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ON GROUP TOPOLOGIES DETERMINED BY FAMILIES OF SETS

GEORGE M. BERGMAN

Abstract. Let G be an abelian group, and F a downward directed family of subsets of G. In [6],

I. Protasov and E. Zelenyuk describe the finest group topology T on G under which F converges to 0; in

particular, their description yields a criterion for T to be Hausdorff. They then show that if F is the filter
of cofinite subsets of a countable subset X ⊆ G (the Fréchet filter on X), there is a simpler criterion: T
is Hausdorff if and only if for every g ∈ G − {0} and positive integer n, there is an S ∈ F such that g

does not lie in the n-fold sum n (S ∪ {0} ∪ −S).
In this note, their proof is adapted to a larger class of families F. In particular, if X is any infinite

subset of G, κ any regular infinite cardinal ≤ card(X), and F the set of complements in X of subsets

of cardinality < κ, then the above criterion holds.
We also give some negative examples, including a countable downward directed set F (not of the above

sort) of subsets of Z which satisfies the “ g /∈ n (S ∪ {0} ∪−S) ” condition but does not induce a Hausdorff

topology.
We end with a version of our main result for noncommutative G.

1. Introduction

Let G be a group, let F be a set of subsets of G which is downward directed, i.e., such that whenever
S1, S2 ∈ F, there is an S3 ∈ F which is contained in S1 ∩ S2, and let T be a group topology on G; that
is, a (not necessarily Hausdorff) topology under which the group multiplication and inverse operation are
continuous. We say that F converges to an element x ∈ G under T if every T -neighborhood of x contains
a member of F.

Given G and F, it is not hard to show that there will exist a finest group topology TF on G under
which F converges to the identity element of G. The explicit description of TF is simpler and easier to
study for abelian G than for general G, so we shall assume, until §6, that

(1) G is an abelian group, with operations written additively.

To describe the topology TF , let us set up some notation. For any subset S ⊆ G, let

(2) S∗ = S ∪ {0} ∪ −S.
For any sequence of subsets S0, S1, · · · ⊆ G indexed by the set ω of natural numbers, let

(3) U(S0, S1, . . . ) =
⋃
n∈ω

∑
i<n S

∗
i = {x0 + · · ·+ xn−1 | n ∈ ω, xi ∈ S∗i for i = 0, . . . , n− 1}.

(The n = 0 term of the above union, i.e., the sum of the vacuous sequence of sets, is understood to be {0}.)
Then one has

(4)
[6, Lemma 2.1.1] The sets U(S0, S1, . . . ), as (Si)i∈ω runs over all sequences of elements of F,
form a basis of open neighborhoods of 0 under TF , the finest group topology on G under which
F converges to 0.

Thus, as noted in [6, Theorem 2.1.3], the topology TF is Hausdorff (equivalently, there exists a Hausdorff
group topology under which F converges to 0) if and only if

(5)
⋂
S0, S1, ...∈F U(S0, S1, . . . ) = {0}.

(Our formulations of these statements are different from those in [6] because there, group topologies are
by definition Hausdorff. Though Hausdorff topologies are what we are interested in, it will convenient, for
making statements like (4), to allow non-Hausdorff topologies. Incidentally, a topological group is Hausdorff
if and only if it is T0 [5, p. 32, Proposition 4 and preceding Exercise].)
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From the fact that (5) is necessary and sufficient for TF to be Hausdorff, we get a weaker condition which
is necessary.

Corollary 1. A necessary condition for the topology TF to be Hausdorff is

(6)

⋃
n>0

⋂
S∈F nS

∗ = {0}. In other words, for every g ∈ G− {0} and every n > 0, there exists

S ∈ F with g /∈ nS∗.
Proof. Assuming (5), consider any g ∈ G − {0} and any n > 0. By (5) we can choose S0, S1, . . . such
that g /∈ U(S0, S1, . . . ). In particular, g /∈ S∗0 + · · · + S∗n−1. Letting S be a common lower bound for
S0, . . . , Sn−1 in the downward directed set F, we have g /∈ nS∗, as required. �

As illustrated by the notation “G−{0} ” in the above proof, a “− ” sign between sets in this note indicates
relative complement; thus, X − Y never denotes X + (−Y ).

In §4, we shall see by example that (6) is not in general sufficient for TF to be Hausdorff. However,
Protasov and Zelenyuk [6, Theorem 2.1.4] show that it is sufficient if F is the filter of cofinite subsets of a
countable subset X = {x0, x1, . . . } ⊆ G; in other words, if TF is the finest group topology on G making
limi→∞ xi = 0. Generalizing their argument, we shall obtain below the corresponding result for a wider class
of F. In §6 we shall extend this result to nonabelian G.

2. Co-κ filters, and a peculiar condition that they satisfy

Here is our generalization of the class of filters considered in [6].

Definition 2 ([3, Example II.2.5]). Let X be an infinite set and κ an infinite cardinal ≤ card(X). Then
by the co-κ filter on X we shall mean the (downward directed) set of complements in X of subsets with
cardinality < κ. For κ = ℵ0, this will be called the cofinite filter on X.

(Remark: The cofinite filter on an infinite set X is often called the Fréchet filter on X. In some places,
the co-card(X) filter on X has been called the “generalized Fréchet filter”; in [2, p. 197] the term “Fréchet
filter” is used, instead, for the latter construction.)

To state the property of these filters that we will use, we make the following definition. It has the same
form as the definition of convergence of a family of points under a group topology on G, but with the system
of neighborhoods of 0 replaced by a more general family.

Definition 3. Suppose F is any downward directed family of subsets of the abelian group G, and (xi)i∈I
a family of elements of G indexed by a downward directed partially ordered set I. We shall say that (xi)i∈I
“converges strongly” to an element x ∈ G with respect to F if for every S ∈ F, there exists i ∈ I such
that for all j ≤ i, xj − x ∈ S∗.

(Since F is not assumed to be a neighborhood basis of a group topology, this is not a very natural
condition. I use the modifier “strongly” because the condition is stronger than convergence in the group
topology determined by F as in (4). Note, incidentally, that the way in which the ordering on I is used
in Definition 3 is the reverse of the usual. This is not essential; it will simply spare us reversing a certain
natural ordering below. In any case, when an index set I is described as downward rather than upward
directed, it is natural to adjust what one understands convergence of an I-indexed family to mean.)

We can now state the condition around which our main result will center.

Definition 4. A downward directed family F of subsets of the abelian group G will be called self-indulgent
if for every S ∈ F, and every family (xT )T∈F ′ of elements of S∗ indexed by a downward cofinal subset
F ′ ⊆ F, there exist an x ∈ S∗, and a downward cofinal subset F ′′ ⊆ F ′, such that (xT )T∈F ′′ converges
strongly to x with respect to F.

A strange feature of this condition (which motivates its name) is that it involves the family F in three
unrelated ways: First, S is taken to be a member of F ; second, the family of points xT ∈ S∗ is indexed
by a subfamily of F, and third, the convergence asked for is strong convergence with respect to F.

Lemma 5. Let X be any infinite subset of the abelian group G, and κ any regular infinite cardinal
≤ card(X). Then the co-κ filter F on X is self-indulgent as a family of subsets of G.

Proof. Let S ∈ F, and let (xT )T∈F ′ be a family of elements of S∗ indexed by a downward cofinal subset
F ′ ⊆ F. If there exists an x ∈ S∗ which occurs “frequently” as a value of xT , in the sense that {T ∈
F ′ | xT = x} is downward cofinal in F ′, then for this x, and F ′′ = {T ∈ F ′ | xT = x}, the condition of
Definition 4 is trivially satisfied: for T ∈ F ′′ we have x− xT = 0, which belongs to R∗ for every R ∈ F.
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If there is no such “frequently occurring” value, then I claim we can use F ′′ = F ′ and x = 0. Indeed,
again writing R where the definition of strong convergence refers to a set S ∈ F (since we already have a
set we are calling S), note that for every R ∈ F we have card(S∗−R∗) < κ; and for each s ∈ S∗−R∗, the
fact that s does not occur “frequently” among the xT tells us that we can find Ts ∈ F ′ such that no xT
with T ⊆ Ts and T ∈ F ′ is equal to s. If we let T0 be the intersection of these Ts over all s ∈ S∗ − R∗,
then by regularity of the cardinal κ, we have T0 ∈ F, hence by downward cofinality of F ′ in F, the set
F ′ contains some TR ⊆ T0. For all T ⊆ TR in F ′, we have xT ∈ R∗, completing the proof that (xT )T∈F ′

converges strongly to 0 with respect to F. �

It is strange that the above proof makes essentially no use of the operation of G. The role played by F
in the definition of strong convergence is used nontrivially only for convergence to 0, while the criterion by
which we obtain convergence to other points is the fact that a system of elements with constant value x
converges strongly to x. (This involves one small use of the operation of G : x − x = 0 ∈ S∗.) However,
in our application of the above result, it will be combined with standard facts about how a group topology
behaves with respect to the group operation.

3. Our main result

We shall now prove that for F a self-indulgent family, and TF the topology it determines, we have
(5) ⇐⇒ (6). We know that (5) =⇒ (6) by Corollary 1. The plan of our proof of the converse will be to
show that, given g ∈ G− {0} which we want to exclude from the intersection in (5), we can build up, in a
recursive manner, a sequence S0, S1, . . . with g /∈ U(S0, S1, . . . ). The recursive step is given by the next
lemma. (The corresponding recursive step in the proof of [6, Theorem 2.1.4] uses an “either/or” argument
at each substep. These were collapsed here into the single either/or argument in the above proof that co-κ
filters on subsets of G are self-indulgent.)

Lemma 6. Let F be a self-indulgent downward directed system of subsets of G satisfying (6). Suppose
g ∈ G− {0}, and that for some n ≥ 0, S0, . . . , Sn−1 are members of F such that

(7) g /∈ S∗0 + · · ·+ S∗n−1.

Then there exists Sn ∈ F such that

(8) g /∈ S∗0 + · · ·+ S∗n−1 + S∗n.

Proof. Assume the contrary. Then for each T ∈ F, the fact that (8) does not hold with Sn = T shows that
we may choose n+ 1 elements,

(9) g0,T ∈ S∗0 , . . . , gn−1,T ∈ S∗n−1, gn,T ∈ T ∗

such that

(10) g = g0,T + · · ·+ gn−1,T + gn,T .

Assuming for the moment that n > 0, let us focus on the first term on the right-hand side of (10), and
apply the assumption that F is self-indulgent to the family of elements g0,T ∈ S∗0 , as T ranges over F.
This tells us that we can find a g0 ∈ S∗0 and a downward cofinal subset F0 ⊆ F such that

(11) (g0,T )T∈F0
converges strongly to g0 with respect to F.

If n > 1, we then go through the same process for the values g1,T ∈ S∗1 , as T ranges over the above
downward cofinal subset F0 ⊆ F. By the self-indulgence of F, we can find a g1 ∈ S∗1 and a downward
cofinal subset F1 of F0, such that

(12) (g1,T )T∈F1
converges strongly to g1 with respect to F.

We continue this way, through the construction of gn−1 and Fn−1. At the next step, we simply set
Fn = Fn−1 (or if n = 0, Fn = F ), and gn = 0, since the assumption gn,T ∈ T ∗ in (9) says that the family
(gn,T )T∈F already converges strongly to 0, whence the same holds when we restrict the index T to the
cofinal subset Fn−1 ⊆ F.

Now since gi ∈ S∗i for i < n, while gn = 0, we have g0 + · · · + gn ∈ S∗1 + · · · + S∗n−1, so by (7),
g 6= g0 + · · ·+ gn. Letting g′ = g − (g0 + · · ·+ gn) 6= 0, condition (10) becomes

(13) g′ = (g0,T − g0) + · · ·+ (gn,T − gn) for all T ∈ Fn.
We now apply our hypothesis that F satisfies (6). Since g′ 6= 0, this says there is some S ∈ F such that

(14) g′ /∈ (n+ 1)S∗.
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But since for each i, the system (gi,T − gi)T∈Fn
converges strongly to 0, we can find T ∈ Fn such that

each element gi,T − gi (0 ≤ i ≤ n) lies in S∗. Thus, (13) contradicts (14), and this contradiction completes
the proof of the lemma. �

We deduce

Theorem 7 (cf. [6, Theorem 2.1.4]). Let F be a self-indulgent downward directed system of subsets of an
abelian group G. (In particular, by Lemma 5, for any infinite X ⊆ G and any κ ≤ card(X), such an F
is given by the co-κ filter on X.) Then the finest group topology on G under which F converges to 0 is
Hausdorff if and only if F satisfies (6).

Proof. By Corollary 1, (6) is necessary for our topology to be Hausdorff. Conversely, assuming (6), we can
use Lemma 6 recursively to build up, for any g ∈ G−{0}, a sequence S0, S1, . . . of members of F, starting
with the vacuous sequence, such that for all n, g /∈

∑
i<n S

∗
i . Thus, g /∈ U(S0, S1, . . . ), giving (5), which is

equivalent to our topology being Hausdorff. �

One may ask whether allowing co-κ filters with κ strictly less than card(X) provides any useful examples.
Such a filter only “scratches the surface” of X, so it might seem implausible that it could converge to 0 in
a group topology. But in fact, if G is the group ZI for an uncountable set I, under the product topology,
and X the set of elements of G which have value 1 at a single point, and 0 everywhere else, then we see
that the cofinite (i.e., co-ℵ0) filter determined by X does converge to 0 in G.

4. Some counterexamples

Before giving the rather complicated example showing that Theorem 7 fails if the assumption that F is
self-indulgent is removed, let us note a couple of easier examples of things that go wrong in the absence of
self-indulgence.

Example 8. An abelian group G with an element g, a downward directed family F of subsets, and a
sequence S0, . . . , Sn−1 ∈ F satisfying (7), which cannot, as in Lemma 6, be extended so as to satisfy (8).

Construction and proof. Let G be the additive group of the real line, F the set of neighborhoods (−ε, ε)
of 0 (ε > 0), and g = 1 ∈ G. Then the 1-term sequence given by S0 = (−1, 1) satisfies g /∈ S∗0 , but cannot
be extended to a 2-term sequence with g /∈ S∗0 + S∗1 . �

Indeed, whenever, as in the above example, F consists of neighborhoods of the identity in the topology
we are constructing, then the conclusion of Lemma 6 implies that S∗0 + · · ·+S∗n−1 is closed in that topology.
So if, starting with a topological group G, we take a basis F of neighborhoods of 0 not all of which are
closed sets, the conclusion of that lemma must fail.

Getting closer to our main example, we give

Example 9. An abelian group G and a downward directed family F of subsets of G such that the union
in (6) is a proper subgroup of G, but the intersection in (5) is all of G.

Construction and proof. Let G be the countable direct product group
∏
n>0 Z/nZ, and for each positive

integer m, let S(m) ⊆ G consist of all elements whose first through m-th coordinates lie in {1, 0,−1}, the
remaining coordinates being unrestricted. Thus, S(1) ⊇ S(2) ⊇ . . . , so F = {S(m)} is downward directed.
(These sets satisfy S(m)∗ = S(m), but I will write S(m)∗ below when the conditions we want to verify
refer to sets S∗.)

To show that the intersection in (5) is all of G, we will in fact show that for any m0, m1, . . . , we have

(15) S(m0)∗ + · · ·+ S(mm0)∗ = G.

Indeed, let g ∈ G. To describe the summands comprising an expression for g as a member of S(m0)∗ +
· · ·+S(mm0

)∗, we shall begin by describing their first m0 coordinates (in Z/1Z, . . . , Z/m0Z), then describe
their remaining coordinates. We take the former coordinates all to lie in {1, 0,−1}, and to be chosen so
that for each i ≤ m0, the i-th coordinates of these m0 elements sum to the i-th coordinate of g. This is
possible because the relevant coordinates of g are members of groups Z/nZ with n ≤ m0.

We then choose the coordinates after the m0-th by taking these coordinates of the summand in S(m0)
to agree with those of g, and those in the other summands to be zero. It is easy to see that the elements
we have constructed belong to the desired S(mi)

∗ and sum to g.
On the other hand, consider any g in the union in (6). Say it lies in the member of that union indexed by

n ∈ ω. Thus, for every m, g lies in nS(m)∗; i.e., for every m, the first m coordinates of g are sums of n
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terms in {1, 0,−1}; in other words, g is the image in
∏
m Z/mZ of an element of

∏
m Z the absolute values

of whose coordinates admit a common bound n. Such elements clearly form a proper subgroup of G. �

Finally, here is our example showing that in the absence of self-indulgence, Theorem 7 fails. In the
development below, where we use square roots of 7 modulo powers of 3, we could, more generally, replace
3 by any prime p, take any invertible irrational element α of the ring Zp of p-adic integers, and look at
the images of α, 0, −α ∈ Zp in the rings Z/pkZ. But the choice of a quadratic irrationality makes the
presentation a little simpler.

Example 10. A countable, downward directed family F of subsets of Z for which (6) holds, but (5) does not.

Construction and proof. For each integer k > 0, let

(16) S(k) = {x ∈ Z | the image of x in Z/3kZ is either 0, or a square root of 7 in that ring }.
Since S(1) ⊇ S(2) ⊇ . . . , the set F = {S(k)} is downward directed. To show that (6) holds, let g be

any nonzero member of Z, and n any positive integer. Choose a positive integer k large enough so that

(17) 3k does not divide any of the n+ 1 nonzero integers g2 − 7m2 with 0 ≤ m ≤ n.
(E.g., take any k such that 3k > max(g2, 7n2).) Then I claim that g /∈ nS(k).

Indeed, suppose we had

(18) g = g0 + · · ·+ gn−1, with all gi ∈ S(k).

If we let c denote a square root of 7 in Z/3k Z, (which exists, by Hensel’s Lemma [4, Theorem 3.4.1],
and is unique up to sign), then by (16), each of the gi in (18) has residue modulo 3k either 0, c, or −c.
Hence (18) implies that the residue of g modulo 3k has the form mc for some integer m of absolute
value ≤ n. Squaring, we conclude that g2 ≡ 7m2 (mod 3k), contradicting (17). So (18) fails for all g 6= 0,
establishing (6).

To show that (5) does not hold, consider any sequence S(m0), S(m1), . . . of elements of F, determined
by nonnegative integers m0, m1, . . . . I claim that U(S(m0), S(m1), . . . ) = Z; in fact, that

(19) S(m0)∗ + S(m1)∗ + . . . + S(m3m0 )∗ = Z.
For let c be a square root of 7 in Z/3m0 Z. I claim that every S(mi) contains an integer ci whose

residue modulo 3m0 is c. For if mi ≤ m0, then S(mi) contains S(m0), and so contains every integer
whose residue class modulo 3m0 is c, while if mi ≥ m0, then the residue class c in Z/3m0Z can be lifted
to a square root of 7 in Z/3miZ (cf. proof of Hensel’s Lemma), a representative of which in Z will be the
desired ci.

For any g ∈ Z, the element g/c ∈ Z/3m0Z is the residue of an integer h satisfying

(20) 0 ≤ h < 3m0 and h c is the residue of g in Z/3m0Z.
Given such h, let us choose elements gi ∈ S(mi) for i = 1, . . . , 3m0 such that for exactly h values of i, gi
is the element ci chosen in the preceding paragraph, while for the remaining values, gi = 0. Then the sum
g1 + · · · + g3m0 has residue h c in Z/3m0Z, which by (20) is the residue of g. On the other hand, S(m0)
contains all multiples of 3m0 (see (16)), so by choosing g0 ∈ S(m0) to be an appropriate one of these, we
can get exact equality,

(21) g = g0 + g1 + · · ·+ g3m0 ,

as required to establish (19), and hence falsify (5). �

One can get similar examples by replacing the group of 3-adic integers implicit in the above construction
with other examples of a topological group K containing a subgroup G and a dense cyclic subgroup H
having trivial intersection. (In the above example, K = Z3 (the group of 3-adic integers), G = Z, and

H =
√

7 Z.) For instance, one can take K = R/Z, let G be its dense subgroup Q/Z, and let H be the
subgroup generated by the image β of an irrational b ∈ R. Letting F consist of the intersections of G with
a family of neighborhoods of {β, 0, −β} ⊆ K under the usual topology, one gets the same sort of behavior
as in Example 10.
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5. Remarks on self-indulgent sets

Though the concept of a self-indulgent set of subsets of G has proved useful, it is not clear that we have
formulated the best version of it. Originally, I thought it would be enough to require that for every family
(xT )T∈F there should exist a cofinal subset F ′ ⊆ F making (xT )T∈F ′ converge strongly to x : I thought
this would imply the condition now used, that for every such family indexed by a cofinal subset F ′ ⊆ F,
one can get strong convergence on a smaller cofinal subset F ′′ ⊆ F ′. But I was unable to prove this.

Before settling on the present fix for that problem, I considered other possibilities. For instance, instead of
looking at cofinal subsets of F, one might look at isotone maps f of arbitrary downward directed posets I
into F, having downward cofinal images. Convergence of the system (cf(i))i∈I with respect to the ordering
on I would be a weaker condition than convergence with respect to the ordering on the image set f(I). But
if we require this for all such I, we have, in particular, the case I = F, giving the condition we have used.

One may also ask whether examples can be found of self-indulgent families essentially different from
our co-κ filters. The answer is, “Yes, but . . . ”. The lemma below gives such examples, but they require
knowing in advance the topology one is aiming at, so they are of no evident use in getting new applications
of Theorem 7.

Lemma 11. Let G be a locally compact Hausdorff topological abelian group, and let F be the set of all
compact neighborhoods of 0 in G (or any downward cofinal subset thereof ). Then F is self-indulgent.

Proof. Because G is locally compact, F is a neighborhood basis of 0 in G, so strong convergence with
respect to F is equivalent to convergence.

Now for all S ∈ F, compactness of S∗ implies that every system of points indexed by a directed set has
a cofinal subsystem which converges to a point of S∗; so in particular, we have the cases of this condition
required by the definition of self-indulgence. �

One may ask whether for F a self-indulgent family that yields a Hausdorff topology on a group G, the
members of F must become compact under that topology. The difficulty, when one tries to prove this, is
that the self-indulgence condition only applies to families of points indexed by cofinal subsets of F, while
compactness would require a like condition for families indexed by arbitrary directed sets. In a similar vein,
I. V. Protasov (personal communication) has asked whether under a topology so induced, the group G must
be complete. I do not know the answer.

6. The nonabelian case

Let us now drop the assumption that G is abelian, and see how the statement and proof of Theorem 7
can be adapted to this situation. Thus, in this section,

(22) G is a not necessarily abelian group, written multiplicatively.

In particular, we shall denote the identity element of G by e, and for S ⊆ G write

(23) S∗ = S ∪ {e} ∪ S−1.
In [6, §3.1-§3.2] Protasov and Zelenyuk likewise generalize their results to noncommutative groups. (Cf.

also [7, §1.3].) As the analog of the sums
∑
i<n S

∗
i of (3), they use the union, over all permutations of the

index set n, of the corresponding permuted product of the S∗i (and then, as in (3), take the union of this
over all n).

We will take a different approach here. Let us first note that it will not work to simply replicate the
definition (3) with sums S∗0 + S∗1 + · · · + S∗n−1 replaced by (unpermuted) products S∗0 S

∗
1 . . . S

∗
n−1. The

trouble is that we cannot say that a set of the form
⋃
n∈ω S

∗
0 S
∗
1 . . . S

∗
n−1 will contain the product of two

sets of that same form; essentially because ω does not contain a union of two successive copies of itself as
an ordered set.

So let us use an index set which does. Let

(24) Q = a totally ordered set of the order-type of the rational numbers.

(We do not call this Q because we are not interested in its algebraic structure, but only in its order-type.
In fact, in our one explicit calculation, in the proof of Lemma 13, a different realization of this order-type
will be used.)

Given any Q-tuple (Sq)q∈Q of subsets of G, let

(25) U((Sq)q∈Q) =
⋃
q0<···<qn∈Q S∗q0 . . . S

∗
qn ,
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where the union is over all finite increasing sequences in Q. The sets (25) have the property which we just
noted that ω-indexed products lack; namely, it is easy to see

Lemma 12. Let (Sq)q∈Q be a family of subsets of G, and let σ, τ : Q→ Q be two order-embeddings such
that σ(q) < τ(q′) for all q, q′ ∈ Q. Then

(26) U((Sσ(q))q∈Q) U((Sτ(q))q∈Q) ⊆ U((Sq)q∈Q). �

The next result shows that sets of the form U((Sq)q∈Q) can be made small enough to do what we will
need.

Lemma 13. If T is a group topology on G, and S a neighborhood of e under T , then one can choose
for each q ∈ Q a neighborhood Sq of e under T so that U((Sq)q∈Q) ⊆ S.

Proof. (Cf. [6, proof of Lemma 3.1.1].) Let T0 = S, and choose recursively for each i > 0 a neighborhood
Ti of e in T so that Ti Ti Ti ⊆ Ti−1. Identify Q as an ordered set with the set of those rational numbers
in the unit interval (0, 1) of the form m/2i, and

(27) for each q = m/2i, written in lowest terms, let Sq = Ti.

Then I claim that U((Sq)q∈Q) ⊆ S.
To show this, it suffices to show that for all finite sequences q0 < · · · < qn ∈ Q we have S∗q0 . . . S

∗
qn ⊆ S. If

we take a common denominator 2j for all members of such a finite sequence, then by enlarging the sequence
we can assume without loss of generality that {q0, . . . , qn} is the whole set

(28) {m/2j | 0 < m < 2j}.
Let us now enlarge the finite product of sets Sq determined by (27) and (28) still further, by changing those
factors whose index q has the largest possible denominator, 2j , from Sq = Tj to the larger set Tj−1. (This
will help in an induction to come.)

If we now classify the elements of (28) into those which, expressed in lowest terms, have denominator
2j , those having denominator 2j−1, and those with smaller denominators, we see that each term with
denominator 2j−1 is flanked on each side by terms with denominator 2j , and that the resulting 3-term
strings of indices with denominators 2j , 2j−1, 2j are disjoint. In the modified product of subsets of G that
we have described, the factors corresponding to these strings of three terms have the form Tj−1 Tj−1 Tj−1.
By assumption, this product is contained in Tj−2. Replacing each product Tj−1 Tj−1 Tj−1 with the possibly
larger set Tj−2, we conclude that our product of subsets is contained in a product of the same form, but
with subscripts now running not over (28) but over the elements of Q with denominator ≤ 2j−1. Here the
qualifier “of the same form” includes the condition that elements q with largest possible denominator, now
2j−1, are assigned the set Tj−2 rather than Tj−1.

Iterating this reduction, we conclude that our product is contained in one with the single index element
1/21, which is assigned the set T1−1 = T0 = S, giving the desired inclusion. �

(Tangential observation: The set Q used in the above proof has a natural order-isomorphism with the
set of intervals deleted in the “middle third” construction of the Cantor set (arranged from left to right);
and if we think of the relation Ti Ti Ti ⊆ Ti−1 in the above proof intuitively as saying that Ti has one-third
the “weight” of Ti−1, then the weights of these sets can be taken to agree with the lengths of those deleted
intervals. Thus, the above proof is related to the fact that the total length of those deleted intervals is 1.)

In studying the finest group topology under which a given downward directed set F converges to e, it
will be convenient to require that F be closed under conjugation by elements of G; i.e., that for every
S ∈ F and g ∈ G we have g S g−1 ∈ F. If, given an F not satisfying this condition, we simply replaced it
with {g S g−1 | S ∈ F, g ∈ G}, we could lose downward directedness. On the other hand, if we passed to
the sets

⋃
g∈G Sg (S ∈ F ), these could be much too large. (A group topology on G need not be generated

by G-invariant neighborhoods of e.) The construction of the next lemma gives what we really need.

Lemma 14. Let F be a downward directed family of nonempty subsets of G, and (following [6, Defini-
tion 3.1.6]) let us write FG for the set of all subsets of G of the form

⋃
g∈G g Sg g

−1, for G-tuples (Sg)g∈G
of members of F.

Then FG is again a downward directed family of nonempty subsets of G, it is invariant under conjugation
by elements of G, and for every group topology T on G, the family FG converges to e under T if and
only if F does.
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Proof. That FG is downward directed is easily seen to follow from the fact that F is; and the set FG is
conjugation invariant by construction. From the fact that each set

⋃
g∈G g Sg g

−1 ∈ FG contains a member

of F, namely Se, it follows that if FG converges to e under T (i.e., if it has members contained in every
T -neighborhood of e), then so does F.

Now suppose, conversely, that F converges to e under T , and let S be any neighborhood of e in T .
For each g ∈ G, the set g−1S g is also a neighborhood of e, hence contains some member of F, which
we may denote Sg; thus S contains g Sg g

−1. Hence S will contain
⋃
g∈G g Sg g

−1 ∈ FG; so FG also
converges to e, as required. �

Restricting attention to conjugation-invariant families F, we can now get the analog of (4).

Proposition 15 (cf. [6, Theorem 3.1.4], [7, Theorem 1.17]). Let F be a downward directed family of
nonempty subsets of G, which is closed under conjugation by members of G. Then the sets U((Sq)q∈Q)
defined by (25), where (Sq)q∈Q ranges over all Q-tuples of members of F, form a basis of open neighborhoods
of e in a group topology TF on G, which is the finest group topology under which F converges to e.

Proof. It is easy to see that the family of sets U((Sq)q∈Q) is downward directed and closed under conjugation
by elements of G (because F is), is closed under inverses (since for each q ∈ Q, (S∗q )−1 = S∗q , hence if

we let σ : Q → Q be an order-antiautomorphism, we get U((Sq)q∈Q)−1 = U((Sσ(q))q∈Q), ) and has the
property that each member of the family contains a product of two other members (by Lemma 12).

To conclude that these sets give a basis of open neighborhoods of e in a group topology on G, it remains
to show that for every set U((Sq)q∈Q) and element x ∈ U((Sq)q∈Q), there exists a set U((Tq)q∈Q) with

(29) xU((Tq)q∈Q) ⊆ U((Sq)q∈Q).

To see that this holds, note that by (25), x ∈ U((Sq)q∈Q) lies in a finite product S∗q0 . . . S
∗
qn with q0 <

· · · < qn ∈ Q. Now {q ∈ Q | q > qn} is order-isomorphic to Q; let us write it τ(Q) where τ : Q→ Q is an
order embedding. Then letting Tq = Sτ(q), we get (29).

So our sets give a basis of open sets for a group topology TF . Moreover, F converges to e in this topology,
since each U((Sq)q∈Q) contains members of F ; indeed, contains each of the Sq.

To show that TF is the finest group topology on G under which F converges to e, suppose T is any
such topology. For every open neighborhood S of e in T , Lemma 13 gives us a set of the form U((S′q)q∈Q)
contained in S, with each S′q an open neighborhood of e under T . By the assumption that F converges
to e under T , each S′q contains some Sq ∈ F, hence U((Sq)q∈Q) ⊆ U((S′q)q∈Q) ⊆ S is a neighborhood of
e under TF contained in S; so TF is at least as fine as T . �

We have thus generalized to nonabelian groups G the concepts and results on abelian G quoted in §1
as (1)–(4). The definitions and results that immediately followed these (the remaining material in §§1–2) go
over to the nonabelian case with minimal change. Indeed, the argument that gave us Corollary 1, applied
to Proposition 15, gives

Corollary 16. If F is a conjugation-invariant downward directed family of subsets of G, then a necessary
condition for the topology TF to be Hausdorff is

(30)

⋃
n>0

⋂
S∈F (S∗)n = {e}. In other words, for every g ∈ G−{e} and every n > 0, there exists

S ∈ F with g /∈ (S∗)n. �

The analogs of Definitions 3 and 4 are

Definition 17. If F is a downward directed family of subsets of G, and (xi)i∈I a family of elements of
G indexed by a downward directed partially ordered set I, we shall say that (xi) converges strongly to an
element x ∈ G with respect to F if for every S ∈ F, there exists i ∈ I such that for all j ≤ i, xj x−1 ∈ S∗.

A downward directed family F of subsets of G will be called self-indulgent if for every S ∈ F, and every
family (xT )T∈F ′ of elements of S∗ indexed by a downward cofinal subset F ′ ⊆ F, there exist an x ∈ S∗
and a downward cofinal subset F ′′ ⊆ F ′ such that (xT )T∈F ′′ converges strongly to x with respect to F.

(The above definition of strong convergence is not right-left symmetric, since it uses xj x
−1 rather than

x−1xj . However, the family (xj x
−1)j∈I is conjugate, by x, to (x−1 xj)j∈I , hence when F is closed under

conjugation by members of G, the condition becomes symmetric.)
The proof that co-κ filters are self-indulgent also goes over with no change. (Recall that the proof made

essentially no use of the group operation.) We state this below, along with another fact, immediate to verify,
that we will need.
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Lemma 18. Let X be any infinite subset of G, and κ any regular cardinal ≤ card(X). Then the co-κ
filter F on X is self-indulgent.

Moreover, if X is invariant under conjugation by elements of G, then that filter F is likewise closed
under conjugation by elements of G. �

We now come to the analogs of the material of §3. A little care is needed in generalizing Lemma 6, though
the ideas are the same.

Lemma 19. Let F be a self-indulgent downward directed system of subsets of G which is closed under
conjugation by members of G, and satisfies (30). Let g ∈ G, and suppose that for some n ≥ 0 and
0 ≤ m ≤ n, S0, . . . , Sm−1, Sm+1, . . . , Sn are members of F such that

(31) g /∈ S∗0 . . . S∗m−1 S∗m+1 . . . S
∗
n.

Then there exists Sm ∈ F such that

(32) g /∈ S∗0 . . . S∗m−1 S∗m S∗m+1 . . . S
∗
n.

Proof. As before, the contrary assumption says that for each T ∈ F, we can choose n+ 1 elements

(33) g0,T ∈ S∗0 , . . . , gm−1,T ∈ S∗m−1, gm,T ∈ T ∗, gm+1,T ∈ S∗m+1, . . . , gn,T ∈ S∗n

(note how the m-th condition differs from the others), such that

(34) g = g0,T . . . gm−1,T gm,T gm+1,T . . . gn,T .

(However, from this point on, in writing expressions like the above we will omit the terms indexed by m− 1
and m+ 1, and only show those indexed by 0, m and n.)

Making n successive applications of our self-indulgence assumption on F (we did these from left to right
in proving Lemma 6; but the order makes no difference), we can get elements gi (0 ≤ i ≤ n) such that

(35) for i 6= m, gi ∈ S∗i , while gm = e,

and a cofinal subfamily F ′ ⊆ F, such that for each i, the family (gi,T )T∈F ′ converges strongly to gi with
respect to F. Defining

(36) g′i,T = gi,T g
−1
i ,

we conclude that

(37) for each i ∈ {0, . . . , n}, the family of elements (g′i,T )T∈F ′ converges strongly to e with respect
to F.

Now (31) and (35) imply that g 6= g0 . . . gm . . . gn, so let us write

(38) g′ = g · (g0 . . . gm . . . gn)−1 6= e.

Since F satisfies (30), we can find S ∈ F such that

(39) g′ /∈ (S∗)n+1.

On the other hand, note that if in the right-hand side of (38) we expand the initial factor g using (34),
and then use (36) to rewrite each of the factors gi,T from (34) as g′i,T gi, we get

(40) g′ = (g′0,T g0) . . . (g′m,T gm) . . . (g′n,T gn) (g0 . . . gm . . . gn)−1 for all T ∈ F ′.
Letting hi = g0 . . . gi−1 for 0 ≤ i ≤ n, this becomes

(41) g′ = (h0 g
′
0,T h

−1
0 ) . . . (hm g

′
m,T h

−1
m ) . . . (hn g

′
n,T h

−1
n ) for all T ∈ F ′.

From the facts that the g′i,T all converge strongly to e with respect to F, and that F is closed under

conjugation by members of G, it follows that in (41), each of the factors hi g
′
i,T h

−1
i converges strongly to

e. Hence for some T ∈ F ′, all the factors of (41) lie in the S∗ of (39). That instance of (41) therefore
contradicts (39), proving the lemma. �

Given F as in the above lemma, and any g ∈ G− {e}, we can use that lemma to build up, by recursion
with respect to any enumeration of Q by the natural numbers, a system (Sq)q∈Q such that g /∈ U(Sq)q∈Q.
We deduce

Theorem 20. Let F be a downward directed system of subsets of G which is self-indulgent, and closed
under conjugation by all elements of G. (In particular, by Lemma 18 this is true if for some conjugation-
invariant X ⊆ G and some κ ≤ card(X), F is the co-κ filter on X.) Then the finest group topology on G
under which F converges to e is Hausdorff if and only if F satisfies (30). �
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It is not clear to me how closely related this is to the nearest result in [6], Theorem 3.2.1. That re-
sult is restricted to countable groups G, but concerns the finest group topology under which a general
sequence (equivalently, the cofinite (i.e., co-ℵ0) filter on a general subset, not necessarily conjugation invari-
ant) converges. The criterion given for that topology to be Hausdorff uses, in place of the n-fold products
implicit in (30), arbitrary group words f(x0, . . . , xn) in n + 1 variables, and constants from G, which
satisfy f(e, . . . , e) = e. These two sorts of expressions ultimately reduce to the same thing; but the quan-
tification of the conditions is subtly different. Perhaps this is not surprising: (5) and (6) can also be looked
at as similar conditions which involve different quantifications, but which become equivalent in the case of
self-indulgent F.

In [6, §§3.3, 3.4], topologies on rings determined by families of subsets are similarly studied.

7. A Fibonacci connection

Many interesting applications are given in [6] of the criterion obtained there for the cofinite filter on a
countable subset of an abelian group to converge to 0 in a Hausdorff group topology. In particular, it
is shown that there exist such topologies on Z under which various integer sequences – for instance the
Fibonacci sequence [6, Corollary 2.2.8] – converge to 0.

Note that in the free nonabelian group G = x, y on two generators, one can define a Fibonacci-like
sequence by

(42) f0 = x, f1 = y, fn+1 = fn−1fn (n ∈ Z).

I had hopes of proving that there was a Hausdorff group topology on x, y under which this sequence
converged to e. However, if we define an automorphism ϕ of x, y by ϕ(x) = y, ϕ(y) = xy, then
we see that in (42), fn = ϕn(x); so the result I hoped for would imply that every g ∈ x, y satisfied
limn→∞ ϕn(g) = e. But calculation shows that the commutator x y x−1y−1 is fixed by ϕ2; so this cannot
be true. Indeed, there cannot even exist a Hausdorff group topology under which the sequence fn approaches
some fixed element c of G, or of a topological overgroup of G, since then we would have

(43) ϕn(x y x−1y−1) = ϕn(x)ϕn+1(x)ϕn(x)−1ϕn+1(x)−1 → c c c−1c−1 = e,

though as noted, the left-hand side has, for every even n, the value x y x−1y−1. However, I don’t see any
obstruction to there being a topological overgroup of G under which the values of f2n and f2n+1 each
approach constant values.

For another context in which the “Fibonacci automorphism” ϕ of x, y (there called σ1/2) comes up,
see [1].

8. Final remark, and acknowledgements

I do not know of interesting applications of the results of this note. My motivation has been structural:
“What ideas underlie the arguments of [6]; and in what more general contexts are those ideas applicable?”
Perhaps group theorists will find such applications.

I am indebted to Dikran Dikranjan, Pace Nielsen, Igor V. Protasov, K. M. Rangaswamy and Yevhen
Zelenyuk for helpful comments and corrections to previous versions of this note, and for references to the
literature.
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