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EPIGRAPH

There was no answer,
except the general answer life gives to all the most complex and insoluble questions.

That answer is:
one must live in the needs of the day, in other words, become oblivious

Lev Nikolayevich Tolstoy
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Chapter 1

Introduction

1.1 Introduction to CMS

Physicists are captivated by questions that span from the infinite to the infinitesimal:

What is the universe made of? How do quarks behave? How does the sun burn?

Physicists from around the world gather at the Large Hadron Collider (LHC) to explore

these questions. The LHC is the world’s largest and most powerful particle accelerator, situated

100 meters below the Swiss-French border near Geneva. It features a 27 km ring of supercon-

ducting magnets that accelerate protons to 7 TeV each, creating head-to-head collisions at 14

TeV. These collisions occur at a staggering rate of 600 million per second, with protons traveling

at 99.9999991% the speed of light.

Inside the LHC, two beams of high-energy particles travel in opposite directions and

collide, scattering particles in all directions. Massive particle detectors are positioned at the

collision points to capture the resulting events. Among the four main experiments at the

LHC—ALICE, ATLAS, CMS, and LHCb—CMS is one of the two largest detectors, alongside

ATLAS. Although both have similar scientific goals, they employ different technical solutions

and magnet system designs to validate each other’s results. The Compact Muon Solenoid

(CMS) is a general-purpose detector designed to study a wide range of physics topics, including

supersymmetry, the Higgs boson, and dark matter.

The CMS collaboration consists of 5,500 physicists, engineers, and students from 241
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institutes across 54 countries. Despite its considerable size—15 meters high and 21 meters

long—the name ”Compact” reflects its highly integrated design. The detector is optimized to

detect muons with great precision. It weighs 14,000 tonnes, has 75 million individual channels,

and includes a superconducting cable that generates a 4-Tesla magnetic field, the strongest

solenoid magnet ever built.

The CMS detector functions like a high-speed camera, recording collisions 40 million

times per second. It comprises several sub-detectors, each with a specific function. The innermost

layer, the silicon tracker, traces the paths of charged particles. Next is the Electromagnetic

Calorimeter (ECAL), which absorbs electrons and photons. Beyond the ECAL is the Hadron

Calorimeter, which measures the energy of hadrons, consisting of quarks and gluons. Then

comes the solenoid itself, and finally, the muon detector, which is placed in the outermost layer

because muons can pass through several meters of iron without interacting. This powerful and

complex machine allows physicists to delve into the fundamental aspects of particle physics,

helping to unlock the mysteries of the universe.

1.2 Introduction to Particle Physics

It is well known that matter is made of atoms. In 1897, J.J. Thomson discovered electrons

and showed that the atom has a complex structure. In the early 20th century, protons and neutrons

were discovered. These three particles constitute the whole world.

In the 1960s, physicists found that protons and neutrons are made of smaller particles

called quarks. A proton consists of two up quarks and one down quark, while a neutron consists

of two down quarks and one up quark.

However, this is not the end of the story. Up and down quarks, along with electrons and

electron neutrinos, are only the first generation of matter. Nature provides us with two additional

generations to explain the vast number of discoveries made with accelerators. These 12 particles

form the fundamental building blocks of the universe. The last ingredient of the Standard Model
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Figure 1.1. The CMS detector at the LHC. This plot shows the various sub-detectors of the CMS
detector. The innermost layer is the silicon tracker, followed by the electromagnetic calorimeter,
the hadron calorimeter, the solenoid, and the muon detector.

is the force-carrying particles.

The Standard Model describes three fundamental forces. Electromagnetism is mediated

by photons, the weak force by W and Z bosons, and the strong force by gluons.

In the 1960s, there were issues with the Standard Model when incorporating the mass

of W and Z bosons. In 1964, Peter Higgs proposed a new field, known as the Higgs field, to

explain mass. According to his theory, particles acquire mass through interactions with the Higgs

field. The particle associated with this field is the Higgs boson. In 2012, the Higgs boson was

discovered by the ATLAS and CMS experiments.

1.3 Introduction To The Analysis

The Higgs boson, discovered in 2012 by the ATLAS and CMS collaborations at the

CERN LHC [12, 15, 16], has been the subject of extensive studies since its identification.

Measurements of the Higgs boson’s properties have generally aligned with Standard Model
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Figure 1.2. The particles of the Standard Model. This plot shows the three generations of matter
particles, the force-carrying particles, and the Higgs boson.

(SM) predictions [18, 19]. Following the discovery, research expanded into the production of

Higgs boson pairs (HH), a process that enables direct measurements of the Higgs boson trilinear

self-coupling and the quartic couplings between two Higgs bosons and two vector bosons. Both

ATLAS and CMS have recently published results that constrain these couplings [10, 11], with

the CMS results specifying the Higgs-gauge quartic coupling to be within the range [0.62, 1.41]

([0.66, 1.37] expected).

Another significant process, the vector boson scattering (VBS) triboson W±W±H pro-

duction, also provides insights into the trilinear Higgs self-coupling cλ and the Higgs-gauge

quartic coupling cVV [21, 22]. These couplings, when deviating from the SM predictions, can

significantly increase the cross section at high ŝ, making it possible to probe scenarios beyond
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the Standard Model (BSM) [21, 22]. Additionally, the HWW and HZZ (cV ) couplings also

contribute to the process.

This analysis focuses primarily on the Higgs-gauge quartic coupling cVV , aiming to set

limits that are competitive with the latest publications. The potential modifications from the

Standard Model values are expressed through the coupling modifiers κλ and κVV .

b.

V

V

H

q

q
a.

V

V

H

q

q

Higgs self-coupling Higgs-gauge quartic coupling

Figure 1.3. Tree-level Feynman diagrams of vector boson scattering multi-boson
productions with Higgs boson in the final state, the Higgs self-coupling, and the Higgs-
gauge quartic coupling are marked by ◦, and •, respectively.

The cross section increases as a function of the κVV value in both directions around 1

(SM expectation), as shown in figure 1.4. As the cross section grows, the final state topology

also changes. The higher the cross section, corresponding to higher ŝ values, the higher is the

Lorentz boost of the final state objects and their decay products.

A number of final states can be considered in this analysis. As shown in figure 1.5, the

all-hadronic and semi-leptonic final states take the major share of the total VBS VVH cross

section and these are the ones covered in this analysis note. Given that we want to probe beyond-

SM scenarios, where the final state objects have a large Lorentz boost, our analysis focuses on

final state with at least a boson (V or H) reconstructed as a boosted object in a single large cone jet.

Chapter 1, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.
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Figure 1.4. Cross section of the VBS VVH production as a function of κVV .

The dissertation author was the primary investigator and author of this analysis note.
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Figure 1.5. Share of the cross-section of the VVH process for all the final states of
the VV decays. The dominant final states are the all-hadronic and the semi-leptonic,
followed by final states with 2 leptons or MET(the missing energy of the events)
+hadrons. NB: In this analysis we consider only the Higgs decays to bb̄.
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Chapter 2

Samples

In the forthcoming sections of this chapter, we delineate the datasets that form the

cornerstone of our analysis, comprising both the empirical data from CMS Run II and the Monte

Carlo (MC) simulations that model the expected signal and background processes.

2.1 Collision data

The analysis delineated within this document is predicated upon the proton-proton

collision data from Run 2 of the Large Hadron Collider (LHC), as recorded by the CMS

experiment. It employs a dataset that embodies an integrated luminosity of 138 fb−1, enabling a

robust statistical analysis of the recorded events.

To facilitate this analysis, we utilize several primary datasets. For the single-lepton

channel, the SingleMuon and SingleElectron datasets are indispensable, while the JetHT dataset

is specifically harnessed for the zero-lepton channel. Each dataset is meticulously curated through

the employment of designated triggers, the details of which will be expounded in subsequent

sections.

The data tier that serves as the foundation for the analysis is the NanoAOD data tier,

specifically version 9, which has been processed under the “Ultra Legacy” (UL, a complete

reprocessing of the entire Run 2 dataset with the most updated algorithms and calibrations.)

reconstruction campaign. This ensures the utilization of the most refined and comprehensive
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dataset available.

An essential aspect of data curation is the implementation of the “golden” JSON selection,

(the list of ”good” luminosity sections) a rigorous standard applied to all data employed in this

analysis. The golden JSON files, along with their respective integrated luminosity contributions

for each data-taking period, are systematically cataloged in Table 2.1. These JSON files are

paramount in certifying the quality and viability of the collision events included in our study.

Table 2.1. Golden JSON files used to certify the proton-proton collision events for this analysis,
along with the corresponding integrated luminosity for each period.

Year Golden JSON file Luminosity (fb−1)
2016 (pre-VFP) Cert 271036-284044 13TeV Legacy2016

Collisions16 JSON.txt
19.52

2016 (post-VFP) Cert 271036-284044 13TeV Legacy2016
Collisions16 JSON.txt

16.81

2017 Cert 294927-306462 13TeV UL2017 Col-
lisions17 GoldenJSON.txt

41.53

2018 Cert 314472-325175 13TeV Legacy2018
Collisions18 JSON.txt

59.74

2.2 Monte Carlo simulations

In this section, we will delineate the Monte Carlo (MC) samples utilized, which are

instrumental in simulating the expected signal and background processes.

2.2.1 Signal

For the comprehensive analysis of the process pp →W±W±H + j j, Monte Carlo simu-

lations play an indispensable role. These simulations have been generated at leading order (LO)

using the MADGRAPH5 aMC@NLO generator [13], leveraging a modified version of the Standard

Model MADGRAPH model with the Higgs-gauge coupling modifier κVV set to 2. This adjustment

is critical as it aligns with the anticipated sensitivity of our analysis.

9



A suite of four distinct signal samples has been produced to cover each data-taking period,

with 2016 being further subdivided into pre- and post-VFP intervals:

• VBSWWH OS Mjj100 4f TuneCP5 [9] 13TeV-madgraph-pythia8

• VBSWWH SS Mjj100 4f TuneCP5 13TeV-madgraph-pythia8

• VBSWZH Mjj100 4f TuneCP5 13TeV-madgraph-pythia8

• VBSZZH Mjj100 4f TuneCP5 13TeV-madgraph-pythia8

These samples are categorized by the vector boson content and charge, each generated

with an m j j phase space cut of 100 GeV, where m j j denotes the invariant mass of any two jets.

MADGRAPH’s simulation output is harmonized with PYTHIA (version 8) for parton showering,

employing the CP5 tune and the dipole recoil option for heightened fidelity in the particle shower

simulation.

The choice to generate signal samples with κVV = 2 is predicated on the expectation

that the sensitivity of our analysis will peak around this value. With the applied generator

cuts, the cross-section for the process is calculated to be 7.12 fb. Empirical observations have

indicated that the kinematic distributions are largely invariant when κVV is adjusted within a

specific range beyond the Standard Model expectations, ensuring the analysis optimized at

κVV = 2 is robust across a spectrum of kinematic scenarios. It is noteworthy, however, that as

κVV converges towards 1, a discernible variation in event kinematics emerges, resulting in a

diminished sensitivity of our approach. Further details on the signal generation and the kinematic

distributions as a function of κVV are available in Appendix A.

Additionally, the signal samples include a reweighting scheme that is applied MADGRAPH.

This scheme enables us to survey the κVV landscape from -2 to 4. The cross-sections associated

with these processes demonstrate a quadratic increase as a function of κVV , aligning with

theoretical expectations. The computed cross-sections are systematically tabulated in Table 2.
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Table 2.2. The cross sections for WWH, WZH, and ZZH for a spectrum of κVV . The cross
sections for κVV = 2.0 are reported by MADGRAPH5 aMC@NLO, while the rest are obtained through
the reweighting features of MADGRAPH5 aMC@NLO.

κVV σ [fb]
W±W±H W±W∓H WZH ZZH

-2.0 8.66 19.66 10.59 9.06
-1.75 7.36 16.6 8.97 7.62
-1.5 6.18 13.8 7.49 6.32
-1.25 5.1 11.28 6.16 5.13
-1.0 4.15 9.02 4.96 4.07
-0.75 3.3 7.03 3.91 3.14
-0.5 2.57 5.3 2.99 2.33
-0.25 1.95 3.85 2.22 1.65
0.0 1.45 2.66 1.59 1.09
0.1 1.28 2.26 1.38 0.9
0.2 1.13 1.91 1.19 0.73
0.3 1.0 1.59 1.02 0.59
0.4 0.88 1.32 0.88 0.46
0.5 0.79 1.09 0.75 0.35
0.6 0.71 0.91 0.66 0.26
0.7 0.65 0.77 0.58 0.19
0.8 0.61 0.67 0.52 0.15
0.9 0.58 0.61 0.49 0.12
1.0 0.58 0.6 0.48 0.11
1.1 0.59 0.63 0.5 0.12
1.2 0.62 0.7 0.53 0.15
1.3 0.67 0.82 0.59 0.21
1.4 0.74 0.98 0.67 0.28
1.5 0.82 1.18 0.78 0.37
1.6 0.93 1.42 0.9 0.48
1.7 1.05 1.71 1.05 0.62
1.8 1.19 2.04 1.23 0.77
1.9 1.35 2.41 1.42 0.94
2.0 1.53 2.83 1.64 1.13
2.25 2.05 4.06 2.28 1.7
2.5 2.68 5.55 3.06 2.39
2.75 3.43 7.32 3.99 3.21
3.0 4.29 9.35 5.05 4.16
3.25 5.27 11.65 6.26 5.23
3.5 6.36 14.22 7.61 6.42
3.75 7.57 17.06 9.1 7.74
4.0 8.88 20.16 10.73 9.18
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2.2.2 Background

The Monte Carlo (MC) simulation samples utilized to characterize the background

processes in this analysis are cataloged in Tables 2.5 and 2.6. These samples are critical for

representing the principal backgrounds encountered in our study, namely top quark, and V+jets

production.

A particular focus is given to the treatment of the W+jets background. The cross-sections

for W+jets, often a dominant background in studies involving jets and missing transverse

momentum, are carefully adjusted to achieve a seamless integration across different energy

scales. This is detailed in the following subsection.

LHE HT binned W+jets stitching correction

The differential cross-sections of the W+jets samples categorized by hadronic activity

(HT) were not employed in this study (see [6, 7]). Instead, only the inclusive cross-section

was utilized, and the yields were adjusted to match the relative proportions observed in the

inclusive sample. This approach, however, introduces discontinuities at the LHE HT transition

points, as exemplified in Figure 2.1. To achieve a continuous spectrum, a stitching procedure

was implemented, mirroring the methodology previously applied to pre-UL samples. In these

instances, cross-sections were modified to mitigate recognized discrepancies.

Each sample’s LHE HT spectrum was individually fitted using the exponential function

f (x) = eax+b. The analysis focused exclusively on either the upper or lower extremity of the

spectrum. Continuity between the distributions of higher and lower HT-binned samples was

maintained by determining a scale factor based on the intersection point x, described by the

equation:

α =
f (x)higherHT −binned
f (x)lowerHT −binned

. (2.1)

For example, in connecting the HT 600-800 GeV sample to the HT 800-1200 GeV

sample, the procedure involved:
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• Fitting the lower boundary of the W+Jets HT 600-800 sample’s LHE HT distribution within

the range of [780,800] using the function f1(x) = eax+b.

• Similarly, fitting the upper boundary of the W+Jets HT 800-1200 sample’s LHE HT

distribution within the range of [800,840] using the function f2(x) = eax+b.

• The scale factor, α , was then calculated using α = f1(800)
f2(800) .

The resulting scale factors for all samples are documented in Table 2.3. Additionally,

the fitted slopes and the interim weights derived during the LHE HT transitions are tabulated in

Table 2.4. The outcomes of the reweighting process are illustrated in Figure 2.2. The adjusted

cross-sections for each LHE HT bin following stitching are listed in Table 2.5.

Figure 2.1. Discontinuity at the transition between the LHE HT [600,800] sample and the LHE
HT [800,1200] sample for the 2018 data taking period.

Table 2.3. WJets global stitching factors by year.

HT bin / year 2016-preVFP 2016-postVFP 2017 2018

LHE HT ∈ [200,400] 0.98979 0.9799 0.975082 0.990735
LHE HT ∈ [400,600] 1.00073 0.970773 0.980262 1.00713
LHE HT ∈ [600,800] 1.02926 0.998517 0.98764 1.04205
LHE HT ∈ [800,1200] 1.07868 1.01288 1.02704 1.18941

LHE HT ∈ [1200,2500] 1.21157 1.17629 1.22283 1.14644
LHE HT ∈ [2500,∞] 1.36417 2.51032 1.0906 1.16974
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Table 2.4. W+jets stitching factors for the different HT-binned samples of the 4 data taking
periods of the simulation.

2016 preVFP
end of lower HT-binned sample fitting func begin of higher HT-binned sample fitting func stitching factor

LHE HT ∈ [100,200] e−0.0149×x−3.7 LHE HT ∈ [200,400] e−0.0147×x−3.7 0.989790
LHE HT ∈ [200,400] e−0.0090×x−5.4 LHE HT ∈ [400,600] e−0.0088×x−5.5 1.011050
LHE HT ∈ [400,600] e−0.0065×x−6.6 LHE HT ∈ [600,800] e−0.0065×x−6.6 1.028510
LHE HT ∈ [600,800] e−0.0055×x−7.4 LHE HT ∈ [800,1200] e−0.0056×x−7.4 1.048010
LHE HT ∈ [800,1200] e−0.0042×x−8.7 LHE HT ∈ [1200,2500] e−0.0041×x−8.9 1.123200
LHE HT ∈ [1200,2500] e−0.0027×x−11.4 LHE HT ∈ [2500,∞) e−0.0026×x−11.6 1.125950
2016 postVFP
end of lower HT-binned sample fitting func begin of higher HT-binned sample fitting func stitching factor

LHE HT ∈ [100,200] e−0.0153×x−3.9 LHE HT ∈ [200,400] e−0.0145×x−4.0 0.979900
LHE HT ∈ [200,400] e−0.0096×x−5.4 LHE HT ∈ [400,600] e−0.0095×x−5.4 0.990686
LHE HT ∈ [400,600] e−0.0059×x−7.2 LHE HT ∈ [600,800] e−0.0062×x−7.1 1.028580
LHE HT ∈ [600,800] e−0.0057×x−7.5 LHE HT ∈ [800,1200] e−0.0055×x−7.7 1.014390
LHE HT ∈ [800,1200] e−0.0044×x−8.7 LHE HT ∈ [1200,2500] e−0.0040×x−9.3 1.161330
LHE HT ∈ [1200,2500] e−0.0031×x−10.6 LHE HT ∈ [2500,∞) e−0.0026×x−12.6 2.134100
2017
end of lower HT-binned sample fitting func begin of higher HT-binned sample fitting func stitching factor

LHE HT ∈ [100,200] e−0.0153×x−2.9 LHE HT ∈ [200,400] e−0.0146×x−3.0 0.975082
LHE HT ∈ [200,400] e−0.0094×x−4.5 LHE HT ∈ [400,600] e−0.0093×x−4.5 1.005310
LHE HT ∈ [400,600] e−0.0072×x−5.5 LHE HT ∈ [600,800] e−0.0066×x−5.9 1.007530
LHE HT ∈ [600,800] e−0.0060×x−6.3 LHE HT ∈ [800,1200] e−0.0055×x−6.7 1.039890
LHE HT ∈ [800,1200] e−0.0041×x−8.1 LHE HT ∈ [1200,2500] e−0.0040×x−8.4 1.190640
LHE HT ∈ [1200,2500] e−0.0030×x−9.9 LHE HT ∈ [2500,∞) e−0.0026×x−10.7 0.891870
2018
end of lower HT-binned sample fitting func begin of higher HT-binned sample fitting func stitching factor

LHE HT ∈ [100,200] e−0.0149×x−2.4 LHE HT ∈ [200,400] e−0.0146×x−2.5 0.990735
LHE HT ∈ [200,400] e−0.0093×x−4.0 LHE HT ∈ [400,600] e−0.0089×x−4.2 1.016540
LHE HT ∈ [400,600] e−0.0065×x−5.4 LHE HT ∈ [600,800] e−0.0067×x−5.3 1.034680
LHE HT ∈ [600,800] e−0.0055×x−6.2 LHE HT ∈ [800,1200] e−0.0054×x−6.4 1.141420
LHE HT ∈ [800,1200] e−0.0041×x−7.7 LHE HT ∈ [1200,2500] e−0.0040×x−7.7 0.963873
LHE HT ∈ [1200,2500] e−0.0026×x−10.1 LHE HT ∈ [2500,∞) e−0.0025×x−10.4 1.020330
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Figure 2.2. W+jets LHE HT spectrum before (red) and after (blue) the stitching and comparison
with the inclusive HT sample (black).
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Chapter 2, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Table 2.5. Background MC samples used in this analysis, corresponding to 2016preVFP, 2016,
2017, 2018 detector conditions (UL), with their respective cross sections in pb. A detailed
summary of the stitching the W+jets samples is presented in the following section. 4 cross-
sections are reposrted for the W+jets, as the stitching gives slightly different results for each data
taking period.

Process Sample Name σ [pb]
QCD /QCD HT100to200 TuneCP5 13TeV-madgraph-pythia8 27849880

/QCD HT200to300 TuneCP5 13TeV-madgraph-pythia8 1716997
/QCD HT300to500 TuneCP5 13TeV-madgraph-pythia8 351302
/QCD HT500to700 TuneCP5 13TeV-madgraph-pythia8 31630
/QCD HT700to1000 TuneCP5 13TeV-madgraph-pythia8 6802
/QCD HT1000to1500 TuneCP5 13TeV-madgraph-pythia8 1206
/QCD HT1500to2000 TuneCP5 13TeV-madgraph-pythia8 98.71
/QCD HT2000toInf TuneCP5 13TeV-madgraph-pythia8 20.2

tt̄ TTTo2L2Nu TuneCP5 13TeV-powheg-pythia8 0 3 6 10 88.29
TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8 0 3 6 10 365.34
TTToHadronic TuneCP5 13TeV-powheg-pythia8 0 3 6 10 377.96

Single Top ST t-channel antitop 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 0 3 6 10 80.95
ST t-channel top 4f InclusiveDecays TuneCP5 13TeV-powheg-madspin-pythia8 0 3 6 10 136.02
ST tW antitop 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 0 4 7 11 19.559
ST tW top 5f inclusiveDecays TuneCP5 13TeV-powheg-pythia8 0 4 7 11 19.559

W+jets /WJetsToLNu HT-70To100 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 1310.78/1283.91
1319.76/1321.16 ∗∗

/WJetsToLNu HT-100To200 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 1325.9/1303.06
1334.74/1335.7 ∗∗

/WJetsToLNu HT-200To400 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 348.57030/341.046
350.435/351.689 ∗∗

/WJetsToLNu HT-400To600 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 47.308275/45.4362
46.5726/47.1663 ∗∗

/WJetsToLNu HT-600To800 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 11.358487/11.0051
11.1485/11.4196 ∗∗

/WJetsToLNu HT-800To1200 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 8 10 5.2086934/4.94177
5.02246/5.12389 ∗∗

/WJetsToLNu HT-1200To2500 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 1.1880809/1.15544
1.183/1.18295 ∗∗

/WJetsToLNu HT-2500ToInf TuneCP5 13TeV-madgraphMLM-pythia8 1 4 7 11 0.024098031/0.0216234
0.0258083/0.0255202 ∗∗

Drell-Yan DYJetsToLL M-10to50 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 20657
DYJetsToLL M-50 TuneCP5 13TeV-madgraphMLM-pythia8 0 3 6 10 6198

0 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11-v1/NANODSIM
1 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11-v2/NANODSIM
2 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11 ext1-v1/NANODSIM
3 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17-v1/NANODSIM
4 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17-v2/NANODSIM
5 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17 ext1-v1/NANODSIM
6 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v1/NANODSIM
7 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v2/NANODSIM
8 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v3/NANODSIM
9 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9 ext1-v2/NANODSIM
10 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1-v1/NANODSIM
11 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1-v2/NANODSIM
12 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1 ext1-v2/NANODSIM
∗∗ The W+jets cross sections come from the reweighting to the relative fraction in the inclusive sample and the stitching. They are listed in the order 2016APV, 2016, 2017, 2018. The
cross-sections are slightly different due to the stitching.
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Table 2.6. Rarer background MC samples used in this analysis, corresponding to 2016preVFP,
2016, 2017, 2018 detector conditions (UL), with their respective cross sections in pb.

Process Sample Name σ [pb]

EWK V EWKWMinus2Jets WToLNu M-50 TuneCP5 withDipoleRecoil 13TeV-madgraph-pythia8 0 3 7 11 32.26
EWKWPlus2Jets WToLNu M-50 TuneCP5 withDipoleRecoil 13TeV-madgraph-pythia8 0 3 7 11 39.33
EWKWminus2Jets WToQQ dipoleRecoilOn TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 10.67
EWKWplus2Jets WToQQ dipoleRecoilOn TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 10.67
EWKZ2Jets ZToLL M-50 TuneCP5 withDipoleRecoil 13TeV-madgraph-pythia8 0 3 7 11 6.22
EWKZ2Jets ZToNuNu M-50 TuneCP5 withDipoleRecoil 13TeV-madgraph-pythia8 1 4 7 11 10.72
EWKZ2Jets ZToQQ dipoleRecoilOn TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 10.67

tt̄X TTWJetsToLNu TuneCP5 13TeV-amcatnloFXFX-madspin-pythia8 1 3 6 10 0.2043
TTWW TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 0.0115
TTWZ TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 0.003884
TTZToLLNuNu M-10 TuneCP5 13TeV-amcatnlo-pythia8 0 3 6 10 0.2529
TTbb 4f TTTo2L2Nu TuneCP5-Powheg-Openloops-Pythia8 0 3 6 10 0.04
TTbb 4f TTToSemiLeptonic TuneCP5-Powheg-Openloops-Pythia8 0 3 6 10 0.62
ttHToNonbb M125 TuneCP5 13TeV-powheg-pythia8 1 4 7 11 0.215
ttHTobb M125 TuneCP5 13TeV-powheg-pythia8 1 4 7 11 0.1279

Bosons VBFWH HToBB WToLNu M-125 dipoleRecoilOn TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 0.02656
VHToNonbb M125 TuneCP5 13TeV-amcatnloFXFX madspin pythia8 1 4 7 11 2.207
WWJJToLNuLNu EWK noTop TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 0.284
WWTo1L1Nu2Q 4f TuneCP5 13TeV-amcatnloFXFX-pythia8 0 3 6 10 49.997
WWTo2L2Nu TuneCP5 13TeV-powheg-pythia8 0 3 7 11 12.178
WWTolnulnu TuneCP5 13TeV-madgraph-pythia8 0 3 6 10 12.178
WWW 4F TuneCP5 13TeV-amcatnlo-pythia8 2 5 9 12 0.2086
WWZ 4F TuneCP5 13TeV-amcatnlo-pythia8 2 5 6 12 0.1651
WZJJ EWK InclusivePolarization TuneCP5 13TeV madgraph-madspin-pythia8 0 3 6 10 0.01701
WZTo1L1Nu2Q 4f TuneCP5 13TeV-amcatnloFXFX-pythia8 0 3 6 10 49.997
WZTo1L3Nu 4f TuneCP5 13TeV-amcatnloFXFX-pythia8 0 3 6 10 3.05402
WZTo2Q2L mllmin4p0 TuneCP5 13TeV-amcatnloFXFX-pythia8 1 4 7 10 5.6
WZTo3LNu TuneCP5 13TeV-amcatnloFXFX-pythia8 0 3 7 11 4.42965
WZZ TuneCP5 13TeV-amcatnlo-pythia8 2 5 9 12 0.05565
WminusH HToBB WToLNu M-125 TuneCP5 13TeV-powheg-pythia8 0 3 6 10 0.0490124
WplusH HToBB WToLNu M-125 TuneCP5 13TeV-powheg-pythia8 0 3 6 10 0.084876
ZH HToBB ZToLL M-125 TuneCP5 13TeV-powheg-pythia8 0 3 6 10 0.0262749
ZZJJTo4L TuneCP5 13TeV-madgraph-pythia8 1 4 7 11 0.00884
ZZTo2L2Nu TuneCP5 13TeV powheg pythia8 0 3 6 10 0.564
ZZTo2Q2L mllmin4p0 TuneCP5 13TeV-amcatnloFXFX-pythia8 0 3 6 10 3.28
ZZTo4L M-1toInf TuneCP5 13TeV powheg pythia8 0 3 6 10 1.256
ZZZ TuneCP5 13TeV-amcatnlo-pythia8 2 5 9 12 0.01398
ggZH HToBB ZToLL M-125 TuneCP5 13TeV-powheg-pythia8 0 3 6 10 0.0024614

0 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11-v1/NANODSIM
1 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11-v2/NANODSIM
2 /RunIISummer20UL16NanoAODAPVv9-106X mcRun2 asymptotic preVFP v11 ext1-v1/NANODSIM
3 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17-v1/NANODSIM
4 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17-v2/NANODSIM
5 /RunIISummer20UL16NanoAODv9-106X mcRun2 asymptotic v17 ext1-v1/NANODSIM
6 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v1/NANODSIM
7 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v2/NANODSIM
8 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9-v3/NANODSIM
9 /RunIISummer20UL17NanoAODv9-106X mc2017 realistic v9 ext1-v2/NANODSIM
10 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1-v1/NANODSIM
11 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1-v2/NANODSIM
12 /RunIISummer20UL18NanoAODv9-106X upgrade2018 realistic v16 L1v1 ext1-v2/NANODSIM
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Chapter 3

Physics Object

In this section, we delineate the physics objects that are pivotal to our analysis. The

primary entities of interest in this study are leptons and jets, each playing crucial roles in the

processes under investigation. Specifically, two distinct jet cone sizes are utilized:

1. AK8 Jets: These are employed predominantly for the reconstruction of boosted vector

bosons that decay into hadrons. The larger cone size of AK8 jets facilitates the capture

and analysis of the broader debris patterns characteristic of such high-momentum decay

events.

2. AK4 Jets: These are essential for identifying the Vector Boson Scattering (VBS) signature.

Additionally, AK4 jets are instrumental in the removal of background processes that may

obscure or mimic the VBS signal.

The selection and characterization of these jets are tailored to enhance the sensitivity

and specificity of the analysis, thereby ensuring robust detection capabilities for the physical

phenomena of interest.

3.1 Leptons

In this analysis, we adhere to the ttH Ultra Legacy lepton selection criteria [23] as

delineated in CMS internal analysis note (CMS AN 2019 111). The specific selection parameters
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for muons and electrons are detailed in Tables 3.1 and 3.2, respectively. For the signal lepto,

we employ the tight identification criterion. Conversely, the veto criterion is utilized to exclude

additional leptons.

It is important to note that although τ leptons are included in the final states depicted

in Figure 1.5, our focus here is exclusively on isolated electrons and muons. Consequently,

hadronic decay modes of τ are expressly excluded from this analysis.

Leptons for this study are extracted from the respective NanoAOD collections. Specifi-

cally, electrons in NanoAODv9 have already been corrected for residual energy scale and resolu-

tions. Furthermore, for electron selection, the criterion based on the pseudorapidity, |η |, is applied

to |ηSC|. This is defined in the NanoAOD data-tier branches as |Electron eta+Electron etaSC|>

2.5.

Table 3.1. Electron Selectron Criteria for veto and tight working points.

Observable veto tight
pT > 7 GeV > 10 GeV
|η | < 2.5 < 2.5
|dxy| < 0.05 cm < 0.05 cm
|dz| < 0.1 cm < 0.1 cm

|SIP3D| (or d/σd) < 8 < 8
miniPFRelIso all < 0.4 < 0.4

Lost hits in the tracker at most 1 at most 0
mvaFall17V2noIso WPL (POG ID) passed passed

Conversion veto - passed
Tight charge - = 2

Deep Jet of nearby jet - <WP-medium
mvaTTHUL 0 - > 0.8

H/E - < 0.1
1/E - 1/p - > -0.04

σ0
iη iη - < 0.011/0.030

0 σiη iη is a measure of the spatial distribution of energy deposition in the electromagnetic calorimeter for electrons. The two cut values
(0.011/0.030) are for the |ηSC|1 ≤ 1.479 and 1.479 < |ηSC|1 < 2.5 regions respectively.
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Table 3.2. Muon selection criteria for veto and tight working points.

Observable Veto Tight
pT > 5 GeV > 10 GeV
|η | < 2.4 < 2.4
|dxy| < 0.05 cm < 0.05 cm
|dz| < 0.1 cm < 0.1 cm

sip3d (or d/σd) < 8 < 8
miniPFRelIso all ≤ 0.40 ≤ 0.40
Loose POG ID true true

Medium POG ID - true
Deep Jet of nearby jet - <WP-medium

mvaTTHUL - > 0.85

3.1.1 Lepton Scale Factor Treatment

The treatment of lepton scale factors adheres to a factorization prescription as outlined

in provided documentation [26, 31]. These scale factors are essential for aligning the lepton

efficiencies in Monte Carlo simulations with those observed in data. The scale factors applied

include ”reco” and ”loose ID”, which are centrally derived, alongside ”ISO+IP” and ”tight ID”,

which are specifically derived to meet the ttH identification criteria. In the 1-lepton channel,

single lepton triggers are employed, and a centrally derived scale factor is applied to ensure that

the trigger efficiency in the Monte Carlo matches the efficiency measured in actual data. The

systematic uncertainties associated with each scale factor and their impact on the analysis are

detailed in Chapter 5.

3.2 Ak8 jets

In the study of Vector Boson Scattering involving Higgs and W bosons (VBSVVH),

deviations from the Standard Model, particularly in the κVV coupling, can lead to an increased

production rate. Such enhancements often result in the production of highly boosted Higgs and

W bosons. When these bosons are produced with substantial momentum, they may decay into
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two quarks that are so closely aligned that they appear as a single expansive “fat” jet. For their

reconstruction, we employ the anti-kT jet clustering algorithm with a large radius parameter (R

= 0.8), utilizing AK8 jets from the NanoAOD collection where Ultra Legacy (UL) corrections

have been applied.

The adoption of AK8 jets for the reconstruction of heavy boosted objects offers several

benefits:

• It results in a lower background compared to the resolved case.

• The jet substructure aids in further background discrimination.

The selection criteria for preselecting AK8 jets are detailed in Table 3.3.

Moreover, we employ the ParticleNet graph neural network architecture to classify jets

based on the substructure and properties of their constituent particles. This algorithm utilizes

the four-momentum vectors of jet constituents, as well as secondary verticles, reconstructed via

particle-flow techniques, and processes these through convolutional and fully connected layers to

extract features and classify the jets. Compared to traditional jet classification methods, such as

those reliant on jet substructure variables or boosted decision trees, ParticleNet has demonstrated

significant enhancements in performance.

Specifically, we use the mass-decorrelated version of ParticleNet, termed ParticleNet

MD, to minimize mass sculpting effects. In conjunction with the ParticleNet MD taggers, we

also employ the ParticleNet regressed mass to capitalize on its superior resolution, notably better

than that offered by the softdrop mass. This variable, while not used at the selection stage, is

later incorporated as an input to multivariate analyses.

3.2.1 Higgs Tagging

The Higgs tagging score (Hbb Score) is calculated by assessing the likelihood that a fat

jet is a Higgs boson decaying to bb (FatJet particleNetMD Xbb), relative to its identification

as a QCD jet (FatJet particleNetMD QCD). The mathematical formulation for the Higgs score
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Table 3.3. Selection criteria for selecting fatjets coming from heavy boosted bosons

Criteria Cut value
Fat jet pT > 250 GeV
Fat jet |η | < 2.5
Fat jet mass > 50 GeV
Fat jet softdrop mass > 40 GeV
Fat Jet jetId(use jet Id only) Passed
Separation between fat jet and lepton > 0.8 in ∆R metric

is expressed as follows:

Hbb Score =
ParticleNetMDXbb

ParticleNetMDXbb +ParticleNetMDQCD
(3.1)

The criteria for selecting Hbb candidates are thoroughly detailed in Table 3.3. Following

the application of all pre-selection criteria, the jet with the highest Hbb Score, as defined above,

is selected.

3.2.2 W and Z Tagging

Similarly, the score for W and Z bosons (Vqq Score) is determined by the ratio of the

probabilities that a fat jet is identified as a W-jet (FatJet particleNetMD Xcc and Xqq) to its

probability of being classified as a QCD jet (FatJet particleNetMD QCD). The formula for the

W score is:

Vqq Score =
ParticleNetMDXcc +ParticleNetMDXqq

ParticleNetMDXcc +ParticleNetMDXqq +ParticleNetMDQCD
(3.2)

The pre-selection criteria for Vqq fat jets are identical to those for Hbb candidates (see

Table 3.3). In the 1-lepton channel, the AK8 jet with the highest Vqq Score is selected as the

Vqq candidate after the Hbb jet has been tagged. In scenarios involving the WZH, no specific

adjustments are made for Z bosons, given the similarity in appearance of hadronically decaying

Z and W bosons.
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3.2.3 VBS Jets

VBS jet candidates are initially pre-selected by applying the criteria specified in Table 3.4

to the list of AK4 jets. These jets are sourced from the NanoAOD collection (AK4 CHS) with

Ultra Legacy (UL) corrections applied. To refine our selection, a forward-backward jet selection

technique is employed.

The highest momentum pre-selected AK4 jet in the η > 0 region is paired with the

highest momentum pre-selected AK4 jet in the η < 0 region to form the VBS jet candidates.

This selection method aligns with the characteristics of VBS events, which typically produce

two high-energy jets that are significantly separated in rapidity. This technique not only follows

the natural production mechanism of VBS events but also effectively reduces the influence of

background processes that generally produce jets more isotropically distributed in rapidity.

In cases where it is not possible to identify distinct VBS jets in both forward and backward

regions (i.e., when all jets are observed within the same pseudorapidity sign), the two highest

momentum jets are selected as substitutes for the VBS jets. This approach leverages the typical

high-energy profile and substantial rapidity separation observed in VBS processes, making it a

viable alternative for jet selection. While the forward-backward selection method is preferred

for its efficiency in background suppression, choosing the jets with the highest momentum still

maintains a reasonable signal-to-background ratio, thus ensuring the integrity of the VBS jet

identification process.

3.2.4 Missing Transverse Energy

The missing transverse energy (pT,miss or MET) is sourced from the NanoAOD collection.

In the analysis, Type 1 MET is utilized. Corresponding corrections, as applied to the jets, are

also implemented to ensure accuracy and consistency in MET calculations.
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Table 3.4. Jet Selection Criteria

Criteria Cut Value
Jet pT > 30 GeV
Jet |η | < 4.7

Jet |∆R| from lepton > 0.4
Jet |∆R| from Hbb and Vqq AK8 candidate jets > 0.8

Jet Id 0 for 2016 >= 1
Jet Id 0 for 2017 and 2018 >= 2

Jet pileup Id (puId) for pT >= 50 jets > 0

0 The new criteria used in 2017 and 2018 required jets to pass more stringent requirements on their shape, as well as on their composition of
charged and neutral particles, in order to reduce the contamination of jets from pileup and other sources of background events. The Jet jetId
cut value was increased to >= 2 in order to ensure that only the highest-quality jets were included in the analysis, while still retaining a high
efficiency for signal events.

3.2.5 Treatment of the HEM15/16 Region in 2018 Data

The HEM15/16 issue [8] is addressed following the recommended guidelines. In the

Monte Carlo simulations for the 2018 data, adjustments are made to the jet momenta as follows:

• Jets within −1.57 < φ <−0.87 and −2.5 < η <−1.3 are scaled down by 20%.

• Jets within −1.57 < φ <−0.87 and −3.0 < η <−2.5 undergo a 35% reduction.

This scaling affects approximately two-thirds of the genuine jets—specifically, those with

pT > 15 GeV and passing the tight identification criteria to exclude muons and electrons. The

adjustments to jet momenta are also propagated to the MET calculations to maintain consistency

in the simulation data.

Chapter 3, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Chapter 4

Analysis Techniques

4.1 Preselection

The initial stage of our analysis involves a relatively loose preselection, designed to

efficiently filter the dataset while retaining potential signal events. This preselection serves as

a critical preliminary step before engaging in the more complex multivariate analysis and is

integral to the data-driven background estimation that underpins the reliability of our findings.

The preselection criteria are crafted to exclude data that are clearly non-relevant or of

poor quality, thereby enhancing the overall efficiency of subsequent analysis steps. These criteria

include basic kinematic filters, data quality checks, and adherence to specific event characteristics

that are known to be associated with the signals of interest. Details of these criteria are specified

in the following subsections, each tailored to address distinct aspects of the dataset and the

experimental setup.

By applying these preselection criteria, we ensure that the data moving forward into the

multivariate analysis phase are of high quality and relevance, thus setting a robust foundation for

precise and accurate analysis outcomes.

4.1.1 Trigger Selection

For the 1-lepton channel of our analysis, single lepton triggers are employed. These

triggers are particularly advantageous within the dense hadronic environment of the Large
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Hadron Collider (LHC). They offer a straightforward method to efficiently select events likely to

contain the signal processes of interest.

The analysis primarily targets high PT isolated leptons, thereby ensuring that the trigger

thresholds do not pose a limiting factor in event selection. The selection of these triggers is

strategically aligned with the characteristics of the targeted leptons, maximizing the efficiency

and efficacy of the data acquisition process.

Furthermore, to maintain the integrity of our dataset, a series of data quality filters are

applied. These filters, as recommended by the JetMET POG and listed in Table 4.2, are designed

to eliminate anomalous high-MET events that may arise due to various reconstruction failures or

detector malfunctions. Common issues addressed include noise or dead cells in the ECAL or

HCAL, beam halo effects, and event misreconstruction. By applying these event quality filters,

the analysis is restricted to using only ’good’ events, adhering to the standard practices for CMS

analyses.

The specific triggers utilized for each primary dataset and corresponding year of data

collection are detailed in Table 4.1. This table provides a comprehensive overview of the trigger

configurations, facilitating a clear understanding of the data selection mechanisms implemented

in this study.

4.1.2 Lepton Selection

In the process of selecting events for analysis, we focus on events that contain exactly

one lepton that meets our tight selection criteria and no veto leptons. This approach is taken to

minimize potential background contributions from top quark pair production and to maintain

orthogonality with other analysis channels. The specific criteria for tight and veto lepton selection

are elaborated in Chapter 3.

Given our interest in Beyond Standard Model (BSM) physics scenarios, particularly

those where the Higgs boson’s gauge coupling constant, κVV , deviates from unity, the lepton

dynamics are critical. The leptons, originating from the decay of a W boson, are expected to
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Table 4.1. HLT triggers used in the analysis.

Year Sample Name HLT trigger

2016

Single Muon IsoMu22
IsoTkMu22
IsoMu24
IsoTkMu24

2016
Single Electron Ele25 eta2p1 WPTight Gsf

Ele27 eta2p1 WPTight Gsf

2017
Single Muon IsoMu24

IsoMu27

2017
Single Electron Ele35 WPTight Gsf

Ele32 WPTight Gsf

2018
Single Muon IsoMu24

IsoMu27

2018
EGamma Ele35 WPTight Gsf

Ele32 WPTight Gsf

Table 4.2. Data quality flags used in the analysis.

Flag Description Status
Flag goodVertices Good vertex requirement Passed
Flag globalSuperTightHalo2016Filter Global super tight halo filter (for data) Passed
Flag HBHENoiseFilter HB/HE noise filter Passed
Flag HBHENoiseIsoFilter HB/HE noise isolation filter Passed
Flag EcalDeadCellTriggerPrimitiveFilter ECAL dead cell trigger primitive filter Passed
Flag BadPFMuonFilter Bad PF muon filter Passed
Flag BadPFMuonDzFilter Bad PF muon Dz filter Passed
Flag eeBadScFilter EE badSC noise filter Passed
Flag ecalBadCalibFilter ECAL bad calibration filter (for 2017 and 2018 data) Passed

be highly boosted. Consequently, we have implemented a stringent selection criterion on the

lepton’s transverse momentum PT , requiring it to exceed 40 GeV.

Details regarding the specific selection criteria applied post-lepton identification are

meticulously outlined in Table 4.3. This structured approach ensures that the selected leptons are

highly probable to contribute meaningfully to the signal while reducing background noise in the

dataset.

4.1.3 AK8 Jets Selection

For the analysis, events must contain at least two AK8 jets that do not overlap with the

selected lepton. This requirement ensures that the jets are distinctly associated with the hard
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Table 4.3. Lepton selection in 1 lepton analysis

Lepton Selection Cut Value
ttH lepton tight selection 1
Additional veto ttH lepton 0
lepton pT > 40 GeV

scattering event rather than the lepton emission processes. The criteria used to select these fat

jets, referred to as AK8 jets, are fully detailed in Section 3.2.

In the selection hierarchy, the Hbb̄ and Vqq̄ candidates are prioritized in that order. Each

candidate is chosen based on the ParticleNet scores, which assess the likelihood of the jets

matching the desired final state characteristics. This scoring system provides a robust method for

identifying the jets most likely to represent the Hbb̄ and Vqq̄ decay signatures, thereby enhancing

the precision of our event classification.

The specific selection process using ParticleNet scores and the related criteria for these

candidates are thoroughly explained in Section 3. This approach optimizes the selection of fat

jets critical for probing the targeted physical processes within our study.

4.1.4 Top Background Reduction

A predominant source of background in this analysis originates from the semileptonic tt̄

(top-antitop) production. To mitigate this, we focus on analyzing the b-jet content of each event.

Extra b-jets

Alongside the selection of VBS jets, extra AK4 jets are identified. These jets are required

to not overlap with selected leptons or AK8 jets, ensuring that they are likely associated with

the primary hard scattering event rather than secondary processes. Only jets that fall within the

tracker acceptance are considered for b-jet identification, optimizing the efficiency and accuracy

of b-tagging.

The comprehensive set of pre-selection criteria for these b-jet candidates, including
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aspects like jet kinematics and quality filters, is detailed in Table 4.4. This structured selection

process is essential for effectively reducing the top background, thereby enhancing the clarity

and significance of the analysis results.

Table 4.4. Jet Selection Criteria

Criteria Cut Value
Jet pT > 20 GeV
Jet |η | < 2.5

Jet |∆R| from tight ID lepton > 0.4
Jet |∆R| from Hbb̄ and Vqq̄ candidates > 0.8

Jet Id 0 for 2016 >= 1
Jet Id 0 for 2017 and 2018 >= 2

Jet pileup Id (puId) for pT >= 50 jets > 0

The b-jets within our dataset are tagged using the DeepJet algorithm, a deep learning-

based approach that provides high-performance b-jet identification. We adhere to the working

points recommended by the BTV (B-tagging and Vertexing) POG (Physics Object Group). These

working points define the thresholds for the DeepJet scores that are considered sufficient for a jet

to be categorized as a b-jet.

The specific working points employed in this analysis are detailed in Table 4.5. This table

lists the criteria that ensure optimal balance between b-tagging efficiency and the misidentification

rate, crucial for maintaining the integrity and accuracy of the background reduction strategy.

Table 4.5. DeepJet working points used in the analysis

Working Point by year Loose Medium Tight
2016 preVFP 0.0508 0.2598 0.6502
2016 postVFP 0.0408 0.2489 0.6377

2017 0.0532 0.3040 0.7476
2018 0.0490 0.2783 0.7100

In our effort to further reduce the background from top pair production, a stringent veto

30



strategy is employed against events containing ”tight” b-jets. Specifically, if any of the jets

within an event is classified as a ”tight” b-jet according to the DeepJet criteria outlined in Table

4.5, the event is excluded from further analysis. This vetoing process effectively minimizes

contamination from top quark pair production, which is critical for maintaining the purity of the

signal sample.

Conversely, if b-jets only meet the ”loose” working point but fail to achieve the ”tight”

identification standard, the events are not discarded. Instead, these jets are utilized to construct

the discriminating variable mℓb. This variable, formed from the invariant mass of the lepton

and the loosely identified b-jet, serves as a crucial component in distinguishing signal from

background, thereby enhancing the analytical robustness of our study.

Top Background Rejection via mℓb

A crucial technique employed to mitigate the tt̄ background involves leveraging the

invariant mass of the lepton and the b-quark from the top quark decay. In the semileptonic tt̄

decay chain, the top quark invariably decays into a W boson and a b quark. When one of the W

bosons (in the tt̄ → 1ℓ sample) decays leptonically into a lepton and a neutrino, the invariant mass

mℓb, computed from the lepton and the b-quark, can effectively distinguish events characteristic

of the leptonic decay of a top quark.

As the top quark has a well-established mass of approximately 172 GeV, the invariant

mass mℓb should not exceed this threshold. Figure 4.1 illustrates this concept, showing a

distinct peak around 172 GeV, consistent with the mass of the top quark. However, due to the

neutrino escaping detection and thus carrying away some of the energy and momentum, the mℓb

distribution typically peaks at a lower value, around 120 GeV, declining steadily to near zero by

about 150 GeV.

In this analysis, the mℓb variable is constructed using loosely tagged b-jets and the tightly

identified lepton. If two or more such jets are present, the minimum mℓb value is considered for

the event. While mℓb is not directly used in the selection process, it serves as an important input
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to the multivariate analysis, providing a refined measure to further discriminate against the tt̄

background.

Figure 4.1. This figure illustrates the distribution of the top quark mass at the generator level,
the invariant mass of the W+b system originating from the top quark decay, and the invariant
mass of the lepton+b system resulting from the top quark decay in the case of leptonic decay of
the W boson. All of them are using generator level information. To enhance the visibility of the
plot, the green line representing the invariant mass of the lepton and b quark has been scaled up
by a factor of 50.

4.1.5 VBS Jets

The selection criteria for VBS jets are comprehensively detailed in Section 3, as these

criteria are uniformly applied across our analysis. Events that do not feature at least two additional

jets, which can be identified as VBS jet candidates, are excluded from further analysis. This strict

requirement ensures that only events with clear jet signatures characteristic of VBS processes

are considered, enhancing the purity of the analysis sample.
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ST Selection

To further refine our selection prior to the multivariate analysis, we incorporate the ST

variable, which is defined as the scalar sum of the transverse momenta of key event components:

ST = pT,ℓ+ pT,Hbb̄
+ pT,Vqq̄ + pT,miss (4.1)

for the 1-lepton channel. This variable effectively represents the total transverse energy of the

central objects in the event, providing a measure of the overall event activity.

Events are selected for further analysis only if they exhibit an ST greater than 1000 GeV.

This threshold is set to ensure a favorable signal-to-background ratio, focusing on events that

are highly energetic and thus more likely to be signal rather than background. This criterion is

crucial for isolating the most promising events for detailed analysis and is pivotal in maintaining

the statistical robustness of our findings.

4.2 Cutflow

The progression of both the background and signal yields through each stage of the

selection process is meticulously documented. The cumulative effects of successive selection

criteria on the dataset can be observed in Table 4.6, which details the yields after each selection

step.

To ensure the accuracy of our Monte Carlo (MC) simulations in representing the actual

experimental conditions, several reweighting procedures are implemented:

• Pileup (PU) Reweighting: Adjusts the MC to reflect the impact of multiple proton-proton

collisions occurring within the same or nearby bunch crossings, which is particularly

prevalent in high-luminosity environments like the LHC.

• Lepton Scale Factors: These factors correct for discrepancies between the MC simulation

and observed data in terms of lepton identification and reconstruction efficiencies.
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• AK4 b-jet Candidate Scale Factors: Applied to adjust the efficiency of b-jet identification

and selection in the MC to match that observed in data.

It is important to note that this reweighting is partial, given that the background is

predominantly estimated from actual data rather than MC. Consequently, several corrections

and systematic uncertainties are derived and applied only to the signal samples. This approach

allows for a more precise adjustment of the signal representation in our analysis, ensuring that it

more accurately reflects the experimental observations.

4.3 Kinematic Distribution Comparison between Data and
Monte Carlo

To ascertain the consistency and reliability of our Monte Carlo (MC) simulations, it is

imperative to validate the data/MC agreement prior to engaging in the training of multivariate

discriminators. This validation involves a detailed comparison of kinematic distributions between

observed data and MC simulations. Such comparisons are crucial at specific stages of selection,

particularly at the pre-selection level, before proceeding to the multivariate analysis phase. The

kinematic distributions of several key variables are compared across data and MC to ensure that

the simulations accurately reflect the behaviors observed in real data. These variables include

distributions for muons, Higgs bosons, W bosons, b-jets, and VBS jets, as well as global event

properties. The respective distributions are depicted in Figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and

4.8, with the signal distributions superimposed for clarity. These plots are specifically presented

at the selection stage where the two VBS jets have been identified, corresponding to cut C8 in

Table 4.6. This stage is critical as it reflects a significant refinement in the event selection process,

providing a focused context for evaluating the alignment between the data and MC simulations.

This comparison not only verifies the data/MC consistency but also helps in identifying any

potential discrepancies that might affect the subsequent analysis stages.

34



Ta
bl

e
4.

6.
Se

m
i-

le
pt

on
ic

ch
an

ne
l

cu
tfl

ow
ta

bl
e.

O
nl

y
cr

os
s-

se
ct

io
n

re
w

ei
gh

tin
g,

PU
re

w
ei

gh
tin

g,
le

pt
on

sc
al

e
fa

ct
or

s
an

d
A

K
4

b-
ta

gg
in

g
sc

al
e

fa
ct

or
s

ar
e

ap
pl

ie
d.

C
ut

D
at

a
O

th
er

T
T

X
W

Je
ts

T
T

ba
r

B
kg

Si
gn

al
To

L
N

u
C

1:
R

aw
(1
)

3.
00

55
×

10
8

2.
40

61
×

10
8

8.
20

96
×

10
7

1.
03

55
×

10
8

8.
01

73
×

10
8

1.
21

06
×

10
9

6.
88

98
×

10
6

C
2:

X
se

c+
PU

re
w

ei
gh

t(
2)

3.
00

55
×

10
8
±

17
33

6
6.

21
11

×
10

7
±

14
42

5
1.

13
59

×
10

5
±

20
.5

74
5.

07
41

×
10

7
±

69
46
.6

3.
58

98
×

10
7
±

13
00

.5
1.

26
54

×
10

8
±

15
11

4
37

5.
01

±
0.

24
87

7
C

3:
Tr

ig
ge

r(
3)

1.
91

24
×

10
8
±

13
82

9
3.

18
15

×
10

7
±

86
98
.8

66
69

3
±

15
.7

83
2.

83
9
×

10
7
±

51
49

1.
93

91
×

10
7
±

93
6.

2
6.

74
5
×

10
7
±

93
17
.7

25
5.

06
±

0.
20

59
5

C
4:

L
ep

to
n

p T
(4
)

6.
33

42
×

10
7
±

79
58
.9

1.
29

03
×

10
7
±

45
26
.1

31
86

1
±

10
.9

77
1.

78
12

×
10

7
±

38
92
.6

1.
09

48
×

10
7
±

68
8.

68
3.

42
37

×
10

7
±

51
76
.8

13
7.

71
±

0.
14

99
8

C
5:

H
bb̄

ca
nd

id
at

e
(5
)

1.
81

16
×

10
6
±

13
45
.6

2.
07

4
×

10
5
±

46
7.

23
50

19
±

4.
39

29
7.

54
38

×
10

5
±

43
0.

52
8.

48
94

×
10

5
±

19
4.

74
1.

81
5
×

10
6
±

66
3.

78
90

.4
06

±
0.

12
14

9
C

6:
V q

q̄
ca

nd
id

at
e
(6
)

91
47

4
±

30
2.

12
11

83
3
±

10
9.

8
66

3.
27

±
1.

47
77

35
89

1
±

55
.9

39
43

19
0
±

43
.5

22
91

57
5
±

13
0.

69
28

.4
73

±
0.

06
80

71
C

7:
A

K
4

tig
ht

b-
je

tv
et

o
(7
)

67
82

0
±

26
0.

48
10

37
8
±

10
5.

65
36

1.
56

±
1.

09
58

33
85

0
±

54
.5

51
22

03
4
±

31
.0

89
66

62
2
±

12
2.

9
27

.2
61

±
0.

06
66

02
C

8:
V

B
S

je
ts

(8
)

29
31

0
±

17
0.

79
33

19
.2
±

57
.7

75
19

3.
44

±
0.

81
77

3
93

32
.8
±

22
.2

41
13

09
2
±

23
.9

11
25

93
6
±

66
.3

61
12

.1
26

±
0.

04
35

4
C

9:
S T

>
10

00
(9
)

12
04

2
±

10
8.

51
16

45
.6
±

40
.2

17
91

.3
68

±
0.

56
99

8
45

44
.6
±

11
.3

43
50

54
.8
±

14
.8

68
11

33
5
±

44
.3

42
11

.1
4
±

0.
04

17
16

(1
) T

he
nu

m
be

ro
fe

ve
nt

s
th

at
pa

ss
a

pr
e-

se
le

ct
io

n
st

ag
e(

1
ve

to
le

pt
on

,4
ak

4
je

ts
or

2
ak

4
je

ts
an

d
1

ak
8

je
t)

,b
ef

or
e

an
y

ad
di

tio
na

lc
ut

s
or

co
rr

ec
tio

ns
ar

e
ap

pl
ie

d,
no

xs
ec

w
ei

gh
ts

(2
) M

on
te

C
ar

lo
an

d
pi

le
up

re
w

ei
gh

tin
g

ap
pl

ie
d;

(3
) T

ri
gg

er
se

le
ct

io
n

ap
pl

ie
d;

(4
) E

xa
ct

ly
on

e
ttH

tig
ht

le
pt

on
w

ith
pT

>
40

G
eV

,n
o

ad
di

tio
na

lv
et

o
le

pt
on

s;
(5
) o

ne
fa

tj
et

as
H

ig
gs

ca
nd

id
at

e;
(6
) o

ne
fa

tj
et

as
W

-j
et

ca
nd

id
at

e;
(7
) N

o
tig

ht
A

K
4

b-
ta

gg
ed

je
ts

;
(8
) T

w
o

ad
di

tio
na

lj
et

s
as

V
B

S
je

ts
;

(9
) T

ot
al

sc
al

ar
su

m
of

tr
an

sv
er

se
m

om
en

ta
,S

T
,g

re
at

er
th

an
10

00
G

eV
.

35



Figure 4.2. Distributions of the and electron muon candidate variables for events passing the
VBStag selection criterion in the VBSVVH analysis.
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Figure 4.3. Distributions of the H candidate variables for events passing the VBStag selection
criterion in the VBSVVH analysis.
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Figure 4.4. Distributions of the W candidate variables for events passing the VBStag selection
criterion in the VBSVVH analysis.
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Figure 4.5. Distributions of the 1st b jet candidate variables for events passing the VBStag
selection criterion in the VBSVVH analysis.
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Figure 4.6. Distributions of the 2nd b jet candidate variables for events passing the VBStag
selection criterion in the VBSVVH analysis.
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Figure 4.7. Distributions of the vbs jet candidate variables for events passing the VBStag
selection criterion in the VBSVVH analysis.
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Figure 4.8. Distributions of the mℓb and ST variables for events passing the VBStag selection
criterion in the VBSVVH analysis.
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4.4 Multivariate Analysis

Following the preselection phase, our strategy employs a multivariate discriminator to

accurately define the optimal signal region. We estimate the background directly from data,

which necessitates the use of two approximately orthogonal variables as the ABCD method’s

arms, one of which is the multivariate discriminator. In the context of our event selection, we

differentiate between VBS jets, typically characterized by high pseudo-rapidity, and the central

objects located within the rapidity gap.

Given the approximate orthogonality between the features of the central objects and

those of the VBS jets, the multivariate discriminator is constructed using only the features of

the central objects. Conversely, the VBS jet features are utilized to define the second arm of the

ABCD regions. After comprehensive evaluations, a Boosted Decision Tree (BDT) using VBS

jet features was developed instead of a single Vector Boson Fusion (VBF) feature. The BDT

model, once established, is used to aid the training of a Deep Neural Network (DNN). This DNN

is specifically trained to be orthogonal to the VBS BDT, incorporating a loss function with a

decorrelation term as cited in [24], allowing the use of these two discriminators as the distinct

arms for the ABCD method.

Both the DNN and the BDT are trained within the pre-selection phase space where

MC statistics are more abundant, using background simulations against a κVV = 2 signal point.

Post-training, the signal region optimization involves a thorough scan of the scores from the

DNN, the VBS BDT, and the ParticleNetMD scores for the Hbb̄ and Vqq̄ candidate fatjets. The

background estimation then proceeds by inverting the scores from the DNN and/or the VBS BDT

to establish the ABCD anchor regions. Additional model training adjustments include applying

Prefire weights, HEM corrections, pileup reweighting, b-tagging and lepton ID uncertainties,

puID weights for jets, and jet energy corrections to ensure fidelity and accuracy of the simulated

data.
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4.4.1 VBS BDT

The Boosted Decision Tree (BDT) dedicated to the VBS jets analysis incorporates several

highly discriminative inputs to effectively separate the signal from the background. Central

to this analysis are the features ∆η j j and m j j, which represent the pseudorapidity gap and the

invariant mass between the two VBS jets, respectively. These features are particularly valuable

for their strong correlation with the VBS process characteristics. Additional kinematic features

of the jets are also included to enhance the model’s predictive accuracy.

The complete list of inputs to the VBS BDT is as follows:

• ∆η j j — the pseudorapidity gap between the VBS jets.

• m j j — the invariant mass of the VBS jets.

• pT of the first VBS jet.

• η of the first VBS jet.

• pT of the second VBS jet.

• η of the second VBS jet.

The input distributions for both the signal and the background MC, illustrating these variables,

are depicted in Figure 4.9.

For the training of the BDT, the AdaBoost algorithm is employed with the settings

“MaxDepth” equal to 2 and “NTrees” equal to 10. This choice reflects a balance between model

complexity and overfitting, ensuring robustness and generalizability. The data set is divided

evenly between the training and testing phases, with a 50% split, to optimize both the learning

and validation of the model’s performance.

The BDT scores for signal and background, and the ROC curve are shown in figure 4.10.
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4.4.2 DNN

The Deep Neural Network (DNN) is configured to incorporate the Boosted Decision

Tree (BDT) output as an additional feature, ensuring that the DNN remains orthogonal to the

BDT scores. This design choice enhances the overall robustness and independence of the DNN

in the analysis.

The inputs to the DNN include several key variables that are pivotal in characterizing the

events:

• Hbb̄ candidate ParticleNet regressed mass.

• Hbb̄ candidate pT .

• Vqq̄ candidate ParticleNet regressed mass.

• Vqq̄ candidate pT .

• Lepton pT .

• mℓ,b (Invariant mass of the lepton and b-jet).

• MET (or pT,miss).

These inputs are visualized in Figures 4.11 and 4.12. It is noteworthy that the ST variable is not

explicitly used, as its components are already included as individual inputs, thus preserving the

detailed information they provide.

To ensure effective training, the input features were standardized. The transverse mo-

menta (pT ) of the objects are log-normalized (pT → log(pT )), and other variables are scaled

according to the formula:

x → x− xmin

xmax − xmin
(4.2)

This normalization adjusts the range of a variable x so that the selected minimum (xmin) and

maximum (xmax) values are scaled to approximately 0 and 1, respectively.
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The architecture of the neural network comprises three hidden layers, each containing

64 nodes. A dual-component loss function is employed: the primary component is the binary

cross-entropy for event classification, while the secondary component, weighted at 30% relative

importance, ensures decorrelation with the VBS BDT output. Detailed explanations of this loss

mechanism are provided in [24] and Appendix 8.4.

Training is conducted over 1000 epochs with a constant learning rate, using large batch

sizes that divide the dataset into ten parts. The model state at epoch 500 is selected for use in the

analysis as the loss function remains same after this point 4.13. The dataset is split into 80% for

training and 20% for testing to balance learning and validation effectively.

The distribution of the DNN output, alongside the loss function and the Receiver Operat-

ing Characteristic (ROC) curve, are illustrated in Figure 4.13. These are presented for both the

training and testing phases of the model. The figure specifically highlights the results at epoch

500, which has been selected for the final analysis based on its performance metrics.

At the conclusion of the training, the correlation between the VBS BDT and the DNN

output is carefully examined. The results indicate that the correlation is effectively managed

within the pre-selection phase space, as depicted in Figure 4.14.

4.4.3 Signal Region Optimization

The optimization of the signal region follows the training of the two multivariate dis-

criminators within the preselection phase. Initially, a 1-dimensional scan of the Hbb̄ and Vqq̄

candidates’ scores is performed to refine their selection thresholds independently. Based on the

figure of merit s/
√

b (signal over the square root of background), the working points are set with

Hbb̄ score greater than 0.5 and Vqq̄ score greater than 0.7. The detailed cutflow leading up to the

region used for the ”ABCD” background estimate is documented in Table 4.7.

Following this, a 2-dimensional scan involving the BDT and DNN scores is conducted.

This scan ranges from 0.5 to 1 in increments of 0.01. For each point, a simple datacard is

produced to compare the signal yield and background predictions, which are made using the
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”ABCD” method.

The final selection of the BDT and DNN scores was determined by identifying the

combination that provided the highest limit, which ensures an optimal balance between signal

sensitivity and systematic error minimization. This approach led to the selection of a BDT score

of 0.56 and a DNN score of 0.92 as the cutoff values for the final signal region.

In summary, the criteria selected for defining the signal region are as follows:

• Hbb̄ score > 0.5

• Vqq̄ score > 0.7

• DNN > 0.92

• VBS BDT > 0.56.

Table 4.7. Semi-leptonic channel cutflow table from the preselection down to the ABCD
region. Only cross-section reweighting, PU reweighting, lepton scale factors and AK4 b-tagging
scale factors are applied. The sum of the data yield in the A+B+C+D region is kept blinded.
Several reweighting factors are applied to signal MC and background MC, which account for the
difference between this table and 4.6

Cut Other TTX WJets TTbar
ST > 1000 1645.6±40.22 91.37±0.57 4544.6±11.34 5054.8±14.87
Hbb̄ score > 0.5 436.01±13.40 73.48±0.55 416.4±3.56 3563.7±13.55
Vqq̄ score > 0.7 158.88±7.38 25.954±0.32 90.67±1.63 710.14±6.07
Cut data Bkg Signal
ST > 1000 12042 ± 109.74 11335±44.34 11.14±0.04
Hbb̄ score > 0.5 4292 ± 65.51 4489.6±19.401 7.86±0.04
Vqq̄ score > 0.7 — 985.63±9.70 6.19±0.03

4.4.4 Background Estimate with the ABCD Method

The estimation of the background in the signal region is conducted entirely from data

using the ”ABCD” method. This method relies on defining four distinct regions: A, B, C, and D,
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as illustrated in Figure 4.15 (left). The regions are strategically established by setting two cuts in

the signal region (Region A) and then inversely applying these cuts to define Regions B, C, and

D.

The background yield in Region A, designated as Apred , is calculated using the counts

from the other three regions with the formula:

Apred = B× C
D
. (4.3)

The actual data yields and the predicted data in Region A are detailed in Table 4.8.

This approach allows for a data-driven estimation of the background, minimizing reliance on

model-based assumptions and enhancing the robustness of the analysis.

Additionally, the statistical uncertainty associated with Apred is determined by propagat-

ing the statistical uncertainties from the data yields in Regions B, C, and D. The equation for

calculating this uncertainty is given by:

εstat =

√(√
Bdata

Bdata

)2

+

(√
Cdata

Cdata

)2

+

(√
Ddata

Ddata

)2

≈ 31% (4.4)

This calculation quantifies the confidence level of the background estimate, ensuring that the

statistical validity of the analysis is maintained.

Table 4.8. Data yields and region A prediction for the control region used for the ABCD closure
test. The region A yield is kept blind, while Apred is reported.

Region data yield prediction
region A - 0.82
region B 76
region C 11
region D 1015

The data yields for each region are graphically represented in Figure 4.16, where the
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yields are plotted as a function of the VBS BDT score on the left and the DNN score on the

right. In these plots, the yield from Region A is intentionally kept blind to maintain the integrity

of the data analysis process until the final stages. Instead, the estimated yield for Region A

(Apred) is shown. This estimated yield is then compared to the corresponding Monte Carlo (MC)

simulation to assess the accuracy and reliability of the background estimation. This comparison

helps validate the effectiveness of the ABCD method in accurately predicting the background

yields from purely data-driven approaches.

4.4.5 Closure Studies

To validate the robustness of our background estimation method, a closure study was

performed in a phase space region defined by inverting the Vqq̄ score cut (Vqq̄ score < 0.7). To

minimize signal contamination and maintain a background composition similar to that in the

ABCD regions, the Hbb̄ score was not inverted but restricted to Hbb̄ score < 0.95. The ABCD’

regions, analogous to the original ABCD method but within this control phase space, are defined

using the same BDT and DNN selections applied in the signal region. These regions, labeled

A’, B’, C’, and D’, are illustrated in Figure 4.15 (right). The data yields and the predictions for

region A’ are detailed in Table 4.9. The comparison between the predicted data yield (2.41) and

the actual data yield (2) indicates a discrepancy, leading to an inferred systematic uncertainty

of approximately 20% for the background estimate. This systematic uncertainty is currently

being used in our sensitivity analyses. Despite no apparent reason for expecting a significantly

different uncertainty value, further closure studies are planned to serve as a cross-check, ensuring

the validity and precision of our background estimation approach.

To enhance the validation of our background estimation methodology, an additional

cross-check using simulation data was conducted. This simulation-based closure test allows

us to verify the consistency of the ABCD method in a controlled environment where the true

values and distributions are known. The yields obtained from the simulation, along with the

predictions for region A, are presented in Table 4.10. This approach provides an additional
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Table 4.9. Data yields and region A prediction for the control region used for the ABCD closure
test. The statistical uncertainty on the predicted value is reported in the table.

Region data yield prediction
region A’ 2 2.20 ± 0.46
region B’ 180
region C’ 28
region D’ 2295

layer of confidence in the robustness of the ABCD method by comparing simulated data outputs

directly against the expected predictions.

Table 4.10. MC yields and region A prediction the ABCD closure test. The statistical uncertain-
ties reported in the table.

Region MC yield prediction
region A 1.65 ± 0.37 1.30 ± 0.15
region B 71.39 ± 3.59
region C 16.39 ± 1.60
region D 896.06 ± 8.86

To further quantify the reliability of the ABCD method, we assess its closure in Monte

Carlo simulations by comparing the actual MC yields, AMC, with the predicted MC yields,

Apred
MC . The systematic uncertainty derived from this comparison is calculated using the following

formula:

εsyst =
2

AMC +Apred
MC

√√√√(Aerr
MC

AMC

)2

+

(
εMC

stat

Apred
MC

)2

≈ 17% (4.5)

where Aerr
MC represents the statistical error on the MC yield and εMC

stat denotes the statistical

uncertainty on the prediction originating from the B, C, and D regions.

we apply a conservative 20% systematic in the dissertation

This ongoing evaluation process underscores our commitment to ensuring the accuracy

and reliability of our background estimation method before its final application in the sensitivity
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study. Further updates and final decisions will be thoroughly documented in subsequent revisions

of this document.

Chapter 4, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Figure 4.9. Inputs of the VBS BDT. Signal and background are both normalized to 1.
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Figure 4.10. VBS BDT output distribution and ROC curve for the test and training sample.
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Figure 4.11. Signal and background distributions of the DNN inputs. The signal and background
distributions are normalized to 1.
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Figure 4.12. Signal and background distributions of the DNN inputs. The signal and background
distributions are normalized to 1.
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Figure 4.13. DNN output distribution and loss function the test and training sample. ROC curve
for the epoch 500 of the training. The epoch 500 was chosen for the analysis.
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Figure 4.14. Cross-check of the correlation between the VBS BDT score and the DNN output
score.

Figure 4.15. schematic representation of the regions used for the ABCD background estimate
(left) and the control regions used for the cross-check.
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Figure 4.16. Regions B and D are plotted on the left, and regions A and C are plotted on the
right.
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Chapter 5

Systematic uncertainties

Most sources of systematic uncertainty are evaluated solely for the signal sample, as the

background estimate is derived from data. The uncertainties associated with the background

yield in the signal region are computed in conjunction with the background estimation process.

Given that our analysis primarily involves a counting experiment, the systematic effects

on the shape of signal distributions do not need to be considered. Instead, the variations primarily

affect the signal yield and are incorporated either through adjustments in event or object weights,

or by recalculating the acceptance of a selection under varied conditions.

Systematic uncertainties are typically quantified by varying individual theoretical scales

and experimental corrections (listed in Table 5.5) by one standard deviation. The maximal

difference in yield is then taken as the systematic error. These corrections and their associated

uncertainties are usually derived centrally to enhance the efficiency of specific selections in the

Monte Carlo simulations to match those observed in data.

Corrections are generally applied as an event weight w, whereby the weighted contribu-

tion W of each raw Monte Carlo event is the product of the event weights for that event. The

yield y in a given signal region, containing N raw Monte Carlo events, is calculated as follows:

y =
N

∑
i=1

Wi (5.1)

The yield under a systematic variation yvar is then determined by adjusting each event weight Wi
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to reflect the systematic variation (either up or down):

yvar =
N

∑
i=1

Wi ×
wvar

w
(5.2)

The maximum of the percentage differences, either δup or δdown, is then adopted as the systematic

uncertainty for that particular source:

δvar =

∣∣∣∣1− yvar

y

∣∣∣∣ (5.3)

A concise summary of the methods employed to assess each source of systematic

uncertainty is provided below:

5.1 PDF Variations

The uncertainty associated with the Parton Distribution Function (PDF) set used in

the signal Monte Carlo (MC) generation is assessed using 100 parameter variations from the

Hessian PDF set. The PDF uncertainty quantifies the impact of these variations on the model

acceptance and is estimated as the standard deviation of the acceptance for each variation [14].

This estimation is formulated as follows:

δ
PDF =

√√√√NPDF

∑
i=1

(
1−

yvar
i

ynom

)2

(5.4)

Here, yvar
i represents the acceptance under the i-th PDF variation, calculated by adjusting

the event weights accordingly:

yvar
i =

NEvents

∑
j=1

w j ×
wPDF

i, j

Ri
(5.5)

The ratio Ri, critical for normalizing the PDF weights against the baseline MadGraph
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generator weights for each variation, is defined as:

Ri =
∑

NEvents
j=1 wPDF

i, j

∑
NEvents
j=1 wgen

j

(5.6)

This method ensures that the PDF variations are systematically and accurately reflected

in the uncertainty estimates, providing a robust framework for understanding their impact on the

theoretical predictions of the MC simulation.

5.2 muonF Scale and Parton Shower ISR and FSR

The uncertainties associated with the factorization (µF ) and renormalization (µR) scales

are derived from the variations specified in NanoAODv9. These scales are varied from 0.5

to 2 times their nominal values, with the following constraint imposed to maintain theoretical

consistency:

0.5 ≤ µF

µR
≤ 2

For our signal sample, which is generated at Leading Order (LO), the variation in µR is determined

to be 0.

Additionally, the uncertainties for the initial and final state radiation (ISR and FSR) from

the parton shower are assessed using variations provided by Pythia8, also available in NanoAOD.

These ISR and FSR scales are independently varied from 0.5 to 2 times their default values.

5.3 Lepton Uncertainties

As detailed in Section 3.1.1, lepton scale factors adhere to a factorization prescription

[26,31]. The systematic uncertainties for each scale factor are thoroughly evaluated. The specific

repositories for the scale factors and their sources of uncertainties are listed [34, 35].

For electron scale factors concerning reconstruction efficiency and ”Loose ID”, we

follow the recommendations of the EGamma group [25], calculating uncertainties accordingly.
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Similarly, muon scale factors for reconstruction efficiency and ”Loose ID” are applied as per the

guidelines from the Muon POG [28–30], with uncertainties computed in alignment with these

standards.

The scale factors for the ttH ID are divided into two categories: ”IP+ISO” and ”Tight

ID”. Since our analysis requires that selected leptons pass the tight level lepton ID, both levels

of scale factors are applied. The application and uncertainty computation for these factors are

conducted following the methodology used in the analysis TOP-22-006.

Lastly, High-Level Trigger (HLT) scale factors are applied. For electrons, these factors

are centrally derived, while for muons, they are sourced from SMP-19-002, specifically for the

muon HLT paths.

5.4 ParticleNet Scores

The uncertainties in the H → bb̄ score are derived using the gluon splitting proxy method

detailed in [1]. This method was originally developed for the H → cc̄ and H → bb̄ analyses. It

employs a Boosted Decision Tree (BDT), referred to as the “sfBDT,” to isolate the phase space

populated by H → bb̄ jets in the signal, subsequently selecting g → bb̄ jets within that phase

space from Monte Carlo simulations of QCD multijet events.

The sfBDT is trained to select suitable g → bb̄ jets to serve as proxies for the H → bb̄

jets in the signal, specifically by vetoing jets with a high gluon contamination rate. Additionally,

the sfBDT utilizes input variables involving the basic kinematics of the subjets and the secondary

vertices associated with the jet. Once trained, the sfBDT can also be applied to select similar

proxy jets from data.

The signal-like jets selected by the sfBDT are then used to measure the efficiency of

the ParticleNet Xbb discriminant in QCD Monte Carlo simulations and data. The method is

signal-dependent, as it models the gluon splitting proxy, irrespective of the working points.

“Pass” and “fail” regions are defined based on jets passing or failing the ParticleNet
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Xbb tagging thresholds. In each region, a fit of the mass of the secondary vertex with the

maximum impact parameter dxy significance is performed to distinguish the contributions of

b-type (g → bb̄), c-type, and light-type jets. Three scale factors, one for each jet type, are allowed

to float in this fit, defined as follows:

SFi =
εdata,i

εMC,i
(5.7)

where i represents the jet category and ε denotes the efficiency of the ParticleNet tagger.

This measurement is conducted in bins of pT for a more robust correction and is repeated

for each year of UL NanoAOD individually. The bins and working points vary by channel. The

scale factor summaries for the 1-lepton channel is reported in Tables 5.1.

Table 5.1. Summary of the ParticleNet Xbb-tagging scale factors for the Xbb > 0.5 working
point used in the 1-lepton channel.

Year
PT range in GeV:

[250, 350) [350, 450) [450, 550) [450, ∞) [450, ∞)

2018 1.003+0.067
−0.083 1.172+0.180

−0.185 1.150+0.121
−0.095 0.977+0.117

−0.116 0.998+0.168
−0.162

2017 1.213+0.212
−0.201 1.100+0.275

−0.271 1.216+0.192
−0.178 1.192+0.201

−0.188 1.081+0.242
−0.237

2016 (post-VFP) 1.071+0.211
−0.174 1.104+0.180

−0.165 1.163+0.155
−0.142 1.377+0.255

−0.240 1.338+0.232
−0.181

2016 (pre-VFP) 1.131+0.160
−0.138 1.356+0.192

−0.148 1.374+0.223
−0.206 1.376+0.242

−0.216 1.360+0.299
−0.257

The V → qq̄ score is calibrated using the method described in [2]. This method employs

top pair production events to implement a tag-and-probe method. The tag is a muon (from the

semileptonic channel), while the probe is an AK8 jet. AK8 jets are categorized into different

templates (merged top, merged W, non-merged top products, others). A fit is performed to the

AK8 jet softdrop mass in the “pass” and “fail” regions, defined using the V → qq̄ tagger working

point of interest. Scale factors for each template are derived from the fit, and the merged W scale

factor with its uncertainty is used for the analysis to correct the signal.

The results were first reproduced and then recomputed for our working points. The
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results for the 0.7 working point, used in the 1-lepton channel, is reported below in Table 5.2.

Table 5.2. Summary of the ParticleNet Vqq̄-tagging scale factors for the working point used in
the analysis.

Year
PT range in GeV:

[200, 300) [300, 400) [400,800) [800 ∞)

2016 APV WP 0.7 0.92+0.04
−0.04 0.93+0.03

−0.04 0.94+0.06
−0.06 0.94+0.12

−0.12

2016 WP 0.7 0.96+0.05
−0.05 0.89+0.04

−0.04 0.85+0.07
−0.06 0.85+0.14

−0.12

2017 WP 0.7 0.96+0.02
−0.02 0.94+0.02

−0.02 0.93+0.04
−0.04 0.93+0.08

−0.08

2018 WP 0.7 0.91+0.02
−0.02 0.90+0.02

−0.02 0.85+0.04
−0.04 0.85+0.08

−0.08

5.5 ParticleNet Mass Regression

The ParticleNet mass regression has been calibrated from the Hcc and Hbb processes [17].

The regression results are consistent with the data in terms of mass scale. A 3% smearing was

applied to align the Monte Carlo (MC) resolution with the data. This full smearing is considered

as the uncertainty in the measurements.

For this analysis, we followed the same calibration procedure to derive mass scale and

resolution corrections, with the associated uncertainties. These corrections were derived for

AK8 jets using the method described in [2], where scale and resolution corrections are treated

as nuisance parameters. We performed the fit using the regressed mass instead of the soft drop

mass and the fit was conducted inclusively across the transverse momentum (pT ) spectrum for

AK8 jets. The working point for the ”pass” and ”fail” determination was set to 0.7. However,

when adjusting the working point to 0.8, there’s no significant variations.

The calibration results are presented in Tables 5.3 and 5.4. The reported values represent

the variations of the nuisance parameters extracted from the fits (Xcentral) and a conservative

estimate of the uncertainties (Xup, Xdown), rather than the direct outputs of the fit. For the Jet Mass

Resolution (JMR), the upward uncertainty was increased to 30%, based on studies performed in
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bins of pT , while the downward uncertainty was set manually as per the previous nominal value.

The 2018 Jet Mass Scale (JMS) uncertainty was also increased to 0.1, whereas for other years,

the full scale variation was taken as the uncertainty.

The JMS variation must be applied in addition to a 5% factor, as this represents the

nuisance parameter used in the fit. The total correction is approximately 1%. The JMR variation

is applied on top of a 10% smearing, which is the nominal nuisance parameter. The total effect

results in a smearing of approximately 1%, with an upward uncertainty of 3-4% and no smearing

as the downward variation.

Table 5.3. JMS Scale Factors

JMS Xcentral Xup Xdown
2016 APV -0.3 0 -0.6
2016 -0.24 0 -0.48
2017 -0.11 0 -0.22
2018 -0.04 0.06 -0.14

Table 5.4. JMR Scale Factors

JMR Xcentral Xup Xdown
2016 APV 0.13 0.43 0
2016 0.15 0.45 0
2017 0.09 0.39 0
2018 0.10 0.40 0

5.6 JME Uncertainties

The evaluation of uncertainties related to jet energy corrections (JECs) for both AK4

and AK8 jets follows the protocols and utilizes tools provided by the JETMET group. For the

jet energy scale (JES), we employ a reduced set of uncertainties as recommended by [5]. This

approach involves decorrelating uncertainties across different years and data-taking periods,
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with specific distinctions made for 2016 preVFP and postVFP. Uncertainties recommended for

year-specific separation are treated as such, while others remain correlated across all periods.

For AK4 jets, uncertainties are also propagated to the calculation of the Missing Trans-

verse Energy (MET). In addition, we apply Jet Energy Resolution (JER) corrections along with

their relative uncertainties specifically for AK4 jets. It is important to note that JER uncertainties

are not propagated to the MET and do not apply to AK8 jets.

Furthermore, we incorporate systematic uncertainties on the MET through ”unclustered

MET” variations, both upwards and downwards. This systematic approach ensures a comprehen-

sive assessment of uncertainties impacting both jet measurements and MET calculations.

5.7 B-tagging Uncertainties

In the 1-lepton analysis, Tight (T) AK4 jets are vetoed, and the Loose (L) working point

is utilized to construct the mℓb variable. We apply the recommended b-tagging scale factors for

these fixed working points [3, 4].

For each event passing the selection criteria, a weight is assigned depending on the

b-tagging status of AK4 jets within the event. The calculation of this weight takes into account

each jet’s tagging status during the b-tag veto step and those passing the Loose working point

but not the Tight, as follows:

w =

checked− jets

∏
i=tagged T

SFT
i ε

T
i

checked− jets

∏
j=tagged L, not T

(SFL
j ε

L
j −SFT

j ε
T
j )

checked− jets

∏
k=not−tagged L

(1−SFL
k ε

L
k )

checked− jets

∏
i=tagged T

ε
T
i

checked− jets

∏
j=tagged L, not T

(εL
j − ε

T
j )

checked− jets

∏
k=not−tagged L

(1− ε
L
k )

(5.8)

Here, SF represents the scale factor for each AK4 jet based on pT , |η |, and the working

point, and ε is the b-tagging efficiency for the sample at the specified working point (L or T),

defined as:
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ε(pT , |η |,WP) =
Nb−tagged,WP

b (pT , |η |)
Ntotal

b (pT , |η |)
(5.9)

Efficiency maps for the main background and signal samples for both Loose and Tight

b-tagging working points have been privately calculated and are detailed in Appendix 8.7.

Systematic uncertainties are assessed by varying the scale factors up and down as provided by

the BTV group. Moreover, scale factors are decorrelated between b/c-jets and light jets to reflect

their distinct behaviors.

5.8 Other Experimental Uncertainties (PU, Luminosity, L1
Prefiring)

5.8.1 Luminosity Uncertainty

The uncertainty associated with the luminosity measurement is adopted from the rec-

ommendations provided by the Pdmv group [27]. This assessment is crucial as it directly

influences the scale of all measured cross sections and thus the overall normalization of signal

and background processes.

5.8.2 Pile-Up Uncertainty

The uncertainty on the number of proton-proton (pp) interactions per event, known

as pile-up (PU), is calculated by varying the total inelastic pp cross-section by 4.6%. This

adjustment follows the guidelines set forth by the Luminosity POG [33], ensuring that the

simulation accurately reflects variations observed in actual collision data.

5.8.3 L1 Prefiring Uncertainty

The uncertainties related to the Level 1 (L1) Prefiring weights are determined by varying

these weights according to their respective uncertainties [32]. L1 Prefiring typically affects

data from earlier runs of the LHC where older detector components had a higher likelihood of
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triggering before the actual collision event. Adjusting for this effect is essential for accurate data

interpretation, particularly for analyses involving data from the affected periods.

These uncertainties are integral to ensuring the reliability of our results, as they address

key aspects of data collection and processing that can significantly impact the final analysis

outcomes.

Table 5.5. All corrections applied to the MC used in this analysis for the 1-lepton channel. The
source of the correction is also listed, along with whether the correction is used for signal or
background MC. Notably, the only correction that is not applied to both signal and background
is for the ParticleNet Xbb-tagging efficiency, as the correction used is valid only for real H(bb)
fat jets.

Systematic source 1-lepton channel
Pileup reweighting ✓
Pileup jet ID ✓
L1 pre-fire corrections ✓
Electron trigger scale factors ✓
Muon trigger scale factors ✓
Electron reco scale factors ✓
Electron reco-to-Loose scale factors ✓
Electron Loose-to-(IP+ISO) scale factors ✓
Electron (IP+ISO)-to-tight ID scale factors ✓
Muon reco-to-Loose scale factors ✓
Muon Loose-to-(IP+ISO) scale factors ✓
Muon (IP+ISO)-to-tight ID scale factors ✓
ParticleNet Xbb scale factors ✓
ParticleNet W MD scale factors ✓
ParticleNet mass JMS/JMR ✓
DeepJet b-tagging scale factors (b/c jets) ✓
DeepJet b-tagging scale factors (light jets) ✓
MET unclustered ✓
Jet energy scale ✓
Jet energy resolution ✓

Chapter 5, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Table 5.6. Values of the systematics for the 1-lepton analysis. The jet energy scale systematics
and the sum of multiple systematics (from different sources and data-taking periods) in quadrature.
Similarly, the ParticleNet tagger systematics are the sum of the systematics for each data-taking
period in quadrature.

Systematic source 1-lepton channel
PDF variations 1.59
µF scale 23.95
Parton shower ISR weights 0.64
Parton shower FSR weights 2.97
Pileup reweighting 1.52
Pileup jet ID 0.04
L1 pre-fire corrections 1.02
Electron trigger scale factors 0.56
Muon trigger scale factors 0.23
Electron reco scale factors 0.28
Electron reco-to-Loose scale factors 0.08
Electron Loose-to-(IP+ISO) scale factors 0.12
Electron (IP+ISO)-to-tight ID scale factors 0.44
Muon reco-to-Loose scale factors 0.03
Muon Loose-to-(IP+ISO) scale factors 0.09
Muon (IP+ISO)-to-tight ID scale factors 0.19
ParticleNet Xbb scale factors 2.09 - 6.22
ParticleNet W MD scale factors 1.29 - 2.42
ParticleNet mass JMS/JMR 0.05/0.1
DeepJet b-tagging scale factors (b/c jets) 0.04
DeepJet b-tagging scale factors (light jets) 0.03
MET unclustered 0.11
Jet energy scale 0.02 -3.96
Jet energy resolution 0.99
Luminosity 1.60

69



Chapter 6

Statistical Analysis

For the 1-lepton channel, we fit the signal and predicted background yield in the signal

region to data. The B, C, and D region data yields are included in the fit together with their

respective signal contamination.

6.1 One Dimensional Limit Scan

We set upper limits at 95% confidence level on the cross-section of the VBS VVH process

for each κVV generated data point.

The upper limits are calculated using the AsymptoticLimits method in the Combine

toolkit [20]. The full list of systematic uncertainties in Table 5.6 are included as nuisance

parameters during the fitting procedure.

The result of this fit is shown in Figure 6.1 for the 1-lepton channel. The regions where

the expected limit is smaller than the theoretical prediction on the cross section are taken to be

excluded values for κVV .

The impact plots for the 1-lepton channel fit are shown in Figure 6.2.

6.2 Impact Analysis of Systematic Uncertainties

To calculate the impacts of systematic uncertainties on the measurement of the signal

strength, we performed the following steps using the Combine toolkit. The impact plots were
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Figure 6.1. 95% confidence level limit as a function of κVV for the 1-lepton channel.

generated for C2V = 1,2, and 4, both for signal = 1 and signal = 0, utilizing the Asimov dataset

(−t −1). Additionally, impact plots were created using the predicted background in region A,

determined by A = B×C
D , while keeping the data yield in region A blind.

The Combine results are shown as follows:

Chapter 6, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Figure 6.2. Impact plots for the 1-lepton channel fit in the background only hypothesis (left) and
in the signal+background hypothesis (right).
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Figure 6.3. Impact plots for C2V = 1 with signal strength set to 0. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.

72



30
29
28
27

26
25
24

23
22
21

20
19
18
17

16
15
14

13
12
11

10
9
8
7

6
5
4

3
2
1

2− 1− 0 1 2
2σ - 2

I
σ)/

I
θ-θ( 

I
σ)/

I
θ-θ(

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_16postVFP

CMS_scale_j_BBEC1_2018_13TeV

CMS_scale_j_HF_2017_13TeV

CMS_vbsvvh_puWeight

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_16preVFP

lumi_13TeV_correlated

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_17

CMS_scale_j_Absolute_2017_13TeV

CMS_scale_j_EC2_13TeV

CMS_scale_j_EC2_2017_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_16postVFP

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_18

CMS_vbsvvh1lep_signal_RegionA

CMS_PSWeight_FSR_vbsvvh

CMS_LHE_weights_pdf_vbsvvh

D_OneLep

CMS_scale_j_RelativeBal_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_16preVFP

CMS_scale_j_FlavorQCD_13TeV

CMS_scale_j_RelativeSample_2017_13TeV

CMS_scale_j_RelativeSample_2018_13TeV

CMS_scale_j_HF_13TeV

CMS_res_j_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_18

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_17

CMS_scale_j_Absolute_13TeV

CMS_LHE_weights_scale_muF_vbsvvh

CMS_vbsvvh1lep_control_abcd_syst

B_OneLep

C_OneLep 3.3−
4.0+11.0

8−
9+76

31−
32+1015

CMS Internal

10− 5− 0 5 10

r∆
Fit  Impactσ+1
Pull  Impactσ-1

Gaussian Poisson
AsymmetricGaussian Unconstrained 14−

19+ = 1r

30
29
28
27

26
25
24

23
22
21

20
19
18
17

16
15
14

13
12
11

10
9
8
7

6
5
4

3
2
1

2− 1− 0 1 2
2σ - 2

I
σ)/

I
θ-θ( 

I
σ)/

I
θ-θ(

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_16postVFP

CMS_scale_j_BBEC1_2018_13TeV

CMS_scale_j_HF_2017_13TeV

CMS_vbsvvh_puWeight

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_16preVFP

lumi_13TeV_correlated

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_17

CMS_scale_j_Absolute_2017_13TeV

CMS_scale_j_EC2_2017_13TeV

CMS_scale_j_EC2_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_16postVFP

CMS_vbsvvh1lep_qTagWeightXWqq_13TeV_18

CMS_vbsvvh1lep_signal_RegionA

CMS_PSWeight_FSR_vbsvvh

CMS_LHE_weights_pdf_vbsvvh

CMS_scale_j_RelativeBal_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_16preVFP

CMS_scale_j_FlavorQCD_13TeV

CMS_scale_j_RelativeSample_2017_13TeV

CMS_scale_j_RelativeSample_2018_13TeV

CMS_scale_j_HF_13TeV

CMS_res_j_13TeV

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_18

CMS_vbsvvh1lep_bTagWeightXbb_13TeV_17

D_OneLep

CMS_scale_j_Absolute_13TeV

CMS_LHE_weights_scale_muF_vbsvvh

CMS_vbsvvh1lep_control_abcd_syst

B_OneLep

C_OneLep 3.3−
4.0+10.8

8−
9+76

31−
32+1015

CMS Internal

10− 5− 0 5 10

r∆
Fit  Impactσ+1
Pull  Impactσ-1

Gaussian Poisson
AsymmetricGaussian Unconstrained 15−

17+ = 3r

Figure 6.4. Impact plots for C2V = 1 with signal strength set to 1. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.
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Figure 6.5. Impact plots for C2V = 2 with signal strength set to 0. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.
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Figure 6.6. Impact plots for C2V = 2 with signal strength set to 1. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.
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Figure 6.7. Impact plots for C2V = 4 with signal strength set to 0. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.
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Figure 6.8. Impact plots for C2V = 4 with signal strength set to 1. The left plot uses the Asimov
dataset (−t −1), while the right plot uses the predicted background without the Asimov dataset.
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Chapter 7

Result

The below table shows the data yields with unblinded region A in the ABCD method:

Table 7.1. Data yields with unblinded region A.

Region data yield prediction
region A 1 0.82
region B 76
region C 11
region D 1015

The final steps for unblinding is to run the Combine with the observed data and compare

it with the unblinded ones. The results are shown in the following two plots.

The main difference between the observed and expected results arises from the 0.82

prediction versus 1 data in the A region. This discrepancy has resulted in slightly worse limits in

the observed case, but the factor is very small.

The analysis is intended for publication in conjunction with other channels (HIG-24-003).

The combined result will be enhanced by a factor of
√

2 through the inclusion of the 0-lepton

and other channels, and it will be published by the CMS collaboration.

Chapter 7, in full, is a reprint of the material as it appears in CMS analysis note AN-23-

016, Search for anomalous c2v couplings in the VVH production via vector boson scattering.

The dissertation author was the primary investigator and author of this analysis note.
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Figure 7.1. Observed and expected limits on the cross-section of the VBS VVH process. This
plot includes both the expected limit and the observed limit, run without the -t -1 option.
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Chapter 8

Appendix

8.1 Signal MadGraph model

The Madgraph model is used to generate MC samples:

import model HHVBF_UFO-vbf_hh_4f

generate p p > w+ w- h j j QCD=0

output VBSWWH_OS_VBSCuts_4f_LO -nojpeg

Finally, Pythia was used to handle parton showers with the same settings used to generated other

CMS MC samples at LO.

8.2 Signal process differential distributions

As the C2V value deviates from the Standard Model (SM) expected value of 1, the

anomalous behavior at the high-energy tail becomes more pronounced. The events in these tails

exhibit distinct characteristics that can be used to discriminate against other SM background

processes, thereby increasing sensitivity towards the search for anomalous coupling behaviors.

This section documents the characteristics of the signal process and highlights the features that

will be later used to distinguish the signal process from other SM background processes within
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the signal region.

The process begins with two quarks from each incoming proton radiating W or Z bosons,

which then scatter off while also producing a Higgs boson in the process. The outgoing two

quarks, reconstructed as jets, are known as vector boson fusion (VBF) or, in this case, vector

boson scattering (VBS) jets. VBS jets are characterized by a large invariant mass (m j j) and

pseudorapidity separation (|∆η j j|).

As the C2V coupling strength increases, the incoming quarks carry more energy, causing

the VBS jets to become more forward than typical VBS jets. Consequently, both the invari-

ant mass (m j j) and pseudorapidity separation (|∆η j j|) shift to larger values, as illustrated in

Figure 8.1. The increase in the individual jet’s pseudorapidity (|η |) can also be observed.

Even more striking differences are seen in the triboson system. As the C2V value deviates

from the SM, the W and Z longitudinal polarization mode fraction increases, and the W and Z

transverse momenta become larger. Similarly, the Higgs boson also gains a boost. The shape

comparison of the kinematic distributions of the bosons can be seen in Figure 8.2. All three

bosons gain significant boost as the C2V deviates from the SM to varying degrees.

8.3 Electroweak V Cross-Section Reweighting

During this analysis, a discrepancy emerged between the expected and the Monte Carlo

(MC) yield for the EWKWLep. The majority of EWKWLep events in this region had one or both

incoming b quarks. Moreover, most EWKWLep events that are VBS W events at the generator

level in this region have just one outgoing quark matched to a VBS quark, with the other outgoing

quark matched to the H → bb̄ fat jet candidate, which is predominantly a b quark. It became

apparent that the kinematics of these b-initiated VBS events were incorrectly simulated.

It was eventually determined that the issue originated at the MADGRAPH level. The

following line was originally used to generate the EWKWLep samples in the process card:

pp > l vl j j / t t~ h QCD = 0
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Here, the ‘/’ excludes diagrams containing H,b, b̄ from generation and ignores any interference

from them. However, the process should have been generated using:

pp > l vl j j $ t t~ h QCD = 0

In this line, the ‘$’ excludes diagrams containing H,b, b̄ from generation but includes any

interference from them. The interference from diagrams containing b, b̄ is significant. As shown

in Fig. 8.3a, the PT of outgoing b quarks is significantly boosted when using the incorrect

MADGRAPH generation line. Essentially, the EWKWLep samples are beyond the Standard

Model (BSM) samples where the top quark does not exist, placing them in a familiarly boosted

phase space.

As a temporary fix, a scale factor was derived by taking the ratio of the histograms of

the outgoing b quark PT for the correctly generated samples (numerator) and the incorrectly

generated samples (denominator). This scale factor, binned in PT of the outgoing b quark, is

sufficient to completely resolve the issue (see Fig. 8.3b). Additionally, the EWKWLep samples

have no restriction on the minimum dijet mass, so diboson events are also included in the sample.

Since this analysis uses a dedicated diboson sample already, these events are removed to avoid

double counting. At the time of writing, the EWKWLep samples have been decommissioned

and are being centrally generated with the correct MADGRAPH line.

8.4 ABCDNet

The ABCD method is a widely used technique for data-driven background estimates in

high energy physics. The method relies on two statistically independent discriminating variables,

used to divide the phase space into four regions. The background in the signal region can be

estimated simply using the other three control regions. The variables are typically chosen based

on prior physics knowledge.

The paper [24] proposes automating the design of one or both of these variables using

machine learning. In our analysis, we only attempt the first method, where a discriminator
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is built and kept by construction decorrelated from another variable. In the second case, two

discriminators are built and kept independent simultaneously.

In our case, a Deep Neural Network (DNN) is trained to serve as one of the “arms” of a

traditional ABCD background estimation, which is described in more detail in the next section.

A term dCorr2 is added to the loss function that trains the DNN to be decorrelated with the other

arm:

L [ f (⃗x)] = LBCE[ f (⃗x,y)]+λdCorr2
y=0[ f (⃗x),X0] (8.1)

where x⃗ is the input vector, y is the truth label (1 for signal, 0 for background), λ is a tunable

parameter controlling the size of the decorrelation term, and X0 is the decorrelation target, which

the analyzer is free to choose. Binary Cross Entropy (BCE) is used in our analysis; however, any

loss function L could, in principle, be used in its place.

Moreover, dCorr2 is the “distance correlation,” a statistical quantity that measures the

dependence of two variables f and g, based on the “distance covariance” dCov2 between them:

dCov2[ f ,g] = ⟨| f − f ′|× |g−g′|⟩+ ⟨| f − f ′|⟩×⟨|g−g′|⟩−2⟨| f − f ′|× |g−g′′|⟩ (8.2)

dCorr2[ f ,g] =
dCov2[ f ,g]

dCov[ f , f ]dCov[g,g]
(8.3)

For each training, we explored the hyperparameter phase space, particularly tuning

the weight of the dCorr2, λ , and the batch size to ensure good discriminating power and the

best possible decorrelation between the DNN output and the second arm used for the ABCD

background estimation.
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8.5 Background Estimation BDT Plot

8.6 Datacards

8.7 DeepJet b-tagging efficiency maps

8.8 Data/MC for cutflow stages of the 1-lepton analysis
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Figure 8.1. Signal process distributions for variables sensitive to the VBS features of
the event for various C2V values. The SM expected value of C2V = 1 is shown in the
yellow histogram, while other C2V values are shown in line histograms with different
colors. All histograms are arbitrarily normalized to have the same total integral, thereby
comparing only the shape. Only the same-sign WWH production is plotted here.
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Figure 8.2. Signal process distributions for variables sensitive to the hard scattering
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Figure 8.4. Regions C and D are plotted on the left, and regions A and B are plotted on the right.
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Figure 8.5. Datacard used for the final result in the 1 lepton channel.
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Figure 8.6. The efficiency map, binned in PT and η , for for b quarks using the Loose DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.7. The efficiency map, binned in PT and η , for for c quarks using the Loose DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.8. The efficiency map, binned in PT and η , for for light quarks using the Loose DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.9. The efficiency map, binned in PT and η , for for b quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.10. The efficiency map, binned in PT and η , for for c quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.11. The efficiency map, binned in PT and η , for for light quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using tt̄ MC in the
semi-leptonic final state.
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Figure 8.12. The efficiency map, binned in PT and η , for for b quarks using the Loose DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the VBS
SSWWH signal sample.
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Figure 8.13. The efficiency map, binned in PT and η , for for c quarks using the Loose DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the VBS
SSWWH signal sample.
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Figure 8.14. The efficiency map, binned in PT and η , for for light quarks using the Loose
DeepJet b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016
post-VFP (lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the
VBS SSWWH signal sample.
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Figure 8.15. The efficiency map, binned in PT and η , for for b quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the VBS
SSWWH signal sample.
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Figure 8.16. The efficiency map, binned in PT and η , for for c quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the VBS
SSWWH signal sample.
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Figure 8.17. The efficiency map, binned in PT and η , for for light quarks using the Tight DeepJet
b-tagging working point is plotted for the 2018 (upper left), 2017 (upper right), 2016 post-VFP
(lower left), and 2016 pre-VFP (lower right). The efficiencies are calculated using the VBS
SSWWH signal sample.
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Figure 8.18. Distributions of the and electron muon candidate variables for events passing the
fatjettag selection criterion in the VBSVVH analysis.
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Figure 8.19. Distributions of the H candidate variables for events passing the fatjettag selection
criterion in the VBSVVH analysis.
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Figure 8.20. Distributions of the W candidate variables for events passing the fatjettag selection
criterion in the VBSVVH analysis.
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Figure 8.21. Distributions of the and electron muon candidate variables for events passing the
tightak4tag selection criterion in the VBSVVH analysis.
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Figure 8.22. Distributions of the H candidate variables for events passing the tightak4tag
selection criterion in the VBSVVH analysis.
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Figure 8.23. Distributions of the W candidate variables for events passing the tightak4tag
selection criterion in the VBSVVH analysis.
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Figure 8.24. Distributions of the 1st b jet candidate variables for events passing the tightak4tag
selection criterion in the VBSVVH analysis.
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Figure 8.25. Distributions of the 2nd b jet candidate variables for events passing the tightak4tag
selection criterion in the VBSVVH analysis.
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