
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Machine Learning Techniques for Data Storage Systems: Modeling, Coding, and Detection

Permalink
https://escholarship.org/uc/item/0v184594

Author
Zheng, Simeng

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0v184594
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Machine Learning Techniques for Data Storage Systems: Modeling, Coding, and Detection

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering
(Communication Theory and Systems)

by

Simeng Zheng

Committee in charge:

Professor Paul H. Siegel, Chair
Professor Ramesh Rao
Professor Steven J. Swanson
Professor Nuno Vasconcelos

2024



Copyright

Simeng Zheng, 2024

All rights reserved.



The Dissertation of Simeng Zheng is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

iii



DEDICATION

To my loves

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Data Storage and Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Flash Characterization Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Coding Incorporation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 3 Flash-Gen: Spatio-temporal Generator for Flash Memory Systems . . . . . . . 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Flash Memory and Spatio-temporal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Flash Memory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Spatio-temporal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Flash-Gen Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Flash-Gen Architecture Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Spatio-temporal Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Flash-Gen Coding Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Flash-Gen LDPC Coding Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Flash-Gen Constrained Coding Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Statistical Analysis of Flash-Gen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1 Distribution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Error Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Performance of Flash-Gen Coding Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.1 LDPC Decoding Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Design of Constrained Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4 Optimal Shaping Codes for a TLC Flash Memory . . . . . . . . . . . . . . . . . . . . . 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Shaping Codes for TLC Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 5 Efficient Constrained Codes That Enable Page Separation in Modern Flash
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Patterns, Mapping, and 2D RR Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 RR-LOCO Coding Over GF(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 RR-LOCO Coding Over GF(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Rate, Complexity, and Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Experimental Results on TLC Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6 Code-Aware Storage Channel Modeling via Machine Learning . . . . . . . . . . 88
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 NAND Flash Memory and ICI Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 NAND Flash Memory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.2 ICI Mitigation via Constrained Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Code-aware Storage Channel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Review of Generative Flash Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Code-aware Generative Flash Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Transfer Learning Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4.2 PDF Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.3 Iteration Number Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 7 PR-NN: RNN-based Detection for Coded Partial-Response Channels . . . . . 104
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 Background on magnetic recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.2 Machine learning for coded communication . . . . . . . . . . . . . . . . . . . . . . . . 107
7.1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 System Architecture and Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Digital channel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.3 Signal Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.4 Detector implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 PR-NN: RNN-based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.1 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



7.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.3 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3.5 Computational Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4.2 Scenario 1: Individual Training Experiments . . . . . . . . . . . . . . . . . . . . . . . 133
7.4.3 Scenario 2: Joint Training Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.4.4 Scenario 3: “Realistic” Equalized Lorentzian Channel . . . . . . . . . . . . . . . 142
7.4.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vii



LIST OF FIGURES

Figure 2.1. The FPGA testboard is the flash characterization platform. . . . . . . . . . . . . . 8

Figure 2.2. The system of coding incorporation module on flash characterization plat-
form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.1. Example mapping of cell program levels to binary representations in TLC
flash and schematic diagram of a 2-D TLC flash memory block. . . . . . . . . . 15

Figure 3.2. PDF visualizations of a 3D TLC NAND flash memory for measured voltage
levels at three retention time stamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.3. Count of top error-prone patterns and level error rate at selected P/E cycles
without retention. The error pattern counts are normalized by the count of
pattern 707 in BL direction at 4000 P/E cycles. . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.4. Flash-Gen architecture: encoder, generator, and discriminator constitute
the generative modeling architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.5. Flash-Gen coding workflow: Flash-Gen error correction coding workflow
with hard-decision decoding mode and soft-decision decoding mode, and
Flash-Gen constrained coding workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.6. PDF visualizations for measured and Flash-Gen generated voltage levels
at various time stamps: 4000, 7000, and 10000 P/E cycles; 0, τ , and 2τ
retention time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.7. Change in mean and standard deviation values for PL at 2, 5, and 7 when
P/E cycle count or retention time increases. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.8. Total error rates of measured (‘M’), Flash-Gen (‘F-G’), Gaussian (‘G’),
Normal-Laplace (‘NL’), Student’s t (‘S-t’) model. . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.9. Frame error rate (FER) comparison with LDPC codes of measured data
and Flash-Gen reconstructed dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.10. Variations in the hard-decision decoding threshold and soft-decision de-
coding thresholds change the decoding performance and the metric values.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.11. Pie charts showing pattern-dependent error probabilities for measured and
Flash-Gen generated voltages at 7000 P/E cycles. . . . . . . . . . . . . . . . . . . . . . 40

viii



Figure 4.1. Measured BER of pseudorandom data after inducing wear with data that
is dominated by a single program level from P/E cycle 2000 to P/E cycle
12000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.2. Histogram of codeword length in optimal shaping codes with codebook
size 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.3. Histogram of codeword length in optimal shaping codes with codebook
size 1024. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.4. Measured channel BER comparison of data without shaping code, with op-
timal shaping codes (codebook sizes 256 and 1024), and with compression. 50

Figure 5.1. The left-most pages of a 2D Flash grid with data encoded via the proposed
2D binary RR coding scheme. Symbol x means bit can be 0 or 1 freely. . . 59

Figure 5.2. An FSTD of a 1D constrained sequence forbidding level patterns in Lq, for
any q. Here, we operate directly on level patterns for simplicity. . . . . . . . . . 74

Figure 5.3. An FSTD of a 1D 4-ary constrained sequence forbidding patterns inR4. . . 76

Figure 5.4. Measured channel BER comparison of random data, 1D binary RR-LOCO
coded data along wordlines or bitlines, and 1D 4-ary RR-LOCO coded
data along wordlines or bitlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.5. Measured channel BER comparison of 1D binary RR-LOCO coded data,
1D binary interleaved RLL-(0, 1) coded data along wordlines or bitlines,
2D binary RR coded data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.1. Voltage distributions and a recursive alternate Gray mapping (RAGM)
between cell program levels and binary logic values of a TLC NAND flash
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.2. Pipeline of code-aware generative flash modeling. . . . . . . . . . . . . . . . . . . . . 94

Figure 6.3. PDF plots in logarithmic scale for measured and regenerated voltage levels
(experiment I-Pre/T-WL/E-WL) at 7000 P/E cycles. The visualization is
based on dataset {(PLSWL ,VLSWL ,P/E)}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 6.4. BER comparisons: the leftmost (resp., rightmost) three sub-figures show
lower, middle, and upper page BERs for SWL-coded (resp., S2D-coded) data. 101

Figure 7.1. System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 7.2. Discrete model for simulation, where nk represents the additive distortion. 113

ix



Figure 7.3. (1,∞)-RLL input-constrained E2PR4 channel state machine. . . . . . . . . . . . 116

Figure 7.4. Sliding-window evaluation process for Viterbi detection. . . . . . . . . . . . . . . . 120

Figure 7.5. Structure of one GRU cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 7.6. Structure of unfolded bi-directional GRUs. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 7.7. Model of multi-layer bi-directional GRUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Figure 7.8. Network architecture for proposed PR-NN. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 7.9. Sliding-window evaluation process for PR-NN detector. . . . . . . . . . . . . . . . 130

Figure 7.10. Scenario 1: Individual training with AWGN. . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 7.11. Scenario 1: Individual training with ACN (for two channel densities) when
PW50/Tc = 2.54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 7.12. Scenario 1: Individual training with ACN (for two channel densities) when
PW50/Tc = 2.88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 7.13. Scenario 2: Joint training with AWGN and ACN (PW50/Tc = 2.54) and
evaluation on AWGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 7.14. Scenario 2: Joint training with AWGN and ACN (PW50/Tc = 2.54) and
evaluation on ACN (PW50/Tc = 2.54). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 7.15. Scenario 2: Joint training with ACN when PW50/Tc = 2.54 and ACN
when PW50/Tc = 2.88 and evaluation on ACN when PW50/Tc = 2.54. . . 138

Figure 7.16. Scenario 2: Joint training with ACN when PW50/Tc = 2.54 and ACN
when PW50/Tc = 2.88 and evaluation on ACN when PW50/Tc = 2.88. . . 138

Figure 7.17. Scenario 3: Individual training with “realistic” datasets at PW50/Tc = 2.54
and evaluation on “realistic” datasets at PW50/Tc = 2.54. . . . . . . . . . . . . . . 139

Figure 7.18. Scenario 3: Individual training with “realistic” datasets at PW50/Tc = 2.88
and evaluation on “realistic” datasets at PW50/Tc = 2.88. . . . . . . . . . . . . . . 139

Figure 7.19. Scenario 3: Joint training with “realistic” datasets for both PW50/Tc =
2.54 and PW50/Tc = 2.88 and evaluation on “realistic” datasets for
PW50/Tc = 2.54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



Figure 7.20. Scenario 3: Joint training with “realistic” datasets for both PW50/Tc =
2.54 and PW50/Tc = 2.88 and evaluation on “realistic” datasets for
PW50/Tc = 2.88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xi



LIST OF TABLES

Table 4.1. Symbol Probabilities and Costs for Optimal Shaping Codes . . . . . . . . . . . . . 48

Table 5.1. Capacity Comparison Between C1D
Lq

, 1D Binary RR Capacity C1D
RR2, and 1D

4-ary RR Capacity C1D
RR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.2. Comparisons of Rate, Complexity, and Error Propagation at the Same
Length Between 2D RR and 1D Binary RR Constrained Coding Schemes . 79

Table 5.3. Comparisons of Minimum Coded Data, Complexity, and Error Propaga-
tion to Achieve Certain Rate Between 1D Binary RR and 1D 4-ary RR
Constrained Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 6.1. Numerical Values of Pattern-Dependent Error Rates for the Most Severe
ICI Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 6.2. Sizes of Training and Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 6.3. Modeling Experiments and Training Iterations . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 6.4. Total Variation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 7.1. Starting and Ending Dummy Values for Each State in the Coded E2PR4
State Machine. “Unknown” Means Unknown Starting or Ending State for
the Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 7.2. Batch Size Settings for the Training Datasets and Evaluation Cases in Each
Experiment of the Three Scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xii



ACKNOWLEDGEMENTS

I would like to thank many people for understanding, supporting, and helping me during

my Ph.D. life at UCSD. It is challenging that half of my Ph.D. time was spent during the COVID

pandemic.

First and foremost, I would like to sincerely thank my advisor, Professor Paul H. Siegel.

As a lecturer, He is a professional advisor in coding theory series courses, leading us from course

to research problems. he is the most responsible lecturer in ECE 250 and I am lucky to be the

TA in his course. As an advisor, his insights on data storage and his guidance on research help

me realize and overcome technical challenges in HDD and SSD. I am also grateful for all the

on-campus, beach, thanksgiving, and virtual parties we have ever enjoyed. Paul is a devoted

researcher, a brilliant mentor, a passionate lecturer, and a kind friend. I am deeply grateful to be

his student.

I would appreciate many professors for their help over the years. I must thank Nuno Vas-

concelos for the extraordinary machine learning series courses and for serving on my preliminary

exam committee and defense committee. I would express my gratitude to Ramesh Rao for the

valuable TA opportunity in ECE 250 and for serving on my preliminary exam committee and

defense committee. I would appreciate Steven Swanson for serving on my defense committee

and for organizing NVMW. I would like to thank Alon Orlitsky for the information theory course

and for hosting beautiful ITA workshops. I am thankful for all lecturers: Robert Lugannani,

Laurence B. Milstein, Young-Han Kim, Alexander Vardy, Xinyu Zhang, Manuela Vasconcelos,

Todd Kemp, Niema Moshiri, Pengtao Xie, and Bryan Chin. I particularly enjoyed interesting

discussions with Anxiao (Andrew) Jiang in ITA and NVMW. I am indebted to Ahmed Hareedy

and Robert Calderbank for our wonderful collaboration on read-and-run constrained codes. I

would thank Richard Wesel for organizing NASIT 2022 at UCLA and giving me an unforgettable

information theory summer school. I would like to thank Brian M. Kurkoski for the stimulating

discussion on ITA graduation day. I would thank Paul H. Siegel, Tara Javidi, Alon Oslitsky, and

Ken Zeger for selecting me as the recipient of the 2023-2024 Shannon Graduate Fellowship. I

xiii



sincerely appreciate Qin Huang at Beihang University for introducing me to the world of coding

theory and giving me courage to explore further in this fantastic field.

It has been an exceptional experience for me to collaborate with those talented researchers:

Yi Liu, Michael Baluja, Ahmed Hareedy, Robert Calderbank, Chih-Hui Ho, Wenyu Peng, Andrew

Tan, Carolina Fernández, Ismael González Valenzuela. I am grateful to CMRR STAR Group

members: Pengfei Huang, Yonglong Li, Yi Liu, Andreas Lenz, Wei Wu, Karthik Nagarjuna

Tunuguntla, Navya Sree Prem, Shahar Dror, Yang Qiu, Michael Baluja, Ziwei Liu, Omer Sabary,

Wenyu Peng, Sarah Ekaireb, Goldie Jin, Zachary Taylor Blair, Andrew Tan, and Ziyuan Zhu.

We had so many exciting conversations in both research and life. I would appreciate help from

the industry: Naoaki Kokubun, Hironori Uchikawa, Dongmin Shin, Sangho Yun. I would also

thank my TAs: Bentao Zhang, Chih-Hui Ho, and Hanwen Yao for their high-level teaching

professionalism.

Outside UCSD, I have been lucky to have internships in industry-leading companies:

I would thank Joseph B. Soriaga, Arash Behboodi, and Jilei Hou at Qualcomm. Exploring

generative models for wireless communication systems inspires several ideas in my thesis. I

would also appreciate Ned Varnica, Erich Haratsch, and Mats Öberg at Marvell. My research

particularly benefits from understanding NAND flash architecture during Marvell internship.

The patents demonstrate the fruitful internships.

I would like to thank CMRR staff: Marina Robenko, Yvonne Gao, Octavio Ochoa,

Raymond Descoteaux, and the cleaning staff, for providing me with a comfortable place for

research.

I am super lucky to have my friends in San Diego: Jiaye Zhou, Chenlin Liu, Zhaoyuan

He, Gehua Qin, Jiong Liu, Yang Qiu, Song Wang, Jingqi Huang, Kun Qian, Xin Xiao, Yang Fu,

Chongbin Zhang, Susu Luo, Kan Wang, and Kaiyan Yan. My life at San Diego is colorful and

joyful with your consistent company. I would also appreciate all my friends from Chongqing

No. 1 Middle School and Beihang University. Our friendship which spans over ten years is

an extremely precious treasure. I would thank all my friends for participating in my joys and

xiv



sorrows throughout the years.

Most importantly, I would appreciate my parents for their love, support, and caring. I

dedicate this dissertation to them.

The research was supported in part by the NSF under Grant CCF-2212437, Koxia

Corporation, Marvell Technology, and the Center for Memory and Recording Research at the

University of California San Diego.

Chapter 3 is in part a reprint of the material in the paper: Simeng Zheng, Chih-Hui

Ho, Wenyu Peng, and Paul H. Siegel, “Flash-Gen: Spatio-temporal generator for flash memory

systems,” submitted to IEEE Transactions on Communications. The work was presented at DATE

2023: Simeng Zheng, Chih-Hui Ho, Wenyu Peng, and Paul H. Siegel, “Spatio-temporal modeling

for flash memory channels using conditional generative nets,” in Proc. Design, Automation &

Test in Europe Conference & Exhibition, Antwerp, Belgium, Apr. 2023.

Chapter 4 is in part a reprint of the material in the paper: Simeng Zheng, Andrew Tan,

Carolina Fernández, Ismael González Valenzuela, and Paul H. Siegel, “Optimal shaping codes for

a TLC flash memory,” in Annual Non-Volatile Memories Workshop (NVMW), La Jolla, CA, USA,

Mar. 2024. The work was presented at Annual Non-Volatile Memories Workshop (NVMW) in

Mar. 2024.

Chapter 5 is in part a reprint of the material in the paper: Ahmed Hareedy, Simeng

Zheng, Paul H. Siegel, and Robert Calderbank, “Efficient constrained codes that enable page

separation in modern flash memories,” IEEE Transactions on Communications, vol. 71, no. 12,

pp. 6834–6848, Dec. 2023. The work was also presented in part at ICC 2022 and NVMW 2024:

A. Hareedy, S. Zheng, P. H. Siegel, and R. Calderbank, “Read-and-run constrained coding for

modern flash devices,” in Proc. IEEE International Conference Communications (ICC), Seoul,

South Korea, May 2022; Ahmed Hareedy, Simeng Zheng, Paul H. Siegel, and Robert Calderbank,

“Read-and-run constrained coding for modern flash memories,” in Annual Non-Volatile Memories

Workshop (NVMW), La Jolla, CA, USA, Mar. 2024.

Chapter 6 is in part a reprint of the material in the paper: S. Zheng and P. H. Siegel,

xv



“Code-aware storage channel modeling via machine learning,” in Proc. IEEE Information Theory

Workshop (ITW), Mumbai, India, Nov. 2022, pp. 196–201. The work was presented at ITW

2022.

Chapter 7 is in part a reprint of the material in the paper: Simeng Zheng, Yi Liu, and Paul

H. Siegel, “PR-NN: RNN-based detection for coded partial-response channels,” IEEE Journal

on Selected Areas in Communications, vol. 39, no. 7, pp. 1967–1982, July 2021. The work was

also presented in part at ITW 2020: Simeng Zheng, Yi Liu, and Paul H. Siegel, “RNN-based

detection for coded partial-response channels,” in Proc. IEEE Information Theory Workshop

(ITW), Riva del Garda, Italy, Apr. 2021.

xvi



VITA

2014–2018 Bachelor of Engineering in Electronic and Information Engineering, Beihang
University, China

2018–2020 Master of Science in Electrical and Computer Engineering (Communication Theory
and Systems), University of California San Diego

2020–2024 Doctor of Philosophy in Electrical and Computer Engineering (Communication
Theory and Systems), University of California San Diego

2023–2024 Shannon Graduate Fellowship

PUBLICATIONS

Simeng Zheng, Andrew Tan, Carolina Fernandez, Ismael González Valenzuela, and Paul H.
Siegel, “Code-aware storage channel modeling via transfer learning,” to be submitted to IEEE
Transactions on Communications.

Simeng Zheng, Chih-Hui Ho, Wenyu Peng, and Paul H. Siegel, “Flash-Gen: Spatio-temporal
generator for flash memory systems,” submitted to IEEE Transactions on Communications.

Ahmed Hareedy, Simeng Zheng, Paul H. Siegel, and Robert Calderbank, “Efficient constrained
codes that enable page separation in modern flash memories,” IEEE Transactions on Communi-
cations, vol. 71, no. 12, pp. 6834–6848, Dec. 2023.

Simeng Zheng, Yi Liu, and Paul H. Siegel, “PR-NN: RNN-based detection for coded partial-
response channels,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp.
1967–1982, July 2021.

Simeng Zheng, Andrew Tan, Carolina Fernández, Ismael González Valenzuela, and Paul H.
Siegel, “Optimal shaping codes for a TLC flash memory,” in Annual Non-Volatile Memories
Workshop (NVMW), La Jolla, CA, USA, Mar. 2024.

Ahmed Hareedy, Simeng Zheng, Paul H. Siegel, and Robert Calderbank, “Read-and-run con-
strained coding for modern flash memories,” in Annual Non-Volatile Memories Workshop
(NVMW), La Jolla, CA, USA, Mar. 2024.

Simeng Zheng, Chih-Hui Ho, Wenyu Peng, and Paul H. Siegel, “Spatio-temporal modeling for
flash memory channels using conditional generative nets,” in Proc. Design, Automation & Test
in Europe Conference & Exhibition, Antwerp, Belgium, Apr. 2023.

xvii



S. Zheng and P. H. Siegel, “Code-aware storage channel modeling via machine learning,” in
Proc. IEEE Information Theory Workshop (ITW), Mumbai, India, Nov. 2022, pp. 196–201.

A. Hareedy, S. Zheng, P. H. Siegel, and R. Calderbank, “Read-and-run constrained coding for
modern flash devices,” in Proc. IEEE International Conference Communications (ICC), Seoul,
South Korea, May 2022.

Simeng Zheng, Yi Liu, and Paul H. Siegel, “RNN-based detection for coded partial-response
channels,” in Proc. IEEE Information Theory Workshop (ITW), Riva del Garda, Italy, Apr. 2021.

Qin Huang, Simeng Zheng, Yuanhan Ni, Zulin Wang, and Shuai Wang, “Querying policies
based on sparse matrices for noisy 20 questions,” in Proc. IEEE International Symposium on
Information Theory (ISIT), Paris, France, July 2019.

xviii



ABSTRACT OF THE DISSERTATION

Machine Learning Techniques for Data Storage Systems: Modeling, Coding, and Detection

by

Simeng Zheng

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2024

Professor Paul H. Siegel, Chair

As data explodes in modern applications, such as the Internet of Things (IoT), the needs

for storage devices drastically increase. Solid state drives (SSDs) and hard disk drives (HDDs)

are two main data storage devices. SSDs store data in flash memories, while HDDs store data in

magnetic disks. To extend the lifetime and enhance the reliability of data storage devices, we

utilize machine learning as the fundamental tool for three data storage modules: modeling in

flash memory systems, error correction and constrained coding schemes, and detection method

in magnetic recording channels.

The modeling part of the dissertation is devoted to proposing a novel data-driven approach,

xix



referred to as Flash-Gen, to generating NAND flash memory read voltages in both space and

time using conditional generative networks. This generative modeling method reconstructs

read voltages from an individual memory cell based on the program levels of the cell and its

surrounding cells, as well as the time stamp, in a time-efficient, resource-saving, and function-

comprehensive manner. As the needs for data-dependent channel models, we further extend the

generative modeling approach to the coded storage channel. We train the generative models via

transferring knowledge from models pre-trained with pseudo-random data. This technique can

accelerate the training process and improve model accuracy in reconstructing the read voltages

induced by constrained input data throughout the flash memory lifetime.

The coding part of the dissertation designs practical coding workflow and proposes new

constrained and shaping coding schemes for flash memories. We propose a flash system optimiza-

tion procedure, referred to as the Flash-Gen coding workflow, that leverages reconstructed read

voltages from Flash-Gen for the development of error correction codes (ECCs) and constrained

codes. Flash-Gen coding workflow can effectively address a range of important tasks, including

threshold determination, coding performance estimation, and pattern characterization. We then

formulate inter-cell interference (ICI)-mitigation constrained codes and distribution-matching

shaping codes. The proposed coding schemes both achieve remarkable lifetime improvement.

The detection part of the dissertation builds recurrent neural network (RNN)-based

detection for magnetic recording channels with partial-response equalization, which is referred to

as Partial-Response Neural Network (PR-NN). PR-NN outperforms classical detection methods,

such as the Viterbi detector, under multiple “realistic” environments and preserves the detection

performance across different channel conditions.
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Chapter 1

Introduction
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1.1 Data Storage and Machine Learning

In recent years, machine learning has proven to be highly effective across various

applications, particularly in the fields of computer vision and natural language processing. The

ongoing revolution in artificial intelligence is profoundly reshaping the fields of data storage

systems. We treat data storage devices, such as flash memories and magnetic drives, as a

communication system. The communication system takes an input write signal and produces

an output read signal. The coding techniques, including error correction codes (ECCs) and

constrained codes, aim to recover the distorted data and mitigate various types of error sources

in storage devices. Machine learning can be a critical tool to analyze and assist the necessary

modules in data storage systems [51].

Understanding the NAND flash memory channel has become more and more challenging

due to the continually increasing density and the complex distortions arising from the write

and read mechanisms. Several mathematical models could reconstruct the read voltage dis-

tributions [11, 67, 78, 95] and hard bit errors [94, 112]. As system becomes more and more

complicated, machine learning has been exploited to model flash memory channels [73, 75–77].

Machine learning-based modeling approaches are also proposed for wireless communication

channels [5, 93] and DNA storage channels [53]. In this dissertation, we develop a spatio-

temporal generative modeling approach for flash memory systems. Furthermore, we transfer the

knowledge from the pretrained generative models to data-dependent cases, which accelerates the

training process and preserves the reconstruction quality.

We then study a variety of error correction and mitigation mechanisms based on the

understanding of channels. Error correction codes use parity check bits to detect and correct the

bit errors that occur within flash memory. The typical ECC algorithm is low-density parity-check

(LDPC) codes [10,46,123]. Constrained codes forbid error-prone patterns in both flash memories

and hard disk drives to mitigate inter-cell and inter-symbol distortions distortions [1, 23, 30, 34,

35,39,49,55,86,111,115,121,128]. Shaping codes, the distribution-matching codes, find several
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successful applications in flash devices by optimizing the wear costs associated with program

levels [70–72, 104]. In this dissertation, the practical LDPC coding workflow is designed to

optimize LDPC coding schemes for flash memory. Efficient constrained coding is formulated to

enable page separation and the optimal shaping code is constructed to minimize the wear costs

for the TLC flash device.

Exploring data storage systems and analyzing data protection schemes, we aim to study

the data detection techniques for data storage systems. The classical detection method for

magnetic recording channels with constrained coding is trellis-based sequence detection [4, 20,

21, 54, 117]. Deep neural networks are applied to communication and storage decoders [7, 26, 32,

52, 59, 68, 89, 101, 105, 106, 110]. The RNN-based detection, capable of streaming data inputs

and preserving detection results under several situations, are proposed in this dissertation.

The synergy between machine learning and data storage systems is stimulating crucial

mutual advancement [51]. Information theory is also important for machine learning models and

their data. As models and data are stored in storage clusters, coding theory can protect model

parameters and data from distortions [45].

1.2 Dissertation Overview

In this dissertation, we first introduce the data characterization platform for flash memory.

Then, we propose generative modeling methods for flash memory systems. According to our

error characterization for flash memories, we propose the optimal shaping coding scheme and

the efficient constrained coding method for flash memories. We further design code-aware and

data-dependent generative models. We finally establish the machine learning-based and robust

detector for partial-response channels. The dissertation is organized as follows.

In Chapter 2, we introduce the FPGA platform for TLC flash memory characterization.

We explore the flash conditions using hard read mode and soft read mode. We design the

data-dependent workflow to incorporate coding schemes into the write information. The flash
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charaterization platform serves as the experimental foundation for all modeling, coding, and

detection work in later chapters.

In Chapter 3, we propose Flash-Gen framework to generate flash memory read voltages

in both space and time using conditional generative networks. We then utilize the reconstructed

read voltages for the development of error correction codes (ECCs) and constrained codes.

This coding development process can effectively address a range of important tasks, including

threshold determination, coding performance estimation, and inter-cell interference (ICI) pattern

characterization. The system modeling for flash memory motivates our researches on coding

schemes in Chapter 4 and Chapter 5.

In Chapter 4, we establish the optimal shaping codes for a TLC flash memory. In TLC

flash devices, three bits are stored in each cell to represent one of 8 program levels and wear costs

for 8 levels are different during the repeated program and erase operations. The goal of shaping

codes is to optimally shaping the probability distribution of sequences so that sequences with

high wear costs have low probability and sequences with low wear costs have high probability.

We demonstrate 10× chip lifetime improvement based on Spanish-language texts.

In Chapter 5, we suggest new constrained coding schemes referred to as read-and-run

(RR). The idea is to avoid error-prone patterns by coding data either only on the left-most page

or only on the two left-most pages while leaving data on all remaining pages uncoded. The page

separation idea preserves high access speed and the coding on one or two pages reduces the

rate loss without impacting the device reliability. We verify RR codes using several constrained

coding schemes, including lexicographically-ordered constrained (LOCO) codes, interleaved

run-length limited (RLL) codes, and two-dimensional (2D) constrained codes. The notable

performance gain is achieved via RR coding on our flash characterization platform.

In Chapter 6, we extend our Flash-Gen approach to the data-dependent storage channel.

To reduce the experimental overhead associated with collecting extensive measurements from

constrained program/read data, we train Flash-Gen models via transferring knowledge from

models pre-trained with pseudo-random data. This technique can accelerate the training process
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and improve model accuracy in reconstructing the read voltages induced by constrained input

data.

In Chapter 7, we investigate the use of recurrent neural network (RNN)-based detection

of magnetic recording channels with inter-symbol interference (ISI). We refer to the proposed

detection method, which is intended for recording channels with partial-response equalization,

as Partial-Response Neural Network (PR-NN). We train bi-directional gated recurrent units

(bi-GRUs) to recover the ISI channel inputs from noisy channel output sequences and evaluate

the network performance when applied to continuous, streaming data. We demonstrate that the

PR-NN detector outperforms Viterbi detection and achieves the performance of Noise-Predictive

Maximum Likelihood (NPML) detection in additive colored noise (ACN) at different channel

densities. We further show that PR-NN maintains its performance when jointly trained with two

different channel conditions.
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Chapter 2

Flash Characterization Platform
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2.1 Measurement Method

As shown in Fig. 2.1, the flash characterization platform is an FPGA platform and can

control and communicate with vendor triple-level cell (TLC) flash chips [8]. The developed

software API can operate low-level hardware actions. We use the software API to simulate the

write/read/erase operation cycle in flash chips.

The basic unit of data storage in NAND flash memory is a floating-gate transistor, referred

to as a cell. The cells are organized into an interconnected 2-D array, called a block, via horizontal

wordlines (WLs) and vertical bitlines (BLs). In our chip, each block has the right plane and the

left plane. The flash memory chip is composed of a collection of such blocks. The basic unit of

write and read operations in flash memory is a page, corresponding to a logical bit position in

a wordline of a block. For TLC flash, the three pages are referred to as the lower, middle, and

upper page. On the other hand, the basic unit of an erase operation is an entire block.

We briefly summarize functions:

• Program: write data on a wordline. Each wordline must be written three times as required

by the TLC device’s 3-stage program sequence.

• Erase: erase data in a block.

• Soft Read: read the voltage level for all cells on a page. The voltage level is fine-grained

information about the voltage written to each cell.

• Hard Read: read the bit information for all cells on a page.

We conduct program/read/erase experiments as follows:

1. Erase flash memory block under test.

2. Program all pages of block under test with pseudo-random data.
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Figure 2.1. The FPGA testboard is the flash characterization platform.

3. We initially set values of read cycles. After the specific program/erase (P/E) cycles,

perform a hard or soft read operation on the tested block. If we set retention time as 0,

the read operation will be implemented instantly. Otherwise, the read operation will be

implemented after the retention time.

4. For each cell, record the read information for post-processing.

The post-processing method for hard read signals focus on BER at different time stamps.

In Chapter 5 and Chapter 4, we operate hard measurement experiments to verify bit error rate

(BER) performance on designed coding schemes. The post-processing methods for soft read

signals include probability density function (PDF) visualization, statistical analysis, error-prone

patterns recognition, and read threshold determination. In Chapter 3 and Chapter 6, we operate

soft measurement experiments to analyze measured and reconstructed signals.
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Figure 2.2. The system of coding incorporation module on flash characterization platform.

2.2 Coding Incorporation Module

We design the coding incorporation module to write encoded data instead of pseudo-

random data into flash chip. The idea is to replace the memory of write variable with encoded

data. We utilize Dump/Restore function in the Xilinx tool store.

We present the system of the coding incorporation module in Fig. 2.2. We perform

program/read/erase experiments in the online part. We prepare coded data sequences and

post-process read data in the offline part.

Due to the variation of mappings between manufacturers and product generations, we

propose mapping conversion between the classical recursive alternate Gray mapping (RAGM)

and vendor mapping to keep the consistency of programmed data. In TLC flash device, the

mapping function converts 3 bits in one cell into 8 program levels and the demapping function

represents 8 program levels into 3 information bits.
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Chapter 3

Flash-Gen: Spatio-temporal Generator for
Flash Memory Systems
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3.1 Introduction

NAND flash memory is a non-volatile data storage medium, widely utilized in consumer

electronics and large-scale data centers [10]. The basic storage unit in a flash memory is a

floating-gate transistor, referred to as a cell. The cell can encode one or multiple bits of data

as a discrete set of charge levels induced by a program operation. During a read operation, the

program level is determined by measuring the threshold voltage of the cell. As the manufacturers

scale down to a smaller flash memory chip and more bits are stored in one cell, identifying the

voltage level stored in the cell becomes more and more difficult. This scaling of flash memory is

accompanied by diminished memory reliability and reduced device endurance.

The distribution of read voltage levels corresponding to a program level is influenced

by a variety of distortions. The distortions in NAND flash memory are manifold, including

programming errors, inter-cell interference (ICI) due to parasitic capacitance coupling between

adjacent cells, cell wear during program/erase (P/E) cycling, cell charge loss due to data retention,

and program/read disturb effects. As the cell bit density increases and the gap between adjacent

program levels decreases, these distortions and the reduced separation of the read voltage

distributions of neighboring levels lead to an increase in error probability.

In order to compensate for the sophisticated noise and recover the stored bits in each

cell, solid-state drives (SSDs), composed of a number of flash chips, incorporate advanced

coding schemes within their controllers. Commonly used coding schemes in SSD controllers are

error-correction codes (ECCs). Typical ECCs employed in flash controllers are Bose-Chaudhuri-

Hocquenghem (BCH) codes and low-density parity-check (LDPC) codes [10,46]. As the NAND

flash devices wear out under repeatedly program and erase operations or perform read operations

with extended wait time, the bit error rate (BER) of the flash chip increases. When BER exceeds

the maximum number of errors that ECC can correct, it becomes impossible to fully recover the

read information, resulting in data loss. The endurance of an SSD is determined by the number

of program/erase (P/E) cycles that can be performed without uncorrectable errors.
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Constrained codes are another type of coding scheme, which avoids patterns prone to

errors caused by inter-cell interference (ICI) effects [34, 38, 39]. The primary cause of ICI

stems from the charge propagation from cells programmed with high levels to neighboring

cells programmed with lower levels. Constrained codes aim to characterize and forbid those

problematic patterns in flash devices.

The characterization of complicated flash errors and the design of these reliability-

enhancing coding algorithms rely upon a comprehensive understanding of the flash memory

system. A common approach for system characterization is to treat a flash cell as a communica-

tion channel. The communication channel takes an input program level and produces an output

voltage level. An accurate model of the channel is therefore an indispensable tool. Moreover,

such a model can potentially obviate the need for hardware- and time-intensive data collection

for use in evaluating and optimizing the coding algorithms.

Several mathematical and machine learning models supported by empirical measurements

or simulated voltages in flash memory have appeared in the literature. Cai et al. [11] model

the voltage distribution in 2-bit per cell MLC flash devices as a Gaussian distribution. Parnell

et al. [95] proposed a parameterized Normal-Laplace mixture model that more accurately

describes MLC flash read voltage distributions. Luo et al. [78] proposed another accurate and

computationally more efficient model for MLC flash, based on a modified version of the Student’s

t-distribution and a temporal power law. Statistical analysis of hard bit errors in [94, 112] and

characterization of dominant error patterns in [12, 67] offer additional empirical understanding

of flash memories.

Recently, there has been great interest in the application of machine learning in commu-

nications and networking, including data storage. For example, machine learning can be used to

design robust signal detectors in magnetic recording [128] and establish LDPC decoders with

flexible code lengths and column weights [123]. Machine learning has also been exploited to

model flash memory channels. Liu et al. [77] used a neural network (NN) to model simulated

read voltages as a function of P/E cycles for one individual program level in isolated MLC flash
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cells. Liu et al. [75] provided flash memory conditions to a NN to model voltage distributions

for 3D NAND flash. Liu et al. [76] used a time-dependent NN to predict page error counts in

TLC flash. Liu et al. [73] generated errors in 3D NAND flash using a conditional generative

adversarial network (GAN) architecture.

However, as effective as these mathematical or machine learning models have been in the

scenarios to which they have been applied, none has provided an accurate model of both spatial

and temporal characteristics of flash memory read voltages and none could serve as the basis for

read channel design tasks such as read threshold optimization, error-prone pattern ranking, and

performance evaluation of ECCs and constrained codes.

Generative modeling techniques such as the Generative Adversarial Network (GAN)

[31], the Variational Auto-Encoder (VAE) [62], and diffusion models [43] have been successfully

applied to several situations, such as image processing [50]. Generative modeling has now

became an important tool for analyzing both wireless communication systems and DNA storage

systems. For example, GAN has been applied to capture the channel impulse response distribution

in multi-input and multi-output (MIMO) wireless communication channel [93] and VAE is an

essential model to reconstruct authentic communication signals [5]. GAN has also been used to

learn the error statistics of a DNA storage channel and to provide a simulation tool for developing

improved error-correction coding and DNA sequence recovery algorithms [53].

In view of the demonstrated power of neural networks in learning complex multidi-

mensional distributions, we propose the use of conditional generative nets as an approach to

modeling flash memory read voltages in both space and time. The read voltages of each cell can

be regenerated by the learned model from an array of program levels. We refer to this generative

modeling method as Flash-Gen. We summarize our contributions in this work as follows:

1. We propose a comprehensive, flexible, and data-driven Flash-Gen model to accurately

reconstruct soft read voltages at each individual cell unit of flash memory. This machine

learning approach can be flexibly applied to flash memories of any technology generation
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and chip feature size.

2. We formulate a temporally controllable, conditional VAE-GAN network to regenerate cell

read voltages from the program levels of an array of flash memory cells and a time stamp

representing the P/E cycle count and the retention time.

3. We propose the Flash-Gen coding workflow. This workflow simulates the “realistic” error

correction environment with LDPC codes in an SSD controller and emulates multiple

necessary steps in hard-decision and soft-decision decoding. It also estimates the relative

frequencies of spatially-dependent and pattern-dependent ICI-induced hard read errors to

help the design of constrained codes.

4. We validate the proposed Flash-Gen on a 1X-nm, 3-bit per cell (TLC) NAND flash chip

across various wear conditions. The evaluation metrics used to compare the model outputs

to measurements include the read voltage distributions at different time stamps, the measure

of central dispersion of different program levels, and the error counts of different program

levels.

5. We explore several essential applications of Flash-Gen coding workflow with practical

LDPC codes and constrained codes. By evaluating LDPC decoding performance, analyzing

the threshold selection during read process, and ranking error-prone patterns for constrained

code design and evaluation, we demonstrate the consistency between Flash-Gen coding

workflow and realistic NAND flash controller.

3.2 Flash Memory and Spatio-temporal Noise

3.2.1 Flash Memory Basics

We start from the basic unit cell in a flash chip. Today’s flash memories are capable of

storing single or multiple bits (e.g., 2 to 5 bits) per cell, where the n-bit strings correspond to

q = 2n program levels. The cells are organized into an interconnected two-dimensional (2D)

14



7

6

5

4

3

2

1

0

011

010

000

001

101

100

110

111

Low Voltage

High Voltage Lower Page Middle Page Upper Page

WLi−1

WLi

WLi+1

WLi+2

BL j−1 BL j BL j+1 BL j+2

000 011 111 100

011 111 011 010

000 011 111 100

110 101 010 111

Figure 3.1. (Left) Example mapping of cell program levels to binary representations in TLC flash.
(Right) Schematic diagram of a TLC flash memory block showing the 2-D array of cells connected in the
horizontal direction by wordlines (WLs) and in the vertical direction by bitlines (BLs).

array, called a block, via horizontal wordlines (WLs) and vertical bitlines (BLs). The flash

memory chip is composed of a collection of such blocks. In 3D NAND flash, these 2D arrays

are stacked vertically to achieve larger volumetric density [74, 94]. Fig. 3.1 depicts a schematic

diagram of a planar TLC flash memory block and an example of a Gray mapping from the q = 8

program levels to the corresponding data words of n = 3 binary digits.

The basic unit of write (i.e., program) and read operations in flash memory is a page,

corresponding to a logical bit position in a wordline of a block. We refer to the program level as

PL and the soft read voltage level as VL. On the other hand, the basic unit of an erase operation

is an entire block.

In the program operation, we refer to the PLs of three consecutive cells along WLs or

BLs as a pattern. As an example, in Fig. 3.1, the programmed levels PLi−1,jPLi,jPLi+1,j in WLs

(i− 1), i, (i+1) of BL j, correspond to bit strings “011”, “111”, “011”, which we associate with

the pattern 707 in the vertical (BL) direction.
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Figure 3.2. PDF visualizations of a 3D TLC NAND flash memory for measured voltage levels at
no retention time, 3 months retention, and 1 year retention time when P/E cycle count is 10, 000
P/E. Solid curves, dotted curves, and dashed curves correspond to distributions of retention
time 0 day, 3 months, and 1 year, respectively. Three brown vertical lines are the optimal read
threshold between program level 6 (color black) and program level 7 (color orange).

3.2.2 Spatio-temporal Characteristics

Flash memory channels suffer from distortions of a spatio-temporal nature, where ICI

effects correspond to spatial characteristics, P/E cycling noise and retention noise correspond to

temporal characteristics.

Spatial effects: ICI refers to the phenomenon where programming of a cell induces

changes in the voltage levels of neighboring cells within its block. In particular, the read

voltage level of a cell programmed to a low level may be inadvertently increased if its adjacent

cells are programmed to high levels, i.e., when the programming pattern is high-low-high.

As an example in Fig. 3.1, if we program a pattern PLi,j−1PLi,jPLi,j+1 = 707 in WL i or

PLi−1,jPLi,jPLi+1,j = 707 in BL j in a TLC chip, the read voltage VLi,j may be increased by its

high adjacent cells. During data detection, the recovered program level of the central “victim”

cell may therefore be erroneously interpreted as an incorrect level. ICI typically differs in the

WL and BL directions.
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Figure 3.3. Count of top error-prone patterns and level error rate at selected P/E cycles without
retention. The error pattern counts are normalized by the count of pattern 707 in BL direction at
4000 P/E cycles.

Temporal effects: P/E cycling gradually wears out the oxide layer of a cell. Data

retention causes the programmed cell to diffuse electrons over time. As a result of these effects,

the information stored in a cell can be misread. The changes of the read voltage distributions over

the range of retention time are shown in Fig. 3.2. The retention noise systematically shifts the

read thresholds to lower normalized voltage values as the retention time increases. For example,

the read thresholds between program level 6 and program level 7 in three different retention

timestamps are shown as brown vertical lines.

The integrated distortions of spatial ICI and temporal P/E cycling errors can be observed

in Fig. 3.3. As the P/E cycle count increases, the error rate is increasing. For an individual P/E

cycle count, the cell errors are clearly affected by neighboring program levels. Pattern 707 in the

BL direction is the most severely affected by ICI. Moreover, patterns 707, 706, and 607 in the

BL direction are more error-prone than those in the WL direction.
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3.3 Flash-Gen Formulation

We define the flash memory system as a communication channel. Program level PL

is from channel input domain P and voltage level VL is from channel output domain V . The

relationship between PL and VL can be represented as VL = FM(PL), where FM(·) : P → V

denotes the flash memory channel. More specifically, we consider the channel model in a

rectangular region of a block,

...

VLi−1,j−1 VLi−1,j VLi−1,j+1

· · · VLi,j−1 VLi,j VLi,j+1 · · ·

VLi+1,j−1 VLi+1,j VLi+1,j+1

...


= FM





...

PLi−1,j−1 PLi−1,j PLi−1,j+1

· · · PLi,j−1 PLi,j PLi,j+1 · · ·

PLi+1,j−1 PLi+1,j PLi+1,j+1

...




,

where PLi,j and VLi,j correspond to the program level and voltage level of one cell, where i and

j represent the WL and BL position of the cell, shown in Fig. 3.1.

When program level PL is given, voltage level VLi,j will be corrupted by both temporal

and spatial factors. Temporal distortions arise from repeated program and erase operations, as

well as from the time delay between program and read operations. Spatial distortions are caused

by problematic program patterns giving rise to ICI.

In this section, we present the framework of our Flash-Gen model. As program levels

from flash blocks and specific time stamps are provided, voltage levels can be sampled from Flash-

Gen efficiently and accurately. We adopt a conditional VAE-GAN (cVAE-GAN) architecture [64]

as the basis for our architecture. The network architecture is depicted in Fig. 3.4, where the

fusion of the VAE [62] and GAN [31] can leverage the information from the latent space to

produce high-quality and guarantee accurate reconstruction with the help of the discriminator.

The spatio-temporal combination module incorporates temporal information, i.e., P/E cycles

and retention into the voltage reconstruction. Our goal is to learn a mapping FM(·) between

program levels and soft read voltage levels at various time stamps, where the reconstructed

voltage levels accurately reflect the spatial and temporal nature of the channel.
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Figure 3.4. Flash-Gen architecture: encoder, generator, and discriminator constitute the genera-
tive modeling architecture. Here, z is the latent vector; Time is the corresponding time stamp
(P/E cycle count and retention time discussed in this project); PL is the array of program levels,
VL is the array of measured read voltage levels, and ṼL is the reconstructed array of read voltage
levels.

3.3.1 Flash-Gen Architecture Formulation

Given program level PL ∈ P , read voltage level VL ∈ V , temporal factor time stamp

representing P/E cycle count TP/E and the retention time Tγ , we aim to learn the analytically

intractable likelihood P (VL|PL, TP/E, Tγ), with the goal of capturing the spatio-temporal nature

of the flash memory channel.

Fig. 3.4 summarizes the architecture of our Flash-Gen. The conditional VAE-GAN archi-

tecture consists of three components: an encoder (Enc), a generator (Gen), and a discriminator

(Dis). The encoder maps the read voltages to the latent vector z at a specific TP/E cycle count

and retention time Tγ and replaces the prior distribution P (z) in the GAN with the learned

posterior distribution P (z|VL, TP/E, Tγ). The decoder in the VAE shares its weights with the

GAN generator [31]. In the conditional setting, the variational lower bound of P (VL|TP/E, Tγ)

can be derived as

logP (VL|TP/E, Tγ) ≥−DKL(Q(z|VL, TP/E, Tγ)||P (z|TP/E, Tγ))

+ EQ(z|VL,TP/E,Tγ)[log(P (VL|z, TP/E, Tγ))],

(3.1)

where DKL represents the Kullback-Leibler (KL) divergence. The distribution Q(z|VL, TP/E, Tγ)

of the latent vector z is trained to approach P (z|TP/E, Tγ) via the KL loss LKL, where
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P (z|TP/E, Tγ) is assumed to be a multivariate Gaussian distribution.

Generator will take both the learned latent vector and PL as input and generate a “fake”

ṼL. The latent vectors are sampled from Q(z|VL, TP/E, Tγ) using the re-parameterization

trick [62]. When sampling different latent vectors z from the same distribution, we can generate

multiple arrays of plausible voltages levels. The variations in these output arrays for a given

array of program levels reflect the stochasticity of the channel. The discriminator measures the

difference between PL and ṼL. The loss in the conditional GAN part is

LGAN = log(1−Dis(PL, Gen(PL, TP/E, Tγ, z))) + log(Dis(PL,VL)). (3.2)

Similar to VAE-GAN [64], we encourage the reconstructed voltage levels to match the authentic

voltage levels, using the ℓ2-norm to measure the reconstruction loss

Lrecon = ||VL−Gen(PL, TP/E, Tγ, z)||2. (3.3)

Combining these equations, we formulate the loss function of the cVAE-GAN architecture as

min
Gen,Enc

max
Dis
LGAN + αLrecon + βLKL. (3.4)

3.3.2 Spatio-temporal Fusion

To capture the spatial ICI effects in the channel model, we implement the generator using

a convolutional neural network (CNN), where VL is reconstructed from the PL values in its cell

and neighboring cells. To generate VL at an explicit time stamp, we control the generator with

an additional temporal factor and incorporate the time stamp into generator Gen.

In order for generator to be aware of time stamps, we inject some encoded information

about the time inputs. There are many choices of value expressions. We represent the time

inputs as a d-dimensional vector using powers or exponential values. We encode the normalized
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P/E cycle count using expressive powers, e.g., T 2
P/E,
√
TP/E, etc. The d-dimensional vector of

P/E cycle can be formulated as [T 0.5
P/E , T

1
P/E, T

1.5
P/E , ...]. Inspired by the modeling of retention noise

in [67], we represent the normalized retention time using various exponential values e−νTγ , where

ν is a constant parameter. The encoded vector can be presented as [e−1Tγ , e−0.75Tγ , e−0.5Tγ , ...].

We illustrate the fusion mechanism in generator using controllable P/E cycle count. We

first encode the normalized P/E cycle count into a d-dimensional P/E vector, which contains

expressive powers of the normalized P/E cycle. Then, we spatially replicate the d-dimensional

P/E vector to the feature map with appropriate size H ×W × d and concatenate it with the

H×W ×C feature from each layer in Gen, where H×W is the spatial dimension of the feature

from each convolutional layer and C is the number of channels in the CNN. The channel-wise

fusion produces the final feature with size H × W × (C + d) of each layer. The fusion of

the features from the program levels and the P/E feature maps guarantees the spatial-temporal

characteristics of the reconstructed voltage levels. The controllable retention time shares the

same fusion architecture with different encoded time vectors.

3.3.3 Implementation Details

Datasets: We validate the proposed Flash-Gen using datasets collected from one com-

mercial 1X-nm TLC flash chip. We prepare two datasets for verification: P/E cycling dataset

and retention dataset. We conduct the P/E cycling experiment by erasing a block, program-

ming pseudo-random data, and reading voltage levels at selected P/E cycle counts with fixed

retention time. We record the {PL,VL} dataset at selected P/E cycles 4000, 7000, and 10000

with immediate reads. For the retention datasets, we repeatedly erase and program blocks with

pseudo-random data to predefined P/E cycle counts, and read voltage levels after a certain

retention time at room temperature. We record the {PL,VL} dataset at 4000 P/E cycles with 0

retention time, τ retention time, and 2τ retention time.

In order to fit blocks of recorded data into the network architecture, we crop the {PL,VL}

pairs of the recorded blocks into non-overlapping 64× 64 2-D arrays. In P/E cycling dataset, the
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number of 2-D arrays in the training set is 1.5× 105 (5× 104 for each P/E cycle) and the size of

the evaluation dataset is 2.1× 104 (7× 103 for each P/E cycle). In retention dataset, the number

of 2-D arrays in the training set is 9× 104 (3× 104 for each retention time) and the size of the

evaluation dataset is 2.1× 104 (7× 103 for each retention time).

Network: The three network modules in Fig. 3.4 refer to: ResNet [41] (Enc), U-net [99]

(Gen), and PatchGAN [50] (Dis). The dimensions of latent vector z and time vector are both set

to 6. The following descriptions of the modules exploit the terminologies in the corresponding

references.

1. Encoder: We use the two residual blocks, each of which contains two 3× 3 convolutional

layers with stride 1 and padding 1. We then add two linear layers, which map output

features to mean and variance for the latent vector.

2. Generator: Ck denotes a Convolution-BatchNorm-ReLU layer with k output channels.

All convolutions are 4 × 4 kernels applied with stride 2 and padding 1. The network

architecture before spatio-temporal fusion can be described as

(Down Part) C64, C128, C256, C512, C512, C512,

(Up Part) C512, C512, C256, C128, C64, C1.

where we inject latent vector z by replication and concatenation into every layer in the

“Down” part [132], and each layer in the “Up” part receives skip connections from the

corresponding layer in the “Down” part [99].

3. Discriminator Dis: The input to the discriminator is the concatenation of fake voltage

levels and program levels. With the same naming convention as in the generator, we

express the discriminator as C64, C128, C1.

We compared the cVAE-GAN model to other popular generative modeling architectures:

conditional GAN [50], conditional VAE [108], and Bicycle GAN [132]. When we compare
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the total variational distance of voltage distributions between measured data and sampled data

from the evaluation dataset, the cVAE-GAN model reconstructs the read voltage levels with the

highest quality. The numerical results of comparison are not included due to the space limitation.

Remark 1. Flash-Gen can be generalized to any multi-level flash device including 3D NAND

flash. In order to characterize the severe layer-to-layer interference in 3D flash [73, 94], we can

crop the 3D arrays of collected {PL,VL} pairs and modify the Flash-Gen network realization to

include 3D convolutional networks in all of the modules.

Learning: We trained Flash-Gen models given dataset from scratch. We settled upon

the training parameters after several experiments. Adam optimizer is used with learning rate

2× 10−4. Parameters in the loss function (3.4) are set to α = 10 and β = 0.01. The P/E cycling

Flash-Gen is trained with recorded {PL,VL} dataset at P/E cycle counts 4000, 7000, and 10000.

The total number of iterations is 5.25× 105 for P/E cycling Flash-Gen and the batch size is 2.

The retention Flash-Gen is trained with a dataset reflecting retention times 0, τ , and 2τ , where τ

is chosen to observe noticeable differences in level distributions at the three time stamps. The

total number of iterations number is 6.3× 105 and the batch size is again 2.

During evaluation, we use program levels and latent vector z sampled from a standard

multivariate Gaussian distribution. For each program level array, we sample 10 different latent

vectors to evaluate the learned model.

Time: A major benefit of Flash-Gen is observed by comparing the measurement time

from the real chip and the inference time of Flash-Gen. When we collect one block of data at

selected P/E cycles with no retention age, it requires approximately 4 hours on our FPGA-based

platform and the block cannot store information for further usage due to the high error rates.

The retention datasets require waiting time to record voltage levels. However, in the Flash-Gen,

the data generation of one block can be completed within 400 seconds under CPU mode (Intel

i7-9700K, 3.60GHz×8) and no flash block is wasted.
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3.4 Flash-Gen Coding Workflow

Preserving data integrity in NAND flash involves dealing with temporal and spatial

distortions. Coding is a powerful technique for mitigating, detecting, and correcting errors in

data storage. Designing appropriate coding schemes takes several factors into consideration, like

error correction capability, storage overhead, and read latency. To search for optimal coding

design, a large number of experiments regarding threshold determination and code optimization

are needed, which consumes excessive time and hardware resources. Read voltages sampled

from classical mathematical distributions or generated by machine learning-based models do not

accurately reflect the spatio-temporal characteristics of flash memory channels.

Therefore, we propose the Flash-Gen coding procedure. Flash-Gen coding workflow

simulates three practical coding applications: hard-decision decoding of LDPC codes, soft-

decision decoding of LDPC codes, and optimization of constrained codes. The detailed task

modules are illustrated in Fig. 3.5. Our applications are not limited to these three coding tasks

and can be extended to other signal-processing scenarios. For example, reconstructed {PL,VL}

containing spatio-temporal information can help the design of maximum a posteriori (MAP) and

Gaussian approximation (GA) detectors [2].

3.4.1 Flash-Gen LDPC Coding Workflow

We first discuss the use of Flash-Gen in the evaluation of ECCs, specifically, LDPC codes.

Modern flash devices employ advanced ECCs within their controllers to detect and correct a

number of errors when data is read out from flash memory. A stronger ECC can tolerate more

errors but consumes more power and latency.

We briefly overview the two stages of error correction and their related data recovery

tasks [10]: 1) Hard-decision decoding: The flash chip reads each page using the set of hard

thresholds, where the flash chip compares the read voltage with thresholds and determines the

read bit for each page. Then ECC decoder performs the hard-decision decoding process on the
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Figure 3.5. Flash-Gen coding workflow: Flash-Gen serves as a database to provide unlimited
accurate {PL,VL} pairs for coding techniques. We propose error correction coding flow with
both hard-decision decoding mode and soft-decision decoding mode and constrained coding
flow.

read bits. If the decoder succeeds in correcting all errors, the controller transmits the data to the

host. Otherwise, the SSD controller steps into the more powerful second stage, which is soft-

decision decoding. The main tasks in hard-decision decoding include threshold determination

and decoding performance estimation; 2) Soft-decision decoding: The chip employs multiple

thresholds between adjacent program levels during the read process, yielding soft information for

each cell. The soft information, referred to as a log-likelihood ratio (LLR), estimates the posterior

probability of a specified page bit being 0 or 1, given the read voltage. Since more read threshold

comparisons lead to more fine-grained read information, the strength of soft-decision decoding

relies on the number of read thresholds. The main tasks consist of LLR value computation,

soft-decision threshold determination, and decoding performance estimation.

These ECC-related tasks rely on prior information regarding the flash memory channel

and research on ECCs requires a huge amount of realistic readback signals. The Flash-Gen model

is a natural candidate to assist and supplement the coding optimization functions, including

estimating the complicated channel information and reducing heavy measurement workloads.

We now describe the Flash-Gen LDPC coding workflow to simulate the LDPC decoding
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procedure in flash devices, as represented schematically in Fig. 3.5. We formulate our approach

using a TLC flash chip with q = 8 program levels. The learned Flash-Gen can generate unlimited

pairs of {PL,VL}. We concatenate those 64× 64 2-D arrays and reconstruct the flash blocks.

The probabilities at the cell level can be expressed as

P (PL = pl,VL = vl) =
N(pl, vl)∑

pl∈P
∑

vl∈V N(pl, vl)
, (3.5)

P (PL = pl) =

∑
vl∈V N(pl, vl)∑

pl∈P
∑

vl∈V N(pl, vl)
, (3.6)

P (VL = vl|PL = pl) =
N(pl, vl)∑

vl∈V N(pl, vl)
, (3.7)

where N(pl, vl) counts the number of cells with the program level pl and voltage level vl

and
∑

pl∈P
∑

vl∈V N(pl, vl) represents the total number of reconstructed cells. Conditional

probability P (VL|PL) is calculated from the first two probabilities.

In the hard-decision decoding stage, we design the read simulator to perform read

threshold optimization and process operation for each cell. The hard read bits are determined by

comparing the voltage level VL to the thresholds. The set of hard read thresholds is presented as

THH = {THH,k : k = 0, 1, ..., q − 2} ⊆ V , where THH,k is the threshold to distinguish read bit

between program level k and k + 1. For instance, if a voltage level of PL 7 in Fig. 3.2 is lower

than the last threshold THH,6 between level 6 and level 7, the hard read level of the cell will not

be designated as 7. Indeed, there is an error if a voltage level of 1 lies below THH,0 or above

THH,1. We compute the level error probability LER of PL = 7 and PL = 1 as

LER(THH ,PL = 7) = P (VL < THH,6|PL = 7) =

∑
vl<THH,6

N(PL = 7, vl)∑
vl∈V N(PL = 7, vl)

,

LER(THH ,PL = 1) = P (VL < THH,0|PL = 1) + P (VL > THH,1|PL = 1)

=

∑
vl<THH,0

N(PL = 1, vl)∑
vl∈V N(PL = 1, vl)

+

∑
vl>THH,1

N(PL = 1, vl)∑
vl∈V N(PL = 1, vl)

.

(3.8)
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We can compute the total level error rate as LER(THH) =
∑

pl∈P LER(THH ,PL = pl). The bit

error rate BER(THH) will be converted from level errors by the label mapping in Fig. 3.1. To

find the optimal read threshold for hard-decision decoding, we minimize the bit error rate of the

read operation

TH∗
H = argmin

THH

BER(THH). (3.9)

Using the optimal read threshold, data are read from each cell and controller performs

hard-decision decoding on the noisy data.

In the soft-decision decoding phase, we formulate the modules of LLR processor and

LLR mapper. LLR processor determines the number of thresholds between two adjacent program

levels and optimizes the threshold positions. The set of soft read thresholds can be denoted as

THS = {THS,k : k = 0, 1, ..., (q − 1) ∗ l − 1} ⊆ V , where l is the number of reads between

two program levels. If the number of reads is 1, the soft read voltage VLS is equal to the hard

read voltage VLH . The additional number of reads l adds more accurate information about

the program level and enhances the power of the LDPC decoder. We present the transition

probability between two soft thresholds as

P (THS,k ≤ VL < THS,k+1|PL = pl) =

∑
THS,k≤vl<THS,k+1

N(PL = pl, vl)∑
vl∈V N(PL = pl, vl)

. (3.10)

We find the optimal placement of the soft threshold by maximizing the mutual information

of the flash memory channel [96, 118]. The mutual information between program level PL and

voltage level VL is given by

MI(THS) = I(PL,VL) = H(VL)−H(VL|PL)

= H(

(q−1)∗l∑
k=0

p0,k,

(q−1)∗l∑
k=0

p1,k, ...,

(q−1)∗l∑
k=0

pq−1,k)

−
q−1∑
pl=0

pplH(
ppl,0
ppl

,
ppl,1
ppl

, ...,
ppl,(q−1)∗l

ppl
),

(3.11)
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where H is the entropy function. the transition probability ppl,k represents P (THS,k ≤ VL <

THS,k+1|PL = pl) and ppl,(q−1)∗l is P (THS,(q−1)∗l−1 ≤ VL|PL = pl). The probability of each

level ppl is expressed as P (PL = pl).

The optimization of soft thresholds THS can be formulated as

TH∗
S = argmax

THS

MI(THS). (3.12)

After determining the positions of soft thresholds, we need to compute the LLR values

for each cell based on its voltage region. SSD controllers commonly establish an LLR table

by utilizing either previously collected data or mathematical modeling distributions like the

Gaussian model. However, LLR tables might not provide a precise and timely representation

of the channel information. In the LLR mapper module, the Flash-Gen model can be used to

compute the LLR values at runtime,

LLR(vl) = log
P (B(PL) = 0|VL)
P (B(PL) = 1|VL)

= log

∑
B(pl)=0 N(PL = pl, vl)∑
B(pl)=1 N(PL = pl, vl)

, (3.13)

where B(.) maps the program level to the information bit on the corresponding page.

According to our designed soft-decision decoding procedures, we process streaming

{PL,VL} pairs to generate soft LLRs. In the LDPC decoding module, we assume the LDPC

codeword is all 0. We then rewrite (3.13) as

LLR(vl) = log
P (0 +B(PL)|VL)
P (1 +B(PL)|VL)

. (3.14)

If the bit value for a page is 1, denoted as B(PL) = 1, then the LLR for the cell is

−LLR(vl). If B(PL) = 0, the LLR for the cell is LLR(vl). The computed LLRs for each cell

are computed and sent to the LDPC decoder as the flash memory channel output. If the output

of the LDPC decoder is all 0 within a specified number of decoding iterations, we declare the

decoding process successful; otherwise, we declare a decoding failure. We evaluate the LDPC
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coding workflow using both measured datasets and generated datasets in Section 3.6.1, where

we use both measured and reconstructed sequences for read threshold determination, hard and

soft information calculation, and LDPC decoder simulation.

We summarize the advantages of the Flash-Gen LDPC coding workflow as follows:

1) Flash-Gen greatly saves time and hardware resources in ECC performance evaluation and

optimization. An essentially unlimited supply of {PL,VL} pairs provides the opportunity

to optimize code designs, read strategies, and decoding algorithms without any on-device

operations. 2) “Realistic” {PL,VL} pairs for each cell provide more authentic simulations for

coding schemes than read voltages generated using mathematical models or previously proposed

machine-learning models.

3.4.2 Flash-Gen Constrained Coding Workflow

ECC schemes have been employed to ensure the reliability of flash memory. However,

spatio-temporal distortions of flash memory channels possess an asymmetric nature. ECC

schemes assuming an underlying symmetric noise distribution may not be the most efficient

approach. According to the spatio-temporal understanding of the dominant errors by Flash-Gen,

it is crucial to design targeted coding schemes to combat dominant errors in flash memory.

Constrained coding, by forbidding severe error-prone patterns, is an ideal candidate to mitigate

the ICI effects. The key step of designing constrained codes is to determine the set of patterns

that need to be forbidden. However, as the wear condition changes in the flash device and the

binary representation of program levels is vendor-dependent, it is hard to design a universal

constrained code suitable for the entire lifetime of a flash device.

We propose the Flash-Gen constrained coding workflow to address this design problem.

We first apply the pattern ranker module, which arranges the pattern-dependent probabilities in

descending order. Then, the constraint designer module will select the most error-prone patterns

to formulate coding schemes. Based on the two-dimensional structure in Fig. 3.1, we examine

the errors associated with program level patterns PLi,j−1PLi,jPLi,j+1 in the WL direction and
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PLi−1,jPLi,jPLi+1,j in the BL direction. As we observed from our experiments, severe ICI errors

follow the high-low-high program level pattern. We consider the problematic patterns with a

central victim cell as 0 and calculate the pattern-dependent error probabilities in WL and BL

directions as
P (PLi,j−1,PLi,j = 0,PLi,j+1|VLi,j > THH,0,PLi,j = 0)

=

∑
vl>THH,0

N(PLi,j = 0, vl|PLi,j−1,PLi,j+1)∑
vl>THH,0

N(PLi,j = 0, vl)
,

P (PLi−1,j,PLi,j = 0,PLi+1,j|VLi,j > THH,0,PLi,j = 0)

=

∑
vl>THH,0

N(PLi,j = 0, vl|PLi−1,j,PLi+1,j)∑
vl>THH,0

N(PLi,j = 0, vl)
,

(3.15)

where N(PLi,j = 0, vl|PLi,j−1,PLi,j+1) and N(PLi,j = 0, vl|PLi−1,j,PLi+1,j) count the number

of cells with program level 0 and voltage level vl given the condition on the program levels on

its neighboring cells.

We illustrate the pattern-dependent probabilities using our TLC flash device. We have 64

combinations of neighboring program levels of a given cell in both the WL and BL directions.

Once we rank the pattern-dependent probabilities, we can summarize the most severe patterns

and propose targeted constrained coding scheme for flash device. Examples illustrating the

determination of problematic patterns and the design of constrained codes can be found in [35,38].

3.5 Statistical Analysis of Flash-Gen

During the inference process using the evaluation dataset, we denote recorded pairs

{PL,VL} from the flash device as our measured data and denote the reconstructed pairs

{PL, ṼL} from Flash-Gen as the generated data. To evaluate the quality of the reconstructed

voltage levels and analyze the spatio-temporal nature of flash memory system, we discuss the

regenerated VL using the following statistical metrics:

1. Distribution: The frequency of occurrence of each voltage level given the program level,
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Figure 3.6. PDF visualizations for measured and Flash-Gen generated voltage levels at various
time stamps: 4000, 7000, and 10000 P/E cycles; 0, τ , and 2τ retention time. The first row of
subfigures corresponds to the P/E cycling dataset and the second row corresponds to the retention
dataset. In each subfigure, dashed curves represent the Flash-Gen modeled distribution, and
triangle markers represent the measured distribution, where the plots are in linear scale. Vertical
dash-dotted lines are fixed default voltage thresholds.

P/E cycle count, and retention time is used to estimate the conditional probability of that

level and time stamp. We visualize the PDFs for measured data and reconstructed data. In

addition, we analyze the time variations in the mean and standard deviation values with

respect to some program levels.

2. Error count: We compare the generated read voltages with fixed thresholds to determine the

read levels and then compute the level error rate for each program level. For quantitative

comparison, we compare the read voltages generated by our data-driven method with three

statistical fitting methods [78], using the metric of level error rate LER for both the P/E

cycling dataset and the retention dataset.

3.5.1 Distribution Analysis

As we evaluate our learned model using input arrays of program levels, we collect

regenerated voltage levels and count the frequency of occurrence of voltage levels over the

31



voltage range. We then estimate the PDFs P (PL = pl,VL = vl) of voltages associated with

each program level and given P/E cycle and retention time.

Fig. 3.6 shows the conditional PDFs for measured data and regenerated data in two

evaluation datasets at six different time stamps. The x-axis represents the soft read voltages

spanning a certain voltage level range. The y-axis represents the conditional PDF. We only

show conditional PDFs from program level 1 to 7 since all the read voltages below the first

program threshold are mapped to a fixed value. Despite that fact, we are still able to discuss

pattern-dependent errors involving program level 0 in Section 3.6.2.

We obtain three findings from Fig. 3.6. First, our regenerated data (dashed curves)

generally fit the measured data (triangle markers) in PDF views and capture the dependence on

both temporal factors. The occasional discrepancies in the peak, especially in the plot of 4000

P/E cycles and 0 retention time, do not affect the error analysis of tails in the following parts.

The fitted distributions of generated data over higher P/E cycles or larger retention time indicate

the precise control of temporal characteristics in Flash-Gen. Second, the peak of the distribution

in each program state drops and the distribution becomes wider as the wear condition becomes

severe. The wider distributions indicate that more voltage levels exceed the read thresholds

and then more errors will be detected. Increasing the number of P/E cycles and increasing

the delay between program and read operations lead to an increase in the probability of error.

Device lifetime and reliability are both adversely affected. Third, under retention disturbance,

the distributions of high program levels shift to lower values of voltage level, and the read voltage

distributions of all levels become wider. Similar behaviors exist in 3D TLC flash memory as

presented in Fig. 3.2.

In Fig. 3.7, we explore the statistical performance of those measured and learned distri-

butions. We plot the means and standard deviations of distributions P (PL = pl,VL = vl) of

three program levels as time stamps increase. In all subfigures, we find that trends of Flash-Gen

almost match the changes in measured distributions, with some discrepancies in specific values.

These matching changes reflect how our Flash-Gen captures the temporal variations in each
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Figure 3.7. Change in mean and standard deviation values for PL at 2, 5, and 7 when P/E
cycle count or retention time increases. The first row of subplots presents the mean changes on
increasing time stamps and the second row presents the standard deviation values on increasing
time stamps. The first two columns are statistics for PL = 2, the middle two columns are PL = 5,
and the last two columns are PL = 7. The odd column depicts the variations in P/E cycles and
the even column depicts the variations in retention data. In each plot, solid curves with triangle
or circle markers are measured data and dashed curves with square or star markers are Flash-Gen
data.

program level.

The mean values in the first row of subfigures represent the centers of the distributions

for the corresponding program levels and time stamps. For all three program levels, the mean

values fall within a voltage interval of width 20, with distinct endpoints for each program level.

The mean values remain the same as the P/E cycling increases. However, the average values

drop significantly under retention noise, which is consistent with our observations in distribution

curves in Fig. 3.6. The mean values in high program levels like PL = 7 experience a greater

decrease compared to those in low program levels like PL = 2. The reason is that the high

program levels experience a more rapid leakage of electrons present in the floating gate than the

low program levels. As we set a longer retention time, voltages in high program levels leak faster

than those in low program levels and we find a larger drop in those mean values.

The standard deviation of each program level reflects the width of each distribution. As

the curve becomes wider and wider, more voltage levels will exceed the read thresholds and will

be designated as errors. In the second row of Fig. 3.7, we can find that the standard deviation of
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Figure 3.8. Total error rates of measured (‘M’), Flash-Gen (‘F-G’), Gaussian (‘G’), Normal-
Laplace (‘NL’), Student’s t (‘S-t’) model. The left subfigure is error rates versus P/E cycle count
and the right subfigure is error rates versus retention time. In each bar, we stack the errors from
program level 1 to program level 7. We normalize the error counts of measured data at 4000 P/E
cycle as 1.

each program level increases monotonically with both P/E cycle count and retention time. In the

next subsection, we will explore how error rates change as timestamps vary.

3.5.2 Error Rate Estimation

Accurate estimation of error count is essential in the design of wear leveling and ECC

algorithms for NAND flash. For a more quantitative assessment of error count, we compare our

generative model with measured data and three state-of-the-art statistical models using the metric

of error count: Gaussian model [11], Normal-Laplace model [95], and Student’s t-distribution

model [78]. As far as we know, our proposed machine learning method is the first approach to

provide accurate estimation of two-dimensional pattern-dependent and time-dependent errors.

Following the optimization process used in [78] for an MLC flash device, we fit those statistical

distributions to our TLC measured distributions. We minimize the KL divergence between real
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distribution Preal and fake distribution Pfake by using the Nelder-Mead simplex method [90],

where the KL divergence is denoted as DKL(Preal, Pfake). We obtain the best-fit parameters for

all program levels, except PL = 0, with each of the statistical distributions.

We then compute the level error counts under each of the distributions and quantitatively

compare those fake distributions with real distributions, where the error count is a measure of the

reliability and endurance of the flash memory. To calculate the level error rates from distributions,

we fix 7 default read thresholds, as shown by the dash-dotted vertical lines in Fig. 3.6. The hard

read voltages are determined by comparing soft voltages to these thresholds. We follow the

procedure for the computation of LER in Section 3.4.1 and represent the LER of the five models

in Fig. 3.8.

In Fig. 3.8, the x-axis represents the chosen P/E cycle count or retention time, and the

label directly under each bar represents the corresponding model name. The y-axis corresponds

to the normalized error count. At each timestamp, for each model, the errors from 7 program

levels are stacked as one individual bar. The stacked bar represents the total level error rate.

We first discuss the measured distributions. Under P/E cycling noise, the total level error rate

at 10000 P/E cycles is around 2.5× that at 4000 P/E cycles. LER is increasing when more P/E

operations are performed, aligning with our observations in distribution curves and standard

deviation. PL = 1 has the highest error rate. Under retention noise, the total LER has a

substantial increase. LER at τ retention is about 5× larger than that at zero retention and at 2τ

retention it is nearly 7× larger than that at zero retention. In the bar plots, high program levels

produce more errors than low program levels. These observations can be explained by the shifted

and wider distributions in Fig. 3.6. The high error rates observed due to retention distortion

confirm that a static set of read thresholds may not be the optimal choice over the entire lifetime

of SSDs. These observations on level error rate motivate the investigation of optimal threshold

determination and LDPC decoding performance under different P/E cycle counts and retention

times.

For the statistical distributions, we observe that the Gaussian model underestimates the
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error rates in each time stamp; this is because the tails in the actual distribution are becoming

heavier as the operating conditions of the device become more severe. The Normal-Laplace

model, on the other hand, takes the heavier tails into consideration and provides accurate

estimations of error counts at each P/E cycle. Under retention noise, the Normal-Laplace model

performs well for retention time τ but does not estimate well for retention time 2τ . Student’s

t-distribution, the best mathematical model under retention distortion, still underestimates at the

retention time 2τ .

For the machine learning approach, Flash-Gen produces more errors than the measured

data at 4000 P/E cycles and slightly overestimates the wear conditions in 7000 and 10000 P/E

cycles. Flash-Gen can provide accurate estimations of errors under retention distortions, even if

the model comes with a slightly higher LER. In conclusion, Normal-Laplace is the best statistical

model to capture the distributions of flash devices, except when dealing with high retention time.

Our Flash-Gen works better than Normal-Laplace at 7000, 10000 P/E cycles, and τ , 2τ retention

time but overestimates the errors at 4000 P/E cycles. A key observation is that the data-driven

approach can effectively model channels under severe wear conditions, like 2τ retention time, an

advantage not typically presented by mathematical models.

3.6 Performance of Flash-Gen Coding Workflow

In this section, we discuss the performance of the Flash-Gen coding workflow when

we employ practical LDPC codes and determine problematic patterns in flash devices. We

will present the result of simulations of frame error rates (FERs) under multiple scenarios and

pattern-dependent ratios by utilizing our Flash-Gen coding workflow.

3.6.1 LDPC Decoding Performance

In our experiments, we generate around 10 MB of data from our Flash-Gen with selected

time stamps and measure about 4 MB of data from the flash chip with more time stamps. We

first find the optimal hard thresholds TH∗
H by minimizing BER of generated distributions from
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Figure 3.9. Frame error rate (FER) comparison with LDPC codes of measured data and Flash-
Gen reconstructed dataset. The time stamp of the left subfigure is P/E cycle count and the time
stamp of the right subfigure is retention time. Solid lines correspond to measured data from the
flash device and dashed lines present Flash-Gen reconstructed data. Black curves and markers
correspond to decoding using rate-0.94 LDPC codes and right curves and markers represent
decoding using rate-0.90 LDPC codes. Markers with white fills in the retention plot indicate the
sub-optimal thresholds used in decoding.

Flash-Gen and measured distributions from chips. We then select the optimal soft read thresholds

TH∗
S and process LLR information for each cell using LLR Processor and LLR Mapper in our

LDPC coding procedure. In the following experiments, we use two read thresholds per program

level in soft-decision decoding. We then feed the acquired information to the LDPC decoder and

observe the decoding performance.

The two LDPC codes are designed based on [46], where the coding rates are approxi-

mately 0.94 and 0.90. The length of both codes is 8192. We set the number of decoding iterations

to 50. If, after 50 iterations, the LDPC decoder does not decode to the all 0 codeword, we declare

a decoding failure. The reconstruction of each cell ensures the authenticity of experiments, setting

apart our Flash-Gen from other distribution-based modeling approaches. We map the real or fake

voltage levels to their binary representations on three pages and divide each page into several

frames based on the code length. The decoder is based upon the belief-propagation decoding

algorithm, implemented in software as the floating-point sum-product decoding method.
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The FER performance in all three pages regarding measured data and Flash-Gen recon-

structed data is shown in Fig. 3.9, where the left figure shows the results for P/E cycling and the

right figure shows the results for retention. We first discuss measured data under stressful P/E

cycling noise. The rate-0.90 LDPC code performs better than the rate-0.94 code and soft-decision

decoding extends the lifetime compared to hard-decision decoding. High-rate codes use fewer

parity check bits in error correction and thus provide relatively worse FER performance. The

soft-decision decoder utilizes more accurate information regarding voltage levels and produces

lower FER compared to hard-decision decoding. Specifically, when FER= 4× 10−1, rate-0.94

code in soft-decision decoding achieves a gain of about 2800 P/E cycle compared to the same

code in hard decoding mode. At the same FER, the rate-0.90 code achieves a gain of about

2700 P/E cycles over the rate-0.94 code under soft-decision decoding. For the rate-0.90 code,

soft-decision decoding provides a gain of about 1500 P/E cycles over hard-decision decoding.

We now discuss the FER results under retention distortions. If we optimize soft thresholds

TH∗
S using the correct retention distributions, we can obtain slightly better performance using

rate-0.94 LDPC codes than soft decoding from 6500 P/E cycles to 10000 P/E cycles. This is

consistent with the similar standard deviation in Fig. 3.7. However, when we use inappropriate

soft thresholds THS (corresponding to PE = 4000, retention = 0), we are barely able to

decode any frame successfully. When retention time is τ , FER with inappropriate thresholds is

almost 2.5× that with correct thresholds. The huge gap in retention FER underscores the critical

significance of read thresholds.

The Flash-Gen model trained with data from selected time stamps can accurately estimate

the FER. We optimize the thresholds using the learned distributions and feed reconstructions to

LDPC decoders. As shown in Fig. 3.9, Flash-Gen produces slightly higher FER than measured

data in most experiments, the exception being soft-decision decoding under P/E cycling.

We also studied the effectiveness of Flash-Gen in read threshold optimization using

commonly used metrics. We adopt channel BER in (3.9) as the metric in hard-decision threshold

determination and MI in (3.11) as the metric in soft-decision threshold determination. Fig. 3.10
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Figure 3.10. Variations in the hard-decision decoding threshold and soft-decision decoding
thresholds change the decoding performance and the metric values. The first row shows FER
(red) and BER (orange) versus the step change in the hard read threshold position, for measured
data (left) and Flash-Gen data (right). The second row shows FER (black) and MI (gray) versus
the step change in the soft read threshold positions. In each subplot, the x-axis reflects the step
applied to the threshold position(s). The left y-axis is the decoding FER and the right y-axis is
the metric value .

illustrates how decoder FER and the respective metrics vary with threshold placement under hard-

decision and soft-decision decoding for measured data and Flash-Gen recosntructed data. The

“step” represented in the x-axis is interpreted as follows. In the hard experiments, the threshold

THH,0 between PL 0 and PL 1 is moved to position (THH,0 + step). In the soft experiments, the

two read thresholds THS,2 and THS,3 between PL 1 and PL 2 are moved to (TH∗
H,1 − step) and

(TH∗
H,1 + step), respectively.

In the hard-decision decoding experiments, the BER metric will increase as we increase

the gap from the optimal threshold. The threshold that generates the lowest FER closely matches
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Figure 3.11. Pie charts showing pattern-dependent error probabilities for measured and Flash-
Gen generated voltages at 7000 P/E cycles. The sector labeled others combines 41 less harmful
patterns. In measured data, 97921 total errors are observed at PL = 0. In reconstructed data, we
sample 10 different latent vectors for inference and 989565 total errors are observed at PL = 0.

the optimal threshold for achieving the lowest BER. The Flash-Gen model correctly captures

the sensitivity to the variations of threshold placement as reflected in the convex shape of both

FER and BER curves. The optimal threshold in the Flash-Gen model leads to the near-optimal

decoding FER.

In the soft-decision experiments, the MI curves have similar concave shapes. The step

with the highest MI aligns closely with the optimal FER in both the measured plot and the Flash-

Gen plot. Since soft-decision decoding requires a longer read time and has a higher decoding

complexity than hard-decision decoding, the Flash-Gen model, capable of accomplishing similar

tasks, can alleviate the heavy measurement workload on flash controllers.

3.6.2 Design of Constrained Codes

Generating voltage levels with ICI effects is complicated due to pattern-dependent and

direction-dependent distortions. We remark that classical statistical models and other machine

learning techniques focus on regeneration of the PDFs of the measured data and, as such, are not

expected to be effective in capturing ICI effects.

We evaluate how well the generative model learns spatial ICI properties by examining
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errors associated with program level patterns PLi,j−1 PLi,j PLi,j+1 and PLi−1,j PLi,j PLi+1,j in

the WL and BL directions, respectively. We calculated pattern error probabilities according

to (3.15) in Section 3.4.2 in both directions of the P/E cycling dataset. The pattern error

probability measures the relative frequency of occurrence of the WL and BL patterns when an

error occurs in the victim cell.

The probabilities for measured and regenerated data at 7000 P/E cycle counts are visual-

ized as pie charts in Fig. 3.11. When we program an interior cell to level 0, there are 64 such

patterns of program levels for the pair of adjacent cells in both WL and BL directions. Without

ICI effects, the errors would occur randomly for all possible patterns. Indeed, we analyze the

ICI effects along diagonal directions associated with patterns PLi−1,j−1 PLi,j PLi+1,j+1 and

PLi−1,j+1 PLi,j PLi+1,j−1. In the 2D TLC flash chip, the ICI effects along diagonal directions

are not as severe as along horizontal/vertical directions.

We present 23 dominant patterns as individual sectors and combine other less harmful

patterns in one sector. In the measured data, the 23 listed patterns account for 55% of the errors

in the WL direction and around 70% of the errors in the BL direction. The dominant error pattern

in both WL and BL directions is 707. Comparing the area of pattern 707 in WL and BL, we find

that pattern 707 in the WL direction is less severe than that in the BL direction.

As shown in Fig. 3.11, for the prevalent error patterns at 7000 P/E cycles, probabilities

observed in the data generated by Flash-Gen with 10 sampled latent vectors during evaluation are

very similar to those seen in the measured data. The only substantial discrepancy we observed is

that the generative model underestimates the fraction of the pattern 707 in the WL direction. At

4000 (resp., 10000) P/E cycles, the model underestimates (resp., overestimates) the fraction of

the 707 pattern in both directions. However, at all P/E cycles, Flash-Gen generates the same rank

ordering of pattern fractions as the measured data in both directions.

We prioritize severe ICI patterns in both directions, enabling the design of constrained

codes to mitigate ICI effects. As constrained codes lack the ability to correct errors in flash

memory, there is an interesting direction of integrating LDPC codes with constrained codes in
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the future.

3.6.3 Discussion

According to our discussion in Section 3.5 and Section 3.6.2, we demonstrated that the

Flash-Gen model can capture complex spatial and temporal characteristics of flash memory

devices. Moreover, the Flash-Gen coding workflows provide accurate simulations of flash

memory controller operations and provide a helpful tool for analyzing and optimizing the design

of LDPC codes and constrained codes.

The proposed Flash-Gen model learns the spatial and temporal properties of flash memory

systems when trained on pseudo-random datasets collected from 2D TLC NAND flash devices.

However, the learned model cannot be applied to other wear conditions and training the Flash-

Gen model from scrath for these other wear conditions requires significant time and resource

investments. Fortunately, exploiting transfer learning [130], the learned generative model pre-

trained with pseudo-random datasets can be efficiently fine-tuned to code-constrained flash

systems using much smaller datasets. Utilizing this transfer learning approach, we have the

capability to fine-tune existing models, initially trained on P/E cycling datasets or retention

datasets, for use with other target datasets, where the target datasets are from similar domains of

the source datasets. The Flash-Gen coding workflows can then be applied to these new models.

In this paper, we analyze P/E cycling errors, retention errors, and ICI effects. Other

types of errors occur during the program, erase, and read process, e.g., programming error

and read disturb. By collecting appropriate datasets and processing them using the methods in

Section 3.3.3, we envision that the data-driven modeling approach can be generalized to model

more complex and severe device conditions within flash chips.

3.7 Conclusion

In this paper, we explored the use of conditional generative networks to model the flash

memory channel. Unlike traditional modeling and previous machine learning approaches, our
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model can generate “realistic” soft voltage levels from program level arrays at different time

stamps, thereby reflecting both temporal and spatial characteristics of the flash memory channel.

We then proposed Flash-Gen coding workflows to support the analysis, design, and performance

evaluation of LDPC codes and constrained codes.

We studied the probability distributions and statistical parameters of the read voltages

generated by the Flash-Gen model. We then compared the cell-level error rates obtained with

these distributions to those of three commonly used mathematical read voltage models. Hard-

decision and soft-decision decoding FER results for measured and generated voltages were

compared. The sensitivity of these BER and of mutual information metrics as a function of

read threshold positioning was also compared. These results demonstrate that the Flash-Gen

model accurately represent the spatio-temporal characteristics of flash devices and that Flash-Gen

coding workflows can provide realistic simulations of controller functions used in the design and

evaluation of ECCs and constrained codes.
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Chapter 4

Optimal Shaping Codes for a TLC Flash
Memory
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4.1 Introduction

In some applications, it is useful to model communications and storage channels as a

costly channel, a variation of Shannon’s discrete noiseless channel where output symbols and

sequences of symbols are assigned a positive cost, where the meaning of cost depends on the

application. For example, in DNA synthesis, the cost of a sequence of symbols is the number

of synthesis cycles required to produce the sequence; in flash memory devices, the cost of a

sequence of symbols is the amount of wear inflicted on the programmed cell. Since our goal is

to improve the lifetime of TLC flash memory devices, we will view this problem as coding over

a costly channel.

For a given finite alphabet Y , any costly channel has a graph representation called a

cost graph, which consists of a finite directed graph G = (V,E), an edge labeling function

L : E → Y , and a cost function τ : E → R+ such that there exists a path between any pair of

states, the outgoing edges for a given state all have distinct labeling, and τ is non-negative and

additive with respect to the edges. As a result, for a given initial state, any path γ = e1e2...ek

will correspond to the sequence L(e1)L(e2)...L(ek) and will have cost
∑k

i=1 τ(ei).

Since the cost of a sequence directly measures its inflicted wear on a programmed cell of

a flash device, the goal of a shaping code is to minimize the average cost per source bit for a

given code expansion factor (i.e., inverse code rate). This corresponds to optimally shaping the

probability distribution of sequences so that, roughly speaking, high-cost sequences have low

probability and low-cost sequences have high probability.

The cost graph used in this study assumes symbol costs that are independent of context;

that is, the cost is simply a function of the programmed cell level. Liu et al. [70] showed that, in

this setting, for an i.i.d. source and a fixed expansion factor f , an optimal shaping scheme can be

obtained by concatenating optimal data compression with a code from the compressed data that

achieves the overall target expansion factor and minimizes the average cost per compressed bit.

They also showed that a fixed-to-variable length Varn code [114] can be used in the second step
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Figure 4.1. Measured BER of pseudorandom data after inducing wear with data that is dominated
by a single program level from P/E cycle 2000 to P/E cycle 12000.

to asymptotically achieve optimal shaping.

In [70], optimal shaping schemes with expansion factor f = 1 were implemented for a

commercial 2y-nm MLC flash device Their performance was evaluated on an English language

source (ASCII encoding) and a Chinese language source (UTF-16L encoding), and compared to

scenarios with no coding, direct shaping coding [104], [72], and data compression alone. For the

English language source, optimal shaping increased P/E cycling lifetime at a bit error rate (BER)

of 1× 10−3 by more than 2.6× over no coding and more than 2.1× over direct shaping. It also

allowed the storage of more than 1.15× the number of copies of the source than compression

alone. For the Chinese language source, the corresponding gains were about 2.4×, 1.9×, and

1.25×.

In this project, we aim to design and implement optimal shaping codes for TLC flash

memories. We give the construction and methodology in Section II and then present our

experimental results in Section III. Extensions of the theoretical results in [70] to cost graphs

where symbol costs are context-dependent are presented in [71].
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4.2 Shaping Codes for TLC Flash

In triple level cell (TLC) NAND flash devices, three bits are stored in each cell to denote

one of eight different program (i.e. voltage) levels. This means that the program level of a cell

can be represented with an octal symbol, so we use Y = {0, 1, 2, 3, 4, 5, 6, 7} as the alphabet for

our shaping code.

Based on [8,72], for each i ∈ Y we assign symbol i a constant cost ci ≥ 0. Note that the

corresponding cost graph will consist of a single state with eight edges, where each symbol and

its associated cost is assigned to an edge.

The symbol costs ci are estimated by performing repeated program and erase (P/E)

operations on a TLC flash device and writing almost all cells with one certain program level. For

every 100 P/E cycles, we estimate the induced wear of each program level by measuring the

corresponding BER; the results are shown in Fig. 4.1, which also includes the BER of random

data.

Let BERmax denote the maximum tolerable BER. Let TR be the number of P/E cycles

required to achieve BERmax when the chip is programmed with random data. For our experiment,

we set BERmax = 2× 10−3. For each i ∈ Y , let Ti be the number of P/E cycles it takes to reach

BERmax when inducing wear using only program level i. Then, the cost ci associated with each

level i is defined as ci = TR

Ti
.

We utilize Theorem 2 in [70] to find the level probabilities pi that minimize the average

cost per stored level,
∑7

i=0 pici, for an overall expansion factor f = 1, where the entropy of the

source, consisting of Spanish-language texts, is estimated from its compression factor (2.73)

under LZ77 compression (gzip). We constructed two Varn codes of codebook sizes 256 and

1024. The symbol costs, ci, for the 1x-nm TLC flash device, the optimal symbol probabilities, pi,

the relative contribution of each level to the total average cost, pici, and the empirical symbol

probabilities achieved by the shaping codes, p256i and p1024i , are shown in Table 4.1.
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Table 4.1. Symbol Probabilities and Costs for Optimal Shaping Codes

Level 0 1 2 3 4 5 6 7
ci 0.42 0.76 0.84 0.94 1.03 1.14 1.19 1.28
pi 0.810 0.085 0.050 0.026 0.014 0.007 0.005 0.003
pici 0.340 0.065 0.042 0.024 0.014 0.008 0.006 0.004
p256i 0.777 0.110 0.065 0.025 0.097 0.054 0.049 0.032
p1024i 0.797 0.089 0.058 0.030 0.016 0.006 0.004 0.001

0 5 10 15 20
Codeword Length (symbols)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
el

at
iv

e 
Fr

eq
ue

nc
y

Figure 4.2. Histogram of codeword length in optimal shaping codes with codebook size 256.
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Figure 4.3. Histogram of codeword length in optimal shaping codes with codebook size 1024.
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Figure 4.4. (Left) Measured average channel BER comparison when all pages are programmed
with Spanish novels data (brown solid), optimal shaping coded data with codebook size 256
(blue solid), optimal shaping coded data with codebook size 1024 (blue dashed) from P/E cycle
0 to P/E cycle 30000. (Right) Measured average channel BER comparison in normalized P/E
cycle count including compression data (green solid) from P/E cycle 0 to P/E cycle 12000.

4.3 Experimental Results

The left subfigure of Fig. 4.4 presents the BER performance of the original Spanish-

language text and shaping-coded data. When channel BER is 1× 10−3, the shaping code with

codebook size 256 (resp., 1024) achieves a lifetime gain of 10× (resp., 11.7×) over uncoded

data. In the right subfigure, we normalize the P/E cycle count by the compression ratio. We see

that, compared to using compression alone, the shaping code with codebook size 256 increases

the number of times the source text can be written before reaching a BER of 1 × 10−3 by a

factor of about 5.2×. The histogram of codeword lengths in the Varn code of size 256 is shown

in Fig. 4.2 and the histogram of codeword lengths in the Varn code of size 1024 is shown in

Fig. 4.3.

A notable observation is that the 10× lifetime gain observed using a Varn code of size

256 for the TLC device is much larger than the 2.6× gain achieved for the MLC device. This

is a reflection of the level-dependent wear characteristics of the TLC device, as quantified in
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Fig. 4.1. It would be interesting to investigate whether an optimal shaping scheme could achieve

even further lifetime gains as flash devices continue to scale up the bit density in each cell.
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Chapter 5

Efficient Constrained Codes That Enable
Page Separation in Modern Flash Memo-
ries
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5.1 Introduction

The history of constrained coding dates back to 1948, when Shannon represented a

constrained sequence via a finite-state transition diagram (FSTD) and derived the capacity under

a constraint [103]. Run-length-limited (RLL) codes were introduced by Tang and Bahl in 1970

to support the evolution of magnetic recording at that time [111], and these codes were based

on lexicographic indexing. In 1973, Cover presented a result about enumerative coding [22]

that will prove fundamental for the design of constrained codes based on lexicographic indexing

decades later. Among other researchers, Franaszek developed constrained codes based on finite-

state machines (FSMs) derived from FSTDs [30]. In 1983, Adler, Coppersmith, and Hassner

introduced a systematic method to develop constrained codes based on FSMs [1]. Details about

the history of constrained coding until 1998 are in [49].

Because of their ability to improve performance via eliminating error-prone data pat-

terns and undesirable sequences, constrained codes have a plethora of applications. They find

application in one-dimensional (1D) magnetic recording devices, both the old ones, which are

based on peak detection, and the modern ones, which are based on sequence detection [34, 115].

They can also be combined with robust signal detection using machine learning [128]. They find

application in the emerging two-dimensional (2D) magnetic recording devices as well [23, 121].

Moreover, constrained codes are used to achieve DC balance and self-calibration in optical

recording devices [47] in addition to many computer standards for data transmission [100].

Recently, constrained codes have been investigated for improved retention and recovery of stored

DNA strands in DNA-based storage systems, e.g., [48,79,91], and for efficient synthesis of DNA

strands [66].

In Flash devices, charge propagation from cells programmed to high charge levels

into cells programmed to lower charge levels is the main reason behind inter-cell interference

(ICI) [65]. This is correct for any number q of charge levels per cell. Mitigating ICI results in

remarkable lifetime gains in Flash as demonstrated in [112] for multi-level cell (MLC) Flash
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(q = 4). There are data patterns that are considered usual suspects for contributing most to ICI.

Coding to eliminate data patterns resulting in consecutive levels (q − 1)0(q − 1) was considered

in [88] and [15]. Coding to eliminate data patterns resulting in consecutive levels (q−1)µ(q−1),

also called level patterns, for all µ < q − 1, was presented in [112], [15], and [35].

A number of recent results revisited [111] and [22] in order to produce efficient con-

strained codes based on lexicographic indexing, and one example is [9]. Another example is [34],

in which we introduced binary symmetric lexicographically-ordered constrained (S-LOCO)

codes and demonstrated density gains in a modern 1D magnetic recording system. We extended

our result to single-level cell (SLC) Flash memories (q = 2) [33] then to Flash memories with

any number q of levels per cell [35]. Moreover, we devised a general method to design LOCO

codes for any finite set of patterns to forbid [37], which will be useful in this chapter. We studied

the power spectra of binary LOCO codes in [14]. LOCO codes are capacity-achieving, simple,

and easily reconfigurable [35, 37].

While the constrained codes in [15] and [35] are quite efficient in terms of rate, they

require all Flash pages to be processed together, which negatively affects the access speed. In

this chapter, we propose binary read-and-run (RR) constrained coding schemes that allow pages

to be accessed separately in modern Flash devices, thus preserving high access speed. Our binary

RR coding schemes incur small rate loss and work for any Flash device with q ≥ 4 levels per

cell. The key idea is that the constrained code is applied only on one page, the left-most page,

while no coding is applied on the other log2 q − 1 pages. We present a 2D RR coding scheme as

well as a 1D RR coding scheme that is based on LOCO codes, and we name the latter binary

RR-LOCO coding. Furthermore, we present a 1D 4-ary RR coding scheme that is based on

LOCO codes, which we name 4-ary RR-LOCO coding, in order to further reduce the rate loss

without impacting the device reliability. In particular, we apply constrained coding on two pages,

the two left-most pages, while no coding is applied on the other log2 q − 2 pages. Therefore,

all pages are separated except the two left-most ones. Our 4-ary RR coding scheme works
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for any Flash device with q ≥ 8 levels per cell.1 We show that our 4-ary RR coding scheme

can even outperform the binary RR coding schemes at capacity-approaching rates in terms of

both complexity and error propagation. There are techniques in the literature that allow page

separation; however, they are either incurring notable rate loss [112] or designed for a specific

Flash setup [88]. We study various aspects about the proposed RR coding schemes, including

charge-level probabilities. We introduce experimental results in a practical triple-level cell (TLC)

Flash device (q = 8) that demonstrate notable lifetime gains achieved by our coding schemes.

Signal processing techniques have also been proposed to mitigate ICI effects in flash

memory. Precompensation, or predistortion, methods [25] attempt to predict the ICI that will

be experienced by a cell and modify the program level accordingly. Postcompensation, or

postprocessing, methods [3, 25] attempt to estimate the ICI distortion after sensing the cell

voltages and apply an appropriate correction to the cell read voltage to offset the ICI effect. Both

approaches require accurate information about inter-cell coupling ratios over a range of P/E

cycles. They must compute an estimate of the expected ICI for every cell as a function of its

program level (or read voltage) and those of its neighboring cells. As pointed out in [3, 25], this

comes at a cost of additional processing either during programming or after reading, resulting in

extra calculations, additional storage overhead, and added write or read latency. Furthermore,

the ICI compensation, whether during programming or after reading, will not be exact, so there

may be some residual ICI. On the other hand, results of modeling and simulation in [3, 25] give

evidence that these signal processing methods can be very effective in mitigating ICI, and unlike

constrained coding methods that introduce redundant data, they do not incur any rate loss penalty.

Given the many issues involved, it is difficult to identify one approach to ICI mitigation

as universally superior to another without a careful assessment of the engineering trade-offs.

However, further comparison of constrained coding methods to signal processing methods is

an interesting topic for future research, as is the consideration of techniques that combine both

1This 4-ary RR coding scheme works for q = 4 as well, but with more benign patterns forbidden and with no
page separation.
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methods in a complementary fashion.

5.2 Patterns, Mapping, and 2D RR Coding

As implied in the introduction, literature works do not strictly agree on the set of

forbidden patterns to operate on. Additionally, as the Flash device ages, the set of error-prone

patterns is expected to expand [35]. According to our recent experimental tests and a machine

learning-based ICI characterization [127] of TLC Flash memories, we decided to focus on the

set characterized as follows. Let

β1, β1 ∈ V0 ≜
{q

2
,
q

2
+ 1, . . . , q − 1

}
, (5.1)

where q is the number of levels per Flash cell (a positive power of 2) and V1 = {0, 1, . . . , q −

1} \ V0. Then, the set of interest is the set resulting in the high-low-high level patterns in Lq:2

Lq ≜ {β1µβ1,∀β1, β1 | 0 ≤ µ < min(β1, β1)}. (5.2)

This set already subsumes all 3-tuple forbidden patterns adopted in the literature for Flash. This

set can be relaxed by removing few patterns that have minimal impact on performance as we

shall see in Section 5.4. A block inside the Flash device can be seen as a 2D grid of wordlines and

bitlines, with a cell being placed at each intersection [112]. Level patterns in Lq are detrimental

whether they occur on 3 adjacent cells along the same wordline or along the same bitline.

Example 1. Consider an MLC Flash device, i.e., q = 4. In this case, we have β1, β1 ∈ {2, 3}.

Then, the set of interest is the set resulting in:

L4 = {202, 212, 203, 213, 302, 312, 303, 313, 323}. (5.3)

2Levels are defined through their indices {0, 1, . . . , q − 1} for simplicity.

56



The last three elements in L4 are quite known [35, 88, 112].

Algorithm 1. Recursive Alternate Gray Mapping
1: Input: Number of levels per cell q, and p = log2 q.
2: Define map, a binary array of dimensions q × p.
3: Set map(0, :) = 1p. (a sequence of p 1’s)
4: for i ∈ {0, 1, . . . , p− 1} do
5: for j ∈ {0, 1, . . . , 2i − 1} do
6: map(2i + j, :) = map(2i − 1− j, :).
7: Flip the bit map(2i + j, i). (each sequence in map is indexed from right to left by

0, 1, . . . , p− 1)
8: end for
9: end for

10: Output: Array map that maps each index to binary data.

Next, we discuss how to map from data to charge levels in Flash and vice versa. Since we

are interested in page separation throughout this work, the mapping here is from a charge level

out of q possible ones to log2 q binary bits, one for each page, and vice versa. Gray mapping

offers the advantage that there is only one-bit difference between any two adjacent charge levels,

which is valuable for error performance. We adopt a recursive alternate Gray mapping (RAGM),

and Algorithm 1 shows how to produce it for any q ≥ 4. We highlight that RAGM has already

been used in the literature in MLC Flash [112] and TLC Flash [88]. Thus, RAGM is not strictly

a new contribution.

Example 2. Consider a TLC Flash device, i.e., q = 8. In this case, the output of Algorithm 1,

which is RAGM, becomes:

0←→ 111, 1←→ 110,

2←→ 100, 3←→ 101,

4←→ 001, 5←→ 000,

6←→ 010, 7←→ 011. (5.4)

Now, we are ready to discuss binary coding schemes. Let us first index the Flash pages
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the same way the bits in each sequence in the array map are indexed (see Algorithm 1). This

means that the left-most page is the one indexed by p− 1. From (5.2) and Algorithm 1, the level

patterns in Lq correspond to binary patterns where the left-most page (pages) always has (have)

two 0’s separated by some bit, i.e., 0x0. Based on that, forbidding {000, 010} on the left-most

page (pages) guarantees that no level pattern in Lq would appear while writing to a Flash device,

with any q ≥ 4, at least in the wordline (bitline) direction. This corresponds to an interleaved

RLL (d, k) = (0, 1) constraint [107]. Notably, no coding on any other page is needed. Data

will therefore be read from each page independently, and immediately passed to the low-density

parity-check (LDPC) decoder to start its processing. This idea is the key idea of our binary RR

constrained coding schemes.3

RR coding can be performed in the wordline direction only (1D), the bitline direction

only (1D), or both directions (2D). Observe that binary RR coding will also prevent some benign

level patterns, e.g., 474, 555, and 676 in TLC Flash, resulting in inevitable rate loss. However,

as we shall see in Section 5.5, this rate loss is small. Furthermore, some of these benign level

patterns will be allowed when we shift from binary to 4-ary coding, which reduces this rate loss,

as we shall see in Section 5.4. RR-LOCO codes are capacity-approaching codes.

We start here with our scheme for 2D binary RR constrained coding. As the name

suggests, we want to prevent the patterns in R2 = {000, 010} from appearing at the left-most

pages in both wordline and bitline directions in the Flash device through simple encoding and

decoding. The encoding follows the rules:

1. On wordlines with indices congruent to 0 or 1 (mod 4), you are allowed to write 0’s and

1’s freely in bit positions congruent to 0 or 1 (mod 4) at the left-most pages.

2. On wordlines with indices congruent to 2 or 3 (mod 4), you are allowed to write 0’s and

1’s freely in bit positions congruent to 2 or 3 (mod 4) at the left-most pages.

3. In the other bit positions, you can only write 1’s on wordlines at the left-most pages.
3An equivalent scheme was proposed for MLC Flash, i.e., q = 4, in [107].
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Wordline direction

Figure 5.1. The left-most pages of a 2D Flash grid with data encoded via the proposed 2D binary
RR coding scheme. Symbol x means bit can be 0 or 1 freely.

This 2D binary RR constrained coding scheme is depicted in Fig. 5.1. It is clear from the

figure that the patterns inR2 = {000, 010} are eliminated on the left-most pages, which forbids

all level patterns in Lq, in both directions. Upon encoding, input data bits are freely placed at

the positions marked by x for the left-most pages, and they are directly placed (uncoded) at the

other pages. Upon decoding, information at the positions marked by 1 is omitted, and data bits at

the remaining positions are read with no additional processing and with no correlation between

different Flash pages.4

This 2D binary scheme is ideal in terms of complexity, access speed, and error propaga-

tion (see Section 5.5). It might also seem notably better than any 1D scheme (binary or 4-ary) in

terms of performance. However, 1D schemes can achieve almost the same performance with

higher rates, which we will discuss in more detail later.

4An equivalent 2D scheme forbidding patterns {101, 111} on the right-most pages in both wordline and bitline
directions in MLC Flash was proposed in [107].
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5.3 RR-LOCO Coding Over GF(2)

In this section, we introduce a binary RR coding scheme that forbids {000, 010} on the

left-most pages in either the wordline direction or the bitline direction, while leaving all other

pages with no coding, which forbids the level patterns in Lq and achieves page separation. This

scheme is the binary RR-LOCO coding scheme. The constrained code we apply is a binary

LOCO code devised according to the general method in [37]. We start by defining the proposed

LOCO code.

Definition 1. A binary LOCO code RC2m, where m ≥ 1, that forbids the patterns in R2 =

{000, 010} is defined by the following properties:

1. Codewords inRC2m are defined over GF(2) = {0, 1} and are of length m bits.

2. Codewords inRC2m are ordered lexicographically.

3. Codewords inRC2m do not have patterns inR2.

4. All codewords satisfying 1)–3) are included.

Lexicographic ordering is ordering codewords ascendingly according to the rule “0 < 1”,

where bit significance reduces from left to right [35, 111]. The first step to devise this binary

LOCO code is to specify the group structure. Codewords in RC2m, m ≥ 2, can be partitioned

into the following groups:

• Group 1: Codewords starting with 0011 from the left.

• Group 2: Codewords starting with 011 from the left.

• Group 3: Codewords starting with 1 from the left.

The second step is to enumerate the codewords in RC2m, which is done by Theorem 1.

Let N2(m) ≜ |RC2m|.
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Theorem 1. The cardinality of a binary LOCO codeRC2m is given by the recursive formula:

N2(m) = N2(m− 1) +N2(m− 3) +N2(m− 4), m ≥ 2, (5.5)

where the defined cardinalities are:

N2(−3) ≜ 0, N2(−2) = N2(−1) = N2(0) ≜ 1, and N2(1) = 2. (5.6)

Proof. We compute the cardinalities of each group then add them all. Let the cardinality of

Group i be N2,i. As for Group 3 in RC2m, there is a bijection between its codewords and the

codewords inRC2m−1 (attach 1 from the left). Thus,

N2,3(m) = N2(m− 1). (5.7)

As for Group 2 inRC2m, there is a bijection between its codewords and the codewords starting

with 1 from the left inRC2m−2 (attach 01 from the left). Thus using (5.7),

N2,2(m) = N2,3(m− 2) = N2(m− 3). (5.8)

As for Group 1 inRC2m, there is a bijection between its codewords and the codewords starting

with 1 from the left inRC2m−3 (attach 001 from the left). Thus using (5.7),

N2,1(m) = N2,3(m− 3) = N2(m− 4). (5.9)

Adding (5.7), (5.8), and (5.9) gives (5.5). The defined cardinalities, other than N2(1), can be

computed by observing that N2(1) = 2, N2(2) = 4, N2(3) = 6, and N2(4) = 9, which sets up

four equations. This observation is immediate given the forbidden patterns. ■

Define a codeword c in RC2m as c ≜ cm−1cm−2 . . . c0, with ci ≜ ζ for i ≥ m, where
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ζ represents “out of codeword bounds”. The integer equivalent of a LOCO codeword bit ci,

0 ≤ i ≤ m − 1, is ai, i.e., ai is 0 (1) when ci is 0 (1). Denote the lexicographic index of a

codeword c among all codewords in the LOCO codeRC2m by g2(m, c), which is abbreviated to

g(c). In general, g(c) is in {0, 1, . . . , N2(m)− 1}.

The third step is to specify the special cases of occurence for a 1 inside a codeword in

RC2m. These cases are:

• Case 2: ci+2ci+1ci = 001.

• Case 3: ci+2ci+1ci = 011.

• Case 4: ci+2ci+1ci = 101 or ci+2ci+1ci = ζ01.

The typical or default case, Case 1, is simply the case of “otherwise”. In particular, it is the case

that ci+2ci+1ci = 111, ci+2ci+1ci = ζ11, or ci+1ci = ζ1.

The fourth and fifth steps are to find the encoding-decoding rule, which specifies the

mapping from index to codeword and vice versa. This rule forRC2m is given in Theorem 2.

Theorem 2. The relation between the lexicographic index g(c), c ∈ RC2m, and the binary

codeword c itself is given by:

g(c) =
m−1∑
i=0

ai

[
(1− yi,1)N2(i− 2) + (1− yi,1 − yi,2)N2(i− 3)

]
, (5.10)

where yi,1 and yi,2 are specified as follows:

yi,1 = 1 if ci+2ci+1ci ∈ {001, 011}, and yi,1 = 0 otherwise,

yi,2 = 1 if ci+1ci = 01 s.t. yi,1 = 0, and yi,2 = 0 otherwise. (5.11)

Proof. We compute the contributions gi,j(ci) of a bit ci under Case j, for all j ∈ {1, 2, 3, 4}, in a

binary LOCO codeword then merge them all. As for the typical case, which we index by 1, this
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contribution is the number of codewords starting with 0 from the left inRC2i+1. Thus using (5.8)

and (5.9),

gi,1(ci) = N2,2(i+ 1) +N2,1(i+ 1)

= N2(i− 2) +N2(i− 3). (5.12)

As for Case 2 (Case 3), this contribution is the number of codewords starting with 000 (010)

from the left inRC2i+3. Note that 000 and 010 are forbidden patterns. Thus,

gi,2(ci) = 0 and

gi,3(ci) = 0. (5.13)

As for Case 4, this contribution is the number of codewords starting with 00 from the left in

RC2i+2. Thus using (5.9),

gi,4(ci) = N2,1(i+ 2) = N2(i− 2). (5.14)

Using yi,1 (for Cases 2 and 3) and yi,2 (for Case 4) from (5.11) along with ai to merge (5.12),

(5.13), and (5.14) gives:

gi(ci) = ai

[
(1− yi,1)N2(i− 2) + (1− yi,1 − yi,2)N2(i− 3)

]
. (5.15)

Substituting (5.15) in g(c) =
∑m−1

i=0 gi(ci) gives (5.10). ■

For brevity, we skip the sixth step, which is to assemble the encoding and decoding

algorithms. These algorithms are a direct consequence of the rule in (5.10), and we refer the

reader to [111], [35], [37], and [63] for details. Note that we sometimes refer toRC2m as a 1D

binary RR-LOCO code. The encoding-decoding rule of a LOCO code is the reason behind

its low complexity algorithms, where reconfiguration becomes as easy as reprogramming an
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adder [34, 37].

Remark 2. If the coded bits are complemented before writing to pages, the set of forbidden

patterns on the left-most pages becomes {101, 111} instead, which appears in [112] as well.

In this case, the cardinality of the binary LOCO code remains as in (5.5), while the encoding-

decoding rule becomes exactly that of a binary asymmetric LOCO code in [33] for x = 1:

g(c) =
m−1∑
i=0

aiN2(i− ai+1). (5.16)

Encoding and decoding on the left-most pages are just subtractions and additions. As for

the remaining pages, data is written and read directly (uncoded). This guarantees simplicity and

maintains high access speed via our 1D binary RR-LOCO coding scheme.

5.4 RR-LOCO Coding Over GF(4)

In this section, we propose a 1D RR coding scheme over GF(4), which is also based

on LOCO codes. This scheme is our 4-ary RR-LOCO coding scheme. The goal is to limit the

rate loss resulting from binary RR coding schemes via coding on the two left-most pages. Finer

classification of error-prone patterns, stemming from characterizing them via two bits instead of

one, results in allowing some benign or less detrimental patterns, and therefore increasing the

rate with negligible effect on performance.

We start by modifying the set of error-prone patterns. Let

θ1, θ1 ∈ W0 ≜

{
3q

4
,
3q

4
+ 1, . . . , q − 1

}
,

θ2, θ2 ∈ W1 ≜

{
q

2
,
q

2
+ 1, . . . ,

3q

4
− 1

}
,

θ3,∈ W2 ∪W3, W2 ≜
{q

4
,
q

4
+ 1, . . . ,

q

2
− 1

}
, W3 ≜

{
0, 1, . . . ,

q

4
− 1

}
, (5.17)

where q is the number of levels per Flash cell (a positive power of 2). While mathematically
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q ≥ 4, we focus here on the case of q ≥ 8. Then, the set of interest is the set resulting in the

high-low-high level patterns in L′
q ⊂ Lq:

L′
q ≜ {θ1ηθ1,∀θ1, θ1 | 0 ≤ η < min(θ1, θ1)} ∪ {θ1θ3θ2,∀θ1, θ2, θ3} ∪

{θ2θ3θ1,∀θ1, θ2, θ3} ∪ {θ2θ3θ2,∀θ2, θ2, θ3}. (5.18)

This set also subsumes all 3-tuple forbidden patterns adopted in the literature for Flash. The

only difference between the set L′
q and the set Lq is that in the former, if either the left level

is or the right level is or both levels are in W1, the middle level is always in W2 ∪ W3. Our

experimental results show that the level patterns in Lq \ L′
q have very limited contribution to the

errors occurring upon reading from the Flash device.

Example 3. Consider a TLC Flash device, i.e., q = 8. In this case, we have θ1, θ1 ∈ {6, 7},

θ2, θ2 ∈ {4, 5}, and θ3 ∈ {0, 1, 2, 3}. Then, the difference between the two sets of interest is only

one level pattern:

L8 \ L′
8 = {545}. (5.19)

For mapping from charge levels to binary bits, we adopt the RAGM of Algorithm 1.

Moreover, we index the Flash pages the same way the bits in each sequence in the array map are

indexed using Algorithm 1. Therefore, we are interested here in the data on the two left-most

pages indexed by p− 1 and p− 2. We adopt the following binary to 4-ary mapping-demapping,

where GF(4) = {0, 1, α, α2}, for these two specific Flash pages:

11←→ 0 (W3), 10←→ 1 (W2),

00←→ α (W1), 01←→ α2 (W0). (5.20)

The set of level patterns corresponding to each GF(4) symbol is given between parenthesis.

We can see from (5.17), (5.18), and (5.20) that the set of level patterns in L′
q can be
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forbidden in the wordline or the bitline direction by forbidding the 4-ary patterns in the following

setR4 from being written on the two left-most pages indexed by p− 1 and p− 2:

R4 = {α0α, α1α, α0α2, α1α2, α20α, α21α, α20α2, α21α2, α2αα2, α2α2α2}. (5.21)

Once again, no coding on any other page is needed. Data will therefore be read from each

page independently, except the two left-most pages, and immediately passed to the low-density

parity-check (LDPC) decoder to start its processing. This idea is the key idea of our 4-ary RR

constrained coding scheme.

Consider a TLC Flash device (q = 8) once again. Forbidding the patterns inR4 on the

two left-most pages instead of the patterns inR2 on the left-most page results in allowing many

benign patterns that are forbidden if binary RR coding is adopted, e.g., 444, 474, and 555.

Now, we introduce our 4-ary RR coding scheme that forbids the patterns in R4 on the

two left-most pages in either the wordline direction or the bitline direction, while leaving all

other pages with no coding. The constrained code we apply is a 4-ary LOCO code devised

according to the general method in [37]. We start by defining the proposed LOCO code.

Definition 2. A 4-ary LOCO codeRC4m, where m ≥ 1, that forbids the patterns inR4 is defined

by the following properties:

1. Codewords inRC4m are defined over GF(4) = {0, 1, α, α2} and are of length m symbols.

2. Codewords inRC4m are ordered lexicographically.

3. Codewords inRC4m do not have patterns inR4.

4. All codewords satisfying 1)–3) are included.

Lexicographic ordering here is ordering codewords ascendingly according to the rule

“0 < 1 < α < α2”, where symbol significance reduces from left to right [35, 111]. The first
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step to devise this 4-ary LOCO code is to specify the group structure. Let γ1 and γ2 be in {0, 1}.

Codewords inRC4m, m ≥ 3, can be partitioned into the following groups:

• Group 1: Codewords starting with γ1, ∀γ1, from the left.

• Group 2: Codewords starting with αγ1γ2, ∀γ1, γ2, from the left.

• Group 3: Codewords starting with αα or αα2 from the left.

• Group 4: Codewords starting with α2γ1γ2, ∀γ1, γ2, from the left.

• Group 5: Codewords starting with α2αγ1γ2, ∀γ1, γ2, from the left..

• Group 6: Codewords starting with α2αα from the left.

• Group 7: Codewords starting with α2α2γ1γ2, ∀γ1, γ2, from the left..

• Group 8: Codewords starting with α2α2α from the left.

The second step is to enumerate the codewords in RC4m, which is done by Theorem 3.

Let N4(m) ≜ |RC4m|.

Theorem 3. The cardinality of a 4-ary LOCO codeRC4m is given by the recursive formula:

N4(m) = 3N4(m− 1)− 2N4(m− 2) + 9N4(m− 3)

+ 7N4(m− 4) + 6N4(m− 5) + 4N4(m− 6), m ≥ 3, (5.22)

where the defined cardinalities are:

N4(−5) ≜
1

32
, N4(−4) ≜ −

1

16
, N4(−3) ≜ 0, N4(−2) ≜

1

4
, N4(−1) ≜

1

2
, N4(0) ≜ 1,

and N4(1) = 4, N4(2) = 16. (5.23)
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Proof. We compute the cardinalities of each group then add them all. Let the cardinality of

Group i be N4,i. As for Group 1 in RC4m, there is a surjection between its codewords and the

codewords inRC4m−1 (attach 0 or 1 from the left). Thus,

N4,1(m) = 2N4(m− 1). (5.24)

As for Group 2 inRC4m, there is a surjection between its codewords and the codewords inRC4m−3.

Thus,

N4,2(m) = (2)(2)N4(m− 3) = 4N4(m− 3). (5.25)

As for Group 3 inRC4m, there is a bijection between its codewords and the codewords starting

with α or α2 from the left inRC4m−1. Thus using (5.24),

N4,3(m) = N4(m− 1)−N4,1(m− 1) = N4(m− 1)− 2N4(m− 2). (5.26)

As for Group 4 inRC4m, the cardinality is the same as that of Group 2. Thus,

N4,4(m) = (2)(2)N4(m− 3) = 4N4(m− 3). (5.27)

As for Group 5 inRC4m, it is handled in a way similar to that of Groups 2 and 4. Thus,

N4,5(m) = (2)(2)N4(m− 4) = 4N4(m− 4). (5.28)

As for Group 6 inRC4m, there is a bijection between its codewords and the codewords starting

with α from the left inRC4m−2. Thus using (5.25) and (5.26),

N4,6(m) = N4,2(m− 2) +N4,3(m− 2) = N4(m− 3)− 2N4(m− 4) + 4N4(m− 5). (5.29)
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As for Group 7 inRC4m, the cardinality is the same as that of Group 5. Thus,

N4,7(m) = (2)(2)N4(m− 4) = 4N4(m− 4). (5.30)

As for Group 8 inRC4m, there is a bijection between its codewords and the codewords starting

with α2α from the left inRC4m−1. Thus using (5.28) and (5.29),

N4,8(m) = N4,5(m− 1) +N4,6(m− 1) = N4(m− 4) + 2N4(m− 5) + 4N4(m− 6). (5.31)

Adding (5.24), (5.25), (5.26), (5.27), (5.28), (5.29), (5.30), and (5.31) gives (5.22). The

defined cardinalities, other than N4(1) and N4(2), can be computed from the cardinalities at

small values of m, which set up six equations. ■

Define a codeword c in RC4m as c ≜ cm−1cm−2 . . . c0, with ci ≜ ζ for i ≥ m, where ζ

represents “out of codeword bounds”. The integer equivalent of a LOCO codeword symbol ci,

0 ≤ i ≤ m − 1, is ai, i.e., ai is 0, 1, 2, or 3 when ci is 0, 1, α, or α2, respectively. Denote the

lexicographic index of a codeword c among all codewords in the LOCO codeRC4m by g4(m, c),

which is abbreviated to g(c). In general, g(c) is in {0, 1, . . . , N4(m)− 1}.

The third step is to specify the typical/special cases of occurence for a symbol in GF(4) \

{0} inside a codeword inRC4m. Let γ be in {ζ, 0, 1} and χ be in {α, α2}. These cases are:

• Case 1.a: ci+1ci = γ1 or ci+1ci = γα, for all γ.

• Case 1.b: ci+1ci = γα2, for all γ.

• Case 2: ci+1ci = χ1 or ci+1ci = χα, for all χ.

• Case 3: ci+1ci = αα2.

• Case 4: ci+1ci = α2α2.

The typical or default case is Case 1 (Case 1.a and Case 1.b combined).
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The fourth and fifth steps are to find the encoding-decoding rule, which specifies the

mapping from index to codeword and vice versa. This rule forRC4m is given in Theorem 4.

Theorem 4. The relation between the lexicographic index g(c), c ∈ RC4m, and the 4-ary

codeword c itself is given by:

g(c) =
m−1∑
i=0

[[
(yi,1 + y′i,1)ai + yi,3

]
N4(i) +

[
2(yi,2ai + yi,3 − y′i,1) + 5yi,d

]
N4(i− 1)

[
4(y′i,1 + yi,3) + 2yi,d

]
N4(i− 2) + 4yi,dN4(i− 3)

]
, (5.32)

where yi,1, y′i,1, yi,2, yi,3, and yi,d are specified as follows:

yi,1 = 1 if ci+1ci ∈ {γ1, γα | ∀γ}, and yi,1 = 0 otherwise,

y′i,1 = 1 if ci+1ci ∈ {γα2 | ∀γ}, and y′i,1 = 0 otherwise,

yi,2 = 1 if ci+1ci ∈ {χ1, χα | ∀χ}, and yi,2 = 0 otherwise,

yi,3 = 1 if ci+1ci = αα2, and yi,3 = 0 otherwise,

yi,d = 1 if ci+1ci = α2α2, and yi,d = 0 otherwise. (5.33)

Proof. We compute the contributions gi,j(ci) of a symbol ci under Case j, for all j in {1, 2, 3, 4},

in a 4-ary LOCO codeword then merge them all. As for the typical case, Situation a, which

we index by 1.a, this contribution is the number of codewords starting with c′i < ci, where

ci ∈ {1, α}, from the left inRC4i+1. Thus using (5.24),

gi,1.a(ci) = aiN4(i+ 1− 1) = aiN4(i). (5.34)

As for the typical case, Situation b, which we index by 1.b, this contribution is the number of

codewords starting with c′i < ci, where ci = α2, from the left in RC4i+1. Thus using (5.24),
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(5.25), and (5.26),

gi,1.b(ci) = N4,1(i+ 1) +N4,2(i+ 1) +N4,3(i+ 1)

= 3N4(i)− 2N4(i− 1) + 4N4(i− 2). (5.35)

As for Case 2, this contribution is the number of codewords starting with c′iγ1, c
′
i < ci, where

ci ∈ {1, α} and γ1 ∈ {0, 1}, from the left inRC4i+1. Thus using (5.24),

gi,2(ci) = aiN4,1(i) = 2aiN4(i− 1). (5.36)

As for Case 3, this contribution is the number of codewords starting with αc′i, c
′
i < ci, where

ci = α2, from the left inRC4i+2. Those are all the codewords starting with γ1γ2, for all γ1 and γ2,

from the left inRC4i+1 plus all the codewords starting with α from the left inRC4i+1. Thus using

(5.24), (5.25), and (5.26),

gi,3(ci) = 2N4,1(i) +N4,2(i+ 1) +N4,3(i+ 1)

= N4(i) + 2N4(i− 1) + 4N4(i− 2). (5.37)

As for Case 4, this contribution is the number of codewords starting with α2c′i, c
′
i < ci, where

ci = α2, from the left inRC4i+2. Those are all the codewords starting with γ1γ2, for all γ1 and γ2,

from the left in RC4i+1 plus all the codewords starting with α2α from the left in RC4i+2. Thus

using (5.24), (5.28), and (5.29),

gi,4(ci) = 2N4,1(i) +N4,5(i+ 2) +N4,6(i+ 2)

= 5N4(i− 1) + 2N4(i− 2) + 4N4(i− 3). (5.38)

We use yi,1, y′i,1 (for Case 1), yi,2 (for Case 2), yi,3 (for Case 3), and yi,d (for Case 4) from (5.33)

along with ai to merge (5.34), (5.35), (5.36), (5.37), and (5.38). We adopt the following merging
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functions, where fmer
ℓ (·) is associated with N4(i+ 1− ℓ):

fmer
1 (·) = (yi,1 + y′i,1)ai + yi,3,

fmer
2 (·) = 2(yi,2ai + yi,3 − y′i,1) + 5yi,d,

fmer
3 (·) = 4(y′i,1 + yi,3) + 2yi,d,

fmer
4 (·) = 4yi,d. (5.39)

Therefore, the general form of the symbol contribution gi(ci) is:

gi(ci) =
4∑

ℓ=1

fmer
ℓ (·)N4(i+ 1− ℓ). (5.40)

Substituting (5.39) and (5.40) in g(c) =
∑m−1

i=0 gi(ci) gives (5.32). ■

Remark 3. Observe that the number of linearly independent merging variables is always less

than the number of final cases [37]. Here, yi,d is dependent on the other merging variables as

it can be written as yi,d = 1(ai)(1 − yi,1 − y′i,1 − yi,2 − yi,3), where 1(ai) = 1 if ai > 0 and

1(ai) = 0 if ai = 0.

For brevity, we again skip the sixth step, which is to assemble the encoding and decoding

algorithms. These algorithms are a direct consequence of the rule in (5.32), and we refer the

reader to [111], [35], [37], and [63] for details. Note that we sometimes refer toRC4m as a 1D

4-ary RR-LOCO code.

5.5 Rate, Complexity, and Error Propagation

We start by calculating asymptotic rates. Unfortunately, deriving the capacity for 2D

constrained codes is known to be notoriously hard. Therefore, we will derive the capacity C1D
Lq

only under the 1D constrained coding setup, which is already higher than the capacity under the

2D setup. Thus, C1D
Lq

serves as a ceiling for the highest achievable rate in a device where patterns
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Table 5.1. Capacity Comparison Between C1D
Lq

, 1D Binary RR Capacity C1D
RR2, and 1D 4-ary RR

Capacity C1D
RR4

q C1D
Lq

C1D
RR2 Capacity gap % C1D

RR4

4 0.8941 0.8471 5.257% 0.8859
8 0.9235 0.8981 2.750% 0.9239
16 0.9401 0.9235 1.766% 0.9429
32 0.9509 0.9388 1.272% 0.9544

in Lq are forbidden at least in one direction. We will shortly show that 1D constrained coding

suffices in terms of performance.

An FSTD of a sequence where level patterns in Lq are forbidden is shown in Fig. 5.2.

Based on this FSTD, the general adjacency matrix is (vectors are row vectors):

A1 =



q
2

1 q
2

0 0 q
2
−1

0T
q
2

U1
q
2

q
2
1T

q
2

0 q
2
−1

L1
q
2
−1

q
2

0 q
2

0 0 q
2
−1

0T
q
2
−1 I q

2
−1 0T

q
2
−1

q
2
1T

q
2
−1

0 q
2
−1

L1
q
2
−2 0T

q
2
−2



, (5.41)

where U1
δ (L1

δ) is an upper (lower) only-ones triangular matrix of size δ×δ. Thus and from [103],

the normalized capacity of a 1D constrained code forbidding the level patterns in Lq is:

C1D
Lq

=
log2(λmax(A1))

log2 q
, (5.42)

where λmax(A) is the maximum real positive eigenvalue of the matrix A.5

5For positive integers a + b ≤ q, the set H of the a largest levels, and the set L of the b smallest levels in
{0, 1, . . . , q − 1}, a formula for the (count-constrained) capacity of the constrained system forbidding all level
patterns in {β1β2β1 | β1, β1 ∈ H,β2 ∈ L} was derived in [57].
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Figure 5.2. An FSTD of a 1D constrained sequence forbidding level patterns in Lq, for any q.
Here, we operate directly on level patterns for simplicity.

The capacity of a 2D binary code preventing {000, 010} is the capacity of a 2D (0, 1) RLL

code, which is ≈ 0.5879 [58]. Thus, the normalized capacity of our 2D RR coding scheme is:

C2D
RR2 ≈

0.5879 + log2 q − 1

log2 q
=

log2 q − 0.4121

log2 q
. (5.43)

As mentioned above, the 1D constrained system where patterns inR2 = {000, 010} are

forbidden can be interpreted as an interleaved RLL (d, k) = (0, 1) constrained system, whose

capacity is known to be log2((1 +
√
5)/2) ≈ 0.6942. Thus, the normalized capacity of our 1D

RR-LOCO coding scheme is:

C1D
RR2 =

log2((1 +
√
5)/2) + log2 q − 1

log2 q
≈ log2 q − 0.3058

log2 q
. (5.44)

The capacity gap between C1D
Lq

and C1D
RR2 for different values of q is given in Table 5.1.

The table shows that the capacity gap is small, and it gets even smaller as q increases.
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The capacity C1D
L′
q

of a 1D constrained system where the level patterns in L′
q are forbidden

is slightly higher than C1D
Lq

since L′
q ⊂ Lq. We skip the derivation of C1D

L′
q

for brevity.

An FSTD of a 1D 4-ary constrained system where patterns inR4 are forbidden is given

in Fig. 5.3. The adjacency matrix is:

A2 =



2 1 1 0 0 0

0 1 1 2 0 0

0 0 0 2 1 1

2 0 0 0 0 0

0 1 0 2 0 0

0 0 0 2 1 0


.

The characteristic polynomial is:

det(xI−A2) = x6 − 3x5 + 2x4 − 9x3 − 7x2 − 6x− 4. (5.45)

We can see that if x is replaced by λc = λmax(A2), we get:

λm
c = 3λm−1

c − 2λm−2
c + 9λm−3

c + 7λm−4
c + 6λm−5

c + 4λm−6
c , (5.46)

which is consistent with the cardinality recursion in (5.22). The capacity of this 4-ary constrained

system is log2(λmax(A2)) = log2(3.4147) = 1.7718 bits/symbol. Thus, the normalized capacity

of our 1D 4-ary RR-LOCO coding scheme is:

C1D
RR4 =

1.7718 + log2 q − 2

log2 q
≈ log2 q − 0.2282

log2 q
. (5.47)

Table 5.1 shows the capacity gain achieved by the 1D 4-ary RR scheme over the 1D

binary RR schemes, and we will show that the performance, i.e., the Flash device protection, is

nearly the same. An interesting observation is that for q ∈ {8, 16, 32}, the capacity of our 1D
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Figure 5.3. An FSTD of a 1D 4-ary constrained sequence forbidding patterns inR4.

4-ary RR scheme C1D
RR4 is slightly higher than C1D

Lq
.

Next, we discuss the finite-length rates. First, the normalized rate of our 2D binary RR

constrained coding scheme is:

R2D
RR2 =

0.5 + log2 q − 1

log2 q
=

log2−0.5
log2 q

(5.48)

since the rate of our left-most page coding is 0.5.

Regarding our 1D binary RR-LOCO coding scheme, we bridge with the pattern 11

between consecutive codewords inRC2m on the left-most page, and we remove the codeword 1m

for self-clocking [35, 37]. Thus, the rate on the left-most page is ⌊log2(N2(m)− 1)⌋/(m+ 2),

and the normalized rate of our 1D binary RR-LOCO coding scheme is:

R1D
RR2 =

1

log2 q

[⌊log2(N2(m)− 1)⌋
m+ 2

+ log2 q − 1

]
. (5.49)

1D binary RR-LOCO coding schemes are capacity-achieving schemes in the sense that

the limit as m → ∞ of R1D
RR2 is C1D

RR2 (see also [35]). Another capacity-achieving 1D RR
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constrained coding scheme, implementable using enumerative coding without the need for

bridging bits, can be obtained by interleaving codewords from an optimal block code for the RLL

(d, k) = (0, 1) constraint [81] on the left-most pages. LOCO codes, however, offer simplicity

and reconfigurability, which is important as the device ages [35].

Regarding our 1D 4-ary RR-LOCO coding scheme, we cannot bridge with a single GF(4)

symbol between consecutive codewords inRC4m on the two left-most pages since any symbol

separating α2 and α2 generates a forbidden pattern. We propose a novel two-symbol bridging in

which we can encode input information bits within the bridging interval as follows:

• For input information bits 00 ∈ GF(2), bridge with 00 ∈ GF(4).

• For input information bits 01 ∈ GF(2), bridge with 01 ∈ GF(4).

• For input information bits 10 ∈ GF(2), bridge with 10 ∈ GF(4).

• For input information bits 11 ∈ GF(2), bridge with 11 ∈ GF(4).

While it has no effect on the asymptotic rate, this bridging scheme remarkably reduces the

code length at which a specific rate is achieved, significantly reducing the complexity and error

propagation in consequence.

To achieve self-clocking, we remove the two codewords 0m and 1m, which is expected

given the bridging above [35, 37]. Thus, the rate on the two left-most pages is (⌊log2(N4(m)−

2)⌋ + 2)/(m + 2) bits/symbol, and the normalized rate of our 1D 4-ary RR-LOCO coding

scheme is:

R1D
RR4 =

1

log2 q

[⌊log2(N4(m)− 2)⌋+ 2

m+ 2
+ log2 q − 2

]
. (5.50)

1D 4-ary RR-LOCO coding schemes are capacity-achieving schemes in the sense that

the limit as m → ∞ of R1D
RR4 is C1D

RR4. RR-LOCO codes offer simplicity and reconfigurability,

which is important as the device ages [35].

The 2D binary RR constrained coding scheme we propose requires no additional com-

plexity for encoding and decoding since data is written/read directly to/from specific positions

77



on the left-most page and directly to/from all positions on other pages. As for the 1D binary

RR-LOCO coding scheme, the complexity is governed by the size of the adder that executes the

encoding-decoding rule, which is:

s2 = ⌊log2(N2(m)− 1)⌋ (5.51)

bits. Similarly and as for the 1D 4-ary RR-LOCO coding scheme, the complexity is governed by

the adder size, which is:

s4 = ⌊log2(N4(m)− 2)⌋ (5.52)

bits. For ease of implementation and to avoid affecting the access speed, we prefer to apply the

1D RR-LOCO coding schemes along wordlines instead of bitlines since the performance is very

close, as demonstrated by the experimental results in Section 5.6.

Error propagation is the phenomenon that a single writing error results in multiple errors

while reading. The 2D binary RR coding scheme does not incur any error propagation. Thus, the

error propagation factor of it is E2D
RR2 = 1. As for the 1D binary RR-LOCO coding scheme, there

is no codeword-to-codeword error propagation. However, there exists limited error propagation

resulting from the codeword-to-message conversion [34, 35] on the left-most page only. This

error propagation reaches s2/2 bits on average, where s2 is the message length as well from

(5.51). Consequently, the error propagation factor averaged over log2 q pages is:

E1D
RR2 =

1

log2 q

[s2

2
+ log2 q − 1

]
. (5.53)

As for the 1D 4-ary RR-LOCO coding scheme, again there exists limited error propa-

gation resulting solely from the LOCO codeword-to-message conversion [34, 35] on the two

left-most pages. This error propagation reaches s4/2 bits on average, where s4 is the message

length as well from (5.52). Observe that there is no error propagation for the two additional

bits encoded at each bridging interval to specify the two 4-ary bridging symbols. Therefore, the
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Table 5.2. Comparisons of Rate, Complexity, and Error Propagation at the Same Length
Between 2D RR and 1D Binary RR Constrained Coding Schemes

q m R2D
RR2 R1D

RR2 s2 E2D
RR2 E1D

RR2
4 7 0.7500 0.7778 5 1.000 1.750
4 11 0.7500 0.8077 8 1.000 2.500
4 21 0.7500 0.8261 15 1.000 4.250
8 7 0.8333 0.8519 5 1.000 1.500
8 11 0.8333 0.8718 8 1.000 2.000
8 21 0.8333 0.8841 15 1.000 3.167
16 7 0.8750 0.8889 5 1.000 1.375
16 11 0.8750 0.9038 8 1.000 1.750
16 21 0.8750 0.9130 15 1.000 2.625

average error propagation on any of these two left-most pages is:

s4

2
· m

m+ 2
+ 1 · 2

m+ 2
=

s4m+ 4

2(m+ 2)
. (5.54)

Consequently, the error propagation factor averaged over log2 q pages is:

E1D
RR4 =

1

log2 q

[
2 · s4m+ 4

2(m+ 2)
+ log2 q − 2

]
=

1

log2 q

[
s4m+ 4

m+ 2
+ log2 q − 2

]
. (5.55)

Another metric to compare 1D binary with 1D 4-ary RR-LOCO coding schemes is the

amount of coded data at a given rate. As this amount decreases, the code allows achieving the

desired rate at a smaller length m, which is an advantage. Since for our 1D binary and 1D 4-ary

RR-LOCO coding schemes we use two bits and two symbols for bridging, respectively, these

amounts of coded data, D1D
RR2 (binary) and D1D

RR4 (4-ary) are:

D1D
RR2 = (m+ 2) log2 q, m is the length ofRC2m, (5.56)

D1D
RR4 = (m+ 2) log2 q, m is the length ofRC4m. (5.57)

Table 5.2 gives the normalized rates, adder sizes, and error propagation factors of the

proposed binary RR schemes under various parameters. The 1D binary RR-LOCO coding
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Table 5.3. Comparisons of Minimum Coded Data, Complexity, and Error Propagation to
Achieve Certain Rate Between 1D Binary RR and 1D 4-ary RR Constrained Coding Schemes

q Rate D1D
RR2 D1D

RR4 s2 s4 E1D
RR2 E1D

RR4
8 0.8500 27 21 5 9 1.500 2.667
8 0.8750 48 24 10 11 2.333 3.250
8 0.8900 138 48 31 25 5.833 7.708
8 0.9000 − 60 − 32 − 10.000
16 0.8900 48 28 7 9 1.625 2.250
16 0.9050 64 32 10 11 2.000 2.688
16 0.9150 144 48 24 18 3.750 4.333
16 0.9200 288 64 49 25 6.875 6.031
16 0.9300 − 100 − 41 − 9.970

scheme has a remarkable rate advantage that reaches 10.147%, 6.096%, and 4.343% for q = 4,

q = 8, and q = 16, respectively, over the 2D binary RR constrained coding scheme. The 2D

binary RR scheme has a clear advantage in terms of both complexity and error propagation as

it requires no processing to encode and decode. Having said that, the error propagation factor

of the 1D binary RR scheme decreases notably as q increases. For example, E1D
RR2 = 2.625 for

q = 16 and m = 21, which is remarkably small given the code length.

In Table 5.3, we compare 1D binary with 1D 4-ary RR-LOCO coding schemes in a

different way. In particular, we fix the normalized rate, and find the minimum amount of coded

data and the minimum complexity (adder size) required to achieve this desired rate for the two

coding schemes, in addition to the minimum error propagation associated with them.6 The sign

“−” is used in the table whenever the binary coding scheme cannot achieve such a rate. The main

conclusions from Table 5.3 are:

• For q = 8 and q = 16, the 4-ary coding scheme requires less coded data (smaller lengths)

than the binary coding scheme does for all desired rates. The difference in favor of the

4-ary coding scheme increases as the rate increases.

• At lower rates, the complexity of the binary coding scheme is lower than that of the 4-ary

6Achieving a desired rate here means reaching a normalized rate greater than or equal to this desired rate.
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coding scheme. However, at rates ≥ 0.8900 for q = 8 and ≥ 0.9150 for q = 16, the 4-ary

coding scheme wins the complexity competition.

• As expected, the binary coding scheme incurs less error propagation in general because

LOCO coding is performed on one page only. However, at higher rates and higher q, the

4-ary coding scheme becomes quite competitive to the intriguing extent that it already

incurs less error propagation at rate 0.9200 and q = 16.

The 1D and 2D RR coding schemes can be used in the same device, but at different

lifetime stages. A 1D RR-LOCO coding scheme, binary or 4-ary, can be used when the device

is relatively fresh or until a moderate number of program/erase (P/E) cycles, while the 2D

RR constrained coding scheme can be used when the device ages, where preventing the error-

prone patterns in both directions could make a difference and the associated rate loss could be

acceptable. However, this performance difference is shown to be small in Section 5.6, at least for

the TLC Flash device we used. The section also shows that the performance difference between

1D binary and 1D 4-ary RR-LOCO coding schemes is negligible.

Remark 4. An idea that allows page separation for MLC Flash was introduced in [112].

However, the rate offered is only 0.7500, which is significantly below the rates offered via our

1D binary RR coding scheme for MLC. Another idea that allows page separation for TLC Flash

was introduced in [88]. However, it only heuristically addresses the level pattern 707.

5.6 Experimental Results on TLC Flash

To characterize the performance of the proposed RR constrained coding schemes, we

conducted program/erase (P/E) cycling experiments on several blocks of a commercial 1X-nm

TLC Flash chip, as follows:

1. Erase Flash memory block under test.
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2. Program all pages of block under test with data. For uncoded experiments, program

pseudorandom data at each P/E cycle. For RR experiments, program prepared data

satisfying RR constraints at each P/E cycle.

3. For each successive P/E cycle of RR experiments, “rotate” the data, so the data that was

written on the page i is written on the page (i+ 1), wrapping around the last page to the

first page.

4. Record bit errors and compute channel bit error rate (BER) every 100 P/E cycles.

The PE cycling experiments were performed at room temperature in a continuous manner with

no wait time between the erase-program-read operations.

Gray mappings used in Flash devices may vary between manufacturers and product gen-

erations. In our preliminary work [39], we modified the forbidden binary patterns in accordance

with the device mapping so that RR coding on one page per wordline would eliminate most of

the patterns in Lq that induce the most severe ICI (see Remark 2).

In this work, the 8-ary encoded level sequences generated by the RR encoders described

herein using the RAGM mapping were translated according to the device Gray mapping into

the corresponding binary sequences for the lower, middle, and upper pages in the TLC Flash

memory. Thus, the 8-ary level sequences stored in the memory are precisely the RR-encoded

level sequences (each cell is programmed to a level in {0, 1, . . . , q − 1}).

The left subfigure in Fig. 5.4 shows the channel BER from P/E cycle 0 to P/E cycle 10,000

using uncoded pseudorandom data, a rate 24:36 1D binary RR-LOCO code along wordlines or

bitlines, and a rate 20:12 bits/symbol 1D 4-ary RR-LOCO code along wordlines or bitlines. The

right subfigure in Fig. 5.4 shows the channel BER from P/E cycle 4,000 to P/E cycle 10,000 for

these cases in more detail. Note that the binary RR code and 4-ary RR code have the same overall

rate: R1D
RR2 = 8/9 ≈ 0.8889 using (5.49) and R1D

RR4 = 8/9 ≈ 0.8889 using (5.50). Therefore,

the 1D binary coding scheme achieves about 99% (96%) of the capacity C1D
RR2 (C1D

Lq
) and the 1D

4-ary coding scheme achieves about 96% of the capacity C1D
RR4.
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Figure 5.4. (Left) Measured average channel BER comparison when all pages are programmed
with random data (green curve), 1D binary RR-LOCO coded data (red curves) along wordlines
(solid curve) or bitlines (dashed curve), and 1D 4-ary RR-LOCO coded data (blue curves) along
wordlines (solid curve) or bitlines (dashed curve) from P/E cycle 0 to P/E cycle 10,000. (Right)
Measured average channel BER excluding random data from P/E cycle 4,000 to P/E cycle
10,000.
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Figure 5.5. Measured average channel BER comparison of 1D binary RR-LOCO coded data
(red curves) along wordlines (solid curve) or bitlines (dashed curve), 1D binary interleaved
RLL-(0, 1) coded data (cyan curves) along wordlines (solid curve) or bitlines (dashed curve),
and 2D binary RR coded data (black curve) from P/E cycle 4,000 to P/E cycle 10,000.
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As shown in Fig. 5.4, the uncoded performance is better than that of both binary and

4-ary RR codes up to around 1,200 P/E cycles and becomes notably worse thereafter. At the

later stages of P/E cycling, ICI becomes severe and the RR codes achieve significantly lower

channel BER than uncoded data. Specifically, 1D binary RR-LOCO codes along wordlines

increase device lifetime by about 1,800 P/E cycles when channel BER is 2× 10−3, representing

a 57% lifetime gain, and achieve about 3,700 P/E cycles gain when channel BER is 3× 10−3,

corresponding to a 79% lifetime gain. As shown in the right subfigure of Fig. 5.4, the BER of

the 1D binary RR code along wordlines is almost the same as that of the 4-ary RR code between

2,000 and 8,000 P/E cycles. When the P/E cycle count is larger than 8,000, the BER of the 1D

binary RR code along wordlines is slightly better than that of the 1D 4-ary RR code. In particular,

when channel BER is 3× 10−3, the 1D binary RR code along wordlines provides a lifetime that

is about 300 P/E cycles larger that than obtained with the 1D 4-ary RR code along wordlines.

Along the bitline direction, quite intriguingly, the performance of the 1D 4-ary RR-LOCO code

is generally better than, though close to, that of the 1D binary RR-LOCO code. The advantage of

the 1D 4-ary RR-LOCO is most pronounced from P/E cycle 6,300 to P/E cycle 8,300. For both

binary and 4-ary coding, coding along bitlines generally offers better performance than coding

along wordlines.

Fig. 5.5 compares the BER performance of different implementations of binary RR codes

at high P/E cycles: the 24:36 1D binary RR-LOCO code along the wordline or bitline direction,

the 1D binary interleaved 12:18 RLL (d, k) = (0, 1) code (which has an overall block length 36

after interleaving) along the wordline or bitline direction, and the 2D binary RR code. Using

(5.48), we obtain R2D
RR2 = 5/6 ≈ 0.8333. Therefore, the 2D coding scheme achieves about 93%

(90%) of the capacity C2D
RR2 (C1D

Lq
).

Referring to Fig. 5.5, we make the following observations at all P/E cycles: each 1D RR

coding scheme along the bitline direction achieves a slightly better channel BER performance

than along the wordline direction; the 1D RR coding schemes along the same direction have

similar performance; and the performance of the 2D RR constrained code is better than that of
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the 1D RR codes along any one direction. As a result, when channel BER is 2× 10−3, the 2D

binary RR coding increases lifetime by 100 P/E cycles over the 1D binary RR-LOCO coding

along bitlines and 300 P/E cycles over the 1D binary RR-LOCO coding along wordlines. When

channel BER is 3 × 10−3 and the wear condition of the Flash device is more severe, the 2D

binary RR coding outperforms the 1D binary RR-LOCO coding along bitlines by about 200 P/E

cycles and the 1D binary RR-LOCO coding along wordlines by about 600 P/E cycles.

These measurements confirm some of the claimed practical advantages of 4-ary RR codes.

The performance results of the 1D binary RR-LOCO code and the 1D 4-ary RR-LOCO code

along both wordline and bitline directions are very similar, and the designed codes have the same

overall rate (including bridging symbols). The 1D 4-ary RR-LOCO code has a shorter overall

block length corresponding to 12 bits per coded page (10 symbols plus 2 bridging symbols) in

comparison to the 1D binary RR-LOCO code which has overall block length of 36 bits on the

coded page. Moreover, in the code design, the 1D 4-ary RR-LOCO encoder uses an adder size

of 18 bits, while the 1D binary RR-LOCO requires an adder size of 24 bits.

An examination of level probabilities induced by 1D binary and 1D 4-ary RR constraints

provides some intuitive insight into the experimental results in Figs. 5.4 and 5.5. The probabilities

of binary symbols 0 and 1 under the RLL (d, k) = (0, 1) constraint are approximately 0.2764

and 0.7236, respectively [107]. Asymptotically, this leads to probabilities of individual symbols

corresponding to levels in V0 = {4, 5, 6, 7} and V1 = {0, 1, 2, 3} of about 0.0691 and 0.1809,

respectively. From the FSTD of the 4-ary constraint forbidding patterns in R4, shown in

Fig. 5.3, we find that the probabilities of individual symbols corresponding to levels inW0 =

{6, 7}, W1 = {4, 5}, W2 = {2, 3}, and W3 = {0, 1} are about 0.0787, 0.1030, 0.1591, and

0.1591, respectively. Bridging symbols change these probabilities slightly, further increasing the

probabilities of symbols corresponding to levels in {0, 1, 2, 3} relative to symbols corresponding

to levels in {4, 5, 6, 7}. These probabilities contrast with those of uncoded random data, where

each symbol/level has the same probability of 1/8 = 0.125.

The modified symbol probabilities help to explain the relative performances of the
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1D binary RR codes in the wordline and bitline directions as well as their performance relative

to the 2D RR code. Applying 1D binary RR coding in the wordline direction indirectly reduces

the probability of detrimental patterns in the bitline direction, and vice versa. This reduces the

expected advantage of bitline coding over wordline coding resulting from more severe ICI in

the bitline direction. For similar reasons, the advantage of 2D coding over 1D coding in either

direction is less than expected (even without taking into account the additional rate penalty

associated with 2D coding).

We remark that the designed codes are efficient, with rates fairly close to capacity, and

the symbol and pattern probabilities observed in the data written to the Flash memory are close

to the theoretical values mentioned above.

The cross-over behavior observed in Fig. 5.4 can be explained if the level patterns

eliminated by the code, especially ICI-prone patterns, are not the only significant contributors to

error early in the device lifetime. The binary RR coding significantly changes level probabilities

compared with the uncoded setting, possibly increasing the probability of some of the remaining

level patterns that cause errors due to other effects, and accordingly increasing their contribution

to the BER at low P/E cycles. One way to address this issue is to delay the introduction of coding

until later P/E cycles when ICI affects performance. Alternatively, one might apply different

constraints at different P/E cycles before and after the cross-over point, much as adaptive error

correction code designs have been proposed to achieve different degrees of protection at various

stages of the flash device lifetime [16, 69]. The reconfigurability feature of LOCO code designs

could be exploited, and a machine learning module could be used to identify the device status

and direct the transition from one code to another at the appropriate time based on that status.

In this regard, we also note that machine learning modeling, as proposed in [130], can be used

to characterize the spatio-temporal ICI effects of the Flash memory device and provide a tool

for optimizing the offline design of RR-LOCO codes. Another possible approach is to optimize

system performance through a combination of signal processing methods [25], [3] and RR

coding. These ideas represent directions for future research.
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5.7 Conclusion

We introduced read-and-run (RR) constrained coding schemes for modern Flash devices.

RR coding schemes eliminate patterns prone to ICI-induced errors while allowing systematic

encoder and decoder implementations, high overall rates, and page separation in data recovery.

We analyzed properties of 1D binary RR-LOCO codes, 1D 4-ary RR-LOCO codes, and a 2D

binary RR code. The three RR coding schemes offer different advantages, and we suggest that

system requirements at different stages of the device lifetime should determine the most suitable

scheme or schemes to use. Experimental results reveal significant P/E-cycle lifetime gains in

a commercial Flash device. Future work includes the incorporation of LDPC codes [36] with

RR coding schemes and the development of machine learning-aided, reconfigurable RR coding

schemes to maximize Flash device lifetime.
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Chapter 6

Code-Aware Storage Channel Modeling
via Machine Learning
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6.1 Introduction

Recently, there has been great interest in the application of machine learning in communi-

cations and networking, including data storage. For example, robust signal detection in magnetic

recording channels using a recurrent neural network (RNN) architecture was demonstrated

in [128]. A low-density parity-check (LDPC) decoder with flexible code lengths and column

weights exploiting RNN was proposed in [123]. Machine learning was also applied to page

failure prediction [76, 109] and, in a limited setting, read voltage generation [77] in NAND

flash memory. The synergy between machine learning and data storage is stimulating important

mutual progress.

Realistic models for storage and communication channels are critical tools in the design

of signal processing and coding methods. Generative flash modeling (GFM) [127] was recently

proposed to model the complex spatio-temporal characteristics of read voltages in flash memory

channels. Although statistical models [60, 67, 78, 95] to characterize the effects of P/E cycling,

ICI, and retention on flash memory read voltages have been proposed, their predictions have not

been validated in the literature by comparing to measurements of pattern-dependent errors as a

function of spatial and temporal factors.

GFM uses a conditional VAE-GAN [64] architecture, combining a variational auto-

encoder (VAE) [62] and a generative adversarial network (GAN) [31] in a conditional setting.

This modeling approach was shown to comprehensively learn both spatial and temporal properties

of the flash channel.

Constrained codes [80] have been proposed to mitigate read errors arising from the ICI

phenomenon in flash memory by forbidding the programming of error-prone patterns. Learning

the characteristics of the input-constrained flash channel poses a challenge, however. Statistical

models have not been used to explore the subtle characteristics of the channel associated with

the use of constrained data. GFM has the potential to model the input-constrained channel,

but a model trained from pseudo-random data does not provide sufficient knowledge about
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the constrained channel. On the other hand, acquiring a large dataset of measurements from

constrained data can consume excessive amounts of time and hardware resources.

It has been observed that learned knowledge from models pre-trained on a large dataset

(e.g., ImageNet [24]) can effectively be applied to other tasks, either by extracting off-the-shelf

features from trained networks [98,124], or by adapting learned knowledge to a new domain [92].

Moreover, transferring learning has shown success in the context of generative models, e.g., in

applications to image generation [120]. To accurately model the input-constrained flash channel,

we therefore propose a transfer learning approach, whereby the GFM network is first trained on a

large dataset of measurements from pseudo-random data, and then is fine-tuned by re-training on

a much smaller dataset of measurements from constrained data. We refer to this as code-aware

GFM.

The chapter has the following contributions:

1. We propose a novel framework for code-aware generative channel modeling, where the

voltage levels of coded program levels can be precisely and rapidly reconstructed.

2. We show how generative models trained on pseudo-random programming data can effi-

ciently transfer knowledge to other coded-channel modeling tasks where code-specific

data is limited.

3. We demonstrate the quality of reconstruction in code-aware GFM by analysis of voltage

distributions and bit error rates (BERs).

6.2 NAND Flash Memory and ICI Mitigation

6.2.1 NAND Flash Memory Basics

NAND flash memory stores data as voltages in floating gate transistors, called cells. In

a flash chip, cells are organized in two-dimensional (2-D) arrays, called blocks, consisting of

horizontal wordlines (WLs) and vertical bitlines (BLs). Multilevel flash memories store multiple
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Table 6.1. Numerical Values of Pattern-Dependent Error Rates for the Most Severe ICI Patterns

Error rate
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Figure 6.1. Voltage distributions and a recursive alternate Gray mapping (RAGM) between cell
program levels and binary logic values of a TLC NAND flash memory.

bits per cell. For example, a triple-level cell (TLC) memory stores three bits using 23=8 possible

voltage levels. Within each block, the three bits stored in cells along a WL are logically grouped

into three pages, called the lower, middle, and upper page, respectively.

There are three basic operations on a flash device: program (write), read, and erase. We

denote the program level as PL and the read voltage level as VL. Fig. 6.1 illustrates the the

conditional probability density functions (PDFs) of read voltages for 8 program levels, each

corresponding to a 3-bit string of lower, middle, and upper bits. The dash-dotted vertical lines

represent the read thresholds used to recover the stored data. Level errors and bit errors occur

when, for example, PL=0 induces a read voltage VL lying above the first threshold and below

the second threshold, causing the level to be mistakenly detected as 1 and the the upper bit to be

mistakenly detected as 0.
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6.2.2 ICI Mitigation via Constrained Coding

ICI effects, caused by parasitic capacitive coupling between flash cells, is one of the

major obstacles to accurate programming and reading of a flash device [10]. Severe ICI arises

when three consecutive cells in WL or BL directions are programmed to high-low-high levels.

Error rates for the most severe ICI patterns in a commercial TLC flash device are shown

in Table 6.1. Using (i, j) to denote the (WL,BL) position of a cell in the block and Vth(01) to

denote the threshold between PL=0 and PL=1, the table gives the overall level error rate for

PL=0, and the error rates for worst-case WL, BL, and 2-D patterns, or, mathematically,

P (VL(i,j) > Vth(01)|PL(i,j)=0);

P (VL(i,j) > Vth(01)|PL(i,j−1),PL(i,j)=0,PL(i,j+1));

P (VL(i,j) > Vth(01)|PL(i−1,j),PL(i,j)=0,PL(i+1,j));

P (VL(i,j) > Vth(01)|PL(i±1,j),PL(i,j)=0,PL(i,j±1)).

(6.1)

We make two observations from Table 6.1. First, ICI significantly increases error rates.

At 4000 P/E cycles, the error rate of 707 pattern in WL (resp., BL) direction is a factor of 4.5

(resp., 6.3) larger than the average error rate. If we program 707 in both directions, the error rate

is a factor of 19.6 larger than the average error rate. Second, P/E cycling causes error rates to

increase. Specifically, the average error rate increases by a factor of 2.38 from 4000 P/E cycles to

10000 P/E cycles. For dominant 707 error patterns in WLs (resp., BLs), the error rate increases

by a factor of 1.68 (resp., 1.67) from 4000 P/E cycles to 10000 P/E cycles.

Solid-state drives (SSDs) employ powerful error-correction codes (ECCs) [46] within

their controllers to cope with such errors. Constrained codes to further reduce ICI-induced errors

have been proposed and some have been experimentally validated [35, 39, 97, 112]. In particular,

read-and-run (RR) constrained coding techniques [39] efficiently eliminate selected detrimental

patterns by coding on only one page per WL. They allow random page access and are compatible

with page-based ECCs. A generative model that accurately learns input-constrained channels
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will be a valuable tool in optimizing the combination of constrained coding and ECC.

6.3 Code-aware Storage Channel Modeling

The GFM scheme in [127] learns an approximation to the intractable likelihood

P (VL|PL,P/E) from a dataset of measured voltage arrays VL produced by pseudo-random

(unconstrained) program arrays PL. The goal of code-aware channel modeling is to infer the

intractable likelihood P (VLS |PLS ,P/E), where VLS is the voltage array produced by the code-

constrained program array PLS . In this section, we describe our transfer learning approach to

achieving this goal.

6.3.1 Review of Generative Flash Modeling

The conditional VAE-GAN architecture underlying the GFM scheme consists of three

modules: encoder (Enc), generator (Gen), and discriminator (Dis).

During the training process, the encoder Enc produces latent vectors z from VL based

on the VAE technique [62]. The generator Gen reconstructs an array of read voltages, ṼL,

based on PL, P/E, and z. The P/E vectors are concatenated with the output features of Gen for

spatio-temporal combination. The discriminator Dis is trained to distinguish real VL from fake

VL.

After optimization, the learned Gen serves as a realistic flash channel simulator which

accepts program level array PL, P/E cycle count, and latent vector z as inputs. The latent vector

is sampled from a standard multivariate Gaussian distribution. We express the reconstruction of

VL in the training and evaluation processes, respectively, as

(Train) ṼL = Gen(PL,P/E, Enc(VL))

(Evaluation) ṼL = Gen(PL,P/E, z).
(6.2)

Full details about the training, evaluation, and experimental results are given in [127].
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Figure 6.2. Pipeline of code-aware generative flash modeling.

The GFM approach was demonstrated to accurately reconstruct cell voltage levels by

capturing spatial ICI effects and temporal distortions from P/E cycling, as validated by comparing

predicted time-dependent and pattern-dependent errors to error measurements.

6.3.2 Code-aware Generative Flash Modeling

The GFM framework is capable of learning the likelihood P (VLS |PLS ,P/E) from a

sufficiently large dataset {(PLS ,VLS ,P/E)} of code-constrained programming measurements

at each P/E cycle. To avoid the expense of producing such a large dataset, we propose to use

a transfer learning approach. We pre-train the GFM network on a large-scale source dataset

{(PL,VL,P/E)} of VL measurements from pseudo-random (unconstrained) program arrays PL,

then fine-tune it using a much smaller target dataset {(PLS ,VLS ,P/E)} of code-constrained

measurements.

We now formulate the pipeline of code-aware GFM. As shown in Fig. 6.2, at the

beginning of training, three network modules in GFM (Enc, Gen, and Dis) are initialized

with pre-trained weights learned from source dataset. Using the target dataset, the code-aware
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GFM follows the framework of GFM to finish the training process. After training, the network

parameters in Gen represent the simulator to produce voltage levels from code-constrained PL

arrays.

We note that the relation between source and target datasets can impact the transfer

learning results. In our case, because random programming arrays very likely include constrained

sub-arrays, sharing the pre-trained network weights during the fine-tuning step enables the

transfer of relevant knowledge.

6.3.3 Transfer Learning Configuration

It has been observed that pre-training for all network modules can provide better re-

sults than pre-training for one individual module [120]. Therefore, in our transfer learning

configuration, we share the parameters of all three modules of the pre-trained network.

In our experiments, we consider two read-and-run (RR) constrained codes [39]. The

corresponding target datasets {(PLS ,VLS ,P/E)} consist of pairs of 64× 64 PL and VL arrays,

collected from a commercial TLC flash device at selected P/E cycles, as in the original GFM

setup in [127].

This framework is also applicable to data shaping codes for flash memory [70–72]. These

codes minimize the average cell wear due to programming by optimally “shaping” the probability

distribution of the programmed cell levels.

The two constrained datasets are collected from a single commercial 1X-nm TLC chip

belonging to the same family of chips used for the GFM experiments in [127]. Due to the variation

of mappings between manufacturers and product generations, we describe the disallowed patterns

of the code-constrained data in terms of the mapping in Fig. 6.1. The first target dataset uses a

code constraint SWL that forbids {000, 010} in the lower page of each WL. This eliminates error-

prone patterns containing 707, 706, and 607 in the WL direction, as well as other high-low-high

error-prone patterns.

The second target dataset uses a code constraint S2D that forbids {000, 010} in lower bits
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Table 6.2. Sizes of Training and Evaluation Datasets

Training Evaluation
|{(PL,VL,P/E)}| 1.5× 105 2.1× 104

|{(PLSWL ,VLSWL ,P/E)}| 1.5× 104 1.5× 104

|{(PLS2D ,VLS2D ,P/E)}| 1.5× 104 1.5× 104

along both WL and BL directions. This eliminates error-prone patterns containing 707, 706, and

607 in both WLs and BLs, including all patterns shown in Table 6.1, as well as other patterns.

We implement the WL-based constraint SWL with an interleaved, rate 12:18 run-length

limited (RLL) (d, k) = (0, 1) code of overall block length 36 on the lower page, yielding an

effective rate of 0.89 [39, 107]. The 2D-constraint is implemented with the 2D RR scheme

in [39, 107], which has an effective rate of 0.83.

We collect equal numbers of measured voltages at three P/E cycle counts: 4000, 7000,

and 10000. The training and evaluation dataset sizes used in our modeling experiments, described

in the next section, are shown in Table 6.2. Note that the size of the target datasets is only 10%

of the size of the source dataset.

Remark 5. In all transfer learning experiments, we use the same settings as were used to train

the GFM, namely, batch size 2 and learning rate 2 × 10−4. We settled upon these training

parameters after several experiments.

6.4 Experimental Results and Analysis

In this section, we evaluate our code-aware GFM framework and present results of its

application to the two RR constrained codes described in the previous section. We use two

evaluation criteria, one to measure the accuracy of the reconstructed results, and the other to

measure the training efficiency of the transfer learning procedure. The former is based on

probability density functions (PDFs) of the reconstructed voltages, and the latter is based on the

number of training iterations required to achieve accurate reconstruction. The evaluation metrics

are defined in more detail below.
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1. Probability density functions (PDFs): The read voltage PDFs are useful in optimizing read

thresholds, gauging cell wear, and estimating bit error rates (BERs). For each P/E cycle,

we estimate the conditional PDFs by the frequency of occurrence of measured voltage

levels for each given program level. In addition to visually comparing the measured PDFs

and reconstructed PDFs, we compute the total variation distance between the two PDFs

and compare the associated bit error rates (BERs) on the lower, middle, and upper pages.

2. Training iterations: The number of training iterations needed to achieve satisfactory results

can be used as a metric to evaluate the “speed” of the transfer learning process. A training

iteration is defined as a single update of the model weights during training. For example,

in [127], training the GFM network takes 7 epochs with a batch size of 2 using random

programming arrays. With the training dataset size in Table 6.2, the total number of

training iterations is 5.25× 105.

6.4.1 Experimental Settings

We conducted a matrix of experiments to evaluate the effectiveness of transfer learning

in code-aware GFM, as summarized in Table 6.3. (See discussion below for an explanation of

the abbreviations in the table.) The training iterations are shown in the last column of the table.

For convenience, we use a shorthand notation to distinguish the experiments according to the

training dataset ("T"), the network initialization ("I"), and the evaluation dataset ("E").

The training dataset corresponded to program arrays based on either pseudo-random

data ("T-PR"), SWL-constrained data ("T-WL"), or S2D-constrained data ("T-2D"). Regarding the

training mode, training started either from randomly initialized network weights ("I-Rnd") or

pre-trained weights ("I-Pre") from T-PR training.

The evaluation mode examined reconstructed voltages generated by pseudo-random data

("E-PR"), SWL-constrained data ("E-WL"), or S2D-constrained data ("E-2D"). Comparisons

are made to measurements ("M") from the TLC chip, derived from the pseudo-random dataset

("M-PR"), the SWL-constrained dataset ("M-WL"), or the S2D-constrained dataset ("M-2D").
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Table 6.3. Modeling Experiments and Training Iterations

Initialization (I) Training (T) Evaluation (E)
Training
Iterations

Random PR PR,WL,2D 5.25× 105

WL WL 6× 104

2D 2D 6.75× 104

Pre-trained WL WL 7.5× 103

2D 2D 7.5× 103

We present results for the following experiments,

1. M-PR, M-WL, M-2D: These represent baseline experimental measurements from several

1X-nm flash blocks programmed with pseudo-random, WL-constrained, or 2D-constrained

data.

2. I-Rnd / T-PR / E-(PR,WL,2D): We train GFM with random initial network weights

using the pseudo-random training dataset and evaluate with pseudo-random data, WL-

constrained data, and 2D-constrained data.

3. I-Pre / T-WL / E-WL: We initialize GFM with pre-trained weights from the previous

training experiment (I-Rnd/T-PR), fine-tune the network using WL-constrained data, and

evaluate the model with WL-constrained data.

4. I-Rnd / T-WL / E-WL: We train GFM with random initial network weights using the

WL-constrained training dataset and evaluate with WL-constrained data.

5. I-Pre / T-2D / E-2D: We initialize GFM with pre-trained weights from the first training

experiment (I-Rnd/T-PR), fine-tune the network using the 2D-constrained dataset, and

evaluate the model with 2D-constrained data.

6. I-Rnd / T-2D / E-2D: We train GFM with random initial network weights using the

2D-constrained training dataset and evaluate with 2D-constrained data.
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Table 6.4. Total Variation Distance

P/E Cycle Count 4000 7000 10000
dTV (PM-PR, PI-Rnd/T-PR/E-PR) 0.0688 0.0650 0.0687
dTV (PM-WL, PI-Pre/T-WL/E-WL) 0.0696 0.0535 0.0505
dTV (PM-WL, PI-Rnd/T-WL/E-WL) 0.1421 0.1300 0.1020
dTV (PM-WL, PI-Rnd/T-PR/E-WL) 0.1068 0.1116 0.1181
dTV (PM-2D, PI-Pre/T-2D/E-2D) 0.1007 0.0771 0.0908
dTV (PM-2D, PI-Rnd/T-2D/E-2D) 0.1175 0.1021 0.1408
dTV (PM-2D, PI-Rnd/T-PR/E-2D) 0.1470 0.1330 0.1364

6.4.2 PDF Analysis

We now qualitatively and quantitatively analyze the reconstructed voltages from code-

aware GFM. First, we visualize the PDFs of the measured and reconstructed read voltages.

Fig. 6.3 shows the normalized conditional PDFs of the eight TLC program levels in the recon-

structed data for experiment I-Pre/T-WL/E-WL at 7000 P/E cycles. (The plots of voltage PDFs

for this experiment at 4000 and 10000 P/E cycles yield qualitatively similar results.) In this

log-linear plot, the y-axis represents the probability density and the x-axis represents the read

voltages using an arbitrary scale.

Note that the SWL code constraint on lower pages induces a smaller probability of

occurrence for PLs 5, 6, 7, which is approximately 1
3

of that of PLs 1, 2, 3, 4. Qualitatively, the

PDFs generated by code-aware GFM (solid curves) closely match the measured PDFs (triangle

markers). Similarly, in experiment I-Pre/T-2D/E-2D, the visualization of the model-generated

PDFs accurately reflects the measured PDFs and their dependence on P/E cycles.

Next, we evaluate the PDF results of the code-aware GFM experiments quantitatively

using total variation (TV) distance, dTV. This distance provides a measure of the difference

between the real (measured) distributions Preal and the fake (reconstructed) distributions Pfake,

dTV(Preal, Pfake) =
1

2

∑
VL

|Preal(VL)− Pfake(VL)|. (6.3)

The numerical results are shown in Table 6.4. We find that pre-training helps code-aware GFM
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Figure 6.3. PDF plots in logarithmic scale for measured and regenerated voltage levels
(experiment I-Pre/T-WL/E-WL) at 7000 P/E cycles. The visualization is based on dataset
{(PLSWL ,VLSWL ,P/E)}.

produce distributions with the least TV distance in both SWL-coded and S2D-coded scenarios.

It is also important to consider the tails of the distributions, which have a major impact

on the channel error rate. As discussed in Section 6.2.1, cell level errors are determined by

comparing the read voltages to the read thresholds, and the resulting bit errors on pages arise

from the mapping between cell levels and their corresponding 3-bit binary logic values. We

compared measured and reconstructed page bit error rates (BERs) from the ten experiments

described in Section 6.4.1. The results are shown in Fig. 6.4.

The leftmost three sub-figures in Fig. 6.4 pertain to the lower, middle, and upper pages in

the SWL-coded case, respectively. The six curves in each plot correspond to the experimental

measurements M-PR and M-WL, the GFM modeling experiments I-Rnd/T-PR/E-PR and I-

Rnd/T-PR/E-WL, and the code-aware GFM experiments I-Rnd/T-WL/E-WL and I-Pre/T-WL/E-

WL using the SWL dataset, comparing training “from scratch” and with pre-trained network
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Figure 6.4. BER comparisons: the leftmost (resp., rightmost) three sub-figures show lower,
middle, and upper page BERs for SWL-coded (resp., S2D-coded) data.

parameters.

The M-PR and M-WL curves show that SWL coding decreases the measured BER on

all three pages at all three measured P/E cycles, confirming the observations in [39]. The GFM

experiment I-Rnd/T-PR/E-PR using random initialization along with training and evaluation on

pseudo-random data reconstructs page BERs quite accurately at all three P/E cycles, a finding

that is consistent with [127]. However, when this GFM network is evaluated using the SWL-coded

dataset in experiment I-Rnd/T-PR/E-WL, we see that the reconstructed BERs are significantly

higher than the measured BERs in the M-WL curve at all three P/E cycles. This suggests that

the pseudo-random dataset does not sufficiently capture all of the characteristics of the coded

channel.

The final two curves compare the effects of random initialization and pre-training in the

code-aware GFM networks obtained by training and evaluating on the SWL dataset. We see that

the two experiments yield very similar reconstructed BERs, with the exception of the lower page

BER at 4000 P/E cycles, where random initialization yields a noticeably more inaccurate estimate.

Overall, the reconstructed BERs qualitatively track the measured M-WL results reasonably well,

although both models overestimate BER in lower pages at all P/E cycles, as well as in middle

pages at 4000 P/E cycles.

101



The rightmost three sub-figures in Fig. 6.4 show the corresponding BER results for lower,

middle, and upper pages in the SSD-coded case, respectively. (The BERs of I-Rnd/T-PR/E-2D for

lower and middle pages are at least 3× 10−2; thus, the curves are not shown in the sub-figures.)

The overall conclusions drawn from these curves are similar to the SWL-coded case, although

we see that the GFM trained on the pseudo-random source dataset does an even worse job of

learning the S2D-coded channel.

6.4.3 Iteration Number Analysis

The number of training iterations used in the experiments was determined by comparing

the reconstructed PDFs to the corresponding measured PDFs using TV distance.

From Table 6.3, we find that the number of iterations required to fine-tune the code-aware

GFM network from the pre-trained model, 7.5 × 103, is only 12.5% (resp., 11.11%) of the

number required when training from scratch using the target SWL (resp., SSD) dataset, namely

6× 104 (resp., 6.75× 104).

Specifically, when training from scratch using the smaller target dataset, we observed

that in the early training iterations the reconstructed read voltage PDFs do not accurately capture

temporal P/E cycle variations and tail behavior. On the other hand, adaptation from a single GFM

network pre-trained with a sufficiently large source dataset of pseudo-random data provides

enough channel knowledge to significantly accelerate the learning process from both of the

smaller target datasets.

6.5 Conclusion

This chapter presents an application of transfer learning to generative modeling of read

voltages in flash memory channels. We fine-tune a generative model pre-trained with a large

source dataset of pseudo-random spatio-temporal data using much smaller code-constrained

target datasets. By comparing measured and reconstructed read voltage probability distribution

functions and page bit error rates in a commercial TLC flash memory, we demonstrate that
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pre-training can accelerate learning for multiple generative modeling tasks even when the amount

of target training data is very limited. These results motivate further investigation into the use of

transfer learning in applications of machine learning to data storage and communication systems.
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Chapter 7

PR-NN: RNN-based Detection for Coded
Partial-Response Channels
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7.1 Introduction

7.1.1 Background on magnetic recording

The read/write process in longitudinal magnetic recording is often modeled as a

continuous-time, linear time-invariant (LTI) system with bipolar input waveforms taking values

−1 and +1 on time intervals of fixed length Tc. The step response often takes the form of a

unimodal pulse with a finite pulsewidth at half the maximum amplitude (PW50) whose size

relative to the channel input interval (PW50/Tc) roughly determines the extent of inter-symbol

interference (ISI) arising from adjacent transitions in the input waveform. When the channel

output signals are synchronously sampled at intervals of Tc, the sampled system is often modeled

as a finite impulse-response discrete-time LTI system [115].

In order to facilitate the recovery of the input signal, magnetic recording systems often

use some form of partial-response (PR) equalization. The PR equalizer shapes the readback

signal in such a way that only a finite number of values are observed at sample times. For a

range of linear recording densities, the sampled Lorentzian output response of the PR-equalized

longitudinal recording channel is well modeled by the family of extended PR “class 4” (PR4)

channels, denoted by EN-1PR4 [113]. The impulse response of the EN-1PR4 channel can be

represented by xN(D) = (1−D)(1 +D)N , where D is the delay operator and N is a positive

integer. The channel can be treated as a linear filter with integer coefficients, whose outputs are

generated by a linear finite-state machine, where the number of states is 2N+1. In practice, the

selected PR step response is governed by the channel step response and the choice of PW50/Tc.

When sampled, the PR-equalized noisy magnetic recording channel is often modeled, to first

order, as a linear finite-state machine with additive, correlated noise.

The sampled PR-equalized magnetic recording channel resembles a digital communi-

cation channel, and suitable detection and coding methods from communication theory can be

beneficially applied. The finite-state structure of the ISI channel is amenable to trellis-based

sequence detection methods such as Viterbi detection [117], which is optimal if the additive
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noise is assumed to be white Gaussian noise (AWGN). The combination of PR channel equal-

ization and Viterbi detection is referred to as PRML, an acronym for “partial-response (PR)

equalization with maximum-likelihood (ML) sequence detection” [20, 54]. Channels can also

use maximum a-posteriori probability (MAP) symbol detection based upon, for example, the

BCJR algorithm [4], which is also optimal in AWGN. When combined with PR equalization,

the resulting system is referred to as PRMAP. To account for noise correlation (colored noise)

due to equalization, Noise-Predictive Maximum Likelihood (NPML) detectors embed a noise

prediction/whitening process into the branch metric computation of a Viterbi detector [21]. In

longitudinal recording systems, NPML detectors offer significant performance gains over PRML

detectors [21, 85].

Magnetic recording systems often use both an error-correcting code and a constrained

code. The general purpose of a constrained code is to improve the performance of the system by

matching the characteristics of the recorded signals to those of the channel [49]. In the context

of PRML-type systems, the constrained code is often used to improve timing recovery as well

as to increase the distinguishability of the sampled output sequences. Several classes of such

“distance-enhancing codes” have been proposed, such as runlength-limited (RLL) codes [86] and

matched spectral null (MSN) codes [55].

In a coded PRML-type system, equalization plays a crucial role in determining the

performance of the system. Advanced detectors must take into account the noise correlation and

signal misequalization effects due to equalization [125]. The channel parameters in a magnetic

hard disk storage system can vary due to several factors, including variations in temperature,

head flying-height, and track-dependent rotational speed [122]. These parameter variations need

to be taken into consideration in the design of the PR equalizer and they can also influence the

performance of the detector. In this project, we explore the use of machine learning methods –

specifically recurrent neural networks (RNNs) – to design robust detectors for magnetic recording

systems.
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7.1.2 Machine learning for coded communication

In recent years, machine learning has demonstrated its effectiveness in a wide range of

applications, specifically in the fields of computer vision and natural language processing. The

huge success of machine learning in these areas has triggered the interest of researchers to apply

deep learning (DL) methods and neural networks (NNs) to channel coding problems. Nachmani

et al. proposed Weighted Belief Propagation (WBP) algorithm using deep neural networks

(DNNs) to decode noisy linear codewords [89]. This approach was further studied by Lian et

al. in the context of simple scaling models with reduced complexity [68]. In [101], Satorras

and Welling considered a hybrid model that combines belief propagation with an extension of

graph nerual networks to factor graphs (FG-GNNs). Kim et al. presented the first end-to-end

communication system for feedback channels designed using deep learning, with RNN models

for encoding and decoding [59]. Jiang et al. incorporated some aspects of an iterative turbo

decoder into an RNN-based end-to-end machine learning architecture that provides robust,

near-optimal recovery of noisy turbo codewords, without BCJR knowledge [52]. Shlezinger et

al. introduced ViterbiNet, a decoder that incorporates DNNs into the channel state information

(CSI) estimate of the Viterbi algorithm [106]. They also invented BCJRNet, a detection approach

that implements data-driven BCJR MAP symbol detector [105].

With all of these learned communication systems, the length of codewords is quite limited

because the training complexity grows exponentially in the length [32]. Farsad and Goldsmith

addressed this problem by creating a sliding bidirectional RNN to process a longer signal

stream [26]. Bennatan et al. decoded codewords of an arbitrary block length by extracting the

syndrome of the hard decisions and the channel output reliabilities [7]. Tandler et al. described a

training method that gradually introduces code sequences with an increasing number of ones to

limit the complexity, and used it to recover long convolutional codewords [110]. Nevertheless,

during the evaluation stage, these NN-based decoders are not well suited to handling continuous

streaming data, which would typically be produced by convolutional encoders and ISI channels.
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7.1.3 Our Contribution

In this work, we propose a novel NN architecture for detection of input-constrained

PR-equalized magnetic recording channels, which we refer to as partial-response neural network

(PR-NN). The PR-NN detector is designed for application to continuous, streaming channel

outputs. The sequential processing properties of RNN cells [17, 19], including gated recurrent

units (GRUs) [18] and long short-term memory (LSTM) [44], are naturally suited to the time-

dependent outputs from PR channels. The primary component of our PR-NN architecture is

a bi-directional gated recurrent unit (bi-GRU). (We settled on a GRU-based architecture after

initial experiments indicated superior performance compared to an LSTM network. These results

are not included here.)

We train and evaluate the PR-NN under various scenarios: ideal PR channel outputs

with AWGN, ideal PR channel outputs with additive colored noise (ACN) generated by a

minimum mean squared error (MMSE) equalizer for the Lorentzian channel, and MMSE-

equalized Lorentzian outputs with corresponding equalized noise. By training the model under

multiple scenarios, we show that a single PR-NN detector can be used as a substitute for multiple

classical detectors. Moreover, training over a range of channel signal-to-noise ratios (SNRs)

and channel densities allows the PR-NN to adapt to a variety of channel conditions. Special

training and evaluation techniques make the PR-NN compatible with detection of continuous,

streaming data, with no constraint on sequence length, thus overcoming a key limitation of

previous NN-based decoding strategies. The continuous decoding relies on a sliding-window

evaluation process. We also show that the computational complexity of the PR-NN detector is

comparable with that of Viterbi detection.

We conduct our experiments using the E2PR4 channel model, which matches the charac-

teristics of the Lorentzian channel for high recording densities. The binary system inputs are con-

strained by a rate-2/3, (1,7)-RLL constrained sliding-block decodable finite-state encoder [119].

The constrained codewords are mapped into binary channel inputs by a non-return-to-zero-
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ûk

Figure 7.1. System architecture.

inverse (NRZI) precoder with system function represented by c(D) = 1/(1 +D). The resulting

sequence is modulated to bipolar form to represent the magnetization pattern corresponding to

the recording channel input [49]. With AWGN and a reduced-state Viterbi detector that reflects

the input constraint, the system serving as our benchmark achieves a 2.2dB coding gain over the

uncoded E2PR4 system [6].

The bit error rate (BER) performance of the PR-NN detector compares favorably to that

of the classical detectors – PRML, PRMAP and NPML – in the scenarios where they are known

to perform well. More importantly, the PR-NN detector exhibits a robustness not shared by

the other detectors when it is jointly trained in multiple scenarios. In fact, under joint training,

PR-NN essentially maintains the performance that is achieved with separate training. These

results suggest that robust detection architectures like PR-NN may hold promise for application

in practical recording systems.

7.2 System Architecture and Detectors

7.2.1 System model

A block diagram of a magnetic-disk recording system is shown in Fig. 7.1. User data

{uk} (uk ∈ {0, 1}) is encoded using a (d, k) run-length limited (RLL) code [49]. The constrained

codewords are then precoded and mapped into the symbol sequence {ak} (ak ∈ {−1,+1}).
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The precoder maps a binary sequence to the two-level channel input sequence. The precoding

convention we use is nonreturn-to-zero-inverse (NRZI), where the precoder has system function

c(D) = 1/(1 +D). The modulation method is binary phase shift keying (BPSK), where 0 maps

to −1 and 1 maps to +1.

During the write process, the two-level channel input is converted into a one-dimensional

magnetization pattern on the magnetic medium in the disk. The disk spins with controlled

speed, and the read and write heads effectively rotate over a track on the surface of the magnetic

medium [122]. During the read process, the disk rotates beneath the read head, which senses the

magnetic field induced by the magnetization pattern along the track. The read-back signal can

be regarded as a linear superposition of the dipulse response corresponding to a positive pulse

of width equal to a single channel bit duration at the input to the channel. Mathematically, the

read-back signal y(t) can be expressed as

y(t) =
∞∑

i=−∞

aiq(t− iTc) + η(t) (7.1)

where Tc is the channel bit spacing, and sequence {ak} is written on the disk at a rate of 1/Tc.

The dipulse response q(t) is expressed as q(t) = g(t) − g(t − Tc), where g(t) is the unit step

response of the channel. The term η(t) represents the additive white Gaussian noise process.

The function g(t) is often called the transition response of the recording system, and its

characteristics are related to the specific design of the recording heads and magnetic medium.

Recording systems are typically classified into two types: longitudinal [84] and perpendicu-

lar [122]. The Lorentzian model for the transition response is commonly used for longitudinal

recording systems. The tanh function and error function approximation are widely used for per-

pendicular recording systems. In this work, we focus on longitudinal recording with Lorentzian

transition response

g(t) =
1

1 + (2t/PW50)2
(7.2)
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where PW50 is the single parameter of the Lorentzian model and denotes the pulsewidth at

50% maximum amplitude. The recording density is characterized by the normalized density

parameter PW50/Tc.

The noisy channel output signal passes through a low pass filter (LPF). The filtered signal

is sampled at the rate 1/Tc, generating samples at times t = kTc. The samples are filtered by a

discrete-time equalizer which is designed to optimize detector performance. The most common

scheme used for equalization and detection in longitudinal recording systems is partial-response

maximum-likelihood detection (PRML). In this scheme, a finite impulse response (FIR) equalizer

is designed to equalize the channel response to a relatively short-duration partial-response (PR)

target, and the channel input sequence is recovered from the equalized signal by a maximum-

likelihood detector based on the Viterbi algorithm. The family of equalizers called “Class-4”

and “extended Class-4” are often used in longitudinal magnetic recording, where the choice of

equalizer target is matched to the channel density [113]. The general expression for the samples

of the target equalized dipulse response, expressed as a D-transform polynomial, takes the form

x(D) = (1−D)α(D) = (1−D)(1 +D)N

= x0 + x1D + · · ·+ xN+1D
N+1

(7.3)

where α(D) = α0+α1D+ · · ·+αND
N . When N = 1, the channel is called a Partial-Response

Class-4 (PR4) channel. When N ≥ 2, the channels are call Extended Partial-Response Class-4,

denoted individually as EN-1PR4.

There are many papers that address the design of the PR equalizer, such as [54, 87]. A

common design objective is the MMSE equalizer, which minimizes the mean squared error of

the target PR signal and the equalized channel output. Since the channel parameters may vary

across and even along tracks on a magnetic disk, the equalizer can be designed to be adaptive to

the channel properties. Some adaptive equalization architectures for PR channels can be found

in [115].
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In the longitudinal recording system, if the target PR signal is chosen to be EN-1PR4

signal, the coefficients of the PR equalizer can be optimized to achieve an overall transfer

function that reflects the head/medium characteristics and the analog LPF frequency response. If

we assume an ideal LPF, the equalizer coefficients {zi} can be specified as

zi =
1

2π

ˆ π

−π

x(e−jω)

Q(ω)
ejωidω

=
1

π2

N∑
ℓ=0

αi
(−1)ℓeπPW50/2 cos(iπ)− PW50/2

(PW50/2)2 + (i− ℓ)2

(7.4)

where Q(ω) is the frequency response of the Lorentzian channel and Tc = 1 [84].

Thus the output rk of the PR equalizer in Fig. 7.1 consists of an ideal PR signal plus an

additive distortion. Mathematically, the equalizer output rk can be written as

rk =
N+1∑
i=0

xiak−i + nk (7.5)

where {xi} are the coefficients of the target EN-1PR4 channel and {nk} denotes the additive

distortion. The distortion nk can be decomposed as

nk =
∑
i

ziηk−i + (
∑
i

q̃iak−i −
N+1∑
i=0

xiak−i) (7.6)

where the summation represents additive colored noise corresponding to the equalized samples of

the low-pass filtered white noise and the expression in parentheses represents the misequalization

error. Here {q̃i} correspond to the convolution of the PR equalizer taps with the sampled channel

dipulse response.

As discussed above, given a PR target, a trellis-based Viterbi detector [117] is used to

detect the data sequence from the noisy channel output sequence r. For the Viterbi detector, the

branch metric calculation is based on the squared-Euclidean distance between the noisy channel

output sample and the targeted PR channel output sample labeling the particular branch. The
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Figure 7.2. Discrete model for simulation, where nk represents the additive distortion.

combination of PR equalization with Viterbi detection is called PRML. The BCJR detector [4],

which is based upon a MAP symbol detection algorithm, is also of interest for data recovery.

For the BCJR detector, the log-likelihood ratios (LLRs) can be derived from forward recursion,

backward recursion, and branch transition probability computations. The system combining PR

equalization with BCJR detection is called PRMAP.

As shown in (7.6), the noise in the longitudinal recording system model is composed of

colored noise and misequalization error, which cannot be modeled as AWGN. Therefore, the

Viterbi detector is not an optimal sequence detector. NPML detection [21] combines a linear

noise prediction/whitening filter with Viterbi detection. The coefficients of the noise predictor

are designed to minimize the mean squared error (MSE) of the noise and the predictor output.

Algorithmic details of these detection methods will be formulated in Section 7.2.3.

The decoder that recovers user data estimates ûk from channel input estimates âk is

implemented by means of a sliding-block decoder (which is here assumed to incorporate a 1+D

post-coder operation). The decoder has memory m and anticipation a, meaning that the current

detected codeword, the previous m detected codewords, and the following a detected codewords

are all used to determine the corresponding current user data word [80].
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7.2.2 Digital channel implementation

In the following, we formulate the digital implementation of the magnetic recording

system, as shown in Fig. 7.1, that we will use for our simulations. The outputs of the PR equalizer

can be modeled as the outputs of a binary-input, linear ISI channel with additive distortion as

derived in (7.5) and (7.6). In particular, we can model the ISI channel resulting from the magnetic

recording channel, the LPF, the sampler and the PR equalizer in Fig. 7.1 as an EN-1PR4 channel,

as shown in Fig. 7.2. For our experiments, we focus on the specific case of N = 3, namely

E2PR4, as this was widely used in practice. The outputs of the channel model can then be

represented as

rk = bk + nk =
4∑

i=0

xiak−i + nk (7.7)

where x0 = 1, x1 = 2, x2 = 0, x3 = −2 and x4 = −1. Here bk denotes the noiseless output

from the E2PR4 channel and ak denotes the channel input.

We now describe the finite-state channel representation of the input-constrained E2PR4

channel. In order to improve the performance of PRML-type systems, several classes of codes

with distance-enhancing properties have been proposed, such as forbidden list codes [49] and

matched spectral null (MSN) codes [55]. In [6], Behrens and Armstrong show that (1,∞)-RLL

constrained codes provide a coding gain when applied to the E2PR4 channel. To see this, note

that a sequence satisfies the (1,∞)-RLL constraint if the runs of 0s between successive 1s

have length at least 1 [80]. In other words, consecutive 1s are forbidden. This means that,

in the precoded (1,∞)-RLL sequence, the strings 101 and 010 are prohibited. The minimum

squared-Euclidean distance between channel output sequences corresponding to a closed error

event (paths in the detector trellis that agree except on a finite number of branches) is 6. These

events correspond to the channel inputs +1 − 1 +1 and −1 +1 − 1. On the other hand, for the

(1,∞) input-constrained channel, with these channel inputs forbidden, the minimum distance

associated with a closed error event increases to 10. (A more detailed discussion of this sort

of distance analysis is found in [55].) This offers the possibility of an effective 2.2 dB gain in
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signal-to-noise ratio (SNR), ignoring the rate loss associated with the use of the constrained code,

provided that the detector trellis is modified to reflect the constraints. Note that this gain also

applies to the (1,7)-RLL input-constrained channel.

Incorporating the (1,∞)-RLL constraint into the Viterbi detector for the E2PR4 channel

not only eliminates the dominant error events, but also reduces the required number of states

in the detector trellis (i.e., the number of states realized by the channel finite state machine)

from 16 to 10. To see this, for convenience, we ignore the BPSK modulation used to generate

the bipolar channel inputs and, by a slight abuse of notation, we let ak ∈ {0, 1} denote the

channel inputs. At time k, channel state transitions from state sk−1 = (ak−4ak−3ak−2ak−1) to

state sk = (ak−3ak−2ak−1ak) with associated output bk. This is represented in the channel state

machine diagram by an edge from state sk−1 to state sk with input/output label ak/bk. When

the (1,∞)-RLL constraint is applied, states (0010), (0100), (0101), (1010), (1011) and (1101)

are eliminated, along with all their incoming and outgoing branches because they represent

violations of the constraint. The resulting state machine diagram for the input-constrained E2PR4

channel is shown in Fig. 7.3. This reduced state machine provides the structure of the trellis that

can be used at each time step of the reduced-state Viterbi detector.

We selected the (1,7)-RLL constraint for our system since it has been widely used in

commercial magnetic tape and hard disk recording systems. For the encoder and decoder, we use

the rate-2/3 Weathers-Wolf code [119], which achieves the minimum possible number of states

for any rate-2/3 (1,7)-RLL code. The code is (0, 2)-sliding-block decodable, meaning that the

decoding algorithm can be implemented by a sliding-block decoder, where the current (length-3)

codeword along with the following two codewords are used to determine the corresponding

(length-2) input word. The encoder and decoder structures are given in [119]. In the sliding-block

decoder, a single channel bit error can affect the decoding of up to 3 input words, or 6 user bits,

so the error propagation is limited.
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Figure 7.3. (1,∞)-RLL input-constrained E2PR4 channel state machine.

7.2.3 Signal Detection Methods

In the following, we review three classical signal detection methods for the magnetic

recording system. Given the noisy sequence r, the detector will output an estimate â of the

channel input sequence.

1. Viterbi detection: When we incorporate the (1,∞)-RLL constraint into the E2PR4 state

machine, the 10-state graph determines the trellis structure for the Viterbi detector. The

Viterbi detector maximizes the likelihood (conditional probability) Pr(r|a) [117]. When

the noise is AWGN, the branch metric is the squared Euclidean distance. Specifically, the

branch metric at time kTc from state sj to state sm takes the form

λk(sj, sm) = [rk − (ak(sm) +
4∑

i=1

xiak−i(sj))]
2 (7.8)
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where ak(sm), ak−1(sj), ak−2(sj), ak−3(sj) and ak−4(sj) are the BPSK input values deter-

mined by hypothesized state transition sj → sm.

2. BCJR detection: The BCJR detection algorithm maximizes the a-posteriori probability

Pr(a|r). The complete derivation can be found in [4]. In order to reduce the computational

complexity, we make use of a modified algorithm, called max-log-map detection, that uses

the approximation ln
∑

j e
aj ≈ maxj aj .

3. NPML detection: As mentioned above, the additive distortion in a realistic longitudinal

recording system cannot be considered to be simply AWGN. A better approximation takes

into account the noise coloration introduced by the equalizer as well as the misequalization

error. In the presence of such noise, the Viterbi detector using squared Euclidean distance

metric will not provide optimal detection and the system performance will be degraded [85].

NPML detection introduces a noise prediction process into the branch computation of

the Viterbi detector that significantly improves the system performance [21]. An estimate

of the current noise sample, n̂k is formed from previous Np noise samples, and then

subtracted from rk. The coefficients of the Np-tap noise predictor {pi} are chosen to

minimize the mean squared error between the noise nk and the estimate n̂k,

E[|nk − n̂k|2] = E[|nk −
Np∑
i=1

nk−ipi|2], (7.9)

where nk takes the form in (7.6). The derivation of the MMSE predictor coefficients can

be found in [21].

The implementation of the NPML detector requires the use of tentative decisions from the

survivor path memory associated with each state of the Viterbi detector. Mathematically,

the branch metric at time kTc from state sj to state sm takes the form
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λk(sj, sm) = [rk −
Np∑
i=1

(rk−i − (
4∑

l=0

xiâk−i−l(sj)))pi

− (ak(sm) +
4∑

i=1

xiak−i(sj))]
2

(7.10)

where the terms âk−i(sj), âk−i−1(sj), âk−i−2(sj), âk−i−3(sj) and âk−i−4(sj) represent

past decisions taken from the survivor path history associated with state sj , and ak(sm),

ak−1(sj), ak−2(sj), ak−3(sj) and ak−4(sj) are determined by the hypothesized state transi-

tion sj → sm.

7.2.4 Detector implementation details

In practice, Viterbi detectors can retain only a finite path memory and must make an

output decision after some fixed delay whether or not all survivor paths have merged. A common

practice is to determine the trellis state with the minimum survivor path metric, and then to trace

back along the path to the initial branch, whose label is then used to generate the estimated

input/output symbol (or word, in the case of a convolutional code). Various estimates for a

suitable traceback length Ltb for convolutional codes have been proposed, based upon random

coding analysis [29], code sequence properties [42], and experimentation [82, 83]. A reasonable

rule of thumb for a rate-r code with memory ν is

Ltb ≈ A
ν

1− r
(7.11)

where A is between 2 and 3. For rate r = 1/2 codes, this agrees with the often cited estimate

Ltb ≈ Aν with A between 4 and 6. Similar methods have been used to estimate Ltb for Viterbi

detection of ISI channels, and a reasonable choice for the traceback length, which we use to

guide our experiments, is Ltb ≈ 5ν.

Rather than decoding one symbol at each iteration of the survivor metric update procedure

in the Viterbi detector, we will make use of a sliding-window approach. In the sliding-window

decoder, successive blocks of a specified “evaluation length” Leval are estimated, as illustrated
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schematically in Fig. 7.4. The survivor metric computation starts at time 0, and the survivor

update procedure is performed continuously as the first Leval + Loverlap received symbols arrive,

where Loverlap ≥ Ltb. The detector then traces back along the survivor path corresponding to the

state with the smallest survivor metric. The symbol estimates along the first Leval branches can

be considered to be fairly reliable and the detector outputs these values. The first Leval branches

of the survivor paths are then truncated, and the detector proceeds to extend the remaining portion

of the survivor paths for another Leval steps, up to time 2Leval + Loverlap. The detector then

traces back along the minimum metric survivor path and outputs the symbol estimates along the

first Leval branches, corresponding to symbols at time Leval + 1 through 2Leval. This process

is then repeated. In each successive block from time mLeval to time (m + 1)Leval + Loverlap,

we refer to the first Leval steps as the evaluation part and the final Loverlap steps as the overlap

part. The final Loverlap symbols can be treated as dummy symbols, or a termination sequence of

dummy symbols can be used to force the detector to a known state, enhancing the reliability of

the last group of estimated symbols. We adopt the latter termination approach in our simulations.

The sliding-window approach is easily adapted to NPML detection. For the BCJR

detector, a conceptually similar sliding-window approach can be implemented using a forward

state metric processor and a pair of backward state metric processors [116].

The length of the evaluation block, Leval, can be chosen to be any size greater than or

equal to one symbol, with the lower limit corresponding to conventional symbol-by-symbol

Viterbi decoding. Larger sizes increase the required storage for survivor paths and the delay

until the first symbol is decoded. However, the use of longer survivor paths should increase the

likelihood of survivor path merging, thereby improving reliability of decoding. In Section 7.3,

where we adopt a similar block streaming decoding architecture, the sizes of Leval and Loverlap

have an exponential effect on the size of the training dataset. This plays a role in the choice of

these parameters.

Remark 6. For the digital implementation of the longitudinal recording channel, we assume
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Figure 7.4. Sliding-window evaluation process for Viterbi detection.

that the channel bit spacing Tc = 1. The discrete channel model in Fig. 7.2 uses a 41-tap

model of the Lorentzian channel {gi} and a 21-tap PR equalizer {zi}. The NPML detector is

implemented using 4-tap noise predictor, 8-tap noise predictor, and 16-tap noise predictors. In

the sliding-window evaluation process, the evaluation length Leval is 10 and the overlapping

length Loverlap is 20.

7.3 PR-NN: RNN-based Detection

In this section, we present PR-NN (partial response - neural network), an RNN-based

detection method for coded partial-response channels. We discuss the details of network ar-

chitecture, dataset generation, training methodology, evaluation procedure, and computational

complexity.

The main idea of PR-NN is to replace the classical detectors with a robust RNN-based

detector. The motivation of our approach comes from the GRU-based decoder for noisy convo-

lutional codewords in [110]. Although our project focuses on the application of PR-NN to the
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coded E2PR4 channel for longitudinal magnetic recording channels, we believe the proposed

approach can be easily adapted to other practical magnetic recording systems.

7.3.1 Neural Network Architecture

Thanks to the rapid development of deep learning, many neural network architectures

have emerged and shown their power in a variety of application domains. RNNs, in particular,

have been adopted in several scenarios involving time-sequential data, making an RNN-based

architecture a natural candidate for processing signals produced by a magnetic recording channel

with inter-symbol interference and possibly correlated additive noise.

In practice, we exploit more sophisticated recurrent hidden units that implement a gating

mechanism [17,19], such as long short-term memory (LSTM) units [44] and gated recurrent units

(GRUs) [18]. Comparable performance has been found in networks using GRU and LSTM [19].

Our aim in this work is to explore the potential of RNN-based signal detection in channels with

ISI, rather than to compare the performance of different RNN units, so we will only consider

networks based on GRU cells.

A GRU schematic is shown in Fig. 7.5. The calculations in a GRU cell can be formulated

as follows
γt = σ(Wαγ ·αt + bαγ +Whγ · ht−1 + bhγ)

µt = σ(Wαµ ·αt + bαµ +Whµ · ht−1 + bhµ)

h̃t = tanh(Wαh̃ ·αt + bαh̃ + γt ⊙ (Whh̃ · ht−1 + bhh̃))

ht = (1− µt)⊙ h̃t + µt ⊙ ht−1

(7.12)

where we use standard notation for weight matrices W, biases b, and activation function σ. In

the calculations, the input at time step t is αt ∈ Rmin , representing min features. The hidden

state at time step t − 1 is ht−1 ∈ Rmh . The output at time step t is βt ∈ Rmout . The hidden

state at time step t is ht ∈ Rmh . For a GRU cell, the hidden state ht is the same as the output

βt. The reset, update, and new gates are represented by γt ∈ Rmh , µt ∈ Rmh , and h̃t ∈ Rmh ,

respectively. The Hadamard product is denoted by ⊙.
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Figure 7.5. Structure of one GRU cell.

We adopt a bi-directional GRU (bi-GRU) architecture [102], which can be understood

as two separate GRU networks, one operating in the forward direction and the other operating

in the backward direction. As illustrated in Fig. 7.6, in the forward (resp. backward) direction,

the forward (resp. backward) GRU component of the bi-GRU at time step t takes the hidden

state hf
t−1 from time step t− 1 (resp. the hidden state hb

t+1 from time step t+ 1) and produces

the hidden state hf
t for the next GRU cell at time step t + 1 (resp. the hidden state hb

t for the

next GRU cell at time step t− 1). The forward and backward outputs of the bi-GRU cells are

concatenated at each time step.

Remark 7. Our implementation of the GRU will incorporate multi-layer bi-GRU cells as

illustrated in Fig. 7.7. We suppose that the total number of time steps in each layer is Tr.

The bi-GRU cell operates with simultaneous forward and backward passes at each time step t

(1 ≤ t ≤ Tr). The input of the i-th layer (i ≥ 2) is the hidden state of the previous layer. (We do

not dropout any features from the GRU layer outputs.) We set the default initial hidden states of

bi-GRU cells (in both directions) to 0; specifically, hf
0 = 0 and hb

Tr+1 = 0.

Referring to the coded E2PR4 state machine in Fig 7.3, we see a conceptual similarity

between the forward pass of the bi-GRU and the operation of the Viterbi detector, with [current

state/input] and [next state/output] corresponding to [previous hidden state/input] and [next
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Figure 7.6. Structure of unfolded bi-directional GRUs.

hidden state/output], respectively. Similarly, the forward/backward passes of the bi-GRU bear a

conceptual resemblance to the foward/backward passes of the BCJR detector.

In order to design an RNN-based detector for coded PR channels, we will have to train the

network with noisy channel output sequences. The number of coded channel output sequences

grows exponentially in the length of the channel input (approximately 2Rn, where n is the length

of the user input sequence and R is the constrained code rate). This suggests the use of a block-

oriented network architecture, with a limited block size. In order for the RNN-based detector

to process continuous streaming channel outputs, we adopt a sliding-window approach, similar

to the sliding-window implementations of the Viterbi detector and BCJR detector presented in

Section 7.2.3, both of which process overlapping blocks.

Referring to Fig. 7.4, the idea is for the bi-GRU network to serve as the detection module

for each block of length Leval, using as the network input a length-(Leval + Loverlap) block of

the recording channel output. However, when we feed a sequence into the multi-layer bi-GRU

cells, the sequence needs to respect the default network initialization conditions in Remark 7,

i.e., the initial hidden state for the forward direction and the backward direction should be 0.
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We assume that the default initial hidden state 0 corresponds to the state (0000) in the coded

E2PR4 state machine. This poses a problem, because there is no guarantee that the block of

inputs to the network correspond to a state sequence in the PR channel state machine that starts

and ends in state (0000). To compensate for this, we propose a zero compensation approach, in

which we append suitable starting and ending dummy values before and after each block to force

sequences to start and end at state (0000). The exact rules of the zero compensation approach

are provided in the next subsection.

The input sequence to the bi-GRUs is therefore composed of four parts: starting dummy

values, evaluation part, overlapping part, and ending dummy values. The respective lengths of

these parts are denoted Lstart, Leval, Loverlap, and Lend. The resulting total number of time steps

in the bi-GRUs is Tr = Lstart + Leval + Loverlap + Lend.

Now we specify the network components of the PR-NN detector. There are three kinds

of layers: dense layers D(x), multi-layer bi-GRU cells R(x,Hf
t ,H

b
t), and the sigmoid layer

S(x). In this network, GRU cells are the key components. For time step t (1 ≤ t ≤ Tr), the

details of three kinds of layers are listed below.

1. Dense layer D(x): given an input vector x ∈ Rmdin , a dense layer defines the following
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operation

y = D(x) = Wd · x+ bd (7.13)

where y ∈ Rmdout is the output of the dense layer.

2. Multi-layer bi-GRU cells R(x,Hf
t ,H

b
t): The number of layers is denoted as Nr. The

input vector is x ∈ Rmrin , the forward (resp. backward) hidden state set is Hf
t =

{hf1
t ,hf2

t , · · · ,hfNr
t } (resp. Hb

t = {hb1
t ,h

b2
t , · · · ,hbNr

t }), where h∗
t ∈ Rmrh is the hidden

state vector and t corresponds to the current time step. The output vector at time step t is

y ∈ Rmrout . The mathematical expression for the network operation is

y = R(x,Hf
t ,H

b
t) (7.14)

(The calculations of the GRU cell were presented in (7.12) and the structure of the multi-

layer bi-GRU cells was formulated in Remark 7.)

3. Sigmoid layer S(x): given an input vector x ∈ Rmsin , the output y ∈ Rmsout of the

sigmoid layer is

y = S(x) : yi =
1

1 + exi
. (7.15)

The PR-NN contains the dense layers (Dense1 layer D1(x) and Dense2 layer D2(x)),

the multi-layer bi-GRU cells (R(x,Hf
t ,H

b
t , t)), and the Sigmoid layer (S(x)). The input to the

PR-NN is derived from a length-Tr noisy channel output sequence, r = {r1, r2, · · · , rTr}, where

the total number of time steps in PR-NN is also Tr. To reflect the memory of the E2PR4 channel,

we transform the sequence r into the network input vector r′ = {r(1), r(2), · · · , r(Tr)}, where

r(k) = {rk−4, rk−3, rk−2, rk−1, rk}.

The network architecture is shown in Fig. 7.8. Taking into account the starting and ending

dummy values, we discard the outputs of multi-layer bi-GRUs for the time steps 1 ≤ k ≤ Lstart

and Tr − Lend + 1 ≤ k ≤ Tr. The output vector is y = {yLstart+1, yLstart+2, · · · , yTr−Lend
} ∈
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Dense2

... ...

Sigmoid

Figure 7.8. Network architecture for proposed PR-NN.

R(Lstart+Leval) where, for time step Lstart + 1 ≤ k ≤ Tr − Lend, the output is given by

yk = S(D2(R(D1(r
(k)),Hf

k ,H
b
k))). (7.16)

Here we use time index k, rather than t, to be consistent with the indexing in the symbol

sequences generated by the magnetic recording channel.

Remark 8. In our experiments, for the network architecture, we chose Lstart = Lend = 5,

Leval = 10. The length of the overlapping part is Loverlap = 20, which is the same as the

truncation depth in the Viterbi detector. Thereby, the total number of time steps in PR-NN is
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Tr = 40. The parameters Leval and Loverlap are also used in the simulations for the classical

detection methods. For Dense1 layer, the number of input features is 5 and the number of output

features is 5. For the multi-layer bi-GRU cells, the number of layers is Nr = 4 and the number

of features in a hidden state is 50. For Dense2 layer, the number of input features is 100 and the

number of output features is 1.

7.3.2 Data Acquisition

The PR-NN detector recovers PR channel inputs from noisy PR channel outputs. The

training dataset of noisy channel outputs is created as follows. First, the coded E2PR4 channel

state machine in Fig. 7.3 is used to generate a length-(Leval + Loverlap) channel input sequence

from an arbitrarily chosen initial state, and then suitable distortion is added. In our experiments,

we consider three kinds of noise generated from the longitudinal recording system: AWGN,

ACN generated by the MMSE PR equalizer for the Lorentzian channel, and total distortion noise

nk generated according to (7.6). In order to train the PR-NN to adapt to different SNRs, the

noise in the training set also reflects a range of SNRs.

We use a zero compensation rule to ensure the network inputs satisfy the initial settings

of bi-GRU cells, which require the corresponding starting and ending states of the PR channel

state machine to be (0000). A string of Lstart = 5 starting dummy values is prepended to the

noisy channel output sequence according to the initial state, as indicated in Table 7.1. As will be

described in Section 7.3.4, PR-NN uses a sliding-window evaluation process, in which the starting

state for each truncated input block is determined by the symbols in the previously recovered

evaluation block. The starting dummy values are then determined by the zero compensation rule,

and since the starting state is assumed to be correct, we do not add noise to the starting dummy

values. The final state of the path used to generate the input sequence determines a path to state

(0000) and a corresponding string of Lend = 5 ending dummy values, also shown in Table 7.1.

However, since the ending state will be unknown during evalution, we add noise to these ending

dummy values in the training sequence to represent noisy outputs corresponding to an unknown
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Table 7.1. Starting and Ending Dummy Values for Each State in the Coded E2PR4 State
Machine. “Unknown” Means Unknown Starting or Ending State for the Sequence.

State Starting dummy values Ending dummy values
(0000) {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}
(0001) {0, 0, 0, 0, 1} {3, 2,−2,−3,−1}
(0011) {0, 0, 0, 1, 3} {2,−2,−3,−1, 0}
(0110) {0, 0, 1, 3, 2} {−2,−3,−1, 0, 0}
(0111) {0, 0, 1, 3, 3} {0,−3,−3,−1, 0}
(1000) {1, 3, 2,−2,−3} {−1, 0, 0, 0, 0}
(1001) {1, 3, 2,−2,−2} {2, 2,−2,−3,−1}
(1100) {0, 1, 3, 2,−2} {−3,−1, 0, 0, 0}
(1110) {0, 1, 3, 3, 0} {−3,−3,−1, 0, 0}
(1111) {0, 1, 3, 3, 1} {−1,−3,−3,−1, 0}

Unknown {0, 0, 0, 0, 0} {0, 0, 0, 0, 0}

ending state sequence. The training label for this training sequence is the length-(Leval+Loverlap)

channel input sequence.

During evalution, length-(Leval + Loverlap) truncated blocks of a continuous streaming

noisy channlel output sequence will be applied to the PR-NN detector. The evaluation labels are

the corresponding detected PR-channel input sequences. In order to process the truncated blocks,

a string of starting dummy values of length Lstart is prepended, using the starting state derived

from the previously recovered evaluation block and Table 7.1. An all-zero string of length Lend

is appended to the block, reflecting the fact that the final state of the truncated block is unknown.

Example 1 illustrates the use of Table 7.1 in the generation of dummy values.

Example 4. If the starting state is (1001), a path which forces the sequence from (0000) to

(1001) is

(0000)→(0001)→(0011)→(0110)→(1100)→(1001).

Thus the corresponding starting dummy values for state (1001) are {1, 3, 2,−2,−2}. If the

ending state is (1001), a path which drives the sequence from (1001) to (0000) is

(1001)→(0011)→(0110)→(1100)→(1000)→(0000).
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Thus the corresponding ending dummy values for state (1001) are {2, 2,−2,−3,−1}. During

training, noise will then be added to these values. ■

7.3.3 Training Methodology

The training dataset is fed into the network and we compare the outputs from the network

with the training labels. The comparison metric is the loss function. The loss function between

an output vector y and its corresponding channel input a can be defined as

L =

Lstart+Loverlap∑
k=Lstart+1

−ak · log(yk)− (1− ak) · log(1− yk) (7.17)

To address the complexity of training the nework with the entire channel output space,

we adopted the a-priori ramp-up training method in [110]. Instead of beginning the training with

independent, uniform user data uk ∼ Bern(0.5), we start training with user data uk ∼ Bern(p)

(p < 0.5) and gradually increase p to 0.5. In our case, the training data rk is generated from

the precoded constrained symbols ak, and ak is determined by the user data uk. The biasing

probability p(ep) in uk ∼ Bern(p) is a function of the epoch number ep, defined as

p(ep) =


0.1 + 0.01 · ⌊ep/#step⌋, ep ≤ 40 ·#step

0.5, ep > 40 ·#step
(7.18)

where #step is the number of epochs between increments in the probability. After every #step

epochs, the probability p(ep) will increase by 0.01 until 0.5 is reached.

7.3.4 Evaluation Process

The outputs yk of the network are real values in the range [0, 1]. These are converted to

binary detector outputs âk using an indicator function: âk = 1{x>0.5}(yk).

The sliding-window concept used in the evaluation process is shown in Fig. 7.9. We

assume the state machine has initial state (0000). When the first block of Leval+Loverlap symbols
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Figure 7.9. Sliding-window evaluation process for PR-NN detector.

are received, the PR - NN detector prepends to the block the starting dummy values corresponding

to state (0000) and appends the ending dummy values corresponding to the unknown state. The

resulting sequence is processed by the network, producing the detector outputs for the first

length-Leval block. The last 4 bits of the recovered block determine the starting state for the next

detection stage. When an additional Leval output symbols are received, the sliding window shifts

by Leval positions and begins processing the next length-(Leval + Loverlap) truncated block. The

starting dummy values for this block depend on the previously recovered starting state, and the

ending dummy values correspond to the unknown ending state. The resulting length-Lr block is

then processed by the network. This procedure continues until the entire stream of noisy channel

outputs is processed.

For a noisy channel output sequence of length L, the evalulation metric is the bit error

rate (BER) between the input a and the detection result â, defined as

BER =
1

L

L∑
k=1

1âk ̸=ak(âk) (7.19)

Remark 9. For the training set, the noise is generated for SNR values (in dB) in the set
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S = {8.5, 9.0, 9.5, 10.0, 10.5} (The SNR definition can be found in the Appendix.) Throughout

the training, Adam optimizer [61] was used with learning rate 10−3. The value #step used in

the a-priori ramp-up training was set to 50.

7.3.5 Computational Complexity Analysis

In this section, we compare the computational complexity of the Viterbi dectector and

PR-NN detector. We denote the length of noisy channel output sequence by L and the number of

states in the input-constrained channel trellis by Nst. Note that Nst ≤ 2v.

We first analyze the asymptotic computational complexity. For a Viterbi detector, the

computational complexity can be estimated as O(N2
stL) = O(22νL).

We now consider the complexity of PR-NN. Noting that the complexity of RNN is

asymptotically linear in the number of time steps, we let TNN denote the computational com-

plexity of one time step in the network. For the evaluation process, the processing of each

truncated block of length Leval+Loverlap requires (Lstart+Leval+Loverlap+Lend) steps, where

Lstart = Lend = Ldummy and Loverlap has the form Aν, for some constants Ldummy and A.

Thus, the associated complexity is nominally C = (2Ldummy + Leval + Aν)TNN . Since the

multi-layer bi-GRU outputs corresponding to dummy values can be ignored by the Dense2

layer, the complexity is actually C ′ ≤ C. Processing the entire network input stream involves

approximately L/Leval blocks, so the overall complexity is approximately LC ′/Leval = O(νL).

Thus, in the asymptotic view as the stream length L becomes large, the complexity of

PR-NN compares favorably to that of Viterbi detection in PRML. Analogous complexity analysis

for PRMAP and NPML detection leads to similar conclusions.

To more precisely evaluate the constants in the “order of” complexity estimate, we

analyze in more detail the complexity of operations in the Viterbi and PR-NN detectors. For a

Viterbi detector, a typical implementation consists of a pipeline of three units: a branch metric

unit (BMU), an add-compare-select unit (ACSU), and a survivor-memory-unit (SMU) [27].

The complexity of the add-compare-select unit for the PR Viterbi decoder with Nst states is
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approximately Nst adders, where Nst/2 adders are required for the addition of branch metrics

and the other Nst/2 make up the complexity of the Nst/2 two-level compares [28]. If we denote

the complexity of this pipeline at each time step as T0, the overall complexity can be estimated

as T0L. The MAP decoder can be implemented with no more than 4 times that of a Viterbi

decoder [116].

We now discuss the complexity of PR-NN. The number of multiplication operations

and the number of addition operations in a combined matrix-vector product and vector addition

operation such as W · x + b are both equal to the number of elements in the matrix. We let

T1 denote the complexity of a pair of multiplication and addition operations, and assume that

the complexity of the activation and indicator functions can be ignored. Denoting the numbers

of weights in Dense1 layer, multi-layer bi-GRU cells (one time step) and Dense2 layer as nD1,

nG and nD2, respectively, we see that TNN = (nD1 + nG + nD2)T1. Because the dummy parts

are ignored by Dense2 layer, the complexity is actually C ′ = C − 2LdummynD2T1. Taking into

account the sliding-window process, the overall complexity of PR-NN is LC ′/Leval.

The following example uses the E2PR4 channel to illustrate the calculation of the opera-

tional complexity of Viterbi and PR-NN detectors.

Example 5. For the coded E2PRML detector, the trellis at each time step has 10 states in

Fig. 7.3. At each time step, the BMU will compute 16 branch metrics, the ACSU will compute 10

path metrics, and the SMU will store the decisions made by the ACSU. The complexity of the

add-compare-select operation is about 10 adders.

For the PR-NN, based on the parameters in Remark. 8, the number of weights (including

biases) in the network layers are nD1 = 30, nG = 153.9k and nD2 = 101. Thus, C ′ =

40TNN − 1010T1. The overall complexity of PR-NN is approximately 615k · T1L.

7.4 Experimental Results

In this section, we present our experimental results for PR-NN detection of the coded

E2PR4 channel. We consider three scenarios. First, we train the network separately on ideal
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PR signals with AWGN or ACN generated by a PR equalizer. Then we use joint training on

different combinations of AWGN and ACN, as well as on a combination of ACN corresponding

to different channel densities. Finally, we train the network with “realistic” equalized Lorentzian

channel signals and distortions that include colored noise and misequalization errors. Together,

these experiments shed light on the robustness of PR-NN detection. We note that under each

scenario, with the a-priori ramp-up approach, PR-NN training converges after (40 ·#step) epochs

based on monitoring the loss function.

7.4.1 Experimental Setup

In the first scenario, we train PR-NN with only one kind of noise, i.e., AWGN or ACN.

For ACN, the colored noise is generated by applying the MMSE PR equalizer to AWGN samples.

According to (7.4), the ACN is affected by the channel density parameter PW50/Tc, so we use

two different, representative values of PW50/Tc in our experiments. In the training process, the

batch size for each SNR in S is 30.

In the second scenario, we assess PR-NN robustness by training a single network to

adapt to two different types of noise: (a) AWGN and ACN at PW50/Tc = 2.54, or (b) ACN

at PW50/Tc = 2.54 and at PW50/Tc = 2.88. The training batch size settings for case (a) are

shown in lines 1, 2, and 3 and for case (b) in line 4 of Table 7.2.

In the third scenario, the channel outputs represent a more realistic, MMSE-equalized

Lorentzian channel with misequalization errors and ACN. To assess robustness to different

channel densities, we train the PR-NN with separate datasets at PW50/Tc = 2.54 or PW50/Tc =

2.88, and then jointly with a dataset combining the two densities. Batch sizes are shown in lines

5, 6, and 7 of Table 7.2.

7.4.2 Scenario 1: Individual Training Experiments

In scenario 1, PR-NN is only trained with one noise, i.e., AWGN, ACN (PW50/Tc =

2.54), ACN(PW50/Tc = 2.88), where the batch size is 30 for each SNR in S. The evaluation
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Table 7.2. Batch Size Settings for the Training Datasets and Evaluation Cases in Each
Experiment of the Three Scenarios.

SNR 8.5dB 9.0dB 9.5dB 10.0dB 10.5dB 8.5dB 9.0dB 9.5dB 10.0dB 10.5dB
Noise type White noise Colored noise (PW50/Tc = 2.54)

Experiment 2.1 30 30 30 30 30 30 30 30 30 30
Experiment 2.2 40 40 40 40 40 20 20 20 20 20
Experiment 2.3 50 50 50 50 50 10 10 10 10 10

Noise type Colored noise (PW50/Tc = 2.54) Colored noise (PW50/Tc = 2.88)
Experiment 2.4 30 30 30 30 30 30 30 30 30 30

Noise type “Realistic” system (PW50/Tc = 2.54) “Realistic” system (PW50/Tc = 2.88)
Experiment 3.1 30 30 30 30 30 - - - - -
Experiment 3.2 - - - - - 30 30 30 30 30
Experiment 3.3 30 30 30 30 30 30 30 30 30 30

results over the corresponding channels are described below.

Experiment 1.1: We trained the PR-NN with AWGN. As shown in the BER plot in

Fig. 7.10, coded E2PRML achieves the expected 2.2dB gain over uncoded E2PRML with Viterbi

detection [6]. In both cases, E2PRMAP, implemented by max-log-map approximation, performs

essentially the same as E2PRML. (In the subsequent experiments, because E2PRMAP shows

similar performance with E2PRML, we only present the simulation results of E2PRML.) The user

data BER of the coded E2PRML channel suffers a loss of about 0.9dB due to error propagation

of the sliding-block decoder.

We see that the PR-NN achieves performance within 0.1dB of the optimal Viterbi detector.

There is a similar gap in performance for the user data BER. (In subsequent experiments, we

present only the BER results at the detector output, not the user data results.)

At all SNRs, the histograms of error positions observed within an evaluation block of

length Leval = 10 for the PR-NN detector and the Viterbi detector are approximately uniform,

indicating that the overlapping part is providing “reliable” state information for the evaluation

part.

Experiment 1.2: The PR-NN detector is trained and evaluated with ACN (PW50/Tc =

2.54). Referring to Fig. 7.11, we see that the performance of coded E2PRML is degraded in

colored noise. The NPML detectors with 4-tap, 8-tap, and 16-tap predictors realize gains of
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Figure 7.10. Scenario 1: Individual training with AWGN.

0.4dB, 0.5dB, and 0.6dB gain, respectively, over coded E2PRML. Note that for these experiments,

the NPML detector designs assume no misequalization error. The PR-NN detector has very

similar performance to the 8-tap NPML detector.

Experiment 1.3: The PR-NN detector is trained and tested with ACN (PW50/Tc = 2.88).

Referring to Fig. 7.12, we see that, in this case, the NPML detectors with 4-tap, 8-tap, and 16-tap

predictors realize gains of 1.3dB, 1.5dB, and 1.55dB, respectively, over coded E2PRML. The

PR-NN performance is very close to that of the 16-tap NPML detector. In fact, at SNR=10.5dB,

the BER achieved by PR-NN is even slightly better.

7.4.3 Scenario 2: Joint Training Experiments

In scenario 2, we train a single PR-NN using a dataset that combines noisy outputs

representing different recording channels, and then evaluate its performance on both channels.

Four different situations are considered.

Experiments 2.1, 2.2, 2.3: First, the PR-NN detector is trained with both AWGN and
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Figure 7.11. Scenario 1: Individual training with ACN (for two channel densities) when
PW50/Tc = 2.54.
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Figure 7.12. Scenario 1: Individual training with ACN (for two channel densities) when
PW50/Tc = 2.88.
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Figure 7.13. Scenario 2: Joint training with AWGN and ACN (PW50/Tc = 2.54) and evaluation
on AWGN.
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Figure 7.14. Scenario 2: Joint training with AWGN and ACN (PW50/Tc = 2.54) and evaluation
on ACN (PW50/Tc = 2.54).
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Figure 7.15. Scenario 2: Joint training with ACN when PW50/Tc = 2.54 and ACN when
PW50/Tc = 2.88 and evaluation on ACN when PW50/Tc = 2.54.
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Figure 7.16. Scenario 2: Joint training with ACN when PW50/Tc = 2.54 and ACN when
PW50/Tc = 2.88 and evaluation on ACN when PW50/Tc = 2.88.
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Figure 7.17. Scenario 3: Individual training with “realistic” datasets at PW50/Tc = 2.54 and
evaluation on “realistic” datasets at PW50/Tc = 2.54.
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Figure 7.18. Scenario 3: Individual training with “realistic” datasets at PW50/Tc = 2.88 and
evaluation on “realistic” datasets at PW50/Tc = 2.88.
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Figure 7.19. Scenario 3: Joint training with “realistic” datasets for both PW50/Tc = 2.54 and
PW50/Tc = 2.88 and evaluation on “realistic” datasets for PW50/Tc = 2.54.
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Figure 7.20. Scenario 3: Joint training with “realistic” datasets for both PW50/Tc = 2.54 and
PW50/Tc = 2.88 and evaluation on “realistic” datasets for PW50/Tc = 2.88.
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ACN (PW50/Tc = 2.54). Experiments 2.1, 2.2, and 2.3 use different relative batch sizes for

AWGN and ACN samples within the training set, as shown in Table 7.2. The simulation results

are summarized in Fig. 7.13 and Fig. 7.14. The solid red curve in Fig. 7.13 represents the best

performance in AWGN achieved by the network individually trained with AWGN (Experiment

1.1). When trained with the combined datasets, the jointly trained PR-NNs suffer losses of

0.4dB, 0.2dB, and 0.1dB, respectively, with respect to the network individually trained with ACN

(Experiment 1.2), with the larger relative batch size for AWGN giving the best performance.

On the other hand, as shown in Fig. 7.14, when we evaluate the jointly-trained PR-NN under

ACN (PW50/Tc = 2.54), the performance losses are 0dB, 0.1dB, and 0.4dB, respectively, with

increasing relative AWGN batch size.

These results suggest that the best compromise in terms of robustness of performance is

offered by the jointly trained PR-NN in Experiment 2.2, with losses of only 0.2dB in AWGN

and 0.1dB in ACN.

Experiment 2.4: In this experiment, we explore the robustness of a jointly-trained

PR-NN detector at different channel densities (PW50/Tc = 2.54 and PW50/Tc = 2.88). The

training batch sizes are shown in Table 7.2. The simulation results in Fig. 7.15 show that

the resulting PR-NN detector matches the performance of the individually-trained network in

Experiment 1.2. Moreover, as seen in Fig. 7.16, the performance is only slightly worse than

that of the network trained in Experiment 1.3. Thus, the jointly-trained network appears to offer

adaptivity to different recording densities, which can arise from system variations in temperature

and head flying height, or at different disk radii.

Interestingly, the NPML detectors do not exhibit the same sort of robustness as the

PR-NN detector. Fig. 7.15 shows that the NPML detector optimized for PW50/Tc = 2.88

experiences a performance loss of 0.2dB with respect to the NPML detector properly optimized

for PW50/Tc = 2.54. Similarly, we see in Fig. 7.16 that the NPML detector designed for

PW50/Tc = 2.54 incurs a penalty of 0.3dB compared to the NPML detector designed for

PW50/Tc = 2.88.
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7.4.4 Scenario 3: “Realistic” Equalized Lorentzian Channel

In a “realistic” recording system modeled as an equalized Lorentzian channel, the signal

distortions include both colored noise and misequalization errors, as shown in (7.6). In this third

set of experiments, we first compare the performance of NPML detection and PR-NN detection

for such a system at two channel densities. We then assess the robustness of a PR-NN detector

trained jointly for use at both densities. Note that in these experiments, the NPML detector

designs take into account both colored noise and misequalization errors.

Experiment 3.1: The simulation results for a PR-NN detectors trained individually

at PW50/Tc = 2.54 are shown in Fig. 7.17. The NPML detectors with 4-tap, 8-tap, and

16-tap predictors have gains of 0.3dB, 0.4dB and 0.45dB, respectively, over coded E2PRML.

The PR-NN detector trained with the “realistic” channel dataset achieves even slightly better

performance than the 16-tap NPML detector.

Experiment 3.2: In Fig 7.18, we consider the channel with density PW50 = 2.88. Here

the gains of the NPML detectors with 4-tap, 8-tap, and 16-tap predictors are 0.5dB, 0.6dB, and

0.7dB, respectively, over coded E2PRML. The PR-NN detector trained with the corresponding

dataset surpasses that of the 16-tap NPML detector.

Experiment 3.3: As in Experiment 2.4, we explore the adaptability of PR-NN detection

to changes in recording density. The results obtained after training with a combined dataset

of “realistic” equalized Lorentzian channel outputs for PW50 = 2.54 and PW50 = 2.88 are

shown in Fig. 7.17 and Fig. 7.18. In Fig. 7.17, corresponding to PW50 = 2.54 , we see that the

jointly-trained network essentially matches the performance of the individually trained network

(Experiment 3.1), surpassing the 16-tap NPML detector. Similarly, Fig. 7.18 shows that the

jointly-trained PR-NN detector preserves the performance of the network individually trained

at PW50 = 2.88 (Experiment 3.2). The robustness of PR-NN detection in this more realistic

channel setting is thus confirmed.
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7.4.5 Experimental Analysis

Our results from Scenario 1 demonstrate that the PR-NN detection architecture can

achieve performance close to Viterbi detection and NPML detection on coded E2PR4 channels

in AWGN and ACN, respectively, over a range of SNRs. In Scenario 2, we saw that a PR-

NN detector jointly trained for AWGN and ACN shows greater tolerance to ACN than the

Viterbi detector, and retains comparable performance in AWGN. When jointly trained in ACN

corresponding to equalizers for two different channel densities, the PR-NN detector again

exhibits robust performance over a range of SNRs. Finally, when evaluated on a more realistic

equalized Lorentzian channel model with both ACN and misequalization errors, the PR-NN

detectors designed individually for two channel densities surpass the performance of 16-tap

NPML detectors over a range of SNRs. The jointly-trained PR-NN detector maintains the

performance of the individually-trained networks at both densities, displaying a robustness that

the NPML detectors fail to offer.

The near-optimal performance and robustness of PR-NN can be explained as follows: 1)

the RNN-based structure of PR-NN, which exploits the time-sequential connections between cells,

reflects the nature of the signal generated by the ISI channel; 2) non-linear functions included

in the RNN help PR-NN to model the effects of a variety of noise sources and distortions; and

3) the sliding-window evaluation process helps the block-wise PR-NN architecture to detect

the noisy outputs in streaming fashion, in analogy to the classical detection methods used in

magnetic recording channels.

7.5 Conclusion

In this paper, we first formulated a magnetic recording channel model and reviewed

three classical detectors. Then, we proposed PR-NN, an RNN-based detection approach for

coded partial-response channel models. The PR-NN detector processes the noisy outputs of

the equalized recording channel in a block-streaming fashion, with computational complexity
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comparable to that of classical sequence detectors. Simulation results confirm the attractive

performance of PR-NN when compared to classical detection algorithms and, moreover, demon-

strate a robustness to different noise characteristics and channel densities that classical methods

can not provide.

7.6 Appendix

We consider three noise scenarios in our experiments: AWGN, ACN and a “realistic”

system with equalized noise and misequalization error. The general expression for the noise is

given in (7.6). The signal-to-noise (SNR) ratio is defined in each scenario as follows:

1. AWGN: An ideal channel is assumed and the additive noise term nk is simply AWGN.

The SNR is defined as SNR1 = 10 log10(E/σ2), where σ2 is the variance of the Gaussian

random variable nk. Here E is a constant related to the output-voltage amplitude in the

recording channel. According to [56], we utilize the matched-filter bound (MFB) as E,

and we define MFB as the the distance

d2MFB = ||x(D)||2. (7.20)

In the E2PR4 channel, d2MFB = 10.

2. ACN: Misequalization error is ignored and the noise term is nk =
∑

i ziηk−i, where {zi}

represent the normalized coefficients of the PR equalizer and ηk is AWGN. The SNR is

defined as SNR2 = 10 log10(E/σ2), where E is the MFB and σ2 is the variance of ηk.

3. “Realistic” system: There is misequalization error and colored noise due to equalization.

The noise term nk is given by (7.6). The SNR is defined as SNR3 = 10 log10(E/σ2),

where E is the MFB and σ2 is the variance of ηk.
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