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ARTICLE

The Eighty Five Percent Rule for optimal learning
Robert C. Wilson1,2*, Amitai Shenhav3,4, Mark Straccia5 & Jonathan D. Cohen6

Researchers and educators have long wrestled with the question of how best to teach their

clients be they humans, non-human animals or machines. Here, we examine the role of a

single variable, the difficulty of training, on the rate of learning. In many situations we find that

there is a sweet spot in which training is neither too easy nor too hard, and where learning

progresses most quickly. We derive conditions for this sweet spot for a broad class of

learning algorithms in the context of binary classification tasks. For all of these stochastic

gradient-descent based learning algorithms, we find that the optimal error rate for training is

around 15.87% or, conversely, that the optimal training accuracy is about 85%. We

demonstrate the efficacy of this ‘Eighty Five Percent Rule’ for artificial neural networks used in

AI and biologically plausible neural networks thought to describe animal learning.
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When we learn something new, like a language or
musical instrument, we often seek challenges at the
edge of our competence—not so hard that we are

discouraged, but not so easy that we get bored. This simple
intuition, that there is a sweet spot of difficulty, a ‘Goldilocks
zone’1, for motivation and learning is at the heart of modern
teaching methods2 and is thought to account for differences in
infant attention between more and less learnable stimuli1. In the
animal learning literature it is the intuition behind shaping3 and
fading4, whereby complex tasks are taught by steadily increasing
the difficulty of a training task. It is also observable in the nearly
universal ‘levels’ feature in video games, in which the player is
encouraged, or even forced, to a higher level of difficulty once a
performance criterion has been achieved. Similarly in machine
learning, steadily increasing the difficulty of training has proven
useful for teaching large scale neural networks in a variety of
tasks5,6, where it is known as ‘Curriculum Learning’7 and ‘Self-
Paced Learning’8.

Despite this long history of empirical results, it is unclear why a
particular difficulty level may be beneficial for learning nor what
that optimal level might be. In this paper we address this issue of
optimal training difficulty for a broad class of learning algorithms
in the context of binary classification tasks, in which ambiguous
stimuli must be classified into one of two classes (e.g., cat or dog).

In particular, we focus on the class of stochastic gradient-
descent based learning algorithms. In these algorithms, para-
meters of the model (e.g., the weights in a neural network) are
adjusted based on feedback in such a way as to reduce the average
error rate over time9. That is, these algorithms descend the gra-
dient of error rate as a function of model parameters. Such
gradient-descent learning forms the basis of many algorithms in
AI, from single-layer perceptrons to deep neural networks10, and
provides a quantitative description of human and animal learning
in a variety of situations, from perception11, to motor control12 to
reinforcement learning13. For these algorithms, we provide a
general result for the optimal difficulty in terms of a target error
rate for training. Under the assumption of a Gaussian noise

process underlying the errors, this optimal error rate is around
15.87%, a number that varies slightly depending on the noise in
the learning process. That is the optimal accuracy for training is
around 85%. We show theoretically that training at this optimal
difficulty can lead to exponential improvements in the rate of
learning. Finally, we demonstrate the applicability of the Eighty
Five Percent Rule to artificial one- and two-layer neural
networks9,14, and a model from computational neuroscience that
is thought to describe human and animal perceptual learning11.

Results
Optimal training difficulty for binary classification tasks. In a
standard binary classification task, an animal or machine ‘agent’
makes binary decisions about simple stimuli. For example, in the
classic Random Dot Motion paradigm from Psychology and
Neuroscience15,16, stimuli consist of a patch of moving dots—
most moving randomly but a small fraction moving coherently
either to the left or the right—and participants must decide in
which direction the coherent dots are moving. A major factor in
determining the difficulty of this perceptual decision is the frac-
tion of coherently moving dots, which can be manipulated by the
experimenter to achieve a fixed error rate during training using a
procedure known as ‘staircasing’17.

We assume that agents make their decision on the basis of a
scalar, subjective decision variable, h, which is computed from a
stimulus that can be represented as a vector x (e.g., the direction
of motion of all dots)

h ¼ Φðx;ϕÞ ð1Þ
where Φ(⋅) is a function of the stimulus and (tunable) parameters
ϕ. We assume that this transformation of stimulus x into the
subjective decision variable h yields a noisy representation of the
true decision variable, Δ (e.g., the fraction of dots moving left).
That is, we write

h ¼ Δþ n ð2Þ
where the noise, n, arises due to the imperfect representation of

the decision variable. We further assume that this noise, n, is
random and sampled from a zero-mean Gaussian distribution
with standard deviation σ (Fig. 1a).

If the decision boundary is set to 0, such that the model
chooses option A when h > 0, option B when h < 0 and randomly
when h= 0, then the noise in the representation of the decision
variable leads to errors with probability

ER ¼
Z 0

�1
pðhjΔ; σÞdh ¼ Fð�Δ=σÞ ¼ Fð�βΔÞ ð3Þ

where F(x) is the cumulative density function of the standardized
noise distribution, p(x)= p(x|0, 1), and β= 1/σ quantifies the
precision of the representation of Δ and the agent’s skill at the
task. As shown in Fig. 1b, this error rate decreases as the decision
gets easier (Δ increases) and as the agent becomes more
accomplished at the task (β increases).

The goal of learning is to tune the parameters ϕ such that the
subjective decision variable, h, is a better reflection of the true
decision variable, Δ. That is, the model should aim to adjust the
parameters ϕ so as to decrease the magnitude of the noise σ or,
equivalently, increase the precision β. One way to achieve this
tuning is to adjust the parameters using gradient descent on the
error rate, i.e. changing the parameters over time t according to

dϕ
dt
¼ �η∇ϕER ð4Þ

where η is the learning rate and ∇ϕER is the derivative of the
error rate with respect to parameters ϕ. This gradient can be
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Fig. 1 Illustration of the model. a Distributions over decision variable h given
a particular difficulty, Δ= 16, with lower precision before learning and
higher precision after learning. The shaded regions corresponds to the error
rate—the probability of making an incorrect response at each difficulty.
b The error rate as a function of difficulty before and after learning. c The
derivative that determines the rate of learning as a function of difficulty
before and after learning showing that the optimal difficulty for learning is
lower after learning than before. d The same derivative as in c re-plotted as
a function of error rate showing that the optimal error rate (at 15.87% or
~85% accuracy) is the same both before and after learning
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written in terms of the precision, β, as

∇ϕER ¼
∂ER
∂β

∇ϕβ ð5Þ

Note here that only the first term on the right hand side of Eq. (5)
depends on the difficulty Δ, while the second describes how the
precision changes with ϕ. Note also that Δ itself, as the ‘true’
decision variable, is independent of ϕ. This means that the
optimal difficulty for training, that maximizes the change in the
parameters, ϕ, at this time point, is the value of the decision
variable Δ* that maximizes ∂ER/∂β. Of course, this analysis
ignores the effect of changing ϕ on the form of the noise—instead
assuming that it only changes the scale factor, β, an assumption
that likely holds in the relatively simple cases we consider here,
although whether it holds in more complex cases will be an
important question for future work.

In terms of the decision variable, the optimal difficulty changes
as a function of precision (Fig. 1c) meaning that the difficulty of
training must be adjusted online according to the skill of the
agent. Using the monotonic relationship between Δ and ER
(Fig. 1b) it is possible to express the optimal difficulty in terms of
the error rate, ER* (Fig. 1d). Expressed this way, the optimal
difficulty is constant as a function of precision, meaning that
optimal learning can be achieved by clamping the error rate
during training at a fixed value, which, for Gaussian noise is

ER� ¼ 1
2

1� erf
1ffiffiffi
2
p

� �� �
� 0:1587 ð6Þ

That is, the optimal error rate for learning is 15.87%, and the
optimal accuracy is around 85%. We call this the Eighty Five
Percent Rule for optimal learning.

Dynamics of learning. While the previous analysis allows us to
calculate the error rate that maximizes the rate of learning, it does
not tell us how much faster learning occurs at this optimal error
rate. In this section we address this question by comparing
learning at the optimal error rate with learning at a fixed error
rate, ERf (which may be suboptimal), and, alternatively, a fixed
difficulty, Δf. If stimuli are presented one at a time (i.e., not batch
learning), in both cases, gradient-descent based updating of the
parameters, ϕ, (Eq. (4)) implies that the precision β evolves in a
similar manner, i.e..

dβ
dt
¼ �η ∂ER

∂β
ð7Þ

For fixed error rate, ERf, as shown in the Methods, integrating Eq.
(7) gives

βðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β20 þ 2ηKf ðt � t0Þ

q
ð8Þ

where t0 is the initial time point, β0 is the initial value of β and Kf

is the following function of the training error rate

Kf ¼ �F�1ðERf ÞpðF�1ðERf ÞÞ ð9Þ
Thus, for fixed training error rate the precision grows as the
square root of time with the exact rate determined by Kf which
depends on both the training error rate and the noise distribution.

For fixed decision variable, Δf, integrating Eq. (7) is more
difficult and the solution depends more strongly on the
distribution of the noise. In the case of Gaussian noise, there is
no closed form solution for β. However, as shown in the Methods,
an approximate form can be derived at long times where we find
that β grows as

βðtÞ /
ffiffiffiffiffiffiffiffiffi
log t

p ð10Þ
i.e., exponentially slower than Eq. (38).

Simulations. To demonstrate the applicability of the Eighty Five
Percent Rule we simulated the effect of training accuracy on
learning in three cases, two from AI and one from computational
neuroscience. From AI we consider how training at 85% accuracy
impacts learning in the the simple case of a one-layer Percep-
tron14 with artificial stimuli, and in the more complex case of a
two-layer neural network9 with stimuli drawn from the MNIST
(Modified National Institute of Standards and Technology)
dataset of handwritten digits18. From computational neuroscience
we consider the model of Law and Gold11, that accounts for both
the behavior and neural firing properties of monkeys learning the
Random Dot Motion task. In all cases we see that learning is
maximized when training occurs at 85% accuracy.

Perceptron with artificial stimuli. The Perceptron is a classic
one-layer neural network model that learns to map multi-
dimensional stimuli x onto binary labels, y via a linear threshold
process14. To implement this mapping, the Perceptron first
computes the decision variable h as

h ¼ w � x ð11Þ
where w are the weights of the network, and then assigns the label
according to

y ¼ 1 h > 0

0 h � 0

�
ð12Þ

The weights, w, which constitute the parameters of the model, are
updated based on feedback about the true label t by a the learning
rule,

w  w þ ðt � yÞx ð13Þ
This learning rule implies that the Perceptron only updates its
weights when the predicted label y does not match the actual label
t—that is, the Perceptron only learns when it makes mistakes.
Naively then, one might expect that optimal learning would
involve maximizing the error rate. However, because Eq. (13) is
closely related (albeit not identical) to a gradient descent based
rule (e.g., Chapter 39 in ref. 19), the analysis of the previous
sections applies and the optimal error rate for training is 15.87%.

To test this prediction we simulated the Perceptron learning
rule for a range of training error rates between 0.01 and 0.5 in
steps of 0.01 (1000 simulations per error rate, 1000 trials per
simulation). Error rate was kept constant by varying the difficulty,
and the degree of learning was captured by the precision β (see
Methods). As predicted by the theory, the network learns most
effectively when trained at the optimal error rate (Fig. 2a) and the
dynamics of learning are well described, up to a scale factor, by
Eq. (38) (Fig. 2b).
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b The dynamics of learning agree well with the theory
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Two-layer network with MNIST stimuli. As a more demanding
test of the Eighty Five Percent Rule, we consider the case of a two-
layer neural network applied to more realistic stimuli from the
Modified National Institute of Standards and Technology
(MNIST) dataset of handwritten digits18. The MNIST dataset is a
labeled dataset of 70,000 images of handwritten digits (0 through
9) that has been widely used as a test of image classification
algorithms (see ref. 20 for a list). The dataset is broken down into
a training set consistent of 60,000 images and a test set of 10,000
images. To create binary classification tasks based on these ima-
ges, we trained the network to classify the images according to
either the parity (odd or even) or magnitude (less than 5 or not)
of the number.

The network itself consisted of 1 input layer, with 400 units
corresponding to the pixel values in the images, 1 hidden layer,
with 50 neurons, and one output unit. Unlike the Perceptron,
activity of the output unit was graded and was determined by a
sigmoid function of the decision variable, h

y ¼ 1
1þ exp hð Þ ¼ SðhÞ ð14Þ

where the decision variable was given by

h ¼ w2 � a ð15Þ
where w2 were the weights connecting the hidden layer to the
output units and a was the activity in the hidden layer. This
hidden-layer activity was also determined by a sigmoidal function

a ¼ Sðw1 � xÞ ð16Þ
where the inputs, x, corresponds to the pixel values in the image
and w1 were the weights from the input layer to the hidden layer.

All weights were trained using the Backpropagation algorithm9

which takes the error,

e ¼ t � y ð17Þ
and propagates it backwards through the network, from output to
input stage, as a teaching signal for the weights. This algorithm
implements stochastic gradient descent and, if our assumptions
are met, should optimize learning at a training accuracy of 85%.

To test this prediction we trained the two-layer network for
5000 trials to perform either the Parity or the Magnitude Task
while clamping the training error rate between 5 and 30% (Fig. 3).
After training, performance was assessed on the entire test set and
the whole process was repeated 1000 times for each task. As
shown in Fig. 3, training error rate has a relatively large effect on
test accuracy, around 10% between the best and worse training
accuracies. Moreover, for both tasks, the optimal training occurs

at 85% training accuracy. This suggests that the 85% rule holds
even for learning of more realistic stimuli, by more complex
multi-layered networks.

Biologically plausible model of perceptual learning. To
demonstrate how the Eighty Five Percent Rule might apply to
learning in biological systems, we simulated the Law and Gold
model of perceptual learning11. This model has been shown to
capture the long term changes in behavior, neural firing and
synaptic weights as monkeys learn to perform the Random Dot
Motion task.

Specifically, the model assumes that monkeys make the
perceptual decision between left and right on the basis of neural
activity in area MT—an area in the dorsal visual stream that is
known to represent motion information15. In the Random Dot
Motion task, neurons in MT have been found to respond to both
the direction θ and coherence COH of the dot motion stimulus
such that each neuron responds most strongly to a particular
‘preferred’ direction and that the magnitude of this response
increases with coherence. This pattern of firing is well described
by a simple set of equations (see “Methods”) and thus the noisy
population response, x, to a stimulus of arbitrary direction and
coherence is easily simulated.

From this MT population response, Law and Gold proposed
that animals construct a decision variable in a separate area of the
brain (lateral interparietal area, LIP) as the weighted sum of
activity in MT; i.e.,

h ¼ w � x þ ϵ ð18Þ
where w are the weights between MT and LIP neurons and ϵ is
random neuronal noise that cannot be reduced by learning. The
presence of this irreducible neural noise is a key difference
between the Law and Gold model (Eq. 18) and the Perceptron
(Eq. 11) as it means that no amount of learning can lead to
perfect performance. However, as shown in the Methods section,
the presence of irreducible noise does not change the optimal
accuracy for learning which is still 85%.

Another difference between the Perceptron and the Law and
Gold model is the form of the learning rule. In particular, weights
are updated according to a reinforcement learning rule based on a
reward prediction error

δ ¼ r � E½r� ð19Þ
where r is the reward presented on the current trial (1 for a
correct answer, 0 for an incorrect answer) and E[r] is the
predicted reward

E½r� ¼ 1
1þ expð�BjhjÞ ð20Þ

where B is a proportionality constant that is estimated online by
the model (see “Methods”). Given the prediction error, the model
updates its weights according to

w  w þ ηCδx ð21Þ
where C is the choice (−1 for left, +1 for right) and η is the
learning rate. Despite the superficial differences with the
Perceptron learning rule (Eq. (13)) the Law and Gold model
still implements stochastic gradient descent on the error rate13

and learning should be optimized at 85%.
To test this prediction we simulated the model at a variety of

different target training error rates. Each target training rate was
simulated 100 times with different parameters for the MT
neurons (see “Methods”). The precision, β, of the trained network
was estimated by fitting simulated behavior of the network on a
set of test coherences that varied logarithmically between 1 and
100%. As shown in Fig. 4a the precision after training is well
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Fig. 3 The Eighty Five Percent Rule applied to a multilayered neural
network. Test accuracy vs training error rate on the MNIST dataset for the
a Parity and bMagnitude tasks for 1000 different simulations. In both cases
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corresponds to a different target training accuracy
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described (up to a scale factor) by the theory. In addition, in
Fig. 4b, we show the expected difference in behavior—in terms of
psychometric choice curves—for three different training error
rates. While these differences are small, they are large enough that
they could be distinguished experimentally.

Discussion
In this article we considered the effect of training accuracy on
learning in the case of binary classification tasks and stochastic
gradient-descent-based learning rules. We found that the rate of
learning is maximized when the difficulty of training is adjusted
to keep the training accuracy at around 85%. We showed that
training at the optimal accuracy proceeds exponentially faster
than training at a fixed difficulty. Finally we demonstrated the
efficacy of the Eighty Five Percent Rule in the case of artificial and
biologically plausible neural networks.

Our results have implications for a number of fields. Perhaps
most directly, our findings move towards a theory for identifying
the optimal environmental settings in order to maximize the rate
of gradient-based learning. Thus the Eighty Five Percent Rule
should hold for a wide range of machine learning algorithms
including multilayered feedforward and recurrent neural net-
works (e.g. including ‘deep learning’ networks using back-
propagation9, reservoir computing networks21,22, as well as
Perceptrons). Of course, in these more complex situations, our
assumptions may not always be met. For example, as shown in
the Methods, relaxing the assumption that the noise is Gaussian
leads to changes in the optimal training accuracy: from 85% for
Gaussian, to 82% for Laplacian noise, to 75% for Cauchy noise
(Eq. (31) in the “Methods”).

More generally, extensions to this work should consider how
batch-based training changes the optimal accuracy, and how the
Eighty Five Percent Rule changes when there are more than two
categories. In batch learning, the optimal difficulty to select for
the examples in each batch will likely depend on the rate of
learning relative to the size of the batch. If learning is slow, then
selecting examples in a batch that satisfy the 85% rule may work,
but if learning is fast, then mixing in more difficult examples may
be best. For multiple categories, it is likely possible to perform
similar analyses, although the mapping between decision variable
and categories will be more complex as will be the error rates
which could be category specific (e.g., misclassifying category 1 as
category 2 instead of category 3).

In Psychology and Cognitive Science, the Eighty Five Percent
Rule accords with the informal intuition of many experimentalists
that participant engagement is often maximized when tasks are
neither too easy nor too hard. Indeed it is notable that staircasing
procedures (that aim to titrate task difficulty so that error rate is
fixed during learning) are commonly designed to produce about
80–85% accuracy17. Similarly, when given a free choice about the
difficulty of task they can perform, participants will sponta-
neously choose tasks of intermediate difficulty levels as they
learn23. Despite the prevalence of this intuition, to the best of our
knowledge no formal theoretical work has addressed the effect of
training accuracy on learning, a test of which is an important
direction for future work.

More generally, our work closely relates to the Region of
Proximal Learning and Desirable Difficulty frameworks in edu-
cation24–26 and Curriculum Learning and Self-Paced Learning7,8

in computer science. These related, but distinct, frameworks
propose that people and machines should learn best when
training tasks involve just the right amount of difficulty. In the
Desirable Difficulties framework, the difficulty in the task must be
of a ‘desirable’ kind, such as spacing practice over time, that
promotes learning as opposed to an undesirable kind that does
not. In the Region of Proximal Learning framework, which builds
on early work by Piaget27 and Vygotsky28, this optimal difficulty
is in a region of difficulty just beyond the person’s current ability.
Curriculum and Self-Paced Learning in computer science build
on similar intuitions, that machines should learn best when
training examples are presented in order from easy to hard. In
practice, the optimal difficulty in all of these domains is deter-
mined empirically and is often dependent on many factors29. In
this context, our work offers a way of deriving the desired diffi-
culty and the region of proximal learning in the special case of
binary classification tasks for which stochastic gradient-descent
learning rules apply. As such our work represents the first step
towards a more mathematical instantiation of these theories,
although it remains to be generalized to a broader class of cir-
cumstances, such as multi-choice tasks and different learning
algorithms.

With regard to different learning algorithms, it is important to
note that not all models will exhibit a sweet spot of difficulty for
learning. As an example, consider how a Bayesian learner with a
perfect memory would infer parameters ϕ by computing the
posterior distribution given past stimuli, x1:t, and labels, y1:t,

pðϕjx1:t ; y1:tÞ / pðy1:t jϕ; x1:tÞpðϕÞ
¼ Qt

i¼1
pðyijϕ; xiÞpðϕÞ

ð22Þ

where the last line holds when the label depends only on the
current stimulus. Clearly this posterior distribution over para-
meters is independent of the ordering of the trials meaning that a
Bayesian learner (with perfect memory) would learn equally well
if hard or easy examples are presented first. This is not to say that
Bayesian learners cannot benefit from carefully constructed
training sets, but that for a given set of training items the order of
presentation has no bearing on what is ultimately learned. This
contrasts markedly with gradient-based algorithms, many of
which try to approximate the maximum a posteriori solution of a
Bayesian model, whose training is order dependent and whose
learning is optimized with ∂ER/∂β.

Finally, we note that our analysis for maximizing the gradient,
∂ER/∂β, not only applies to learning but to any process that
affects the precision of neural representations, such as attention,
engagement, or more generally cognitive control30,31. For exam-
ple, attention is known to improve the precision with which
sensory stimuli are represented in the brain, e.g., ref. 32. If
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exerting control leads to a change in precision of δβ, then the
change in error rate associated with exerting this control is

δER ¼ ∂ER
∂β

δβ ð23Þ

This predicts that the benefits of engaging cognitive control
should be maximized when ∂ER/∂β is maximized, that is at ER*.
More generally this relates to the Expected Value of Control
theory30,31,33 which suggests that the learning gradient, ∂ER/∂β, is
monitored by control-related areas of the brain such as anterior
cingulate cortex.

Along similar lines, our work points to a mathematical theory
of the state of ‘Flow’34. This state, ‘in which an individual is
completely immersed in an activity without reflective self-
consciousness but with a deep sense of control’ [ref. 35, p. 1], is
thought to occur most often when the demands of the task are
well matched to the skills of the participant. This idea of balance
between skill and challenge was captured originally with a simple
conceptual diagram (Fig. 5) with two other states: ‘anxiety’ when
challenge exceeds skill and ‘boredom’ when skill exceeds chal-
lenge. These three qualitatively different regions (flow, anxiety,
and boredom) arise naturally in our model. Identifying the pre-
cision, β, with the level of skill and the level challenge with the
inverse of true decision variable, 1/Δ, we see that when challenge
equals skill, flow is associated with a high learning rate and
accuracy, anxiety with low learning rate and accuracy and bore-
dom with high accuracy but low learning rate (Fig. 5b, c). Intri-
guingly, recent work by Vuorre and Metcalfe, has found that
subjective feelings of Flow peaks on tasks that are subjectively
rated as being of intermediate difficulty36. In addition work on
learning to control brain computer interfaces finds that sub-
jective, self-reported measures of ‘optimal difficulty’, peak at a
difficulty associated with maximal learning, and not at a difficulty
associated with optimal decoding of neural activity37. Going
forward, it will be interesting to test whether these subjective
measures of engagement peak at the point of maximal learning
gradient, which for binary classification tasks is 85%.

Methods
Optimal error rate for learning. In order to compute the optimal difficulty for
training, we need to find the value of Δ that maximizes the learning gradient, ∂ER/
∂β. From Eq. (3) we have

∂ER
∂β
¼ Δpð�βΔÞ ð24Þ

From here the optimal difficulty, Δ*, can be found by computing the derivative of

the gradient with respect to Δ, i.e.,

∂

∂Δ

∂ER
∂β
¼� ∂

∂Δ
Δpð�βΔÞð Þ

¼ � pð�βΔÞ þ βΔ
∂pðxÞ
∂x

����
x¼�βΔ

ð25Þ

Setting this derivative equal to zero gives us the following expression for the
optimal difficulty, Δ*, and error rate, ER*

βΔ� ¼ pð�βΔ�Þ
p′ð�βΔ�Þ and ER� ¼ Fð�βΔ�Þ ð26Þ

where p′(x) denotes the derivative of p(x) with respect to x. Because β and Δ* only
ever appear together in these expressions, Eq. (26) implies that βΔ* is a constant.
Thus, while the optimal difficulty, Δ*, changes as a function of precision (Fig. 1c),
the optimal training error rate, ER* does not (Fig. 1d). That is, training with the
error rate clamped at ER* is guaranteed to maximize the rate of learning.

The exact value of ER* depends on the distribution of noise, n, in Eq. (2). In the
case of Gaussian noise, we have

pðxÞ ¼ 1ffiffiffiffiffi
2π
p exp � x2

2

� �
ð27Þ

which implies that

pðxÞ
p′ðxÞ ¼ �

1
x

ð28Þ

and that the optimal difficulty is

Δ� ¼ β�1 ð29Þ
Consequently the optimal error rate for Gaussian noise is

ER� ¼ 1
2

1� erf
1ffiffiffi
2
p

� �� �
� 0:1587 ð30Þ

Similarly for Laplacian noise (pðxÞ ¼ 1
2 expð�jxjÞ) and Cauchy noise (p(x)=

(π(1+ x2))−1) we have optimal error rates of

ER�Laplace ¼ 1
2 expð�1Þ � 0:1839

ER�Cauchy ¼ 1
π arctanð�1Þ þ 1

2 ¼ 0:25
ð31Þ

Optimal learning with endogenous noise. The above analyses for optimal
training accuracy also applies in the case where the decision variable, h, is cor-
rupted by endogenous, irreducible noise, ϵ, in addition to representation noise, n,
that can be reduced by learning; i.e.,

h ¼ Δþ nþ ϵ ð32Þ
In this case we can split the overall precision, β, into two components, one based on
representational uncertainty that can be reduced, βn, and another based on
endogenous uncertainty that cannot, βϵ. For Gaussian noise, these precisions are
related to each other by

1

β2
¼ 1

β2n
þ 1

β2ϵ
ð33Þ

More generally, the precisions are related by some function, G, such that β=G(βn,
βϵ). Since only n can be reduced by learning, it makes sense to perform stochastic
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gradient descent on βn such that the learning rule should be

dβn
dt
¼� η

∂ER
∂βn

¼� η
∂ER
∂β

∂β

∂βn

ð34Þ

Note that ∂β/∂βn is independent of Δ so maximizing learning rate w.r.t. Δ means
maximizing ∂ER/∂β as before. This implies that the optimal training difficulty will
be the same, e.g., 85% for Gaussian noise, regardless whether endogenous noise is
present or not.

Dynamics of learning. To calculate the dynamics of learning we need to integrate
Eq. (7) over time. This, of course depends on the learning gradient, ∂ER/∂β, which
varies depending on the noise and whether the error rate or the true decision
variable is fixed during training.

In the fixed error rate case, we fix the error rate during training to ERf. This
implies that the difficulty should change over time according to

ΔðtÞ ¼ � 1
βðtÞ F

�1ðERf Þ ð35Þ

where F−1(⋅) is the inverse cdf. This implies that β evolves over time according to

dβ
dt
¼�η ∂ER

∂β

¼ ηΔðtÞpð�βΔðtÞÞ
¼ � η

βðtÞ F
�1ðERf ÞpðF�1ðERf ÞÞ

¼ ηKf

βðtÞ

ð36Þ

where we have introduced Kf as

Kf ¼ �F�1ðERf ÞpðF�1ðERf ÞÞ ð37Þ
Integrating Eq. (36) and solving for β(t) we get

βðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β20 þ 2ηKf ðt � t0Þ

q
ð38Þ

where t0 is the initial time point, and β0 is the initial value of β. Thus, for fixed error
rate the precision grows as the square root of time with the rate determined by Kf

which depends on both the training error rate and the noise distribution. For the
optimal error rate we have, Kf= p(−1).

In the fixed decision variable case, the true decision variable is fixed at Δf and
the error rate varies as a function of time. In this case we have

dβ
dt
¼ �η ∂ER

∂β
¼ Δfpð�βΔf Þ ð39Þ

Formally, this can be solved asZ β

β0

1
pð�βΔf Þ

dβ ¼ Δf ðt � t0Þ ð40Þ

However, the exact form for β(t) will depend on p(x).
In the Gaussian case we cannot derive a closed form expression for β(t). The

closest we can get is to write

Z βΔfffiffi
2
p

0
expðx2Þdx ¼

Z
0

β0Δfffiffi
2
p

expðx2Þdxþ Δ2

2
ffiffiffi
π
p ðt� t0Þ ð41Þ

For long times, and large β, we can write

Z
0

βΔfffiffi
2
p

expðx2Þdx< exp
β2Δ2

f

2

� �
ð42Þ

which implies that for long times β grows slower than
ffiffiffiffiffiffiffiffiffi
log t

p
, which is

exponentially slower than the fixed error rate case.
In contrast to the Gaussian case, the Laplacian case lends itself to closed form

analysis and we can derive the following expression for β

β ¼ 1
Δf

log expðβ0Δf Þ þ
1
2
ηΔ2

f ðt � t0Þ
� �

ð43Þ

Again this shows logarithmic dependence on t indicating that learning is much
slower with a fixed difficulty.

In the case of Cauchy noise we can compute the integral in Eq. (40) and find
that β is the root of the following equation

Δf

3
β3 þ β ¼ Δf

3
β30 þ β0 þ

Δf

π
ðt � t0Þ ð44Þ

For long training times this implies that β grows as the cube root of t. Thus in the
Cauchy case, while the rate of learning is still greatest at the optimal difficulty, the
improvement is not as dramatic as in the other cases.

Application to the perceptron. To implement the Perceptron example, we
assumed that true labels t were generated by a ‘Teacher Perceptron’38 with nor-
malized weight vector, e. Learning was quantified by decomposing the learned
weights w into two components: one proportional to e and a second orthogonal to
e, i.e.,

w ¼ jwj e cos θ þ e? sin θð Þ ð45Þ
where θ is the angle between w and e, and e⊥ is the unit vector perpendicular to e in
the plane defined by e and w. This allows us to write the decision variable h in
terms of signal and noise components as

h ¼ jwj ðe � xÞ cos θ þ ðe? � xÞ sin θð Þ
¼ jwjð2t � 1ÞΔ cos θ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

signal

þ jwjðe? � xÞ sin θ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
noise

ð46Þ

where the difficulty Δ= |e ⋅ x| is the distance between x and the decision boundary,
and the (2t− 1) term simply controls which side of the boundary x is on. This
implies that the precision β is proportional to cot θ, with a constant of pro-
portionality determined by the dimensionality of x.

In the case where the observations x are sampled from distributions that obey
the central limit theorem, then the noise term is approximately Gaussian implying
that the optimal error rate for training the Perceptron, ER*= 15.87%.

To test this prediction we simulated the Perceptron learning rule for a range of
training error rates between 0.01 and 0.5 in steps of 0.01 (1000 simulations per
error rate). Stimuli, x, were 100 dimensional and independently sampled from a
Gaussian distribution with mean 0 and variance 1. Similarly, the true weights e
were sampled from a mean 0, variance 1 Gaussian. To mimic the effect of a modest
degree of initial training, we initialized the weight vector w randomly with the
constraint that |θ| < 1.6π. The difficulty Δ was adjusted on a trial-by-trial basis
according to

Δ ¼ F�1ðERÞλ tan θ ð47Þ
which ensures that the training error rate is clamped at ER. The degree of learning
was captured by the precision β.

Application to the two-layer neural network. To implement the two-layer net-
work, we built a sigmoidal neural network with one hidden layer (of 50 neurons)
and one output neuron. The weights between the input layer and the hidden layer
and between the hidden layer and output layer were trained using the standard
Backpropagation algorithm.

In order to clamp the error rate during training we first had to rate the images
according to their ‘difficulty’. To this end, we trained a teacher network with the
same basic architecture (i.e., 50 hidden units and 1 output unit) until its
performance was near perfect (training error rate= 99.6% for the Parity Task and
99.4% for the Magnitude Task; test error rate= 97% for the Magnitude Task and
95.6% for the Parity Task). We then used the absolute value of the decision variable
from this network, |hteacher| as a proxy for the true difficulty, Δ—with larger values
of |hteacher| indicating easier stimuli to classify.

Weights in the network were initialized randomly from a Gaussian distribution
(mean 0, variance 1). To achieve a fixed error rate during training, on each trial, we
selected a stimulus that was closest to a target difficulty, htarget. This target difficulty
was adjusted based on the performance of the network during training—increasing if
the network classified the stimulus incorrectly, and decreasing if the network classified
the stimulus correctly. More specifically, the target difficulty was adjusted as

htarget  htarget þ D Atarget � Aavð Þ ð48Þ
where D is the step size (=1), Atarget is the target training accuracy and Aav is the
running average of the accuracy from the last 50 trials.

On each trial we selected the ‘eligible’ stimulus whose value of hteacher was
closest to htarget. To ensure that a given stimulus was not selected too often during
training, stimuli were only eligible to be chosen if they had not been used in the last
50 trials.

Each initial state of the network was trained on either the Parity or Magnitude
Task at a fixed training error rate between 5 and 30% in steps of 5%. At the end of
training performance was assessed on the whole test set. This process was repeated
1000 times, with a new set of initial random weights each time.

Application to Law and Gold model. The model of perceptual learning follows the
exposition in Law and Gold11. To aid comparison with that paper we retain almost
all of their notation, with the three exceptions being their β parameter, which we
rename as B to avoid confusion with the precision, their ϕi parameter which we
rename as Fi to avoid confusion with the parameters of the learner, and their
learning rate parameter α which we write as η.

Following Law and Gold11, the average firing rate of an MT neuron, i, in
response to a moving dot stimulus with direction θ and coherence COH is

mi ¼ Tðk0i þ COHðkni þ ðkpi � kni Þf ðθjΘiÞÞÞ ð49Þ
where T is the duration of the stimulus, k0i is the response of neuron i to a zero-
motion coherence stimulus, kpi is the response to a stimulus moving in the
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preferred direction and kni is the response to a stimulus in the null direction. f(θ|Θi)
is the tuning curve of the neuron around its preferred direction Θi

f ðθjΘiÞ ¼ exp �ðθ � ΘiÞ2
2σ2θ

� �
ð50Þ

where σθ (=30 degrees) is the width of the tuning curve which is assumed to be
identical for all neurons.

Neural activity on each trial was assumed to be noisily distributed around this
mean firing rate. Specifically the activity, xi, of each neuron is given by a rectified
(to ensure xi > 0) sample from a Gaussian with mean mi and variance vi

vi ¼ Fimi ð51Þ
where Fi is the Fano factor of the neuron.

Thus each MT neuron was characterized by five free parameters. These free
parameters were sampled randomly for each neuron such that θi � Uð�180; 180Þ,
k0i � Uð0; 20Þ, kpi � Uð0; 50Þ, kni � Uð�k0i ; 0Þ and Fi � Uð1; 5Þ. Note that kni is set
between −k0i and 0 to ensure that the minimum average firing rate never dips
below zero. Each trial was defined by three task parameters: T= 1 s, Θ= ±90
degrees and COH which was adjusted based on performance to achieve a fixed
error rate during training (see below). As in the original paper, the number of
neurons was set to 7200 and the learning rate, η was 10−7.

The predicted reward E[r] was computed according to Eq. (20). In line with
Law and Gold (Supplementary Fig. 2 in ref. 11), the proportionality constant B was
computed using logistic regression on the accuracy and absolute value of the
decision variable, |h|, from last L trials, where L=min(300, t).

In addition to the weight update rule (Eq. (21)), weights were normalized after
each update to keep the sum of the squared weights,

P
i
w2
i ¼ wamp a constant

(=0.02). While this normalization has only a small overall effect (see
Supplementary Material in ref. 11), we replicate this weight normalization here for
consistency with the original model.

To initialize the network, the first 50 trials of the simulation had a fixed coherence
COH= 0.9. After this initialization period, the coherence was adjusted according to
the difference between the target accuracy, Atarget, and actual accuracy in the last L
trials, AL, where L=min(300, t). Specifically, the coherence on trial t was set as

COHt ¼
1

1þ expð�ΓtÞ
ð52Þ

where Γt was adjusted according to

Γtþ1 ¼ Γt þ dΓðAtarget � ALÞ ð53Þ
and dΓ was 0.1.

To estimate the post-training precision parameter, β, we simulated behavior
of the trained network on a set of 20 logarithmically spaced coherences between
10−3 and 1. Behavior at each coherence was simulated 100 times and learning
was disabled during this testing phase. The precision parameter, β, was estimated
using logistic regression between accuracy on each trial (0 or 1) and coherence; i.e.,

ACC � 1
1þ expð�β ´COHÞ ð54Þ
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