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bIntercollege Graduate Degree Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
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ABSTRACT Soil surface consortia are easily observed and sampled, allowing exami-
nation of their interactions with soil microbiomes. Here, we present metatranscrip-
tomic sequences from Dark Green 1 (DG1), a cyanobacterium-based soil surface con-
sortium, in the presence and absence of an underlying soil microbiome and/or urea.

Microbial inoculants can establish unpredictably in soils, due to factors including
competition with established microorganisms (1); however, inoculants that

form visible surface films provide unique opportunities to track survival. In 2013,
cyanobacterium-based soil surface consortia from Pennsylvania were enriched to de-
velop surface film-forming inoculants (2). One consortium, Dark Green 1 (DG1), was
enriched in culture over 2 years without added nitrogen or carbon, and abundant
members include Cylindrospermum spp. and six nonphotosynthetic taxa (3).

We introduced DG1 to soils containing low- or high-diversity microbiomes, with or
without urea added. Soil was collected from Penn State’s Agronomy Research Farm (4),
sieved to 2 mm, and twice autoclaved (45 min, 24-h interval). To one portion, nonau-
toclaved soil was reintroduced at 5% (vol/vol) to establish a high-diversity microbiome.
Inoculated and uninoculated soil was dispensed into 12 petri dishes each (10 by 15 mm;
25 g dry soil/dish). An even fructose/maltose/glucose/galactose/ribose mixture was
added to microcosms at 2 g carbon/kg dry soil. Six microcosms from each soil type
received urea at 150 (start of incubation) and 50 mg nitrogen/kg dry soil (pre-DG1
addition), generating four treatments. The microcosms were dark incubated for 43
weeks at 21°C.

DG1 was grown in modified BG-11 medium under continuous fluorescent lighting
(average 1,865 lux) and moderate agitation at 21°C (4). The cultures were pelleted at
5,500 rpm in 50-ml Falcon tubes, the medium was removed, and sterile deionized (DI)
water was added (3:1 [vol/vol]) to resuspend the mixture. We pipetted 3-ml suspension
across the surface of each soil sample and incubated the microcosms under constant
fluorescent light for 5 weeks at 21°C.

RNA was extracted from the excised biofilms using the RNeasy PowerSoil total RNA
kit (Qiagen), assessed on an Agilent BioAnalyzer at the Penn State Genomics Core (RNA
integrity no. [RIN], �7), and shipped to the Joint Genome Institute (JGI). Metatranscrip-
tome library preparation was performed on a Sciclone NGS robot (PerkinElmer) using
Illumina’s Ribo-Zero rRNA removal kits (equimolar bacteria/yeast/plant root) and the
TruSeq stranded total RNA high-throughput (HT) kit, with 100 ng/sample RNA and 10
PCR cycles for library amplification. Libraries were quantified with KAPA library quan-
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tification kits on a Roche LightCycler 480. Sequencing was performed on an Illumina
NovaSeq using XP v1 reagent kits following a 2 � 150-nucleotide (nt) indexed run
recipe.

Default parameters were used for all software unless otherwise noted. BBDUK
(v38.26) removed (i) contaminants, (ii) adapter sequences and right read segments
where quality was equal to 0, (iii) reads with N bases, a mean quality score of �10, or
minimum length of �51 bp or 33% of full length, and (iv) rRNA (5). The filtered reads
were assembled using MEGAHIT v1.1.2 (– k list, 23, 43, 63, 83, 103, 123) (6). The filtered
reads were mapped to contigs using BBMap (v38.25, ambiguous�random) to estimate
coverage (5). Genes were identified and annotated in IMG/M v4 (7, 8). Taxonomic
assignments for transcripts were determined by selecting the options “compare ge-
nomes” and “phylogenetic distribution” at a percent identity of �60% and normalized
by estimated gene copies. Table 1 presents the annotation statistics for the metatran-
scriptomes.

Initial analysis suggests fewer cyanobacterium transcripts when high-diversity mi-
crobiomes are present, particularly with urea. Of interest will be the frequency of
transcripts indicating interspecific interactions.

Data availability. Metatranscriptome sequences are available through the JGI
Genomes OnLine Database (GOLD) under project identifier Gs0132857.
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TABLE 1 Summary of sample information and metatranscriptome annotation statistics

Microcosm
condition

Replicate
no. Read count

Total
bases
(Mbp)

N50

(bp)
Contig
count

Total
gene
count

GC
content (%)

No. of
CDSa

genes
CDS
genes (%)

Genes with
predicted
protein
product (%)

Genes
assigned to
enzymes (%)

IMG taxon
no.

High diversity
plus urea

1 219,723,368 96.8 47,412 169,357 215,733 60.503 212,099 98.32 65.23 21.51 3300031481

2 231,138,230 48.2 19,281 79,209 98,703 55.355 95,648 96.9 64.74 21.1 3300031495
3 225,572,282 21.2 5,785 29,055 39,260 57.064 37,559 95.67 63.59 19.47 3300031499
4 195,630,988 16.2 4,635 22,239 29,758 56.122 28,287 95.06 63.51 19.32 3300031502
5 199,215,548 18.3 4,979 25,842 33,517 54.725 31,752 94.73 64.26 18.54 3300031503
6 208,163,376 17.7 8,064 29,994 37,213 59.167 35,178 94.53 64.7 21.33 3300031504

High diversity 1 186,588,010 23.3 13,149 43,867 51,454 58.69 49,065 95.36 60.35 19.61 3300031484
2 197,781,214 22.8 8,201 35,746 45,006 55.917 43,032 95.61 62.99 19.18 3300031487
3 247,118,632 13.3 4,935 21,236 25,866 53.513 23,991 92.75 62.46 18.6 3300031491
4 232,297,572 23.4 7,461 35,593 45,664 55.476 43,666 95.62 64.19 19.32 3300031490
5 177,035,364 58.6 25,717 97,967 124,267 60.664 121,385 97.68 67.6 23.29 3300031493
6 185,064,556 37.7 15,320 61,975 78,183 58.324 75,871 97.04 66.4 21.89 3300031476

Low diversity
plus urea

1 290,517,454 16.5 3,481 19,787 29,350 53.737 28,862 98.34 70.16 24.1 3300031488

2 187,827,806 5.2 1,425 6,656 9,257 48.703 9,083 98.12 67.91 24.25 3300031483
3 227,368,660 5.7 1,368 6,887 9,570 49.214 9,399 98.21 70.24 23.12 3300031475
4 207,822,514 10.9 1,766 10,912 17,267 51.587 17,007 98.49 70.42 24.02 3300031494
5 225,974,356 25.2 3,578 24,957 41,645 58.976 41,127 98.76 70.57 25.81 3300031492
6 199,479,246 7.8 1,184 7,120 11,581 48.025 11,370 98.18 68.79 22.29 3300031479

Low diversity 1 213,606,582 12.6 1,048 10,670 18,251 50.188 18,028 98.78 69.56 23.57 3300031498
2 222,910,458 13.7 831 11,117 19,560 50.393 19,244 98.38 68.84 22.89 3300031489
3 243,278,232 19.8 2,155 19,353 30,794 54.187 30,424 98.8 68.14 23.87 3300031477
4 205,533,538 10 957 8,594 14,312 47.57 14,080 98.38 68.04 21.68 3300031482
5 196,564,512 11.1 1,221 10,284 16,357 48.782 16,095 98.4 68.89 22.5 3300031497
6 228,387,134 12.1 1,841 12,242 19,161 51.531 18,891 98.59 69.25 24.08 3300031480

a CDS, coding DNA sequence.
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