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Formal Analysis of Ridge and 
Channel Patterns in Maturely 

Eroded Terrain 
Christian Werner 

Department of Mathematical Social Sciences, University of California a t  Irvine, Irvine, CA 92717 

Abstract. The ridges delineating the drain- 
age basins of a channel network and its sub- 
networks form themselves a network. This 
network spatially penetrates, or interlocks 
with, the channel network. Under fairly weak 
axiomatic assumptions, interlocking ridge and 
channel networks are of equal magnitude, and 
there exists a one-to-one relationship be- 
tween their respective paths such that each 
pair of corresponding ridge and channel paths 
delineates a contiguous area called a drainage 
complex. In the limiting case that the link 
number of the channel path is zero, the com- 
plex coincides with the familiar concept of a 
drainage basin. 

Data sampled from natural ridge and chan- 
nel networks indicate that, for a given com- 
plex magnitude, the link numbers of the two 
paths follow an essentially random distribu- 
tion; in contrast, the  sum of the link numbers 
is closely dependent on the complex magni- 
tude. Thus, while the internal connectivity of 
any ridge or channel network in the study area 
seems to be largely a matter of chance, the 
respective connectivities of interlocking net- 
works exercise tight control over  each other. 
The observed dependency is interpreted as 
the result of both geometric and geomorphic 
constraints limiting the minimum and maxi- 
mum length of drainage area boundaries. 

Key Words: channel networks, ridge networks, 
maturely eroded terrain, network axiomatization, 
network interdependency. 

T has been stated that “the basic business 
of science is  t o  ascertain linkage relations 
between observables”(Simms 1983). In this 

paper the observables are the lines that give 
structure to erosional landscapes, and the link- 

age relations are the principles that govern their 
relative positions and interconnections. 

At least under environmentally uniform con- 
ditions one should expect that the pattern of 
ridges of a maturely eroded plateau reflects, in 
some rather precise fashion, the configuration 
of the channel pattern. As channels lengthen 
through headward growth, so do the ridges 
separating them, and as new channels develop 
through channel bifurcation, new ridges begin 
to emerge between them. Indeed, if we as- 
sume, say, a constant valley side slope V then 
the complete knowledge of the channel pat- 
tern C in three dimensions should permit the 
exact three-dimensional description of the 
ridge pattern R. Symbolically this statement can 
be expressed as C + V = R where the plus sign 
represents the combination of two bodies of 
information. 

But even under the far less ideal conditions 
of reality the equation retains some validity; a 
look at a topographic map will quickly reveal 
that the shape and location of ridges resulting 
from fluvial erosion seem to be significantly in- 
fluenced by those of the adjacent channels. In 
fact, at  the local level of individual channel 
junctions the interdependence between chan- 
nel slope, valley side slope and divide angle has 
already been successfully modeled (Abrahams 
1980). 

The intimate relation between channels and 
ridges i s  not only one of form but also one of 
function. Like channels, ridges are lines delin- 
eating areas of overland flow in the specific 
sense that they will not be crossed by such flow. 
Just as erosional channels can be represented 
as lines of convergence of overland flows, so 
can ridges be described as lines of flow diver- 
gence. Together they constitute the classic ob- 
ject of fluvial morphology-the drainage ba- 
sin-by defining its“rim”and “bottom.” In turn, 
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the aggregation of ridge and channel lines into 
mutually penetrating networks creates the 
multiplicity and hierarchical nesting of drain- 
age basins so characteristic of fluvially eroded 
landscapes. 

This paper focuses on the formal description 
rather than the physical explanation of the ridge 
and channel patterns in maturely dissected ter- 
rain; the object of the description i s  the con- 
nectivity within and between these patterns 
rather than their geometry. M y  purpose i s  to 
investigate the topological relations between 
ridge and channel networks, with particular 
emphasis on the interdependencies between 
ridge and channel links and paths, and the 
drainage areas delineated by them. 

Review of Previous Work 

While the analysis of channels and their net- 
works has experienced considerable and steady 
progress (Chorley 1972; Smart 1972; Abrahams 
1984), the same does not hold for the analysis 
of ridge lines and the patterns they form, let 
alone the interdependence of these two pat- 
terns. To begin with, the problem of defining 
ridges and ridge lines i s  more difficult than the 
real world phenomena would suggest. Tradi- 
tional definitions tend to  provide broad, qual- 
itative conceptualizations that lack in opera- 
tional specificity; also, they might exclude 
phenomena critical for a particular research 
design. Examples would be Swayne‘s definition 
of a ridge as ”an extended elevation of the 
earth’s surface, long in comparison to  its width” 
(1959), or the definition adopted by the Amer- 
ican Geological Institute: “A relatively narrow 
elevation which is prominent on account of the 
steep angle a t  which it rises” (1976). Sometimes 
the concept of a ridge (or its crest, the ridge 
line) i s  utilized without any explicit definition 
(Goudie 1969; Krumbein and Shreve 1970; 
Werner 1972a). An operational definition will 
be provided in the next section. 

To review alternative approaches to the con- 
cept of ridge line, we start with a related notion, 
the drainage divide. Divides are the lines that 
delineate drainage areas of particular channels 
or channel trees. Every link and, indeed, every 
channel segment has i t s  own drainage area, and 
the corresponding divide lines can be deter- 
mined fairly unambiguously in the field or on 
a topographic sheet (Schumm 1956; Werner 

1972b; Woldenberg 1972; Abrahams 1980). 
While ridges as elevated bodies usually func- 
tion as divides for certain channel segments, 
the reverse does not apply: divide lines may or 
may not have any surface expression. 

Swayne‘s definition i s  probably close to the 
common connotation of a ridge; along the crest 
of such a ridge-the ridge line-contour lines 
show a ”significant” change of direction; thus, 
a ridge line will appear on a topographic map as 
a sequence of aligned contour cusps or cren- 
ulations (Werner 1982). This concept of a ridge 
line is  at least formally comparable to the es- 
tablished channel concept, as a three-dimen- 
sional map turned up-side-down will demon- 
strate. While a stream channel usually exhibits 
recognizable features or can be defined by such 
features (Drummond 1974), like the erosional 
incision into an otherwise continuous surface, 
such convenient indicators are not available for 
ridges. The most obvious feature of a ridge line 
i s  its separation of surface runoff into diverging 
directions. But that quality i s  quite impractical 
for the purpose of definition because it i s  too 
comprehensive: any line of steepest descent on 
a convex, rounded slope would meet this cri- 
terion. If, on the other hand, we require a “10- 
cal” and “substantial” change of contour di- 
rection as part of a definition, then how should 
these requirements be quantitatively fixed 
without being arbitrary? 

Following Cayley (1859), Maxwell (1870), and 
others, Warntz (1966, 1975), Warntz and Wol- 
denberg (1967) and Woldenberg (1972) ap- 
proached the definition of ridge lines as “crit- 
ical’’ lines of natural terrains through a set of 
strictly formal concepts that constitute, in ef- 
fect, the application of differential geometry to 
the study of landform patterns. While these 
concepts permit what appears to be an incom- 
plete but otherwise compact and effective 
characterization of natural terrain surfaces, they 
do not readily lend themselves to a construc- 
tive methodology of fluvial landform analysis. 
A concise review and critique can be found in 
Mark (1979). 

The Warntz/Woldenberg system has the ad- 
vantage that its components can be located on 
the map or in the field with relative ease, al- 
though with results that might exhibit consid- 
erable differences (Drumrnond 1974; Mark 
1983). In addition, they represent major land- 
scape features and their relations to each other 
in a form that permits analysis by graph- 
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theoretical methods. Examples are Wolden- 
berg’s (1972) application of Euler‘s theorem for 
polyhedrons and Pfaltz‘s (1976) theorem on the 
contraction of ridge line/course line networks. 

Mark (1979) bypassed the difficulties en- 
countered by Warntz and Woldenberg by re- 
stricting his research to  peaks interconnected 
by ridge lines. He simulated observed frequen- 
cies of the topology of these “ridge trees” by 
imposing spatial and topological constraints on 
the assumption of topological randomness. Sig- 
nificantly, Mark was able to  relate his con- 
straints to suspected or recognized geomor- 
phic processes (Mark 1979, 1982). 

Despite the sizable discrepancies between 
the definitions reviewed above, there i s  agree- 
ment among the various investigations that 
chance effects play a major role in the con- 
nectivity of natural ridge lines (Coudie 1969; 
Werner 197213; Mark 1979). There also appears 
to be agreement that the geometry and to- 
pology of ridge patterns depend on the cor- 
responding channel pattern, either as formal 
consequence of the definition of surface fea- 
tures (Woldenberg 1972; Werner 1982, 1986), 
or as observed regularity established through 
empirical investigations (Werner 1972c; Mark 
1979; Abrahams 1980). 

This paper i s  an effort to continue the in- 
vestigation of channel/ridge line dependen- 
cies. It explores an alternative approach to the 
Warntu’Woldenberg system and adds to Mark’s 
(1979) largely qualitative comments by formu- 
lating both logical and empirical dependencies 
in quantitative terms. It also adds to Abrahams’s 
(1980) investigation by exploring the depen- 
dencies between entire patterns of ridges and 
channels, although only from a topological 
viewpoint. Specifically, it further differentiates 
the ridge concept so as to tie it closely to the 
established notion of channels; i t  derives sev- 
eral formal relationships between interlocking 
ridge and channel networks, and it identifies 
empirical dependencies between ridge and 
channel patterns that cannot be explained by 
chance effects and are the likely result of geo- 
metric and geomorphic constraints. 

The Concept of Interlocking Ridge 
and Channel Networks 

We start out with an operational definition 
of ridge lines in general and then define inter- 

locking ridge lines as a particular subset of the 
former. 

(1) For this paper, the definition of a ridge 
line will be based on the information content 
of contour maps. In the case of a surface with 
sudden changes of contour line direction, a 
ridge line is  defined as a line connecting a se- 
quence of aligned contour cusps pointing 
downhill; in the case of a smooth surface, it is 
defined as a line connecting the points of max- 
imum curvature in a sequence of aligned con- 
tour arcs, their convex sides facing downhill. 

(2) The thresholds established for the reso- 
lution and contour curvature in the identifi- 
cation of ridge lines are defined by reference 
to the channels in the study area. 

Since, in graph-theoretic terms, a channel 
network i s  a planar-rooted tree, its exterior links 
and i t s  outlet link form an ordered sequence 
(Shreve 1967). Two exterior links (or one ex- 
terior link and the outlet link) are called neigh- 
boring if they occupy consecutive positions 
within that sequence. We determine the chan- 
nels in the study area using the contour cren- 
ulation method described by Krumbein and 
Shreve (1970), but with the added restriction 
that exterior channel links are terminated where 
clearly pointed contour cusps are followed by 
smoothly curved contour arcs. This criterion i s  
further sharpened by the condition that any 
contour line segment connecting two channels 
contains at least one inflection point. It guar- 
antees that the contour lines between channels 
assume convex shapes downhill and thus define 
at least one ridge line if the required minimum 
curvature is set at an appropriate level. The 
level selected for the entire study area is  set as 
the maximum contour curvature that will en- 
sure the existence of at  least one ridge line 
between any two neighboring e?:terior channel 
links. 

(3) Ridge lines terminating in passes will be 
connected and treated as continuous lines. 
Ridge lines terminating on opposite sides of a 
channel will not be connected. 

(4) Converging ridge lines give rise to ridge 
nodes. Often, the exact location of such a node 
i s  impossible to establish, not only on maps liut 
in the field as well. Ridge lines frequently dis- 
appear as they converge, and instead of a node, 
only an undifferentiated nodal area i s  recog- 
nizable. In these cases node locations are es- 
tablished by extending ridge lines to  their point 
of intersection. 
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C(n) 
Figure 1. 
networks with alternating outer  links. 

A pair of interlocking ridge and  channel  

(5) Ridge nodes are assumed to be always of 
degree three. This assumption is plausible be- 
cause differential denudation between neigh- 
boring ridge lines radiating from a node will 
make a higher nodal degree an unstable, tem- 
porary event. Operationally the assumption 
does not pose a problem as a node of degree 
x can always be substituted by x - 2 nodes of 
degree three interconnected by links of near- 
zero length. 

(6) Under humid conditions the ridge lines 
thus defined form a network that is, graph- 
theoretically speaking, a trivalent planar tree. 
This ridge tree will now be reduced by elimi- 
nating all but one ridge link between any two 
neighboring exterior channel links. The re- 
maining ridge link should be the link of least 
gradient and must be attached to  the ridge tree. 
We call this link an interlocking outer ridge link 
and the reduced ridge network an interlocking 
ridge network. Let C refer t o  a channel network 
and let R be the ridge network defined by the 
interlocking outer ridge links located between 
neighboring exterior channel links of C. Then 
R is called the interlocking network of C,  and 
C and R are called interlocking networks (Fig- 
ure 1). 

The operations of extending converging ridge 
lines into nodal areas, locating the correspond- 
ing ridge nodes, and ensuring a nodal degree 
of three involve, by necessity, an element of 
chance that may have a randomizing effect on 
the emerging ridge line network. The impact 

of this chance effect on the results of the paper 
can be disregarded because its deductive con- 
clusions are independent of the notion of ran- 
domness and the main inductive conclusions 
refute it. 

Using the procedure outlined above in actual 
map work i s  somewhat tedious but fairly ade- 
quate in terms of i t s  decision rules. But what 
does an interlocking ridge network, once con- 
structed, refer to in a fluvially eroded surface? 

As a consequence of the definition of ridge 
lines, every path of the ridge network functions 
as a drainage divide line. By construction there 
exists for every channel link c two outer ridge 
links u, v positioned on either side of c. Thus, 
the ridge path f defined by u and v delineates 
an area that has c as i t s  only drainage outlet. 
That is, the ridge path f defines the drainage 
basin of the channel network that has the chan- 
nel link c as i t s  outlet link. We call f the open 
boundary of the basin. A more formal deri- 
vation will be given in a later section. 

Note that u and v might not reach the edge 
of the channel c; rather, they are separated by 
a valley with c occupying the valley bottom. 
Hence, the link drainage area of c may or may 
not be enclosed in the basin delineated by f. 
But this difficulty is  only a local and a geometric 
one; in topological terms the one-to-one re- 
lation i s  unaffected between the channel link 
c, the channel network defined by c, and the 
ridge path (u, v) corresponding to (but not fully 
congruent with) its drainage basin boundary. 

To examine the graph-theoretical implica- 
tions of our definition of interlocking net- 
works, we extend the established terminology 
and describe channel and ridge networks in 
terms of 

-inner nodes (nodes of degree 3, that is, all 
network junctions); 

-outer nodes (nodes of degree 1, which in the 
case of a channel network consist of all 
sources and the outlet); 

-inner links (with inner nodes as end points); 
-outer links (at least one end point being an 

outer node; hence, in the case of a channel 
network, the set of outer links consists of all 
exterior links plus the outlet link); 

-inner paths (having inner links as their end 
I i n ks); 

-outer paths (having outer links as their end 
links); and 
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-intermediate paths (having an inner and an 
outer link respectively as their end links). 

The number of links in a path is  called i t s  
topological length or simply, i t s  length when 
the context makes clear that i t  refers to to- 
pologic rather than geometric length. 

The representation of a network by means 
of a binary string (Shreve 1967) shows the outer 
network links to be sequentially arranged. Let 
c(l), c(2), . . . , c(n + 1) be the ordered set of 
outer links of a given channel network C(n) of 
magnitude n with c(1) being the outlet link. Let 
R denote the ridge network interlocking with 
C(n). It follows from our definition of inter- 
locking networks that there exists between any 
two neighboring outer links of C(n) exactly one 
outer ridge link of R and vice versa. Hence, the 
number of outer ridge links is equal to the 
number of outer channel links, that is, the two 
interlocking networks are of equal magnitude. 
Also the above assumption maps the ordering 
structure of the set of outer channel links onto 
the set of outer ridge links, and if we label the 
outer ridge link positioned between the outer 
channel links c(i) and c(i + 1) with r(i), then 
together the two sets form a sequence S con- 
sisting of alternating outer ridge and channel 
links: 

S = c(l), r(l), c(2), r(2), . . . , c(i), r(i), c(i + I), 

Notice that r(1) and r(n + 1) are the outer ridge 
links positioned between the outlet link c(1) 
and i ts  neighbors c(2)and c(n + I), which means 
that the sequence S i s  cyclical (Figure 1). 

As a consequence of our definition of inter- 
locking ridge and channel networks, the two 
networks are both trivalent planar trees and are 
of equal magnitude; their alternating outer links 
establish a topologically symmetrical relation- 
ship between them. The combined properties 
of structural equivalence and symmetrical re- 
lationship make the two networks dual struc- 
tures: whatever can be stated about one net- 
work relative to the other must also hold in 
reverse. The two properties constitute the ax- 
iomatic base for the following deductions; t o  
emphasize their general applicability, we pro- 
ceed to analyze networks N without specifying 
whether N is  a ridge or channel network, and 
we analyze pairs of interlocking networks X, Y 
without specifying which one i s  the ridge and 
which one the channel network. 

r(i + I), . . . , c(n + I), r(n + 1) 

Selected Structural Properties of 
Ridge and Channel Networks 

To unravel the relationships that hold be- 
tween the pathsof interlocking ridgeand chan- 
nel networks, several definitions and interde- 
pendencies of links and paths within networks 
will be needed. Most of the relations are ob- 
vious; where not, a short sketch of a proof i s  
included. Unless specified otherwise, the term 
network represents both channel and ridge 
networks. 

The path connecting two neighboring outer 
links of a network is called a bicorn; we say that 
the bicorn defines, and is defined by, the two 
outer links. Each network has n + 1 bicorns; 
we call two bicorns adjacent i f  they share one 
of their outer links in common. Since the outer 
links of a network form a cyclical ordered set, 
so do the bicorns of the network. Note in par- 
ticular that the bicorn defined by the outer 
ridge links r(l), r(n + 1) of the ridge network 
R(n) is the open boundary of the basin drained 
by the channel network C(n) (Figure 1). 

The following set of arguments will show that 
there exists a one-to-one relationship: 

(A) between the links of a network and the 
pairs of intersecting bicorns (bicorns hav- 
ing a link in common), and 
between the inner paths of a network and 
the pairs of disjoint bicorns (bicorns with 
no links in common). 

(1) Let N be a network and x be a link of it. 
x separates N into two subnetworks NI,  N2 and 
i s  the root link of both. Let j = 1, . . . , n + 1 
be the cyclical sequence of outer links of N, 
and let j = i + 1, . . . , k be the sub-sequence 
consisting of the exterior links of N I .  Then the 
exterior links of N2 form the sub-sequence j = 

k + 1, . . . , i, and the first and last links of the 
two subnetworks are neighboring outer links 
of N, defining the two bicorns [i, if I] and [k, 
k + I ]  in N. Since any path connecting links of 
N1 and N2 must pass through x, it follows that 
the two bicorns have the link x in common 
(Figure 2). If the network link x is an outer link, 
then the two bicorns sharing it are necessarily 
adjacent; likewise, i f  two bicorns sharing a link 
x are not adjacent then x i s  necessarily an inner 
link. 

(2) Any two bicorns have at most one link in 
common. That can be shown through an in- 

(B) 
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Figure 2. A network link x and the two bicorns p = 

(i, i 4- 1) and q = (k, k + 1) that have x in common (a 
bicorn is defined as a path connecting two neigh- 
boring outer links). 

direct proof. Consider two bicorns p, q with 
outer links i, i + 1 and k, k + 1. If p and q 
shared two or more links, these links would 
definea sub-path of both bicorns. The sub-path 
contains at least two links and therefore at least 
one node connecting two links; the third link 
incident at that node defines a subnetwork. 
Within the ordered sequence of the outer links 
of the entire network, the exterior links of this 
subnetwork would be positioned either be- 
tween the links i and i + 1 or between k and 
k + 1, in violation of the assumption that p and 
q are bicorns, that is, that their outer links are 
neighbors. 

(3) Let p and q be two disjoint bicorns of a 
given network (Figure 3). Of all the paths con- 
necting nodes of p and q there i s  one path t 
that does not contain links of either p or q. t 
does exist because the network is a connected 
graph, and t i s  unique because the network i s  
a tree. It follows from the definition of t that t 
i s  an inner network path. 

(4) Since each inner node interconnects three 
links that are pairwise adjacent, it follows from 
(1) and (2) above that each inner node defines 
exactly three bicorns. Also for each of the three 
links there i s  exactly one among the bicorns 
that does not contain this link, that is, link and 
bicorn are disjoint. Thus, there exists a one-to- 
one relationship between the three links of a 
node and the three bicorns they define. In Fig- 
ure 2 the node Q connects the three links x, 
y, z and defines the three bicorns p = (i, i + I), 
s = (j, j + I), and q = (k, k + 1); the three pairs 
of disjoint links and bicorns are x, s; y, q; and 
z, p. 

(5 )  Let t be an inner path connecting two 

Figure 3. 
two bicorns p, q defining it. 

An inner network path t = (P, Q) and the 

network nodes P, Q, and let a, b be i t s  two end 
links (if t consists of one link only, then a = b) 
(Figure 3). Of the bicorns defined by the nodes 
P, Q there are two which contain neither of 
the end links a, b. We will label these two bi- 
corns by p and q (Figure 3). According to (4) 
above p and q are uniquely identified by the 
links a and b and therefore by the path t; the 
end nodes of t, P and Q, are nodes of the bi- 
corns p, q respectively. Since the network is, 
in graph-theoretic terms, a tree, the path t does 
not contain any links of either p or q. Hence, 
t is identical with the inner path that i s  uniquely 
defined by the two bicorns p, q as shown in (3) 
above, thereby establishing a one-to-one 
correspondence between all pairs of disjoint 
bicorns and all inner paths of a network. 

(6) Earlier we defined an intermediate path 
as one between an inner and an outer link. It 
follows from the previous discussion that there 
exists a one-to-one relationship between all in- 
termediate paths of a network and all disjoint 
pairs consisting of a bicorn and an outer link. 

A network of magnitude n has a total of 2n 
nodes, n + 1 of which are outer nodes, the 
remaining ones being inner nodes (junctions). 
The total number of network paths i s  therefore 
2n(2n - 1)/2 or n(2n - 1). The outer nodes 
define a total of (n + l)n/2 outer paths; the 
inner nodes define a total of (n - l)(n - 2)/2 
inner paths; the balance of the set of all net- 
work paths i s  made up by intermediate paths, 
their number being (n + l)(n - 1). 

The network has n + 1 bicorns and therefore 
(n + l)n/2 different pairs of bicorns. Of these, 
2n - 1 consist of bicorns that have a network 
link in common (items 1 and 2 above); the re- 
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maining (n + l)n/2 - (2n - I) = (n - l)(n - 
2)/2 pairs are disjoint and correspond to the 
inner paths of the network (item 5 above). 

Since the number of outer links is  n + 1 and 
the number of bicorns containing a particular 
outer link is 2, it follows that the number of 
pairs consisting of an outer link and a (disjoint) 
bicorn is  (n + l)[(n + 1) - 21. This number is, 
of course, equal to the number of intermediate 
paths in the network as was already implied in 
item 6 above. 

For the purpose of subsequent arguments, it 
should be stressed that the particular case of 
two bicorns sharing a link in common is quite 
different from the case of two disjoint bicorns 
defining an inner path consisting of one link. 
In Figure 2 the two disjoint bicorns s, w define 
the link x asan inner path while the two bicorns 
p, q have x as a common link. This distinction 
will be critical in the analysis of drainage basins 
and drainage complexes in later sections of the 
paper. 

Correspondence between Ridge 
and Channel Paths 

The definition of interlocking networks X, Y 
establishes a connection between the paths of 
the two networks. In particular, each bicorn of 
X defines two outer links x(i), x(i + 1) which are 
neighbors within the sequence of outer links 
of X. Furthermore, the outer links of the two 
networks form an alternating sequence S, and 
within S the links x(i), x(i + 1) are neighbors of 
a particular outer link y(i) of Y, which i s  thereby 
uniquely defined. Since 

(a) each inner path of a network corresponds 
to two specific disjoint bicorns of that net- 
work (item 5 above), which 

(b) correspond to two particular outer links of 
the interlocking network, which in turn, 

(c) define an outer path of that network, 

there exists for each inner path of a network a 
particular outer path of the interlocking net- 
work (Figure 4). In addition, since the relations 
(a) to (c) above hold in both directions provided 
the bicorns are disjoint, it follows that this re- 
lationship constitutes a one-to-one mapping 
between the set of all inner paths of one net- 
work and a proper subset of the outer paths of 
the interlocking network. Paths that are mapped 

Figure 4. Two pairs of interlocking ridge and chan- 
nel paths embedded in two interlocking ridge and 
channel networks; each pair defines a particular 
drainage area called a drainage complex. 

onto each other in this way are called corre- 
sponding or interlocking. Two examples of 
channel paths (one inner and one outer path) 
and their interlocking (outerhnner) ridge paths 
are shown in Figure 4. 

The number of outer paths that do not have 
corresponding inner paths in the interlocking 
network is simply the numerical difference be- 
tween the two sets, or (n + 1)n/2 - (n - 1) 
(n - 2)/2 = 2n - 1. The outer links of these 
2n - 1 outer paths correspond to the 2n - 1 
pairs of bicorns of the interlocking network 
that share a link in common. Thus, there exists 
a one-to-one relationship between a particular 
subset of 2n - 1 outer paths of one network 
and the 2n - 1 links of the interlocking net- 
work. We will now examine this relationship in 
detail. 

Ridge Paths as Basin Boundaries of 
Channel Networks 

We will demonstrate that there exists a unique 
and reversible mapping between (A) each link 
of a channel network, (B) the subnetwork de- 
fined by the link, and (C) the ridge path that 
forms the open boundary of the basin drained 
by the subnetwork. 
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Figure 5. A channel link c defining a channel sub- 
network K with exterior links c(i + l), c(i + 2), . . . , 
c(j). K drains the area delineated by the ridge path r 
where r i s  defined by the outer ridge links r(i), r(j); 
they correspond to the bicorns p, q which have the 
channel link c in common. 

Let r be one of the 2n - 1 outer paths in the 
ridge network R(n) that does not correspond 
to  an inner path in the interlocking channel 
network C(n); let r(i) and r(j) be the two outer 
ridge links of r; and let p and q be the two 
bicorns of C(n) defined by r(i) and r(j) (Figure 5) .  
Since p and q do not define an inner path, they 
must intersect in one and only one link ([2] and 
[5] above) which we will label c. Let c(i), c(i + 
1) and c(j), c(j + 1) be the outer channel links 
defined by the bicorns p and q. The link c de- 
fines a subnetwork K of C(n); the exterior links 
of this subnetwork are the channel links c(i + 
I), c(i + 2), . . . . c(j) and the magnitude of K i s  
therefore j - i. Since, by construction, the out- 
er ridge links r(i), r(j) are positioned “within” 
the bicorns p and q, that is, on either side of 
the channel link c, it follows that the corre- 
sponding outer ridge path r constitutes the 
open boundary of the area drained by the sub- 
network K. 

To summarize: there are exactly 2n - 1 outer 
ridge paths of R(n) that do not correspond to 
inner channel paths of C(n); instead, they dis- 
play a one-to-one relationship with the 2n - 
1 channel links. Each ridge path r that corre- 

sponds to a particular channel link c functions 
as the open boundary of the basin that is drained 
by the subnetwork having c as its outlet link. 

Drainage Areas Defined by 
Interlocking Ridge and 
Channel Paths 

Interlocking ridge and channel paths possess 
a peculiar property that is, at least at first glance, 
rather surprising. Their respective end points 
are spatially positioned in such a way that in 
combination the paths approximate a simply- 
closed curve that defines a particular drainage 
area. 

Without any loss in generality, we will assume 
that c i s  an outer channel path of C(n) and r i s  
c’s interlocking inner ridge path of R(n) (Figure 
4). Let u, v be the two (inner) end links of the 
path r, and c(i), c(j) the (outer) end links of the 
path c. According to item (5) above (p. 258), u 
defines a ridge bicorn; the channel link posi- 
tioned between the outer links of the bicorn 
is one of the two end links of c, say c(i). A similar 
statement holds for the end links v and c(j). If 
we connect u and c(i) as well as v and c(j) by 
following the lines of steepest descent from the 
bicorns to the end points of c(i), c(j) (see dotted 
lines in Figure 4), we create a singly closed line 
(r, c). This line delineates an area W that we call 
the drainage complex defined by the paths c, 
r; we call c and r the channel and ridge bound- 
aries of W, or simply its boundary paths, and 
use (c, r) as the symbol for the (open) complex 
boundary. 

Since the number of outer ridge links in a 
drainage complex i s  either equal t o  the number 
of outer channel links in the complex or else 
differs by one (item 6 below), we define the 
magnitude of a complex as the number of outer 
channel links it contains. This number i s  of 
course equal to the sum of the magnitudes of 
the channel networks draining the complex. 

The following statements describe selected 
properties of drainage complexes and their 
boundaries that are embedded within a given 
pair C(n), R(n) of interlocking ridge and channel 
networks: 

1. Each drainage complex i s  a closed catch- 
ment area in the specific sense that overland 
flow does not cross its boundary. 

2. Drainage basins constitute special cases of 
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drainage complexes. Let s(x) designate the link 
number of the path x, then the subset of all 
complexes W with boundary paths c, r for which 
s(c) = 0, is the set of all basins and subbasins of 
the channel network C(n). 

3. The intersection of two drainage com- 
plexes is  itself a complex. 

4. For a given pair of interlocking networks 
of magnitude n, the number of drainage com- 
plexes i s  equal to the number of paths of each 
network, (2n)(2n - 1)/2, plus the link number 
(2n - 1) of each network, or (n + 1)(2n - 1) in 
total. Hence, the ratio of drainage complexes 
to  drainage basins is n + 1. 

5. The channel networks draining the area of 
a complex W with boundary paths c and r form 
an ordered sequence and consist of all and only 
the networks which enter the channel path c 
from the side bordering W. An equivalent 
statement applies to the ridge networks in W 
and the ridge path r. 

6. The number of outer ridge links inside a 
drainage complex W with boundary paths c and 
r i s  equal t o  the number of outer channel links 
in W if r and c are intermediate paths; they 
differ by one if  r and c are a pair of inner and 
outer paths. 

The Topological length of 
Drainage Complex Boundaries 

In this and the following section we will: 

(1) assume that the topologies of ridge and 
channel networks are random in the spe- 
cific sense that all topologically different 
network configurations of equal magnitude 
are equally likely to  occur; 

(2) assume that the topology of any network i s  
independent of the topology of i t s  inter- 
locking network (except, of course, for their 
equal magnitude); 

(3) calculate the expected distributions of both 
the channel and ridge boundary link num- 
bers of magnitude k complexes; and 

(4) present empirical evidence that supports 
the assumption of the topological random- 
ness of interlocking networks but i s  incom- 
patible with the assumption of their topo- 
logic independence. 

Let W(k) be a drainage complex of magnitude 
k embedded in a pair of interlocking networks 

Figure 6. A pair of channel and ridge paths c, r 
delineating a drainage area (a “drainage complex”) of 
magnitude k. 

C(n), R(n) of magnitude n; let c and r denote 
the channel and ridge boundaries of W, and let 
L(c), L(r) be their respective topological lengths. 
We further define E(u, k, n) and E(v, k, n) t o  be 
the probabilities that the channel and ridge 
boundaries of the complex W(k) have, respec- 
tively, u and v links, or L(c) = u and L(r) = v. 
Without loss in generality we will assume that 
c i s  an inner channel path and r therefore an 
outer ridge path. A sketch of the complex W(k) 
is portrayed in Figure 6; for simplicity the parts 
of the networks C and R located outside of W 
have been omitted. 

As an inner path with u links, the channel 
boundary c contains a total of u + 1 inner nodes 
in which the remainder of the channel network 
C(n) is attached to  it in the form of u + 3 sub- 
networks. x of these enter c from the left side 
and constitute the set of all channel networks 
draining the complex W while the other u + 
3 - x subnetworks enter c from the right side 
and constitute the remainder of the channel 
network. The sequence in which the subnet- 
works of the left and right enter the channel 
path c is, of course, not fixed but has to allow 
for all possible permutations; the number of 
different arrangements i s  given by the binomial 
coefficient (u - 1) over (x - 2). The value (u - 
1) takes into account that of the total of u + 3 
subnetworks entering c ,  four join it in i t s  two 
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end nodes, with two merging from the left and 
two from the right side of c; for the same reason 
only x - 2 of the x subnetworks on the left of 
c are subject to permutation. In Figure 6 the 
magnitude k of the complex W i s  8, the link 
numbers u, v of the boundary paths of W are 
4 and 11 respectively, and the number x of 
subnetworks entering the channel path from 
the left side is 3. 

The x subnetworks draining the complex W(k) 
and entering c from the left have a combined 
magnitude k, whereas the combined magni- 
tude of the u + 3 - x subnetworks on the right 
i s  n + 1 - k (notice that i n  this graph- 
theoretical analysis the outlet link of C(n) is now 
one of the exterior links of the subnetworks 
joining c from the right). The number Z(i, n) of 
different ways in which n exterior links can 
combine so as to form i different networks is  

(Werner 197213); in particular, for the special 
case of i = 1 we get 

(2n - 1) 

Z(1, n) = (2) 2 n - 1 '  
a result reported earlier by Shreve (1966). Ap- 
plied to our case, it means that the channel 
network C(n) and the interlocking ridge net- 
work R(n) can both assume any of Z(l, n) dif- 
ferent topological configurations. 

Finally, it should be clear that the k exterior 
channel links of W can at most generate k dif- 
ferent subnetworks and that they must not 
generate more than u + 1 as that i s  the number 
of nodes of the channel path c. In addition they 
must generate at least two networks because c 
is an inner path. 

Aggregating these individual results, we can 
now give a mathematical formulation of the 
probability E(u, k, n) that the link number of 
the channel boundary of a complex of mag- 
nitude k embedded in interlocking networks 
of magnitude n and random topology i s  u: 

Z ( u + 3 - x , n + I - k )  

(: I ;) (3) 

(Slightly different formulations apply if c i s  an 
intermediate or outer path; the derivation of 
the function E for the latter is sketched out later 
in this section.) 

Many empirical studies of natural drainage 
networks actually deal with subnetworks of 
much larger networks whose magnitude, for a 
variety of research purposes (including those 
of the last part of this paper), can be assumed 
to approach infinity. It i s  for this reason that we 
need to establish the mathematical expression 
of E(u, k, n) where n 4 a. Whereas the deri- 
vation of (3) above provides at  least some insight 
into the mathematical analysis of drainage net- 
works, the case for networks of infinite mag- 
nitude relies essentially on abstract combina- 
torial arguments; thus, for this paper, 
presentation of the key results together with 
sketches of some of the proofs may be suffi- 
cient. 

Using equation (1) it i s  easy to verify that Z(i, 
n) satisfies the recursive relationship 

Z(i, n) = Z(i - 1, n) - Z(i - 2, n - 1) (4) 

Repeated application of (4) allows us to express 
Z(i, n) in terms of Z(l, x): 

I eVPn ( 3 -  2)/Z 
I odd ( I  1)/2 

Z(i, n) = z (-IP.Z(I, n - x) 
X=O 

(5) 

Applying Stirling's approximation for binomial 
coefficients to the ratio Z(1, n - x)/Z(I, n)yields 

Z(1, n - x) 1 
(6)  

Substituting (6) into ( 5 )  and dividing by Z(1, n) 
results in 

- _ -  
Z(1, n) n - _  22x 

I ?"en-(, L ) / 2  
I odd (I l ) /Z  

= 2 (-1p 
x -0 

Notice that the function S(i) is recursive: 
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S(i - 1) 1 
S(i) = __ + F  2 

so that, through mathematical induction, we 
obtain for n approaching infinity, 

(9) 

Combining equations (3) and (9) gives us the 
desired result (desired in as much as it permits 
the calculation of numerical values of E for n 
approaching infinity; we have not been suc- 
cessful in transforming the right side of (10) into 
a closed expression): 

I 
Z(i, n)/Z(l, n) = 

Mi"("+ 1.k) 

W, k, n) = 2 Z(x, k) 
x = 2  

n-.LL 

u + 3 - x  u - I  
22"" x (x - 2) ( lo)  

A line of reasoning parallel to the derivation 
of the probability E(u, k, n) of equation (3) gen- 
erates the probability E(v, k, n) that the link 
number of the (outer) ridge boundary r of the 
drainage complex W(k) is v: 

A - 2  k )  
I 

E(u, k, n) = - 
Z(1, n) 2 

x l  

.Z(v - 1 - x, 

n - 1 - k)(V - I) (11) 
x - 2  

and therefore 

, 2 2 k + v  - - x x(v ; I) (12) 

By assumption the topologies of interlocking 
networks are independent. Consequently, the 
probability E(u, v, k, 00) that a randomly chosen 
drainage complex of magnitude k embedded 
in a pair of interlocking networks of infinite 
magnitude has channel and ridge boundaries 
of u and v links respectively, i s  the product of 
the individual probabilities; 

E(u, v, kr CO) = E(u, k, CO)E(V, k, GO) (13) 

The field of probabilities E(u, v, k, CO) for vari- 
able values u and v i s  shown in Figure 7; the 

magnitude of the drainage complex W is k = 
25 and the magnitudes of the interlocking net- 
works C and R approach infinity. 

Strictly speaking the probability field is, of 
course, discrete, with positive values for pairs 
of integers (u, v) where u 2 0 and v 2 3, and 
zero everywhere else. The special case of u = 
0 refers to the common drainage basin delin- 
eated by a ridge path; the special case of v = 3 
refers to a drainage complex whose ridge 
boundary (here an outer path) i s  of minimum 
topological length. Each of the two sets of ridges 
(those within and those without the complex) 
merge into a single subnetwork which enters 
the ridge boundary of the complex in a single 
node, thus producing an outer ridge boundary 
of three links. 

The reasons that (u, v) pairs of equal proba- 
bility approximate circles are the assumed in- 
dependence and the mathematical equiva- 
lence of the distributions E(u, k, a) and E(v, k, 
GO); the skewness of these two distributions(re- 
sulting from the non-negativity of their re- 
spective domains) explains why the circles are 
not quite concentric. It follows that for large 
values of k the probability distribution E(u, v, 
k, CO) will essentially be bell-shaped. 

Test Results 

To reduce the influence of external deter- 
minants on the topology of natural interlocking 
networks, data were sampled from an area in 
Eastern Kentucky that shows a relatively con- 
stant distribution of major geologic and cli- 
matic parameters (U.S.G.S. 1:24,000 topograph- 
ic map, Kermit Quadrangle; for details see 
Krumbein and Shreve 1970). 

Natural channel and ridge network data were 
sampled to test two hypotheses: 

(1) that the observed frequency distributions 
of channel and ridge link numbers in in- 
terlocking network paths are compatible 
wi th  Shreve's random topology model 
(1966); and 

(2) that the link numbers of the two boundary 
paths of a drainage complex depend only 
on the complex magnitude and are other- 
wise independent of each other. 

With regard to  channels, hypothesis (1) con- 
stitutes a special case of the more comprehen- 
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Figure 7. Probability field for pairs of interlocking channel and ridge paths with u and v links respectively; the 
paths delineate drainage complexes of magnitude k = 25 embedded in interlocking networks of random topology 
and infinite magnitude. 

sive hypothesis that natural channel networks 
possess a random topology. While there i s  a 
large body of empirical tests that tends to sup- 
port this hypothesis at least at the aggregate 
level, systematic deviations were discovered 
early on ( e g ,  James and Krumbein 1969; How- 
ard 1971; for a review and critique see Abra- 
hams 1984 and Abrahams and Mark 1986). For 
our purpose the network parameters derived 
from the concept of randomness will serve as 
a benchmark against which sample data can be 
numerically compared. 

The frequency distribution F(u) of fifty ob- 
served inner channel paths, by number of links 
u, that were sampled at  random, are shown in 
Figure 8a. Each path forms the channel bound- 
ary of a drainage complex of magnitude k = 15. 

Superimposed is  the distribution as expected 
on the basis of random network topology 
(equation 10). With chi square = 9.15 and 10 
degrees of freedom, the data are quite corn- 
patible with the hypothesis. 

There are only a few bodies of data on the 
topology of interlocking ridge networks and, 
in particular, the link number distributions of 
their paths (Werner 1972a, 1982). They all in- 
dicate that, in the absence of environmental 
controls, the topological behavior of ridge net- 
works i s  principally the same as that of channel 
networks, viz., that the random model consti- 
tutes a good approximation, at least for the pa- 
rameters sampled. The ridge data sampled for 
this paper consist of the link numbers v of the 
outer ridge paths that interlock with the chan- 
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Figure 8. Expected and observed link number dis- 
tributions of channel and ridge paths delineating 
drainage complexes of magnitude k = 15 in inter- 
locking networks of infinite magnitude. 

nel paths used for testing the first part of hy- 
pothesis (1). Their frequency distribution F(v) is  
shown in Figure 8b, together with the corre- 
sponding theoretical distribution of expected 
values (equation 12). Once again, with chi 
square = 8.02 and 10 degrees of freedom, the 
data are clearly compatible with the second 
part of the hypothesis. Caution must be exer- 
cised in accepting this statement because the 
sampling procedure itself might contain a ran- 
dom bias (see above, p. 256). 

Hypothesis (2) which implies the topologic 
independence of interlocking networks i s  firm- 
ly rejected by the data. Scatters of the topo- 
logical lengths of channel and ridge boundaries 
of 50 randomly selected drainage complexes of 
magnitude 5 and 15 respectively are shown in 
Figures 9 and 10. 

“Regular” drainage basins (u = 0) are shown 
as circles; their positions in the scatter provide 
empirical support for the theoretical argument 
presented earlier that drainage basins consti- 
tute the limiting case for the “continuum” of 
drainage complexes. 

Superimposed are the corresponding prob- 
ability distributions based on the assumptions 
of topological randomness and independence 
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Figure 9. Probability field for pairs of interlocking 
channel and ridge paths with u and v links respec- 
tively; the paths delineate drainage complexes of 
magnitude k = 5 that are embedded in interlocking 
networks of random topology and infinite magni- 
tude. Superimposed are the link numbers (u, v) of 
the boundary paths of 50 observed drainage com- 
plexes of magnitude 5. 

of the networks in which the complexes are 
embedded (equation 13, which is the product 
of equations 10 and 12). Unlike these nearly 
bell-shaped fields of theoretical probabilities, 
the observed data display a pronounced linear 
alignment along the line v = b - u, b being 
some constant. Apparently, for any given mag- 
nitude k the sum of the boundary ridge and 
channel links scatter fairly tightly around a mean 
value b. This point i s  clearly reiterated by Figure 
11 which compares the observed total link 
numbers (u + v) of drainage complex bound- 
aries with their theoretically expected distri- 
bution; all data refer to complexes of magni- 
tude 15. 

To examine the dependency of the approx- 
imate relationship u + v = b on the complex 
magnitude k, (u, v, k), triples of 40 drainage 
basin complexes were sampled at random, ex- 
cept for k which was chosen so as to provide 
representative coverage of the values between 
1 and 100. The plot of the number of boundary 
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Figure 10. Probability field for pairs of interlocking 
channel and ridge paths with u and v links respec- 
tively; the paths delineate drainage complexes of 
magnitude k = 15 that are embedded in interlocking 
networks of random topology and infinite rnagni- 
tude. Superimposed are the link numbers (u, v) of 
the boundary paths of 50 observed drainage com- 
plexes of magnitude 15. 

links, u + v, against the magnitude k is por- 
trayed in Figure 12. Superimposed are selected 
percentile zones of the expected distribution 
based on the assumption of topological inde- 
pendence between interlocking networks. 
Clearly, neither the median nor the percentile 
distribution of the observed values are com- 
patible with this assumption. At least for the 
sampling domain the data demonstrate that, for 
any given complex magnitude k, the number 
of boundary links tend to  approximate a con- 
stant value b; that b increases monotonically 
with k, and that, except for small values of k, 
this increase is distinctly steeper than the me- 
dian of the expected distribution. 

The following are possible causes for the dis- 
crepancies between the expected and ob- 
served distributions: 

(1) While u + v represents the link number 
of the boundary of a drainage complex, the 
magnitude k is positively correlated with the 
number of channel links enclosed and there- 

fore with the area of the complex. Even under 
very weak assumptions about the geometric 
length distributions of the ridge and channel 
links in the study area, the minimum number 
of boundary links required to encircle a given 
area must increase with area size. Thus, as the 
magnitude k increases, an increasing number 
of theoretically possible u + v values are im- 
possible in natural terrains because the mini- 
mum possible length of a boundary is  depen- 
dent on the size of the area enclosed. 

(2) For equivalent reasons, large values of (u + 
v) for given k imply drainage complex areas with 
wildly meandering boundaries. Assuming again 
environmentally uniform conditions, the com- 
petition between adjacent drainage networks 
for a fixed amount of space available and the 
basin area adjustments brought about by stream 
capture preclude such extreme basin shapes. 

(3) The cause for the discrepancy between 
observed values of (u + v) and the expected 
median for other than small k values might lie 
in a combination of (1) and (2). The first may 
have a larger impact than the second, thus 
pushing the observed median above the ex- 
pected value. 

Summary, Concluding Remarks 

What can geographic research tell us about 
ridge patterns when the corresponding pat- 
terns of channels are known? Or, to phrase it 
differently: 

How much of the geometric and topologic 
properties of ridge networks can be accounted 
for by the properties of the channels separating 
and surrounding them? 

Even though the formal and functional ridge/ 
channel dependency is  obvious, there i s  pres- 
ently no methodological framework capable of 
expressing one in terms of the other (one ex- 
ception being Abrahams’s [I9801 work referred 
to  earlier). This paper constitutes an effort to 
provide such a methodology and to demon- 
strate i t s  capability by deriving several relations 
and functions that tie parameters of ridge net- 
works to those of channels. A number of graph- 
theoretic results are simply mathematical con- 
sequences of the way ridges and channels are 
defined in this paper. Substantive test results 
include the rejection of the hypothesis that in- 
terlocking ridge and channel networks are to- 
pologically independent and the demonstra- 
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Figure 11. 
delineating drainage complexes of magnitude k = 15. 

Observed and expected distributions of the combined link numbers of the channel and ridge paths 

tion of a close functional dependence between 
the link numbers of ridge and channel paths. 
The conceptual approach and the two types of 
results are summarized below. 

A. The formal definition of interlocking ridges 
identifies them as a function of channels, thus 
providing an axiomatic base for interlocking 
ridge and channel networks. As defined here 
the network of interlocking ridges is  embed- 
ded in the network of all ridges. While the latter 
can be established without reference to  chan- 
nels, the former associates a single outer ridge 
link with each pair of neighboring outer chan- 
nel links, that is, with each undissected hilltop 
area. The particular definition of interlocking 
ridge and channel networks makes them tri- 
valent planar trees of equal magnitude and 
linked by a symmetrical relation (and, very im- 
portantly, not in approximation but exactly). 
Hence, all theorems derived for interlocking 
networks apply to  those delineated on maps 
completely and unequivocally without the need 
of empirical tests (just as one would not test 

the statement that the magnitude of a channel 
network is the sum of the magnitudes of its 
subnetworks). Note that the deduced interre- 
lationships between channels and ridges hold 
only in approximation if  we study correspond- 
ing ridge and channel networks in general 
(Werner 1972c), that is, without the assumption 
of equal magnitude and alternating outer links. 

The close interdependency between inter- 
locking networks becomes apparent from the 
following relations: 

-with each channel link there i s  associated 
exactly one outer ridge path; this path cor- 
responds to  the boundary of the drainage 
area of the channel subnetwork defined by 
the channel link; 

-to each inner (outer) channel path there cor- 
responds exactly one outer (inner) ridge path; 
together the two paths define an area called 
a drainage complex. This area is  hydrologi- 
cally closed in the specific sense that the only 
channel subnetworkscontained in it are those 
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Figure 12. Observed link number (u + v) of ridge and channel paths delineating a drainage complex, as a 
function of complex magnitude k. Superimposed are median and percentile zones of expected distribution 
assuming topologic independence of interlocking networks. 

entering the channel path from itsside facing 
the ridge path; 

-interlocking networks are dual structures. 
Thus, if the dual concepts of channel and 
ridge are exchanged in the preceding state- 
ments, the result will be new (dual) state- 
ments of equal validity. 

B. Analyzed separately, the observed link 
numbersof interlocking ridge and channel paths 
exhibit distributions for which the assumption 
of randomness provides a fairly good descrip- 
tion. But analyzed together, they do not follow 
a chance distribution; rather, their sum ap- 
proximates a constant value i f  the magnitude 

of the complexes they define i s  kept constant. 
If complex magnitude is treated as an inde- 
pendent variable, then the sum of the link 
numbers of interlocking paths approximate a 
monotonic function of the associated complex 
magnitudes. At least within the domain ex- 
amined here, the function matches the median 
of the expected distribution only for small val- 
ues of complex magnitude, displaying a grow- 
ing positive deviation as the magnitude in- 
creases. 

If channel links are used as a surrogate for 
channel link areas and path link numbers for 
geometric path lengths, then the observed re- 
lations can be tentatively interpreted as the re- 
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sult of geometric and geomorphic  constraints, 
t h e  first imposing minimum requirements o n  
t h e  perimeter of any given area, and t h e  second 
referring t o  t h e  competition for space between 
channel networks under  environmentally uni- 
form conditions. 

Further comments: 
(1) Limitations of t h e  p r e s e n t  a p p r o a c h :  

Keeping in mind that t h e  definition of inter- 
locking ridges corresponds only t o  a particular 
subset of all ridges that p roduce  contour  cren-  
ulations o n  topographic maps, it permits t h e  
precise topologic description and analysis of 
interlocking networks. Also, for geometric d e -  
scription and analysis t h e  approach is suitable 
only at t h e  macro-level, that is, above t h e  level 
of undissected terrain between neighboring 
outer  channel links. The definition of inter- 
locking ridge networks correctly identifies t h e  
ridge paths forming t h e  drainage basin bound-  
aries of a given channel network and its sub- 
networks, except  for t h e  e n d  links of these 
paths. At t h e  level of interbasin areas and their 
delineation, t h e  definition either fails to rec- 
ognize ridges or  misidentifies them. 

(2) The duality be tween ridge and channel 
patterns puts t h e  particular physical phenom-  
e n o n  of a ridge line at least formally o n  an equal 
footing with t h e  drainage channel. From an ap- 
plied standpoint, it is reasonable that channels 
have been  t h e  subject of many more  investi- 
gations than ridges; asa consequence, their form 
and their change over time is much bet ter  
understood. From a purely academic view- 
point, ridges should command a similar level 
of a t t e n t i o n .  Frequent ly ,  t h e y  a r e  equal ly  
prominent  landscape features; they have their 
own longitudinal and  cross-sectional profiles, 
and they change over time as a consequence  
of specific geomorphic  processes. 

(3) The development  of ridge lines is inti- 
mately linked t o  that of t h e  adjacent drainage 
channels, but  in ways that a re  not  yet under-  
stood in any detail. This paper has been  an ef- 
fort t o  identify some of t h e  formal linkages that 
exist between t h e  connectivity patterns of 
channels and ridges. It will b e  t h e  subject of a 
future study t o  establish, in a parallel fashion, 
spatial linkages that pertain between t h e  t w o  
patterns. 

The accurate description of ridges in three  
dimensions as a function of t h e  neighboring 
channels will n o  doubt  b e  a matter of approx- 
imation at best, and then only under  rather 

restrictive conditions. There is every reason t o  
believe that t h e  residuals of such modeling ef- 
forts in particular localities will help in t h e  iden- 
tification of local geomorphic  factors that con-  
trol slope and ridge development  beyond that 
exercised by channel erosion. 
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