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ABSTRACT OF THE DISSERTATION

Template Matching and Texture Segmentation: Theory, Methods and Algorithms

by

Lin Zheng

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2021

Professor Ery Arias-Castro, Chair

Template matching, as an important topic in image processing, is the process of matching

a clean and noiseless template to an observed, typically noisy signal. This topic is closely related

to the problem of matching two or more noisy signals, sometimes referred to as ‘aligning’ or

‘registering’ the signals, and to methodology in spatial statistics falling under the umbrella name of

‘scan statistic’. When the template has a point of discontinuity, matching a template to the signal

can be interpreted as detecting the location of the discontinuity, a more specialized task more

broadly referred to as ‘change-point detection’ in statistics. In Chapter 2, we study a standard

mathematical model for matching a template to a noisy signal by M-estimation. While the

most popular method may still be based on maximizing the (Pearson) correlation, the estimators

xiii



we study can be made much more robust to heavy-tailed noise or the presence of outlying

observations. We draw on standard empirical process theory and decision theory, as expounded

in [VdV98], to derive limit distributions and minimax convergence rates of M-estimators in a

wide array of situations. In Chapter 3, we suggest a rank-based method for matching a template

to a noisy signal, and study its asymptotic properties using some well-established techniques in

empirical process theory combined with Hájek’s projection method. The resulting estimator of

the shift is shown to achieve a parametric rate of convergence and to be asymptotically normal.

Texture segmentation, as another crucial role in image processing, is the process of

partitioning the image into differently textured regions. In Chapter 4, we present our related work

on texture segmentation. We provide some theoretical guarantees for the prototypical approach

which consists in extracting local features in the neighborhood of a pixel and then applying a

clustering algorithm for grouping the pixel according to these features. The proposed algorithms

work on both stationary and non-stationary random fields.
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Chapter 1

Introduction

1.1 Template matching

A basic task in signal processing is the matching of a template, aka filter or pattern, to a

noisy signal [Bru09, Tur60]. There has been an extensive amount of research in this very broad

area, as applications are many, from locating blood vessels and tumors in medical imaging to

more sophisticated tasks such as locating a human face or ‘recognizing’ objects like cars in

images [HL01, BMP02, Low99, SWP05].

While the literature on template matching is very large on the side of methodology and

applications [ZF03, HH01, SDP13], there is a sizable literature that develops theory for such

problems. We note that the signals are typically smoothed before the alignment is carried out, and

that the Fourier transform plays an important role, and the noise is often assumed to be Gaussian

or to have sub-Gaussian tails. This is in contrast to our setting in which no smoothing is used and

the Fourier transform plays no role. We consider the following model for template matching,

Yi = f (Xi−θ
∗)+Zi, i = 1, . . . ,n, (1.1)

1



where f ∶R→R is a known function referred to as the template, and θ∗ ∈R is the unknown shift of

interest. The noise Z1, . . . ,Zn are assumed iid with density φ. We work with minimal assumptions

on the noise distribution. We mention a more recent line of work on this problem which focuses

on more complex and noisy settings arising in applications such as cryo-electron microscopy

[PWB+19, WS13, PWBM18].

Our goal is, in signal processing terminology, to match the template f to the signal Y ,

which in statistical terms consists in the estimation of the shift θ∗. We consider an M-estimator

defined implicitly as the solution to the following optimization problem

θ̂ ∶= argmin
θ

n
∑
i=1

L(Yi− f (Xi−θ)), (1.2)

where L is a loss function chosen by the analyst. Popular choices are

1. Squared error loss

L(y) = y2. (1.3)

2. Absolute-value loss

L(y) = ∣y∣. (1.4)

3. Huber loss

L(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2y2 if ∣y∣ ≤ c,

c∣y∣− 1
2c2 if ∣y∣ > c.

(1.5)

4. Tukey loss

L(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−(1−(y/c)2)3 if ∣y∣ ≤ c,

1 if ∣y∣ > c.
(1.6)

Besides M-estimators for template matching, we also consider estimators based on ranks.

Rank-based methods are, of course, classical in statistics [ŠSH99, HM10, Leh06, GC11]. The

2



theory of rank tests is particularly well-developed, featuring some prominent methods such as

the Wilcoxon/Mann–Whitney and Kruskal–Wallis two- and multi-sample tests, and essentially

all (other) distribution-free tests for goodness-of-fit such as the Kolmogorov–Smirnov test, and

more closely related to our topic here, the Spearman and Kendall rank correlation tests for

independence. The theory of rank-based estimators is also well developed, although perhaps

not as well-known [HM10]. The most famous example may be the Hodges–Lehmann estimator,

which is derived from the Wilcoxon signed-rank test. In multiple linear regression, the asymptotic

linearity and resulting normality of certain rank-based estimators is established in a number

of publications [Jur71, HW88, KM93, GKS96, Dra88]. Closer to our setting, some papers

consider the use of ranks for the detection and/or localization of one or multiple change-points

[Dar76, GH98, Huš97, LYFLLC15, Ger18, WWZ20, ACCTW18].

Rank-based estimators go by the name of R-estimators in the statistics literature. In our

setting, for matching the template f to the signal Y , the most direct route to such an estimator is

to replace the response values with their ranks, yielding

θ̂rank ∶= argmax
θ

n
∑
i=1

Ri f (xi−θ), (1.7)

where Ri denotes the rank of Yi in {Y1, . . . ,Yn} in increasing order.

1.2 Texture segmentation

We address the problem of texture segmentation, which fits within the larger area of image

segmentation, with a particular focus on images that contain textures. The goal is to partition

the image, i.e., group the pixels into differently textured regions. At least in recent decades,

texture segmentation methods are almost invariably based on extracting local features around each

pixel, such as SIFT [Low99], which are then fed into a clustering algorithm, such as k-means.

An emblematic approach in this context is that of [SM00], who used the pixel value as feature,
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arguably the simplest possible choice, and applied a form of spectral clustering to group the

pixels.

On the one hand, the process of extracting features has undergone some important changes

over the years, ranging from Gabor filters or wavelets, multi-resolution or multiscale aggregation

approaches, to the use deep learning. In this thesis, we extract features by collecting local second

moment information on patches. We do so in a stylized setting which is nonetheless a reasonable

mathematical model for the problem of texture segmentation. Markov random fields (MRF) are

common models for textures [CJ83, GG86], and arguably the most popular in theoretical texture

analysis [RH05, ACBLV18, Ver10a, Ver10b, VV09]. This is the model that we use. Although

supplanted by the more recent feature extraction methods mentioned above, which in recent

years are invariably nonparametric, Gaussian MRF in particular remain the most commonly-used

parametric model for textures, also used in the development of methodology not too long ago

[CC85, ZWM98, MC91, PS06]. When textures are modeled by stationary Gaussian MRF, what

characterizes them is the covariance structure, so that in congruence with adopting Gaussian MRF

as models for textures, when assumed stationary the feature we extract is the (local) covariance.

When textures are not assumed stationary, we also incorporate location as an additional feature,

as the covariance structure may change within a textured region.

On the other hand, the basic approach calls for applying a clustering algorithm to the

extracted features. Features are typically represented by (possibly high-dimensional) feature

vectors, as is the case with the features that we work with, and thus a large number of clustering

methods are applicable, some of them coming with theoretical guaranties such as k-means

[AV07], Gaussian mixture models [Das99, VW04, HK13], hierarchical clustering [DL05, Das10],

including single-linkage clustering [AC11], and spectral clustering [NJW02]. In this work, we

use k-means in the context of stationary textures and singe-linkage clustering in the context of

non-stationary textures.
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1.3 Thesis structure

The dissertation is organized as follows. In Chapter 2, we consider the fundamental

problem of matching a template to a signal. We do so by M-estimation, which encompasses

procedures that are robust to gross errors (i.e., outliers). Using standard results from empirical

process theory, we derive the convergence rate and the asymptotic distribution of the M-estimator

under relatively mild assumptions. We also discuss the optimality of the estimator, both in finite

samples in the minimax sense and in the large-sample limit in terms of local minimaxity and

relative efficiency. Although most of the paper is dedicated to the study of the basic shift model

in the context of a random design, we consider many extensions towards the end of the paper,

including more flexible templates, fixed designs, the agnostic setting, and more.

In Chapter 3, we continue to focus on the problem of matching a template to a noisy signal.

Motivated by some recent proposals in the signal processing literature, we suggest a rank-based

method and derive asymptotic (normal) limit distribution of the R-estimator by empirical process

theory and Hájek’s projection method. The rate of convergence for our R-estimator is shown to

be parametric and minimax optimal. Some numerical simulations corroborate these findings.

In Chapter 4, we address the problem of texture segmentation using approaches via

extracting local features and clustering, which facilitates a sharp analysis by leveraging the rich

theory on clustering. On the one hand, for stationary textures, which we model with Gaussian

Markov random fields, we construct the feature for each pixel by calculating the sample covariance

matrix of its neighborhood patch and cluster the pixels by an application of k-means to group

the covariance matrices. We show that this generic method is consistent. On the other hand,

for non-stationary fields, we include the location of the pixel as an additional feature and apply

single-linkage clustering. We again show that this generic and emblematic method is consistent.

We complement our theory with some numerical experiments performed on both generated and

natural textures.
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Chapter 2

Template Matching and Change Point

Detection by M-estimation

2.1 Introduction

Scan statistic In statistics, template matching problem has been considered in different

variants. Such is the literature on the scan statistic [GB12, GPW09, GNW01], where the focus

has been on the detection of the presence of the filter somewhere in the noisy signal, rather than

the estimation of its location (when present), for which theory has been developed, including first-

order performance bounds [Wal10, DMM03, ACDH05, ACCD11, ACCTW18] with a minimax

decision theory perspective, as well as more refined results studying and even establishing the

limit distribution [NW04, PGKS05, GZ04, WG14, HP06, PWM18, KMW20, SAC16]. Some of

this has some nontrivial intersections with the study of the maximum of various types of random

walks and similar processes [Sha95, Jia02, BK06, SV95, Kab11]. In this literature, there are

comparatively very few papers that tackle the problem of estimating the location of the template:

[JCL10] establish a consistency result for the location of very short intervals, while [Kou17]
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shows that the scan statistic is, as a location estimator, consistent near the signal-to-noise ratio

required for mere detection.

Change point detection Discontinuities are features of great importance in practice,

and it is no coincidence that the template that is most often considered in the scan statistic

literature is the indicator of an interval — or multiple intervals as in [JCL10, HJ10, FMS14]

— or a rectangle or other shape as in [ACCD11, Wal10]. A discontinuity is sometimes called

a change point, and there is also a large body of work in that area. While some of the work

on change point detection happens under the umbrella of sequential analysis where data are

streaming in [Sie13], what we are discussing here is most closely related to the ‘offline’ or ‘a

posteriori’ setting where all data are readily available [TOV20]. This spans, in itself, a very

large literature [CG11, CH97, BD13, BN93]. First-order performance bounds are available, for

example in [FMS14, HS10], but distributional limits are more scarce, at least when it comes to

the location of the discontinuities. [Hin70] derives the asymptotic distribution of the maximum

likelihood ratio when everything else about the model is known. [YA89] obtain the asymptotic

distribution of the least squares estimator of a piecewise constant signal, and this is extended to

other U-type statistics in [Dör11, Mau18, Fer01, Bai97]. [Fer94, D9̈1] consider estimating the

location of a change of distribution in a sequence of random variables. We note that all this work

is done in the context of a deterministic design corresponding to a regular grid (as in a signal

processing setting).

Alignment The problem of matching a (clean/noiseless) template to a signal is closely

related to the problem of matching two or more noisy signals, sometimes referred to as aligning

or registering or synchronizing the signals. While this literature is also very large on the side of

methodology and applications [ZF03, HH01, SDP13], there is a sizable literature that develops

theory for such problems. Some of these theoretical developments were made in the context of

functional data, which is where in statistics such problems are most prominent, and where the

problem is sometimes called ‘self-modeling’ or ‘shape invariant modeling’ [LSM72]. In this
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context, consistency results and/or rates of convergence are obtained in [KG88, KG92, WG99],

while distributional limits are derived in [HM90, GLM07, BGV09, TIR11, KE95], and also in

[Vim10], where questions of efficiency are considered in a semi-parametric model were only

smoothness assumptions are made on the common ‘shape’. [CD12, CD15] consider a hypothesis

testing problem in that setting. We note that the signals are typically smoothed before alignment,

and that the Fourier transform plays an important role, and the noise is usually assumed to be

Gaussian or to have sub-Gaussian tails, while in our setting, no smoothing is used and the Fourier

transform is not included, and we work with minimal assumptions on the noise distribution.

2.1.1 Model

We assume a regression model with additive error

Yi = f (Xi−θ
∗)+Zi, i = 1, . . . ,n, (2.1)

where f ∶ R→ R is a known function referred to as the template, and θ∗ ∈ R is the unknown

shift of interest. The design points X1, . . . ,Xn are assumed to be iid with density λ. The noise

or measurement error variables Z1, . . . ,Zn are assumed iid with density φ, and independent of

the design points. Note that in this model (X1,Y1), . . . ,(Xn,Yn) independent and identically

distributed.

Assumption 1. We assume everywhere that f is compactly supported and, for convenience, càdlag

with none or finitely many discontinuities. In particular, f is bounded. And to make sure the

shift parameter is identifiable, we also assume that, for any θ ≠ θ∗, f (⋅ −θ) ≠ f (⋅ −θ∗) on a set of

positive measure under λ, or equivalently, ∫ ( f (x−θ∗)− f (x−θ))2λ(x)dx > 0 whenever θ ≠ θ∗.

Assumption 2. We assume everywhere that λ is compactly supported.

Assumption 3. We assume everywhere that φ is even, so that the noise is symmetric about 0.

The assumption that the template and the design density both have compact support is

8



for convenience — although it already applies in most of the settings encountered in practice.

It allows us to effectively restrict the parameter space to a compact interval of the real line.

Indeed, take A large enough that f and λ are both supported on [−A,A]. Then the model (2.1) is

effectively parameterized by θ ∈ [−2A,2A] as the model is the same, namely Yi = Zi, whenever θ

is outside that interval. The assumption that the noise is symmetric is not needed everywhere, but

already covers interesting situations.

2.1.2 Goal and methods

In signal processing terminology, we focus on matching the template f to the signal Y ,

which in statistical terms consists in the estimation of the shift θ∗. We consider an M-estimator

defined as follows

θ̂ ∶= argmin
θ

n
∑
i=1

L(Yi− f (Xi−θ)), (2.2)

where L is a loss function chosen by the analyst. A popular choice is the squared error loss,

L(y) = y2, which defines the least squares estimator

θ̂ ∶= argmin
θ

n
∑
i=1

(Yi− f (Xi−θ))2. (2.3)

This is the maximum likelihood estimator when the noise distribution is Gaussian. Another

popular choice is the absolute-value loss, L(y) = ∣y∣, which defines the least absolute-value

estimator

θ̂ ∶= argmin
θ

n
∑
i=1

∣Yi− f (Xi−θ)∣. (2.4)
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This is the maximum likelihood estimator when the noise distribution is Laplace. Other popular

losses include the Huber loss and the Tukey loss. The Huber loss is of the form

L(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2y2 if ∣y∣ ≤ c,

c∣y∣− 1
2c2 if ∣y∣ > c.

(2.5)

Like the squared error and absolute-value losses, this loss is even and convex. The Tukey loss is

of the form

L(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−(1−(y/c)2)3 if ∣y∣ ≤ c,

1 if ∣y∣ > c.
(2.6)

The Tukey loss is also even, but not convex as it is in fact bounded. In both cases, c ≥ 0 is a

parameter traditionally chosen to maximize the efficiency of the estimator relative to the maximum

likelihood estimator under a particular noise distribution (often Gaussian).

Assumption 4. We assume everywhere that L is non-negative, even, non-decreasing on away

from the origin, and because these are the losses used in practice, we also assume that L is either

Lipschitz or has a Lipschitz derivative. (We obviously assume that L is not constant.)

Remark 1. If in addition c ∶= ∫ exp(−L(z))dz <∞, then φ(z) ∶= c−1 exp(−L(z)) satisfies Assump-

tion 3, and θ̂ in (2.2) is the maximum likelihood estimator when this is the noise distribution.

This additional condition is for example fulfilled when the loss is even and convex.

2.1.3 Content

Our focus will be on a generic M-estimator and its asymptotic properties (as n→∞).

In Section 2.2, we establish the consistency of the M-estimator under mild assumptions. In

Section 2.3, we consider the ‘smooth setting’, which corresponds here to the case where the

template is Lipschitz. We obtain distributional limits and convergence rates in
√

n, and discuss

some optimality properties: local asymptotic minimaxity, relative efficiency, and finite-sample
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minimaxity. See Figure 2.1(a) for an illustration. In Section 2.4, we consider the ‘non-smooth

setting’, which in particular includes the case where the template is discontinuous. Similarly, we

obtain the limit distribution and the convergence rate, which is in n when the template is piecewise

Lipschitz with at least one discontinuity. See Figure 2.1(b) for an illustration. In Section 2.5 we

consider more flexible models for which we derive similar results. In Section 2.6, we discuss a

number of variants and extensions, including the setting where the design is fixed. In Section 2.7,

we present the result of some numerical experiments, which are only meant to probe our theory

in finite samples.
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(a) When the template is Lipschitz, and the other
model components satisfy some mild assumptions,
the model is ‘smooth’. The M-estimator is

√
n-

consistent and asymptotically normal.
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(b) When the template is piecewise Lipschitz with
at least one discontinuity, and the other model
components satisfy some mild assumptions, the
M-estimator is n-consistent and its asymptotic dis-
tribution, although not well-defined, is essentially
the minimum of a marked Poisson process.

Figure 2.1: Two emblematic templates: a Lipschitz template on the left representing a ‘smooth’
setting, and a piecewise Lipschitz template on the right representing a ‘non-smooth’ setting.

2.2 Consistency

Having chosen to work with a particular loss function L, define

mθ(x,y) ∶= L(y− f (x−θ)), (2.7)
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so that the estimator in (2.2) can be equivalently defined via

θ̂n ∶= argmin
θ

M̂n(θ), M̂n(θ) ∶= 1
n

n
∑
i=1

mθ(Xi,Yi), (2.8)

where we have added the subscript n to emphasize that the estimator is being computed on a

sample of size n. So that we can carry out a large-sample analysis, we require that

E[mθ(X ,Y)] <∞, for all θ, (2.9)

where (X ,Y) is a generic observation and E is the expectation with respect to the distribution of

(X ,Y) under θ∗, the true value of the shift. Under Assumption 1 and Assumption 4, the following

can be seen to be sufficient

E[L(Z)] <∞, (2.10)

where Z is a generic noise random variable. For the squared error loss, the requirement is that the

noise distribution have a finite second moment, while for the absolute-value and the Huber losses,

the requirement is that the noise distribution have a finite first moment, and the requirement is

automatically fulfilled when the loss is bounded. When (2.9) holds, M̂n(θ) has a well-defined

expectation under θ∗ given by

M(θ) ∶=E[mθ(X ,Y)]. (2.11)

In particular, for any θ, M̂n(θ) converges to M(θ) in probability by the law of large numbers,

and thus one anticipates that, under some additional conditions perhaps, θ̂n would converge to a

minimizer of M.

Assumption 5. M introduced in (2.11) is well-defined. Moreover, θ∗ is the unique minimum of M

and inf{M(θ) ∶ ∣θ−θ∗∣ ≥ δ} >M(θ∗) for every δ > 0.

With Assumption 3 and Assumption 4 in place, Assumption 5 is satisfied for the squared

error, absolute-value, and Huber losses, and also for the Tukey loss if in addition the noise
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distribution is unimodal. See Lemma 10.

Theorem 1 (Consistency). Under the basic assumptions, θ̂n is consistent for θ∗.

Proof. The requirements for applying [VdV98, Th 5.7] are (i) M takes its minimum at θ∗ and is

bounded away from its minimum at θ away from θ∗ — which is implied in Assumption 5; and

(ii) M̂n converges to M uniformly, meaning that

sup
θ

∣M̂n(θ)−M(θ)∣→ 0, n→∞, (2.12)

in probability — which is due to the fact that the function class {mθ ∶ θ ∈R} is Glivenko–Cantelli.

This latter property is essentially established in [VdV98, Ex 19.8], where the assumption of

continuity can be relaxed to continuity almost everywhere, which holds here by the fact that f

and L are at least piecewise continuous. [VdV98, Ex 19.8] works under the assumption that the

parameter space is compact, and this is effectively the case here.

2.3 Smooth setting

We start by analyzing the situation where f is Lipschitz. It turns out that, when this is the

case, under mild assumptions on the design and noise distributions as well as the loss function, the

situation is ‘standard’ for a parametric model in the sense that the M-estimator is
√

n - consistent

and asymptotically normal. In addition, the model is ‘smooth’ in the sense of being quadratic

mean differentiable [VdV98, Sec 5.5], which then implies that the maximum likelihood estimator

— which can coincide with the M-estimator as mentioned in Remark 1 — is locally asymptotic

minimax and efficient.

Remark 2. We remind the reader that a Lipschitz function is differentiable almost everywhere with

a bounded derivative, and that it is the integral of that derivative (i.e., it is absolutely continuous).

For such a function g, we will denote by g′ its derivative and by ∣g′∣∞ its Lipschitz constant
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(which bounds the derivative when it exists).

2.3.1 Asymptotic normality

We first consider a smooth loss, encompassing the squared error loss and the Huber loss,

among others.

Theorem 2. Suppose the basic assumptions are in place. Assume, in addition, that f is Lipschitz,

that λ is Lipschitz on an open set containing the support of f (⋅ −θ∗), and that L has a Lipschitz

first derivative. Unless L itself is Lipschitz, assume that the noise distribution has finite second

moment. Then
√

n(θ̂n−θ∗) is asymptotically normal with mean 0 and variance τ2, with

τ
2 ∶=

Cφ,L

E[ f ′(X −θ∗)2]
, Cφ,L ∶=

E[L′(Z)2]
E[L′′(Z)]2 . (2.13)

Remark 3. The assumption that λ is Lipschitz is not needed, as can be seen by using the approach

of Section 2.4. However, it makes for a particularly straightforward proof.

Proof. Assume θ∗ = 0 without loss of generality. In [VdV98, Th 5.23], the first condition is that

θ↦mθ(x,y) be differentiable at 0 for almost every (x,y), which is clearly the case here, as it is

differentiable with derivative

ṁθ(x,y) = f ′(x−θ)L′(y− f (x−θ)). (2.14)

If L itself is Lipschitz, we have

∣mθ1(x,y)−mθ2(x,y)∣ = ∣L(y− f (x−θ1))−L(y− f (x−θ2))∣ (2.15)

≤ ∣L′∣∞ ∣ f (x−θ1)− f (x−θ2)∣ (2.16)

≤ ∣L′∣∞ ∣ f ′∣∞∣θ1−θ2∣ (2.17)

=∶m(x,y)∣θ1−θ2∣. (2.18)
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Otherwise, we have

∣mθ1(x,y)−mθ2(x,y)∣ = ∣L(y− f (x−θ1))−L(y− f (x−θ2))∣ (2.19)

≤ ∣L′′∣∞ (∣y− f (x)∣+2∣ f ∣∞)∣ f ′∣∞ ∣θ1−θ2∣ (2.20)

=∶m(x,y)∣θ1−θ2∣. (2.21)

In the second inequality we used the fact that ∣y− f (x−θ)∣ ≤ ∣y− f (x)∣+ ∣ f ∣∞ for all θ and that

∣L′(y)∣ ≤ ∣L′′∣∞∣y∣ for all y since L′(0) = 0. In either case, E[m(X ,Y)2] <∞, so that the second

condition of [VdV98, Th 5.23] is satisfied.

The third condition in that theorem is that M(θ) admits a Taylor expansion of order two

at θ∗ with nonzero second order term. Our assumptions imply that we can differentiate once

inside the expectation defining M to obtain its first derivative. To see this, note that θ↦mθ(x,y)

has first derivative given by (2.14), which is dominated by ∣ f ′∣∞∣L′∣∞ if L is Lipschitz, and

by ∣ f ′∣∞∣L′′∣∞(∣y− f (x)∣+ 2∣ f ∣∞) otherwise, which is integrable in either case. Hence, M is

differentiable, with

M′(θ) =E[ṁθ(X ,Y)]

=E[ f ′(X −θ)L′(Y − f (X −θ))]

= ∫ ∫ f ′(x−θ)L′( f (x)− f (x−θ)+ z)φ(z)λ(x)dzdx

= ∫ ∫ f ′(x)L′( f (x+θ)− f (x)+ z)φ(z)λ(x+θ)dzdx.

Thus, by applying a simple change of variables we have transferred θ away from f ′ at the cost of

burdening λ. But our assumptions are exactly what we need to differentiate inside the integral,

since the integrand is differentiable with derivative

f ′(x){ f ′(x+θ)L′′( f (x+θ)− f (x)+ z)λ(x+θ)+L′( f (x+θ)− f (x)+ z)λ
′(x+θ)}φ(z), (2.22)
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which is dominated by

∣ f ′∣∞{∣ f ′∣∞∣L′′∣∞∣λ∣∞+ ∣L′∣∞∣λ′∣∞}φ(z), (2.23)

if L is Lipschitz, and otherwise by

∣ f ′∣∞{∣ f ′∣∞∣L′′∣∞∣λ∣∞+ ∣L′′∣∞(∣z∣+2∣ f ∣∞)∣λ′∣∞}φ(z), (2.24)

and this is integrable in either case. (Recall that λ is compactly supported.) Hence, M is indeed

twice differentiable, with

M′′(0) = ∫ ∫ f ′(x){ f ′(x)L′′(z)λ(x)+L′(z)λ
′(x)}φ(z)dzdx

= ∫ ∫ f ′(x)2L′′(z)λ(x)φ(z)dzdx

=E[ f ′(X)2]E[L′′(Z)],

because ∫
∞
−∞L′(z)φ(z)dz = 0 due to the fact that L′ is odd and φ is even.

The last condition in [VdV98, Th 5.23] is that θ̂n be consistent, which we have already

established in Theorem 1.

Therefore, [VdV98, Th 5.23] applies, and implies that
√

n(θ̂n −θ∗) is asymptotically

normal with mean 0 and variance
E[ṁ0(X ,Y)2]

M′′(0)2 , (2.25)

the latter reducing to (2.13) after some simplifications.

Theorem 2 applies to the squared error, the Huber, and the Tukey losses with no additional

conditions other than the basic assumptions. For squared error loss, the factor Cφ,L in the
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asymptotic variance is given by

Csquared ∶=E[Z2] = noise variance. (2.26)

For the Huber loss (2.5),

Chuber ∶=
E[Z2∧c2]
P(∣Z∣ ≤ c)2 . (2.27)

Theorem 2 does not apply to the absolute-value loss. But very similar arguments can be

used to obtain a normal limit distribution for that loss.

Theorem 3. In the context of Theorem 2, assume that L is the absolute-value loss and that φ is

continuous and strictly positive at the origin. Then the same conclusion holds with

Cφ,L =
1

4φ(0)2 . (2.28)

Proof. Assume θ∗ = 0 without loss of generality.

In [VdV98, Th 5.23], the first condition is that θ↦ mθ(x,y) be differentiable at 0 for

almost every (x,y), which is clearly the case here, as it is differentiable with derivative

ṁθ(x,y) = f ′(x−θ)sign(y− f (x−θ)). (2.29)

We also have

∣mθ1(x,y)−mθ2(x,y)∣ = ∣∣y− f (x−θ1)∣− ∣y− f (x−θ2)∣∣ (2.30)

≤ ∣ f (x−θ1)− f (x−θ2)∣ (2.31)

≤ ∣ f ′∣∞ ∣θ1−θ2∣. (2.32)

Hence, the second condition of [VdV98, Th 5.23] is satisfied.

Our assumptions imply that we can differentiate once inside the expectation defining M
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to obtain its first derivative

M′(θ) =E[ṁθ(X ,Y)]

=E[ f ′(X −θ)sign(Y − f (X −θ))]

= ∫ ∫ f ′(x−θ)sign( f (x)− f (x−θ)+ z)φ(z)λ(x)dzdx

= ∫ ∫ f ′(x)sign( f (x+θ)− f (x)+ z)φ(z)λ(x+θ)dzdx

= ∫ f ′(x)(1−2Φ( f (x)− f (x+θ)))λ(x+θ)dx,

where Φ(z) ∶= ∫
z
−∞φ(u)du. The integrand is differentiable with derivative

f ′(x){2 f ′(x+θ)φ( f (x)− f (x+θ))λ(x+θ)+(1−2Φ( f (x)− f (x+θ)))λ
′(x+θ)} (2.33)

which is bounded and therefore dominated as θ varies. The remaining arguments are as in the

proof of Theorem 2.

Remark 4. The expression for the asymptotic variance for the absolute-value loss given could

have been anticipated based on the corresponding expression for the Huber loss given in (2.27).

Indeed, as c→ 0, the Huber loss (2.5) converges pointwise to the absolute-value loss, so that we

could have speculated that the same would be true for the asymptotic variances. It turns out that

this prediction would have been correct, as it is indeed the case that

E[Z2∧c2]/P(∣Z∣ ≤ c)2 c→0ÐÐ→ 1/4φ(0)2 (2.34)

when φ may be taken continuous at the origin. It is also the case that the Huber loss converges

pointwise to the squared error loss when c→∞ instead, and that

E[Z2∧c2]/P(∣Z∣ ≤ c)2 c→∞ÐÐÐ→E[Z2]. (2.35)
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Remark 5. The constant Cφ,L in Theorem 2 and Theorem 3 is the asymptotic variance in the

classical location model where Yi = θ∗+Zi. The only way in which the model we assume (2.1) is

different asymptotically is in the denominator in (2.13).

2.3.2 Local asymptotic minimaxity

Under the same smoothness condition on the template as in Section 2.3.1, namely, as-

suming that f has a bounded derivative, and under some smoothness assumption on the noise

density (and not the design density this time), the statistical model is smooth in the sense of being

quadratic mean differentiable (QMD). Indeed, under θ, the joint distribution of (X ,Y) has density

pθ(x,y) ∶= λ(x)φ(y− f (x−θ)). (2.36)

The function θ↦ pθ(x,y) is differentiable when f and φ are. The information at θ is defined as

Iθ ∶= ∫ ∫
ṗθ(x,y)2

pθ(x,y)
dydx (2.37)

= ∫ ∫
λ(x) f ′(x−θ)2φ′(y− f (x−θ))2

φ(y− f (x−θ))
dydx (2.38)

= ∫ λ(x) f ′(x−θ)2dx×∫
φ′(y)2

φ(y)
dy, (2.39)

and when it is finite and continuous, as it is the case here, the model is QMD [LR05, Th 12.2.1].

When a model is QMD then, under additional mild assumptions, the MLE behaves in

a standard way: If θ̂n denotes the MLE, then
√

n(θ̂n −θ) is asymptotically normal with zero

mean and variance 1/Iθ under θ. These additional assumptions are fulfilled, for example, when

(x,y)↦ supθ ṗθ(x,y)2/pθ(x,y) is square integrable [VdV98, Th 5.39]. If the M-estimator is the

MLE, meaning when φ(y)∝ exp(−L(y)), this is the case under the conditions of Theorem 2.

It turns out this behavior is best possible asymptotically as we describe next. In the present
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context, we say that an estimator θ̂n is locally asymptotically minimax (LAM) at some θ0 if

lim
δ→0

liminf
n→∞

sup
∣θ−θ0∣<δ

Eθ [
√

n∣θ̂n−θ∣] (2.40)

achieves the minimum possible value among all estimators. Here Eθ denotes the expectation with

respect to pθ. We say that an estimator is LAM if it is LAM at every θ0. And, indeed, the MLE is

LAM under the same conditions, meaning those of [VdV98, Th 5.39], which again hold in the

context of Theorem 2. Hence, we may conclude the following.

Theorem 4. Under the conditions of Theorem 2, and assuming in addition that φ(y)∝ exp(−L(y)),

the M-estimator is LAM.

2.3.3 Relative efficiency

Although the Huber estimator and the least absolute-value estimator can be motivated as

maximum likelihood estimators in their own right, they are often considered as robust compro-

mises to the otherwise preferred least squares estimator. The rationale behind this is in general

flimsy, as it amounts to assuming that the noise distribution is Gaussian, as in that case the least

squares estimator is the MLE and thus LAM. In signal processing applications, however, the

normal assumption can be justified. In any case, this is the perspective we adopt.

We assume therefore that the noise distribution is Gaussian, making the least squares

estimator the gold standard for asymptotic comparisons. In that context, if θ̂n is another estimator

such that
√

n(θ̂n −θ) is asymptotically normal with mean 0 and variance τ2 under θ, then its

relative efficiency with respect to the MLE is

τ2

τ2
mle

, (2.41)

and gives, asymptotically, how many more samples this estimator requires in order to achieve the
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same precision as the MLE in terms of the width of asymptotically-valid confidence intervals at

an arbitrary level of confidence. In our context, τmle is obtained from (2.13) with (2.26).

Using the expression (2.27), the relative efficiency of the Huber estimator with parameter

c is
E[Z2∧c2]

E[Z2]P(∣Z∣ ≤ c)2 . (2.42)

As anticipated, this is greater than 1 for all values of c and converges to 1 as c→∞ (as the Huber

loss converges to the squared error loss). Using the expression (2.28), the relative efficiency of

the least absolute-value estimator is

1
4φ(0)2E[Z2]

. (2.43)

In line with Remark 5, in both cases we recover the relative efficiency for the problem of

estimating a normal mean.

2.3.4 Finite-sample minimaxity

When the model is smooth, the M-estimator is locally asymptotically minimax when it

is the MLE, as we saw in Section 2.3.2, and more generally achieves the optimal
√

n rate of

convergence only losing in the leading constant, as detailed in Section 2.3.3. What about in finite

samples?

In the present context, we define the risk of an estimator θ̂n at θ as

risk(θ̂n,θ) ∶=Eθ [∣θ̂n−θ∣]. (2.44)

The minimax risk is then defined as

R∗n ∶= inf
θ̂n

sup
θ

risk(θ̂n,θ), (2.45)
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where the infimum is over all estimators taking in a sample of size n.

Lemma 1. Suppose the basic assumptions are in place. Assume, in addition, that f is Lipschitz,

that λ is Lipschitz on an open set containing the support of f (⋅ − θ∗), and that t ↦ B(t) ∶=

∫ φ(y) logφ(y− t)dy has a derivative which is Lipschitz near the origin. Then the minimax risk

satisfies
√

nR∗n ≳ 1.

Proof. Assume without loss of generality that θ∗ = 0. Recall the notation used for the joint density

of (X ,Y) set in (2.36). By [Tsy09, Th 2.1 and Th 2.2], it suffices to prove that KL(pθ, p0) ≲ 1/n

when
√

n∣θ∣ ≲ 1. Here KL denotes the Kullback–Leibler divergence. We have

KL(pθ, p0) = A(θ)−A(0), (2.46)

where

A(θ) ∶=E[− log pθ(X ,Y)] (2.47)

= −∫ B( f (x−θ)− f (x))λ(x)dx. (2.48)

Note that ∣ f (x−θ)− f (x)∣ ≤ ∣ f ′∣∞∣θ∣ and that θ is taken small. Hence, since B is continuously

differentiably in a neighborhood of the origin and f is almost surely differentiable, θ↦ B( f (x−

θ)− f (x))λ(x) is almost surely differentiable near the origin. Its derivative is

f ′(x−θ)B′( f (x−θ)− f (x))λ(x), (2.49)

which is bounded since f ′ and λ are. Also, B′ is continuous and therefore locally bounded. Hence,
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by dominated convergence, A is differentiable with

A′(θ) = ∫ f ′(x−θ)B′( f (x−θ)− f (x))λ(x)dx (2.50)

= ∫ f ′(x)B′( f (x)− f (x+θ))λ(x+θ)dx, (2.51)

after a change of variable. We also have that θ↦ f ′(x)B′( f (x)− f (x+θ))λ(x+θ) is almost

surely differentiable near the origin, with derivative

f ′(x){− f ′(x+θ)B′′( f (x)− f (x+θ))λ(x+θ)+B′( f (x)− f (x+θ))λ
′(x+θ)}, (2.52)

which is bounded for similar reasons. Hence, by dominated convergence, A is twice differentiable

with bounded second derivative. Note that A′(0) = B′(0)∫ f ′(x)λ(x)dx with B′(0) = 0 since B is

differentiable and attains its maximum at 0, the latter because B(0)−B(t) = ∫ φ(y) log(φ(y)/φ(y−

t))dy is the Kullback–Leibler divergence from φ(⋅ − t) to φ. We thus obtain

A(θ)−A(0) ≤ 1
2 ∣A

′′∣∞θ
2. (2.53)

This in turn implies that KL(pθ, p0)≤Cθ2 for some C >0. And Cθ2 ≤1/n when
√

n∣θ∣≤1/
√

C.

Hence, when the model is smooth, the minimax rate of convergence is also
√

n. And this

rate is achieved by the M-estimator under essentially the same conditions.

Corollary 1 (Minimaxity). Assume that the conditions of Theorem 2 or Theorem 3 hold, as well

as those of Lemma 1. Then the M-estimator achieves the minimax convergence rate.

Proof. It turns out that under the conditions of Theorem 2 or Theorem 3, the M-estimator satisfies
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[VdV98, Cor 5.53]1

Eθ[
√

n∣θ̂n−θ∣] =O(1). (2.54)

(Note that this is not a consequence of the normal limit established in Theorem 2 or Theorem 3.)

In our case, we can bound the expectation in (2.54) uniformly over θ. This follows trivially

from the arguments provided in the proof of [VdV98, Cor 5.53] and further details are omitted.

Hence, supθ risk(θ̂n,θ) =O(1/
√

n), and in particular, θ̂n achieves the minimax convergence rate

established in Lemma 1.

2.4 Non-smooth setting

When f is not Lipschitz, the situation can be nonstandard. We saw in Theorem 1 that the

M-estimator remains consistent under the basic assumptions, but it turns out that it can have a

consistency rate other than
√

n. Because nonstandard, the analysis is a little bit more involved,

yet as it turns out all the tools we need are again available in [VdV98]. The model is no longer

smooth and we do not go into questions of local asymptotic minimaxity or relative efficiency.

However, it turns out that the M-estimator remains rate-minimax.

Although other situations may be of interest, for the sake of concreteness we will consider

two cases (and some sub-cases). In the first case, we take f to be α-Holder for some 0 < α ≤ 1,

meaning

H ∶= sup
x1,x2

∣ f (x1)− f (x2)∣
∣x1−x2∣α

<∞. (2.55)

When this holds for α = 1 the function is simply Lipschitz. In the second case, we take f to be

piecewise α-Holder. We will let D denote the discontinuity set of f which, remember, we are

assuming is finite.

1The statement of [VdV98, Cor 5.53] says that
√

n(θ̂n−θ) is bounded in probability under pθ, but this is done
via proving that the conditions of Th 5.52 are fulfilled, and although Th 5.52 provides a bound in probability, a simple
modification of the arguments underlying this result yield a bound in expectation under the same exact conditions.
That bound in expectation gives (2.54) in the present context.
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Everywhere, the basic assumptions are in place.

2.4.1 Preliminaries

We start with some preliminary results from which everything else follows. The following

function will play an important role

∆(θ1,θ2) = ∫ ( f (x−θ1)− f (x−θ2))2
λ(x)dx. (2.56)

We will also use the following notation

m̃θ(x,z) = L(z+ f (x−θ
∗)− f (x−θ)), (2.57)

which is useful because mθ(x,y) = m̃θ(x,y− f (x−θ∗)).

The first result is an expansion of the function M of (2.11).

Lemma 2. If L has a bounded and almost everywhere continuous second derivative, then

M(θ) =M(θ
∗)+A(θ)∆(θ,θ∗), (2.58)

where A is bounded and satisfies A(θ)→C0 ∶= 1
2 ∫ L′′φ as θ→ θ∗. If L is the absolute-value loss,

and φ is locally bounded and continuous at 0, then this continues to holds, except that C0 ∶= φ(0).

Proof. Assume θ∗ = 0 without loss of generality and let ∆(θ) be short for ∆(θ,θ∗). We start with

the first situation. Motivated by the fact that f (x)− f (x−θ) tends to be small when θ is small, we

derive

m̃θ(x,z) = L(z+ f (x)− f (x−θ)) (2.59)

= L(z)+L′(z)( f (x)− f (x−θ))+ 1
2L

′′(z+ζ(z,x,θ))( f (x)− f (x−θ))2, (2.60)
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for some ∣ζ(z,x,θ)∣ ≤ ∣ f (x)− f (x−θ)∣. Integrating over x and z, we obtain

M(θ) =M(0)+∫ ∫R
1
2L

′′(z+ζ(z,x,θ))( f (x)− f (x−θ))2
φ(z)λ(x)dzdx

=M(0)+C0∆(θ)±∫ ∫R
γ(z, ∣ f (x)− f (x−θ)∣)( f (x)− f (x−θ))2

φ(z)λ(x)dzdx,

where we have used the fact that ∫RL′(z)φ(z)dz = 0, and where we used the notation

γ(z,a) ∶= sup
∣b∣≤a

∣L′′(z+b)−L′′(z)∣. (2.61)

By our assumptions on L′′, γ(z,a)→ 0 when a→ 0 for almost every z. In addition, γ is uniformly

bounded. Hence, by dominated convergence, the last integral is o(∆(θ)) as θ→ 0.

We now turn to the situation where L is the absolute-value loss. We first note that

∫R
∣z+a∣φ(z)dz = 2Φ2(z)+a, (2.62)

where

Φ2(z) ∶= ∫
z

−∞
Φ(u)du, Φ(z) ∶= ∫

z

−∞
φ(u)du. (2.63)

Note that Φ′
2 =Φ and Φ′′

2 = φ. Using this, we derive

M(θ) =M(0)+∫ {2[Φ2( f (x)− f (x−θ))−Φ2(0)]+ f (x)− f (x−θ)}dx

=M(0)+C0∆(θ)+∫ φ(ζ(x,θ))( f (x)− f (x−θ))2
λ(x)dx,

for some ∣ζ(x,θ)∣ ≤ ∣ f (x)− f (x−θ)∣. Note that ∣ζ(x,θ)∣ ≤ 2∣ f ∣∞, so that φ(ζ(x,θ)) is bounded.

Moreover, by the fact that φ is continuous at 0, and that f is continuous almost everywhere, it

holds that φ(ζ(x,θ))→ 0 as θ→ 0 for almost all x. We can thus apply dominated convergence to

find that the last integral is o(∆(θ)) as θ→ 0.
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Another notion that will be important is that of an envelope. We say that a function V is

an envelope for a function classM if any function inM is, in absolute value, pointwise bounded

by V , or in formula, ∣g(x)∣ ≤V(x) for all x and all g ∈M. Below,

Mδ ∶= {mθ−mθ∗ ∶ ∣θ−θ
∗∣ ≤ δ}, (2.64)

and

D(δ) ∶= {x = d+ t ∶ d ∈D, ∣t ∣ ≤ δ}, (2.65)

where δ is thought of as being small.

Lemma 3. Assume either that L has a Lipschitz derivative and that the noise distribution has

finite second moment; or that L itself is Lipschitz. If f is α-Holder, thenMδ admits an envelope

of the form V(x,y) ∶= m(z)δα where z ∶= y− f (x−θ∗) and ∫ m2
φ <∞. If f is only piecewise

α-Holder, then the same is true but with V(x,y) ∶=m(z)(δα+ I{x ∈D(δ)}).

Proof. Assume θ∗ = 0 without loss of generality, so that θ below satisfies ∣θ∣ ≤ δ. For x,y, we let

z = y− f (x).

First, assume that f is α-Holder and let H be defined as in (2.55). If the loss has a

Lipschitz derivative, we have

∣mθ(x,y)−m0(x,y)∣ = ∣L(z+ f (x)− f (x−θ))−L(z)∣

≤ ∣L′(z+ζ)∣× ∣ f (x)− f (x−θ)∣

≤ ∣L′′∣∞(∣z∣+2∣ f ∣∞)×H ∣θ∣α,

for some ∣ζ∣ ≤ ∣ f (x)− f (x−θ)∣ ≤ 2∣ f ∣∞. We then conclude with ∣θ∣ ≤ δ. If the loss is Lipshitz, we
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have

∣mθ(x,y)−m0(x,y)∣ ≤ ∣L′∣∞∣ f (x)− f (x−θ)∣

≤ ∣L′∣∞H ∣θ∣α,

and we conclude in the same way.

Next, assume that f is piecewise α-Holder. In this situation, let H be defined as in (2.55),

except away from discontinuities. Based on what we just did, it suffices to show that

∣ f (x)− f (x−θ)∣ ≤C1(δ
α+ I{x ∈D(δ)}), (2.66)

when ∣θ∣ ≤ δ for some constant C1. Indeed, either there are no discontinuity point between x and

x−θ, in which case ∣ f (x)− f (x−θ)∣ ≤H ∣θ∣α; or there is a discontinuity point, say d, between x

and x−θ, so that ∣x−d∣ ≤ ∣θ∣ ≤ δ, implying that ∣ f (x)− f (x−θ)∣ ≤ 2∣ f ∣∞I{x ∈D(δ)}.

The next result is a complexity bound forMδ. The complexity is in terms of bracketing

numbers [VdV98, Sec 19.2]. Two functions g1,g2 such that g1 ≤ g2 pointwise define a bracket

made of all functions g such that g1 ≤ g ≤ g2. It is said to be an ε-bracket with respect to

L2(µ), for a positive measure µ, if ∫ (g2 − g1)2dµ ≤ ε2. Given a class of functions M, its ε-

bracketing number with respect to L2(µ) is the minimum number of ε-brackets needed to cover

M (meaning to include any function in that class). In our context, the measure is the underlying

sample distribution, meaning pθ∗ in the notation introduced in (2.36). We let Nδ(ε) denote the

ε-bracketing number ofMδ with respect to L2(pθ∗).

Lemma 4. There is a constant C > 0 such that the following holds. Assume the loss is as in

Lemma 3. If f is α-Holder, then Nδ(ε) ≤Cδε−1/α. If f is piecewise α-Holder, and λ is bounded,

then Nδ(ε) ≤Cδε−1/(α∧1/2).

Proof. Assume θ∗ = 0 without loss of generality, so that any value of the parameter below is in
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[−δ,δ]. Let θ j = jδ/k for j = −k, . . . ,k. For x,y, we let z = y− f (x) below. We rely on the proof of

Lemma 3.

First, assume that f is α-Holder. We have

∣mθ(x,y)−mθ0(x,y)∣ ≤m(z)∣θ−θ0∣α,

where m(z) is square integrable. For a given θ, let j be such that ∣θ−θ j∣ ≤ δ/k. Then

∣mθ(x,y)−mθ j(x,y)∣ ≤m(z)∣θ−θ j∣α ≤m(z)(δ/k)α,

implying that

A j(x,y) ≤mθ(x,y) ≤ B j(x,y), (2.67)

where

A j(x,y) ∶=mθ j(x,y)−m(z)(δ/k)α

B j(x,y) ∶=mθ j(x,y)+m(z)(δ/k)α.

Note that B j−A j has L2 norm of order (δ/k)α since m is square integrable. Choosing k ≥C2δ/ε1/α

for a large enough C2 makes it an ε-bracket. And these k brackets together coverMδ.

Next, assume that f is piecewise α-Holder. Assume for expediency that f has a single

discontinuity, and let d denote the location of that discontinuity. Following the corresponding

arguments in Lemma 3, we can prove that

∣mθ(x,y)−mθ0(x,y)∣ ≤m(z)(∣θ−θ0∣α+ I{θ0 ≤ x−d ≤ θ}),
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where m(z) is square integrable. For a given θ, let j be such that θ j ≤ θ ≤ θ j+1. Then

A j(x,y) ≤mθ(x,y) ≤ B j(x,y), (2.68)

where

A j(x,y) ∶=mθ j(x,y)−m(z)((δ/k)α+ I{θ j ≤ x−d ≤ θ j+1})

B j(x,y) ∶=mθ j(x,y)+m(z)((δ/k)α+ I{θ j ≤ x−d ≤ θ j+1}).

The difference satisfies

∫ (B j(x,y)−A j(x,y))2
φ(y− f (x))λ(x)dydx

≤ 4∫ m(z)2
φ(z)dz×2∫ ((δ/k)2α+ I{θ j ≤ x−d ≤ θ j+1})λ(x)dx

≲ (δ/k)2α+ ∣λ∣∞(δ/k),

and so has L2 norm of order (δ/k)α+(δ/k)1/2 ≍ (δ/k)α∧1/2, uniformly in j. Therefore, choosing

k ≥C3δ/ε1/(α∧1/2) for a large enough C3 ensures that B j −A j has L2 norm bounded by ε. And the

k brackets that these pairs of functions define as j ranges through {−k, . . . ,k}, together, cover the

spaceMδ.

From here proceed in reverse order compared to Section 2.3: We first study the rate of

convergence and then discuss the limit distribution.

2.4.2 Rate of convergence

The bracketing integral of a function class M with respect to L2(µ) is defined as the

integral of the square root of the logarithm of the corresponding ε-bracketing number as a function
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of ε. In particular, we introduce the bracketing integral ofMδ, denoted

Jδ(t) ∶= ∫
t

0

√
logNδ(ε)dε. (2.69)

A simple adaptation of the arguments underlying [VdV98, Th 5.52], in combination with

[VdV98, Cor 19.35], gives the following result.

Lemma 5. Suppose there are constants a > b ≥ 0 and C > 0 such that, for δ > 0 small enough,

inf
∣θ−θ∗∣≥δ

M(θ)−M(θ
∗) ≥ δ

a/C, (2.70)

and

Jδ(∞) ≤Cδ
b. (2.71)

Then the M-estimator satisfies

E[n
1

2(a−b) ∣θ̂n−θ
∗∣] =O(1). (2.72)

With the preceding lemmas, we are able to establish an upper bound on the rate of

convergence of the M-estimator.

Theorem 5. Suppose that either L has a bounded and almost everywhere continuous second

derivative; or is the absolute-value loss and φ is locally bounded and continuous at 0.

● Suppose f is α-Holder and

sup
∣θ−θ∗∣≤δ

∆(θ,θ∗) ≍ δ
2α. (2.73)

Then the M-estimator is rn-consistent with rn = n1/2α.

● Suppose f is discontinuous and piecewise α-Holder with α ≥ 1/2, and λ is bounded and

continuous at the points of discontinuity of f (⋅−θ∗), and strictly positive at one or more of
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these locations. Then the M-estimator is rn-consistent with rn = n.

Proof. Consider the first situation. We apply Lemma 5. By Lemma 2 and (2.73), the condition

(2.70) is satisfied with a = 2α. Hence, it suffices to show that (2.71) holds with b = α. Indeed, by

Lemma 3, we have Jδ(∞) = Jδ(Cδα) for C large enough, and by Lemma 4, we have

Jδ(Cδ
α) ≤ ∫

Cδ
α

0

√
log(Cδ/ε1/α)dε ≍ δ

α. (2.74)

We now turn to the second situation. By of Lemma 3, we have Jδ(∞) = Jδ(Cδ1/2) for C

large enough, and by Lemma 4, we have

Jδ(Cδ
1/2) ≤ ∫

Cδ
1/2

0

√
log(Cδ/ε2)dε ≍ δ

1/2, (2.75)

so that (2.71) holds with b = 1/2. It thus suffices to show that (2.70) holds with a = 1. Assume

for simplicity that f has only one discontinuity, and therefore of the form f (x) = f1(x)I{x < d}+

f2(x)I{x ≥ d} with f1 and f2 being α-Holder. For example, consider a situation where θ > 0 = θ∗.

We have

∆(θ,θ∗) = ∫
d

−∞
+∫

d+θ

d
+∫

∞

d+θ

( f (x)− f (x−θ))2
λ(x)dx. (2.76)

(In what follows, remember that λ is compactly supported.) In the 1st and 3rd integral, ∣ f (x)−

f (x−θ)∣≤H ∣θ∣α since f does not have a discontinuity over the corresponding ranges, x ∈ [0,d) and

x ∈ (d+θ,1], respectively. Hence, these two integrals are of order ∣θ∣2α, which is at most of order

O(θ) since α ≥ 1/2. For the 2nd or middle integral, we use the fact that ( f (x)− f (x−θ))λ(x) =

( f2(x)− f1(x−θ))2λ(x)→ ( f2(d)− f1(d))2λ(d) when x ∈ [d,d+θ] and θ→ 0, so that the integral

is ∼ ∣θ∣( f2(d)− f1(d))2λ(d) by dominated convergence. More generally, if D denotes the points

of discontinuity of f , extending these arguments gives

∆(θ,θ∗) ∼ ∣θ∣D, as θ→ 0 = θ
∗, where D ∶= ∑

d∈D
( f (d+)− f (d−))2

λ(d) . (2.77)
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From this we conclude.

Of course, we have only obtained an upper bound on the consistency rate. But as we will

see in the next subsection, that rate is sharp.

Remark 6. We note that (2.73) is not automatically satisfied even when the function f is exactly

α-Holder (and not (α+η)-Holder for any η > 0). Indeed, consider the case where f coincides

near the origin with x↦ ∣x∣α for some fixed 0 < α < 1, and is otherwise Lipschitz. Then such an f

is exactly α-Holder, and yet, it can be shown that

sup
∣θ−θ∗∣≤δ

∆(θ,θ∗) ≍

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ2 if α > 1/2,

δ2 log(1/δ) if α = 1/2,

δ2α+1 if α < 1/2.

(2.78)

2.4.3 Minimaxity

We can easily adapt the arguments underlying the information bound stated in Lemma 1

to the settings that interest us in the present section where f is not Lipschitz. We do so and obtain

the following.

Lemma 6. Suppose the basic assumptions are in place. Assume, in addition, that φ has finite

first moment and that B is as in Lemma 1. If rn is such that sup{∆(θ,θ∗) ∶ rn∣θ−θ∗∣ ≤ 1} ≲ 1/n,

the minimax rate satisfies rnR∗n ≳ 1.

Proof. Assume without loss of generality that θ∗ = 0 and let ∆(θ) be short for ∆(θ,θ∗). In the

notation introduced in the proof of Lemma 1, it suffices to prove that A(θ)−A(0) ≲ 1/n when

rn∣θ∣ ≤ 1. We saw in the proof of that lemma that B′(0) = 0. This together with the fact that B′ is

Lipschitz near the origin implies that there is a positive constant C1 such that ∣B(t)−B(0)∣ ≤C1t2
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when ∣t ∣ is small enough. We use that to derive

A(θ)−A(0) = ∫ {B(0)−B( f (x−θ)− f (x))}λ(x)dx (2.79)

≤C1∫ ( f (x−θ)− f (x))2
λ(x)dx (2.80)

=C1∆(θ). (2.81)

From this we conclude.

Corollary 2. In the context of Lemma 6, if f is α-Holder, then n1/2αR∗n ≳ 1; if instead f is

discontinuous and piecewise α-Holder with α ≥ 1/2, then nR∗n ≳ 1.

Proof. As we saw in the proof of Theorem 5, if f is α-Holder, ∆(θ,θ∗) ≲ ∣θ−θ∗∣2α; while if

instead f is discontinuous and piecewise α-Holder with α ≥ 1/2, ∆(θ,θ∗) ≲ ∣θ−θ∗∣. We then

apply Lemma 6 to conclude.

2.4.4 Limit distribution

To establish a limit distribution, we follow the standard strategy which starts by showing

that a properly normalized version of the empirical process M̂n converges to a Gaussian process,

and is followed by an application of the argmax continuous mapping theorem.

The following is a direct consequence of [VdV98, Th 19.28].

Lemma 7. Consider a set of functions on some Euclidean space and let µ denote a Borel

probability measure. Consider a class of functionsWn,T ∶= {wn,t ∶ n ≥ 1,t ∈ [−T,T ]} satisfying the

following:

(i) The class has a square integrable envelope.

(ii) The limit g(t) ∶= limn
√

n∫ wn,tdµ is well-defined for all t.
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(iii) There is a function ω1 with limt→0+ω1(t) = 0 and a sequence ηn→ 0 such that

vn(s,t) ∶= ∫ (wn,s−wn,t)2dµ ≤ω1(∣s− t ∣)+ηn; (2.82)

(iv) The limit v(s,t) ∶= limn vn(s,t) is well-defined for all s,t.

(v) The class has bracketing integral Jn,T (δ)≤ω2(δ) for some function ω2 with limt→0+ω2(t)=

0.

Then Wn,t ∶=∑n
i=1 wn,t converges weakly to g(t)+Gt on [−T,T ], where Gt denotes the centered

Gaussian process with variance function v. Note that v(s,t) ≤ω1(∣s− t ∣).

The following is a special case of [VdV98, Cor 5.58].

Lemma 8. Suppose that a sequence of processes Wn defined on the real line converges weakly in

the uniform topology on every bounded interval to a process W with continuous sample paths

each having a unique minimum point h (almost surely). If hn minimizes Wn, and (hn) is uniformly

tight, then hn converges weakly to h.

We apply these two lemmas to obtain a limit distribution for the M-estimator when the

template is α-Holder. For expediency, we only consider smoother losses.

Theorem 6. Suppose that L has a bounded and almost everywhere continuous second derivative.

Assume that f is α-Holder and such that

r2α
∆(θ

∗+ s/r,θ∗+ t/r)→ ∆0(s,t), r→∞, (2.83)

where ∆0 is a continuous function such that ∆0(s,t) ≠ 0 when s ≠ t. Then n1/2α(θ̂n−θ∗) converges

weakly to argmint{g(t)+Gt} where g(t) ∶=C0∆0(t,0) with C0 ∶= 1
2 ∫ L′′φ and Gt is the centered

Gaussian process on the real line with variance function C1∆0(s,t) with C1 ∶= ∫ (L′)2φ.
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Proof. As usual, assume that θ∗ = 0 without loss of generality, and let z = y− f (x).

We first prove that the process
√

n(M̂n(t/rn)−M̂n(0)) — where rn = n1/2α is the rate of

convergence established in Theorem 5 — converges weakly to g(t)+Gt . For this it is enough to

prove that it converges on every interval of the form [−T,T ], and we do so by applying Lemma 7

with wn,t ∶=
√

n(mt/rn −m0). Note that µ = p0, the distribution of (X ,Y) under θ = 0. Lemma 3

and a rescaling argument gives (i). But to be sure, using Lemma 2, we have

∣wn,t(x,y)∣ ≤
√

n{∣L′(z)∣∣ f (x)− f (x− t/rn)∣+ 1
2 ∣L

′′∣∞( f (x)− f (x− t/rn))2} (2.84)

≤
√

n{∣L′(z)∣H(T /rn)α+ 1
2 ∣L

′′∣∞(H(T /rn)α)2} (2.85)

≤C(L′(∣z∣)+1) =∶w(x,y). (2.86)

We then conclude with the fact that w is square integrable by the usual assumptions.

For (ii), using Lemma 2, we have

√
n∫ wn,tdµ =

√
n×

√
n(M(t/rn)−M(0)) (2.87)

∼ nC0∆(t/rn,0), n→∞, (2.88)

= nC0r−2α
n r2α

n ∆(t/rn,0) (2.89)

→C0∆0(t,0) = g(t), n→∞. (2.90)
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For (iii), using (2.59), we have for s,t ∈ [−T,T ],

∫ (wn,s−wn,t)2dµ = n∫ (ms/rn −mt/rn)
2dp0 (2.91)

≤ n[2C1∆(s/rn,t/rn)+ ∣L′′∣2∞{∆(s/rn,0)2+∆(t/rn,0)2}] (2.92)

≤ n[2C1(H ∣s/rn− t/rn∣α)2+ ∣L′′∣2∞{(H ∣s/rn∣α)4+(H ∣t/rn∣α)4}] (2.93)

≤ nC(∣s− t ∣2α/r2α
n +(T /rn)4α) (2.94)

=C(∣s− t ∣2α+T 4α/n), (2.95)

using the fact that r2α
n = n. We conclude that (2.82) holds with ω1(s,t) ∶=C∣s− t ∣2α and ηn ∶=

CT 4α/n.

For (iv), we refine these arguments using dominated convergence, to get for any s,t ∈R,

vn(s,t) = n∫ (ms/rn −mt/rn)
2dp0 (2.96)

∼ nC1∆(s/rn,t/rn), n→∞, (2.97)

= nC1r−2α
n r2α

n ∆(s/rn,t/rn) (2.98)

→C1∆0(s,t) = v(s,t), n→∞. (2.99)

For (v), we use Lemma 4 and a rescaling argument to bound the bracketing number of this

function class by C(T /rn)(ε/
√

n)−1/α =CT ε−1/α, so that its bracketing integral at δ is bounded

by ω2(δ) ∶= ∫
δ

0

√
log(CT /ε−1/α)dε.

The fact that
√

n(M̂n(t/rn)−M̂n(0)) converges weakly to g(t)+Gt is useful to us because

θ̂n = t̂n/rn where t̂n = argmaxt
√

n(M̂n(t/rn)− M̂n(0)). To conclude, we only need to show that

Lemma 8 applies. On the one hand, the process g(t)+Gt has continuous sample paths. This

is because g is continuous — since g(t)∝ ∆0(t,0) and ∆0 is assumed continuous — and Gt is

Gaussian with variance function v satisfying v(s,t) ≤C∣s− t ∣2α and this is enough for Gt to have

continuous sample paths according to [Dud67, Th 7.1]. On the other hand, the process has a
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unique minimum point since v(s,t) ≠ 0 when s ≠ t — since v∝∆0 and ∆0 satisfies that property —

which is sufficient by [KP90, Lem 2.6]. And we have shown in Theorem 5 that t̂n is uniformly

tight.

Theorem 6 also applies when α = 1, meaning when the template is Lipschitz, and in

fact implies Theorem 2 in that case. Thus, we have established that, when the template f is

Holder, the M-estimator converges weakly to the minimizer of a Gaussian process which does not

depend on the noise distribution except through the constants C0 and C1. When the template f is

discontinuous, the situation is qualitatively different: the limit process does not have a unique

minimum point and the M-estimator does not have a limit distribution, and the limit process is far

from ‘universal’ but rather depends heavily on the noise distribution.

Instead of the more commonly-used argmax theorem (Lemma 8), which takes place in

the uniform topology, we will use the following mild variant of [Fer04, Th 3], which takes place

in the Skorohod topology.

Lemma 9. Suppose that a sequence of processes Wn defined on the real line converges weakly

in the Skorohod topology on every bounded interval to a process W with sample paths each

achieving their minimum somewhere in [h,h], and only there, with h and h being continuous

random variables. Assume also that Wn and W have right and left limits at every point, and that

P(W is continuous at x) = 1 for all x. If hn minimizes Wn, and (hn) is uniformly tight, then, for

every x,

P(h ≤ x) ≤ liminf
n

P(hn ≤ x) ≤ limsup
n

P(hn ≤ x) ≤ P(h ≤ x).

It turns out that the limit process is here a marked Poisson process, and with the help of

this variant of the argmax continuous mapping theorem, we obtain the following.

Theorem 7. Suppose that either L has a bounded and almost everywhere continuous second

derivative. Assume that f is discontinuous and piecewise α-Holder with α > 1/2, and λ is

bounded and continuous at the points of discontinuity of f (⋅ −θ∗), and strictly positive at one

38



or more of these locations. Then n(θ̂n−θ∗) dominates t and is dominated by t asymptotically,

where [t,t] is the closure of the minimum point set of W = ∑d∈DWd , where D denotes the

discontinuity set of f (⋅ − θ∗) and the Wd’s are independent with Wd being the double-sided

marked Poisson process on R with intensity λ(d) and mark distribution that of L(Z+δd)−L(Z),

where δd ∶= f (d+−θ∗)− f (d−−θ∗).

Remark 7. The values that W takes at its discontinuity points are irrelevant, and in particular it

does not need to be taken càdlag as is the norm. In the proof we set things up so that it is, but this

is only for convenience.

Proof. As usual, assume that θ∗ = 0 without loss of generality. When the meaning of (x,y) is

clear from context, we use z as a shorthand for y− f (x). We assume for convenience that f is

càglad, the reverse of càdlag, meaning that at every point it is continuous from the left and has a

limit from the right. We do is in order for the Poisson processes that follow to be càdlag.

We first prove that the process Wn(t) ∶= n(M̂n(t/n)−M̂n(0)) converges weakly to W(t).

Note that n is the rate of convergence established in Theorem 5. Indeed, take x, and also t > 0

smaller than the separation between any two discontinuity points of f . Two cases are possible.

Either there is d ∈D such that x− t ≤ d < x, in which case we use the fact that

f (x)− f (x− t) = f (x)− f (d+)+δd + f (d−)− f (x− t)

= ±H(x−d)α+δd ±H(d−(x− t))α

= δd ±2Htα,

implying that

L(z+ f (x)− f (x− t))−L(z) = L(z+δd)−L(z)±L′(z+δd)2Htα± 1
2 ∣L

′′∣∞(2Htα)2 (2.100)

= Bd(z)±m(z)tα, Bd(z) ∶= L(z+δd)−L(z), (2.101)
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where m ≥ 0 and ∫ m2
φ <∞. Otherwise,

f (x)− f (x− t) = ±H(x−(x− t))α = ±Htα,

implying that

L(z+ f (x)− f (x− t))−L(z) = L′(z)( f (x)− f (x− t))± 1
2 ∣L

′′∣∞(Htα)2 (2.102)

= L′(z)( f (x)− f (x− t))±m(z)t2α, (2.103)

for a possibly different non-negative, square integrable function m. We simply take the pointwise

maximum of the two. Hence,

mt(x,y)−m0(x,y) = L(z+ f (x)− f (x− t))−L(z)

= ∑
d∈D

{(Bd(z)±m(z)tα)I{x ∈ (d,d+ t]}

+(L′(z)( f (x)− f (x− t))±m(z)t2α)I{x ∉ (d,d+ t]}},

and therefore,

n(M̂n(t/n)−M̂n(0)) = ∑
d∈D

Wn,d(t)±(t/n)α
n
∑
i=1

m(Zi)I{d < Xi ≤ d+ t/n} (2.104)

+∑
d∈D

An,d(t)±(t/n)2α
n
∑
i=1

m(Zi), (2.105)

where

Wn,d(t) ∶=
n
∑
i=1

I{d < Xi ≤ d+ t/n}Bd(Zi) (2.106)

and

An,d(t) ∶=
n
∑
i=1

L′(Zi)( f (Xi)− f (Xi− t/n))I{Xi ∉ (d,d+ t/n]}. (2.107)

40



A Poisson approximation gives that Wn,d converges as a process to a marked Poisson process with

intensity λ(d) on R+ and mark distribution that of Bd(Z), and these processes are independent of

each other in the large-n limit. We elaborate in Lemma 11. So it suffices to show that the other

three terms above are oP(1). The second term has absolute first moment equal to

(t/n)αnE[m(Z)]P(d ≤ X < d+ t/n)

∼ (t/n)αnE[m(Z)]λ(d)(t/n)

≍ tα+1/nα→ 0.

For the third term, each An,d has mean 0 by the fact that E[L′(Z)] = 0 and X ⊥⊥ Z, and it has second

moment equal to

nE[L′(Z)2]E[( f (X)− f (X − t/n))2I{X ∉ (d,d+ t/n]}]

≤ nE[L′(Z)2](H(t/n)α)2

≍ n/n2α→ 0,

since α > 1/2. The fourth term has absolute first moment equal to

(t/n)2αnE[m(Z)] ≍ n/n2α→ 0,

since α > 1/2. In all cases, we may thus apply Markov’s inequality to get that these terms all

converge to 0 in probability.

We focused on t > 0, but the same arguments apply to t < 0. Note that, when considering

t < 0, B−d(z) ∶= L(z−δd)−L(z) plays the role of Bd(z), but B−d(Z) ∼ Bd(Z), using the fact that L is

even and that Z is symmetric about 0, so that the mark distribution remains that of Bd(Z).

We now apply Lemma 9. By construction, Wn and W both are piecewise continuous

and thus have right and left limits at every point. And we proved that nθ̂n is uniformly tight
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in Theorem 5. So we just have to show that W satisfies the other properties required in the

lemma. We note that W is itsef a marked Poisson process with intensity ∑d∈Dλ(d) and mark

distribution the mixture of the Bd(Z) distributions with mixture weights proportional to the

λ(d)’s. In particular, as is well-known, for every (fixed) x, W is continuous at x with probability 1.

Further, the mark distribution has strictly positive mean, this being the case because E[Bd(Z)] > 0

under Assumption 5. It follows from this that W(t)→ +∞ as t → ±∞ (almost surely), and given

that W is piecewise constant with different values on each interval — since the distribution of

Bd(Z) is continuous under our assumptions — its minimum point set is a (bounded) interval

defined by two discontinuity points, t and t, which have continuous distributions.

Remark 8. In change-point settings where the design is fixed, the minimizer of the limit process

is often unique, in which case this is the limit of any empirical minimizer. This is the case, for

example, in [YA89, Hin70, D9̈1]. In [Kos08, Sec 14.5.1], a function of the form a{x ≤ t}+b{x > t}

is fitted to the data (or in the language that we have been using, is ‘matched’ to the noisy signal).

The design is random as it is here, and therefore the empirical minimizer is not unique in terms

of t. To circumvent this issue, the smallest minimizer (in t) is used as the location estimator,

which is then shown to converge to the smallest minimizer of the limit process, which in terms

of t is also a compound Poisson process. See also [SS11, LBM09]. This approach does not

seem applicable in our context. Indeed, the situation here is different in that f is not necessary

piecewise constant, and in particular it is very possible that the empirical minimizer is unique,

rendering the selection of the smallest minimizer superfluous and leaving the issue of multiple

minima in the limit untouched. We thus opted for the approach proposed by [Fer04].
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2.5 More flexible templates

Some situations may call for finding the best match in a family of templates. Assuming a

parametric model, the model becomes

Yi = fθ∗(Xi)+Zi, (2.108)

where the family { fθ ∶ θ ∈Θ} is known. The smooth setting can be considered in a very general

framework and we do so in Section 2.5.1. The non-smooth setting is, as usual, more delicate,

so we content ourselves with considering a location-scale extension of our basic model (2.1) in

Section 2.5.2 which seems popular in practice.

2.5.1 Smooth setting

We consider the model (2.108) in a rather general setting where fθ ∶Rp→R and Θ is a

bounded subset of a Euclidean space. The same toolset can then be used to derive the asymptotic

behavior of the M-estimator, defined as in (2.8) with

mθ(x,y) ∶= L(y− fθ(x)). (2.109)

Throughout, the same basic assumptions are in place with appropriate modifications: In particular,

in Assumption 1 we now assume that

For any θ ≠ θ
∗, fθ(⋅) ≠ fθ∗(⋅) on a set of positive measure under λ. (2.110)

Here we consider the smooth case, which again corresponds to a template f which is Lipschitz.
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Consistency

In view of Assumption 5, consistency ensues as soon as the function class {mθ ∶ θ ∈Θ} is

Glivenko–Cantelli, which is the case here since

∣ fθ1(x)− fθ2(x)∣ ≤H∥θ1−θ2∥ (2.111)

for all θ1,θ2 ∈Θ. See [VdV98, Ex 19.7].

Rate of convergence

To obtain a rate of convergence, we rely on Lemma 5 as before. We note that Lemma 2

remains valid, now with ∆(θ,θ∗) = ∫ ( fθ(x)− fθ∗(x))2λ(x)dx, and by dominated convergence,

∆(θ,θ∗) ∼ (θ−θ
∗)⊺Q(θ−θ

∗), θ→ θ
∗, where Q ∶=E[ ḟθ∗(X) ḟθ∗(X)⊺], (2.112)

so that ∆(θ,θ∗) ≍ ∥θ−θ∗∥2 as long as Q is full rank, which we assume henceforth. It is also the

case thatMδ has an envelope with square integral bounded by Cδ2 and ε-bracketing number

Nδ(ε) ≤Cδε−d . The former is an immediate consequence of (2.111), while the latter is based on

[VdV98, Ex 19.7] and a scaling argument. We are thus in a position to apply Lemma 5, with

a = 2 and b = 1, to get that the M-estimator is
√

n-consistent in expectation, meaning that

E[
√

n∥θ̂n−θ
∗∥] =O(1). (2.113)

And Lemma 6 applies (essentially verbatim) to establish this as the minimax rate of convergence

under the same condition on φ.
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Limit distribution

We can also obtain a limit distribution following the arguments underlying Theorem 6.

With all these arguments in plain view, it is a simple endeavor to check that everything proceeds

in the same way, based on the fact that

n∆(θ
∗+ s/

√
n,θ∗+ t/

√
n) n→∞ÐÐÐ→ ∆0(s,t) ∶= (s− t)⊺Q(s− t). (2.114)

Following that path, we arrive at the conclusion that

√
n(θ̂n−θ

∗) n→∞ÔÔ⇒ argmin
t

{g(t)+Gt}, (2.115)

where g(t) ∶=C0∆0(t,0) =C0t⊺Qt and Gt is the centered Gaussian process with variance function

v(s,t) ∶= C1∆0(s,t) = C1(s− t)⊺Q(s− t). But this is the classical setting. Indeed, Gt can be

represented as U⊺Q1/2t where U is a standard normal random vector. This is true because Gt and

Q1/2U⊺t, as processes, are both Gaussian with same mean and same variance function. Hence,

argmin
t

{g(t)+Gt} ≡ argmin
t

{C0t⊺Qt +C1/2
1 Q1/2U⊺t} = −

C1/2
1

2C0
Q−1/2U, (2.116)

which is centered normal with covariance

(E[L′(Z)2]/E[L′′(Z)]2)E[ ḟθ∗(X) ḟθ∗(X)⊺]−1. (2.117)

We have thus established this as the limit distribution of
√

n(θ̂n−θ∗).

The model is also quadratic mean differentiable [LR05, Th 12.2.2], with the information

at θ being given by

Iθ ∶= ∫ ḟθ(x) ḟθ(x)⊺λ(x)dx×∫
φ′(y)2

φ(y)
dy . (2.118)

45



The analog of Theorem 4 applies in that case, meaning that the M-estimator is locally asymptoti-

cally minimax when it coincides with the MLE.

Example 1. A special case which might be of interest in the context of matching a template to

a signal is when fθ(x) = Sθ( f (Tθ(x))), where for every θ, Sθ ∶R→R and Tθ ∶Rp→Rp are both

diffeomorphisms, and such that θ↦ Sθ(x) and θ↦ Tθ(x) are differentiable for almost every x. As

before, f is a known function. In this special case, and assuming without loss of generality that

Sθ∗ and Tθ∗ are the identity functions for their respective spaces, we have

ḟθ∗(x) = Ṡθ∗( f (x))+ Ṫθ∗(x)⊺∇ f (x). (2.119)

For instance, in the affine family of templates given by a f (B−1(⋅−b)), the parameter is θ= (a,b,B)

where a > 0, b ∈ Rp and B ∈ Rp×p invertible, and the transformations are given by Sθ(y) = ay,

Tθ(x) = B−1(x−b). Assuming without loss of generality that θ∗ = (1,0,I), Sθ∗ and Tθ∗ are the

identity functions. Then ḟθ∗(x) = ( f (x),−∇ f (x),−∇ f (x)x⊺). When the design is on the real line,

that is when b and B are real numbers, this becomes ḟθ∗(x) = ( f (x),− f ′(x),− f ′(x)x), in which

case the asymptotic covariance matrix of the M-estimator is, according to (2.117), proportional to

the inverse of the integral with respect to λ of the following matrix

ḟθ∗(x) ḟθ∗(x)⊺ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

f (x)2 − f (x) f ′(x) −x f (x) f ′(x)

− f (x) f ′(x) f ′(x)2 x f ′(x)2

−x f (x) f ′(x) x f ′(x)2 x2 f ′(x)2

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (2.120)

2.5.2 Non-smooth setting

Unlike the smooth setting, non-smooth situations typically need a more custom treatment.

Instead of attempting to do that, which if possible at all is beyond the scope of the present paper,

we consider a relatively simple extension of our basic model (2.1) which already exhibits some
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interesting features and which, simultaneously, happens to be popular in practice. Specifically we

consider (2.108) where, for θ = (β,ξ,ν) ∈Θ ∶=R×R×R∗
+, fθ(x) = β f ((x−ξ)/ν). As before, f is

fixed. We are thus considering the following amplitude-location-scale model

Yi = β
∗ f ((Xi−ξ

∗)/ν∗)+Zi, (2.121)

where f is known to the analyst and the goal is to estimate the three parameters β∗,ξ∗,ν∗.

(Sometimes only one of these parameters is of interest, so that the others can be considered

nuisance parameters. But this perspective does not fundamentally change the analysis.) The

M-estimator is then defined as in (2.8) with

mθ(x,y) ∶= L(y−β f ((Xi−ξ)/ν)), (2.122)

with the minimization now being over Θ. We of course assume (2.110), and in addition, that fθ∗

is not constant on the support of λ. So that the setting is non-smooth, we assume below that f is

piecewise Lipschitz. For concreteness, we focus on a loss function which has a bounded second

derivative. Otherwise, all the other basic assumptions are in place.

It turns out that the Euclidean norm, which was used in Section 2.3 and Section 2.4 as the

absolute value, and in Section 2.5.1, is here not a good reference semimetric. Instead, we use the

following

d(θ1,θ2) ∶= (β1−β2)2+ ∣ξ1−ξ2∣+ ∣ν1−ν2∣. (2.123)

The square-root of that would also do, but the main feature of this semimetric is that the amplitude

is treated differently than the location and the scale, and this will be crucial when deriving rates

of convergence (as we do below) since the rate of convergence for the estimation of the amplitude

is in
√

n while those for the location and scale are in n.
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Consistency

Θ as defined above is not compact, and some odd things can happen. To avoid com-

plications, we assume that the support of λ contains in its interior the support of fθ∗ . Besides

being a somewhat natural restriction, with this assumption we are able to reduce the analysis

to a compact subset Θ0 ⊂Θ. We do so in Lemma 12, where we make mild assumptions on the

noise distribution and loss function, which are essentially the same underlying Assumption 5, as

detailed in Lemma 10. Then consistency is, again, a consequence of the fact that {mθ ∶ θ ∈Θ0} is

Glivenko–Cantelli — in fact, it is Donsker, as we argue below.

Rate of convergence

To obtain a rate of convergence, we rely on Lemma 5 as before. We note that Lemma 2

remains valid, now with ∆(θ,θ∗) = ∫ ( fθ(x)− fθ∗(x))2λ(x)dx. Without loss of generality, assume

that θ∗ = (1,0,1) henceforth. Developing the square inside the integral, we get

∆(θ,θ∗) = (1−β)2∫ f (x)2
λ(x)dx

+β
2∫ ( f (x)− f (x−ξ))2

λ(x)dx

+β
2∫ ( f (x−ξ)− f ((x−ξ)/ν))2

λ(x)dx

+2(1−β)β∫ f (x)( f (x)− f (x−ξ))λ(x)dx

+2(1−β)β∫ f (x)( f (x−ξ)− f ((x−ξ)/ν)λ(x)dx

+2β
2∫ ( f (x)− f (x−ξ))( f (x−ξ)− f ((x−ξ)/ν)λ(x)dx.

The first three terms on the RHS are the main terms, as we will see, with the other terms

being negligible. The 1st term is =C(1−β)2. For the following, consider (β,ξ,ν) approaching

(β∗,ξ∗,ν∗) = (1,0,1). As we saw in (2.77), the 2nd term is ∼ ∣ξ∣D. Similar calculations establish

that the 3rd term is ∼ ∣ν−1∣D, and also that the 4th term is = O((1−β)ξ), that the 5th term is
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=O((1−β)(1−ν)), and that the 6th term is =O(ξ(1−ν)). We thus conclude that

∆(θ,θ∗) ≍ d(θ,θ∗), θ→ θ
∗. (2.124)

In particular, (2.70) holds with a = 1.

We now look at the classMδ ∶= {mθ −mθ∗ ∶ d(θ,θ∗) ≤ δ}. Using similar arguments as

those underlying Lemma 3, we derive

∣mθ(x,y)−mθ∗(x,y)∣ ≤m(z)∣ f (x)−β f ((x−ξ)/ν)∣,

where z ∶= y− f (x) and m is a square integrable function with respect to φ. We then have

∣ f (x)−β f ((x−ξ)/ν)∣ ≤ ∣ f (x)−β f (x)∣+ ∣β f (x)−β f (x−ξ)∣+ ∣β f (x−ξ)−β f ((x−ξ)/ν)∣

≤ ∣1−β∣∣ f (x)∣+ ∣β∣∣ f (x)− f (x−ξ)∣+ ∣β∣∣ f (x−ξ)− f ((x−ξ)/ν)∣

≤ ∣1−β∣∣ f ∣∞+ ∣β∣C(∣ξ∣+ I{x ∈D(δ)})+ ∣β∣C(∣ν−1∣+ I{x ∈D(δ)}),

where for the last two terms on the RHS we reasoned as in the proof of Lemma 3. When

d(θ,θ∗) ≤ δ, we have ∣β−1∣ ≤ δ1/2, while ∣ξ∣ ≤ δ and ∣ν−1∣ ≤ δ, so that

∣mθ(x,y)−mθ∗(x,y)∣ ≤m(z) ⋅C(δ
1/2+ I{x ∈D(δ)}).

The function on the RHS is therefore an envelope for the class Mδ. In terms of bracketing

numbers, reasoning as above, we find that for any θ,θ0 within δ of θ∗,

∣mθ(x,y)−mθ0(x,y)∣ ≤m(z) ⋅(∣β−β0∣+ I{dist(x,ξ0+ν0D) ≤C(∣ξ−ξ0∣∨ ∣ν−ν0∣)}),

where again m is square integrable. For θ = (β,ξ,ν), let β0 ∈ {1+( j/k)δ1/2 ∶ j = −k, . . . ,k} such
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that ∣β−β0∣ ≤ δ1/2/k; let ξ0 ∈ {( j/l)δ ∶ j =−l, . . . , l} such that ∣ξ−ξ0∣ ≤ δ/l; and let ν0 ∈ {1+( j/l)δ ∶

j = −l, . . . , l} such that ∣ν−ν0∣ ≤ δ/l. Then

mθ(x,y) =mθ0(x,y)±m(z) ⋅(δ
1/2/k+ I{dist(x,ξ0+ν0D) ≤Cδ/l}),

so that mθ is in the bracket defined by the two functions (differing by ±) on the RHS. The square

integral of the difference between these two functions is ≍ δ/k2+δ/l. So this is bounded by ε2,

we choose k ≍ δ1/2/ε and l ≍ δ/ε2. We conclude that we can coverMδ with k× l× l =O(δ1/2/ε)5

ε-brackets, so thatMδ has ε-bracketing number Nδ(ε) ≤C(δ1/2/ε)5. And from this we deduce,

as in the proof of Theorem 5, that (2.71) holds with b = 1/2.

We are thus in a position to apply Lemma 5 and get that the M-estimator θ̂n is n-consistent,

which here implies that

E[
√

n∣β̂n−β
∗∣] =O(1), E[n∣ξ̂n−ξ

∗∣] =O(1), E[n∣ν̂n−ν
∗∣] =O(1).

In particular, β̂n is
√

n-consistent while ξ̂n and ν̂n are n-consistent. And these rates are minimax,

as Lemma 6 applies essentially verbatim, all resting on the behavior of ∆(θ,θ∗) as θ→ θ∗.

Limit distribution

We can also obtain a limit distribution following the arguments underlying Theorem 7.

We assume for convenience that f is càglad. In what follows we assume that ξ is sufficiently close

to 0 and ν to 1 that intervals of the form [d∧(ξ+νd),d∨(ξ+νd)] where d ∈D do not intersect.

For d ∈D, define δd ∶= f (d+)− f (d−), which is the ‘jump’ that f makes at d. In view of the rates

of convergence that we obtained just above, we consider β = 1+ r/
√

n, ξ = s/n, and ν = 1+ t/n,

where r,s,t will remain fixed while n→∞. Using the fact that f is piecewise Lipschitz, we have
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● If d < x ≤ ξ+νd, for some d ∈D, then

mθ(x,y)−mθ∗(x,y) = L(z+δd ±C/
√

n)−L(z)

= B+d(z)±m(z)/
√

n, B+d(z) ∶= L(z+δd)−L(z),

where m is generic for a square integrable function. To arrive there we used a Taylor

development of L around z+δd .

● Similarly, if ξ+νd < x ≤ d, for some d ∈D, then

mθ(x,y)−mθ∗(x,y) = B−d(z)±m(z)/
√

n, B−d(z) ∶= L(z−δd)−L(z).

● If there is no discontinuity point between x and (x−ξ)/ν, then using the fact that

L(z+ t)−L(z) = L′(z)t + 1
2
L′′(z)t2± 1

2
γ(z, ∣t ∣)t2,

with γ defined in (2.61), and the fact that

f (x)−β f ((x−ξ)/ν) = (1−β) f (x)+R(x;β,ξ,ν), (2.125)

with

∣R(x;β,ξ,ν)∣ ≤C(∣ξ∣+ ∣ν−1∣) ≤C/n, (2.126)

we have

mθ(x,y)−mθ∗(x,y) = L′(z)(1−β) f (x)+L′(z)R(x;β,ξ,ν)+ 1
2L

′′(z)(1−β)2 f (x)2

± 1
2γ(z,C/n)C/n±C/n2.
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Hence, denoting Id(ξ,ν′) ∶= (d∧(d+ξ+d(ν′−1)),d∨(d+ξ+d(ν′−1))], we have

n(M̂n(θ)−M̂n(θ
∗))

=∑
i
∑
d∈D

(B+d(Zi)I{d < Xi ≤ d+ s/n+dt/n}+B−d(Zi)I{d+ s/n+dt/n < Xi ≤ d})

+∑
i
∑
d∈D

(m(Zi)/
√

n)I{Xi ∈ Id(s/n,t/n)}

+∑
i
L′(Zi)(1−β) f (Xi)I{Xi ∉ ∪dId(s/n,t/n)}

+∑
i

1
2L

′′(Zi)(1−β)2 f (Xi)2I{Xi ∉ ∪dId(s/n,t/n)}

+∑
i
L′(Zi)R(Xi;β,s/n,t/n)I{Xi ∉ ∪dId(s/n,t/n)}

±∑
i

1
2γ(Zi,C/n)(C/n)I{Xi ∉ ∪dId(s/n,t/n)}

±∑
i
(C/n2)I{Xi ∉ ∪dId(s/n,t/n)}.

As n→∞, the 1st sum on the RHS converges to ∑d∈DNd(s+ td), where {Nd ∶ d ∈D} are inde-

pendent two-sided marked Poisson processes on the real line, with Nd having intensity λ(d) and

mark distribution that of B+d(Z). (Note that B+d(Z) ∼ B−d(Z).) This process can be equivalently

expressed as ∑d∈DNd(s)+∑d∈D Ñd(t), where Nd is as before while Ñd has intensity λ(d)d and

same mark distribution, and all these processes are independent of each other. The 2nd sum has

expectation

n∑
d∈D

(C/
√

n)P(X ∈ Id(s/n,t/n)) ≍ 1/
√

n, since P(X ∈ Id(s/n,t/n)) =O(1/n),

and so it converges to 0 in probability by Markov’s inequality. Because P(X ∉∪dId(s/n,t/n))→ 1,

by the Lindeberg central limit theorem, the 3rd sum converges in distribution to the normal

distribution with zero mean and variance r2E[L′(Z)2]E[ f (X)2]. The 4th sum converges to

1
2r2E[L′′(Z)]E[ f (X)2] in probability, essentially by the law of large numbers. (More rigorously,
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via Chebyshev’s inequality, for example.) The 5th sum has zero mean and variance bounded

by nE[L′(Z)2]E[R(Xi;β,s/n,t/n)2] =O(1/n), and so converges to 0 in probability by Markov’s

inequality. The 6th sum is non negative and has expectation bounded by CE[γ(Z,C/n)] = o(1),

by dominated convergence, so that it converges to 0 in probability by Markov’s inequality. The

7th sum is simply =O(1/n).

The minimization over β, or equivalently over r, corresponds in the limit to a classical

setting, since the Gaussian process, as a (random) function of r, can be expressed as C̃1/2
1 rU ,

where C̃1 ∶= E[L′(Z)2]E[ f (X)2] and U is standard normal, and the drift term is equal to C̃0r2,

C̃0 ∶= 1
2 E[L′′(Z)]E[ f (X)2]. In particular, we have established that

√
n(β̂n−β∗) converges weakly to the normal distribution with zero mean and variance

(E[L′(Z)2]/E[L′′(Z)]2)E[ f (X)2]−1.

The minimization over ξ, or equivalently over s, corresponds in the limit to the minimum

a compound Poisson process. In particular, as in Theorem 7, we can establish that

n(ξ̂n − ξ∗) is asymptotically, and in distribution, between the two most extreme
minimizers of ∑d Nd .

And, similarly,

n(ν̂n − ν∗) is asymptotically, and in distribution, between the two most extreme
minimizers of ∑d Ñd .

Since the minimization over ξ and ν rely, in the limit, on independent processes, ξ̂n and

ν̂n are independent in the asymptote. Also, these processes are asymptotically independent of the

Gaussian process driving the minimization over β, as these Poisson processes only rely on OP(1)

data points. Hence,

β̂n, ξ̂n and ν̂n are asymptotically mutually independent.
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2.6 Variants and extensions

2.6.1 Fixed design

A fixed design is most common in signal processing, and also in change point analysis.

Most, if not all, of our results can be proved with very similar tools in that context. So that there is

a close correspondence with the basic setting of (2.1), in the context of a fixed design we assume

that

Yi = f (xi−θ
∗)+Zi, i = 1, . . . ,n, (2.127)

where xi =Λ−1(i/(n+1)), Λ being the distribution with density λ and λ being as before. That the

same results apply is due to the fact that the empirical process theory behind our results extends

quite naturally (and easily) to the independent-but-not-necessarily-iid setting, which is exactly the

extension needed since (x1,Y1), . . . ,(xn,Yn) are no longer iid but are still assumed independent.

The additional complexity is the fact that now the underlying distribution depends on n: In terms

of (x1,Z1), . . . ,(xn,Zn), it is the product of δxi ⊗φ over i = 1, . . . ,n. But this presents no particular

difficulty in our case.

These results from empirical process theory enable us to understand the large-n behavior

of M̂n(θ)−Mn(θ), where

Mn(θ) ∶=E[M̂n(θ)] = 1
n

n
∑
i=1

mθ(xi), mθ(x) ∶=E[L(Z+ f (x−θ
∗)− f (x−θ))].

But what is the behavior of Mn itself? As is clear, Mn is a Riemann sum, and when f is piecewise

Lipschitz, for example, and L is as before, one can easily prove that

sup
θ

∣Mn(θ)−M(θ)∣ ≤C/n, (2.128)

where C depends f and L. The limit function M is defined exactly as before in (2.11), and we
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have used the fact that the supremum is over a compact set when f and λ are compactly supported,

which we assume them to be.

2.6.2 Periodic template

In the signal processing literature it is not uncommon to consider the periodic setting

where the design points are effectively in a torus rather than the real line. This is equivalent

to considering a template that is periodic. The torus can be taken to be the unit interval with

algebra there done modulo 1. In that case, the design density λ is simply a density with support

the unit interval, and the assumption that the template f is compact is waved. So that the shift is

identifiable, we require that f is exactly 1-periodic meaning that f (⋅ −θ) ≠ f (⋅ −θ∗) unless θ = θ∗

(remember, modulo 1).

As can be easily verified, all our results apply in that setting with only minor modifications,

if any at all.

Remark 9. In signal processing it is common to match a template to a signal by maximizing

its convolution or Pearson correlation with the signal. Considering a regular design (also very

common) where xi = i/n, this amounts to defining the following estimator

t̂ ∶= argmax
t∈[n]

n
∑
i=1

f ( i−t
n )Yi . (2.129)

The parameter θ corresponds to t/n and is here constrained to be on the grid, as is typically the

case in signal processing. This estimator, as defined, is in fact the least squares estimator since

n
∑
i=1

(Yi− f ( i−t
n ))2 =

n
∑
i=1

Y 2
i +

n
∑
i=1

f ( i−t
n )2−2

n
∑
i=1

f ( i−t
n )Yi , (2.130)

and the first two sums on right-hand side do not depend on t. (For the second one, this is because

f is 1-periodic.)
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2.6.3 Agnostic setting

In practice, the model (2.1) could be completely wrong. Suppose, however, that the

following holds

Yi = g(Xi)+Zi, (2.131)

with otherwise the same assumptions on the design and noise. (This type of situation is sometimes

referred to as a ‘mispecified model’ or ‘improper learning’.) In that case, the function m̃θ(x,z) of

(2.57), which plays a crucial role in our derivations, takes the form

m̃θ(x,z) = L(z+g(x)− f (x−θ)). (2.132)

It then becomes quite clear that most, if not all of our results extend to this case, if it is true that

θ
∗ ∶= argmin

θ

E[m̃θ(X ,Z)] (2.133)

is uniquely defined. Almost no conditions on g are required other than, say, boundedness.

A case in point is where g, a function on the unit interval, is known to have a single

discontinuity, say at d. Note that d is unknown. Then one may want to use a stump, f (x) =

aI{x > 0}, to locate the discontinuity. If one uses the squared error loss for example, it happens

that θ∗ is exactly the location of the discontinuity if it is the case that g(x) < a/2 when x < d and

g(x) > a/2 when x > d. And using an additional scale parameter as in (2.121) frees one from

having to guess a good value for a. The point here is that a simple, parameteric model can be used

to locate a feature of interest (a discontinuity in this example) in an otherwise ‘nonparametric’

setting.
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2.6.4 Semi-parametric models

The models we discussed in this paper are all parametric. This was intentional, to keep

the exposition focused. However, empirical process theory has developed an arsenal of tools for

semi-parametric models [VdV98, BKRW98, Ch 25]. An emblematic example in the context of

matching a template would be a class of piecewise Lipschitz functions: the parametric component

of the model would be the location of the knots defining the intervals where the template is

Lipschitz, while the nonparametric component would be the Lipschitz functions defining the

template on these intervals. [Kor88] considered this problem in the continuous white noise model

and showed that it is possible to locate the location of a discontinuity to what corresponds to

O(1/n) accuracy in our context by simply looking for unusually large slopes. This is similar to

the approach we allude to at the end of Section 2.6.3. In any case, the same rate of convergence

can be obtained for the M-estimator using tools similar to the ones we used in this paper; see

[VdV98, Sec 5.8.1].

2.6.5 Alignment/registration

We mentioned in the Introduction the close relationship with the problem of signal

alignment (aka registration). A typical setting, that most resembles our basic shift model (2.1), is

where

Yi j = f (Xi j −θ j)+Zi j, i ∈ [n], j ∈ [s], (2.134)

so that instead of a single sample of size n from (2.1), we are provided with s such samples, all

shifted differently. Invariably, the function f is unknown, and not much needs to be assumed

about f to estimate the shifts (i.e., align the signals) with
√

n precision. Indeed, with some

kernel smoothing, it is possible to design an estimator that is
√

n-consistent, as shown in [HM90,

GLM07, Vim10, TIR11]. Although this convergence rate can be achieved with hardly any

assumption of f , our work here, which we placed in the context of the change point analysis
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literature, would indicate that this rate is suboptimal when f has a discontinuity.

2.6.6 Concentration bounds

The rate of convergence and the limit distribution, in each case, was established under

very mild assumptions on the noise distribution. In particular, in terms of tail decay, we only

assumed that it was sufficient for the expected loss to be finite at the true value of the parameter,

i.e., E[L(Z)] <∞. As we discussed earlier, for the losses considered here (and almost everywhere

else in the literature), this implies that E[L′(Z +c)2] <∞ for every c > 0, which is all that was

needed.

When some tail decay is assumed, then concentration bounds can be derived. The simplest

and most straightforward example of that is when the loss function is bounded, as is the case for

the Tukey loss. Then, under no additional assumption on the noise distribution, the M-estimator

enjoys sub-Gaussian concentration. This can be seen from combining Talagrand’s inequality for

empirical processes [Tal96] and [vdVW96, Th 3.2.5] — the latter being a more general version

of [VdV98, Th 5.52], which is the result at the foundation of Lemma 5.

2.7 Numerical experiments

We performed some basic experiments to probe our theory. We present the result of these

experiments below, subdivided into ‘smooth’ and ‘non-smooth’ settings. The design distribution

is the uniform distribution on the unit interval. We consider three noise distributions: Gaussian,

Student t-distribution with 3 degrees of freedom, and Cauchy. And we consider four losses:

squared error, absolute-value, Huber, and Tukey. We assume throughout that θ∗ = 0.

The implementation of Python codes used in numerical experiments is available on Github:

https://github.com/zhenglin0266/Template-Matching
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2.7.1 Smooth setting

We consider the following two filters:

Template A: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4x−1 0.25 ≤ x < 0.5,

3−4x 0.5 ≤ x < 0.75,

0 otherwise

(2.135)

and

Template B: f (x) =max{0,(1−(4x−2)2)3}. (2.136)

Template A is Lipschitz, while Template B is even smoother. Our motivation for considering

Template B is to verify that more smoothness does not change things much (as predicted by our

theory). See Figure 2.2 for an illustration.

We used a sample of size n = 10000 and repeated each scenario (combination of template,

noise distribution, and loss function) 200 times. We show the mean of ∣
√

n(θ̂n−θ∗)∣ in Table 2.1.

Box plots of estimation error ∣θ̂n−θ∗∣ are shown in Figure 2.3 and Figure 2.4. The distribution of
√

n(θ̂n−θ∗) is plotted in Figure 2.5 and Figure 2.6 as an histogram overlaid with the Gaussian

distribution predicted by our asymptotic calculations. Out of curiosity, we also looked at the

setting where the noise is Cauchy and yet we use squared error as loss in Figure 2.7. The result of

these experiments are by and large congruent with our theory. In particular, there is no noticeable

difference between the two templates.

We also ran experiments with varying sample size n. We focused on Template A with

absolute-value loss and T3 noise, to investigate the accuracy of the asymptotic distribution as n

increases. As sample size we used n ∈ {100,500,1000,5000,10000}. To have a finer sense of the

accuracy, we used 1000 repeats. We show the mean of ∣
√

n(θ̂n−θ∗)∣ in Table 2.2, the box plot of
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(a) Template A (b) Template B

Figure 2.2: Templates and noisy signals. Although the sample size is n = 10000, for the sake of
clarity, we only include 1000 points and limit the range of the y-axis to [−5,5].

Figure 2.3: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template A
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Table 2.1: Mean of ∣
√

n(θ̂n−θ
∗)∣ with n = 10000 over 200 repeats.

Template Noise
Loss Function

Squared error Absolute-value Huber Tukey

Template A
Normal 0.2791 0.3705 0.2620 0.3301

T3 0.5168 0.3496 0.3634 0.5053
Cauchy 28.2535 0.4355 0.5203 0.4113

Template B
Normal 0.2511 0.3326 0.2453 0.2918

T3 0.4524 0.3236 0.3293 0.3286
Cauchy 48.2211 0.3958 0.3982 0.3462

Figure 2.4: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template B

∣θ̂n−θ∗∣ in Figure 2.8, and the histogram of
√

n(θ̂n−θ∗) in Figure 2.9.

Table 2.2: Mean of ∣
√

n(θ̂n−θ
∗)∣ for Template A with absolute-value loss and T3 noise based

on 1000 repeats.

n 100 500 1000 5000 10000

Mean of ∣
√

n(θ̂n−θ∗)∣ 0.5704 0.4286 0.4278 0.3766 0.3889

In Figure 2.9, as n →∞, the distributions of
√

n(θ̂n − θ∗) approaches to the normal

distribution shown in the theory. Figure 2.8 indicates estimation error ∣θ̂n−θ∗∣ decreases as n

increases.
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(a) Normal noise

(b) T3 noise

(c) Cauchy noise

Figure 2.5: Distribution under Template A. The histogram presents the distribution of
√

n(θ̂n−
θ
∗). The orange bell-shaped curve is the density of normal distribution predicted by the theory.
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(a) Normal noise

(b) T3 noise

(c) Cauchy noise

Figure 2.6: Distribution under Template B. The histogram presents the distribution of
√

n(θ̂n−
θ
∗). The orange bell-shaped curve is the density of normal distribution predicted by the theory.

Figure 2.7: Distribution of
√

n(θ̂n−θ
∗), for Templates A and B, with squared error loss under

the Cauchy distribution as noise distribution. Note that our theory is silent on this setting.

63



Figure 2.8: Box plot of the estimation error ∣θ̂n−θ
∗∣ for Template A with absolute-value loss

and T3 noise based on 1000 repeats.

Figure 2.9: Distribution of
√

n(θ̂n−θ
∗) for Template A with absolute-value loss and T3 noise

based on 1000 repeats.
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2.7.2 Non-smooth setting

We consider the following three filters:

Template C: f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0.25 ≤ x < 0.75,

0 otherwise,
(2.137)

Template D: f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0.2 ≤ x < 0.4 or 0.6 ≤ x < 0.8,

0 otherwise
(2.138)

and

Template E: f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4x−1 0.25 ≤ x < 0.5,

0 otherwise.
(2.139)

Template C is a piecewise constant function with two discontinuities. Template D is another

piecewise constant function with more discontinuities. Template E is a half-triangle with one

discontinuity. See Figure 2.10 for an illustration. Our theory predict that what matters is the

number and size of the discontinuities.

We show the mean of ∣n(θ̂n −θ∗)∣ in Table 2.3, the estimation error ∣θ̂n −θ∗∣ is shown

as a box plot in Figures 2.11, 2.12, and 2.13, and the distribution of n(θ̂n −θ∗) is plotted in

Figures 2.14, 2.15, and 2.16.

We also ran some experiments with varying n as before. We focused on Template E with

the absolute-value loss under the T3 noise distribution. The mean of ∣n(θ̂n−θ∗)∣ is reported in

Table 2.4, a box plot of the estimation error ∣θ̂n−θ∗∣ is given in Figure 2.17, and the distribution

of n(θ̂n−θ∗) is plotted in Figure 2.18.
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(a) Template C (b) Template D

(c) Template E

Figure 2.10: Templates and noisy signals. Although the sample size is n = 10000, for the sake
of clarity, we only include 1000 points and limit the range of the y-axis to [−5,5].
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Figure 2.11: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template C based on 200 repeats.

Figure 2.12: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template D based on 200 repeats.
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Table 2.3: Mean of ∣n(θ̂n−θ
∗)∣ based on 200 repeats.

Template Noise
Loss Function

Squared error Absolute-value Huber Tukey

Template C
Normal 1.876 1.849 1.868 2.120

T3 3.889 2.739 3.550 2.761
Cauchy 2326.050 4.362 3.310 4.204

Template D
Normal 0.868 1.080 0.897 0.877

T3 1.802 1.220 1.344 1.813
Cauchy 2766.000 2.278 2.078 1.862

Template E
Normal 3.498 3.798 3.414 4.008

T3 7.307 5.366 5.720 5.734
Cauchy 4798.370 9.102 8.839 7.759

Table 2.4: Mean of ∣n(θ̂n−θ
∗)∣ for Template E with absolute-value loss under T3 noise based

on 1000 repeats.

n 100 500 1000 5000 10000

Mean of ∣n(θ̂n−θ∗)∣ 10.1872 5.0808 5.7420 5.7146 5.0682
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2.9 Appendix

Lemma 10. Suppose Assumptions 1, 3, and 4 are in place. Then, Assumption 5 is fulfilled if (i)

the loss is strictly convex, or (ii) the noise distribution is unimodal and the loss is either Lipschitz

or has a Lipschitz derivative and φ has finite first moment. Assumption 5 is also fulfilled for the

Huber loss and the absolute-value loss if the noise distribution has a unique median.
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Figure 2.13: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template E based on 200 repeats.

Proof. Assume θ∗ = 0 without loss of generality. For x and y given, we let z = y− f (x).

The function θ↦mθ(x,y) is piecewise continuous under our assumptions. Moreover, it is

dominated since, by the properties of L,

mθ(x,y) = L(y− f (x−θ))

= L(y− f (x)+ f (x)− f (x−θ))

≤ L(∣y− f (x)∣+ ∣ f (x)− f (x−θ)∣)

≤m(x,y) ∶= L(∣y− f (x)∣+2∣ f ∣∞),

and E[m(X ,Y)] <∞ by (2.10) and the fact that the loss is slowly increasing. Hence, M is

continuous by dominated convergence. In addition, by the fact that f is compactly supported,

mθ(x,y)→ L(y) when θ→ ±∞, and so we also have M(θ)→M(∞) ∶=E[L(Y)] as θ→ ±∞. We

have

M(θ) =E[L(Z+ f (X)− f (X −θ))], M(∞) =E[L(Z+ f (X))].
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(a) Normal noise

(b) T3 noise

(c) Cauchy noise

Figure 2.14: The blue histogram represents the distribution of n(θ̂n−θ
∗) for Template C. The

orange histograms shows the simulated density of the midpoint of the minimizer interval of the
marked Poisson process predicted by the theory. Based on 200 repeats.
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(a) Normal noise

(b) T3 noise

(c) Cauchy noise

Figure 2.15: The blue histogram represents the distribution of n(θ̂n−θ
∗) for Template D. The

orange histograms shows the simulated density of the midpoint of the minimizer interval of the
marked Poisson process predicted by the theory. Based on 200 repeats.
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(a) Normal noise

(b) T3 noise

(c) Cauchy noise

Figure 2.16: The blue histogram represents the distribution of n(θ̂n−θ
∗) for Template E. The

orange histograms shows the simulated density of the midpoint of the minimizer interval of the
marked Poisson process predicted by the theory. Based on 200 repeats.
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Figure 2.17: Box plot of estimation error ∣θ̂n −θ
∗∣ for Template E with absolute-value loss

under T3 noise based on 1000 repeats.

Figure 2.18: The blue histograms present the distribution of n(θ̂n−θ
∗) for Template E with

absolute-value loss and T3 noise. The orange histograms show the simulated density of marked
Poisson process predicted by the theory. Based on 1000 repeats.
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The identifiability condition in Assumption 1 implies that P( f (X)− f (X −θ) ≠ 0) > 0 when θ ≠ 0

and P( f (X) ≠ 0) > 0, so by conditioning on X , taking into account that X and Z are independent,

it suffices to prove that g(a) ∶= E[L(Z +a)] achieves its minimum uniquely at a = 0. Since g is

even, it suffices to prove that g(a) > g(0) for any a > 0.

Assume L is convex. Then

g(a) =E[L(Z+a)] =E[L(Z−a)]

=E[1
2L(Z+a)+ 1

2L(Z−a)]

≥E[L(Z)] = g(0),

where in the second equality we used the fact that the distribution of Z is symmetric about 0 and

that L is even, and in the inequality we used the fact that L is convex. That inequality is strict

when the loss is strictly convex. This covers the squared error loss, for example.

For the Huber loss (2.5), the inequality is strict unless Z−a≥ c or Z+a≤−c with probability

1, meaning that P(Z ∈ [−a−c,a+c]) = 0; for the absolute-value loss, the inequality is strict unless

sign(Z−a) = sign(Z+a) with probability 1, meaning that P(Z ∈ [−a,a]) = 0. In either case, this

is only possible if the noise distribution does not put any mass in [−a,a], which would then imply

that any point in this entire interval is a median of the noise distribution.

Assume that the loss is Lipschitz. In that case, by dominated convergence, g is differ-

entiable with g′(a) = E[L′(Z +a)], and all we have to prove is that g′(a) ≥ 0 when the noise

distribution is unimodal. (Recall that we work with a > 0.) The uniqueness would then come from

the fact that g is not constant. We have

g′(a) = ∫
∞

−∞
L′(z+a)φ(z)dz

= ∫
∞

0
L′(z){φ(z−a)−φ(z+a)}dz.
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We claim that the integrand is non-negative. Indeed, L′(z) ≥ 0 for z ≥ 0 since L is non-decreasing

away from the origin per Assumption 4. Also, using the fact that φ is non-increasing on [0,∞),

we reason as follows: if z ≥ a, then z+a ≥ z−a ≥ 0, implying φ(z+a) ≤ φ(z−a); and if z ≤ a, then

a+ z ≥ a− z ≥ 0, implying φ(a+ z) ≤ φ(a− z), in turn implying φ(z+a) ≤ φ(z−a) since φ is even.

Our claim is thus established. This covers the Tukey loss, for example.

Assume that the loss has a Lipschitz derivative. In that case we can reduce this to the

previous case by observing that g above remains differentiable as long as φ has a finite first

moment. Indeed,

E[∣L′(Z+a)∣] ≤E[∣L′′∣∞∣Z+a∣] ≤ ∣L′′∣∞(E[∣Z∣]+a) <∞, (2.140)

for all a ≥ 0.

Lemma 11. Suppose that, on the real line, X1, . . . ,Xn are iid from some density λ, and indepen-

dently, that A1, . . . ,An are iid with distribution Ψ. Fix a finite subset d1 <⋯ < dp where λ can be

taken to be continuous. Define Wn, j(t) =∑i{d j < Xi ≤ d j + t/n}Ai. Then Wn, j converges weakly to

the marked Poisson process with intensity λ(d j) on the positive real line and mark distribution Ψ.

Moreover, Wn,1, . . . ,Wn,p are asymptotically independent.

Proof. It is suffices to establish the statement on intervals. Without loss of generality, we

consider the unit interval, so that we only consider t ∈ [0,1]. Everywhere, n is large enough

that d j+1 −d j > 1/n for all j. This guarantees that, for any t ∈ [0,1], the intervals [d j,d j + t/n]

are disjoint. Let {A j,i ∶ i ≥ 1, j = 1, . . . , p} be iid from Ψ. Then it’s easy to see that Wn,1, . . . ,Wn,p,

jointly, have the same distribution as W̃n,1, . . . ,W̃n,p, where

W̃n, j(t) ∶=
Nn, j(t)
∑
i=1

A j,i, Nn, j(t) ∶= #{i ∶ d j < Xi ≤ d j + t/n}. (2.141)

It is thus sufficient to show that Nn, j converges weakly to the Poisson process with intensity λ(d j)
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on the positive real line and that Nn,1, . . . ,Nn,p are asymptotically independent. By [Bil99, Th

12.6], it suffices to look at the finite-dimensional distributions. Therefore, fix 0 ≤ t1 <⋯ < tk ≤ 1

and {n j,s ∶ j = 1, . . . , p;s = 1, . . . ,k} non-negative integers. Based on the ‘balls-in-bins’ dependency

structure of these counts, we have

P(Nn, j(ts) ≤ n j,s,∀ j ∈ [p],s ∈ [k]) (2.142)

= P(Nn,1(ts) ≤ n1,s,∀s ∈ [k]) (2.143)

×P(Nn,2(ts) ≤ n2,s,∀s ∈ [k] ∣ Nn,1(tk) ≤ n1,k) (2.144)

×⋯ (2.145)

×P(Nn,p(ts) ≤ np,s,∀s ∈ [k] ∣ Nn,1(tk) ≤ n1,k, . . . ,Nn,p−1(tk) ≤ np−1,k), (2.146)

with

P(Nn, j(ts) ≤ n j,s,∀s ∈ [k] ∣ Nn,1(tk) ≤ n1,k, . . . ,Nn, j−1(tk) ≤ n j−1,k)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

≥ P(Nn, j(ts) ≤ n j,s,∀s ∈ [k])

≤ P(Nn−r j, j(ts) ≤ n j,s,∀s ∈ [k]), r j ∶= n1,k+⋯+n j−1,k.

Note that r1, . . . ,rp are all fixed, and it’s easy to convince oneself that it suffices at this point to

show that, for each j,

P(Nn, j(ts) ≤ n j,s,∀s ∈ [k]) n→∞ÐÐÐ→ P(N j(ts) ≤ n j,s,∀s ∈ [k]), (2.147)

were N j is a Poisson process with intensity λ(d j) on the positive real line, in other words, that

Nn, j converges weakly to N j. We do so by looking at the probability mass function instead of the
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cumulative distribution function. With t1 <⋯ < tk and {n j,s} generic, we have

P(Nn, j(t1) = n j,1, . . . ,Nn, j(tk) = n j,k)

= P(Nn, j(t1) = n j,1,Nn, j(t2)−Nn, j(t1) = n j,2−n j,1, . . . ,Nn, j(tk)−Nn, j(tk−1) = n j,k−n j,k−1)

∼ P(Nn, j(t1) = n j,1)×P(Nn, j(t2)−Nn, j(t1) = n j,2−n j,1)

×⋯×P(Nn, j(tk)−Nn, j(tk−1) = n j,k−n j,k−1), as n→∞,

where the approximation follows the same arguments used above to prove the asymptotic in-

dependence of the various count processes. We then conclude with the fact that, for any m ≥ 0

integer,

P(Nn, j(ts)−Nn, j(ts−1) =m) = #{i ∶ d j + ts−1/n < Xi ≤ d j + ts/n}
n→∞ÐÐÐ→ λ(d j)(ts− ts−1) = P(N j(ts)−N j(ts−1) =m),

using the fact that λ is continuous at d j.

Lemma 12. Consider the setting of Section 2.5.2. Assume in addition that E[L(Z)] < L(∞) and

that E[L(Z)] < E[L(Z +a)] for all a ≠ 0. Then there is a compact subset Θ0 ⊂ Θ of the form

[−B,B]×[−B,B]×[1/B,B] for some B ≥ 1, such that, with probability tending to 1, any minimizer

θ̂n of M̂n is in Θ0.

Proof. Let a= inf{x ∶ f (x)> 0} and b= sup{x ∶ f (x)> 0}, and assume that λ is supported on [−c,c].

Since we know that fθ∗ has support contained within the support of λ, we can restrict attention to

those θ such that fθ has support contained within the support of λ, which is equivalent to ξ and ν

satisfying ξ+aν≥−c and ξ+bν≤ c. Note that this implies that −c∣b+a∣/(b−a)≤ ξ≤ c∣b+a∣/(b−a)

and ν ≤ 2c/(b−a).

We now show that there is ν0 > 0 such that, if ν ≤ ν0, then M̂n(β,ξ,ν) is, asymptotically,

bounded away (and above) from M̂n(θ∗), regardless of β and ξ. Henceforth, we assume without
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loss of generality that θ∗ = (1,0,1).

On the one hand, by the law of large numbers, in probability as n→∞,

M̂n(θ
∗)→M(θ

∗) =E[L(Z)]. (2.148)

On the other hand,

inf
β,ξ,ν≤ν0

M̂n(β,ξ,ν) = inf
β,ξ,ν≤ν0

1
n
∑

i
L(Zi+ f (Xi)−β f ((Xi−ξ)/ν)) (2.149)

≥ inf
β,ξ,ν≤ν0

1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ ξ±νK} (2.150)

= inf
∣I∣≤2ν0K

1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ I}, (2.151)

where I above is a closed interval of length ∣I∣. The inequality relies on the fact that β f ((x−ξ)/ν)=

0 when x ∉ ξ±νK and the fact that the loss function is non-negative. Now,

1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ I} = 1

n
∑

i
gI(Xi,Zi), gI(x,z) ∶= L(z+ f (x))I{x ∉ I}, (2.152)

and the class of functions {gI ∶ ∣I∣ ≤ 2ν0K} is clearly Glivenko–Cantelli. Hence,

inf
∣I∣≤2ν0K

1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ I} n→∞ÐÐÐ→ inf

∣I∣≤2ν0K
E[L(Z+ f (X))I{X ∉ I}]. (2.153)

In turn, by dominated convergence, as ν0→ 0, the last expression converges to E[L(Z+ f (X))],

which is strictly larger than E[L(Z)] by (the equivalent of) Assumption 5. In particular, if ν0 is so

small that the last infimum is >E[L(Z)], we guarantee that, with probability tending to 1, ν̂n ≥ ν0.

So far, we showed that we can restrict (ξ,ν) in order for fθ to have support inside that of

λ, and that we may add a lower bound on ν (away from 0). It remains to show that, under these

conditions, we may also add a bound on ∣β∣. Fix ε > 0 and define Sε = {x ∶ ∣ f (x)∣ > ε}. Then, with
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the infimum over ξ and ν restricted as described above, for β0 > 0 and z0 > 0, we have

inf
∣β∣≥β0,ξ,ν

M̂n(β,ξ,ν)

≥ inf
∣β∣≥β0,ξ,ν

1
n
∑

i
inf
∣ai∣≥ε

L(Zi+ f (Xi)−βai)I{Xi ∈ ξ+νSε}+
1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ ξ+νS0}

≥ inf
ξ,ν

1
n
∑

i
L((β0ε−Zi− f (Xi))+)I{Xi ∈ ξ+νSε}+

1
n
∑

i
L(Zi+ f (Xi))I{Xi ∉ ξ+νS0}

n→∞ÐÐÐ→ inf
ξ,ν

E[L((β0ε−Z− f (X))+)I{X ∈ ξ+νSε}]+E[L(Z+ f (X))I{X ∉ ξ+νS0}]

β0→∞ÐÐÐ→ inf
ξ,ν

L(∞)P(X ∈ ξ+νSε)+E[L(Z+ f (X))I{X ∉ ξ+νS0}]

ε→0ÐÐ→ inf
ξ,ν

L(∞)P(X ∈ ξ+νS0)+E[L(Z+ f (X))I{X ∉ ξ+νS0}].

The first limit uses a uniform law of large numbers as we did above, only here it is based on

the fact that the collection of sets of the form ξ+νSε, as ξ and ν vary as they do here, has finite

VC dimension, and similarly for the collection of sets of the form ξ+νS0. We compare the last

expression with M(θ∗) to get

L(∞)P(X ∈ ξ+νS0)+E[L(Z+ f (X))I{X ∉ ξ+νS0}]−M(θ
∗) (2.154)

= (L(∞)−E[L(Z)])P(X ∈ ξ+νS0)+E[ϕ( f (X))I{X ∉ ξ+νS0}] =∶Q(ξ,ν), (2.155)

where ϕ(a) ∶= E[L(Z +a)]−E[L(Z)]. By assumption, L(∞)−E[L(Z)] > 0 and ϕ(a) > 0 when

a ≠ 0, so that Q(ξ,ν) = 0 if and only if P(X ∈ ξ+νS0) = 0 and P(X ∉ ξ+νS0,X ∈ S0) = 0, which

together imply that P(X ∈ S0) = 0, which would contradict the fact that f ≢ 0 on the support of

λ. Hence, Q(ξ,ν) > 0, and since Q is continuous by dominated convergence, and (ξ,ν) is in a

compact set, we have that infξ,ν Q(ξ,ν) > 0. All in all, we are able to conclude that there is β0 > 0

such that, with probability tending to 1, ∣β̂n∣ ≤ β0. And this is the only thing that was left to prove

to establish the lemma.
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Chapter 3

Template Matching with Ranks

3.1 Introduction

While in previous chapter we proposed and analyzed M-estimators for template matching,

in this chapter we consider R-estimators instead. The former includes what is perhaps the most

widely used method which consists in maximizing the Pearson correlation of the signal with

a shift of the template; see (3.2) below. We focus here on the rank variant of this approach,

which is an example of the latter category and consists, instead, in replacing the signal with the

corresponding ranks before maximizing the correlation over shifts of the template; see (3.4).

In the signal and image processing literature per se, where a lot of the work on template

matching resides, rank-based methods have been attracting some attention in recent years. [KD09]

propose a rank variant of the well-known feature extractor SIFT, while [XXJ+20] propose a rank-

based local self-similarity feature descriptor for use in synthetic-aperture radar (SAR) imaging.

[AY02] present a face recognition approach using the rank correlation of Gabor filtered images,

while [GF16] apply the Spearman rank correlation for template matching in face photo-sketch

recognition. [KSC08] construct a matched-filter object detection algorithm based on the Spearman
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rank correlation to detect Ca2+ sparks in biochemical applications. A number of papers use ranks

to align images, a task also known as ‘stereo matching’ [BB01, BBKC99, CCL12, GG12] — a

problem we will not address here but which also has a sizable literature in statistics; we provide

some pointers to the literature in our recent paper [ACZ20].

3.1.1 Model and methods

We consider a standard model for template matching, where we observe a shift of the

template with additive noise,

Yi = f (xi−θ
∗)+Zi, i = 1, . . . ,n, (3.1)

where xi ∶= i/n denote the design points, f ∶ [0,1]→R is a known 1-periodic function referred

to as the template, and θ∗ ∈R is the unknown shift of interest. The noise or measurement error

variables Z1, . . . ,Zn are assumed iid with density φ and distribution function denoted Φ.

Assumption 6. We assume everywhere that f is 1-periodic, and in fact exactly so in the sense that

f (⋅ −θ) ≠ f (⋅ −θ∗) on a set of positive measure whenever θ ≠ θ∗ mod 1. We also assume that f

is Lipschitz continuous.

Assumption 7. We assume everywhere that φ is even, so that the noise is symmetric about 0.

Our goal is, in signal processing terminology, to match the template f to the signal Y ,

which in statistical terms consists in the estimation of the shift θ∗. One of the most popular ways

to do so is via maximization of the Pearson correlation, leading to the estimator

θ̂ ∶= argmax
θ

n
∑
i=1

Yi f (xi−θ). (3.2)

In the present context, this is equivalent to the least squares estimator in that the same estimator is
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also the solution to the following least squares problem

θ̂ = argmin
θ

n
∑
i=1

(Yi− f (xi−θ))2. (3.3)

Note that this corresponds to the maximum likelihood estimator when the noise distribution is

Gaussian. Of course, other loss functions can be used, some of them leading to methods that are

robust to noise distributions with heavy tails or to the presence of gross errors (outliers) in the

signal. Our recent paper [ACZ20] studies these so-called M-estimators in great detail.

In the present paper we consider, instead, estimators based on ranks. These go by the

name of R-estimators in the statistics literature. The most direct route to such an estimator is to

replace the response values with their ranks, yielding

θ̂rank ∶= argmax
θ

n
∑
i=1

Ri f (xi−θ), (3.4)

where Ri denotes the rank of Yi in {Y1, . . . ,Yn} in increasing order. Doing so is sometimes called

the ‘rank transformation’ in the signal processing literature. Note that this is similar in spirit to

replacing the Pearson correlation in (3.2) with the Spearman rank correlation, except that we do

not rank the values of the template itself. We find that there is no real reason to want to replace

the template values with the corresponding ranks as the template is assumed to be free of noise.

3.1.2 Content

The rest of the paper is devoted to studying the asymptotic (n→∞) properties of the

estimator we propose in (3.4), which we will refer to as the R-estimator. In Section 3.2, we

derive some basic results describing the asymptotic behavior of this estimator. In more detail,

in Section 3.2.1 we discuss the consistency of this estimator, which we are not fully able to

establish but is clearly supported by computer simulations; in Section 3.2.2 we derive a rate of
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convergence for our R-estimator, which happens to be parametric and also minimax optimal;

and in Section 3.2.3 we derive a normal limit distribution of the same estimator, as well as its

asymptotic relative efficiency with respect to maximum likelihood estimator under Gaussian

noise. Section 3.3 summarizes the result of some numerical experiments we performed to probe

our asymptotic theory in finite samples. Section 3.4 provides a discussion of possible extensions.

The mathematical proofs are gathered in Section 3.5.

3.2 Theoretical properties

In this section we study the asymptotic properties of the estimator defined in (3.4). We

first study its consistency in Section 3.2.1; bound its rate of convergence in Section 3.2.2; and

derive its asymptotic (normal) limit distribution in Section 3.2.3.

3.2.1 Consistency

The estimator in (3.4) can be equivalently defined via

θ̂n ∶= argmax
θ

M̂n(θ), M̂n(θ) ∶= 1
n

n
∑
i=1

Ri

n
f (xi−θ), (3.5)

where we have added the subscript n to emphasize that the estimator is being computed on a

sample of size n. To understand the large-sample behavior of this estimator, we need to understand

that of M̂n as a function of θ, and this leads directly to empirical process theory.

Lemma 13. In probability,

sup
θ∈R

∣M̂n(θ)−M(θ)∣ n→∞ÐÐÐ→ 0,
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where

M(θ) ∶= ∫
1

0
∫

1

0
Φ2( f (x0)− f (x)) f (x0+θ

∗−θ)dxdx0, (3.6)

with Φ2(t) ∶= ∫
∞
−∞Φ(t + z)φ(z)dz.

With the uniform convergence of M̂n to M established in Lemma 13, and with the fact that

M is continuous and 1-periodic, it suffices that θ∗ be the unique maximizer of M for the estimator

θ̂n defined in (3.5) to converge to θ∗ in probability, that is, to be consistent [VdV98, Th 5.7]. We

are able, under an additional mild assumption on the noise distribution, to prove that θ∗ is a local

maximizer of M.

Proposition 1. M is twice differentiable, with M′(θ∗) = 0, and if φ is positive everywhere,

M′′(θ∗) < 0, in which case θ∗ is a local maximizer of M.

Unfortunately, we are not able to verify that θ∗ is indeed a global maximizer. However,

since it is borne out by our numerical experiments (Section 3.3), we conjecture this is true,

possibly under some additional (reasonable) conditions on the model. In the meantime, we

formulate this as an assumption, which henceforth forms part of our basic assumptions.

Assumption 8. θ∗ is the unique maximum point of M defined in (3.6).

Theorem 8. Under the basic assumptions, θ̂n converges in probability to θ∗ as n→∞.

3.2.2 Rate of convergence and minimaxity

Besides consistency, we derive the estimator’s rate of convergence in this section. The rate

turns out to be parametric, i.e., the convergence of the estimator to the true value of the parameter

is in O(
√

n).

Theorem 9. Under the basic assumptions, θ̂n is
√

n-consistent.
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The parametric rate of
√

n happens to be minimax optimal in the present setting. This is

established in [ACZ20, Cor 3.9] in the context of a random design corresponding to the situation

where the design points, instead of being the grid points spanning the unit interval, are generated

as an iid sample from the uniform distribution on the unit interval. But similar arguments carry

over. We omit details and refer the reader to the discussion in [ACZ20, Sec 6.1].

Corollary 3. The R-estimator achieves the minimax rate of convergence.

3.2.3 Limit distribution and asymptotic relative efficiency

In addition to obtaining a rate of convergence, we are also able to derive the asymptotic

distribution, which happens to be normal.

Theorem 10. Under the basic assumptions, strengthened with the assumption that f is contin-

uously differentiable,
√

n(θ̂n −θ∗) converges weakly to the centered normal distribution with

variance γ2/M′′(θ∗)2, where

γ
2 ∶= ∫

1

0
∫

∞

−∞
[∫

1

0
( f ′(x)− f ′(x0))Ξ( f (x)− f (x0),z)dx]

2

φ(z)dzdx0,

with Ξ(w,z) ∶=Φ(z+w)−Φ2(w), and

M′′(θ
∗) = −∫

1

0
∫

1

0
f ′(x)2

φ2( f (x)− f (x0))dxdx0,

with φ2(t) ∶=Φ′
2(t) = ∫

∞
−∞φ(z+ t)φ(z)dz.

Now that the R-estimator is known to be asymptotically normal with an explicit expression

for the asymptotic variance (after standardization), we can consider its (Pitman) efficiency relative

to the more popular estimator based on maximizing the Pearson correlation (3.2) (which coincides

with the MLE when the noise is Gaussian). Indeed, this estimator (denoted θ̃n now) was studied in

[ACZ20, Sec 3] in the setting of a random design. Adapting the arguments there, which are very

85



similar to (and in fact simpler than) those used here, we find that
√

n(θ̃n−θ∗) is asymptotically

normal with mean zero and variance σ2/∫
1

0 f ′(x)2dx, where σ2 is the noise variance. With

Theorem 10, we are thus able to conclude the following.

Corollary 4. Suppose that the noise has finite variance σ2. Then the asymptotic efficiency of the

R-estimator (3.4) relative to the standard estimator (3.2) is given by

σ2/∫
1

0 f ′(x)2dx
γ2/M′′(θ∗)2 .

The result, in fact, continues to hold even when the noise has infinite variance, and in that

case the asymptotic relative efficiency of the R-estimator relative to the more common estimator

is infinite.

3.3 Numerical experiments

We performed some simple numerical experiments to probe the asymptotic theory devel-

oped in the previous sections. The implementation of Python codes used in numerical experiments

is available on Github: https://github.com/zhenglin0266/Template-Matching-with-Ranks

We note that the implementation of the R-estimator (3.4) is completely straightforward,

as it only requires replacing the observations with their ranks before the usual template matching

by maximization of the correlation over shifts as in (3.2), which is typically implemented by

a fast Fourier transform. This ease of computation is in contrast with rank methods for, say,

linear regression which are computationally demanding and require dedicated algorithms and

implementations — difficulties that may explain the very limited adoption of such methods in

practice.

In our experiments, we considered three noise distributions: Gaussian distribution, Student

t-distribution with 3 degrees of freedom, and Cauchy distribution. We took θ∗ = 0 throughout,
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which is really without loss of generality since the two methods we compared — the standard

method based on maximizing the Pearson correlation and the rank-based method that we study —

are translation equivariant. We chose to work with the following three filters:

Template A: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4x−1 0.25 ≤ x < 0.5,

3−4x 0.5 ≤ x < 0.75,

0 otherwise,

(3.7)

Template B: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10x−2 0.2 ≤ x < 0.3,

4−10x 0.3 ≤ x < 0.4,

10x−6 0.6 ≤ x < 0.7,

8−10x 0.7 ≤ x < 0.8,

0 otherwise

(3.8)

and

Template C: f (x) =max{0,(1−(4x−2)2)3}. (3.9)

All are Lipschitz, with Template C being even smoother. See Figure 3.1 for an illustration.

We set the sample size at n = 10000. Each setting, defined by a choice of filter and of

noise distribution, was repeated 500 times. Box plots of estimation error ∣θ̂n−θ∗∣ are presented

in Figures 3.2, 3.3 and 3.4, while the distribution of
√

n(θ̂n−θ∗) is depicted in Figures 3.5, 3.6

and 3.7 via histograms. The results are congruent with what the theory predicts: The rank-based

method is slightly inferior to the standard method when the noise is Gaussian (exactly when the

standard method coincides with the MLE), while it is superior when the noise distribution has

heavier tails; and the histograms overlay nicely with the predicted asymptotic distribution. The

asymptotic relative efficiency of R-estimator relative to the method based on maximizing the
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(a) Template A (b) Template B (c) Template C

Figure 3.1: Templates and noisy signals. Although the sample size is n = 10000, for the sake of
clarity, we only include 1000 points and limit the range of the y-axis to [−5,5].
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Pearson correlation is displayed in Table 3.1.

Table 3.1: Asymptotic relative efficiency of the R-estimator (3.4) to the more common estimator
(3.2). Note that the latter is asymptotically best in the setting of Gaussian noise as it then
coincides with the maximum likelihood estimator for a ‘smooth’ model.

Template
Noise

Normal Student t3 Cauchy

Template A 0.949 2.008 ∞
Template B 0.940 1.992 ∞
Template C 0.948 2.008 ∞

Figure 3.2: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template A

3.4 Discussion

Our main goal in this paper was to show that a standard rank-based approach to template

matching is viable and amenable to study using well-established techniques in mathematical

statistics — some basic results in empirical process theory and the projection method of Hájek.

This provides some theoretical foundation for related approaches proposed in recent years in the

signal processing literature. We chose to keep the exposition contained and, in particular, have

focused on the ‘smooth setting’ of a Lipschitz template. We leave the equally important case of a

discontinuous template for future work (likely by others). Based on our previous work [ACZ20] —
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Figure 3.3: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template B

Figure 3.4: Box plot of estimation error ∣θ̂n−θ
∗∣ for Template C

(a) Normal noise (b) T3 noise (c) Cauchy noise

Figure 3.5: Distribution under Template A. The histogram presents the distribution of
√

n(θ̂n−
θ
∗). The orange bell-shaped curve is the density of normal distribution predicted by the theory.
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(a) Normal noise (b) T3 noise (c) Cauchy noise

Figure 3.6: Distribution under Template B. The histogram presents the distribution of
√

n(θ̂n−
θ
∗). The orange bell-shaped curve is the density of normal distribution predicted by the theory.

(a) Normal noise (b) T3 noise (c) Cauchy noise

Figure 3.7: Distribution under Template C. The histogram presents the distribution of
√

n(θ̂n−
θ
∗). The orange bell-shaped curve is the density of normal distribution predicted by the theory.
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where we did study this case in detail — and on our work here — in particular Hájek’s projection

technique used in the proof of Theorem 10 — we do believe that the study of this case is within

the reach of similarly standard tools.

Some of the other extensions discussed in our previous work are also relevant here. In

particular, while we focused on shifts in the context of 1D signals, other settings are possible,

including shifts in 2D or 3D signals (i.e., images), as well as other transformations. We omit

details and simply affirm that such extensions are also amenable to a similar mathematical

analysis.

In signal processing, rank-based methods seem more prominently represented in the

literature on signal registration. We are confident that the study of such methods is well within

the range of established techniques in mathematical statistics. However, the situation becomes

substantially more complex as 1) the setting is semi-parametric, and 2) some smoothing seems

to be required to achieve good performance — as transpires from the statistics literature on the

topic as mentioned in our previous work [ACZ20]. We leave a further exploration of rank-based

methods for registration to future endeavors.

3.5 Proofs

3.5.1 Preliminaries

The following is an extension of the celebrated Glivenko–Cantelli theorem.

Lemma 14. Suppose that {Yi,n ∶ i ∈ [n],n ≥ 1} are independent random variables with uniformly

tight and equicontinuous distributions {Fi,n ∶ i ∈ [n],n ≥ 1}. Define

F̂[n](y) ∶= 1
n

n
∑
i=1

I{Yi,n ≤ y}, F[n] ∶=E[F̂[n]] =
1
n

n
∑
i=1

Fi,n.
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Then the following uniform convergence holds in probability

sup
t

∣F̂[n](t)−F[n](t)∣
n→∞ÐÐÐ→ 0.

Proof. The proof arguments are very close to those supporting the more classical situation in

which the random variables have the same distribution [VdV98, Th 19.1]. We provide a proof for

completeness only.

Our assumptions mean 1) that for each ε > 0 there is K such that infi Fi,n(K) ≥ 1−ε and

supi Fi,n(−K) ≤ ε; and 2) that ω(δ) ∶= supi supt(Fi,n(t +δ)−Fi,n(t)) is continuous at 0; we then

speak of ω as the modulus of continuity of the family {Fi,n}. Fix ε > 0 and let K be defined as

above. Also, let δ be such that ω(δ) ≤ ε and set −K = t1 < t2 < ⋅ ⋅ ⋅ < tm−1 < tm = K be such that

t j+1− t j ≤ δ for all j. We then have, regardless of n, that F[n](K) ≥ 1−ε and F[n](−K) ≤ ε; and that

ω is a modulus of continuity for F[n], meaning that supt(F[n](t +δ)−F[n](t)) ≤ω(δ).

● For t ≤ t1, we have

∣F̂[n](t)−F[n](t)∣ ≤ F̂[n](t)+F[n](t) ≤ F̂[n](t1)+ε.

● For t ≥ tm, we have

∣F̂[n](t)−F[n](t)∣ ≤ (1− F̂[n](t))+(1−F[n](t)) ≤ (1− F̂[n](tm))+ε.

● For −K < t <K, if j is such that t j < t ≤ t j+1,

F̂[n](t)−F[n](t) ≤ F̂[n](t j+1)−F[n](t j) ≤ F̂[n](t j+1)−F[n](t j+1)+ε,
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and

F̂[n](t)−F[n](t) ≥ F̂[n](t j)−F[n](t j+1) ≤ F̂[n](t j)−F[n](t j)−ε.

By Chebyshev’s inequality, F̂[n](t)−F[n](t)→ 0 in probability as n→∞ for every fixed t ∈R. In

particular, max j ∣F̂[n](t j)−F[n](t j)∣→ 0 in probability, and under the event that this maximum is

bounded by ε, we have ∣F̂[n](t)−F[n](t)∣ ≤ 2ε. Since ε > 0 is arbitrary, the proof is complete.

The following is a simple result on functions defined as the linear combination of uniformly

equicontinuous functions with random coefficients.

Lemma 15. Suppose that {Bi,n ∶ i ∈ [n],n ≥ 1} are independent such that ∣Bi,n∣ ≤K and E[Bi,n] = 0

for all i ∈ [n] and all n ≥ 1; and that { fi,n ∶ i ∈ [n],n ≥ 1} are uniformly bounded and uniformly

equicontinuous functions either defined on a compact interval. Then, in probability,

∣1
n

n
∑
i=1

Bi,n fi,n∣
∞

n→∞ÐÐÐ→ 0.

Proof. The arguments are quite similar to those supporting Lemma 14. Define

Sn ∶=
1
n

n
∑
i=1

Bi,n fi,n.

Suppose without loss of generality that the functions are defined on the unit interval. Because

they are uniformly equicontinuous, for any given ε > 0, there is δ > 0 such that supn supi ∣ fi,n(t)−

fi,n(s)∣ ≤ ε for all s,t ∈ [0,1] such that ∣t−s∣ ≤ δ. With ε > 0 fixed, and δ as such, let 0 = t1 < t2 <⋯ <

tm−1 < tm = 1 be such that t j+1− t j ≤ δ for all j. Then for any t ∈ [0,1], if j is such that t j ≤ t ≤ t j+1,

∣Sn(t)−Sn(t j)∣ ≤
1
n

n
∑
i=1

∣Bi,n∣∣ fi,n(t)− fi,n(t j)∣ ≤K sup
n

sup
i

∣ fi,n(t)− fi,n(t j)∣ ≤Kε.
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In particular,

∣Sn∣∞ ≤max
j

∣Sn(t j)∣+Kε.

Furthermore, by Chebyshev’s inequality, in probability,

max
j

∣Sn(t j)∣
n→∞ÐÐÐ→ 0.

Hence, in probability,

limsup
n

∣Sn∣∞ ≤Kε.

Since ε > 0 was chosen arbitrary, the proof is complete.

The following is a well-known error bound for Riemann sums.

Lemma 16. Assume that f ∶ [a,b]→R is continuous with modulus of continuity ω. Then

RRRRRRRRRRR
∫

b

a
f (u)du− 1

m

m
∑
j=1

f (a+ j(b−a)/m)
RRRRRRRRRRR
≤ (b−a)ω((b−a)/m)

≤ (b−a)2

m
∣ f ′∣∞ if f is Lipschitz.

Proof. This well-known result is a simple consequence of partitioning [a,b] into sub-intervals of

length (b−a)/m.

The next two lemmas are refinements of Lemma 14 and Lemma 15. They clearly subsume

them, but they are also much deeper, and we only provide proof sketches, relying on arguments

borrowed from [VdV98].
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Lemma 17. In the context of Lemma 14, for some constant C,

E[sup
t

∣F̂[n](t)−F[n](t)∣] ≤C/
√

n.

Proof. The result is classical when the variables are not only independent, but also identically

distributed, say Yi,n ∼ F for all i and all n, and is a special case of so-called entropy bounds on the

supremum of an empirical processes of the form

Sn ∶= sup
g∈G

1√
n

n
∑
i=1

(g(Yi,n)−E[g(Yi,n)]). (3.10)

For example, assuming that the class G is uniformly bounded, Cor 19.35 in [VdV98] gives

E[Sn] ≤C0J(G,F),

where C0 is a constant and

J(G,F) ∶= ∫
∞

0

√
logN(ε,G,L2(F))dε,

N(ε,G,L2(F)) denoting the ε-bracketing number of the class G with respect to the L2(F) metric.1

The proof of that result takes several pages, but a close examination reveals that the

‘identically distributed’ property is not used in an essential way. Indeed, the assumption that the

variables are iid is only used when applying Bernstein’s concentration inequality (Lem 19.32

there), and it is well-known that the result applies in a generalized form to variables that are only

independent, say Yi,n ∼ Fi,n. Everything follows from that, essentially verbatim, and yields

E[Sn] ≤C0J(G,F[n]).

1Two functions g1,g2 such that g1 ≤ g2 pointwise define a bracket made of all functions g such that g1 ≤ g ≤ g2. It
is said to be an ε-bracket with respect to L2(F), for a positive measure F , if ∫ (g2−g1)2dF ≤ ε

2. Given a class of
functions G, its ε-bracketing number with respect to L2(F) is the minimum number of ε-brackets needed to cover G.
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It turns out that, for a given distribution function F , J(G,F) can be bounded based on the modulus

of continuity of F (see Ex 19.6 in the same reference). And if ω is the modulus of continuity

of {Fi,n}, then it is also a modulus of continuity for F[n], and with this we can bound J(G,F[n])

independently of n just based on ω.

When dealing with the empirical distribution function, which is our focus here, the class

is taken to be G ∶= {I{y ≤ t} ∶ t ∈R}. For that class, J(G,F) <∞ for any distribution function, and

this implies via the arguments above that supn J(G,F[n]) <∞, concluding the proof.

Lemma 18. Suppose that {Bi ∶ i ≥ 1} are independent random variables that are centered and

bounded in absolute value by K. And let { fi ∶ i ≥ 1} be L-Lipschitz functions on [−t0,t0] with

fi(0) = 0 for all i. Then there is a some constant C such that, for any n ≥ 1,

E[ sup
∣t∣≤t0

∣1
n

n
∑
i=1

Bi fi(t)∣] ≤
Ct0√

n
.

Proof. As in the proof of Lemma 17, we rely on entropy bounds. Here we use Dudley’s entropy

bound as presented in [GN16, Th 2.3.6]. For a given n, let S(t) ∶= 1
n∑

n
i=1 Bi fi(t), we have

S(t)−S(s) =
n
∑
i=1

Bi

n
( fi(t)− fi(s)), (3.11)

with the variables Bi
n ( fi(t)− fi(s)) being independent, centered, and bounded in absolute value by

(K/n)L∣t − s∣. In [GN16], by Eq (3.8) and based on Def 2.3.5, the process S(t) is sub-Gaussian

on [−t0,t0] with respect to the metric d(s,t) ∶= (KL/
√

n)∣s− t ∣. Because S(0) = 0, Th 2.3.6 there

gives that

E[ sup
∣t∣≤t0

∣S(t)∣] ≤ 4
√

2∫
D/2

0

√
log(2N(ε))dε,

where D and N(ε) are the diameter and ε-covering number of [−t0,t0] with respect to d. Immedi-

ately, D = (KL/
√

n)(2t0) = 2KLt0/
√

n, and N(ε) ≍ (KL/
√

n)(t0/ε) ≍D/ε. With a simple change
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of variable in the integral, this gives us

E[ sup
∣t∣≤t0

∣S(t)∣] ≤C1KLt0/
√

n,

for a universal constant C1.

3.5.2 Proof of Lemma 13

We assume without loss of generality that θ∗ = 0. We have

Ri =
n
∑
j=1

I{Yj ≤Yi} = nΨ̂n(Yi), where Ψ̂n(y) ∶= 1
n

n
∑
j=1

I{Yj ≤ y}.

Note that Ψ̂n is the empirical distribution function of Y1, . . . ,Yn. Although these are not iid, they

are independent, and the Glivenko–Cantelli theorem applies to give that, in probability,

sup
y∈R

∣Ψ̂n(y)−E[Ψ̂n(y)]∣ n→∞ÐÐÐ→ 0.

See Lemma 14 for details. Further, we have

E[Ψ̂n(y)] = 1
n

n
∑
j=1

P(Yj ≤ y)

= 1
n

n
∑
j=1

P(Z j ≤ y− f (x j))

= 1
n

n
∑
j=1

Φ(y− f ( j/n))

n→∞ÐÐÐ→Ψ(y) ∶= ∫
1

0
Φ(y− f (x))dx,

where the convergence is by definition of the Riemann integral defining the limit. The convergence

is in fact uniform in y. This comes from an application of Lemma 16 using with the fact

that x↦Φ(y− f (x)) has derivative f ′(x)φ(y− f (x)), which has supremum norm bounded by
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∣ f ′∣∞∣φ∣∞ <∞ (independent of y). Hence, a simple application of the triangle inequality gives

that, in probability,

A1,n ∶= sup
y∈R

∣Ψ̂n(y)−Ψ(y)∣ n→∞ÐÐÐ→ 0. (3.12)

This is useful to us because Ri = nΨ(Yi)±nA1,n, which then triggers

M̂n(θ) = 1
n

n
∑
i=1

Ψ(Yi) f (xi−θ)±A2,n,

with A2,n ∶= A1,n∣ f ∣∞ = oP(1). We may thus focus on the first term on the right-hand side. We

have

1
n

n
∑
i=1

Ψ(Yi) f (xi−θ) = 1
n

n
∑
i=1

E[Ψ(Yi)] f (xi−θ)+Qn(θ),

with

Qn(θ) ∶= 1
n

n
∑
i=1

(Ψ(Yi)−E[Ψ(Yi)]) f (xi−θ).

On the one hand, by a standard argument consisting in discretizing the values of θ and using the

uniform continuity of f , we obtain

A3,n ∶= sup
θ∈R

∣Qn(θ)∣ n→∞ÐÐÐ→ 0,
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in probability. See Lemma 15 for details. On the other hand,

1
n

n
∑
i=1

E[Ψ(Yi)] f (xi−θ) = 1
n

n
∑
i=1
∫

∞

−∞
Ψ(z+ f (i/n))φ(z)dz ⋅ f (i/n−θ)

n→∞ÐÐÐ→ ∫
1

0
∫

∞

−∞
Ψ(z+ f (x))φ(z)dz ⋅ f (x−θ)dx

= ∫
1

0
∫

1

0
Φ2( f (x)− f (t)) f (x−θ)dtdx =M(θ),

using again the definition of Riemann integral. In fact the convergence is uniform in θ, by an

application of Lemma 16 to the function

gθ(x) ∶= ∫
∞

−∞
Ψ(z+ f (x))φ(z)dz ⋅ f (x−θ),

whose derivative can be bounded independently of θ as follows:

∣g′
θ
(x)∣ = ∣∫

∞

−∞
f ′(x)Ψ

′(z+ f (x))φ(z)dz ⋅ f (x−θ)+∫
∞

−∞
Ψ(z+ f (x))φ(z)dz ⋅ f ′(x−θ)∣

≤ ∣ f ′∣∞∣Ψ′∣∞∣ f ∣∞+ ∣Ψ∣∞∣ f ′∣∞

≤ ∣ f ′∣∞∣φ∣∞∣ f ∣∞+ ∣ f ′∣∞,

using the fact that φ is a density, that Ψ is a distribution function, and that Ψ′(y)= ∫
1

0 φ(y− f (x))dx

is non-negative and bounded by ∣φ∣∞. All combined, we can conclude that M̂n(θ) indeed

converges in probability as n→∞ to M(θ) uniformly in θ.

3.5.3 Proof of Proposition 1

Assume without loss of generality that θ∗ = 0. Define

g(y) ∶= ∫
1

0
Φ2(y− f (x))dx,
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so that

M(θ) = ∫
1

0
g( f (t)) f (t −θ)dt.

Note that 0 ≤ g(y) ≤ 1 for all y. When f is Lipschitz, it is absolutely continuous with bounded

derivative, so that by dominated convergence, M is differentiable with derivative

M′(θ) = −∫
1

0
g( f (t)) f ′(t −θ)dt = −∫

1

0
g( f (t +θ)) f ′(t)dt.

The reason we transferred θ to g is to be able to differentiate again. Indeed, g is also differentiable

by dominated convergence, with derivative (recall that Φ′ = φ)

g′(y) = ∫
1

0
∫

∞

−∞
φ(z+y− f (x))φ(z)dzdx,

which is bounded, so that M′ in its second form is also differentiable (by dominated convergence

again), with derivative

M′′(θ) = −∫
1

0
f ′(t +θ)g′( f (t +θ)) f ′(t)dt.

Therefore, M′′ is twice differentiable (with bounded second derivative at that).

We now look at θ = 0. Let G be the indeterminate integral of g. We have

M′(0) = −∫
1

0
g( f (t)) f ′(t)dt

= −[G( f (1))−G( f (0))] = 0,
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by the fact that f is 1-periodic. We also have

M′′(0) = −∫
1

0
g′( f (t)) f ′(t)2dt ≤ 0,

by the fact that g′ is non-negative (by simply looking at the integrand defining it, recalling that φ

is a density). In fact the inequality is strict by our assumption on φ, as it forces g′ to be strictly

positive everywhere.

3.5.4 Proof of Theorem 9

When working with the raw responses Y1, . . . ,Yn, the result can be proved using [VdV98,

Th 5.52]. Since we work with the ranks R1, . . . ,Rn instead, we elaborate, even though the core

arguments are essentially the same. Assume without loss of generality that θ∗ = 0, so that we

need to show that
√

nθ̂n is bounded in probability.

On the one hand, by definition, we have M̂n(θ̂n)− M̂n(0) ≥ 0. On the other hand, by

consistency (since Theorem 8 applies), we have that ∣θ̂n∣ is small, and by the fact that M is close

to quadratic in the neighborhood of 0 (Proposition 1), we have that M(θ̂n)−M(0) ≤ −C1θ̂2
n for

some constant C1 > 0. Combined, these two observations yield

C1θ̂
2
n ≤ M̂n(θ̂n)−M(θ̂n)−(M̂n(0)−M(0)),

with probability tending to 1.
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Let fi(θ) ∶= f (xi−θ)− f (xi). For any θ, we have

M̂n(θ)−M(θ)−(M̂n(0)−M(0)) (3.13)

= 1
n
∑

i
(Ψ̂n(Yi)−E[Ψ̂n](Yi)) fi(θ) (3.14)

+ 1
n
∑

i
(E[Ψ̂n](Yi)−Ψ(Yi)) fi(θ) (3.15)

+ 1
n
∑

i
(Ψ(Yi)−E[Ψ(Yi)]) fi(θ) (3.16)

+ 1
n
∑

i
E[Ψ̂(Yi)] fi(θ)−(M(θ)−M(0)). (3.17)

We saw in the proof of Lemma 13 that the terms in (3.15) and (3.17) are Riemannian sums and at

most of order O(1/n) uniformly in θ given that the ∣ fi∣∞ ≤ 2∣ f ∣∞. (This is crude, but enough for

our purposes here.) For (3.14), we apply Lemma 17 together with Markov’s inequality to get that,

in probability as n→∞,

sup
y∈R

∣Ψ̂n(y)−E[Ψ̂n](y)∣ ≤C2/
√

n.

With this, and the fact that ∣ fi(θ)∣ ≤ ∣ f ′∣∞∣θ∣, we have that the quantity in (3.14) is bounded in

absolute value by (C2/
√

n)∣ f ′∣∞∣θ∣ for all θ, that is, this term is O(∣θ∣/
√

n) uniformly in θ. Hence,

if Sn(θ) denotes the term in (3.16), we have with probability tending to 1,

C1θ̂
2
n ≤ Sn(θ̂n)+C3(∣θ̂n∣/

√
n+1/n).

Let C4 > 0 be such that C1θ2 −C3(∣θ∣/
√

n+1/n) ≥ θ2/C4 whenever ∣θ∣ ≥C4/
√

n, so that

Sn(θ̂n) ≥ θ̂2
n/C4 when

√
n∣θ̂n∣ ≥C4. Let J0 be the smallest integer such that 2J0 ≥C4. Then, for
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J ≥ J0, we have

P(
√

n∣θ̂n∣ ≥ 2J) =∑
j≥J

P(2 j <
√

n∣θ̂n∣ ≤ 2 j+1)

≤∑
j≥J

P( max√
n∣θ∣≤2 j+1

Sn(θ) ≥ (2 j/
√

n)2/C4)

≤∑
j≥J

(C5/
√

n)(2 j+1/
√

n)
(2 j/

√
n)2/C4

=C62−J J→∞ÐÐÐ→ 0,

where C5 is the constant of Lemma 18, and we used that lemma and Markov’s inequality in the

corresponding line. We can thus conclude that
√

nθ̂n is bounded in probability.

3.5.5 Proof of Theorem 10

We assume without loss of generality that θ∗ = 0. The derivation of the limiting distribution

of the R-estimator follows via an application of the so-called argmax theorem. This standard

route is described, for example, in [VdV98, Sec 5.9]. It goes like this. By a simple change of

variables and by definition of θ̂n, hn ∶=
√

nθ̂n maximizes

Wn(h) ∶= rn[M̂n(h/
√

n)−M̂n(0)].

This is true for any rn > 0 and, with probability tending to one according to Theorem 9, it is true

even if Wn is restricted to [−an,an] for any given sequence an →∞. Suppose there is a choice

of rn that leads to the weak convergence of Wn to W in some appropriate sense, where W has a

unique maximizer. Then it is reasonable to anticipate that hn will converge to that maximizer in

some way. This is indeed the case under some mild assumptions. The following is a special case

of [VdV98, Cor 5.58].

Lemma 19. Suppose that a sequence of processes Wn defined on [−an,an] for some sequence
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an→∞ converges weakly in the uniform topology on every fixed compact interval to a process

W with continuous sample paths each having a unique maximum point h∗ (almost surely). If hn

maximizes Wn, and (hn) is uniformly tight, then hn converges weakly to h∗.

Back to our situation, we have established the tightness of {hn} in Theorem 9. It therefore

remains to show that Wn converges weakly to an appropriate stochastic process for a proper choice

of rn. We will see that rn ∶= n is the correct choice (up to an arbitrary multiplicative factor) and

that the limit process is a simple Gaussian process. In what follows, we let an→∞ slowly (e.g.,

an = logn).

So far, we have worked with the ranks using rather elementary means, but now we turn to

more sophisticated tools. Specifically, we use the projection method of Hájek. The following is a

special case of [H6́8, Th 4.2] with some minor modifications.

Lemma 20. Suppose Y1, . . . ,Yn are independent with respective distribution functions F1, . . . ,Fn.

Define M =∑i biRi/n, where R1, . . . ,Rn are the respective ranks of Y1, . . . ,Yn, and b1, . . . ,bn are

reals. Then, for a universal constant C,

E[(M−µ−
n
∑
i=1

Vi)
2
] ≤ C

n

n
∑
i=1

b2
i ,

where

µ ∶=
n
∑
i=1

bi
1
n

n
∑
j=1
∫ Fj(t)dFi(t), Vi ∶=

1
n

n
∑
i=1

(b j −bi)∫ [I{Yi ≤ t}−Fi(t)]dFj(t).

This result thus provides an approximation of a linear combination of ranks (which are

dependent) by a linear combination of independent random variables, and the latter is essentially

ready for an application of a central limit theorem. We apply it to

Wn(h) =
n
∑
i=1

fi(h)Ri

n
, fi(h) ∶= f (xi−h/

√
n)− f (xi).

105



Note that fi depends on n and recall that xi = i/n. In Lemma 20, bi corresponds here to fi(h) and

Fi to Φ(⋅ − f (xi)). Hence, µ in the lemma is given by

n
∑
i=1

fi(h)1
n

n
∑
j=1
∫

∞

−∞
Φ(t − f (x j))φ(t − f (xi))dt

=
n
∑
i=1

fi(h)1
n

n
∑
j=1

Φ2( f (xi)− f (x j))

=
n
∑
i=1

fi(h)[∫
1

0
Φ2( f (xi)− f (x))dx± ∣ f ′∣∞

2n
]

=
n
∑
i=1

( f (xi−h)− f (xi))∫
1

0
Φ2( f (xi)− f (x))dx±n

∣ f ′∣∞an√
n

∣ f ′∣∞
n

.

In the 3rd equality, we used Lemma 16 and the fact that x↦Φ2( f (xi)− f (x)) has derivative

− f ′(x)φ2( f (xi)− f (x)), whose supnorm is bounded by ∣ f ′∣∞. Defining

gh(t) ∶= ( f (t −h)− f (t))∫
1

0
Φ2( f (t)− f (x))dx,

we have

n
∑
i=1

( f (xi−h)− f (xi))∫
1

0
Φ2( f (xi)− f (x))dx

=
n
∑
i=1

gh(xi)

= n[∫
1

0
gh(t)dt ±

∣g′h∣∞
n

]

= n[M(h/
√

n)−M(0)]±ω1(an/
√

n),

using Lemma 16 in the 3rd equality, and where ω1(ε) ∶= supt sup∣s∣≤ε ∣ f ′(t + s)− f ′(t)∣, which is

the modulus of continuity of f ′. Note that ω1(ε)→ 0 when ε→ 0 by the fact that f is assumed to
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be continuously differentiable (and 1-periodic). Therefore, µ in the lemma is equal to

n[M(h/
√

n)−M(0)]±ω1(an/
√

n)± ∣ f ′∣2∞an√
n

,

with the remainder terms tending to 0 and, for h fixed,

n[M(h/
√

n)−M(0)] n→∞ÐÐÐ→ 1
2M′′(0)h2.

With the fact that M′′ is continuous under our assumption that f is continuously differentiable,

we conclude that µ is equal to

1
2M′′(0)h2±Q1,n, Q1,n

n→∞ÐÐÐ→ 0 in probability.

As for Vi in the lemma, it is equal to

1
n

n
∑
j=1

( f j(h)− fi(h))∫ [I{Yi ≤ t}−Φ(t − f (xi))]φ(t − f (x j))dt (3.18)

= 1
n

n
∑
j=1

( f j(h)− fi(h))∫ [I{Zi ≤ z+ f (x j)− f (xi)}−Φ(z+ f (x j)− f (xi))]φ(z)dz (3.19)

d= 1
n

n
∑
j=1

( f j(h)− fi(h))[Φ(Zi+ f (x j)− f (xi))−Φ2( f (x j)− f (xi))], (3.20)

using the fact that φ is symmetric about 0. Note that

f j(h)− fi(h) = f (x j +h/
√

n)− f (x j)− [ f (xi+h/
√

n)− f (xi)]

= (h/
√

n)[ f ′(x j)− f ′(xi)±ω1(h/
√

n)]

= (h/
√

n)[ f ′(x j)− f ′(xi)]±(an/
√

n)ω1(an/
√

n).
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Hence, the quantity in (3.20) is equal to

1
n

n
∑
j=1

(h/
√

n)( f ′(x j)− f ′(xi))[Φ(Zi+ f (x j)− f (xi))−Φ2( f (x j)− f (xi))]±(an/
√

n)ω1(an/
√

n)

= h√
n
[Λ(xi,Zi)±ω1(1/n)]±(an/

√
n)ω1(an/

√
n),

where

Λ(t,z) ∶= ∫
1

0
( f ′(x)− f ′(t))[Φ(z+ f (x)− f (t))−Φ2( f (x)− f (t))]dx

∶= ∫
1

0
( f ′(x)− f ′(t))Ξ( f (x)− f (t),z)dx,

using Lemma 16. We thus conclude that ∑n
i=1Vi is equal, in distribution, to

h√
n

n
∑
i=1

Λ(xi,Zi)±Q2,n, Q2,n
n→∞ÐÐÐ→ 0 in probability.

By Markov’s inequality and the fact that we only consider Wn(h) for ∣h∣ ≤ an, we thus

have that

Wn(h) d= 1
2M′′(0)h2±Q1,n+

h√
n

n
∑
i=1

Λ(xi,Zi)±Q2,n±Q3,n,

where

E[Q2
3,n] ≤

C
n

n
∑
i=1

fi(h)2 ≤C(∣ f ′∣∞h/
√

n)2 ≤ C∣ f ′∣2∞a2
n

n
,

so that Q3,n→ 0 as n→ 0 in probability. More succinctly, therefore,

Wn(h) d= 1
2M′′(0)h2+ h√

n

n
∑
i=1

Λ(xi,Zi)+oP(1). (3.21)
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Hence, by Slutsky’s theorem in the form of [Kos08, Th 7.15], it suffices to look at

Gn(h) ∶= 1
2M′′(0)h2+ h√

n

n
∑
i=1

Λ(xi,Zi), (3.22)

which is an exceedingly simple process. (This is because we are effectively in a classical setting,

even though the ranks obfuscate that.)

Indeed, note that Λ(xi,Zi) is centered and bounded in absolute value by 2∣ f ′∣∞, and

1
n

n
∑
i=1

Var[Λ(xi,Zi)]

= 1
n

n
∑
i=1

E[Λ(xi,Zi)2]

= 1
n

n
∑
i=1
∫

∞

−∞
[∫

1

0
( f ′(x)− f ′(xi))Ξ( f (x)− f (xi),z)dx]

2

φ(z)dz

n→∞ÐÐÐ→ γ
2,

again applying Lemma 16. Therefore, by Lyapunov’s central limit theorem,

1√
n

n
∑
i=1

Λ(xi,Zi)
n→∞Ô⇒N (0,γ2).

From this, it follows that Gn converges weakly on every bounded interval to the Gaussian process

given by

G(h) ∶= 1
2M′′(0)h2+hγU,

where U is a standard normal random variable. The limit process could not be simpler. In particu-

lar, G has continuous sample paths (in fact, its sample paths are parabolas), and recalling that

M′′(0) < 0 by Proposition 1, it is clear that G has a unique maximum point at h∗ ∶= (γ/M′′(0))U .

Note that h∗ is normal with mean zero and variance γ2/M′′(0)2. The proof of the theorem then
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follows from an application of Lemma 19.
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Chapter 4

Some Theory for Texture Segmentation

4.1 Introduction

Texture segmentation, and image segmentation more generally, is an important task in

computer vision and pattern recognition, being widely applied to areas such as scene understand-

ing, remote sensing and autonomous driving [PP93, Zha06, RD93, LCF+19]. While the vast

majority of the work in texture segmentation, as in image processing at large, is applied, we

contribute some theory by establishing the consistency of the basic approach.

In this thesis, we address the problem of texture segmentation by extracting local features

in the neighborhood of a pixel and then applying a clustering algorithm for grouping the pixel

according to these features. The process of extracting features has undergone some important

changes over the years, ranging from the use of sophisticated systems from applied harmonic

analysis such as Gabor filters or wavelets [DH95, GPK02, JF91, Uns95, WH96, RH99] to multi-

resolution or multiscale aggregation approaches [GSBB03, MJ92], among others [MBLS01,

HPB98], to the use deep learning, particularly in the form convolutional neural networks (CNN),

whose success is attributed to the capability of CNN to learn a hierarchical representation of
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raw input data [LSD15, RFB15, MNA16, BKC17]. In this work, we extract local features by

collecting local second moment information on patches. For clustering, many algorithms and

theoretical results have been reported in the literature, such as spectral clustering [NJW02],

k-means++ [AV07] and single-linkage clustering [AC11]. In this thesis, we consider k-means

and singe-linkage clustering.

The chapter is organized as follows. In Section 4.2, we consider stationary textures, which

is done by the extraction of local second moment information on patches and the application of

k-means. In Section 4.3, we consider non-stationary textures, where we also include location as a

feature and we apply instead single-linkage clustering. In Section 4.4, we present the result of

some numerical experiments, mostly there to illustrate the theory developed in the main part of

the paper. Both synthetic and natural textures are considered.

4.2 Stationary Textures

In this section we consider textures to be stationary. The model we adopt and the method

we implement are introduced in Section 4.2.1 and Section 4.2.2. We then establish in Section 4.2.3

the consistency of a simple incarnation of the basic approach.

4.2.1 Model

We have a pixel image X of size n×n, that we assume is partitioned into two sub-regions

G0 and G1 by curve Ḡ. G0 is a stationary Gaussian Markov random field with mean 0 and

autocovariance matrix A0. G1 is a stationary Gaussian Markov random field with mean 0 and

autocovariance matrix A1. In image X , we pick up n2 pixels with equal intervals, and get

observations

{Xt}, t ∈ T ∶= {1,2,⋯,n}2. (4.1)

To estimate curve Ḡ, we need to cluster the n2 pixels into two groups.
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4.2.2 Methods

We define scanning patches as follows. To simplify the presentation assume n is the

square of an integer (namely n = m2 for some integer m). For ∀t = (t1,t2) ∈ T , pick up patch St

with size (2m+1)×(2m+1),

St =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Xt+(−m,−m) Xt+(−m,−m+1) ⋯ Xt+(−m,m)

Xt+(−m+1,−m) Xt+(−m+1,−m+1) ⋯ Xt+(−m+1,m)

⋮ ⋮ ⋯ ⋮

Xt+(m,−m) Xt+(m,−m+1) ⋯ Xt+(m,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.2)

Next, autocovariance is defined based on scanning patches. For ∀t = (t1,t2) ∈ T and ∀i = (i1, i2) ∈

M ∶= {−m,−m+1,⋯,m−1,m}2, define true autocovariance and sample autocovariance as follows

Ct(i) =Mean of {E(Xt ⋅Xt+i) ∣ both Xt and Xt+i are in St} (4.3)

and

Ĉt(i) =Mean of {Xt ⋅Xt+i ∣ both Xt and Xt+i are in St}. (4.4)

Denote the vectorizations of {Ct(i)}i∈M and {Ĉt(i)}i∈M to be Ct and Ĉt respectively. Here Ct is

the true feature of pixel Xt and Ĉt is the observed feature of pixel Xt .

Also based on scanning patches, we define following three sets

H0 = {t ∈ T ∣ St ⊂ G0}, (4.5)

H1 = {t ∈ T ∣ St ⊂ G1} (4.6)
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and

H = {t ∈ T ∣ St ∩G0 ≠∅ and St ∩G1 ≠∅}. (4.7)

Here G0 and G1 are both stationary fields, so all elements in set {Ct}∀t∈H0 are the same and we

denote it as C0. Similarly, all elements in set {Ct}∀t∈H1 are the same and we denote it as C1.

Define template autocovariance E =
⎛
⎜⎜
⎝

C0

C1

⎞
⎟⎟
⎠

.

Then we introduce membership matrix. Define n2×2 true membership matrix W such

that for ∀t = (t1,t2) ∈ T ,

Wt = the n(t1−1)+ t2 th row of matrix W =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,0), if t = (t1,t2) ∈ G0,

(0,1), if t = (t1,t2) ∈ G1.
(4.8)

Also define the set of membership matricesWn,2 as follows

Wn,2 = {n2×2 matrices with rows (0,1) or (1,0)}. (4.9)

Based on above calculations and definitions, we define k-means clustering estimation as

(Ŵ , Ê) = argmin
W∈Wn,2,E∈R2×(2m+1)2

∑
t∈T

∥(WE)t −Ĉt∥2
∞, (4.10)

where (WE)t is the n(t1−1)+ t2 th row of matrix WE.

In practice k-means can not be solved exactly, however, there exists polynomial time

algorithm which obtains approximation (Ŵ , Ê) satisfying following equation (4.11), such as

(1+ε)-approximate method in [KSS04].

∑
t∈T

∥(Ŵ Ê)t −Ĉt∥2
∞ ≤ (1+ε) ⋅ min

W∈Wn,2,E∈R2×(2m+1)2
∑
t∈T

∥(WE)t −Ĉt∥2
∞, (4.11)
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where Ŵ ∈Wn,2 and Ê ∈R2×(2m+1)2 . Thus we cluster the n2 pixels into two groups by member-

ship matrix estimation Ŵ . As a summary, we provide the procedure of k-means algorithm in

Algorithm 1.

Algorithm 1 Texture Segmentation with K-means Algorithm

Input: Observations {Xt}t∈T , approximation error ε.

Output: Membership matrix estimation Ŵ .

1: For ∀t = (t1,t2) ∈ T , pick up patch St .

2: Calculate sample autocovariance {Ĉt(i)}i∈M and obtain observed features {Ĉt}t∈T .

3: Define template autocovariance E and the set of membership matricesWn,2.

4: Obtain k-means approximation solution (Ŵ , Ê) which satisfies (4.11).

5: return Ŵ .

Define the set of 2×2 permutation matrices

Φ2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, (4.12)

then calculate

Q̂ = argmin
Q∈Φ2

∑
t∈T

∥(ŴQ)t −Wt∥2
∞. (4.13)

Next, define the set of mistakenly clustered elements to be R as follows

R = {t ∈ T ∶ (Ŵ Q̂)t ≠Wt}, (4.14)

then clustering error rate is

∣R∣/n2 = 1
n2 ∑

t∈T
∥(Ŵ Q̂)t −Wt∥2

∞. (4.15)
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4.2.3 Theory

Firstly we introduce following assumptions.

Assumption 9. Both G0 and G1 are wide-sence stationary Gaussian Markov random fields.

Assumption 10. Let ∆ = ∥C0−C1∥∞. For ∀β > 1,

(logn)β

∆2n
→ 0 as n→∞. (4.16)

Assumption 11. Define Ct0 =C0 for ∀t ∈ G0 and Ct0 =C1 for ∀t ∈ G1. With the same β in Assump-

tion 10,

∑
t∈H

∥Ct −Ct0∥2
∞ ≤ n(logn)β

24
. (4.17)

Next, before introducing the theory, we indicate the error bound of ∥Ĉt −Ct∥∞.

Lemma 21. Under Assumption 9, for ∀t ∈ T and ∀a > 0, there exists a constant J such that

P(∥Ĉt −Ct∥∞ > a) ≤ 2(2
√

n+1)2 exp(−J ⋅a2n). (4.18)

116



Proof. First let Sv
t be the vectorization of St , then Sv

t is a vector of length (2m+1)2

Sv
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Xt+(−m,−m)

⋮

Xt+(−m,m)

Xt+(−m+1,−m)

⋮

Xt+(−m+1,m)

⋮

⋮

⋮

Xt+(m,−m)

⋮

Xt+(m,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.19)

Then for ∀i = (i1, i2) ∈M, there exists a matrix Ai such that

Ĉt(i) = 1
(2m+1− ∣i1∣)(2m+1− ∣i2∣)

(Sv
t )T AiSv

t , (4.20)

where Ai is a (2m+1)2×(2m+1)2 matrix with elements 0 and 1, and the number of 1 is less than

(2m+1− ∣i1∣)(2m+1− ∣i2∣).

Since the field is stationary, suppose Sv
t ∼N(0,Σ), where Σ is non-negative. Let Σ =UΛUT

be the spectral decomposition of Σ. Define

Yt =UT Sv
t , (4.21)
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then

Yt ∼N(0,UT
ΣU) =N(0,Λ). (4.22)

So

Ĉt(i) = 1
(2m+1− ∣i1∣)(2m+1− ∣i2∣)

(Sv
t )T AiSv

t (4.23)

= 1
(2m+1− ∣i1∣)(2m+1− ∣i2∣)

(UYt)T Ai(UYt) (4.24)

= 1
(2m+1− ∣i1∣)(2m+1− ∣i2∣)

Y T
t (UT AiU)Yt . (4.25)

By Hanson-Wright inequality in [RV13], for ∀a > 0, there exist constants K1 and J1, such that

P(∣Ĉt(i)−Ct(i)∣ > a) (4.26)

= P(∣Y T
t (UT AiU)Yt −E[Y T

t (UT AiU)Yt]∣ > a ⋅(2m+1− ∣i1∣)(2m+1− ∣i2∣)) (4.27)

≤ 2exp(−J1 ⋅min{a2(2m+1− ∣i1∣)2(2m+1− ∣i2∣)2

K4
1∥UT AiU∥2

F
,
a(2m+1− ∣i1∣)(2m+1− ∣i2∣)

K2
1∥UT AiU∥2

}). (4.28)

Next we focus on ∥UT AiU∥F and ∥UT AiU∥2. Since U is an orthogonal matrix,

∥UT AiU∥2 = ∥Ai∥2 ≤ ∥Ai∥1 =max
k
∑(2m+1)2

l=1 ∣Ai(k, l)∣ = 1 (4.29)

and

∥UT AiU∥F =
√

Sum of eigenvalues of (UT AiU)T (UT AiU) (4.30)

≤
√

(2m+1)2 ⋅λmax((UT AiU)T (UT AiU)) (4.31)

=
√

(2m+1)2 ⋅∥UT AiU∥2 (4.32)

= 2m+1. (4.33)
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Then for ∀i = (i1, i2) ∈M, there exist constants K1, J1 and J such that

P(∣Ĉt(i)−Ct(i)∣ > a) (4.34)

≤ 2exp(−J1 ⋅min{a2(2m+1− ∣i1∣)2(2m+1− ∣i2∣)2

K4
1(2m+1)2

,
a(2m+1− ∣i1∣)(2m+1− ∣i2∣)

K2
1

}) (4.35)

≤ 2exp(−J ⋅min{a2m2,am2}). (4.36)

So when a is small enough, we have

P(∣Ĉt(i)−Ct(i)∣ > a) ≤ 2exp(−J ⋅a2m2). (4.37)

Next since

∥Ĉt −Ct∥∞ =max
i∈M

∣Ĉt(i)−Ct(i)∣, (4.38)

by Union bound, for ∀a > 0,

P(∥Ĉt −Ct∥∞ > a) ≤ 2(2m+1)2 exp(−J ⋅a2m2) (4.39)

= 2(2
√

n+1)2 exp(−J ⋅a2n). (4.40)

Lemma 22. Let ∆ = ∥C0−C1∥∞. Define Ak = {t ∈ Gk ∶ ∥(Ŵ Ê)t −Ck∥∞ ≥ ∆/2},k = 0,1, and A′ =

A0 ∪A1, we have T /A′ = (G0/A0)∪ (G1/A1). Then all the elements in T /A′ are clustered

correctly.
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Proof. On the one hand, for ∀t ∈ G0/A0 and ∀s ∈ G1/A1, by contradiction, if (Ŵ Ê)t = (Ŵ Ê)s,

∆ = ∥C0−C1∥∞ ≤ ∥C0−(Ŵ Ê)t∥∞+∥(Ŵ Ê)t −(Ŵ Ê)s∥∞+∥(Ŵ Ê)s−C1∥∞ (4.41)

< ∆/2+0+∆/2 (4.42)

= ∆, (4.43)

which is conflicted by itself, so (Ŵ Ê)t ≠ (Ŵ Ê)s. On the other hand, suppose t,s ∈ G0/A0 or

t,s ∈ G1/A1, by contradiction, if (Ŵ Ê)t ≠ (Ŵ Ê)s, Ŵ Ê has at least three distinct rows, however,

according to the structure of Ŵ Ê, it has exactly two distinct rows, which is a conflict. So

(Ŵ Ê)t = (Ŵ Ê)s. Thus, all the elements in T /A′ are clustered correctly.

Next, we introduce the theory for k-means clustering algorithm.

Theorem 11. Under Assumption 9, 10 and 11, consider k-means clustering in Algorithm 1. For

∀β > 1, there exists a constant J, as n→∞,

P(∣R∣/n2 > (logn)β

∆2n
) ≤ 2(2

√
n+1)2n2 exp(−J ⋅(logn)β)→ 0, (4.44)

where ∣R∣/n2 is the clustering error rate. Here (logn)β

∆2n → 0 as n→∞.

Proof. By Algorithm 1 in Section 4.2.2, we have

∑
t∈T

∥(Ŵ Ê)t −Ĉt∥2
∞ ≤ (1+ε) ⋅ min

W∈Wn,2,E∈R2×(2m+1)2
∑
t∈T

∥(WE)t −Ĉt∥2
∞, (4.45)

where Ŵ ∈Wn,2, Ê ∈R2×(2m+1)2 . Without loss of generality, set ε < 1, then

∑
t∈T

∥(Ŵ Ê)t −Ĉt∥2
∞ ≤ (1+ε)∑

t∈T
∥Ct −Ĉt∥2

∞ (4.46)

≤ 2∑
t∈T

∥Ct −Ĉt∥2
∞. (4.47)
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On the one hand, by Triangle Inequality,

∑
t∈T

∥(Ŵ Ê)t −Ct0∥2
∞ ≤∑

t∈T
(∥(Ŵ Ê)t −Ĉt∥∞+∥Ĉt −Ct∥∞+∥Ct −Ct0∥∞)2 (4.48)

≤ 3∑
t∈T

∥(Ŵ Ê)t −Ĉt∥2
∞+3∑

t∈T
∥Ĉt −Ct∥2

∞+3∑
t∈T

∥Ct −Ct0∥2
∞. (4.49)

In addition, by Assumption 11 and (4.47),

∑
t∈T

∥(Ŵ Ê)t −Ct0∥2
∞ ≤ 6∑

t∈T
∥Ct −Ĉt∥2

∞+3∑
t∈T

∥Ĉt −Ct∥2
∞+3∑

t∈H
∥Ct −Ct0∥2

∞ (4.50)

= 9∑
t∈T

∥Ĉt −Ct∥2
∞+3∑

t∈H
∥Ct −Ct0∥2

∞ (4.51)

≤ 9∑
t∈T

∥Ĉt −Ct∥2
∞+ n(logn)β

8
. (4.52)

On the other hand,

∑
t∈T

∥(Ŵ Ê)t −Ct0∥2
∞ ≥ ∑

t∈A′

∆2

4
= ∆2(∣A0∣+ ∣A1∣)

4
= ∣A′∣∆2

4
, (4.53)

then we have

∣A′∣ ≤
36∑t∈T ∥Ĉt −Ct∥2

∞+ n(logn)β

2
∆2 . (4.54)

By Lemma 22,

P(∣R∣/n2 > (logn)β

∆2n
) = P(∣R∣ > n(logn)β

∆2 ) ≤ P(∣A′∣ > n(logn)β

∆2 ), (4.55)
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then by Lemma 21 and (4.54), there exists a constant J,

P(∣R∣/n2 > (logn)β

∆2n
) (4.56)

≤ P(
36∑t∈T ∥Ĉt −Ct∥2

∞+ n(logn)β

2
∆2 > n(logn)β

∆2 ) (4.57)

= P(∑
t∈T

∥Ĉt −Ct∥2
∞ > n(logn)β

72
) (4.58)

≤∑
t∈T

P(∥Ĉt −Ct∥2
∞ > (logn)β

72n
) (4.59)

≤ 2(2
√

n+1)2n2 exp(−J ⋅(logn)β). (4.60)

So for ∀β > 1, as n→∞,

P(∣R∣/n2 > (logn)β

∆2n
) ≤ 2(2

√
n+1)2n2 exp(−J ⋅(logn)β)→ 0. (4.61)

Thus, for stationary Gaussian random field, we obtain the error rate for k-means clustering

algorithm.

4.3 Non-stationary Textures

In this section we consider textures to be non-stationary. Here both G0 and G1 are

non-stationary Gaussian Markov random fields with mean 0. We add location information into

consideration and cluster the n2 pixels into two groups by single-linkage algorithm. The algorithm

is established in Section 4.3.1. Then we show the consistency of a simple incarnation of the basic

approach in Section 4.3.2.
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4.3.1 Methods

Pick up ⌊ n
2m+1⌋× ⌊ n

2m+1⌋ pixels {Xu}u∈U with equal intervals from {Xt}t∈T , where

U = {u = (u1,u2) ∣ u1 = (2m+1) ⋅ t1, u2 = (2m+1) ⋅ t2, (t1,t2) = {1,2,⋯,⌊ n
2m+1

⌋}
2
}. (4.62)

Here U is a subset of T . Similar to (4.2) in Section 4.2.2, for ∀u ∈ U , pick up patch Su as follows

Su =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Xu+(−m,−m) Xu+(−m,−m+1) ⋯ Xu+(−m,m)

Xu+(−m+1,−m) Xu+(−m+1,−m+1) ⋯ Xu+(−m+1,m)

⋮ ⋮ ⋯ ⋮

Xu+(m,−m) Xu+(m,−m+1) ⋯ Xu+(m,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.63)

For ∀u ≠ v ∈ U , it is obvious that ∣u1 − v1∣ ≥ 2m+1 or ∣u2 − v2∣ ≥ 2m+1. So there is no overlap

between Su and Sv.

Next for ∀u ∈ U , add location information into its true feature Cu. Denote C′
u as the new

true feature of pixel Xu as follows

C′
u = (Cu,

u1

n
,
u2

n
), (4.64)

where C′
u is a vector of length (2m+1)2+2. Similarly, denote Ĉ′

u as the new observed feature of

pixel Xu as follows

Ĉ′
u = (Ĉu,

u1

n
,
u2

n
), (4.65)

where Ĉ′
u also is a vector of length (2m+1)2+2.

Apply single-linkage algorithm in following steps. Firstly among U , connect all pairs

(u,v) with ∥Ĉ′
u−Ĉ′

v∥∞ < (logn)β/2
√

n , where 1 < β < 2. Next for ∀u ∈ U , assign all the other pixels in

Su into the same cluster as Xu. Then for any pixel Xt which is still not clustered, find the pixel
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Xu in {Xu}u∈U with the smallest distance to Xt , and assign pixel Xt into the same cluster with Xu.

Finally we obtain the clustering result.

As a summary, we provide the procedure of single-linkage algorithm in Algorithm 2.

Algorithm 2 Texture Segmentation with Single-linkage Algorithm

Input: Observations {Xt}t∈T .

Output: Single-linkage clustering result.

1: For ∀u = (u1,u2) ∈ U , pick up patch Su.

2: Calculate new observed features {Ĉ′
u}u∈U .

3: Apply single-linkage algorithm based on {Ĉ′
u}u∈U .

4: return Single-linkage clustering result.

Define the following set

V = {u ∈ U ∣ Su∩G0 =∅ or Su∩G1 =∅} (4.66)

and

W = {t ∈ T ∣ Xt is a pixel in patch Su where u ∈ V}. (4.67)

In next section, we can show that all the pixels in V can be clustered correctly with probability

going to 1. Thus, all pixels inW can be clustered correctly with probability going to 1.

4.3.2 Theory

Firstly we introduce two assumptions on non-stationary level of the fields.

Assumption 12. For any Xt ,Xs in the same sub-region,

∥Ct −Cs∥∞ =O(
√

logn ⋅D(s,t)), (4.68)
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where D(s,t) is the distance between two pixels Xt and Xs

D(s,t) =
√

(s1− t1
n

)
2
+(s2− t2

n
)

2
. (4.69)

Assumption 13. For any Xt ,Xs in different sub-regions, if D(s,t) < logn√
n , there exists a constant K

such that

∥Ct −Cs∥∞ ≥ K ⋅ logn√
n

. (4.70)

Next, we show that the single-linkage algorithm in above section is consistent.

Theorem 12. Under Assumption 12 and Assumption 13, by single-linkage clustering in Algo-

rithm 2, set threshold value b = (logn)β/2
√

n , where 1 < β < 2. Then as n→∞,

P(All pixels inW are clustered correctly) ≥ 1−n3 ⋅exp(−J ⋅(logn)β) → 1. (4.71)

Proof. Set threshold value b = (logn)β/2
√

n , where 1 < β < 2. For ∀u ∈ U , denote u+ as the pixel

bordering and above u in U , and denote u− as the pixel bordering and below u in U , then

P(All pixels inW are clustered correctly) (4.72)

≥ 1−P(max
u∈V

max
v ∈V

v,u in the same sub-region

Su borders on Sv

∥Ĉ′
u−Ĉ′

v∥∞ > (logn)β/2
√

n
) (4.73)

−P(min
u∈V

min
v ∈V

v,u in different sub-regions

∥Ĉ′
u−Ĉ′

v∥∞ < (logn)β/2
√

n
) (4.74)

−P( min
u∈U/V

∥Ĉ′
u+ −Ĉ′

u−∥∞ < 2(logn)β/2
√

n
). (4.75)
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By Union bound,

P(All pixels inW are clustered correctly) (4.76)

≥ 1−∑
u∈V

∑
v ∈V

v,u in the same sub-region

Su borders on Sv

P(∥Ĉ′
u−Ĉ′

v∥∞ > (logn)β/2
√

n
) (4.77)

−∑
u∈V

∑
v ∈V

v,u in different sub-regions

P(∥Ĉ′
u−Ĉ′

v∥∞ < (logn)β/2
√

n
) (4.78)

− ∑
u∈U/V

P(∥Ĉ′
u+ −Ĉ′

u−∥∞ < 2(logn)β/2
√

n
). (4.79)

We calculate above probability in three steps. Firstly, under Assumption 12, for ∀u ∈ U ,

max
v ∈V

v,u in the same sub-region

Su borders on Sv

∥C′
u−C′

v∥∞ =O(
√

logn
n

), (4.80)

then by Triangle Inequality,

∑
u∈V

∑
v ∈V

v,u in the same sub-region

Su borders on Sv

P(∥Ĉ′
u−Ĉ′

v∥∞ > (logn)β/2
√

n
) (4.81)

≤∑
u∈V

∑
v ∈V

v,u in the same sub-region

Su borders on Sv

[P(∥Ĉ′
u−C′

u∥∞ > (logn)β/2

3
√

n
)+P(∥Ĉ′

v−C′
v∥∞ > (logn)β/2

3
√

n
) (4.82)

+P(∥C′
u−C′

v∥∞ > (logn)β/2

3
√

n
)] (4.83)

≤∑
u∈V

∑
v ∈V

v,u in the same sub-region

Su borders on Sv

[P(∥Ĉ′
u−C′

u∥∞ > (logn)β/2

3
√

n
)+P(∥Ĉ′

v−C′
v∥∞ > (logn)β/2

3
√

n
)]. (4.84)
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By Lemma 21, for 1 < β < 2, there exists a constant J, as n→∞,

∑
u∈V

∑
v ∈V

v,u in the same sub-region

Su borders on Sv

P(∥Ĉ′
u−Ĉ′

v∥∞ > (logn)β/2
√

n
) (4.85)

≤ ∣V ∣ ⋅16(2
√

n+1)2 exp(−J ⋅(logn)β) (4.86)

≤ 16n2 exp(−J ⋅(logn)β) → 0. (4.87)

Secondly, for ∀u,v ∈ U such that Xu,Xv are in different sub-regions, if D(u,v) ≥ logn√
n , then

∥C′
u−C′

v∥∞ ≥ logn
2
√

n
. (4.88)

If D(u,v) < logn√
n , under Assumption 13, there exists a constant K, such that

∥C′
u−C′

v∥∞ ≥ K ⋅ logn√
n

. (4.89)

So there exists a constant J, as n→∞,

∑
u∈V

∑
v ∈V

v,u in different sub-regions

P(∥Ĉ′
u−Ĉ′

v∥∞ < (logn)β/2
√

n
) (4.90)

≤∑
u∈V

∑
v ∈V

v,u in different sub-regions

[P(∥C′
u−C′

v∥∞ < 3(logn)β/2
√

n
)+P(∥Ĉ′

u−C′
u∥∞ > (logn)β/2

√
n

) (4.91)

+P(∥Ĉ′
v−C′

v∥∞ > (logn)β/2
√

n
)] (4.92)

≤ 2n4

(2
√

n+1)4 ⋅P(∥Ĉ′
u−C′

u∥∞ > (logn)β/2
√

n
) (4.93)

≤ 4n4

(2
√

n+1)2 ⋅exp(−J ⋅(logn)β) → 0. (4.94)
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Thirdly, for ∀u ∈ U/V , Xu+ and Xu− are in different sub-regions, so by (4.88) and (4.89),

∑
u∈U/V

P(∥Ĉ′
u+ −Ĉ′

u−∥∞ < 2(logn)β/2
√

n
) = 0. (4.95)

Thus, there exists a constant J, as n→∞,

P(All pixels inW are clustered correctly) (4.96)

≥ 1−16n2 exp(−J ⋅(logn)β)− 4n4

(2
√

n+1)2 ⋅exp(−J ⋅(logn)β) (4.97)

≥ 1−n3 ⋅exp(−J ⋅(logn)β) → 1. (4.98)

4.3.3 Example

Non-stationary Model

Follow the ideas in [HSK99], we define non-stationary Gaussian process as follows. For

any pixels Xt and Xs, define non-stationary covariance between Xt and Xs to be

C(Xt ,Xs) = ∫R2
Kt(r)Ks(r)dr, (4.99)

where Kt(⋅) and Ks(⋅) are Gaussian kernel functions

Kt(r) = 1

2π∣Σt ∣
1
2

exp[−1
2
(r− t)T

Σ
−1
t (r− t)] (4.100)

and

Ks(r) = 1

2π∣Σs∣
1
2

exp[−1
2
(r− s)T

Σ
−1
s (r− s)]. (4.101)
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It is easy to check the covariance is non-negative definite. Then we create the non-stationary

process by convoluting the white noise process φ(⋅) with kernel function Kt(⋅),

Xt = ∫R2
Kt(r) dφ(r) for t ∈ T . (4.102)

Next, we simplify the covariance matrix. Suppose B ∼ N(0,Σt) and D ∼ N(s,Σs), where B and

D are independent. Let gB(⋅), gD(⋅) and gD−B(⋅) denote the density functions of B,D and D−B.

Similarly, gB,D(⋅) and gD−B,D(⋅) are join density functions. Then

C(Xt ,Xs) = ∫
R2

Kt(r)Ks(r)dr = ∫
R2

gB(r− t) ⋅gD(r) dr (4.103)

= ∫
R2

gB,D(r− t,r) dr = ∫
R2

gD−B,D(t,r) dr (4.104)

= gD−B(t) ⋅∫
2

R
gD(r) dr = gD−B(t). (4.105)

Since D−B ∼N(s,Σt +Σs), we have

C(Xt ,Xs) = gD−B(t) =
1

2π∣Σt +Σs∣
1
2

exp[−1
2
(t − s)T (Σt +Σs)−1(t − s)]. (4.106)

Assumptions and Theory on Example Model

Each pixel Xt has it own kernel function Kt(⋅), and the non-stationary process is controlled

by kernel functions {Kt(⋅)}t∈T . For each pixel Xt , it has Gaussian kernel function

Kt(r) = 1

2π∣Σt ∣
1
2

exp[−1
2
(r− t)T

Σ
−1
t (r− t)]. (4.107)

The only parameters of the non-stationary process are the covariance matrices {Σt}t∈T of the

kernel functions. Here we call {Σt}t∈T as the “size” of the kernel functions. If all pixels Xt have

the same ”size” Σt , the field is stationary. For each pixel Xt , t = (t1,t2) is a 2-dimension vector, so
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its ”size” Σt is a 2×2 matrix. Denote it as

Σt =
⎛
⎜⎜
⎝

at bt

ct dt

⎞
⎟⎟
⎠
. (4.108)

For any pixels Xt and Xs, define

d(s,t) =max{∣at −as∣, ∣bt −bs∣, ∣ct −cs∣, ∣dt −ds∣}. (4.109)

Next, similar to Assumption 12 and Assumption 13, for the example kernel convolution model,

we introduce assumptions directly on the ”size” of kernel function.

Assumption 14. For ∀Xt ,Xs in the same sub-region,

d(s,t) =O(
√

logn ⋅D(s,t)). (4.110)

Assumption 15. For ∀Xt ,Xs in different sub-regions, if D(s,t) < logn√
n , there exists a constant K

such that

d(s,t) ≥ K ⋅ logn√
n

. (4.111)

From Lemma 23, all conditions in Theorem 12 are satisfied, so Theorem 12 works here.

Thus, under Assumption 14 and Assumption 15, single-linkage algorithm is consistent under the

example kernel model.

4.4 Numerical Experiments

In our experiments, for the sake of stability, we use a form of size-constrained k-means

[WCRS01, BBD00] , size-constrained single-linkage and size-constrained ward-linkage algo-

rithms. The implementation of Python codes used in numerical experiments is available on
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Github: https://github.com/zhenglin0266/Some-Theory-for-Texture-Segmentation

4.4.1 Synthetic Stationary Textures

In the section, we create several stationary random field models by moving average on

Gaussian noise. Suppose white noise Zt ∼N(0,1). We generate four stationary random fields as

follows

Model 1: Xt =
m
∑

i=−m
Zt+(i,i). (4.112)

Model 2: Xt =
m
∑

i=−m
Zt+(−i,i). (4.113)

Model 3: Xt =
m
∑

i=−m
Zt+(0,i). (4.114)

Model 4: Xt =
m
∑

i=−m
Zt+(i,0). (4.115)

Based on above four models, after standardization and combination, we obtain six 128×

128 mosaics, which are showed in Figure 4.1. Each mosaic contains two different textures, and it

is divided by a straight line in the middle.

We apply {Ĉ′
t}t∈T as the observed features of pixels {Xt}T∈T . Consider three clustering

algorithms: size-constrained single-linkage, size-constrained ward-linkage and size-constrained

k-means algorithms. We present segmentation accuracy in Table 4.1. Single-linkage works

but does not perform well, and ward-linkage improves it. K-means algorithm works best and

segmentation accuracy is almost 1.

4.4.2 Natural Textures

In this section, We pick up textures from Brodatz album [Bro66].
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(a) Model 1 vs Model 2 (b) Model 1 vs Model 3 (c) Model 1 vs Model 4

(d) Model 2 vs Model 3 (e) Model 2 vs Model 4 (f) Model 3 vs Model 4

Figure 4.1: GMRF texture mosaics

Table 4.1: Segmentation accuracy

Mosaic Single-linkage Ward-linkage K-means

Model 1 vs Model 2 0.7362 0.9665 0.9868

Model 1 vs Model 3 0.9144 0.9632 0.9820

Model 1 vs Model 4 0.8329 0.9677 0.9867

Model 2 vs Model 3 0.9210 0.9657 0.9822

Model 2 vs Model 4 0.8190 0.9661 0.9868

Model 3 vs Model 4 0.7910 0.9626 0.9816

Mean Value 0.8358 0.9653 0.9844

Two Regions Divided by a Straight Line

We pick up three textures from Brodatz album [Bro66]: D21, D55 and D77. After

standardization and combination, we obtain three 160× 160 mosaics, which are showed in

Figure 4.2. Each mosaic contains two different Brodatz textures, and they are divided by a straight
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line in the middle.

(a) D21 vs D55 (b) D21 vs D77 (c) D55 vs D77

Figure 4.2: Texture mosaics

We apply {Ĉ′
t}t∈T as the observed features of pixels {Xt}T∈T . Consider three clustering

algorithms: size-constrained single-linkage, size-constrained ward-linkage and size-constrained

k-means algorithms. Segmentation results are shown in Figure 4.3. Also we present segmentation

accuracy in Table 4.2. All three algorithms work perfectly and segmentation accuracy is almost 1.

Table 4.2: Segmentation accuracy

Mosaics Single-linkage Ward-linkage K-means

D21 vs D55 0.9703 0.9819 0.9891

D21 vs D77 0.9536 0.9592 0.9858

D55 vs D77 0.9914 0.9396 0.9928

Mean Value 0.9718 0.9602 0.9892

Two Regions Divided by a Curve

Same to Section 4.4.2, we still run simulations on textures D21, D55 and D77. Here in

each mosaic, the textures are divided by a circle in the middle, as shown in Figure 4.4.

We apply {Ĉ′
t}t∈T as the observed features of pixels {Xt}T∈T . Consider three clustering

algorithms: size-constrained single-linkage, size-constrained ward-linkage and size-constrained

k-means algorithms. Segmentation results are shown in Figure 4.5. Also we present segmentation
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(a) D21 vs D55

(b) D21 vs D77

(c) D55 vs D77

Figure 4.3: Segmentation results

134



(a) D21 vs D55 (b) D21 vs D77 (c) D55 vs D77

Figure 4.4: Texture mosaics

accuracy in Table 4.3. Single-linkage works but does not perform well, and ward-linkage improves

it. K-means algorithm works perfectly and segmentation accuracy is almost 1.

Table 4.3: Segmentation accuracy

Mosaic Single-linkage Ward-linkage K-means

D21 vs D55 0.8093 0.9332 0.9562

D21 vs D77 0.8903 0.9563 0.9418

D55 vs D77 0.8295 0.8992 0.9739

Mean Value 0.8430 0.9296 0.9573

Multiple Regions

Here we construct three mosaics from eight textures in Brodatz album [Bro66]: D4, D6,

D20, D21, D34, D52, D55 and D77. After standardization and combination, we obtain three

160×160 mosaics, which are showed in Figure 4.6. Each mosaic contains four different Brodatz

textures, and they are divided by horizontal and vertical lines in the middle.

We apply {Ĉ′
t}t∈T as the observed features of pixels {Xt}T∈T . Consider three clustering

algorithms: size-constrained single-linkage, size-constrained ward-linkage and size-constrained

k-means algorithms. Segmentation results are shown in Figure 4.7. Also we present segmentation

accuracy in Table 4.4. For multi-cluster mosaics, single-linkage works but does not perform well,
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(a) D21 vs D55

(b) D21 vs D77

(c) D55 vs D77

Figure 4.5: Segmentation results

136



(a) D4, D6, D20 & D52 (b) D21,D34, D55 & D77 (c) D6, D21, D34 & D77

Figure 4.6: Texture mosaics

and ward-linkage improves it. K-means algorithm works perfectly and segmentation accuracy is

almost 1.

Table 4.4: Segmentation accuracy

Mosaic Single-linkage Ward-linkage K-means

D04, D06, D20 & D52 0.8478 0.8985 0.9507

D21, D34, D55 & D77 0.7530 0.8969 0.9663

D06, D21, D34 & D77 0.9158 0.8767 0.9465

Mean Value 0.8389 0.8907 0.9545

4.5 Discussion

For non-stationary textures, instead of single linkage clustering, we could also use DB-

SCAN algorithm. When MinPts = 2, DBSCAN is very similar to single-linkage algorithm, but

DBSCAN includes a step for removing noisy observations. In this paper, these noisy observations

could be the patches that overlap with the edge between the two sub-regions. In practice, in

different settings and backgrounds, we can apply different MinPts values in DBSCAN algorithm.

Also in Section 4.2 and Section 4.3, we only theoretically show the cases where there are

only two sub-regions. Actually when there are more than two regions, the introduced algorithms

also work. For example, we indicate the scene with four sub-regions in Section 4.4.2.
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(a) D04, D06, D20 & D52

(b) D21, D34, D55 & D77

(c) D06, D21, D34 & D77

Figure 4.7: Segmentation results
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In this paper, we do clustering based on local second moment information on patches.

Actually beyond sample autocovariance, we could also use higher-order statistics or other features

such as SIFT [Low99] for more complex textures that are not necessarily Gaussian, and speculate

that similar results could also be obtained in these situations.
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4.7 Appendix

Lemma 23. For any pixels Xt ,Xs in the image,

∥Ct −Cs∥∞ =O(d(s,t)). (4.116)

Proof. For any pixel Xt and ∀i = (i1, i2) ∈M,

Ct(i) =Mean value of {C(Xt ,Xt+i) ∣ both Xt and Xt+i are in St }. (4.117)
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Also we have

C(Xt ,Xt+i) (4.118)

= 1
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(4.123)

For ∀t ∈ T and i ∈M, let

It,i = (at +at+i)(dt +dt+i)−(bt +bt+i)(ct +ct+i), (4.124)

then

C(Xt ,Xt+i) (4.125)

= 1
(2π)2
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Also for ∀t ∈ T and i ∈M, let

Rt,i =
1

(2π)2
√

It,i
(4.127)
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and

Qt,i = exp
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then

C(Xt ,Xt+i) = Rt,i ⋅Qt,i. (4.129)

Similarly, for any pixel Xs ≠ Xt ,

C(Xs,Xs+i) = Rs,i ⋅Qs,i. (4.130)

Next, we work on the bound of ∣C(Xt ,Xt+i)−C(Xs,Xs+i)∣. Since

∣Rt,i−Rs,i∣ =
RRRRRRRRRRR

1
(2π)2

√
It,i

− 1
(2π)2
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RRRRRRRRRRR
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and

∣Qt,i−Qs,i∣ =Qt,i ⋅O(d(s,t)
n

) =O(d(s,t)
n

), (4.132)

we have

∣C(Xt ,Xt+i)−C(Xs,Xs+i)∣ = ∣Rt,i ⋅Qt,i−Rs,i ⋅Qs,i∣ (4.133)

≤ Rt,i ⋅ ∣Qt,i−Qs,i∣+Qs,i ⋅ ∣Rt,i−Rs,i∣ (4.134)

≤O(d(s,t)
n

)+O(d(s,t)) (4.135)

=O(d(s,t)). (4.136)

Then for any pixels Xt ,Xs in the image, for ∀i ∈M,

∣Ct(i)−Cs(i)∣ =O(d(s,t)). (4.137)
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Thus,

∥Ct −Cs∥∞ =O(d(s,t)). (4.138)
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