merging neighborhood size than the original redistribution algorithm. Numerical
experiments reveal that the weighted algorithm’s errors on large neighborhoods is comparable to
those on smaller ones. Next, we showed that SRD can be used in the context of both compressible
and incompressible flows, as well as when the PDEs contain reaction and diffusion terms. All
of the presented numerical experiments were obtained using an implementation of SRD in the
parallel exascale code AMReX-Hydro.

There are a number of interesting possible extensions of the SRD algorithm presented here.
For example, one could incorporate knowledge of the local velocity in defining a local weighting
scheme for low Mach number flows. This would be advantageous when the time step is con-
strained by a velocity Umax away from the cut cells. One could adjust the target volume by the
ratio of the local velocity and Umax, thus potentially eliminating the need to redistribute at all
in low-speed regions. For low Mach number flows one could incorporate the pressure gradient as
well. In the context of compressible reacting flows, we would like to formulate a density-weighted
SRD algorithm, borrowing ideas used in flux redistribution algorithms [18]. We also plan to de-
velop a multi-component slope limiting procedure for the neighborhood slopes to guarantee that
chemically reacting species have mass fractions that always sum to 1.
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