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The quantum behaviour of electrons in materials lays the foundation for modern elec-

tronic and information technology1–11. Quantum materials with novel electronic and optical

properties have been proposed as the next frontier, but much remains to be discovered to ac-

tualize the promise. Here we report the first observation of topological quantum properties

of chiral crystals7,8 in the RhSi family. We demonsrate that this material hosts novel phase of

matter exhibiting nearly ideal topological surface properties that emerge as a consequence of

the crystals’ structural chirality or handedness7,8. We also demonstrate that the electrons on

the surface of this crystal show a highly unusual helicoid structure that spirals around two

high-symmetry momenta signalling its topological electronic chirality. Such helicoid Fermi

arcs on the surface experimentally characterize the topological charges of ±2, which arise

from the bulk chiral fermions. The existence of bulk high-fold degenerate fermions are guar-

anteed by the crystal symmetries, however, in order to determine the topological charge in

the chiral crystals it is essential to identify and study the helical arc states. Remarkably,

these topological conductors we discovered exhibit helical Fermi arcs which are of length π,

stretching across the entire Brillouin zone and orders of magnitude larger than those found

in all known Weyl semimetals6,9–11. Our results demonstrate novel electronic topological

state of matter on a structurally chiral crystal featuring helicoid Fermi arc surface states.

The exotic electronic chiral fermion state realised in these materials can be used to detect a

quantised photogalvanic optical response or the chiral magnetic effect and its optical version

in future devices as described by G. Chang et.al., “Topological quantum properties of chiral

crystals” Nature Mat. 17, 978-985 (2018)7.

The discovery of topological insulators has inspired the search for a wide variety of topological

conductors1–27. One example of topological conductor is the Weyl semimetal (WSM), featuring

emergent Weyl fermions as low-energy excitations of electrons. These Weyl fermions are asso-

ciated with topological chiral charges (Chern numbers) that locate at two-fold degenerate band

crossings1,2,5,6,9,11–15 in momentum space. In general, such emergent topological chiral fermions

may appear in a variety of types including not only two-fold degenerate Weyl fermions5,6,9,11–16,

Kramers-Weyl fermions7,8 or higher-fold fermions17–19. Recently, a few non-centrosymmetric

crystals were identified where a band inversion gives rise to a WSM state5,9,11,20,22–24. However, all

these materials suffer from several drawbacks: a large number of Weyl fermions, Weyl fermions

close to each other in momentum space, and short Fermi arcs which are much (orders of magni-

tude) less topologically robust. In order to thoroughly explore and utilise the robust and unusual
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quantum phenomena induced by chiral fermions in optics or magneto-transport, topological con-

ductors with near-ideal electronic properties or novel types of topological conductors are needed1,2.

A different approach toward searching for ideal topological conductors is to examine crys-

talline symmetries, which can also lead to topological band crossings3,4,9. For instance, it has been

shown that non-symmorphic symmetries can guarantee the existence of band crossings for certain

electron fillings17,21,25. As another example, we might consider structurally chiral crystals whose

lattice possess no inversion, mirror and roto-inversion symmetries7. Structurally chiral crystals

are expected to host a variety of topological band crossings which are guaranteed to be pinned

to time-reversal invariant momenta (TRIMs)7,26. Moreover, structurally chiral topological crys-

tals naturally give rise to a quantised circular photogalvanic current, the chiral magnetic effect

and other novel transport and optics effects forbidden in known topological conductors, such as

TaAs9,20,22–24.

Incorporating these paradigms into a broader search, we have studied various candidate non-

magnetic and magnetic conductors, such as pyrochlore iridates, MoTe2, WTe2, Mn3Ge, Ge3Sn,

Mn3Sn, Na3Bi, GdPtBi, the LuPtSb family, HgCr2Se4, LaPtBi, Co3Sn2S2, Fe3Sn2 and the RhSi

family, with advanced spectroscopic techniques. Many of the materials exhibit either large co-

existing trivial bulk Fermi surfaces or surface reconstruction masking topological states. And as

often is the case with surface-sensitive techniques, the experimentally realised surface potential as-

sociated with a cleaved crystal may or may not allow these unusual electronic states to be observed.

Thus, despite the new search paradigms, the discovery of topological materials that are suitable for

spectroscopic experiments has remained a significant challenge. Of all the materials we explored,

we observed that the XSi (X = Co, Rh) family of chiral crystals comes close to the experimen-

tal realization of the sought-after ideal topological conductor. Additionally it is a novel type of

topological conductor beyond Weyl semimetals. Here we report high-resolution angle-resolved

photoemission spectroscopy (ARPES) measurements in combination with state-of-the-art ab ini-

tio calculations to demonstrate novel topological chiral properties in CoSi and RhSi. These chiral

crystals approach ideal topological conductors because of their large Fermi arcs which is related to

the fact that they host the minimum non-zero number of chiral fermions—topological properties

which we experimentally visualise for the first time.

The XSi (X = Co, Rh) family of materials crystallises in a structurally chiral cubic lattice

with space group P213, No. 198 (Fig. 1a). We confirmed the chiral crystal structure of our

CoSi samples by single crystal X-ray diffraction (XRD; Fig. 1b), with associated 3D Fourier map



4

(Fig. 1c). We found a Flack factor of ∼ 91%, which indicates that our samples are predominantly

of a single structural chirality. Ab initio electronic bulk band structure calculations predict that

both chiral crystals exhibit a 3-fold degeneracy at Γ near the Fermi level, EF (Fig. 1d). This

degeneracy is described by a low-energy Hamiltonian which exhibits a 3-fold fermion associated

with Chern number +218,19. We refer to this Chern number as a chiral charge, a usage of the

term “chiral” which is distinct from the notion of structural chirality defined above and which also

motivates our use of the term “chiral fermion” to describe these topological band crossings. TheR

point hosts a 4-fold degeneracy corresponding to a 4-fold fermion with Chern number −2. These

two higher-fold chiral fermions are pinned to opposite TRIMs and are consequently constrained

to be maximally separated in momentum space (Fig. 1e), suggesting that CoSi might provide a

near-ideal platform for accessing topological phenomena using a variety of techniques. The hole

pocket at M is topologically trivial at the band relevant for low-energy physics, but it is well-

separated in momentum space from the Γ and R topological crossings. It is not expected to affect

topological transport, such as the chiral anomaly (note that σxx is not topological transport). The

two higher-fold chiral fermions lead to a net Chern number of zero in the entire bulk Brillouin zone

(BZ), as expected from theoretical considerations12. CoSi and RhSi also satisfy a key criterion for

an ideal topological conductor, namely that they have only two chiral fermions in the bulk BZ, the

minimum non-zero number allowed.

The two chiral fermions remain topologically non-trivial over a wide energy range. In particu-

lar, CoSi maintains constant-energy surfaces with non-zero Chern number over an energy window

of 0.85 eV, while for RhSi this window is 1.3 eV (Fig. 1d). This prediction suggests that XSi sat-

isfies another criterion for an ideal topological conductor—a large topologically non-trivial energy

window. An ab initio calculated Fermi surface shows that the projection of the higher-fold chiral

fermions to the (001) surface results in a hole (electron) pocket at Γ̄ (M̄ ) with Chern number +2

(−2; Fig. 1f). As a result, we expect that XSi hosts Fermi arcs of length π spanning the entire

surface BZ, again suggesting that these materials may realise a near-ideal topological conductor.

Using low-photon-energy ARPES, we experimentally study the (001) surface of CoSi and RhSi

to reveal their surface electronic structure. For CoSi, the measured constant-energy contours show

the following dominant features: two concentric contours around the Γ̄ point, a faint contour at

the X̄ point, and long winding states extending along the M̄ − Γ̄ − M̄ direction (Fig. 2a). Both

the Γ̄ and X̄ pockets show a hole-like behaviour (Extended Data Fig. 8). The measured surface

electronic structure for RhSi shows similar features (Fig. 2b; Extended Data Fig. 1). Using only
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our spectra, we first sketch the key features of the experimental Fermi surface for CoSi (Fig. 2c).

Then, to better understand the k-space trajectory of the long winding states in CoSi, we study

Lorentzian fits to the momentum distribution curves (MDCs) of the ARPES spectrum. We plot the

Lorentzian peak positions as the extracted band dispersion (Fig. 2d, e) and we find that the long

winding states extend from the center of the BZ to the M̄ pocket (Fig. 2f). To better understand

the nature of these states, we perform an ARPES photon energy dependence and we find that the

long winding states do not disperse as we vary the photon energy, suggesting that they are surface

states (Extended Data Fig. 6). Moreover, we observe an overall agreement between the ARPES

data and the ab initio calculated Fermi surface, where topological Fermi arcs connect the Γ̄ and

M̄ pockets (Fig. 1f). Taken together, these results suggest that the long winding states observed in

ARPES may be topological Fermi arcs.

Grounded in the framework of topological band theory, the bulk-boundary correspondence

of chiral fermions makes it possible for ARPES (spectroscopic) measurements to determine the

Chern numbers of a crystal by probing the surface state dispersion (Fig. 3a; Methods). Such

spectroscopic methods to determine Chern numbers have become well-accepted in the field27.

Using such approach and its spectroscopic analogs, we provide two spectral signatures of Fermi

arcs in CoSi. We first look at the dispersion of the candidate Fermi arcs along a pair of energy-

momentum cuts on opposite sides of the Γ̄ pocket, taken at fixed +kx (Cut I) and −kx (Cut II;

Fig. 2f). In Cut I, we observe two right-moving chiral edge modes (Fig. 3b,c). Since the cut

passes through two BZs (Fig. 2f), we associate one right-moving mode with each BZ. Next, we fit

Lorentzian peaks to the MDCs and we find that the extracted dispersion again suggests two chiral

edge modes (Fig. 3d). Along Cut II, we observe two left-moving chiral edge modes (Fig. 3e,f).

Consequently, one chiral edge mode is observed for each measured surface BZ on Cuts I and II, but

with opposite Fermi velocity direction. In this way, our ARPES spectra suggest that the number

of chiral edge modes n changes by +2 when the k-slice is swept from Cut I to Cut II. This again

suggests that the long winding states are topological Fermi arcs. Moreover, these ARPES results

imply that projected topological charge with net Chern number +2 lives near Γ̄.

Next we search for other Chern numbers encoded by the surface state band structure. We study

an ARPES energy-momentum cut on a loop P enclosing M̄ (Fig. 4a, inset). Again following the

bulk-boundary correspondence, we aim to extract the Chern number of chiral fermions projecting

on M̄ . The cut P shows two right-moving chiral edge modes dispersing towards EF (Fig. 4a,b),

suggesting a Chern number −2 on the associated bulk manifold. Furthermore, the ab initio cal-



6

culated surface spectral weight along P is consistent with our experimental results (Fig. 4c). Our

ARPES spectra on Cut I, Cut II and P suggest that CoSi hosts a projected chiral charge of +2 at

Γ̄ with its partner chiral charge of −2 projecting on M̄ . This again provides evidence that the long

winding states are a pair of topological Fermi arcs which traverse the surface BZ on a diagonal,

connecting the Γ̄ and M̄ pockets. Our ARPES spectra on RhSi also provide evidence for gigantic

topological Fermi arcs following a similar analysis (Extended Data Fig. 1).

To further explore the topological properties of CoSi, we examine in greater detail the structure

of the Fermi arcs near M̄ . We consider the dispersion on P (plotted as a magenta loop in Fig. 4d,

inset) and we also extract a dispersion from Lorentzian fitting on a second, tighter circle (black

loop; Extended Data Fig. 7). We observe that as we decrease the binding energy (approach EF),

the extracted dispersion spirals in a clockwise fashion on both loops, suggesting that as a given k

point traverses the loop, the energy of the state does not return to its initial value after a full cycle.

Such a non-trivial electronic dispersion directly signals a projected chiral charge at M̄ (Fig. 4d).

In fact, the extracted dispersion is characteristic of the helicoid structure of topological Fermi arcs

as they wind around a chiral fermion (Fig. 4e), suggesting that CoSi provides a rare example of a

non-compact surface in nature7,28.

To further understand these experimental results, we consider the ab initio calculated spectral

weight for the (001) surface and we observe a pair of Fermi arcs winding around the Γ̄ and M̄

pockets in a counterclockwise and clockwise manner, respectively, with decreasing binding energy

(approaching EF; Fig. 4f). The clockwise winding around M̄ is consistent with our observation by

ARPES of a−2 projected chiral charge. Moreover, from our ab initio calculations, we predict that

the −2 charge projecting to M̄ arises from a 4-fold chiral fermion at the bulk R point (Fig. 1d).

The +2 chiral charge which we associate with Γ̄ from ARPES (Fig. 3) is further consistent with

the 3-fold chiral fermion predicted at the bulk Γ point. By fully accounting for the predicted

topological charges in experiment, our ARPES results suggest the demonstration of a topological

chiral crystal in CoSi. We can similarly account for the predicted topological charges in RhSi from

our ARPES data (Extended Data Fig. 1, 2).

The surface state dispersions in our ARPES spectra, taken together with the topological bulk-

boundary correspondence established in theory14,29, demonstrate that CoSi is a topological chiral

crystal. This experimental result is further consistent with the numerical result determined from

first-principles calculations of the surface state dispersions and topological invariants. Unlike

previously-reported WSMs, the Fermi arcs which we observe in CoSi and RhSi stretch diagonally
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across the entire (001) surface Brillouin zone, from Γ̄ to M̄ . In fact, the Fermi arcs in XSi are

longer than those found in TaAs by a factor of thirty. Our surface band structure measurements

also demonstrate two well-separated Fermi pockets carrying Chern number ±2. Lastly, we ob-

serve for the first time in an electronic material the helicoid structure of topological Fermi arcs,

offering an example of a non-compact surface7,28. Our results suggest that CoSi and RhSi are ex-

cellent candidates for studying topological phenomena distinct to chiral fermions, using a variety

of techniques5,9,11.

Crucial for applications, the topologically non-trivial energy window in CoSi is an order of

magnitude larger than that in TaAs23,24, rendering its quantum properties robust against changes

in surface chemical potential and disorder. Moreover, the energy offset between the higher-fold

chiral fermions at Γ and R is predicted to be ∼ 225 meV. Such an energy offset is essential for

inducing the chiral magnetic effect and its optical analog30 and the quantised photogalvanic ef-

fect (optical)31. When coupled to a compatible superconductor, CoSi is a compelling platform for

studying the superconducting pairing of Fermi surfaces with non-zero Chern numbers, which may

be promising for realizing a new type of topological superconducting phase recently proposed by

Li and Haldane32 which can be probed with STM-based spectroscopy. CoSi further opens the

door to exploring other exotic quantum phenomena when combined with the isochemical material

FeSi. Fe1−xCoxSi may simultaneously host k-space topological defects (chiral fermions) and real-

space topological defects (skyrmions) and their interplay which can also be probed by STM/STS.

Through our observation of a helicoid surface state and its topological properties, our results sug-

gest the discovery of the first structurally chiral crystal that is also topological. In this way, our

work provides a much-needed new and next-generation platform for further study and search for

novel types of topological conductors.
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FIG. 1: Structural chirality and topological chirality in CoSi and RhSi. a, Chiral crystal structure of

XSi (X = Co, Rh), space group P213, No. 198. b, Single crystal X-ray diffraction precession pattern

of the (0kl) planes of CoSi at 100 K. The resolved spots confirm space group P213 with lattice constant

a = 4.433(4) Å. c, Three-dimensional Fourier map showing the electron density in theB20 CoSi structure.

d, Ab initio calculation of the electronic bulk band structure along high-symmetry lines. A 3-fold degenerate

topological chiral fermion is predicted at Γ and a 4-fold topological chiral fermion at R; these carry Chern

numbers +2 and −2, respectively. The highest valence (blue) and lowest conduction (red) bands fix a

topologically non-trivial energy window (green dotted lines). e, Bulk Brillouin zone (BZ) and (001) surface

BZ with high-symmetry points and the predicted chiral fermions (red and blue spheres) marked. f, Ab initio

calculation of the surface spectral weight on the (001) surface for CoSi, with the (001) surface BZ marked

(red box). The predicted bulk chiral fermions project onto Γ̄ and M̄ , connected by a pair of topological

Fermi arcs extending diagonally across the surface BZ.
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marked (rightmost panel, red dotted line). We observe long winding states connecting the Γ̄ and M̄ pockets.

b, Fermi surface for RhSi measured at incident photon energy 82 eV with BZ boundary marked (blue dotted

line). Again, we observe long winding states extending diagonally across the BZ (Extended Data Fig. 1). c,

Schematic of the measured Fermi surface for CoSi showing hole-like (h) and electron-like (e) bulk pockets
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FIG. 3: Observation of topological chiral edge modes in CoSi. a, Left panel: schematic 3D bulk and

2D surface Brillouin zone (BZ) of CoSi with chiral fermions marked (±) and including several examples

of 2D manifolds hosting a Chern number n (green planes, red cylinder)29. Every plane in the bulk has a

non-zero n. The cylinder enclosing the bulk chiral fermion at Γ has n = +2. Right panel: Fermi arcs

(orange curves) show up as chiral edge modes (orange lines). Energy-momentum cuts on opposite sides

of Γ̄ are expected to show chiral modes propagating in opposite directions. b, ARPES spectrum along Cut

I (as marked in Fig. 2f), suggesting two right-moving chiral edge modes (black arrows). Vertical dotted

lines mark the BZ boundaries. c, Second derivative plot of Cut I, with fitted Lorentzian peaks for a series

of momentum distribution curves (MDCs) to track the dispersion (blue dots). d, MDCs and Lorentzian fits

tracking the chiral edge modes (dotted orange lines) for Cut I. e, Same as (b), but for Cut II, suggesting

two left-moving chiral edge modes (black arrows). f, Same as (c), but for Cut II. The difference in the net

number of chiral edge modes on Cut I and Cut II suggests a Chern number +2 living near Γ̄.



13

50

40

30

20

10

0

-10
x1

03  
1.51.00.50.0

-5.0

-4.8

-4.6

1.51.00.50.0

a

-0.4

-0.2

0

0 0.5 1 1.5 0 0.5 1 1.5
k (π /a)

-5 meV

-25 meV

-35 meV

-45 meV

-65 meV

b

En
er

gy
, E

-E
F (

eV
)

-0.5

-0.5

0.5

0.5

-0.10

-0.05

0.00

0.05

0.10

E
(e
V
)

-0.5

0.5
0.5

kx (π /a)
ky (π /a)

f
k (π /a)

EF-0.1

EF-0.05

EF+0.05

EF+0.1

EF

-0.1 -0.2

-0.1

-0.2

kx 

ky 

M̄

d

e

0 0.5-0.5
k (π /a)

c

En
er

gy
, E

-E
F (

eV
)

0

-0.2

0.2

Helicoid Fermi Arc (Calculation)

-70

0
E (meV)

Loop Calculation 

Energy

In
te

ns
ity

 (a
. u

.)

0

-1
0 1kx (π /a)

k y
 (π

/a)

P

M̄

1.0

0.5

0.0

-0.5

0.8

0.4

0.0

M̄

Helicoid Fermi Arc (Data)

Winding

M̄



14

FIG. 4: Observation of helicoid Fermi arcs. a, ARPES spectrum along loopP , revealing two right-moving

chiral edge modes and a projected chiral charge of −2 at M̄ . Inset: definition of the loop P , starting

from the green mark and proceeding clockwise. b, Lorentzian fits to a series of momentum distribution

curves (MDCs) along P to track the dispersion of the chiral edge modes. c, Ab initio calculation of the

dispersion along a loop around M̄ showing two right-moving chiral edge modes, consistent with the ARPES

data. d, Extracted dispersion of the chiral edge modes on P and a second inner loop from Lorentzian fits

to the MDCs. Error bars correspond to the momentum resolution. Inset: definition of the second inner

loop (black). We observe that the chiral edge modes spiral in a clockwise way with decreasing binding

energy (approaching EF). e, Perspective plot of (d), where the two loops now correspond to two concentric

cylinders. The winding of the chiral modes around M̄ as a function of binding energy suggests that the

Fermi arcs have a helicoid structure7,28. f, Ab initio calculated constant-energy contours, consistent with the

helicoid Fermi arc structure observed in our ARPES spectra.
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Supplementary Information: Topological chiral crystals with helicoid arc
states

Observation of Fermi arcs in RhSi. Motivated by an interest in establishing families of closely-

related topological materials33–40, we expand our experiment to include RhSi, an isoelectronic

cousin of CoSi. Rhodium silicide, RhSi, crystallises in a chiral cubic lattice, space group P213,

No. 198. The calculated electronic band structure is generally similar to that of CoSi (side-

by-side comparison in Fig. 1d). Constant-energy contours measured by ARPES further suggest

features similar to those in CoSi (Extended Data Fig. 1a). In particular, we observe contours

at the Γ̄, X̄ and Ȳ points and long winding states that extend diagonally from Γ̄ to M̄ . Again

taking advantage of the bulk-boundary correspondence, we focus on counting chiral edge modes

to determine the topological nature of RhSi (Extended Data Fig. 1b,c). A second-derivative plot

of the Fermi surface further suggests the presence of long states stretching diagonally across the

BZ, motivating a study of energy-momentum cuts through these states (Extended Data Fig. 1d-g).

The cuts show that the long states take the form of a right-moving chiral edge mode (Cut I) and

a left-moving chiral edge mode (Cut II) on opposite sides of Γ̄. The net difference in the number

of right-moving chiral edge modes suggests that a Chern number of +2 projects to Γ̄ and that the

long states are topological Fermi arcs. Proceeding again by analogy to CoSi, we study the band

structure along a loop M enclosing the M̄ point and we observe two right-moving chiral edge

modes, suggesting a Chern number of −2 at the R point. These results suggest that RhSi, an

isoelectronic cousin of CoSi, provides another example of a near-ideal topological conductor.

Helicoid structure of the Fermi arcs in RhSi. We study the Fermi arcs near M̄ in RhSi,

by analogy with the analysis performed for CoSi (Fig. 4). First, we consider ARPES energy-

momentum cuts on an inner and outer loop enclosing the M̄ point and we observe signatures of

two right-moving chiral edge modes on each loop, suggesting an enclosed projected chiral charge

of −2 (Extended Data Fig. 2a-d). We further fit Lorentzians to the MDCs and we find that the

extracted dispersion exhibits a clockwise winding on both loops for decreasing binding energy

(approaching EF; Extended Data Fig. 2e,f). This dispersion again suggests a chiral charge −2

at M̄ and is characteristic of the helicoid structure of Fermi arcs as they wind around a chiral

fermion. Lastly, we study ab initio calculations of the constant-energy contours (Extended Data

Fig. 2g) which exhibit the same winding pattern. These ARPES results suggest that RhSi, like

CoSi, exhibits helicoid topological Fermi arcs.

Bulk-boundary correspondence in CoSi and RhSi. By measuring the surface state band struc-
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ture of a crystal, ARPES is capable of demonstrating Fermi arcs and counting Chern numbers29.

We briefly review the details of this method. First, recall that topological invariants are typically

defined for a gapped system. A topological conductor is by definition gapless and so we cannot

define a topological invariant for the full bulk Brillouin zone of the three-dimensional system.

However, we may be able to choose certain two-dimensional k-space manifolds where the band

structure is fully gapped and a two-dimensional invariant can then be defined on this slice of mo-

mentum space (Fig. 3a). We consider specifically the case of a chiral fermion in a topological con-

ductor and we study a gapped momentum-space slice which cuts in between two chiral fermions.

By definition, a chiral fermion is associated with a non-zero Chern number, so at least some of

these slices will be characterized by a non-zero Chern number. Following the bulk-boundary cor-

respondence, these slices will then contribute chiral edge modes to the surface state dispersion. If

we image collecting together the chiral edge modes from all of the gapped slices, we will assemble

the entire topological Fermi arc of the topological conductor. If we run the bulk-boundary corre-

spondence in reverse, we can instead measure the surface states by ARPES and count the chiral

edge modes on a particular one-dimensional slice of the surface Brillouin zone to determine the

Chern number of the underlying two-dimensional slice of the bulk Brillouin zone. These Chern

numbers in turn fix the chiral charges of the topological fermions.

Next we highlight two spectral signatures that can determine the chiral charges specifically in

XSi (X = Co, Rh). First, we consider chiral edge modes along straight k-slices. Theoretically, the

two-dimensional k-slices on the two sides of the chiral fermion at Γ are related by time-reversal

symmetry and therefore should have equal and opposite Chern numbers (nl = −nr; Fig. 3b). On

the other hand, because the 3-fold chiral fermion at Γ is predicted to carry chiral charge +2, we

expect that the difference should be nl − nr = +2, resulting in nl(r) = ±1. Therefore we expect

one net left-moving chiral edge mode on one cut and one net right-moving chiral edge mode on the

other. For the second signature, we study the chiral edge modes along a closed loop in the surface

BZ. Any loop that encloses the projected chiral charge of +2 at Γ̄ or −2 at M̄ has this number of

net chiral edge modes along this path. By taking advantage of this correspondence, we can count

surface states on loops in our ARPES spectra to determine enclosed projected chiral charges.

Growth of CoSi and RhSi single crystals. Single crystals of CoSi were grown using a chem-

ical vapor transport (CVT) technique. First, polycrystalline CoSi was prepared by arc-melting

stoichiometric amounts of Co slices and Si pieces. After being crushed and ground into a powder,

the sample was sealed in an evacuated silica tube with an iodine concentration of approximately
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0.25 mg/cm3. The transport reaction took place at a temperature gradient from 1000◦C (source) to

1100◦C (sink) for two weeks. The resulting CoSi single crystals had a metallic luster and varied

in size from 1 mm to 2 mm. Single crystals of RhSi were grown from a melt using the vertical

Bridgman crystal growth technique at a non-stoichiometric composition. In particular, we induced

a slight excess of Si to ensure a flux growth inside the Bridgman ampoule. First, a polycrystalline

ingot was prepared by pre-melting the highly pure constituents under an argon atmosphere using

an arc furnace. The crushed powder was poured into a custom-designed sharp-edged alumina tube

and then sealed inside a tantalum tube again under an argon atmosphere. The sample was heated to

1550◦C and then slowly pooled to the cold zone at a rate of 0.8 mm/h. Single crystals on average

∼ 15 mm in length and ∼ 6 mm in diameter were obtained.

X-ray diffraction. Single crystals of CoSi were mounted on the tips of Kapton loops. The

low-temperature (100 K) intensity data was collected on a Bruker Apex II X-ray diffractometer

with Mo radiation Kα1 (λ = 0.71073Å−1). Measurements were performed over a full sphere of k-

space with 0.5◦ scans in ω with an exposure time of 10 seconds per frame (Extended Data Fig. 3).

The SMART software was used for data acquisition. The extracted intensities were corrected

for Lorentz and polarization effects with the SAINT program. Numerical absorption corrections

were accomplished with XPREP, which is based on face-indexed absorption41. The twin unit cell

was tested. With the SHELXTL package, the crystal structures were solved using direct methods

and refined by full-matrix least-squares on F242. No vacancies were observed according to the

refinement and no residual electron density was detected, indicating that the CoSi crystals were of

high quality.

Sample surface preparation for ARPES. For CoSi single crystals, the surface preparation pro-

cedure followed the conventional in situ mechanical cleaving approach. This cleaving method

resulted in a low success rate and the resulting surface typically appeared rough under a micro-

scope. We speculate that the difficulty in cleaving CoSi single crystals may be a result of its cubic

structure, strong covalent bonding and lack of a preferred cleaving plane. For RhSi single crystals,

their large size allowed them to be mechanically cut and polished along the (001) surface. An

in situ sputtering and annealing procedure, combined with LEED/RHEED characterization, was

used to obtain a clean surface suitable for ARPES measurements. The typical spectral line-width

was narrowed and the background signal was reduced for these samples as compared with the

mechanically-cleaved CoSi samples.

Angle-resolved photoemission spectroscopy. ARPES measurements were carried out at beam-
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lines (BL) 10.0.1 and 4.0.3 at the Advanced Light Source in Berkeley, CA, USA. A Scienta R4000

electron analyser was used at BL 10.0.1 and a Scienta R8000 was used at BL 4.0.3. At both beam-

lines the angular resolutions was< 0.2◦ and the energy resolution was better than 20 meV. Samples

were cleaved or sputtered/annealed in situ and measured under vacuum better than 5× 10−11 Torr

at T < 20 K.

First-principles calculations. Numerical calculations of XSi (X = Co, Rh) were performed

within the density functional theory (DFT) framework using the OPENMX package and the full

potential augmented plane-wave method as implemented in the package WIEN2k43–45. The gener-

alised gradient approximation (GGA) was used46. Experimentally measured lattice constants were

used in DFT calculations of material band structures47. A Γ-centered k-point 10 × 10 × 10 mesh

was used and spin-orbit coupling (SOC) was included in self-consistent cycles. To generate the

(001) surface states of CoSi and RhSi, Wannier functions were generated using the p orbitals of Si

and the d orbitals of Co and Rh. The surface states were calculated for a semi-infinite slab by the

iterative Green’s function method.

Electronic bulk band structure. The electronic bulk band structure of CoSi is shown with

and without spin-orbit coupling (SOC; Extended Data Fig. 4). The small energy splitting that

arises from introducing SOC is approximately 40 meV, which is negligible compared to the ∼1.2

eV topologically non-trivial energy window. Our results suggest that we do not need to consider

SOC, either theoretically or experimentally, to demonstrate a chiral charge in CoSi.

Tracking the Fermi arcs by fitting ARPES momentum distribution curves. The following pro-

cedure was performed to track the Fermi arcs in the surface BZ of CoSi (Extended Data Fig. 5a).

At E = EF, MDCs were collected for various fixed ky values (extending along the region of in-

terest). Each MDC was fitted with a Lorentzian function to pinpoint the kx value that corresponds

to the peak maximum. The MDC fitted peak maximum was then plotted on top of the measured

Fermi surface and marked with blue circles. Where necessary, the peak maximum corresponding

to the X̄ pockets is annotated on each MDC fitting panel (Extended Data Fig. 5b). For the chiral

edge modes discussed in the main text and the Extended Data, a similar MDC fitting procedure

was used at different binding energies to track the dispersion.

Study of the Fermi arcs with varying photon energy. We study an MDC cutting through the

Fermi arc as a function of incident photon energy (Extended Data Fig. 6). We find that within the

experimental resolution the Fermi arc shows negligible variation from 80 eV to 110 eV, providing

additional evidence that it is indeed a surface state.
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CoSi T = 100(2) K T = 300(2) K

Scan 1 2

F.W. (g/mol) 87.02 87.02

Space Group; Z P213 (No.198); 4 P213 (No.198); 4

a(Å) 4.433(4) 4.4245(16)

V (Å
3
) 87.1(2) 86.61(9)

Absorption Correction Numerical Numerical

Extinction Coefficient 0.39(9) 0.5(2)

θ range (deg) 19.301- 31.714 18.740- 31.781

No. Reflections; Rint 165; 0.0222 167;0.0232

No. Independent Reflections 79 77

No. Parameters 9 9

R1; wR2 (all I) 0.0223; 0.0561 0.0533; 0.1209

Goodness of fit 1.123 1.142

Diffraction peak and hole (e−/Å
3
) 0.637; -0.736 1.155; -1.895

Extended Data Table 1: Single crystal crystallographic data for CoSi at 100(2) and 300(2)K.
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Ȳ

M̄

EXTENDED DATA FIG. 1: Topological Fermi arcs in structurally chiral crystal RhSi. a, ARPES

measured Fermi surface and constant binding energy contours with an incident photon energy of 82eV at

10K. The Brillouin zone (BZ) boundary is marked in blue. b, 3D bulk and 2D surface BZ with higher-

fold chiral fermions (±). The planes outlined in blue and the red cylinder are 2D manifolds with indicated

Chern number n29. The cylinder enclosing the bulk chiral fermion at Γ has n = +2. c, Fermi arcs (orange)

connect the projected chiral fermions. Energy dispersion cuts show that these two chiral edge modes are

time-reversed partners propagating in opposite directions. d, Second derivative Fermi surface with the

straight and loop cuts of interest marked. e, ARPES spectrum along a loopM showing two right-moving

chiral edge modes, suggesting that the 4-fold chiral fermion at R carries Chern number −2. f, ARPES

spectrum along Cut I showing a right-moving chiral edge mode. g, ARPES spectrum along Cut II on the

opposite side of the 3-fold chiral fermion at Γ̄ (illustrated by the blue sphere) showing a left-moving chiral

edge mode.
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EXTENDED DATA FIG. 2: Fermi arc helicoid in RhSi. a, Energy dispersion cut on an inner loop of radius

0.18π/a enclosing the M̄ . b, Lorentzian fits (red traces) to the momentum distribution curves (MDCs; blue

dots) to track the observed chiral edge modes. c, d, Similar analysis to (a, b), but for an outer loop of

radius 0.23π/a. Black arrows show the Fermi velocity direction for the chiral edge modes. e, Top view

and f, perspective view of the helicoid dispersion extracted from the MDCs, plotted on the two concentric

loops, suggesting a clockwise spiral with decreasing binding energy. g, Ab initio calculated constant-energy

contours show a consistent helicoid structure.
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I II III
CoSi

EXTENDED DATA FIG. 3: X-ray diffraction. Single crystal X-ray diffraction precession image of the

(0kl) planes in the reciprocal lattice of CoSi. The resolved spots from scans I and III are consistent with

space group P213 at 100K. This is also shown in the reflection intersection, scan II.
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EXTENDED DATA FIG. 5: Tracking the Fermi arcs by fitting Lorentzians to momentum distribution

curves (MDCs). a, Zoomed-in region of the Fermi surface (Fig. 2d), with Fermi arcs tracked (blue circles)

and the surface Brillouin zone marked (red dotted lines). b, Representative fits of Lorentzian functions (red

lines) to the MDCs (filled blue circles). The peaks indicate the extracted positions of the Fermi arc (open

blue circles) and the X̄ pocket.
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EXTENDED DATA FIG. 6: Photon energy dependence of the Fermi arc in CoSi. a, Location of the in-

plane momentum direction (black arrow) along which a photon energy dependence study was performed,

plotted on the Fermi surface (Fig. 2d), with surface Brillouin zone (red dotted lines). b, Momentum dis-

tribution curves (MDCs) at EF along the in-plane momentum direction illustrated in (a), obtained for a

series of photon energies from 80 eV to 110 eV in steps of 2 eV. The peak associated with the Fermi arc

shows negligible variation in photon energy (dotted line) within experimental resolution, providing further

evidence that the observed Fermi arc is indeed a surface state.
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EXTENDED DATA FIG. 7: Systematics for the helicoid fitting in CoSi. a, Fermi arc trajectory extracted

from Lorentzian fits to the MDCs (blue open circles) near M̄ with overlaid schematic of the observed

features (orange lines). There are two closed contours enclosing M̄ on which we count chiral edge modes,

the outer loop (magenta, Fig. 4) and the inner loop (black). b, Energy-momentum cut along the inner loop,

radius 0.14π/a starting from the green notch in (a) and winding clockwise, black arrow in (a). c, Lorentzian

fits (red curves) to the MDCs (blue dots) to extract the helicoid dispersion of the Fermi arcs. We observe

two right-moving chiral edge modes dispersing towards EF, marked schematically (dotted orange lines).

The corresponding bulk manifold has Chern number n = −214.
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EXTENDED DATA FIG. 8: Surveying the Γ̄ and X̄ pockets on the (001) surface of CoSi. a, ARPES

Fermi surface with the Brillouin zone boundary (red dotted line) and the location of the energy-momentum

cut of interest (magenta dotted line). b, Γ̄ − X̄ − Γ̄ high-symmetry line energy-momentum cut. c, Second

derivative plot of (b). We observe an outer and inner hole-like band at Γ̄, while at X̄ we observe signatures

of a single hole-like band.
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