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FURTHER STUDIES IN THE LIQUID~DROP THEORY OF NUCLEAR FISSION 
~ ~ "V"V "V"V"V ~ ~ f"VI"V ~ ~ 

t 
James Rayford Nix 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

July 1, 1968 

Abstract 
~ 

We study the properties of the division of an idealized nucleus, using 

a simplified version of the liquid-drop model. The shape of the nuclear 

surface is specified by means of a parameterization that has six degrees of 

freedom, defined in terms of three smoothly joined portions of quadratic 

surfaces of revolution (e.g. two spheroids connected by a hyperboloidal 

neck). The system's Hamiltonian is treated in an approximation in which the 

potential energy is considered to be a sum of surface and Coulomb energies. 

The kinetic energy is calculated according to the method of Werner and 

Wheeler, which approximates the internal hydrodynamical flow by the flow of 

circular layers of fluid; this type of flow corresponds approximately to the 

irrotational flow of a nonviscous incompressible fluid. On the basis of this 

model we calculate probability distributions for the masses and kinetic 

energies of the fragments at infinity. For nuclei throughout the periodic 

table the calculated distributions are compared with experimental distribu­

tions, as functions of the internal excitation energy of the compound nuclei 

undergoing fission. The comparisons indicate that this simplified version of 

the nonviscous irrotational liquid-drop model is not capable of accounting 

for the properties of the division of heavy nuclei at low excitation energies 

(e.g. for the observed mass asymmetry). However, it does reproduce approxi­

mately experimental fission-fragment mass and energy distributions for the 

fission of heavy nuclei at high excitation energies (energies above about 40 

MeV) and medium nuclei at all excitation energies. In all cases the experi­

mental kinetic energies and widths are larger than the calculated ones (for 
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nonviscous irrotational flow)) and this) along with other evidence) suggests 

that in the fission process the flow of nuclear matter is either rotational 

or viscous. 

t 
Present address: GroupT-9) Los Alamos Scientific Laboratory) Los Alamos) 

New Mexico 

, 
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1. Introduction 
""" ~ 

1 
In a recent simplified treatment ) of the liquid-drop theory of nuclear 

fission, a certain approximation was employed to calculate the properties of 

the fission of nuclei lighter than about radium. This approximation con­

sisted of parameterizing the shape of the nuclear surface in terms of two 

overlapping or separated quadratic surfaces of revolution (spheroids). For 
t 

light and medium nuclei the resulting saddle-point shapes are fair approxi-

mations to the true dumbbell-like liquid-drop saddle-point shapes
2

). The 

two-spheroid saddle-point shapes consist of two tangent collinear spheroids 

and therefore coincide with possible scission shapes. It was therefore 

possible to disregard the dynamical descent of the fissioning nucleus from 

its saddle point to sCission, and this made it fairly easy to work out in a 

consistent way the predictions of the model. This was done by applying 

standard static, dynamical and statistical methods to the Hamiltonian for 

the system. For medium nuclei experimental distributions in the masses and 

kinetic energies of the fragments at infinity were available for comparison, 

and certain, but not all, of the properties of these distributions were 

reproduced by the calculations without the use of adjustable parameters. 

Because of the outcome of this study, it was decided to perform similar 

calculations with a more realistic parameterization of the nuclear shape, so 

that more could be learned about the predictions of the liquid-drop model 

for the fission of heavy nuclei. For heavy nuclei the saddle point is not 

close to the scission point, and consequently it is necessary to calculate 

the dynamical descent from saddle to scission. The properties of the fission 

process that we predict are mass and energy distributions of the fragments at 

infinity. We especially want to establish whether the most probable mass 

division of an idealized nonviscous irrotational liquid drop is a division 

into two equal parts or into two unequal parts. The incomplete dynamical 

calculations of Hil13,4) and Hill and Wheeler5) left the impression that the 

t 
We refer to nuclei lighter than about silver as light, to those between 

about silver and radium as medium, and to those heavier than about radium as 

heavy. 
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observed mass asymmetry in the fission of heavy nuclei at low excitation 

energies is possibly associated with a classical hydrodynamical effect 

during the descent from the saddle point to scission. Also, from a con­

sideration of statics alone, Businaro and GallOne6,7) and Nossoff8) con­

cluded that there is possibly a loss of stability against asymmetry between 

the saddle point and scission. However, as emphasized by Wilets9,lO) , it 

is impossible to determine whether or not motion beyond the saddle point is 

stable against asymmetry unless dynamics is also considered (since the shape 

of the potential-energy surface is not invariant under a change of deforma­

tion coordinates). We hope that our dynamical calculations will shed light 

on this question of the most probable mass division of an idealized non­

viscous irrotational liquid drop. We are also interested in the most prob­

able division of the total energy released in the process between the trans­

lational kinetic energies of the centers of mass of the fragments at infinity 

and their vibrational energies. In addition to the most probable values, we 

also calculate the widths of the fission-fragment mass and energy distribu­

tions. 

Although of crucial importance in a general theory of the fission 

process, the dynamics of nuclear division has received only fragmentary 

attention. Indeed fission dynamics has been considered by a number of 
1 3-6 11-27 authors" ), but in each case only certain limited aspects were 

studied. For a few special cases the equations of motion for a dividing 

drop were integrated numerically by Kelson19 ) and by Lawrence
22

). Kelson 

calculated the kinetic energy by use of the Werner-Wheeler approxima­

tionl ,12),t which is the method that we use for most of our studies here, 
:j: 

whereas Lawrence used an exact method (for irrotational flow). Both these 

studies were restricted to shapes with reflection symmetry, and consequently 

the most probable mass division was outside their scope. Also, not enough 

t As we discuss in appendix 6.4.2, one of the terms [eq. (26) of ref. 19)) 

appearing in Kelson's expression for the kinetic energy is incorrect. 
:j: 
However, the small number of terms (two) retained by Lawrence in the 

expansion of the velocity potential leads to serious numerical inaccuracies, 

particularly for shapes close to scission. 

, 
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cases were considered to establish a relationship between initial conditions 

and final results. Methods for calculating the kinetic energy of the drop 

have been given in refs. 20)21) for the case of irrotational flow, and in 

f 23-25) re s. for realistic single-particle motion, but the solution of the 

equations of motion was not considered. 

The normal modes of oscillation of the system about its saddle-point 

shape have been studied in ref. 20) for an idealized drop) and by Hasse 26 ) 

for a system whose potential energy contains curvature and shell energies 

in addition to the surface and Coulomb energies of the liquid-drop model. 

For a system whose potential energy contains four such terms) Hasse27 ) is 

now calculating the properties of the dynamical descent from the vicinity 

of the saddle point to slightly beyond the scission point. He parameterizes 

the shape of the drop in terms of the three deformation coordinates of 

ref. 21), and since one of these describes asymmetrical shapes) it is 

possible for him to discuss in an approximate way the question of mass 

asymmetry) as well as the division of energy between the translational 

kinetic energies and vibrational energies of .the fragments. 

The general procedure that we use for calculating mass and energy dis­

tributions is analogous to that employed in ref. 1) and consists of the 

following steps: (1) The potential energy, which is the sum of the surface 

energy and the Coulomb energy, is calculated as a function of the deforma­

tion coordinates) and the saddle point is located and its properties 

studied. (2) The kinetic energy is calculated as a function of the coordi­

nates and their time derivatives. (3) The frequencies and eigendisplace­

ments of the normal modes of oscillation of the system about its saddle­

point shape are determined. (4) The transition-state method is used to cal­

culate the probability for finding the system in a given state of motion as 

it passes through the vicinity of the saddle point. (5) The solution of 

Hamilton's equations of motion tells us the motion of the system from the 

vicinity of the saddle point onward, for a given set of initial conditions 

near the saddle point. This final step converts the probability distribu­

tions for the states of motion near the saddle point into the desired prob­

ability distributions for the observable characteristics of the fission 

fragments at infinity, namely their masses and energies. 

For computational simplicity it is desirable to take into account 

explicitly as few degrees of freedom as possible. A general discussion of 
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1 the degrees of freedom relevant to the fission process is given in ref. ). 

Because we are interested here in the kinetic and vibrational energies and 

masses of the fragments) we restrict our attention to those degrees of 

freedom connected with the fragments! separation, eccentricities and relative 

masses. We consider a total of six such degrees of freedom, and specify 

the shape of the nuclear surface in terms of three smoothly joined portions 

of quadratic surfaces of revolution (e.g. two spheroids connected by a 

hyperboloidal neck)1)19). Of the six degrees of freedom associated with 

such a parameterization) three describe symmetrical deformations) and the 

remaining three describe asymmetrical deformations. We will wait until 

later to define precisely our choice of generalized coordinates, but physi­

cally the three symmetrical degrees of freedom represent (1) the distance 

between the centers of the two halves of the drop) (2) the eccentricities 

of the two halves and (3) the radius of the drop's neck. The three asym­

metrical degrees of freedom represent (1) the position of the dropis center 

of mass) (2) the amount of matter in one half of the drop relative to the 

other and (3) the position of the dropis neck relative to its center of 

mass. 

By restricting our consideration to these six degrees of freedom) ~e 

of course exclude the possibility of discussing certain important aspects 

of the fission process. For example) because we do not consider the degrees 

of freedom specifying the angular orientations of the fragments and the 

orientation of the system as a whole) we are unable to discuss the angular 

momenta of the fragments and their angular distributions. Our specializa­

tion to axially symmetrical shapes excludes the possibility of discussing 

gamma-like vibrations and the bending or "wriggling" of the system. Also) 

because our parameterization permits only binary division) we are unable to 

discuss division into more than two bodies. 

Our point of view--and reason for performing this study--is the follow­

ing: We want to calculate the properties of the division of liquid drops 

whose charge) surface tension) mass and size correspond to those of nuclei, 

and to compare the results of these calculations with what is observed 

experimentally in the fission of real nuclei. Then from the comparisons we 

hope to learn unambiguously to what extent an idealized nonviscous irrota­

tional liquid-drop model is capable of representing the essential charac­

teristics of fission. This we feel we can do because there are no adjust-
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able parameters in the problem--the values of all the relevant constants 

that enter the theory are taken directly from analyses of nuclear masses) 

etc.) rather'than.being adjusted. arbit:r:arily to the :fission data themselves:. 

The general conclusion reached from the comparisons is that the non­

viscous irrotational liquid-drop model yields an approximate description of 

mass and energy distributions for the fission of medium nuclei at all exci­

tation energies and heavy nuclei at high excitation energies) but that) 

within the limitation of a parameterization that permits only binary divi­

sion) it does not reproduce the observed properties of the fission of heavy 

nuclei at low excitation energies (e.g. mass asymmetry). 

2 . .Hamiltonian 
""" ~ 

We are concerned in this section with the Hamiltonian for the system'-­

with defining the generalized deformation coordinates) and with calculating 

the potential and kinetic energies. In preparation for this discussion we 

first review our system of natural liquid-drop unitsl)) which is based on 

the radius) surface energy and mass of the spherical drop. In converting 

from these natural units to conventional units) we use for the constants of 

the semi-empirical mass formula the second set of Myers and SWiatecki
28). 

The radius RO of the spherical drop is related to A) the number of 

nucleons in the compound nucleus) by 

with 

ro = 1.2249 fm 

The surface energy E(O) of the spherical drop is given by 
s 

with 

a 17.9439 MeV s 

(la) 

(lb) 
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this expression includes a term for the dependence of the surface energy on 

the difference N - Z between neutron and proton numbers. The mass MO of the 

original drop, to an accuracy within one part per thousand, is given by 

(lc) 

with 

-24 2 
mO = 1.660 X 10 g = 931 MeV/c [ref. 29)]; 

the symbol c denotes the speed of light. 

In terms of the above three fundamental units, the natural unit of time 

is given by 

The unit of frequency is then 

1 1 

Do = liTO = 3.398 X 1022{1 - 1.7826 [(N-Z)/A]2} 2 A-2 -1 
sec 

which becomes, upon multiplying by Planck's constant divided by 2n, 

, (2a) 

(2b) 

We next introduce the dimensionless fissility parameter x, which is 

defined by the equation 

The quantity E(O) is given by 
c 

., , 

(3a) 
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where e is the electronic charge and 

a = 0.7053 MeV 
c 

UCRL-17958 

[ref. 28)]. 

Although the semi-empirical mass formula of Myers and SWiatecki28 ,30 ) takes 

into account the dependence of the Coulomb energy on the surface diffuseness 

of the charge distribution, E~O) represents physically what the Coulomb 

energy would be for an equivalent sharp drop30 ). A second convenient form 

f 'bt' d b b t't t' for E(O) and E(O) in eq. (3a), and is. or x lS 0 alne y su s l u lng c s 

x 
50.88 {I 1. 7826[ (N -Z) /A] 2} 

The advantage of using these natural liquid-drop units is that in terms 

of them the results of our calculations are functions of the single parameter 

x rather than functions of two parameters (e.g. Z and A). 

2.1. DEFORMATION COORDINATES 

We do not consider effects that arise from the deviation of the syst~m 

from axial symmetry, and therefore specialize from the outset to shapes that 

are axially symmetrical. The conventional method for representing such 

shapes is to expand the drop's radius vector in a series of Legendre poly­

nomials. Although this method is satisfactory for nearly spherical shapes, 

it has the disadvantages that (1) a large number of terms are required to 

represent adequately the more deformed shapes of interest in fission2), 

(2) it is impossible to describe in a continuous way the transition from a 

single body to separated fragments and (3) it is impossible to describe 

shapes with more than one neck. 

A search was made for a better way to describe the shape of the nuclear 

surface, and the method that we decided upon overcomes the first two of 

these disadvantages but still suffers from the third. The parameterization 

specifies the nuclear shape in terms of three smoothly joined portions of 

quadratic surfaces of revolution (e.g. two spheroids connected by a hyper­

boloidal neck). An example of a shape described in this way is shown in 

fig. 1. Because three numbers are required for the specification of each 
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Z 

XBL678-3959 

Fig. 1. An illustration of a shape described by three smoothly joined 
portions of quadratic surfaces of revolution. Each surface is 
specified by the position £i of its center, its transverse semi,axis 
ai and its semisymmetry axis c· (the quantity c3 is imaginary for 
this shape and hence not shawn}. The middle hyperboloid of revolu­
tion joins smoothly with the two end spheroids at zl and z2. The 
location £ of the center of mass of the drop is also shown. cm 

I' 
W 
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quadratic surface of revolution (e;g. its major and minor axes and the 

position of its center), nine numbers are required to specify a general 

shape made up of three such collinear surfaces of revolution. We denote 

the left-hand surface by the subscript 1, the right-hand one by 2, and the 

middle one by 3. In terms of a cylindrical coordinate system (see again 

fig. 1), the equation for the dropfs surface can then be written explicitly 

as 

2 2 2 - 2 
a l (al /c l )(z-£l) 

2 2 222 
p = a 2 (a2 /c2 )(z-£2) (4) 

2 222 
a

3 
(a

3 
/c

3 
)(Z-£3) 

where zl and z2 are the values of Z at the intersections of the middle sur­

face with, respectively, the left-hand and right-hand surfaces. 

The constancy of the volume of the drop (arising from our assumption of 

incompressibility) eliminates one of the nine degrees of freedom, and the 

requirement that the middle surface join smoothly with each of the two end 

surfaces eliminates two more degrees of freedom. This introduces three 

relationships among the nine numbers and reduces to six the number of 

deformation coordinates required to specify our system. In principle the 

number of degrees of freedom could be reduced further to five by solving for 

and eliminating the position of the dropfs center of mass. However, it turns 

out in practice to be advantageous to retain this coordinate,which is then 

eliminated implicitly when the equations of motion are solved. 

Of these six degrees of freedom, three represent symmetrical deforma­

tions of the system, and the remaining three represent asymmetrical deforma­

tions. The deformation coordinates are defined in terms of appropriate 

ratios of the geometrical parameters that specify the three quadratic sur­

faces of revolution. To permit a natural division of the coordinates into 

those describing symmetrical deformations and those describing asymmetrical 

ones, we define an auxiliary unit of distance u by the equation 

[l( 2 2)J~ u = 2" a l + a 2 
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For a symmetrical shape the unit of distance is thus the transverse semi­

axis of either end spheroid. The three symmetrical coordinates are then 

defined by ,,) 

(6a) 

(6b) 

(6c) 

and the three asymmetrical coordinates by 

(6d) 

(6e) 

(6f) 

In practice the actual shape of the system is found in terms of these six 

coordinates by inverting eqs. (5) and (6) and the equations expressing 

volume conservation and the smooth connections of the middle surface with 

the two end surfaces. This inversion is carried out explicitly in appen­

dix 6.1, but for qualitative purposes it suffices to know that the nine 

numbers ti' a
i

2 
and a i

2
jc

i
2 

(i = 1, 2, 3), which uniquely define the shape 

and linear position of the drop, are explicit functions of 01' 02' 03' a l , 

a 2 and a
3 

.. (It also proves necessary to be able to calculate the first 

partial derivatives of these numbers with respect to the generalized 

deformation coordinates, and formulas for such derivatives are given in 

appendix 6.2.) 

This parameterization is capable of representing in a continuous way 

the sequence of shapes from the original sphere, through the saddle and 

scission shapes, to the two fragments at infinity. In going through these 

shapes the two end quadratic surfaces of revolution are always spheroids, 

but the middle quadratic surface of revolution is originally a spheroid, 

then becomes a hyperboloid of revolution of one sheet, and at the scission 

point becomes a hyperboloid of revolution of two sheets. These transitions 



, 
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are illustrated in fig. 2, where we show some of the possible shapes that 

the middle quadratic surface of revolution can assume for certain values of 
222 222 

a
3 

and a
3 

Ic
3

. It is seen that since a
3 

and a
3 

IC
3 

can be either posi-

tive or negative (although the quadrant in which a
3

2 is negative and 
2 2 a3/c3 is positive is unphysical), the semiaxes a

3 
and c

3 
can assume 

2 imaginary values, which is one of our reasons for working in terms of a
3 2 2 

and a
3 

IC
3 

rather than a
3 

and c
3

. 
It should be emphasized from the outset that, in addition to its 

restriction to axial symmetry, the present parameterization is deficient 

in two important respects. First of all, it is not as satisfactory for 

discussing small deviations of the drop from a spherical shape as an 

expansion of the drop's radius vector in spherical harmonics, or as satis­

factory for discussing small deviations from a spheroidal shape as an 

expansion about a spheroid. Some comments are made in appendix 6.1 on the 

restrictions on this parameterization for shapes close to a sphere or a 

spheroid. However, this limitation is not serious here because the large 

deformations of primary interest in fission are far removed from a sphere 

or a spheroid. 

The second deficiency of the parameterization is its inability to de­

scribe shapes with more than one neck or to describe division into more 

than two bodies. In the early stages of this work we planned not to require 

that the surfaces join smoothly; this would have permitted a rough descrip­

tion of a drop with two necks and a division into three bodies. However, a 

discontinuity of this type in the surface of the drop introduces difficulties 
t 

in treating the time evolution of the system, and the idea of permitting 

the surfaces to join with discontinuous slopes was abandoned. It must be 

borne in mind, then, that all the conclusions, reached in this work are sub­

ject to the limitation of a parameterization that permits the formation of 

t 
The difficulties arise because the amount of mass displaced in changing 

the point of intersection of two surfaces goes to zero as the slopes of the 

two joining surfaces become equal. If the resulting singular inertia ~mattix. 

is transformed into a nonsingular one through a change of coordinates, a cusp 

at the point of tangency is introduced simultaneously into the potential 

energy. 
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Fig. 2. Illustrations of the shape of the middle quadratic surface of 
revolution for selected values of a

3
2 and a3

2/c3
2 . A thin reference 

mark (+) placed at the appropriate value of a~2 and a
3

2/c
3

2 locates 
the center of each shape (except for those with a 2 = 0). The com­
plete surface of the system consists of such a sh~pe plus a portion 
of a spheroid smoothly joined at each end. The left-hand and right­
hand portions of the middle surface are in general not of the same 
length. 

I.' 

• 
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a single neck and division into only two bodies. 

Finally we would like to point out that although the above parameteri­

zation is used here in a study of the liquid-drop model it is much more 

general and can be used for any study involving deformed axially symmetrical 

shapes. The calculation of the energies and wave functions of single par­

ticles in a potential well whose geometrical shape is described in this way 

is a particular example of importance in nuclear physics [see for example 

ref. 31
), where a somewhat related parameterization is suggested]. Also, 

if it is desired to describe deformed nonaxially symmetrical shapes (i.e. 

gamma deformations), the present parameterization could be generalized in a 

straightforward way by replacing the three quadratic surfaces of revolution 

by general quadratic surfaces (e.g. two ellipsoids connected by a hyperbo­

loid). This generalization would be particularly useful for discussing the 

properties of the equilibrium shapes of a rotating charged or gravitating 

drop [see for example ref. 32 ) for a discussion of this problem). 

2 . 2 . POTENTIAL ENERGY 

In the simple version of the liquid-drop model that we are using the 

potential energy of the system is the sum of the surface energy, which tends 

to keep the drop spherical, and the Coulomb energy, which tends to deform 

it. As discussed in ref. 30 ) the first-order correction to the Coulomb 

energy that results from the surface diffuseness of the charge distribution 

is strictly independent of deformation, and consequently it is sufficient to 

consider the Coulomb energy of an equivalent sharp distribution when dis­

cussing the deformation properties of the system. We should also be 

reminded at this point that the surface energy E includes an asymmetry 
s 

term to account for the difference between the neutron and proton numbers. 

The potential energy 1V of a deformed drop relative to the spherical 

drop is then 

11 E _ E( 0 ) + E _ E(O) 
s s c c 

= (B - 1) E(O) + (B _ 1) E(O) 
s s c c 

[(B - 1) + 2 x (B - 1)) E(O) 
s c s (7) 
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We have used the definition (3a) of the fissility parameter x in going from 

the second to the third line. The function B is the total surface energy 
s 

of the drop in Q~its of the surface energy E(O) of the spherical drop, and 
s 

B is the Coulomb energy of the drop (for a sharp charge distribution) in 

~its of the corresponding Coulomb energy E(O) of the spherical drop. The 
c 

two functions Band B depend only upon the six generalized deformation 
s c 

coordinates that specify the shape of the drop. 

In addition to the surface and Coulomb energies, we must be able to 

calculate the generalized forces acting on the drop, i.e. (the'negative of) 

the first partial derivatives of the energies with respect to the deforma­

tion coordinates. Because the drop's surface is made up of portions of 

quadratic surfaces of revolution, the surface energy and its derivatives 

are expressible in terms of elementary transcendental functions, whereas 

the Coulomb energy and its derivatives require for their evaluation two-fold 

numerical integrations. Formulas are given in appendix 6.3.1 for the 

surface energy and its derivatives, and in appendix 6.3.2 for the Coulomb 

energy and its derivatives. 

The locations and properties of the saddle points that occur in the 

multidimensional potential-energy surface playa central role in fission 

theory. For a given value of the fissility parameter x the location of the 

saddle point is determined by solving (using a standard iterative method) 

the set of six nonlinear equations obtained by equating to zero the expres­

sions for the six generalized forces. For the family of symmetrical saddle­

point shapes the energies, shapes, and maximum and minimum radii of the 

shapes corresponding to our parameterization have already been shown in 

figs. 8-11 of ref. 1). Comparisons are made there between the results cal­

culated with the parameterization in terms of three quadratic surfaces of 

revolution and the results calculated by Cohen and Swiatecki2 ) and by 

Strutinskii et al. 33 ). The comparisons indicate that the present param­

eterization is remarkably accurate in representing the static properties of 

the symmetrical saddle-point shapes. For x < 0.51 the three-quadratic­

surface parameterization is in fact more accurate than expanding the drop's 

radius vector in terms of a series of 18 'Legendre polynomials2). This con­

clusion is based upon the principle that the more adequate parameterization 

yields a lower potential energy at the saddle point. For x > 0.51 the use 

of 18 Legendre polynomials is slightly better than the use of three quadratic 

• 
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surfaces, but the potential energy calculated with the former parameteriza­

tion is never less than that calculated with the latter by more than 

0.00066 E(O) ~ 0.4 MeV, which occurs at x = 0.67. In this connection it 

should besmentioned that Lawrence's parameterization22 ,34), defined in 

terms of an expansion of p2 in powers of z (with sufficient terms retained 
"'-

to make two symmetrical deformation coordinates), is also remarkably 

accurate for x ~ 0.7 but deteriorates rapidly for smaller values of x. 

The work reported in ref. 1) on the three-quadratic-surface parameteri­

zation was limited to symmetrical shapes, whereas the subsequent work has 

included in addition asymmetrical shapes. We have tested the symmetrical 

saddle-point shapes for stability against asymmetry, and have found them to 

be stable (apart from neutral stability against a shift of the center of 

mass) from x = 1 down to x
BG

' the critical Businaro-Gallone point35 ), whose 

value we determine as 0.396. This confirms the calculations of ref. 2), 

where x
BG 

was determined as 0.39
4 

to within an accuracy of a few units in 

the third decimal place. Strutinskii36 ) has claimed that a loss of stability 

against asymmetry also occurs at x ~ 0.8, and the question of whether or not 

this is true was raised in ref. 37). Both the present results and those of 

ref. 2) indicate that no loss of stability occurs at x ~ 0.8 and therefore 
u 

suggest that Strutinskii's conclusion is incorrect. For x < x
BG 

the 

symmetrical saddle-point shapes ate unstable with respect to mass asymmetry 

as well as with respect to the symmetrical distortion leading to fis-

sion2 ,35 ,"38 ) J and consequently do not physically represent shapes at barrier 

tops38) . 

We have also calculated the static properties of the asymmetrical 

saddle-point shapes for values of x from x
BG 

up to 0.80, and the results 

agree approximately with those of Strutinskii39 ). These asymmetrical 

saddle-point shapes have energies that are higher than the symmetrical 

saddle-point shapes (for corresponding values of x), and are unstable with 

respect to two degrees of freedom (in addition to a center-of-mass Shift). 

They therefore also do not represent shapes at barrier tops. For x> 0.80 

we were unable to obtain solutions for the asymmetrical saddle points [as 

was also Strutinskii39 )]. The fate of this family of asymmetrical equilib­

rium shapes for larger values of x is unknown but is of great interest in 

connection with general properties of families of equilibrium configurations 

[see for example ref. 32 )]. 
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We summarize in a set of four figures the static properties of the 

saddle-point shapes calculated with the three-quadratic-surface parameteri­

zation. In each figure we use solid lines for symmetrical shapes and dashed 

lines for asymmetrical shapes. The total potential energy of the saddle­

point shape relative to the sphere is shown in fig. 3, and the individual 

surface and Coulomb energies Band B are shown in fig. 4. Figure 5 con-s c 
tains the values of the six generalized coordinates corresponding to the 

saddle-point shapes, and fig. 6 the maximum and minimum radii of the saddle­

point shapes. 

We also present in table 1 some of the static properties of the sym­

metrical saddle-point shapes at intervals of 0.02 in x over the range from 

x = 1.00 down to 0.06. The properties tabulated divide naturally into 

three groups. The first group includes the total potential energy l' and 

the relative surface and Coulomb energies Band B. As discussed earlier 
2 s c 

the values of ref. ) for these three quantities should be slightly more 
2 

accurate than our values for x ~ 0.52 [however, the results of ref. ) are 

slightly inaccurate for values of x close to ll, whereas our values are 

preferred for x ~ 0.50. The second group contains the values of the three 

symmetrical deformation coordinates a l , a
2 

and a
3 

(the three asymmetrical 

coordinates a
l

, a
2 

and a
3

are zero). The final group of tabulated quanti­

ties contains the geometrical parameters of the quadratic surfaces of revo­

lution. In this connection see again fig. 1, and recall that since the 

shapes are symmetrical u = a l = a2 , cl = c2 ' £1 = -£2' and zl = -z2· For 

x ~ 0.78 the quantity c
3 

is imaginary, and the symbol i is used to denote 

the square root of -1. 

• 
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2.3. KINETIC ENERGY 

We consider now the calculation of the kinetic energy of the system, 

which depends not only upon the shape of the drop and its time rate of 

change, but also upon the nature of the hydrodynamical flow of the fluid 

inside the drop. To arrive at a formula for the kinetic energy in terms of 

the generalized coordinates and their time derivatives, we must therefore 

specify the curl (rotation or vorticity) in the system. As a tractable 

limiting case for which it is important to know the consequences we consider 

the case of irrotational hydrodynamical flow. 

Is the assumption of irrotational flow a logical one for a study of the 

dynamics of the fission process? It is already known that nuclear flow is 

not irrotational for two types of deformations of 

small oscillations about ground-state equilibrium 

penetration of the fission barrier in spontaneous 

interest in fission: (1) 
t 

shapes and (2) the 
:j: 

fission. However, in 

fission one is also interested in the large deformations encountered beyond 

the position where the spontaneously fissioning nuclei emerge through the 

barrier, and in some cases in fairly high excitation energies. For these 

situations there is no direct experimental information concerning the type 

of flow. We therefore work out the consequences for irrotational flow, and 

hope to deduce whether or not the flow is in fact irrotational by comparing 

our calculations with experimental results. (The comparisons suggest that 

in the fission process the flow of nuclear matter is either rotational or 

viscous; see sect. 5.) 

t 40 41 . 
See for example refs. ' ), where It is shown that quadrupole vibra-

tional inertial parameters of even nuclei about spherical ground-state 

equilibrium shapes are several times as large as the values corresponding 

to irrotational flow. 
:j: 
Analyses of experimental spontaneous-fission half lives and fission-

barrier heights for nuclei in the actinide region suggest that several times 

as much mass is displaced in penetrating the fission barrier as would 

correspond to irrotational flow20 ,42). 
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Fig. 3. The potential energies of saddle-point shapes as functions of 
the fissility parameter x. The energy of the symmetrical saddle­
point shape is given by the solid curve, and of the asymmetrical 
saddle-point shape by the dashed curve. The critical Businaro­
Gallone point is indicated by the arrow, and the degrees of insta­
bility by the numbers in parentheses. The thin straight line shows 
the known limiting form of the potential energy for small values of 
x. 
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Fig. 4. The surface energies Bs and Coulomb energies Bc of saddle-point 
shapes as functions of the fissility parameter x. The results for 
the symmetrical saddle-point shapes are given by the solid curves, 
and the results for the asymmetrical saddle-point shapes by the 
dashed curves. The critical Businaro-Gallone point is indicated by 
the arrow, and the known values of Bs and Bc for x = 0 by solid 
points. 
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Fig. 5. The generalized deformation coordinates for saddle-point shapes 
as functions of the fissility parameter x. The results for the 
symmetrical saddle-point shapes are given by the solid curves, and 
the results for the asymmetrical saddle-point shapes by the dashed 
curves (asymmetrical saddle-point shapes of course exist corre­
sponding to a change in sign of all the asymmetrical coordinates). 
The critical Businaro-Gallone point is indicated by the arrow, and 
the known values of 01 and 03 for x = 0 by solid points. 
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Fig. 6. The maximum and minimum radii of saddle-point shapes as func­
tions of the fissility parameter x. The results for the symmetrical 
saddle-point shapes are given by the solid curves, and the results 
for the asymmetrical saddle-point shapes by the dashed curves. (For 
an asymmetrical shape the minimum radius is defined as the minimum 
radius of the neck, and the two maximum radii 'as the distances from 
the center of the neck (at its minimum radius) to the two ends of 
the drop.] The critical Businaro-Gallone point is indicated by the 
arrow, the known value of ~ax/RO for x = 0 by the solid point, and 
the known limiting form of R . IRo for small values of x by the thin 
straight line. m1n 
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Table 1 

Properties of saddle-point shapes as functions of the fissility parameter x 
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1.24813 
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0.82986 
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0.74942 
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0.20871 
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i' 

B 
s 

1.28394 

1.28320 

1.28235 

1.28141 
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0.84074 
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0.86320 
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The kinetic energy ~ of the drop corresponding to nonviscous irrota-

tional flow can be written in the form 

6 6 
~ 

1 L L M( q) ij = 2" qi qj 
i=l j=l 

(8) 

where we use the six-component vector 

q2 0'1 

q4 0'2 

q6 °3 q 
ql 0:

1 

q3 0:2 

q5 0:
3 

to denote collect:i,vely the three symmetrical deformation coordinates and the 

three asymmetrical ones (for later convenience we regard q as a column 

vector, and use even numbers for the symmetrical coordinates and odd numbers 

for the asymmetrical ones). The time rate of change of q. is denoted by q., 
l l 

etc. The elements M. . of 
lJ 

the inertia (effective mass) matrix are functions 

of the shape of the drop, but are independent of the time derivatives q .. 
l 

The matrix M is symmetrical (M .. = M .. ) and of dimension 6 X 6. However, 
lJ Jl 

for a symmetrical shape (0:
1 

= 0:
2 

= 0:
3 

= 0) the couplings between the com-

ponents describing symmetrical and asymmetrical distortions disappear, and 

for such shapes the matrix simplifies to the form 

where M and M are each symmetrical matrices of dimension 3 X 3. 
sym asym 

From the system's Lagrangian 

it follows that the generalized conjugate momenta are 

:. 
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i 1,2, ... ,6 

Then the Hamiltonian is given by 

6 6 6 
-1-J{ L 1 L L + Y (q) qiPi -£. = "2 M (q) .. PiPj 

i=l i=l j=l lJ 

The inertia matrix M can be calculated exactly in a straightforward way 

by solving Laplace's equation for the velocity potential, subject to the 

appropriate boundary condition on the drop's surface. This method of calcu­

lating the inertia matrix has been discussed in refs. 20-22), and we list in 

appendix 6.4.1 the formulas that we have used. This exact method has been 

used to calculate M for a variety of shapes and is satisfactory so long as 

the drop's deformation is not too large. For very deformed shapes, such as 

shapes close to sCission, the method used to solve Laplace's equation (an 

expansion of the velocity potential in terms of solid harmonics) breaks down, 

and it is no longer possible to calculate M accurately with this method. For 

this reason, and also because a fairly long time is required for computing 

M exactly, it is desirable to have available a faster method for computing 

Mwith fair accuracy. 

We use for this purpose the approximate method of Werner and Wheeler
12

), 

which is discussed in refs. 1,19). The method consists of approximating the 

internal hydrodynamical flow by the flow of circular layers of fluid. That 

is, as the drop deforms, the fluid inside an infinitesimally thin circular 

layer of fluid perpendicular to the symmetry axis always remains inside 

that layer-the layer simply changes its linear position, thickness and 

radius. This type of motion, which Werner and Wheeler call a lip-independent 

transport and shear," is consistent with the displacements of the drop's 

surface, but may deviate internally from irrotational flow. From Kelvin's 

minimum-energy theorem regarding irrotational motion [see for example 

ref. 43)], the kinetic energy calculated by this approximate method will be 

larger than or equal to the exact kinetic energy (for irrotational flow), 

the error being of second order in the deviation of the approximate circular­

layer motion from irrotational motion. For the kinetic energy associated 
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with the motions of fluid constrained to certain simple geometrical shapes, 

such as a spheroid or a cylinder, the Werner-Wheeler method yields the exact 

results. 

Formulas for the inertia matrix M on the basis of the Werner-Wheeler 

approximation are given in appendix 6.4.2, and in appendix 6.4.3 we compare 

for several different shapes (both symmetrical and asymmetrical) the results 

calculated with this method and the exact method. The general conclusion 

of the comparisons is that the Werner-Wheeler method is sufficiently 

accurate for calculating the kinetic energy associat.ed with the distortions 

of primary interest in fission, and we have therefore adopted this method. 

Solution 
~ 

In our study of the solution of the Hamiltonian we consider first the 

motion of the system in the vicinity of the saddle~point, and later the 

motion from the saddle point to scission. The transition-state method is 

used to obtain the probability that the system is in a given state of motion 

when it passes through the vicinity of the saddle point. This probability 

is then converted by the motion from the saddle point onward into probability 

distributions for the observable quantities of interest, namely fission­

fragment masses and energies. To first order these distributions are of 

Gaussian shape, and we compute their most probable values and widths. 

• 
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3.1. NORMAL MODES AT SADDLE POINT 

Since the general motion of the system in the vicinity of the saddle 

point can be written as a superposition of the independent normal modes of 

oscillation about the saddle-point shape, a study of the normal modes is of 

particular importance. In the determination of the normal modes the poten­

tial and kinetic energies are first expanded about the position of the 

saddle point, with terms higher than quadratic neglected, i.e. 

1 
="2 

6 
L 
i=l 

6 
L 
j=l 

6 
~ = ~ L 

i=l 

", A 

K .. (q. - q.) (q. - q.) 
lJ l l J J 

6 
L 
j=l 

A caret denotes that the indicated quantity is evaluated at the saddle­

point shape. The elements of the stiffness and inertia matrices are given 

by 

A 

K .. 
lJ 

(lOa) 

(lOb) 

which are evaluated for a given saddle-point shape by use of the formulas 

given in appendices 6.3.1, 6.3.2 and 6.4.2. (The second partial derivatives 

of 11 are obtained by differentiating numerically the expressions for the 

first partial derivatives.) For symmetrical saddle-point shapes the ele­

ments of both K and M that couple the symmetrical and asymmetrical dis­

tortions are zero, arid for such shapes we have the simplification 

A ( Ksym 

Ka:J K = 
0 

A (M~ Ma:J M = 
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where each of the submatrices is symmetrical and of dimension 3 X 3. 
" r-

Once K and M are calculated the normal modes are determined in a 

standard way [see for example ref. 44)] by solving the homogeneous system of 

6 linear equations 

" 2" 
(K -0.) M)v = 0 

for the six frequencies ~n and eigenvectors v(n), n = 1,2, ... ,6. This 

system of equations was solved here by using Eberlein's method45 ) to 

diagonalize the (nonsymmetrical) matrix f;r~, which one obtains by multi-
,,-1 

plying the above equation from the left by M Because for symmetrical 

shapes both the stiffness and inertia matrices separate into symmetrical and 

asymmetrical components, it is possible in practice to solve two uncoupled 

systems of dimensions 3 each, rather than the original system of dimension 6. 

The eigenvalues of the matrix M~~ give the frequencies (squared) of 

the oscillations about the saddle-point shape, and the eigenvectors give 

the transformation from the original set of coordinates q = col(q2' q4' q6' 

ql' q3' q5) = col(crl , cr
2

, cr
3

, a l , a
2

, a
3

) to the normal coordinates, which 

we denote by the use of capital letters, Q = col(Q2' Q4' Q6' Ql' Q3' Q5) = 
col(~l' ~2' ~3' Al , A2 , A

3
)· The values of the normal coordinates are 

defined to be zero at the saddle-point shape. Explicitly the normal­

coordinate transformation is 

q - <1.= VQ 

where V denotes the matrix of dimension 6 X 6 whose columns are the eigen­

vectors v(2), v(4), v(6)) v(l), v(3), ~(5). The numbering of the six normal 
20 modes coincides with the scheme used in ref. ), where for shapes close to 

a sphere the nth normal mode consists primaril~ of a Legendre-polynomial P
n 

distortion. Thus for a symmetrical saddle-point shape the even modes 

represent symmetrical oscillations and the odd modes asymmetrical oscilla­

tions. For symmetrical shapes that are far removed from a sphere (i.e. 

dumbbell-like saddle-point shapes for small values of x) each mode consists 

of a mixture of many (either even or odd) Legendre-polynomial distortions. 

For such saddle-point shapes descriptive names have beenappliedl )to the 

five lowest normal modes, and these are given in table 2, where we also 
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Table 2 

Characteristics of normal modes of oscillation about 
symmetrical saddle-point shapes 

Mode Symmetry Stability 

Center-of-mass shift Asymmetrical Neutral 

Fission Symmetrical Unstable 

Mass asymmetry Asymmetrical 
{Stable for x > xBG 

Unstable for x < x
BG 

Stretching Symmetrical Stable 

Distortion asymmetry Asymmetrical Stable 

Symmetrical Stable 
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indicate the symmetry and stability of the modes. 
20 

Reference ) contains a 

description of the normal modes) which we will not repeat. 

Since we are concerned primarily with oscillations about symmetrical 

saddle-point shapes) for which three of the elements of each eigenvector are 

zero) we number the nonzero elements of both the symmetrical and asymmetri­

cal eigenvectors by 1) 2) 3. Thus for symmetrical saddle-point shapes the 

normal-coordinate transformation is 

a -2 

(2) 
1 

o 

o 

o 

o 

o 

o 

o o o 

o o o 

o o o 

o 

o 

o 

The normalization of the eigenvectors is chosen so that 

1 n 1,2) ... ,6 

A A 

The stiffness matrix K and inertia matrix M are each separately diagonalized 

by the normal-coordinate transformation, and the orthogonality relations 

(m)' A (n) 
v K v K 5 

n mn 

5 
mn 

define the stiffness constants K and inertia constants M corresponding to 
n (.)' n 

the nth normal mode. 

vect~r v(m)) and 

The quantity v m is the transpose of the column 

• 
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,..-

r 
m = n 

5 
mn 

0, m f n 

In terms of the normal coordinates and momenta the Hamiltonian in the 

neighborhood of the saddle point contains no cross terms coupling different 

coordinates and momenta, and is given by 

6 
r + ~ L 

i=l 

where the conjugate momenta are 

i 

p/ ) 
+ -­M. 

l 

1,2, ... ,6 

(11) 

Because the values of K and M depend upon the choice of eigenvector nor-
n n 

malization, they have only relative meaning, whereas their quotient gives 

the (normalization-independent) frequency (squared) for the nth mode, i.e. 

We present in figs. 7 and 8 the results of our calculation of the 

frequencies of the oscillations about the symmetrical saddle-point shapes. 

Figure 7 gives 'the squares of the frequencies in natural liquid-drop units, 

and fig. 8 the magnitudes of the frequencies in MeV for nuclei along the 
t 

line of beta stability. In each figure we compare our present results with 

previous results obtained by expanding the drop's radius vector in a series 

t 
When conventional experimental units are used our complete results cannot 

be displayed easily, and in such cases we specialize to nuclei along the line 

of beta stability. For this purpose we use Green's approximation to the line 

of beta stability46). The use of conventional units also requires speciali­

zation to a particular set of constants for the semi-empirical mass formula, 

and we use the second set of Myers and SWiatecki28 ). 
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2 
Fig. 7. Squares of frequencies in natural liquid-drop units of nO = 

E~0)/(MoR02) as functions of the fissility parameter x. The heavy 
solid curves give the present results calculated on the basis ·of the 
Werner-Wheeler kinetic-energy approximation and the three-quadratic­
surface parameterization. The results of ref. 20) are shown by thin 
solid and short-dashed lines, the latter indicating that as x 
decreases below 0.7 the numerical accuracy of the results becomes 
progressively more questionable. The two-spheroid estimatesl ) are 
shown by thin dot-dashed lines. The solid points give the locations 
of the known zeros of the n = 3 curve. • 
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Fig. 8. Magnitudes of the frequencies in MeV for nuclei along the line 
of beta stability as functions of the fissility parameter x. The 
heavy solid curves give the present results calculated on the basis 
of the Werner-Wheeler kinetic-energy approximation and the three­
quadratic-surface parameterization. The results of ref. 20) are 
shown by thin solid and short-dashed lines, the latter indicating 
that as x decreases below 0.7 the numerical accuracy of the results 1 
becomes progressively more questionable. The two-spheroid estimates) 
are shown by thin dot-dashed lines. 
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of 18 Legendre polynomials 20) and also estimates on the basis of the two­

spheroid approximation
l

). It is seen that the frequencies of the four 

lowest modes are reproduced well by the use of the three-quadratic-surface 

parameterization and the Werner-Wheeler method for the kinetic energy, 

whereas the n = 5 and n = 6 modes are not so well reproduced. This is 

because for the higher modes the hydrodynamical flow corresponding to the 

Werner-Wheeler approximation has a fairly large curl, which means the 

inertia constants are somewhat larger than those corresponding to irrota­

tional flow, and consequently the frequencies are somewhat smaller. This 

deficiency of the Werner-Wheeler approximation is not so serious here 

because, as we will see later, the properties of mass and energy distribu­

tions are almost independent of the n = 5 and n = 6 modes. 

Because the normal-coordinate stiffness and inertia constants and 

eigenvectors have meaning only with respect to a given parameterization of 

the nuclear shape, we present our results for these quantities in appendix 

6.5 rather than here. 

3.2. TRANSITION -STATE METHOD 

The above discussion of the normal modes at the sad~le point leads us 

naturally to the concept of a transition state, which was first intro­

duced47 ) in connection with the calculation of molecular reaction rates. 

It has since been used extensively for this purpose [see for example 

refs. 48-52)] and in the calculation of nuclear reaction rates, including 

the rate at which compound nuclei undergo fission53 ,54). However, we are 

interested here in using the transition-state method for a somewhat differ­

ent purpose-to determine the probahility that the nucleus is in a given 
. 1 20 state of motion when it passes through the vicinity of its saddle pOlnt' ). 

The transition-state method consists of dividing a system of N degrees 

of freedom into two systems at its saddle point: a system having a single 

degree of freedom that represents unstable motion and a second system asso­

ciated with the remaining N - 1 degrees of freedom. The total wave function 

for the original system is then the product of the wave function for the 

first system in one degree of freedom and the wave function for the second 

system in the remaining N - 1 degrees of freedom. 

i 

, 
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The standard assumption of the transition-state method is that sta­

tistical equilibrium is established by the time the system arrives in the 

vicinity of its saddle pOint47 ,48). A compound nucleus undergoing fission 

typically executes about 10
6 

oscillations between formation and reaching 

the saddle point55 ). This provides ample opportunity for many interchanges 

of energy, and unless the Hamiltonian has some unexpected property (e.g. a 

potential-energy "funnel") immediately preceding the saddle point that would 

prevent the system from arriving there randomly, the assaults at the barrier 

should be random enough to assure statistical equilibrium at the saddle 

point. By making this standard assumption we can calculate the probability 

that each of the N - 1 normal coordinates of the second system are displaced 

from their equilibrium values by given amounts and that their conjugate 

momenta have specified values when the nucleus passes through the vicinity 

of its saddle point. These probability distributions can then be used in 

the sense of initial conditions for the dynamical calculations that we 

describe in the next subsection. 

In classical statistical mechanics the probability N that the system 

possesses a given set of coordinates and momenta as it passes through the 

vicinity of the saddle point is given by the usual Boltzman factor 

N C exp( - J:i / e ) 

where J:i .isthe Hamilt(;mian, e .is the nuclear temperature at the saddle point 

(measured in energy units), and C is a normalization constant. In the 

harmonic approximation, in which eq. (11) is used for J:i, the probability 

that a given normal coordinate or its conjugate momentum has a specified 

value is then a Gaussian distribution in that coordinate or momentum. For 

high nuclear temperatures it is valid to use classical statistical mechanics 

for determining the probability distributions for the initial conditions, 

but for low temperatures the classical result is incorrect. As the tempera­

ture approaches zero, the widths of the classical distributions approach 

zero,whereas we know from the Heizenberg uncertainty principle that simul­

taneous localization of the system in both a position coordinate and in its 

conjugate momentum can be achieved only within limits. The widths of the 

distributions are, in general, nonzero as a result of quantal zero-point 

vibrations. Because quantal effects on the probability distributions can 
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be important at typical nuclear temperatures) and because we are able to 

take them into account) we calculate the probability distributions for the 

initial states of motion according to quantal rather than classicalstatis­

tical mechanics. 

It should be emphasized) however) that we use classical mechanics to 

describe the division of the drop beyond the vicinity of the saddle point. 

The use of classical mechanics for discussing the division of the nucleus 

and the separation of the fragments can be partially justified on the grounds 

that a short distance from the saddle point the de Broglie wavelength for 

motion in the fission direction becomes relatively small. The use of a 

mixture of quantal and classical methods cannot be so easily justified) and 
. 1 

although it is the same as that used In ref. ), a formal justification 

would be desirable. 

We do not need to consider probability distributions in all the normal 

coordinates and momenta. Since the observable quantities of interest are 

calculated in the center-of-mass system) we may disregard the distributions 

for the n = 1 center-of-mass-shift normal mode. Furthermore) for our pur­

poses here we need not consider probability distributions for the n = 2 

fission mode because to first order the final mass and energy distributions 

are independent of the initial values of the fission coordinate Q
2 

and the 

fission momentum P2 (see subsects. 3.3 and 3.4). 

The quantal probabilities for the remaining normal modes at the saddle 

point (n = 3, 4, 5) 6) are Gaussian distributions in the normal coordinates 
1 20 56 57 . and momenta) ) J )) VlZ. 

N(Q ) 
n 

2 _l 2 2 
= (2ncr ) 2 exp[-Q /(2cr )] n n n (12a) 

(12b) 

2 ,2 
where the temperature-dependent variances cr and cr are given explicitly by 

n n 

cr 
n 

2 1 mn 
- -- coth 
2 K 

n e « fiW 
n 

f 
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(13b ) 

The normal·-mode frequencies ill , stiffnesses K , and inertias M have all 
n n n 

been given as functions of x in the preceding subsection, and the nuclear 

temperature e (measured in energy units) is calculated in terms of the 

known internal excitation energy at the saddle point. The temperature 

dependence of the variances can be seen from the graph of coth[nw/(2e)] 

versus 2e/(nw) in fig. 9, which is reproduced from ref. 1). It is noted 

that for high temperatures the quantal expressions (12) and (13) reduce to 

the classical results (given by the usual Boltzman factor), whereas in the 

low-temperature limit they reduce to the distributions for the quantal zero­

point motions of harmonic oscillators. 

The desired probability distribution is the joint probability for 

simultaneously observing the system with a given set of initial coordinates 

and momenta. For a general Hamiltonian (of one degree of freedom) the joint 

probabili ty is not given quantally by the product of the individual prob­

abilities for the coordinate and momentum (because of the noncommutativity 

of the coordinate and its conjugate momentum). However,for the special 

case of a harmonic oscillator the product of the coordinate and momentum 

probabilities does give the correct joint probabili ti6 , 58) . Because of 

this and because the normal modes are independent of one another, the 

desired probability for observing the system with a given set of initial 

coordinates and momenta~is given by.the product of the individual prob­

abilities (12) for each coordinate and momentum. 
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Fig. 9. The function coth[nw/(2e)] versus 2e/(nm). The dashed line 
gives the function 1 s asymptote. • 
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3.3 DYNAMICAL CALCULATIONS 

Now that we have determined the probability distributions for the 

initial conditions near the saddle point, the next step is to perform the 

dynamical calculations which tell us how the nucleus divides for a given 

set of initial conditions. This we do by solving Hamilton 1 s equations of 

motion, which follow immediately from eq. (9): 

dV(q) 
dq. 

l 

6 
L 
j=l 

6 
- ~ L 

j=l 

6 
L 

k=l 

i 1,2, ... ,6 

d -1 
M (q)jk 
~ PJ.Pk uq. 

l 

i 1,2, ... ,6 

This system of 12 first-order differential equations is integrated 

numerically by use of a fourth-order Adams-Moulton predictor-corrector 

method, with the starting procedure based on a modified fourth-order Runge­

Kutta method59 ). . The matrix M-l ( q") is obtained by use of Wilkinson 1 s 
60 

matrix-inversion method ) from the inertia matrix M(q), whose calculation 

is described in appendix 6.4.2. The partial derivatives dM-l(q).k/dq. 
J l 

are evaluated numerically, whereas the derivatives dV(q)/dq. are calculated 
l 

according to the formulas of appendices 6.3.1 and 6.3.2. 

The equations of motion have been solved for hundreds of sets of 

initial conditions. As examples, we present in figs. 10 and 11 certain 

aspects of the solutions corresponding to starting from the saddle point 

with 1 MeV of kinetic energy in the fission mode and 1 MeV in the mass­

asymmetry mode, for three values of the fissility parameter x (0.62, 0.70 

and 0.78). Figure 10, which.is reproduced from ref. 61), illustrates the 

drops' shapes during their descents from saddle to SCission, and fig. 11 

gives the corresponding time dependences of three of the more important 

geometrical properties associated with the drops. The nuclei {taken along 

the line of beta stability) that correspond approximately to the chosen 

values of x are indicated in parentheses in fig. 10. These nuclei, which 

differ from one another by ten protons, span the region from medium nuclei, 

where symmetrical mass divisions are observed experimentally, to heavy 

nuclei, where asymmetrical mass divisions are observed. 
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Fig. 10. Illustrations of the shape of the drop during the descent from 
saddle to scission. The initial conditions correspond to starting 
from the saddle point with 1 MeV of kinetic energy in the fission 
mode and 1 MeV in the mass-asymmetry mode. The scission shapes are 
drawn with dashed lines. (The sign of the initial mass-asymmetrical 
motion is taken to be negative.) 
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Fig. 11. Examples of the time dependence of the mlnlmum neck radius 
(top), the distance between the centers of mass of the nascent 
fragments (middle), and the mass of the right-hand nascent fragment 
(bottom). The initial conditions are the same as those in fig. 10. 
The dividing point between the two nascent fragments is taken to be 
the position of the minimum neck radius. (For shapes close to a 
cylinder this is not a particularly useful definition. For such 
shapes small changes in the asymmetrical coordinates lead to large 
changes in the relative masses of the nascent fragments, as can be 
seen from the initial rapid increase in A2/A for x = 0.78.) 
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Figures 10 and 11 illustrate three important results that have emerged 

f~o~ a consideration of all the solutions obtained: (1) For a constant 

amount of energy in the fission mode the time from saddle to scission in­

creases substantially with increasing x. This is partly due to the increase 

in distance between saddle and scission as x increases, but is also asso­

ciated with the following point. (2) For small values of x the motion in 

the fission mode consists primarily of a constriction of the drop's neck, 

whereas for large x the drop also elongates substantially during the descent. 

Thus a larger amount of mass is displaced in the fission mode for large 

values of x than for small x. For small values of x the centers of mass of 

the fragments are moving slowly at scission, whereas for large x they are 

moving rapidly. (3) The mass-asymmetrical component of motion is not 

amplified into a large mass asymmetry during the descent as proposed by 

Hil13,4) and by Hill and Wheeler5 ), but instead represents stable oscilla-
t 

tions about a symmetrical division. This means that, within the limita-

tions of the Werner-Wheeler approximation for the kinetic energy and a 

parameterization that permits only binary division, the most probable mass 

division is a split into two equal parts. 

We next consider the most probable energies associated with the divi­

sion process, which are obtained by solving the equations of motion for 

initial conditions corresponding to starting from rest at the saddle point. 

Since the saddle point is a position of (unstable) equilibrium, a classical 

system with zero kinetic energy would remain there for an infinite length ; 

t 
As the system approaches the scission point (i.e. as the neck radius 

approaches zero) it becomes more difficult to transfer mass from one 

nascent fragment to the other, and the mass ratio approaches a constant 

value (appropriate to the particular set of initial conditions). This can 

be seen in the bottom portion of fig. 11. , 
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t 
of time. However, even though an infinite time is required for the drop 

to divide, there exists a well-defined limiting orbit corresponding to 

starting from rest at the saddle point. The normal-coordinate transforma­

tion tells us both the initial direction of motion from the saddle point 

(i.e. the fission direction) and the fission-mode potential and kinetic 

energies [in the harmonic approximationj see eq. (11)]. Thus, even though 

an infinite time is involved, we can determine analytically the initial 

motion from the saddle point, and begin the numerical integrations where we 

stop the analytical solution. 

The calculated most probable energies are shown in fig. 12 in natural 

units of E(O), and in fig. 13 in MeV for nuclei along the line of beta 
s 

stability. The figures show how the available energy, which consists of 

the sum of the energy release Erel and the fission-barrier height B
f

, is 

divided among the fragments at infinity. The division is into kinetic 
00 00 

energy of translation Et and vibrational energy E 'b' The transla-rans Vl 
tional kinetic energy at infinity is shown further divided into the energy 

E
scis Epost scis 
trans acquired prior to scission and the energy, trans acquired after 

scission. The pre-scission translational kinetic energy is seen to increase 

rapidly as x increases above about 0.7. Similarly, the vibrational energy 

is shown further divided into the energy scis . . " 
E 'b k' acqulred prlor to SClSSlon Vl In . post scis , 

and the energyE 'b acqulred after scission. , Vl , 
The sum of EtSClS and 

rans 
E

SClS SClS 
vib kin' which ,is denoted by Ekin ' represents the system's total kinetic 

energy at sCission, and hence gives the most probable decrease in potential 

energy in going from the saddle point to scission. 

In constructing figs. 12 and 13 an approximation is made in the deter­

mination of the division of the available energy after scission into trans­

lational,kinetic energy and vibrational energy. After scission the frag-

t 19 
Kelson ) tabulates for various values of x the time from saddle to 

scission for initial conditions corresponding to starting from rest at the 

saddle point. Since the time should be infinite these numbers arid the' asso­

ciated discussion are meaningless. Presumably the explanation is a rela­

tively large error either in the determination of the saddle point or in the 

integration of the equations of motion (or possibly in both). 
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ments oscillate fairly rapidly about their centers of mass as they; .separate. 

The fragments experience a greater acceleration during the period of time 

when they are prolate than when they are oblate. Because the fairly rapid 

oscillations of the fragments tend to cancel the opposing effects of the 

prolate and oblate shapes, the acquired translational kinetic energy is 

approximately what it would have been had the fragments remained spherical 

as they separated. We therefore approximate the translational kinetic 
post scis . 

energy E
t 

acqulred after scission by the interaction energy of two 
rans 

spheres whose centers coincide with the centers of charge of the fragments 

at scission. The results of refs. 1,62) [see in particular fig. 18 of 
1 62 

ref. ) or fig. 3 of ref. 1] suggest that this approximation should be 

excellent for smaller values of x, but that it may underestimate somewhat 

the true post-scission translational kinetic energy for x ~ 0.7. The reason 

for using an approximation for the post-scission kinetic energy is that the 

post-scission dynamical motion affects only slightly the final kinetic 

energy at infinity and does not affect the mass division at all (since 

classically it is impossible to transfer mass after scission), whereas its 

exact calculation would require an effort comparable to that associated 

with the pre-scission motion. 

We may note that had we approximated the kinetic energy by the inter­

action energy of the two fragments at scission this would have overestimated 

the post-scission translational kinetic energy (for nonviscous irrotational 

flow), since a portion of the interaction energy is converted into vibra­

tional energy of the oscillating fragments as ,they separatel ,62). On the 

other hand, for the limiting case of fragments with infinite viscosities 

and/or infinite vibrational inertias the interaction energy at scission 

represents the exact post-scission translational kinetic energy. However, 

the scission configuration for this case differs from the scission configu­

ration corresponding to nonviscous irrotational hydrodynamical flow, par­

ticularly for large values of x. 

Second in importance to the most probable mass division and most prob­

able energies are the widths of the mass and energy distributions, and we 

turn now to the determination of these widths. For this purpose we work to 

first order in the effects of the displacements of the normal coordinates 

at the saddle from their equilibrium values and in the deviations from zero 

of the normal momenta at the saddle point. This simplifies the treatment 

, 
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considerably, because to first order the dynamical motion from saddle to 

scission can be discussed in terms of small deviations from the known most 

probable solution. [See for example ref. 63), which discusses dynamical 

orbits in the neighborhood of a known orbit for particles in a circular 

magnetic accelerator.] 

For our purposes we are interested primarily in the first-order effects 

of the initial conditions on the masses and energies at infinity rather 

than on the specific path taken from saddle to infinity. We therefore expand 

the general transformation equations that relate the final masses and 

energies at infinity to the initial conditions near the saddle point, 

retaining only linear terms. To avoid writing subscripts and superscripts, 

for the remainder of our discussion we denote the total translational 

kinetic energy at infinity by the symbol E, and the total vibrational energy 

at infinity by the symbol X. As usual Al denotes the mass number of the 

left-hand fragment. The general transformation equations and the first­

order expansions are then written as 

Al Al (Q2' P2; Q3' P 3' Q4' P4 ' Q5' P
5

, Q6'P6 ) 

dAl dA dAl dA 
1 1 P + dpl P

5 
+ <9(2) (14a) = 2A + dQ""" Q3 + ~ 3 + dQ,"::"" Q5 

3 3 5 5 

(14b) 

(14c) 

terms that are quadratic and higher in the coordinates and momenta are denoted 

by ~(2). The general transformation equations are strictly independent of 

the center-of-mass-shift normal coordinate Q
l 

and momentum P
l

, and we have 
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omitted these in the general argument lists. The final mass and energy 

distributions are to first order independent of the initial values of the 

fission coordinate QZ and momentum P
Z

' and the transformation equations are 

consequently not expanded with respect to these two quantities. Instead, 

the expansions refer to constant values of QZ and P
Z

' which are assumed to 

be small. In practice a value of zero is used for QZ and a small (positive) 

but nonzero value is used for PZ' Since the mass number Al is an asymmetri­

cal quantity it depends to first order only upon the n = 3 and 5 asymmetri­

cal normal coordinates and momenta; similarly, the energies E and X depend 

to first order only upon the n = 4 and 6 symmetrical normal coordinates and 

momenta. The total energy E + X is to first order constant; in particular, 

It therefore follows that the partial derivatives of eq. (14c) are related 

to those of eq. (14b) by 

dX dE 
~= - do 

l 
Q

i 
i 4, 6 (16a) 

dX dE 
@. - @. i 4, 6 

l l 

The various first partial derivatives appearing in eqs. {14) are 

evaluated at the saddle point with zero momentum in each mode except the 

fission mode. In practice each derivative is determined numerically from 

the solutions of the equations of motion for initial conditions in which 

all the normal coordinates and momenta are zero except the desired coordi­

nate or momentum (and the fission momentum). For example, we calculate 
dE 
~ from the result 

4 
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where Q is zero, P is a small (positive) quantity, and where 6Q4 is deter-
2 2 

mined optimally so that the number of significant figures remaining in the 

numerator after the subtractions are performed is consistent with the trun-

cation error. 

Each of the partial derivatives is a very sensitive function of the 

coordinate Q
2 

and momentum P
2 

in the fission direction. In particular, as 

both Q
2 

and P
2 

approach zero simultaneously each partial derivative oscil­

lates about zero with a period that approaches zero. However, we will see 

in the next subsection that these derivatives enter as squares in the first­

order expressions for the widths of the distributions. The particular com­

binations of squares are to first order independent of Q
2 

and P
2

, as are 

also the energies EO and XO' The energies EO and Xo have been given as 

functions of x in figs. 12 and 13 (designated there byE
OO

t 
and E

oo
•
b

, 
rans Vl 

respectively), and the appropriate combinations of the partial derivatives 

will be presented in the next subsection. 

3.4. FISSION-FRAGMENT MASS AND ENERGY PROBABILITY DISTRIBUTIONS 

By combining the transformation equations that relate the masses and 

energies at infinity to the initial conditions near the saddle point with 

the probability distributions for the initial conditions near the saddle 

point, we arrive at probability distributions for the masses and energies at 

infinity. Since to first order the transformation equations are linear and 

the probability distributions for the initial conditions are Gaussian in 

shape, the resulting distributions for the masses and energies at infinity 

are also Gaussian in shape, with widths that are related in a simple way 

to the widths of the initial distributions and the coefficients of the 

transformation equations. 

The probability distribution N(A
l

) in the mass of a fragment at infinity 

is obtained from the fundamental equation expressing the transformation of 
t 

probabilities 

t 
We use the same symbol N to denote each of several probability distribu-

tions; the argument of N indicates which explicit function is being referred 

to. 
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We omit writing the integrals over the initial probability distributions 

for the symmetrical coordinates and momenta, sinceA
l 

is independent of these 

quantities and the integrals are therefore unity. Into this equation we 

substitute the expression for one of the initial coordinates or momenta, say 

which is obtained from eq. (14a). We then have 

with the initial probability distributions N(Q ) and N(P ) given by eqs. 
n n 

(12). A straightforward three-fold integration of this equation (between 

the limits -00 and +00) gives the result 

2 where the variance a
A 

is given explicitly by 
1 

Inserting into this expression eqs. (13) for the variances of the initial 

distributions yields 

Ii 
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+ ~ ~5 [( ::l r + K5 M5 (:> ) 2]COthl:5) 
555 

2 
We now define the quantities 0A n (0) by 

1 

n 3, 5 

in terms of which the variance of the mass distribution at a given nuclear 

temperature e at the saddle point can be written as 

(18a) 

It is seen that the quantity 0A 2(0) represents physically the contribution 
ln 

of the nth normal mode to the variance of the mass distribution at zero 

nuclear temperature, The quantities 0A 2(0) are to first order independent 
ln 

of the fission coordinate ~ and momentum PZ' although, 

previous subsection, the individual partial derivatives 

~s discuQsed in 
dAl dAl 
d~ and dP n are 

the 

sensitive functions of ~ and P2 • 

Analogous derivations can be given for the total translational kinetic­

energy distribution N(E) and the vibrational-energy distribution N(X). For 

example, from eqs. (14b), (12) and (13) we find that 

with 



-52- UCRL-17958 

2 (~4) 2 (
TIw6) GE4 (0) coth 28 + GE6 (0) coth 28 (18b) 

and 

n 4, 6 

Because of the equality of the partial derivatives expressed by eqs. (16), 

it follows that to first order the vibrational-energy distribution 

has the same variance 

(18c) 

as the translational kinetic-energy distribution. 

We present in figs. 14 and 15 graphs of the remaining quantities that 

enter the calculated mass and energy distributions. (The most probable 

energies EO and Xo have already been presented in figs. 12 and 13, labeled 

there by E
OO

t 
and E

oo
•
b

, respectively.) Figure 14 gives the zero-
rans Vl 2 

temperature contributions G
A 

(0) of the n = 3 and 5 modes to the variance 
in 

of the mass distribution. Since mass-asymmetrical oscillations are unstable 

for x ~ xBG ' the n = 3 contribution is infinite for this range of x. As 

x increases above x
BG 

the n = 3 contribution at first decreases, and 

the minimum in the curve merely reflects the tendency of the mass distri­

bution to broaden with increasing x for large values of x. 

Results for the quantities GA n2(0) have been obtained only for x ~ 0.78. 
1 

The reason for this is the following: For x > 0.78 the middle surface is 

a spheroid at the saddle point, and consequently during the descent it 

undergoes a transition from a spheroid to a hyperboloid of revolution. 

Because of a lack of foresight a numerical difficulty arises at this transi­

tion point when the shape is asymmetrical (sYmmetrical shapes are treated 

properly). The difficulty arises because for asymmetrical shapes the posi-

JI 
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tion t3 of the center of the middle quadratic surface and its transverse 

semiaxis squared a
3

2
, as well as the first partial derivatives of t3 and 

a
3

2 with respect to the generalized coordinates approach infinity at this 

transition point. The difficulty is purely numerical in nature and could 

be eliminated by not using t3 and a
3

2 
(and their derivatives) as auxiliary 

quantities in the calculation of the final quantities of interest (see 

appendices 6.1 and 6.2). The effort that would be required to remove the 

difficulty has not been made in view of two circumstances. First, for 

large values of x division into more than two bodies releases more energy 
64 than division into two ), but any tendency during the dynamical descent to 

form more than two bodies is not allowed by the restriction of our parame­

terization to binary division. It is therefore doubtful that for large 

values of x our parameterization adequately describes all the relevant 

degrees of freedom. Second, because the distance from saddle to scission 

increases with increasing x the accuracy of the numerical solutions of the 

equations of motion decreases as x increases, and the values that we would 

obtain for aA n
2(0) for x> 0.78 would be of questionable numerical accuracy. 

The zero~temperature contributions a
En

2(0) of the n = 4 and 6 modes 

to the variances of the distributions in total translational kinet'ic energy 

and vibrational energy are shown in fig. 15. It is seen that these energy 

distributions broaden with increasing x. Although for symmetrical shapes 

no difficulty arises at the transition of the middle surface from a spheroid 

to a hyperboloid of revolution, at about this same point the numerical 

accuracy of the solutions of the equations of motion begins to deteriorate 

as x increases, because of the increased distance from saddle to scission. 

This is indicated in the figure by the use of short-dashed lines for 

x> 0.78. 

It is seen from .fig. 14 that the primary contribution to the variance 

of the mass distribution is from the n = 3 mass-asymmetry mode, and from 

fig. 15 that the primary contribution to the variances of the energy dis­

tributions is from the n 4 stretching mode. The relative smallness of 

the contributions from the n ~ 5 and 6 modes suggests that the still higher 

modes (which are disregarded in our parameterization) would contribute 

negligible amounts. It also indicates that the discrepancy between our 
2 2 

results and the exact results for w5 and w6 (cf. figs. 7 and 8) does not 

seriously affect the widths of the mass and energy distributions. 
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Fig. 14. The zero-temperature contributions (JA 2(0) of the n = 3 and 5 
In 

modes to the variance of the mass distribution, as functions of the 
fissilityparameter x. The dashed line marks the critical Businaro­
Gallone point, below which the n = 3 contribution is infinite. 



" 

-55- UCRL-17958 

0.25 
I 
I 
I 
I 
I 
I 
I 

0.20 
I 
I 
I 

~ I - I 0 I - (/) 

W I 
0 I 

~ I 
I 

~ 0.15 I 
I 

l+- I 
0 I 

I 
II) I - I c:: I 
:::J I ............ 0.10 I 

I 
I 
I - I 0 ........ I 

t\I I c: n=4 I IJJ 

b 0.05 

x 

XBL678-3841 

Fig. 15. The zero-temperature contributions crEn
2(0) of the n = 4 and 6 

modes to the variances of the distributions in total translational 
kinetic energy and vibrational energy, as functions of, the fissility 
parameter x. As x increases above 0.78 the numerical accuracy of 
these results becomes progressively more questionable, and this is 
indicated by the use of dashed lines. 



-56- UCRL-17958 

The results of figs. 14 and 15 are presented in natural liquid-drop 

units so that the variances of the mass and energy distributions can be 

petermined readily for a given compound nucleus at a given nuclear tempera­

·ture e at the saddle point. In addition to figs. 14 and 15 the determina­

tion involves in general the use of figs. 7 (or 8) and 9, as well as eqs. 

(18), (R), (2) and (3). 

For nuclei along the line of beta stability, we present in fig. 16 

the variances of the mass distribution in (amu)2, and in fig. 17 the vari­

ances of the energy distributions in (MeV)2, for several values of the 

nuclear temperature e at the saddle point. It is observed that, apart from 

values of e close to zero, the general trend is that the variances of the 

mass distribution decrease with increasing x. The general trend of the 

variances of the energy distributions is an increase with increasing x, 

although it is seen that for large values of e the variances become rela­

tively flat and even experience a local minimum at x ~ 0.7. This behaVior, 

as well as the structure shown in fig. 16 for e f 0, arises from the depend­

ence on x of the normal-mode frequencies (see again fig. 8). For conven­

ience, we also show the full widths at half maximum of the mass distribution 

in fig. 18, and of the energy distributions in fig. 19, again for nuclei 

along the line of beta stability and for several values of e. (For a 

Gaussian distribution the full width at half maximum is equal to the square 

root of the variance multiplied by 2.3548.) 
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4. Comnarisons of Theoretical and Exnerimental Results 
I"V"V ~1'V"V~"VI"'vI'V~~ 

We are now ready to compare our calculated distributions in fission­

fragment masses and energies with experimental results. The calculated 

distributions are for the division of idealized liquid drops, and the pur­

pose of the comparisons is to tell us whether or not the properties of the 

qivision of real nuclei are similar to those of idealized drops whose 

charge, surface tension, mass and size are equal to those of nuclei. The 

comparisons are made for nuclei throughout the periodic table and as func­

tions of the internal nuclear excitation energy of the compound nuclei 

undergoing fission, Thus from the comparisons we will learn for what range 

of·. nuclei and at what excitation energies the liquid-drop theory of fission 

applies to real nuclei. 

It should be emphasized that the point of the comparisons is not to 

determine the values of any parameters by arbitrarily adjusting the data to 

the theory. The values of all constants that enter the theoretical distri­

butions are taken from previous analyses of experimental results that do 

not include fission [with one exception: fission-barrier heights were used 

in the analysis of ref. 28) in the determination of the ratio of the surface­

energy constant to the Coulomb-energy constant]. Thus the calculated and 

experimental distributions are not normalized to each other in any way. 

In converting from natural liquid-drop units to conventional units we 

use the second set of values of Myers and SWiatecki
28

) for the constants of 

the semi-empirical mass formula.· The ,conversion from excitation energy to 

nuclear temperature at the saddle point is made according to the semi­

empirical nuclear equation of state65 ) 

2 
aEl - El 

where the level-density parameter a is taken equal to A/e8 MeV) [refs. 65,66)]. 

The determination of El by use of this equation involves an appreciable 

uncertainty because, first of all, the value of the level-density parameter 

at the saddle point may be different than the value at the equilibrium 

deformation, and, second, the level-density parameter for a given nucleus 

(at its equilibrium deformation) can differ considerably from the average 

result that we use. 
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Fig. 16. Variances of the mass distribution for nuclei along the line 
of beta stability, as functions of the fissility parameter x. The 
curves are for various values of the nuclear temperature e at the 
saddle point. The dashed line marks the critical Businaro-Gallone 
point, below which the variances are infinite. 
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Fig. 17. Variances of the distributions in total translational kinetic 
energy and vibrational energy for nuclei along the line of beta 
stability, as functions of the fissili ty' parameter x. The curves 
are for various values of the nuclear temperature e at the saddle 
point. As x increases above 0.78 the numerical accuracy of these 
results becomes progressively more questionable, and this is 
indicated by the use of dashed lines. 



-60- UCRL-17958 

40 

-::J 

E 
c ....... 

30 

<{ 2.5 -
~ 2.0 
I 

20 1.5 
~ 
LL 1.0 ....... 

0.5 
0 

10 

X=XSG 

0.5 1.0 

x 
XBL678-3961 

Fig. 18. Full widths at half maximum of the mass distribution for 
nuclei along the line of beta stability, as functions of the fis­
sility parameter x. The curves are for various values of the 
nuclear temperature e at the saddle point. The dashed line marks 
the critical Businaro-Gallone point, below which the widths are 
infinite. 

• 



• 

'" -> 
Q) 

~ -
w -
~ 
I 
~ 
LL -

40 

30 

20 

10 

-61-

0.5 

X 

UCRL-17958 

, , 
, ,t 
,It 
Ilf 
III 
I I f 
, 'f 
1/. 

I I t 
I 't I , b 

I , h 
I I 1/ 

I I /1 
I I ,I 

" I /1 I l 
/1/ 

I l / l' /I 
/' 

" /1 
I 

1.0 

XBL678-3960 
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the line of beta stability, as functions of the fissility parameter 
x. The curves are for various values of the nuclear temperature e 
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accuracy of these results becomes progressively more questionable, 
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The excitation energy ESP at the saddle point equals the excitation 
ex 

energy at the ground state minus the height of the fission barrier. The 

height of the fission barrier can in turn be expressed approximately as the 

height of the liquid-drop portion of the barrier [which is calculated here 

and in refs. 2,33)], plus the shell correction at the saddle point, minus 
. 28 30 

the shell correction at the ground state ' ). Values for the shell cor-

rection at the ground state are given in ref. 30
), and the shell correction 

at the saddle point, which is believed to be smal130 ), is neglected here. 

Our procedure for making the comparisons is to discuss first the most 

probable values for the masses and energies, and second the widths of the 

distributions in these quantities. 

Within the limitations of the Werner-Wheeler approximation for the 

kinetic energy and a parameterization that permits only binary diviSion, we 

have seen that the calculated most probable mass division for idealized non­

viscous irrotational liquid drops is into two equal'parts, for all excitation 

energies and for all values of the fissility parameter x > x
BG 

= 0.396. 

(Strictly speaking, this was demonstrated only for x ~ 0.78, and the situa­

tion could change for larger values of x.) 

Experimentally, the most probable mass division is into two equal parts 

for the fission of nuclei lighter than about radium at all excitation 
t 

energies and for the fission of nuclei heavier than radium at high excita-

tion energies, but is into two unequal parts for the fission of nuclei 

heavier than radium at low excitation energies. The experimental mass dis­

tribution for radium itself is peaked both at divisions corresponding to 

equal parts and unequal partsj the frequency of the unequal divisions 

decreases as the excitation energy increases. [See for example refs. 67,68) 
for illustrations of the dependence of experimental mass distributions upon 

compound nuclei and excitation energy.] Thus the experimental most probable 

mass division of heavy nuclei at low excitation energies does not correspond 

to that of an idealized nonviscous irrotational liquid drop, whereas the 

t 
Because the difficulty of observing the fission of medium nuclei increases 

with decreasing excitation energy, most experimental mass distributions for 

medium nuclei are for compound nuclei having at least a small amount of 

excitation energy at the saddle point. 
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most probable mass divisions for the other situations do correspond to thos~ 

of idealized drops. 

The next comparison that we make concerns the most prGbable transla­

tional kinetic energies of the fragments and is presented in fig. 20) which 

is an updated version of fig. 2 of ref. 61). The dot-dashed curve gives the 

calculated translational kinetic energy acquired by the fragments prior 

to scission, the short-dashed curve that acquired after scission) and the 

solid curve the total at infinity. The experimental total translational 

kinetic energies at infinity are from a variety of sources69 -75 ) but include 

only cases in which the mass distributions are symmetrical. The kinetic 

energies were obtained by the use of solid-state detectors and have been 

corrected (in the original works) for the effects of neutron emission. The 

open symbols represent most probable values) and the solid symbols average 

values. The calculations (with no adjustable parameters) are seen to repro­

duce both the correct order of magnitude and the correct trend with x of the 

total kinetic energies, but a systematic difference of about 5% is evident. 

Attempts have been made to deduce the most probable translational 

kinetic energy acquired by the fragments prior to scission from experimental 

data on long-range alpha particles emitted during fission76 )77). Such 

estimates are obtained by comparing the experimental angular distributions 

and kinetic-energy distributions of the long-range alpha particles with 

distributions calculated on the basis of simple models76 )77). Since the 

calculated distributions depend sensitively upon the assumptions made 

regarding the initial conditions for the alpha particle) the conclusions 

are rather uncertain. Also) the experimental pre-scission kinetic energies 

obtained in this way refer to the most probable (asymmetrical) mass division, 

whereas our calculated energies are for a symmetrical mass division. Even 

with these deficiencies, we nevertheless compare in fig. 20 the two available 

estimates with our calculated most probable pre-scission kinetic energies. 

The experimental result for 236
U [open diamohu76 )] is somewhat lower than 

the calculated value) whereas the result for 252Cf [open hexagon77 )] agrees 

almost exactly with the calculated value. If the comparisons of the pre­

scission kinetic energies are taken at face value, the results indicate 

that the fragments associated with the fission of heavy nuclei are already 

in substantial motion by the time they arrive at the scission point. 
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The calculated most probable kinetic energies both at scission and at 

infinity are to iowest order independent of the nuclear excitation energy. 

There is experimental evidence only for the energies at infinity; this 

indicates that to within experimental errors the most probable total 

translational kinetic energies are independent of excitation energy [see for 

example refs. 69,72 )], which confirms the prediction. 

The next comparison that should logically be made is for the most prob­

able vibrational energies. Experimental values for .these quantities can be 

deduced most directly from measurements of the numbers of neutrons emitted 

from the fragments [see for example refs. 78,79)]. The comparison is not 

made explicitly because the available data is for the fission of heavy 

nuclei at low excitation energies, for which we have already seen that the 

liquid-drop theory does not predict the correct most probable mass division. 

However, to first order the sum of the translational kinetic energy and the 

vibrational energy equals the height of the fission barrier plus the energy 

release [see eq. (15)], which is given correctly (apart from fluctuations 

due to shell structure) by the liquid-drop semi-empirical mass formula. 

We can therefore conclude directly from fig. 20 that the calculations 

should give .the correct order of magnitude and the correct trend with x of 

the most probable vibrational energies, but that the experimental vibra­

tional energies should be systematically low, to correspond to the experi­

mental translational energies being systematically high. It would never­

theless be worthwhile experimentally to verify directly this conclusion by 

explicitly determining the number of neutrons emitted by the fragments as 

a function of x. 

We turn now to comparisons between the calculated and experimental 

widths of the mass and energy distributions. The widths depend upon both 

the fissility parameter x and the temperature 8, and a complete comparison 
t, 

would require plotting (in a three-dimensional diagram) the calculated and 

experimental widths versus x and 8. Both because of the difficulty in 

constructing such·a diagram and because of the unevenness of the experi­

mental results, we divide the comparisons into three parts: (1) widths as 

functions of x for zero or small values of 8, (2) widths as functions of 8 

for selected medium nuclei, and (3) widths for various heavy nuclei at 

moderate and large values of 8. 
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We have already seen that for heavy nuclei at low excitation energies 

the shapes of the calculated and experimental mass distributions are not 

the same: the calculated distributions are Gaussian in shape and are cen­

tered at a division into equal parts, whereas the experimental distributions 

have two peaks centered at divisions into unequal parts. Because of this, 

a comparison of the widths of these distributions is subject to some ambi­

guity. At least five different approaches can be taken: (1) The actual 

width at half-maximum probability of the complete (asymmetrical) experi­

mental distribution can be compared with the calculated width. (2) The 

variance of the complete experimental distribution can be compared with the 

calculated variance. (3) The experimental distribution can be decomposed 

into a symmetrical and an asymmetrical component, and the width of the 

symmetrical component compared with the calculated width. Such decomposi­

tions have been made in refs. 73,80,81) for induced fission of radium, where 

the distributions have three distinct peaks. In practice this method is 

not applicable to the fission of heavier nuclei because the symmetrical 

component cannot be extracted accurately. (4) The width of the complete 

experimental distribution can be obtained by fitting a single Gaussian curve 

through the wings of the distribution. (A particularly simple way of doing 

this is to plot the logarithm of the mass yield versus the square of the 

difference between the mass number and its value at symmetry. The slope in 

the region of the wings is then related to the Width.) (5) Finally, the 

width of a single peak of the experimental distribution can be compared with 

the calculated width. Of these five approaches we use and compare methods 

(1) and (4) for target nuclei heavier than radium, and method (3) for induced 

fission of radium, where there are three distinct peaks. 

Shown in fig. 21 is a comparison as a function of x of the full widths 

at half maximum of mass distributions, divided by the square root of 

coth[nm
3
/(2S)]. From eq. (18a) and the first-order relationship between the 

full width at half maximum and the variance, the plotted function is seen 

to be 

. (19) 



-67- UCRL-17958 

This quantity is approximately independent of 8 for small values of 8 since 

the temperature dependence enters as a ratio of two hyperbolic cotangents 

that multiplies a term much smaller than the first term (see again fig. 14). 

The theoretical curve is evaluated for 8 = 0, although any small value of 8 

would give a result that is indistinguishable on a graph of this scale. 

Dividing by the square root of the hyperbolic cotangent, which is unity for 

8 =0, permits an approximate extraction of the temperature dependence of 

the experimental widths for medium nuclei, for which there are no measure­

ments at zero temperature. 

The mass distributions whose widths are given in fig. 21 were obtaine,d . 

by a variety of methods: simultaneous measurements of fragment energies by 

use of solid-state detectors72-75,81,82,88-90), simultaneous measurements of 

fragment velocities87 ), and radiochemical techniqUes83 -86 ). The data (as 

well as those of the next figure) have been corrected for the effects of 

fragment neutron emission and finite counter resolut-ion only when the 

appropriate corrections were made by the original investigators. The rela­

tionship that holds for a Gaussian distribution has been used to convert 

from variances to full widths at half maximum when the former quantity is 

reported 72 ,73) . 

It is seen from fig. 21 that the experimental widths are systematically 

larger than the calculated ones. The discrepancy is about 25% for medium 

nuclei, and increases to about 100% for heavy nuclei when method 4 is used to 

extract the widths. The widths for heavy nuclei extracted by method 1 are 

roughly four times as large as the calculated widths and in addition show 

the opposite dependence upon x. Thus experimental mass distributions for 

heavy nuclei are both of a different shape (at low excitation energies) and 

also have widths that are significantly larger than the distributions for 

idealized liquid drops (that are constrained to shapes described in terms of 

three smoothly joined portions of quadratic surfaces of revolution and 

therefore having a single neCk). We postpone our discussion of the signifi­

cance of this result until the next section. 

We present in fig. 22 a comparison as a function of x of the full widths 

at half maximum of fission-fragment total translational kinetic-energy 

distributions, divided by the square root of coth[nm
4
/(28)]. The plotted 

function, which is analogous to that of fig. 21 and eq. (19), is also 

approximately independent of 8 for small values of 8. The data of fig. 22 



,........, -o en -
~ 
c:O 

,IF, 
<t -o 
(/) 

+­
c: 
~ 

(\J 

"­
-~ ,........, 

-

-

5 

4 
3 

2 

o o 

-68-

I 
I 
I 
I 
I 
I. 

0.5 

x 

UCRL-17958 

Met hod 

Method 4 

Method 3 

i 
• 0 

1.0 

XBL6BI-1585 

Fig. 21. A comparison of calculated and experimental full widths at 
half maximum of mass distributions, as a function of the1fissility 
parameter~x. Division of the widths by (coth[boo3/(2e)]}2 extracts 
approximately their temperature dependence. The various methods 
used to determine the widths for the fission of heavy nuclei are 
discussed in the text. Note that the scale is discontinuous and 
that the experimental widths determined by method 1 are roughly 
twice as large as thos~ determined by method 4. The dashed line 
marks the critical Businaro-Gallone point, below which the calcu­
lated widths are infinite. The experamental data arB from t~e fol­
lowing sources: • 72); • 73); y 7 ); A 75);. 1);., 2); 
0,83); 0,84); +,85); X,86); 0,(7); 0,(8); "7,(9) and ~,90). 
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not calculated but is known to pass through the origin. The expeti­
mental data

8
are from the following sources: • ~72); • ,73); .,7 ); 

'&,75) ; 2) ; 0,87); '\i', 89); ~, 91 ) and 0,9 ). 
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have been obtained both from fragment-energy measurements with solid state 
72-75 82 89 91 87 92 detectors "J) and fragment-velocity measurements ' ). From 

the figure we see that the widths of the experimental kinetic-energy dis­

tributions are systematically about 25% larger than the calculated widths 

for idealized drops and that the trends with the fissility parameter x are 

approximately the same. 

Comparisons of the widths of the distributions in masses and transla­

tional kinetic energies as functions of the nuclear temperature 8 at the 

saddle point are made in figs. 23 and 24, respectively, for four medium 

nuclei. Since the experimental data, which are those of Plasil et al. 72 ), 

are reported in terms of variances, these quantiti~s are plotted rather 

than full widths at half maximum. 

The theoretical distributions are calculated for systems with zero total 

angular momentum. The c6mpound nuclei 201Tl and 213At of figs. 23 and 24 

were formed by bombardments with alpha particles, and consequently have only 

a small amount of angular momentum. On the other hand, the compound nuclei 
186 198 Os and Pb were formed by the use of heavy-ion-induced reactions (with 

two exceptions), and hence are characterized by a fairly large amount of 

angular momentum. The comparisons for these two compound nuclei must there­

fore be made with the reservation that the large angular momentum present 

could possibly affect the experimental distributions. 

In the determination of the nuclear temperature e at the saddle point, 

account was taken of two complications72 ). First, the possibility of the 

compound nucleus emitting neutrons prior to fission was included by calcu­

lating the competition between fission and neutron emission during its de~ 

excitation: Second, the effect of angular momentum on e [arising from the 

dependence of the fission-barrier height on angular momentum32 )] was taken 

into account by integrating over the distribution of angular momentum. 

From figs. ,?3 and 24 certain observations are apparent: (1) The 

experiment~l variances of both the mass and kinetic-energy distributions are 

conSistently higher than the calculated ones by roughly 40%. This means the 

experimental widths are higher than the calculated ones by roughly 20%. 
. 186 201 213 . 

(2) For the three compound nuclel Os, Tl and At the experlmental 

and calculated slopes of the variances of the mass distributions are 

approximately the same, whereas the experimental slopes of the variances of 

the kinetic-energy distributions are smaller than the calculated ones. 
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(3) For the compound nucleus 19
8pb the experimental slopes of the variances 

df both the mass distribution and the kinetic-energy distribution are larger 

than the calculated ones. 

For heavy nuclei at high excitation energies the experimental most 

probable mass division is into two equal parts, but the mass distribution 

has a flatter top than a Gaussian curve. Although the determination of the 

experimental widths at high excitation energies appears straightforward, a 

complication exists associated with the possibility of the compound nucleus 

partially de-exciting by neutron emission and then fissioning. If this 

occurs the measured mass distribution contains an asymmetrical component 

corresponding to low-energy fission, which broadens the observed distribu­

tion. Because of the difficulty of accurately unfolding the measured mass 

distribution into low-energy and high-energy components, we are not able to 

make definitive comparisons between our calculated widths and experimental 

widths corresponding to true high-energy fission. Nevertheless, disregarding­

this complication, we compare in table 3 calculated and experimental widths 

of mass distributions for various heavy nuclei at moderate and high excita­

tion energies. It is seen from the table that the experimental widths are 

roughly three times as large as the calculated widths. However, it must be 

emphasized that thj.s conclusion depends upon the assumption that the entire 

observed mass distribution results from fission with no prior emission of 

neutrons. 

A similar comparison is made in table 4 of the variances (or: widths) 

of kinetic-energy distributions for heavy nuclei at moderate and high 

excitation energies. In examining the table it should be pointed out that 

for the same experimental situation variances obtained from time-of-flight 

measurements of fragment velocities
lOl

) are significantly larger than those 

obtained from solid-state-detector measurements of fragment energieS
100

). 

This systematic discrepancy is illustrated in for example ref. 73). The 

comparisons made in th~ table indicate that the experimental widths are 

roughly one and one-half times as large as the calculated widths. 

We turn now to the widths of vibrational-energy distributions. We do 

not make detailed comparisons concerning the widths of these distributions, 

for reasons similar to those discussed in connection with most probable 

vibrational energies. However, we do compare our calculations with two 

experimental data. Terrel178 ) has deduced from distributions of fission 
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Table 3 

Widths of mass distributions for heavy nuclei at moderate and high excitation energies 

Target Projectile Compound x Bombarding e (FWHM) A Ref. 

(MeV) 
1 

nucleus energy Theory Exp. 

(MeV) (amu) 

232Th ex 236U 0.772 65.0 1.44 21 57 91) 

233U d 235NP 0.784 23.4 1.00 17 56 93) 

233u ex 237Pu 0.793 44.3 1.10 18 54 94) 

233u ex 237Pu 0.793 77.3 1.52 21 49 82) 

235U ex 239Pu 0.791 45 1.08 18 57 94) 
I 

238U 239Np 95) 
--.J 

0.780 150 2.28 25 52 +=-p I 

238U d 
240

NP 0.778 125 2.09 24 54 95) 

238U ex 242Pu 0.787 45.4 1.23 19 56 94) 

238U ex 242Pu 0.787 65.0 1.47 21 56 91) 

238U 160 254
Fm 0.842 138 1.72 22 66 96) 

237NP ex 241Am 0.800 45.7 1.07 18 50 97) 

238Pu ex 242em 0.810 42.2 1.05 18 42 98) 

239Pu d 241Am 0.800 23.4 0.94 17 61 97) 

239Pu ex 243em 0.809 47.5 1.12 18 45 98) 

242Am 
c:: 240 . 0.88 56 99) 0 

Pu d 0.799 21.2 17 ES 
I 
~ 
--.J 
\0 
V1 
CP 

.. " .;.. 
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Table 4 

Var~ances (or widths) of kinetic-energy distributions for heavy nuclei at moderate and high excitation energies 

Target Projectile Compound Bombarding e 2 
(FWHM)E x O"E 

nucleus energy (MeV) Theory Exp. Theory Exp. 

(MeV) [ (MeV)2] (MeV) 

230Th ex 234
U 0.774 29.5 0.82 53 1l0±6 

230Th . ex 234
U 0.774 29.7 0.82 53 174 

232
Th ex 236

U 0.772 29.5 0.82 52 107±6 

232
Th ex 236

U 0.772 29.5 0.82 52 164 

232
Th ex 236

U 0.772 65.0 1.44 63 154±l5 

233U ex 237Pu 0.793 29.5 0.83 62 123±6 

233U ex 237Pu 0.793 29.7 0.84 62 213 

233U ex 237Pu 0.793 77.3 1.52 74 175 

238
U ex 242Pu 0.787 65.0 1.47 70 141±15 

238
U ex 242Pu 0.787 42.0 1.19 19 26±1 

238
U 

16
0 

254
Fm 0.842 138 1.72 25 45 

' . 

Ref. 

100) 

101) 

100) 

101) 

91) 

100) 

101) 

82) 

91) 

74) 

96 ) 

I 
--l 
\Jl 

I 

~ 
~ 
I 

I-' 
--l 
\0 
\Jl 
ex> 
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neutron numbers that the full width at half maximum of the excitation-energy 

distribution for the spontaneous fission of 252
Cf is 19 ± 2 MeV and that the 

widths at low excitation energy for several compound nuclei ranging from U 

to Cm are 17 ± 2 MeV. These widths are somewhat smaller than the corre­

sponding experimental widths of translational kinetic-energy distributions. 

Since to first order the widths of excitation-energy and translational 

kinetic-energy distributions should be equal, a slight inconsistency exists 

between the experimental results. Our calculated widths for the two sets 

of nuclei considered by Terrell are, respectively, 20 MeV and about 18 MeV, 

which agree with his experimental widths of excitation-energy distribut'ions. 

Two final comparisons that we would like to mention concern the magni­

tudes of the (purely imaginary) fission-mode frequency ~2 and the mass­

asymmetry frequency w
3

. In ref. 20) experimental values of the fission­

mode frequency obtained in a variety of ways were compared as a function of 

x with liquid-drop-model results calculated by use of a parameterization 

employing an expansion of the dropis radius vector in a series of 18 

Legendre polynomials. Further experimental values of Iw
2

] are reported in 

f 102,103) 1 re s. . Since for the range of x for which experimental va ues 

exist our present results for ~2 are practically identical to those of 
20), ref. ,we do not repeat the analysis here, but instead merely summarize 

the conclusions. The liquid-drop-model results reproduce the correct order 

of magnitude of the experimental fission-mode frequencies. Most of the data 

are not sufficiently accurate to provide a sensitive test of the calcula­

tions, but the points derived from spontaneous-fission half lives and fission­

barrier heights suggest that possibly 2.8 times as much mass is displaced 

in the fission mode as would correspond to irrotational flow. This number 

depends fairly sensitively upon what assumption is made regarding the shape 

of the fission barrier, and an analysis
42

) that takes into account single­

particle effects on the barrier shape near the ground state indicates that 

the mass displaced in the fission mode is approximately 6.2 times as much 

as would correspond to irrotational flow. 

Experimental information on both the magnitude of the fission frequency 

w
2 

and the mass-asymmetry frequency w3 can be obtained from measurements of 

fission cross sections and fission-fragment angular distributions as func­

tions of excitation energy. The experimental values of Britt et al.
104

) for 

the magnitude of w
2 

are roughly 40% lower than the calculated values for 
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irrotational flow. For ~ the calculated values for irrotational flow are 

about 2 and 3 times as la;ge as the experimental values
l04

) for, respectively, 

240pu and 236u. These results suggest that the effective mass in the fission 

mode is 2.8 times the irrotational value, and that the effective masses in 
240 236 . the mass-asymmetry mode for Pu and U are, respectlvely, 4 and 9 times 

. 104 
the irrotatlonal values ). Somewhat similar results for \00

2 1 and ill3 have 

been deduced from analyses of fission cross sections as functions of excita­

tion energyl05). 

The conclusions drawn from our comparisons are discussed in the next 

section. 

5. Summary and Conclusion 
rvrv ~~~ 

We have studied the division of an idealized charged liquid drop, using 

a parameterization of the shape of the nuclear surface in terms of three 

smoothly joined portions of quadratic surfaces of revolution. The param­

eterization takes into account six degrees of freedom and is suitable for 

discussing the masses, translational kinetic energies and vibrational ener­

gies of the fission fragments. The general procedure that we have used is 
1 

similar to that of ref. ) and consists of applying standard static, dynami-

cal and statistical methods to the Hamiltonian for the idealized system. 
1 

Whereas the results of ref. ) were limited to the fission of nuclei lighter 

than about radium, the present parameterization allows us to learn more about 

the predictions of the liquid-drop model for heavy nuclei as well as medium. 

Our study has included, first of all, calculating the surface and 

Coulomb energies as functions of the six generalized coordinates specifying 

the shape of the d~op. Particular emphasis was given to locating the saddle 

point and calculating its properties, We learned that the more important 

static saddle-point properties2 ,33,39) are reproduced with amazing accuracy 

in the three-quadratic-surface parameterization over the entire range of the 

fissility parameter x from 0 to 1. 

Second, we calculated the kinetic energy as a function of the coordi­

nates and their time derivatives. This was done both exactly (by solving 

Laplace's equation for the velocity potential) and by use of the Werner-
1 12 19 . . ' .. . Wheeler method' , ), whlch conslsts of approxlmatlng the lnternal hydro-
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dynamical flow by the flow of circular layers of fluid. The Werner-Wheeler 

method was found to be sufficiently accurate for the distortions of primary 

interest in fission, and was used for most of the calculations. 

Third, the frequencies and eigendisplacements of the normal modes of 

oscillation of the system about its saddle-point shape were determined. The 

known properties
20

) of the four lowest modes, which are the ones of primary 

interest in mass and energy distributions, were reproduced well by the 

three-quadratic-surface parameterization and the Werner-Wheeler method, 

whereas the properties of the n = 5 and 6 modes were reproduced less 

accurately. 

Fourth, in the application of statistical mechanics, we made the stand­

ard assumption of the transition-state method: that statistical equilibrium 

is established by the time the system reaches the vicinity of the saddle 

point. This allows us to calculate the probability for finding the system 

in a given state of motion as it passes through the vicinity of the saddle 

point. 

Finally, for gi~en initial conditions near the saddle point, we inte­

grated numerically Hamilton's equations of motion, which told us how the 

system divides from the vicinity of the saddle point onward. This step con­

verts the probability distributions for the states of motion near the 

saddle point into the probability distributions for the masses and energies 

of the fragments at infinity. 

Comparisons were made between the calculated distributions and experi­

mental distributions resulting from the fission of real nuclei. The com­

parisons were made for nuclei throughout the periodic table as functions of 

the excitation energy of the compound nuclei undergoing fission. In making 

the comparisons we considered first the most probable mass divisions and 

energies, and second the widths of the distributions in these quantities. 

In evaluating the comparisons, it must be borne in mind that the cal­

culated distributions are for the masses and energies of fragments resulting 

from the fission of idealized nonviscous irrotational liquid drops whose 

shapes are constrained to three smoothly joined portions of quadratic sur­

faces of revolution. This parameterization does not permit the formation of 

more than one neck or division into more than two bodies. The calculated 

results therefore probably do not represent the true predictions of the 

liquid-drop model for very heavy nuclei,where division into more than two 
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bodies becomes energetically more favorable than division into two
64). For 

such nuclei it would be very worthwhile to know the true predictions for an 

unconstrained drop. 

The major points brought out by the comparisons J which were made with­

out the use of any adjustable parameters, are the following: 

(1) The calculated and experimental most probable mass divisions are 

not in agreement for the fission of heavy nuclei at low excitation energies, 

whereas they are in agreement for the fission of heavy nuclei at high excita­

tion energies and medium nuclei at all excitation energies. 

(2) The calculated most probable translational kinetic energies of the 

fragments at infinity reproduce both the correct order of magnitude and the 

trend with x of the experimental energies, but the calculated energies are 

systematically about 5% smaller than the experimental ones. The calculated 

most probable translational kinetic energies at scission agree approximately 

with the experimental values deduced from analyses of long-range alpha parti­

cles emitted during fission, although the analyses leading to the experi­

mental values are subject to considerable uncertainty. 

(3) The widths of the experimental mass distributions are larger than 

the calculated ones by about 25% for medium nuclei and by about 100% for 

heavy nuclei when a certain method is used for extracting the widths. When 

an alternative method is used the experimental widths for heavy nuclei at 

low excitation energies are roughly four times as large as the calculated 

widths. The experimental widths for heavy nuclei at high excitation ener­

gies are roughly three times as large as the calculated widths, although the 

experimental values are possibly affected by fission following neutron 

emission. The calculations reproduce correctly the dependence on excitation 

energy of the experimental widths for three of four medium compound nuclei 

studied, but predict too small a variation with excitation energy for the 

fourth compound nucleus. 

(4) The trend with x of the widths of the experimental translational 

kinetic-energy distributions agrees approximately with the calculations, but 

the experimental widths at low excitation energies are systematically about 

25% larger than the calculated widths. For heavy nuclei at high excitation 

energies the experimental widths are roughly 50% larger than the calculated 

widths. The experimental widths increase with increasing excitation energy 

less slowly than the calculations for three of four medium compound nuclei, 
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and more rapidly for the other. 

In all cases the experimental most probable kinetic energies and the 

widths of both mass and kinetic-energy distributions are larger than the 

calculated results. What can be learned from this general observation? .For 

heavy nuclei the long descent from saddle to scission makes it difficult to 

reach any conclusion. However, for medium nuclei the results for the 

kinetic-energy distributions suggest that in the fission process the flow of 

nuclear matter is either rotational or viscous. This conclusion is reached 

from the following considerations: 

For medium nuclei a drop with rotational or viscous flow has approxi­

mately the same scission shape as a drop with nonviscous irrotational flow 

(because of the short distance separating the saddle point and scission 

point). For the same scission shape the translational kinetic energy at 

infinity is larger for rotational or viscous flow than for nonviscous irro­

tational flow. This is because rotational or viscous fragments remain de­

formed longer during their initial acceleration and hence acquire as trans­

lational kinetic energy a larger fraction of their .scission interaction 

energy than nonviscous irrotational fragments) which oscillate fairly rapidly 

as they separate. The results of refs. 1,62) indicate that for x ~ 0.7 

infinitely rotational or viscous fragments acquire approximately 8% more 

kinetic energy from scission to infinity than nonviscous irrotational frag-
1 62 

ments [iee in particular fig. 18 of ref. ) or fig. 3 of ref. )J. Since 

the experimental ,translational kinetic energies are about 5% larger than the 

calculated energies for nonviscous irrotational flow, the results suggest 

that the flow is characterized by some curl OT some viscosity (or both). 

Let us examine a similar argument for the widths of the translational 

kinetic-energy distributions. The results of ref. 1) indicate that for 

x ~ 0.65 the widths of the translational kinetic-energy distributions are 

slightly larger for infinitely rotational or viscous fragments than for non­

viscous irrotational fragments [see in particular eq. (19) and figs. 18 and 

19 or eqs. (19) and (21) and fig. 21 of ref. 1)]. The difference is zero at 

x = 0.65 and increases to about 5% at. x == 0.8. For this entire range of x 

the experimental widths are roughly 25% larger than the calculated widths 
\ 

for nonviscous irrotational flow. Thus neither the over-all magnitude nor the 

trend with x of the discrepancy is explained by assuming rotational or vis­

cous flow, but the sign of the discrepancy is consistent with this assump-

" 
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tion. However, we place little weight upon this particular argument. 

We have also seen that analyses of spontaneous-fission half',lives and 

fission-barrier heights and analyses of transition-state spectra suggest 

that several times as much mass is displaced in both the fission mode and 

the mass-asymmetry mode as would correspond to irrotational flow. [An 

experiment that would provide information on vibrational inertias and nuclear 

viscosity by measuring the amount of flattening experienced by nuclei during 

h d 11 .. . d . d' f 106 ) ] ea -on co lSlons lS lscusse In re . . 

To summarize, the nonviscous irrotational liquid-drop model provides an 

approximate description of the distributions in fission-fragment masses and 

energies for the fission of medium nuclei at all excitation energies and 

heavy nuclei at high excitation energies, but, within the limitation of a 

parameterization that permits only binary division, it does not reproduce 

the observed properties of the fission of heavy nuclei at low excitation 

energies. This conclusion is illustrated schematically in fig. 25. (For 

definiteness we take about 40 MeV for the excitation energy at which mass 

distributions for heavy nuclei change from asymmetrical to symmetrical. We 

assume in designating radium as the transition nucleus that the system's 

angular momentum is small. For certain purposes an increase in angular 

momentum has the same effect as an increase in the fissility parameter.) In 

all cases the experimental translational kine-tic energies and widths are 

larger than the calculated results (for nonviscous irrotational flow), and 

this, along with other evidence, suggests that in the fission process the 

flow of nuclear matter is either rotational or viscous. 

This concludes our discussion of what has been learned from a simpli­

fied version of the nonviscous irrotational liquid-drop model. However, 

before ending we would like to make some speculative remarks concerning the 

observed mass asymmetry in the fission of heavy nuclei at low excitation 

energies. 

One possibility that must not be ruled out is that an unconstrained 

nonviscous irrotational liquid drop could form two necks during the descent 

from saddle to sCission, which could result in an asymmetrical mass division 

if the drop divided at one neck and the remaining two bodies coalesced to 

form a single large fragment. However, we feel that this is not the 

explanation of the observed mass asymmetry because such a mechanism would 

imply that the larger fragment should possess more deformation energy and 
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Fig. 25. A schematic illustration of where the liquid-drop model yields 
an approximate description of nuclear fission. Shown also is the 
region where single-particle effects are probably important. 
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hence emit more neutrons than the lighter J whereas the opposite situation is 

observed experimentally [see for example ref, 79)]. On the other hand, the 

width of the mass distribution corresponding to the division of an uncon­

strained drop could be larger than that corresponding to our constrained drop, 

which could bring the true calculated widths for the division of liquid drops 

into better agreement with the data of fig. 21. 

We have seen some evidence that in the fission process the flow is either 

rotational or viscous, and a possibility that should be explored by explicit 

calculations is that in the region of heavy nuclei a rotational or viscous 

drop would prefer an asymmetrical mass division to a symmetrical one. 

Recently Kelsonl07 ) and Griffinl08,l09) have reintroduced the idea of 

Hill and Wheeler5 ) that the most probable asymmetrical mass division for 

heavy nuclei at low excitation energies arises from a quantal suppression of 

symmetrical mass divisions. They argue that the numbers of gerade and un­

gerade states (states with even and odd parities, respectively, under reflec­

tion at a plane through the origin perpendicular to the symmetry axis) do not 

change from some characteristic point in the fission process onward. Further­

more, it is argued that for the fragments at infinity the gerade-ungerade 

ratio is equal to their mass ratio, and that therefore an asymmetrical divi­

sion will result if the gerade-ungerade ratio is different from unity at the 

characteristic point in the process. This characteristic point is taken by 

Kelson to be the ground state of the nucleus undergoing fission, and for the 

spontaneous fission of 25
2

Cf the mass distribution calculated on this 

basis is in excellent agreement with the experimental mass distribution. 

However, at the ground state the gerade-ungerade ratio differs from unity 

almost as much for medium nuclei as for heavy nuclei, and Kelson's approach 

is therefore unable to explain (among other things) the existence of sym­

metrical fission for nuclei lighter than radium. 

Griffin takes the characterist:ic point to be the saddle point and calcu­

lates that as a function of the fissility parameter x the gerade-ungerade 

ratio at the saddle is unity for small values of x and begins to increase 

fairly rapidly at x ~ 0.67 J increasing to L 42 at x = 1. Wi th our definition 
210 of the fissility parameter the gerade-ungerade ratio is L09 for Po (where 

the experimental most probable mass ratio is unity) J is L 13 for deuteron­

induced fission of 226Ra (where the experimental mass distribution has three 

peaks) J and is 1.16 for 23
6

U (where the experimental most probable mass ratio 
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is 1.4). Furthermore, as x increases in the region of heavy nuclei Griffin's 

gerade-ungerade ratio increases,whereas the experimental most probable mass 

[ 110)]. ratio decreases see for example ref. Thus, Griffin's theory is unable 

alone to reproduce either the correct magnitude of the mass ratio for heavy 

nuclei or the correct dependence of the mass ratio upon nuclei (in addition to 

failing to predict three peaks for radium). Even though the present develop­

ments of the idea of a quantal suppression of symmetrical mass divisions are 

unable to satisfactorily explain observed mass distributions, Griffin points 

out that it is nevertheless possible that such a suppression would provide a 

tendency toward an asymmetrical mass division, with the details of the dis­

tribution determined by some other mechanism. 

A final possibility is the old idea that the mass distribution for the 

fission of heavy nuclei at low excitation energies is the result of a single­

particle perturbation of the liquid-drop-model Hamiltonian. The influence of 

single particles on the potential energy of a slightly deformed system has 

been discussed in for example refs. 24,28,111,112). Such studies show that 

the nuclear potential energy can be obtained approximately by adding a single­

particle correction to the surface and Coulomb energies of the liquid-drop 

model. This correction depends primarily upon the density of single-particle 

states near the Fermi surface, and is negative when the density is low and 

positive when it is high. The correction is therefore an oscillatory function, 

both of the proton and neutron numbers and of the nuclear deformation. The 

amplitude of the oscillations in general decreases somewhat (but does not 

disappear completely) as the nucleus deforms away from the spherical shape. 

Although single-particle effects have not been adequately studied at the 

saddle point and beyond, it is reasonable to assume that even at these large 

deformations they lead to fairly large perturbations of the liquid-drop-model 

Hamiltonian. 

We feel that the inclusion of a single-particle correction to the energy 

would probably allow for an adequate description of fission-fragment mass and 

energy distributions. Since the details of such a theory have not been worked 

out, we will make some qualitative comments on how single-particle effects 

could be expected to explain the major properties of mass and energy distri­

butions. 

The idea on which we base our considerations is a single-particle lower­

ing of the energy near the scission point for selected asymmetrical shapes in 
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which the larger nascent fragment has nearly constant proton and neutron num­

bers. Now, in the absence of single-particle effects the energy is a minimum 

for symmetrical shapes, Since the fragment mass number corresponding to such 

a symmetrical division increases as the mass number of the fissioning nucleus 

increases y the number of nucleons separating the symmetrical position of the 

liquid-drop minimum energy from the asymmetrical position of the single­

particle reduction decreases in going from medium nuclei through radium to 

heavy nuclei. The~ for medium nuclei the energy at the position of the maxi­

mum single-particle reduction could still be higher than the energy at sym­

metry (because of the relatively large distance separating the two positions)y 

and the most probable mass division would be symmetrical. At about radium 

the distance separating the symmetrical and asymmetrical shapes could be such 

that the energy is comparable at these two points, and the mass distribution 

would be peaked at both symmetrical and asymmetrical divisions. For heavy 

nuclei the distance becomes sufficiently small that the energy could be lower 

at the asymmetrical shape) which would produce an asymmetrical most probable 

mass division. With increasing mass number of the fissioning nucleus the dis­

tance continues to decrease) which would imply a decreasing most probable mass 

ratio} as is observed experimentally [see for example ref. 110)]. 
At what deformations of the nascent fragments should the deepest minimum 

in the energy occur? Three arguments suggest that it should occur for some­

what deformed nascent fragments: (1) In the fission of heavy nuclei at low 

excitation energies the average number of neutrons emitted by each of the 

most probable fragments is greater than 1 [see for example ref. 79)]) which 

implies that the most probable fragments possess some deformat.ion energy at 

scission. (2) If the fragments were nearly spherical at scission their 

translational kinetic energies at infinity would be much larger than is ob­

served experimentally [see for example ref. 69)]. (3) The dynamical paths 

calculated on the basis of the liquid-drop model correspond to fairly large 

fragment deformations near scission. Therefore, secondary shells at larger 

deformations
lll

) rather than primary shells at spherical configurations are 

probably responsible for the deepest minimum in the energy. 

However, one would also expect a local decrease in the energy correspond­

ing to a nearly spherical nascent fragment that has "magic" numbers of protons 

and neutrons (50 + 82 == 132). [Favoring the exploitation of this minimum is 

the rel.ative "softness" of a liquid drop with respect to the distortion-
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1 
asymmetry degree of freedom ).] This could be responsible for the small num-

ber of neutrons emitted by the near-magic fragment and the large number emit­

ted by the complementary fragment [see for example ref. 79)], as well as the 

increased total translational kinetic energy when one of the fragments is 

near-magic [see for example refs. 73J74)]. 

When the nucleus reaches the scission point in a somewhat more deformed 

configuration than its most probable, the single-particle effects would be 

expected to be reduced in magnitude. This is supported experimentally by the 

observation that mass distributions for heavy nuclei at low excitation ener­

gies change from asymmetrical to symmetrical as the total translational kinetic 

energy decreases [see for example refs. 74J 9l )]. Smaller kinetic energy 

implies in general a larger separation of fragment centers near scission, which 

means the fragments are more deformed and hence less influenced by single­

particle effects, which would result in a symmetrical mass distribution. 

At high excitation energies single-particle effects are expected to 

decrease as the result of a more random population of single-particle levels 

over a wider range of energy. The transition for heavy nuclei from asymmetri­

cal to symmetrical mass distributions as the excitation energy increases could 

thus arise partially from such a decrease of single-particle effects with 

increasing excitation energy. However J another effect that probably contrib­

utes to this transition is the population of higher quantum states in the 

mass-asymmetry degree of freedom as the excitation energy increases. The 

summation of the squares of a number of such wave functions, weighted according 

to their statistical probabilities, would produce a more symmetrical division 

than that given by the square of the ground-state wave function. 

To conclude, we have shown that the nonviscous irrotational liquid-drop 

model reproduces approximately fission-fragment mass and energy distributions 

of medium nuclei at all excitation energies and heavy nuclei at high excita­

tion energies, and fE;el that the observed deviations for heavy nuclei at low 

excitation energies probably arise from a single-particle alteration 6f the 

energy for selected shapes near the scission point. 

To us the major outstanding problem in fission theory is to check these 

speculations by including single-particle effects in a realistic way in the 

calculation of the properties of the fission process. We hope that in such a 

study our parameterization in terms of three smoothly joined portions of 

quadratic surfaces of revolution will prove useful for describing the shape 
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of the nuclear surface, and that our general procedure of systematically 

considering the statics, dynamics and statistical mechanics will also be 

applied to the single-particle Hamiltonian . 
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6.1. GEOMETRICAL PARAMETERS OF QUADRATIC SURFACES OF REVOLUTION 

The inversion of eqs. (5) and (6) leads immediately to 

£ = ~(-eJ + 2CX )u 111 

£2 = ~(eJl + 2CXl )u 

2 

1 ) 2 = (1 + 2Ct2 u 

1 ) 2 (1 - "2a
2 

u 

UCRL-17958 

(20a) 

(20b) 

(20c) 

(20d) 

(20e) 

(20f) 

(20g) 

These formulas give seven of the nine geometrical parameters of the quadrat­

ic surfaces of revolution in terms of the six generalized deformation coor­

dinates and the unit of distance u. The two remaining quantities £3 and 

a
3

2
J as well as the locations zl and z2 of the points of tangency of the 

middle surface with the two end surfaces) are determined by solving the four 

equations that express the continuity at zl and z2 of the values of p and 

~. From eq. (4) we find that 

P2 Cz .) = 2 
l a i -

222 Ca. Ic. )(z.-£.) 
l l l l 

2 = a -
3 

dp(z.) 
-P(zi) dz l 

2 2 = (a. Ic. )(z.-£.) 
l l l l 

It follows immediately from (21b) that 

i 1, 2) (21a) 

i 1, 2 . (21b) 

, i = 1) 2 (22) 

but this result still contains the unknown quantity £3' (Of course for a 

symmetrical shape, for which a
l 

= a
2 

= a
3 

= 0, the value of £3 is zero.) 
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2 
Substitution of this result into the equation obtained by eliminating a

3 
from (21a), i = 1, 2, leads to the quadratic equation 

2 
A~ +2B~ + C = 0 

where 

and 

(23a) 

(23b) 

2 2 
(a - a ) 

2 1 

(23c) 

The solution of this equation, with the proper choice of sign, is 

2 . l] tB + sign(B) (B - Ac)2 /A A I 0 

(24) 

-~ BQ. [1 + t(AC2 ) + !8(AC2 )2 + 654 (AC2 )3 + ... J 
B' B B 

Now that ~ = (a
3

2
/c

3
2)£3 is known the values of zl and z2 can be found from 

(22). One can also determine £3 immediately by dividing ~ by a 2/c 2, pro-
2 2 3 3 

vided that 
2 

a
3 

can be 

a
3 

/c
3 

is not zero. Finally, the value of the remaining unknown 

found from either of eqs. (21a), provided that £3 is not infinite. 
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It is observed that for asymmetrical shapes £3 approaches infinity as 
2 2 

a
3 

/c
3 

approaches zero; we will see in appendix 6.2 that the derivatives 

of £3 with respect to the generalized deformation coordinates also approach 

infinity at the same time. This introduces numerical difficulties at the 

transition of an asymmetrical shape from a spheroid to a hyperboloid of 

revolution of one sheet. The difficulties could be eliminated by writing 

the equation of the middle quadratic surface of revolution as, say, 

2 222 
p = a + 2~z - (a

3 
/c

3 
)z 

and using 

(26) 

2 
and ~ rather than a

3 
and £3 as auxiliary quantities in the calculation of 

the final quantities of interest. When this is done the solution for ~ is 

again given by (24), and the result for a is obtained from either of eqs. 

(2la). Alternatively, a combination of both of eqs. (2la) yields the sym­

metrical result 

where 

i 

Provided that £3 is finite the value of a
3

2 
can of course also be obtained 

from this result. 

The unit of distance u is determined from the requirement that the 

volume of the deformed drop equal the volume of the spherical drop. By 

equating the result of a straightforward volume integration to 4~ R03/3 we 

find that 
1 

3 
(28) 
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where V. (i = 1, 2, 3) is the volume divided by 4~/3 enclosed within the 
l 

ith surface for an imaginary drop of the same shape but uniformly scaled so 

that the unit of distance u is unity. Explicitly, 

'" 1 '" 2", V. = 2" a. c. 
l l l 

( i [3 '" 2 '" '" 1.('" 2 '" 2 '" '" 3 ] + -1) -4 a. (.g.-z.) - 4 a. Ic. )(.e.- z .) 
l l l l l l l 

i 1, 2, (29a) 

2 2 
when a

3 
IC

3 
is close to zero for an asymmetrical shape it is more convenient 

to express the result for V3 in the alternate form 

The tildas denote that the indicated quantities are evaluated for u = 
example, it follows from (20) that 

1 

[(1 + ~a2)/(cr3 +~a3)]2" 

(29c) 

lj for 

The theta function e(-~32) is zero for ~32 > 0 and unity for ~32 < O. Since 

u is known, the nine geometrical parameters of the quadratic surfaces of 

revolution are now completely determined in terms of the six generalized 

deformation coordinates. 

The position.e of the center of mass of the drop can also be obtained 
cm 

by performing a straightforward integration. The result is found to be 
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22. when a
3 

/c
3 

lS close to zero for an asymmetrical shape the last one-third 

of this expression should be written in the alternate form 

The two points of intersection zl and z2 must each lie somewhere between 

the two ends of the drop, and this requirement imposes the constraint on the 

variables that 

where zl and z2 are given by (22). This constraint becomes more severe as 

a.
2/c. 2 (i = 1, 2) approaches a

3
2/c 2, since the numerator of the right-hand 

l l 3 
side of (22) must then also approach zero in order for z. to remain finite. 

l 

This implies that £. must approach £3' For the limiting case in which 
2 2 2 2 l . 

a i /c i = a
3 

/c
3 

J the two surfaces land 3 actually coincide, and the point 

of intersection z. may be taken as any point along their common overlap. 
l 
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Because of the restrictions imposed by this equation the present parameteri­

zation is not particularly well suited for describing small deviations of 

the system from a spherical or a spheroidal shape. 

6.2. DERIVATIVES OF GEOMETRICAL PARAMETERS OF QUADRATIC SuRFACES OF 

REVOLUTION 

For the calculation of both the generalized forces acting on the drop 

(appendix 6.3) and the inertia matrix (appendix 6.4) it is necessary to 

calculate the first partial derivatives of ~l' ~2' ~3 (or ~), a1
2

, a2
2

, a
3

2 

2 2 2 2 22. 
(or CX) J al IC l J a2 IC 2 J a

3 
IC3 ' zl and z2 wlth respect to 0'1' 0'2' 0'3' 

CX
l

' CX
2 

and CX
3

. Expressions for the geometrical parameters in terms of the 

coordinates were given in appendix 6.1, and we give here the relevant 

formulas for the derivatives, listed in an order appropriate for computation. 

As in the text, we sometimes refer to the symmetrical and asymmetrical 

coordinates collectively by q.J j = 1,2, ... ,6. 
J 

It follows from (20e) and C20f) that 

2 2 
dCa. Ic. ) 

1 1 

dq. 
J 

and from (20g) that 

i 1, 2 

o otherwise 

otherwise 

We next compute several auxiliary quantities that enter the expressions 
- . 22-

for the remaining derivatives. Define by ~ the quantity ~/u = (a
3 

IC3 )~3' 
where 13 = ~3/u is the value that ~3 would have for a drop uniformly scaled 

so that the unit of distance u is unity. Then from (24) we have 
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!C2
[ (A .. C) .. 15(AC)2 I(AC)3 - 8 "'3 1 + "".2 + 16 ",2 + 8 ",2 + 

B B·. B B 
... ] 

d~ '" '" ",2 '" "')~ dB = - sign(B)~/(B - A C 

d~ 1 '" ",2 '" "')~ dC = - 2 sign(B)/(B - A C 

where 

'" A = A 

B = B/u 

'" 2 C = C/u 

are the values of AJ Band C [given by (23)] corresponding to a drop uni­

formly scaled so that u = 1. By use of the chain rule for computing first 

partial derivatives we find from (23) and (20) that 
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[( 

2 2 2) 2 a1 a2 a· a 2 2 
+ _ + __ l l (.£ _.£ ) 

2 2 222 1 
c

1 
c

2 
c
3 

c
3 

( 

2 2 2) ] a1 a 2 ~ 2 2 d~ 2 
+ -2 + -2 - 2 2 ( a2 - a1 ) -;;:; lu 

C C c dC 
123 
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a
3

2

).£ J d13
/ u 

2 1 ~'" c oB 
3 

- ~ {[( ::: -

Provided that a
3

2
/c

3
2 is not zero for an asymmetrical shape the deriva­

tives of the (scaled) center of the middle spheroid 13 = .£3/u can now be 

obtain~d in terms of these quantities from 

a3
2 

d13 = dt3 + {~13 
2 ~ .. d . 

c oq. q. 
3 J J 0 otherwise 
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From (22) and (20) it follows that the derivatives of the (scaled) 

points of tangency z. 
l 

z./u are given by (for i = 1, 2) 
l 

-21(_1)i 2/ 2 a. c. 
l l 

'" Z. 
l 

'" 

(
2 2)."-a. a az. a~ 

t. - Z 
l i 

_l __ l ~=_"\" + 
2 2 oq. oq. 

c
i 

c
3 

J J 2 2 
a. /c. 

l l 

o 

~(_l)i+l (1. - ~.) 
l l 

As we discussed near the end of appendix 

d f · . t f h . h' h 2/ 2 . e lClen or s apes In w lC a
3 

c
3 

lS 

is seen from this equation that for such 

infinity. 

6.1 the present parameterization is 

close to a.
2
/c.

2 
(i = lJ 2). It 

l l 

shapes a~./aq. is able to approach 
l J 

We use the notation 2 = p
2
(z.)/u

2 
and from (21a) and (20) find that Pi l 

(for i = 1, 2) 
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'( i+l ( 2 2 ('" "') -1) a. Ie. ) £. - Z. 
l l l l 

o 

d'" 2 2 d'" P. a. z. 
l l ('" '" ) _l + 
~= 2 -2 £i - z. 

qj l dq. 
e. J 

l 

( '" "')2 £ - z 
i i 

22", '" 
-2(a. Ie. )(£. - z.) 

l l l l 

~(_l)i+l 

'" )2 - z 
i 

'" 2 We denote by a the quantitya/u , where a is defined by (26). Then from (27) 

and (20) we find that 

( ~'" ~"') 2 oz oz a 
'" 2 '" 1 ~ 

- zl ~ + z2 ~ e 2 
J J 3 

otherwise 

'" )2 - z 
1 

",2 2 2 '" 
We further denote by a

3 
the quantity a

3 
lu ; provided that £3 is finite it 

then follows from (26) and (20) that 

., 
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{ 

'" 2 
~'" 2 - £ 
aa (j'" (j'" 3 

:= a + 2£ ~ + ~ ~ 3~ 
J J J 0 , otherwise 

The final auxiliary derivatives that we compute are associated with 

the unit of distance u. From (28), (29) and (20) we find that 

1 (ju R -3 f.. 1 (i+l [(jf3 CJa ) 
-udaq.:= 0 L.. 1; -1) z.U z. ~+u~ 

J i=l l l qj qj 

1 2 
qj a

l - '8 Pi u = 

l.... (_l)i 3 1 3 ( '" 2 a
2 

z. - ~ c e· -a ) qj 12 l 12 3 3 

1 3 (-1) i (£. _ z. )3] 12 [c i + l l 

+ 

1 ( i 2 
- 1; -1) p. u 

l 

where the summation is taken over all 

(
......2 

As before, the theta function e, -a ) 

the terms in the complete expression. 
'" 2 is zero for a

3 
> 0 and unity for 

...... 2 3 
a
3 

< o. 
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We are at last in a position to give the formulas for the remaining 

first partial derivatives of actual interest in terms of these auxiliary 

quantities. From (20) we have (for i = 1, 2) 

~(_l)i u J qj = a
l 

d ' £. 1 du l 

~= £. - da+ U qj = ex 
l u q. 1 

J J 

0 otherwise 

df3 _ f3 ! du + u d~ 
dq. - u ~ ~ 

J J J 

d£ d~ 
3 _ £ ! du + ~ 

d"q," - 3 u dq. u dq. 
J J J 

£3 finite 

2 
2a. 

l l
~( _l)i+l u2 

1 du --+ 
u dq. 

J 0 

'" 2 
1 du 2 da3 
-~+u ~ u oq. oq. 

J J 

dZ i 1 du d~i 
~ = Z. -~+ U ~ oq. l U oq. oq. 

J J J 

otherwise 

2 
a
3 

finite 

'. 
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6.3. POTENTIAL ENERGY AND GENERALIZED FORCES 

We consider in this appendix the computation of the relative surface 

energy B = E /E(O) and relative Coulomb energy B =E /E(O) that appear in 
s s s c c c 

eq. (7). Also) we give formulas for the generalized surface and Coulomb 

forces acting on the drop) obtained by taking the negative of the first 

partial derivatives of Band B with respect to the six generalized defor-
s c 

mation coordinates that specify the shape of .the drop. 

6.3.1. Surface energy and forces. 

Because the shape of the drop is specified in terms of portions of 

quadratic surfaces of revolution) the relative surface energy B (equal to 
2 s 

the surface area divided by 4nRO ) can be expressed in terms of elementary 

transcendental functions. We write B in the form of the sum 

B 
s 

s 

The physical meaning of the individual terms can be best understood by 

referring back to fig. 1. Consider first the case when the sUmmation index 

i is 1. Then the first term within the curly braces gives the relative 

surface area from the end of the left-hand spheroid to its center £1) the 

second term gives the relative surface area from the center of the left-hand 

spheroid to the tangency point zlJ and the third term gives the relative 

surface area from the tangency point zl to the center £3 of the middle 

quadratic surface of revolution. When the sUmmation index i is 2 the three 

terms have analogous meanings for the right-hand portions of the drop. (For 

a symmetrical shape one could of course eliminate the summation and simply 

multiply the three terms for the left-hand side by 2.) As should be clear 

from the physical meanings of the two functions F and G) the latter can be 

expressed in terms of the former according to the relationship 
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i 1, 2 

The functions F and G are obtained by straightforward surface integra­

tions over portions of quadratic surfaces of revolution. For actual compu­

tation it is best to write the resulting expressions in different forms 

depending upon the signs and magnitudes of the arguments of F and G. There 

are a total of seven regions that need to be considered for FJ corresponding 

physically to the cases where the quadratic surface of revolution is an 

oblate spheroid (region 1), is close to a sphere (region 2), is a prolate 

spheroid (region 3), is close to a cylinder (region 4), is a hyperboloid of 

revolution of one sheet (region 5), is two tangent collinear cones (region 

6), or is a hyperboloid of revolution of two sheets (region 7). These seven 

regions are illustrated in fig. 26, which should be consulted simultaneously 

,with fig. 2. It turns out that the formulas for F are identical in regions 

1 and 5 and also in regions 2 and 4. It is necessary to calculate G only 

in regions 1, 2 and 3, and neither F nor G is needed on the boundaries of 

the unphysical region (defined by x = 0, y ~ 0 and x ~ 0, y = 0). For 

reasons discussed in appendices 6.1 and 6.2 the expressions we use for cal­

culating the surface energy and forces are not applicable when a32/c32 is 

close to zero (region 4) for an asymmetrical shape. 

In writing the expressions for F and G we use the dimensionless dummy 

arguments x, y and z, which refer to, respectively, a. 2/R02, a. 2/c. 2 (i = 1, 
, l l l 

2, 3) and the distances divided by RO from the centers to the tangency points 

(or ends) of the quadratic surfaces of revolution. (There should arise no 

confusion between our use of the symbol x here and its previous use to denote 

the fissility parameter.) We use the symbol E:to denote the quantity 1 - y. 

When the quadratic surface of revolution is a prolate spheroid or a hyperbo-
1 

loid of revolution of two sheets, E
2 is the eccentricity as it is usually 

defined, but this is not the case when it is an oblate spheroid or a hyper­

boloid of revolution of one sheet. 

The relevant formulas for Fare 
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Region 1 

Region 3 

o t----------------t--=.--------- _ ~CLi. 0 n 4 =-=-= = = 

-I 
Region 7 Region 5 

Region 6 
-2 

-2 -I o 
x 

XBL686-2940 

Fig. 26. An illustration of the regions considered in connection with 
the surface-energy functions F(x,y,z) and G(x,y) and their first 
partial derivatives. The dimensionless arguments x and y refer to, 
respectively, a.

2
/R02 and a.

2
/c.

2 
(i = 1, 2, 3). 
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In calculating the generalized surface forces we use the chain rule for 

partial differentiation. We denote by F the first partial derivative of F 
x 

with respect to the first argument) at constant values of the remaining 

arguments, etc. Then from (30) it follows that the generalized surface 

forces are 

{ 

2 
2 2 2 2 2 da i 2 -L G (a. IRO ,a. Ic. ) ~q IRo .1 Xl l l . 

2 2 2 2 
+ G (a. IRo )a. Ic. ) y l l l 

l= J 

2 2 2 2 i 
+ F [a. IRO )a. Ic. ,(-1) (£.-z.)/Ro] x l l l l l 

2 2 2 2 i 
+ F [a. IRO ,a. Ic. )(-1) (£.-z.)/Ro) y l l l l l 

2 
da. / 2 

l R 
~ 0 

J 

2 2 d(a. Ic. ) 
l l 

dq. 
J 

2 2 
d(a. Ic. ) 

l l 

dq. 
J 

2 2 2 2· .(d£. dZ.)/ 
+ F [a. IRo· )a. Ic. ,(-l)l(£.-z.)/Ro](-l)l ~ - ~ RO z l l l l l oq. oq.' 

J J 

The first partial derivatives of the geometrical parameters of the quadratic 

surfaces of revolution with respect to the deformation coordinates have been 

given in appendix 6.2. The first partial derivatives of F follow immediately 

from the above expressions for F and are 
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The corresponding first partial derivatives of G are given by 

G (x, y) 
Y 
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6.3.2. Coulomb energy and forces. 

The Coulomb energy of a uniformly charged axially symmetrical (but 

otherwise .arbitrarily shaped) drop can be expressed in terms of a double 

integral, with the integrand containing complete elliptic integrals of the 

first and second kinds
l

,2). A convenient way of displaying the result is to 
11) first write the Coulomb energy as 

where p is the (constant) charge density, V(z) is the electrostatic poten-
e 

tial on the surface of the drop at the point specified by z, .R(z) is the 

distance from the center of the drop to the point on the surface specified 

by z, and dD is an element of solid anglej the integration extends over all 

solid angles. In terms of cylindrical coordinates the combination R3(z)dD 

is given by (after integrating over the azimuthal angle) 

the integration on z is from £l-cl to £2+c2' For our parameterization of 

the shape of the drop i s surface, p 
2 

is given by (4 ) [see also (25) ],from 

which it follows that 

~ 
P dz = 

z < z < z 1 - 2 

. When the equation of the middle quadratic surface of revolution is written 

in the modified form (25), then 

.. 

• 
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dp _ A ( 2/ 2) p dZ - ~ - a
3 

c
3 

Z 

The electrostatic potential on the surface of the drop is given 

by3-5)t 

where we use the notation p 
, 

p(z') and where 

4pp' 

D(k) = K(k) ; E(k) 
k 

(31b) 

The functions K(k) and E(k) are the complete elliptic integrals of the first 

and second kinds, respectively. 

The first partial derivatives of the Coulomb energy with respect to the 

generalized deformation coordinates are 

t 2 
In appendix A.l of ref. ) an expression is given in spherical coordinates 

for the electrostatic potential on the drop's surface. However, the term 

~[(Pi + p)2 + (zi - z)2] appearing in the numerator should either be multi­

plied by k
2 

or else replaced by 2pp.. Also, the limits of integration are 
l 

from -rt to 0 (whereas the limits on the following integral for B are from 
c 

o to rt). Finally, a left parenthesis should be inserted before z. in the 
l 

denominator of the integrand for the electrostatic potential. 
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which is derived by considering the changes in Coulomb energy arlslng from infinitesimal displacements of 

the surface of the drop. The quantities p ~ appearing in the integrand are o~tained from (4) and are 
qj 

222 
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222 
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When the equation of the middle quadratic surface is written in the modified form (25), then 

~ l do: dt) 1 2 
P d = 2 r + z d'O':'" - 2Z 
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The first partial derivatives of the geometrical parameters of the quadratic 

surfaces of revolution with respect to the generalized deformation coordi­

nates have been given in appendix 6.2. The relative Coulomb energy Band 
c 

generalized forces -dB /dq. are obtained simply by dividing E and -dE /dq., 
c J c c J 

respectively, by E(O). 
c 

The two-fold integrations required in the evaluation of the Coulomb 

energy and its derivatives were performed numerically by use of Gaussian 

quadrature formulas
l13

). For this purpose the integration over the surface 

of the drop was divided into four regions, and each region was integrated 

separately by use of a Gaussian quadrature formula of a given order. The 

dividing points between the four regions were taken to be the tangency points 

zl and z2 and the center £3 of the middle quadratic surface of revolution. 

(Because of the disc~ntinuities at zl and z2 in the second and higher 

derivatives of p with respect to z, it is crucial that the interval of a 

given quadrature formula does not extend across these points,) The order of 

the Gaussian formulas used depended upon the accuracy required for a parti­

cular application and varied from 8 to 32 (for each of the four regions). 

For the calculation of the properties of the symmetrical saddle-point shapes 

given in table 1 and in figs. 3-8 and 27-33 (to be presented in appendix 

6.5), we used 32-point rules for 1.00 ~ x ~ 0.58 and 16-point rules for 

0.56 ~ x ~ 0.06. For the calculation of the properties of the asymmetrical 

saddle-point shapes given in figs, 3-6 and for integrating the equations of 

motion for the dividing drops we used 8-point rules (with the relevant 

saddle-point properties also recalculated with 8-point rUles), The error 

in the calculation of B is typically a few units in the fifth, sixth and 
c 

seventh decimal places for, respectively, the 8-point, 16-point and 32-point 

. rules. 

The complete elliptic integrals K(k) and E(k) were evaluated by use of 

Chebyshev approximations
l14

) that are accurate to within about two units in 

the thirteenth decimal place, which is almost the complete accuracy of the 

CDc-6600 computer on which the calculations were performed. 

Two cautions are in order concerning the evaluation of the electro­

static potential V(z) according to eq. (32). First, when z = z' the quantity 

k is seen from (33) to equal unity, and consequently K(k) is infinite. For 

this case the limiting value of p (not including the constant exterior factor 

of 2p ) should be used for the integrand of (32). Second,at each end of the 
e 
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drop the value of k is seen from (33) to be zero; the limiting value of rt/4 

for DCO) should then be used instead of (34). [Alternatively, the problem 

can be eliminated by substituting (33) for the denominator of (34) and then 

canceling the pp' factor with the corresponding coefficient of D(k) in (32).] 

However, since a Gaussian quadrature formula does not employ the end points 

the second caution can be disregarded when using such an integration formula. 

6 . 4. INERTIA MATRIX 

We discuss in this appendix the two methods that we have used for com­

puting the inertia matrix that appears in eq. (8) for the kinetic energy. 

We consider first the exact method and second the approximate method of 

Werner and Wheeler. This is followed by numerical comparisons of several 

inertia matrices computed by the two methods. 

6.4.1. Exact method. 

The exact calculation of the inertia matrix involves solving Laplace's 

equation for the velocity potential and then performing appropriate surface 

integrations. Although the exact method is discussed in refs. 20-22) we 
. . 20 

repeat it here because the formulas of ref. ) are specialized to spherical 

rather than cylindrical coordinates, ref. 21) uses a different basis for 
22 expanding the velocity potential than we use, and the formulas of ref. ) 

are specialized to an expansion of the velocity potential in a series of 

only two symmetrical solid harmonics. [Somewhat related discussions of the 

irrotational motion of axially symmetrical fluids are given in refs. 115 ,116).] 

The total kinetic energy of the fluid flow arising from changes in the 

dropis boundary is 

1 J 2 2P V d1." 
m '" 

where 
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is the drop's (constant) mass density, d~ is an element of volume, and 

v = v(r,t) = V~ = V~(r,t) 
"-J "V I"V '" "V" '" 

is the velocity of fluid flow inside the drop at position ;c and time t; the 

integration extends over the volume of the drop. That v can be written as 
'" 

the gradient of the velocity potential ~ follows from our assumption that 

the hydrodynamical flow is irrotational (2 ~ ~ = 0). From the further 

assumption that the fluid is incompressible it follows from the equation of 

continuity that ~ satisfies Laplace's equation, i.e. 

2 
2·~ = V ~ = 0 

By use of this result, the vector identity 

and Gauss' divergence theorem, eq. (36) is transformed into the usual hydro­

dynamical expression 

where dS is an element of surface area (directed outward); the integration 

extends over the surface of the drop. 

We introduce the function F(r,t) so that the equation 
'" 

p - p(z,t) = 0 

defines the surface of the drop. (In this appendix p is used as a general 

cylindrical coordinate for designating an arbitrary point. Elsewhere in the 

text p denotes the distance from the symmetry axis to a point on the drop's 

surface and is equivalent to the symbol P of this appendix. Because we are 

specialized to axial symmetry, we do not indicate explicitly the dependence 

of r upon the azimuthal angle.) In terms of this function the element of 
'" 
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surface area (after integration over the azimuthal angle) is 

dS 2JtP dz \1.F 
'" '" 

and the kinematical boundary condition on the drop's surface isl17) 

DF . dF dF 0 
Dt = ~.£ + dt =,,:ZF':ZCP + dt = 

By use of these results we obtain for the kinetic energy 

We next write 

dP 

dP 6 
P dt = L 

i=l 

(39) 

(40) 

where P - is given by (35). dq. 
Becau~e the velocity potential cP is a harmonic function that must remain 

finite at the origin it can be expanded in a series of solid harmonics 

where 

cos e 2 
zj(p 

1 
2)2 + z 

, 

(41) 

and Pkis the kth Legendre polynomial (not to be confused with the symbol P 

without a subscript). Furthermore, because the velocity;[, is obtained from cP 
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by spatial differentiation the coefficients of the expansion must be linear 

functions of the generalized velocities q., j = 1,2, ... ,6. The form of 
J 

the expansion is therefore 

(42) 

where the unknown coefficients b~ are to be determined from the kinematical 

boundary condition (38). In general an infinite number of terms is required 

in this expansion to represent the velocity potential exactly, but for 

shapes that are not too deformed the desired numerical accuracy can be 

achieved by truncating the series at a moderate value of K (we use K = 32; 

see subsect. 6.4.3). By substituting this result and eq. (40) into (39), 

and interchanging the order of summations, we write the expression for the 

kinetic energy in the form (8), where the elements of the inertia matrix are 

M .. 
lJ 

1 MO 

2 R 3 
o 

K 

L 
k=l 

with P ~P given by (35)'~nd Bk(P,z) by: (41)(, 
q. 

Thislis our final expression for M .. , but it involves the unknown coeffi-
. lJ 

cients b~ which we now determine. Spatial differentiations of (37) and (42) 

give, respectively, 

K 

L 
k=l 

OP = e - ~ e 
"'P oz "'z 

6 
L b~ 
j=l 

(44a) 

(44b) 

where e , e ,e and e denote unit vectors in, respectively, the p, z, rand 
~p "'Z "'r "'e 

e directions. The kinematical boundary condition (38) then becomes 
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dP ( dPk . 
- dZ kPk cos e - dB Sln e)] o 

where 

is the value of r on the surface of the drop, and 

cos e 

sin e 

We next multiply this equation through by P, use. the relation 

where P~ denotes an associated Legendre polynomial, and note that the equa­

tion must be satisfied for arbitrary motions of the drop's boundary. This 

leads to the system of six equations 

K 
\"' Rk-l[p(kP

k 
e 1 e) dP ( e 1 e)] j ~ sin - Pk cos - P dZ kPk cos + Pk sin bk 

k=l 

dP 
- P ~ = 0 oq. 

J 

j 1, 2, ... , 6 

. dP d 
The quantity P is given by (4), P dZ by (31) and P d~. by (35). 

J 
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The system of eqs. (45) for the coefficients b~ cannot in general be 

solved exactly, and, as discussed in ref. 20), various schemes exist for its 

approximate solution. The scheme that seems to work best in practice (and 

the one we have used) is to determine the coefficients in the sense of least 

squares from the requirement that the integrals over the drop's surface of 

the squares of the left-hand sides of eqs. (45) be minima. ,When this least­

squares scheme is used, greater numerical accuracy can be achieved by not 

forming the usual normal equations for the coefficients b~but instead by 

solving directlyl18,l19) the over-determined system (45) (evaluated at a 

finite number of points on the drop's surface). Once the coefficients b
j 
k 

are determined in this way, the elements M .. of the inertia matrix are 

obtained immediately from (43) by numerica~JGaussian quadraturel13 ). 

6.4.2. Werner-Wheeler method. 

The approximate method of Werner and Wheeler
12

) for the calculation of 

the kinetic energy is discussed in some detail in refs. 1,19 ). We repeat 

the derivation of the formulas here because one of the key expressions of 

ref. 19) is incorrect. 

In an exact calculation of the kinetic energy (for irrotational floW) 

the components z and p of the fluid velocity are obtained by taking partial 

derivatives with respect to z and p, respectively, of the velocity potential 

~(p,z;q,q) 

Thus, exactly, 

~ 
6 d~.(p,z;q) 

L l 
Z dz dZ qi 

i=l 
(46a) 

~ 
6 d~.(p,z;q) 

L l 
P dp dp qi 

i=l 
(46b) 



-118- UCRL-17958 

Now, the Werner-Wheeler approximation is equivalent to assuming that z is 

independent of p and that p depends linearly upon p. That is, rather than 

the exact relations (46), the components of the velocity are approximated by 

6 
z _. L A.(z;q)q, 

i=l 
l l 

( 47a) 

6 
P e. L B,(z;q)q, 

P 
i=l 

l l 

where P = p(z;q) is the value of p on the surface of the drop at the position 

defined by z. 

A relationship between the (as yet unknown) expansion coefficients A, 
l 

and B, is obtained from the kinematical boundary condition 
l 

(38). By use of 

this boundary condition and eqs. (37), (44a) and (47) we find that 

dP 6 
~L 

i=l 
A,<i, 

l l 

6 
L 

i::::l 

dP 
~ql' aq, 

l 

o 

Since this equation must hold for arbitrary motions of the drop's boundary 

it follows that 

B, 
l 

i = 1, 2, ... , 6 

Into the exact expression for the kinetic energy 

( 48) 

we substitute (47) for z and p and perform the integration over p. Upon 

simplification this leads to eq. (8) for the kinetic energy, with the ele­

ments of the inertia matrix given by 

.. 
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( 49) 

Expressions (48) and (49) are identical to eqs. (24) and (25) of ref. 19), 
apart from obvious differences in notation. 

The expansion coefficients A. are determined from the assumption in the 
l 

Werner-Wheeler approximation that the fluid in a given infinitesimal slice 

perpendicular to the symmetry axis remain in that slice. This is equivalent 

to requiring the vanishing of the total (convective) time derivative of the 

volume of fluid to the right (or to the left) of an arbitrary plane perpen­

dicular to the symmetry axis. We denote by 

+ V (Zjq) 

the volumes of fluid to the right and left, respectively, of a plane perpen­

dicular to the symmetry axis at the point z. It then follows that 

D +( Dt V Zj q) 

o 

or 
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£2+c2 
6 

[p2(~; q) 
d~iJ p2(z;q) z L d"'] . z q. 

i=l 
l 

z 

This gives, upon referring to (47a) , 

(50a) 

z 

19 This equation is to be compared with the second form of eq. (26) of ref. ), 

which incorrectly contains an additional term that in our notation is 

+ C2)/dqi .. Equations (A8) [and (A9)] and the first form of eq. (26) of 

19 ), from which the final result for Ai is derived, are also incorrect. 

It is sometimes more convenient to calculate A. from the alternative 
l 

formula 

A.(Zjq) 
l 

dz' (50b) 

which is obtained by taking the total time derivative of V-(Zjq). A third, 

but not particularly useful, form for A. can be obtained by taking one-half 
l 

the sum of eqs. (50a) and (50b). 

By substituting (50), (48), (35), (31) and (4) into (49), we obtain an 

expression for the elements of the inertia matrix by performing straight­

forward integrations. The resulting expression is lengthy but can be 

written in terms of elementary transcendental functions. It involves both 

the geometrical parameters of the quadratic surfaces of revolutio~ discussed 

in appendix 6.1, and the derivatives of these quantities with respect to 

the generalized coordinates discussed in appendix 6.2. It also involves 

the' quantities (for j = 1, .2) 

., 
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where it is understood that T .. refers to the (m,n) element of the inertia matrix. The individual terms 
lJ 

have dimensions of R05, so that the elements of the inertia matrix have the proper dimensions of MOR02 

The terms are given by (for j = 1, 2) 
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This result for the inertia matrix is applicable only to pre-scission shapes. After scission, the 

inertia elements corresponding to the flow of matter between the two fragments are infinite, and a treat­

ment of the post-scission inertia matrix would involve removing these infinities by eliminating the degree 

of freedom describing a transfer of matter. Also, it should be remembered that the result we give for M 
mn 

is not applicable when a
3

2/c
3

2 
is close to zero for an asymmetrical shape, for reasons we discussed in 

appendices 6.1 and 6.2. 
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6.4.3. Comparisons of methods. 

We compare in tables 5 and 6 results computed by use of the Werner­

Wheeler approximation with those computed by use of the exact method. Table 

5 gives the comparison for shapes corresponding to the symmetrical saddle 

points for x = 0.9, 0.8, 0.7 and 0.6; the values of the coordinates a
l

, a
2 

and a
3 

defining these shapes are given in table 1. The format of table 5 

is the following: The value of the fissility parameter x defining the 

saddle-point shape is given in the first column. Columns two through four 

give the elements of the inertia matrix and the squares of the frequencies 

corresponding to symmetrical distortions, and columns five through seven 

those corresponding to asymmetrical distortions. (Recall that for a sym­

metrical shape the elements of the inertia matrix coupling symmetrical and 

asymmetrical distortions are zero.) The inertia-matrix elements are given 

in units of MOR02, and the frequencies squared in units of D02 = E~O) j(MOR02). 

Two numbers are given for each quantity tabulated; the top number is calcu­

lated by use of the Werner-Wheeler method, and the bottom number by use of 

the exact method. 

Table 6 gives the comparison for an asymmetrical shape; the coordinates 

defining the shape are given in the first row. This particular shape occurs 

on the dynamical descent for x = 0.78 after 0.5 X 10-
21 

sec for initial 

conditions of starting from the saddle point with 1 MeV of kinetic energy in 

the fission mode and 1 MeV in the mass-asymmetry mode (see the second shape 

for x = 0.78 in fig. 10). The elements of the full 6 X 6 inertia matrix 
2 

are given, again in units of MORO . 

In computing the inertia matrices of tables 5 and 6 by use of the exact 

method, we employed terms up to and including the 32nd solid harmonic in 

the expansion of the velocity potential [K = 32 in eq. (42)]. In determining 

the coefficients b~ we evaluated the system (45) at a total of 128 points 
.. . . 118 119 and then solved the resultlng over-determlned system dlrectly , ). 

Finally, a 32-point Gaussian quadrature formula was used in each of four 

divisions of the drop to compute the inertia-matrix elements according to 

eq. (43). 

The inertia matrix M is a symmetrical matrix, whereas the result (43) 

that we use for computing the elements of M is not manifestly symmetrical. 

Therefore, some estimate of the numerical accuracy of the inertia matrices 



Table 5 

Comparisons of results computed by the Werner-Wheeler method (top numbers) and the exact method 
. (bottom numbers) for symmetrical saddle-point shapes 

x M22 ~4 M26 Mn M13 M15 

M42 M44 M46 M31 M33 M35 

M62 M64 M66 M51 M53 M55 

2 2 2 2 2 2 
(J)2 (J)4 (J)6 (J)l (J)3 (J)5 

0.9 0.01006 -0.00743 -0'.02262 0.73041 -0.33687 0.23652 
0.01003 -0.00750 -0.02258 0.73041 -0.33687 0.23652 

-0.00743 0.00838 -0.33687 0.16058 -0.10642 
I 

0.01599 I-' 

-0.00750 0.00800 I 0.01620 -0.33686 0.16029 -0.10653 
\jJ 
f\) 
I 

-0.02262 0.01599 0.05137 0.23652 -0.10642 0.07805 
-0.02258 0.01620 0.05125 0.23652 -0.10653 0.07799 

-0.1979 9.548 23.00 0.0000 2.693 19.15 
-0.1982 10.973 33.94 0.0000 2.830 24.73 

0.8 0.01652 -0.01956 -0.02921 0.54541 -0.32795 0.18754 
0.01650 -0.01955 -0.02923 0.54541 -0.32795 0.18754 

-0.01956 0.03129 0.03194 -0.32795 0.21417 -0.10942 
-0.01955 0.03051 0.03201 -0.32793 0.21380 -0.10941 

-0.02921 0.03194 0.05374 0.18754 -0.10942 0.06552 
-0.02923 0.03201 0.05371 0.18753 -0.10941 0.06549 

-0.2255 5.839 17.92 0.0000 1.370 14.40 g -0.2261 6.248 22.49 0.0000 1.397 16.47 
~ 
t"i 
I 

I-' 
-.J 
\0 
\Jl 
CO 
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Table 5 (continued) 

0.7 0.06334 -0.11636 -0.02099 0.48249 
0.06326 -0.11604 -0.02105 0.48249 

-0.11636 0.25433 0.02556 -0.43406 
-0.11602 0.25195 0.02548 -0.43396 

-0.02099 0.02556 0.01596 0.19125 
-0.02104 0.02547 0.01581 0.19119 

-0.1069 2.252 10.45 0.0000 
-0.1072 2.303 11.58 0.0000 

0.6 0.22343 -0.30671 0.10799 0.52650 
0.22168 -0.30284 0.10687 0.52650 

-0.30671 0.48234 -0.17423 -0.60205 
-0.30158 0.47054 -0.17117 -0.53957 

0.10799 -0.17423 0.07451 0.24829 
0.10688 -0.17203 0.07365 0.22520 

-0.5309 0.890 6.94 0.0000 
-0.5445 0.905 7.44 0.0000 

I> 

-0.43406 
-0.43406 

0.52810 
0.52677 

-0.19650 
-0.19595 

0.397 
0.401 

-0.60205 
-0.60205 

1.64620 
1.44632 

-0.59441 
-0.52021 

0.078 
0.091 

• 

I 

I 
0.191q5 
0.1912;5 

I 
-0.1965,0 
-0.19597 

. . I 
0.081~1 
0.081 7 

I 
7.81 
8.23 

0.24829 
0.24829 

-0.59441 
-0.52257 

0.22149 
0.19479 

4.71 
4.84 
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Table 6 

A comparison of results computed by the Werner-Wheeler method (top numbers) and 
the exact method (bottom numbers) for an asymmetrical shape 

0"1 0"2 0"3 a
1 a2 a

3 

~2 M24 M26 M21 M23 M25 

M42 M44 M46 M41 M43 M45 

M62 M64 M66 M61 M63 M65 

M12 M14 M16 M11 M13 M15 

M32 M34 M36 M31 M33 M35 

I 

M52 M54 M56 M51 M53 M55 
f-J 

\.>J 
.j::"-" 
I 

2.24737 -0.11721 0.66438 -0.14063 -0.25097 -0.10386 

0.02933 -0.03815 -0.03091 0.01633 0.00075 0.00151 
0.02930 -0.03805 -0.03095 0.01634 0.00069 0.00154 

-0.03815 0.06524 0.03531 -0.03405 0.01518 -0.00583 
-0.03804 0.06408 0.03528 -0.03405 0.01517 -0.00584 

-0.03091 0.03531 0.03718 -0.00522 -0.00699 0.00195 
-0.03095 0.03528 0.03711 -0.00521 -0.00706 0.00197 

0.01633 -0.03405 -0.00522 0.50477 -0.35113 0.17006 
0.01633 -0.03405 -0.00522 0.50477 ,.0.35113 0.17006 

0.00075 0.01518 -0.00699 -0.35113 0.28700 -0.11950 
0.00069 0.01517 -0.00706 -0.35108 0.28638 -0.11933 

0.00151 -0.00583 0.00195 0.17006 -0.11950 0.05861 g 
~ 0.00154 -0.00583 0.00197 0.17004 -0.11933 0.05854 t"I 
I 
f-J-
-.J 
\0 
\J1 
CO 

,. ~ ]t, 
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t 
computed by use of the exact method can be obtained by comparing the com-

puted value of M .. with that for M .. (for i f j). It is seen that for the 
lJ Jl 

x ::: 0.9 and 0.8 symmetrical saddle-point shapes and the chosen asymmetrical 

shape the maximum discrepancies betweenM .. and M .. are about one unit in 
lJ Jl 

the fifth decimal place. The maximum discrepancies increase to about one 

unit in the fourth decimal place for the x ::: 0.7 symmetrical saddle-point 

shape and to several units in the second decimal place for the x ::: 0.6 shape. 

The use of twice the number of solid-harmonic expansion terms (up to and 

including 64 rather than 32) improves the symmetry of the inertia matrix 

for the x ::: 0.6 shape, but the inertia matrices computed with even this 

large number of terms in the velocity-potential expansion become grossly 

asymmetrical for shapes more deformed than the x ::: 0.6 saddle-point shape. 

For such deformed shapes the portion of the inertia matrix corresponding to 

asymmetrical distortions is in greater error than the portion corresponding 

t 1 d 1 1 20). o symmetrica istortions, a resu t that was a so observed in ref. 

This is because the asymmetrical distortions involve a flow of mass through 

a fairly thin neck, whereas the symmetrical distortions do not. For shapes 

close to scission the computation of the kinetic energy by means of an 

expansion of the velocity potential appears hopeless. 

The major purpose of this subsection is to compare the Werner-Wheeler 

results with the results of the exact method. It is seen that the elements 

of M computed by .the two methods typically differ by a few units in the 

fifth decimal place J with the maximum difference being about a unit in the 

third decimal place (we disregard the x ::: 0.6 shape since the accuracy of 

the exact-method results is so poor). The Werner-Wheeler method is seen to 

yield the exact answer for the elements Mlj ::: MjlJ j ::: 1, 2) •.. , 6, which 

correspond to distortions involving a shift of the drop's center of mass. 

(It is to be noted in this connection that the exact method is more accurate 

for the upper triangle of the inertia matrix than for the lower triangle.) 

t 21 22 
In refs. ' ) the results for the inertia matrix are symmetrized prior 

to computing the individual elements; and this important check on the numeri­

cal accuracy of the results is consequently lost. 
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In examining tables 5 and 6 we observe that Kelvin's theorem43 ) is 

satisfied--for an arbitrary displacement of the drop's surface the kinetic 

energy corresponding to Werner-Wheeler flow is greater than or equal to the 

kinetic energy corresponding to irrotational flow. This theorem can be 

stated in terms of the inertia-matrix elements as 

where 

E .• 
lJ 

~~t _ E < Mir < Mrot + E .• 
lJ ij - ij - ij lJ 

The superscripts ir and rot denote, respectively} irrotational flow (exact 

method) and flow with a possible rotational component (Werner-Wheeler 

method). For the diagonal elements (i = j) this result simplifies to 

Since by Kelvinis theorem the normal-mode inertia constants for irrota­

tional flow are less than or equal to those for Werner-Wheeler flow, the 
2 

absolute values of m. = K./M. corresponding to irrotational flow are greater 
l l l 

than or equal to those for Werner-Wheeler flow, and this is also seen to be 

satisfied in table 5. It is further noted that for the four lowest modes the 

frequencies calculated JJ;y the -two methods~ are in fair agreement, "whereas ,the 

agreement is not so good for the 5th and 6th 'modes. (The frequencies have in 

each case been computed with the same stiffness matrix. The stiffness 

matrices and the inertia matrices computed by the exact method were sym­

metrized prior to the computation of the frequencies.) 

A final comparison that' can be made is between the irrotational-flow 

frequencies computed in the three-quadratic-surface parameterization and 

those computed in the parameterization in which the dropis radius vector is 

expanded in a series of the first 18 Legendre polynomials 20) . In about half 

the cases the magnitudes of the frequencies computed in the more nearly exact 

Legendre-polynomial parameterization are higher than those computed in the 

. .,. 
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more restricted three-quadratic-surface parameterization. At first sight 

this appears to violate the well-known result that the magnitudes of the 

normal-mode frequencies of a constrained system are greater than or equal to 

those of th~ original unconstrained system. However, it must be remembered 

that for this to be true the constraint must be compatible with the equilib­

rium configuration, which is not the case here-the (constrained) three­

quadratic-surface saddle-point shapes differ slightly from the (unconstrained) 

Legendre-polynomial saddle-point shapes. 

6.5. NORMAL-COORDINATE STIFFNESS AND INERTIA CONSTANTS AND EIGENVECTORS 

We present in this appendix plots as functions of x of the normal­

coordinate stiffness and inertia constants and eigenvectors. It should be 

re-emphasized that all these quantities have meaning only with respect to 

the particular parameterization of the nuclear shape in terms of three 

quadratic surfaces of revolution, and in addition only with respect to the 

particular normalization of the eigenvectors that we are using. 

Figure 27 shows the stiffness constants. The n = 1 center-of-mass­

shift constant is identically zero, the n = 2 fission constant is negative 

for all values of x (zero at x = 1), the n = 3 mass-asymmetry constant is 

positive for x > x
BG 

and negative for x < x
BG

' and the remaining constants 

are positive for all values of x. 

The rapid variations of the stiffness constants at x ~ 0.67 are asso­

ciated with the qualitative transition
2

) of the saddle-point shapes from 

cylinder-like for x ~ 0.67 to dumbbell-like for x ~ 0.67. The maximum in 

the n = 4 curve at x ~ 0.78 arises from the transition through the cylindri­

cal stage of the middle quadratic surface of revolution. 

The normal-mode inertia constants are shown in fig. 28. The fairly 

rapid variations of these quantities at x ~ 0.67 are also associated with 

the transition from cylinder-like saddle-point shapes to dumbbell-like 

saddle-point shapes at this value of x. The maximum in the n = 2 curve at 

x ~ 0.63 is a peculiarity of the parameterization: a plot of the frequency 

(squared) obtained by dividing K2 (from fig. 27) by M2 shows a smooth 

variation through this value of x. 
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(Right-hond scale) 
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1.0 
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Fig. 27. The normal-coordinate stiffness constants as functions of the 
fissility parameter x. The Businaro-Gallone point is indicated by 
the arrow. Note that the n = 2 curve is plotted on a scale reduced 
~Y 10. 
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Fig. 28. The normal-coordinate inertia constants as functions of the 
fissility parameter x. Note that the n = 1, 2 and 3 curves are 
plotted on a scale reduced by 100. 
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Each of figs. 29-33 contains the elements of the eigenvector for a 

given normal mode, for n = 2-6. The n = 1 center-of-mass-shift mode is not 

included ~ecause for all values of x its eigenvector is simply 

(1) 
vl 

1 

v 
(1) (1) 

v
2 0 

(1) 
v3 0 

We note that each of the eigenvectors shows a rapid change at x ~ 0.67, 

again corresponding to the transition in saddle-point shapes from cylinder­

like to dumbbell-like. 

The physical significance of the eigenvectors can be best understood 

by referring to egs. (6) defining the generalized deformation coordinates 

to which the eigenvectors refer. For example, for the n = 2 fission mode 

it is seen that the motion consists primarily of an elongation of the drop 

for x> 0.67 and a constriction of the drop's neck for x ~ 0.67. Similarly, 

the n = 3 mass-asymmetry motion is seen to consist primarily of changes in 

the transverse semiaxes and the positions of the centers of the two end 

spheroids for x ~ 0.67, whereas for x ~ 0.67 changes in the relative eccen­

tricities of the two end spheroids become increasingly important. 
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Fig. 29. The elements of the n = 2 fission eigenvector as functions of 
the fissility parameter x. The two solid points show the known 
values at x = 1 of the i = 1 curve and the i =2 and 3 curves. 
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Fig. 30. The elements of the n= 3 mass-asymmetry eigenvector as func­
tions of the fissility parameter x. 
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Fig. 31. The elements of the n = 4 stretching eigenvector as functions 
of the fissility parameter x . 
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Fig. 32. The elements of the n = 5 distortion-asymmetry eigenvector as 
functions of the. fissility parameter x. 
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Fig. 33. The elements of the n = 6 eigenvector as functions of the fis­
sility parameter x. 
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sponsored work. Neither the United States, nor the Com­
mISSIon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




