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Abstract

Traumatic brain injury (TBI) has a bimodal age distribution with peak incidence at age 24 and age 

65 with worse outcomes developing in aged populations. Few studies have specifically addressed 

age at the time of injury as an independent biologic variable in TBI-associated secondary 

pathology. Within the framework of our published work, identifying age related effects of TBI 

on neuropathology, cognition, memory and motor function we analyzed fecal pellets collected 

from young and aged TBI animals to assess for age-induced effects in TBI induced dysbiosis. 

In this follow up, work we hypothesized increased dysbiosis after TBI in aged (80-week-old, 

N=10) versus young (14-week-old, N=10) mice. C57BL/6 males received a sham incision or 

TBI via open-head controlled cortical impact. Fresh stool pellets were collected 1-day pre-TBI, 

then 1, 7, and 28-days post-TBI for 16S rRNA gene sequencing and taxonomic analysis. Data 

revealed an age induced increase in disease associated microbial species which were exacerbated 

by injury. Consistent with our hypothesis, aged mice demonstrated a high number of disease 
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associated changes to the gut microbiome pre- and post-injury. Our data suggest divergent 

microbiome phenotypes in injury between young and aged reflecting a previously unknown 

interaction between age, TBI, and the gut-brain axis implying the need for different treatment 

strategies.
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Introduction

Traumatic brain injury (TBI) is defined as an external mechanical force that leads to 

an acquired brain insult. TBI can be derived from a range of principal mechanisms 

including falls, assaults, self-harm, and motor-vehicle crashes. Notably, specific causes of 

TBI correlate with age. Motor vehicle crashes are greatly associated with age groups 15-24 

years old, while falls are a leading cause of TBI amongst adults aged 65 years and older [1]. 

Each year in the United States, there are nearly 3 million TBI-related emergency department 

visits, hospitalizations, and deaths resulting in 80-90,000 chronic or permanent disabilities 

[2,3]. As such, brain injury is a serious health concern, yet no viable therapeutics other than 

supportive care exist to help the underlying deleterious processes that are initiated by the 

initial injury [4,5].

Regardless of injury mechanism, TBI is a heterogenous injury process that encompasses 

mechanical tissue disruption, neuronal excitotoxicity, free radical generation, disruption in 

energy metabolism, and neuroinflammation [6,7]. All of these processes have the potential 

to culminate in a spectrum of motor, cognitive, and behavioral disability [8]. However, it 

is clear that the pathophysiology of injury varies between the developing and mature brain 

[9]. The young brain is highly active in the processes of development and growth, resulting 

in different patterns of injury, repair, and regeneration as compared to the aged brain [10]. 

In fact, the etiology and evolution of TBI symptoms in young patients is well documented 

in the literature demonstrating patterns of impairment in communication, behavior, higher­

order cognition, and learning efficiency [10-12].

On the other hand, TBI in aged populations has not been as well studied. The best available 

evidence shows patterns of reduced communication skills, memory-compensation strategies, 

and greater overall loss of physical and cognitive function in the aged TBI population [1,13]. 

Some have speculated that this is due to a diminished repair response in the aged patient 

as well as the presence of age-related neurodegenerative changes that are accelerated and 

exacerbated at the time of injury [14,15]. For example, young patients with brain injuries 

demonstrate improved rates of recovery and better functional outcomes when compared to 

their aged counterparts [16]. Our recently published findings “Differential Neuropathology 
and Functional Outcome After Equivalent Traumatic Brain Injury in Aged Versus Young 
Adult Mice” we used MRI, histological, and behavioral tests to investigate aged-induced 

effects on the secondary pathology associated with TBI [17]. Our analysis revealed an 

unexpected age-based attenuation of white matter connectivity and neuropathology. More 
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specifically, we found that aged mice (80 weeks old) demonstrated less cerebral edema 

and attenuated neuronal loss within the cortex and subcortical grey matter as compared to 

young-adult mice (14 weeks old). Hippocampal gliosis was severe in both groups. One the 

other hand, young-adult mice demonstrated severe and extensive edema, neuron loss, and 

gliosis within the cortex, hippocampus, and subcortical grey matter as compared to aged 

mice. Lastly, we observed significant age effects on anxiety, memory and learning between 

young adult and aged adult male mice following an identical impact injury. In the current 

study, we examined fecal samples collected from the mice studied in the aforementioned 

work. We believe that this comprehensive assessment is a necessary addition to the literature 

and provides a better global understanding of age-effects on TBI outcomes [17].

An understudied domain that could be contributing to this age-related differential in TBI 

outcome is the gut microbiome. The gut microbiome is known to change with age and 

is implicated in a myriad of physiological processes including health, inflammation, and 

development in young and aged populations [18,19]. Brain injury is known to disrupt 

the bidirectional communication between the central and the enteric nervous systems 

known as the brain-gut axis (BGA) [20-23]. It is thought that TBI results in activation 

of the sympathetic, parasympathetic, and hypothalamic-pituitary-adrenal axis, resulting in 

dysbiosis and disease through a number of yet-to-be discovered mechanisms [24,25]. In 

fact, TBI-induced alterations in the gut microbiome have been documented as early 2 hours 

postinjury. Furthermore, microbial divergences have been correlated to the development of 

neurologic and systemic diseases ranging from inflammatory bowel disease to Alzheimer’s 

disease [22,25-27].

Prior studies provide evidence of TBI-directed loss of beneficial gut bacteria postinjury 

[20-23]. However, the data are limited to acute and extreme chronic time points while 

intermediary processes remain undefined. We, therefore, analyzed fecal pellets collected 

during our aforementioned age TBI mouse study, with the aim of further illuminating the 

breadth of age-based effects in TBI. We evaluated whether the aged gut microbiome could 

impact TBI during recovery period. We hypothesized that aged mice would demonstrate 

increased gut dysbiosis after TBI as compared to young mice.

Methods

Animals

Twenty C57BL/6 male mice (Mus musculus) (29-31 grams) were purchased from the 

Jackson Laboratory (Bar Harbor, Maine). Ten of the twenty mice were ordered 60 weeks 

prior to the start of the experiment and aged to 80 weeks in-house. Young groups were 

ordered and given 2 weeks of facility acclimation time before the start of the experiment, 

which was concurrent for all groups. Mice were maintained in a pathogen-free barrier 

facility at the Northwestern University Center for Comparative Medicine during the study 

period and at Jackson laboratories prior to arrival. Consistent NIH-31 formulation Chow and 

water were provided ad libitum at both Jackson Laboratory and Northwestern

University. Animal weights were matched between experimental groups. Bedding transfer 

and mixing was performed 2 weeks prior to TBI. Mice were treated in accordance with 
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the National Institutes of Health Guidelines for the Use of Laboratory Animals. The 

experimental protocol was approved by Northwestern University Institutional Animal Care 

and Use Committee. Results of histological analyses for the animals within the current study 

were published as a part of the manuscript “Differential Neuropathology and Functional 
Outcome After Equivalent Traumatic Brain Injury in Aged Versus Young Adult Mice” [17].

Traumatic brain injury

Mice were anesthetized using an intraperitoneal injection of 10 mg/kg xylazine (Anased, 

Shenandoah, IA) and 125 mg/kg ketamine (Ketaset, Fort Dodge, IA). Following anesthesia, 

a 1-cm scalp incision revealed the sagittal and coronal sutures of the skull. The injury 

site is marked 2 mm rostral to the coronal suture and 2 mm left of the sagittal suture. 

A 5 mm-diameter impact area of the brain is exposed via a craniectomy leaving the dura 

mater intact. TBI mice were stabilized within a stereotaxic operating frame. A commercially 

available impacting device (Impact One, Leica Biosystems, Des Planes IL) was utilized to 

induce a controlled cortical impact. The impacting rod was 3 mm in diameter and deployed 

at a velocity of 2.5 m/s to an impacting depth of 2 mm with a 0.1 second dwell time. Sham 

mice underwent anesthesia and scalp incision alone.

The scalp incisions of all groups were sealed with VetBond (3M) (Santa Cruz Animal 

Health, Dallas, TX) immediately following sham injury or TBI. Post-procedure analgesia 

with Buprenorphine SR (SR Veterinary Technologies, Windsor, CO) was administered to 

all animals via subcutaneous injection. Animals were recovered in separate cages over a 

warming pad. Euthanasia occurred at 30 days post injury via carbon dioxide inhalation, 

perfusion, and decapitation. Brains were harvested for analysis by immunohistochemistry.

DNA extraction and sequencing

Mice were housed separately for 2 hours on days of stool collection. Stool samples were 

flash frozen in liquid nitrogen and stored at −80°C until use. Individual stool pellets 

were weighed. DNA extraction was performed using the PowerSoil DNA Isolation Kit 

(Qiagen) according to the manufacturer’s instructions. DNA quantitation was estimated 

using a spectrophotometer NanoDropR ND-1000 (NanoDrop Technologies, DE, USA). 

We used a spectrum absorbance/transmission ratio of 260/230, passing light through the 

DNA in liquid medium to determine the concentration. Samples were then shipped to the 

Gilbert Laboratory, University of California, San Diego for 16S rRNA processing. Samples 

were loaded into 96 well plate and using MagAttract Power Microbiome DNA/RNA KF 

following protocol for DNA extraction [28]. Follow by a 23 μl PCR reaction contained a 

mixture: 9.5 μl of MoBio PCR Water (Certified DNA-Free; Mo Bio Laboratories), 12.5 μl 

of 5-Prime HotMasterMix (1×), 1 μl of forward primer (5 μM concentration, 200 pM final), 

1 μl of Golay Barcode Tagged Reverse Primer (5 μM concentration, 200 pM final), and 1 

μl of template DNA. The conditions for PCR were as follows: 94°C for 3 min to denature 

the DNA, with 35 cycles at 94°C for 45 s, 50°C for 60 s, and 72°C for 90 s, with a final 

extension of 10 min at 72°C to ensure complete amplification. Amplicons were quantified 

using PicoGreen (Invitrogen) assays and SpectraMax iD3 Multi-Mode Microplate Reader, 

followed by clean up using UltraCleanR PCR Clean-Up Kit (MoBio, Carlsbad, USA) and 

then quantification using Qubit readings (Invitrogen, Grand Island, USA). DNA was diluted 
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in 100 ul with nuclease-free HyClone Molecular Biology-Grade Water. The V4 region of 

the 16S rRNA gene (515F-806R) was amplified with region-specific primers that included 

the Illumina flow cell adapter sequences and a 12-base barcode sequence. The 16S rRNA 

sequencing on an on the Illumina HiSeq 2000 platform (2 × 150 paired-end sequencing) was 

conducted at the IGM Genomics Center, University of California, San Diego, La Jolla, CA. 

according to Earth Microbiome Project [29] standard protocols [28].

16S rRNA gene data analysis

QIIME 2 V2019.10 was used to process the reads [30]. The input files used were the paired 

end reads in fastq format and a mapping file with the barcode sequence corresponding 

to each sample. Reads were split by sample-specific barcode, followed by denoising 

using the DADA2 plugin. Taxonomic classification was performed using the naive Bayes 

pretrained QIIME2 classifier based on the Greengenes reference database 13_8. Samples 

with low count of reads per sample were excluded and the rest were rarefied to a depth of 

3500 sequences per sample. Alpha diversity (Faith’s PD, Shannon diversity, and observed 

operational taxonomic unit (OTU), richness) for various groups was generated and compared 

with a Kruskal-Wallis test. For beta diversity, pairwise unweighted and weighted UniFrac 

distances were generated and then the distances of the between-group differences were 

tested using PERMANOVA and permuted t tests in QIIME 2. The boxplots and the heatmap 

were produced using the relative abundances of the microbes at phyla and species level of 

taxonomic lineage using the package ggplot2 and heatmap.plus in R V3.6.1 respectively.

Results

Microbiome analysis

We examined age and injury related alterations using 16S analysis of the fecal microbiome. 

Fresh stool pellets were collected 1-day pre-TBI, then 1, 7, and 28-days post-TBI. The 

conserved variable region within 16S rRNA genes was then sequenced for identification, 

classification, and quantification of the various microbes contained within the stool 

specimens. Certain statistical comparisons could not be made between groups when 

bacterial reads were lower than our threshold and these data points were excluded; trends 

are shown. Beta diversity analysis was carried out using Principal Coordinates Analysis 

(PCoA). Each data point represents the taxonomic assignment of 16S rRNA found in each 

sample and reveals the difference in relative species abundance (Figure 1). The data revealed 

striking differences in the distributions of fecal bacteria between young and aged mice 

(p<0.001). The search for differences between young and aged microbiomes according to 

time, before and after injury, revealed no significance (Figure S1).

In order to determine an interaction between age and TBI on gut microbiota, we assessed 

phyla level differences over the course of injury in both young and aged mice post-TBI. 

Overall, we found that the phyla level revealed more detailed changes with treatment 

compared to beta diversity results. Similar to the beta diversity results we found significant 

age-dependent alterations in the gut microbiome at the phyla level. The increased level of 

detail at the phyla level also showed evidence of injury-dependent differences that were not 

discernable in beta diversity (Figure 2A). Baseline (Day 0) analysis revealed significant 
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decrease in Bacteroidetes and Firmicutes in aged mice as compared to young mice 

(p<0.001). This age-related difference in phyla fluctuated over time following experimental 

TBI but resurfaced by post-injury day 30. On the other hand, analysis of the TBI groups 

revealed greater differences in the relative abundance of phyla in both the young and 

aged groups over the course of injury ((p < 0.05(*), 0.001(**), & 0.0001(***)). While 

Bacteroidetes was the only significantly different phyla at baseline in these animals, 

differential changes in Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria were 

seen in TBI animals over the course of the study (Figure 2B).

Given both the age and TBI-related alterations in gut microbiota at the phyla level, we 

performed a deeper analysis down to the species level. The richness of the gut microbiome 

is reflected as the total OTUs. As shown in figure 3, a marked difference in the baseline 

species-level bacterial profile between young and aged mice was identified. In addition, 

TBI resulted in further discordance between young and aged mice after injury. Based on 

the general-OTU dataset, age-linked and TBI-linked disease associated microbial networks 

(DAMNs) were identified (Table 1).

Discussion

Age is well-recognized as an independent risk factor for poor outcome after TBI. The 

mechanisms underlying the effect of age, however, remain unclear. Age-related alterations 

in the gut microbiome are also becoming increasingly recognized as a contributing factor 

to a myriad of disease processes [31]. Our data revealed markedly different, yet stable, 

alterations in the gut microbiome due to age. Phylum and species level analysis revealed the 

sources of these age-related changes as well as differential, age-related, responses to TBI. 

Using the taxonomic classification of the OTUs we looked into multiple levels of taxonomy. 

Each level revealed a different part of the complex relationship between age, TBI, and the 

microbiome. First, there were no statistical differences in alpha diversity within samples 

of groups pre or post-TBI (data not shown) indicating no change in the total number of 

species expressed or lost secondary to TBI. We did find marked, age-related, differences in 

beta diversity indicating that differences in gut microbial composition may be bound to age 

(Figure 3). This analysis appears to confirm baseline differences physiology due to age, but 

at this level, none of the data corresponded with the differential neuropathology between age 

groups.

Probing the phyla and species taxa we found increased support for baseline physiological 

differences due to age and novel evidence of differential age-linked changes with injury. At 

the species level specifically, we were able to identify a separate group of age-dependent 

changes in dysbiosis within the fecal microbiome. Compared to young sham mice, each 

group (young TBI, aged sham, & aged TBI) showed a unique divergence in their bacterial 

profile. Cross-referencing with published data, the predominance of the shifts in bacterial 

abundance have been associated with diseases of the brain and gut [23]. The disease 

associated microbial network (DAMN) seen in aged sham mice was separate and distinct 

from those found in the young and aged TBI groups at the species level (Table 1). 

Differences in microbial profiles based on physiology is not novel. There are, however, 

many current efforts to target the microbiome as a therapy to ameliorate the various 
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pathological effects of traumatic brain injuries could be informed by the finding of 

age-based variations in dysbiosis [25]. If these probiotic and fecal transplantation-based 

efforts are to be successful, the variation in bacterial networks according to age should be 

considered.

According to descriptions in the literature, the microbiomes of most healthy humans are 

dominated by the gram-positive Firmicutes and gram-negative Bacteroidetes [32]. This was 

consistent with the findings of our phyla level investigation. In our investigation, healthy 

young adult sham mice maintained a much higher level of expression of these phyla than 

aged mice at nearly every time point (Figure 2A). The outsized age-related variance pre­

injury may help explain the observed differences in beta diversity. The phyla-level disparity 

between ages outweighed the phyla-level changes induced by injury. We also observed 

significant changes in Actinobacteria and Proteobacteria within young mice as compared to 

aged mice at the acute time points post-injury. Changes in these gram-positive phyla are 

linked to deficits in learning and memory and neurodegeneration [27,33].

We were able to most effectively characterize the interaction between age and TBI at the 

lowest taxa level (i.e., species) (Figure 3). At the pre-injury baseline, aged mice showed 

an increase in many species that have been previously linked with disease compared 

to young sham mice. While the presence of these species is not a direct harbinger, 

loss or overabundance of these species have been reported to play a key role in the 

persistence of inflammatory responses seen in chronic diseases of the brain and gut 

[34]. For example, our data show age-induced increases in Dorea (Multiple sclerosis), 

Butyricicoccus pullicaecorum (inflammatory bowel disease), Allobaculum (Alzheimer’s 

disease), Candidatus Arthromitus (systemic inflammation), Streptococcus, Clostridium 
(traumatic brain injury), Bacteroides (Alzheimer’s disease), Parabacteriodes gordonii 
(Inflammatory Bowel Disease)), Prevotella (systemic inflammation), and Bacteroides ovatus 
(metabolic disease and Alzheimer’s disease) [22,35-37]. On the other hand, the bacteria 

Lactobacillus, which is often used as a probiotic, and Parabacteroides distasonis have been 

linked to positive effects on anxiety and depression and have been shown to possibly 

alleviate obesity and metabolic disease in mice [38,39]. Both of these species were present 

in higher levels in aged mice in our study.

While post-TBI comparisons were admittedly highly influenced by the previously described 

age-induced variations, the expression of several microbial species were significantly altered 

in an age-dependent fashion post-TBI (Figure 3). Young TBI mice showed increased 

expression of several unfavorable species like Clostridium methylpentosum (systemic 

inflammation), Allobaculum (Alzheimer’s disease), Clostridium clocleatum (systemic 

inflammation), Anaerostipes (dysbiosis), Lactobacillus, Turiobacter (inflammatory bowel 

disease), and Coprococus (Parkinson’s disease). Similarly, decreases in other bacterial 

species correlated with inflammatory diseases were seen in the young TBI group 

compared to young shams. These included decreases in Coprobaccillus (inflammatory bowel 

disease and systemic inflammation), Blautia (Obesity), and Dehalobacterium (systemic 

inflammation) [37,40]. These variances were unique to the young mice post-injury and 

occurred in conjunction with unfavorable histologic outcomes in the young TBI mice 

[17]. On the other hand, aged mice demonstrated variance in a completely different 
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set of microbial species after TBI. Aged TBI mice had increases in Jeotgalicoccus 
psychrophilus (uncharacterized) and Lactobacilus reuteri (intestinal probiotic) along with 

loss of Candidatus Arthromitus (probiotic, metabolic disease), Bacteroides (metabolic 

disease and Alzheimer’s disease), and Anaerostipes (metabolic disease) over time.

In a recent analysis, Treangen and colleagues also found temporally-linked divergences in 

baseline bacterial species. which differentiated after TBI at hyperacute 1-day time point. For 

example, after injury, they found that TBI-associated decreases in the beneficial strains of L. 
gasseri (metabolic disease), Ruminococcus flavieciens (amyotrophic lateral sclerosis), and 

Lactobacillus along with and increases in E. ventriosum (Obesity) and M. formatexigens 
(Probiotic, metabolic disease) [22]. Combined with our current study during the recovery 

phase of TBI, this points to a previously uncharacterized interaction between age, injury, 

and gut dysbiosis. While some reviews have suggested the use of probiotics to normalize 

the gut microbiome after injury and to treat subsequent disease, direct study is necessary to 

prove a benefit. The current study suggests that a more thorough characterization is required 

as native probiotic-associated bacteria are altered differentially both after injury, and with 

age. Future studies verifying the possible benefits of probiotic treatment post-injury may 

necessitate stratification of probiotic strains by age. The generous addition of even beneficial 

bacteria could lead to further dysbiosis and pathology [25,37,40-42]. The limitations of the 

present study merit consideration. First is the utilization of the CCI model which delivers 

a focal injury with limited diffuse effects. CCI allows for tight control of injury parameters 

and consistent reproducibility between experiments. However, the focused nature of the 

impact may not fully recapitulate the disparate nature of TBI in human patients. Further, 

analysis of neurological status, motor function, cognitive status, frontal lobe function, and 

the functional outcomes of microbial changes would provide more mechanistic insight. 

Additionally, we focused on the influence of age in mice with similar brain injuries. We 

were required to exclude female mice from this study due to significant size differences 

that would impact the depth and scope of the TBI. Multiple researchers have outlined sex 

differences in TBI [43-45]. In order to control the level of variability we therefore decided to 

focus on sex-based differences in TBI in a separate study currently underway.

While the current study shows an age-related effect of fecal dysbiosis after severe 

TBI, further study is needed to identify mechanisms linking the gut microbiome profile 

with and the direction, progression, and outcome of traumatic brain injury. There are 

previous reports of chronic bidirectional brain-microbiome interactions after TBI as well 

as differential outcomes related to age [16,46-48]. The current work, however, is the 

first to characterize the interaction of age on the microbiome over the course of TBI. 

These data suggest a divergent pathophysiology of injury between young and aged groups 

reflecting a previously unknown interaction between age, TBI, and the gut-brain axis. 

Alterations in the gut microbiome have been previously characterized in a number of 

neurologic and neurodegenerative disorders [49]. In fact, gut dysbiosis is heavily implicated 

in the susceptibility, acceleration and exacerbation of cerebrovascular disease, Alzheimer’s 

disease, and Parkinson’s disease [50-52]. Indeed, restoring a healthy gut microbiome has 

shown some benefit slowing the progression of these disease processes [53-55]. Although 

the relationship between TBI and the gut microbiome is still relatively unknown, the data 

from these other neurologic and neurodegenerative processes gives hope to the possibility 
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that restoration of pre-injury gut microbiota may represent a novel therapeutic approach to 

this highly morbid injury process.

Conclusion

There were marked, age-related, differences in beta diversity between young and aged 

mice indicating that differences in gut microbial composition may be bound to age. 

Taken together with the previous study identifying age-dependent neuropathological and 

functional changes this work highlights. The past decade has seen a paradigm shift in our 

understanding of the brain-gut axis. Studies have outlined important interactions between 

the intestinal microbiota and the brain. In identifying these biological mechanisms, clinical 

and preclinical work has identified novel targets for the potential treatment of neurologic 

disorders, including Alzheimer’s disease, autism spectrum disorders, anxiety, depression, 

and others. Herein we present evidence of a distinct and complex pathologic phenotypes 

in TBI based on aged. Using this evidence, we assert that similar study and modulation 

of microbial phyla or species could reveal viable treatments that have remained elusive in 

the arena of TBI. A robust analysis that accounts for the interplay of influential variables 

such as age, microbial makeup, or sex could yield better results within groups. Our data 

implicates the interplay of age, injury, and the gut microbiome in differential outcomes after 

TBI pointing towards a new area of potential therapy for this highly morbid injury process.
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Figure 1: Beta diversity within the fecal bacterial microbiome in young and aged mice.
Fecal microbiome beta diversity represented as a Principal Coordinates Analysis (PCoA) 

plot of all subjects at 1, 7, and 28 days post injury based on 16S rRNA amplicon 

sequencing (N = 18). Each circle represents an individual mouse. Samples are colored 

by age: young (Blue) mice and aged (Red) mice. PCoA directionality and association 

indicates similarity of bacterial profiles within subjects. Permutational Multivariate Analysis 

of Variance (PERMANOVA), age effect was significant (p<0.001).
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Figure 2: Phylum level alterations in the fecal microbiome of young and aged mice after TBI.
Box plots showing the relative abundance of V4 region of 16S rRNA between young and 

aged mice at baseline and up to 30 days post-TBI. (A) Phyla-level analysis demonstrates 

significant baseline age-related differences in the relative abundance of OTUs in fecal 

samples between young and aged mice (p ≤ 0.05(*), 0.001(**), & 0.0001(***)). (B) At 30 

days post-injury, phyla-level differences in the relative abundance of OTUs in fecal samples 

expanded to include 4 significantly altered phyla after injury ((p ≤ 0.05(*), 0.001(**), & 

0.0001(***)).
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Figure 3: Relative species-level expression in the fecal microbiome of young and aged mice after 
TBI.
A heatmap plot was generated to represent the differences in the microbial community at the 

species level.
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