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The phenomenon of benign overfitting is one of the key mys-
teries uncovered by deep learning methodology: deep neural
networks seem to predict well, even with a perfect fit to noisy
training data. Motivated by this phenomenon, we consider when
a perfect fit to training data in linear regression is compatible
with accurate prediction. We give a characterization of linear
regression problems for which the minimum norm interpolating
prediction rule has near-optimal prediction accuracy. The charac-
terization is in terms of two notions of the effective rank of the
data covariance. It shows that overparameterization is essential
for benign overfitting in this setting: the number of directions
in parameter space that are unimportant for prediction must
significantly exceed the sample size. By studying examples of
data covariance properties that this characterization shows are
required for benign overfitting, we find an important role for
finite-dimensional data: the accuracy of the minimum norm inter-
polating prediction rule approaches the best possible accuracy
for a much narrower range of properties of the data distribution
when the data lie in an infinite-dimensional space vs. when the
data lie in a finite-dimensional space with dimension that grows
faster than the sample size.

statistical learning theory | overfitting | linear regression | interpolation

Deep learning methodology has revealed a surprising statis-
tical phenomenon: overfitting can perform well. The classical
perspective in statistical learning theory is that there should be
a tradeoff between the fit to the training data and the com-
plexity of the prediction rule. Whether complexity is measured
in terms of the number of parameters, the number of nonzero
parameters in a high-dimensional setting, the number of neigh-
bors averaged in a nearest neighbor estimator, the scale of an
estimate in a reproducing kernel Hilbert space, or the bandwidth
of a kernel smoother, this tradeoff has been ubiquitous in statis-
tical learning theory. Deep learning seems to operate outside the
regime where results of this kind are informative since deep neu-
ral networks can perform well even with a perfect fit to the train-
ing data.

As one example of this phenomenon, consider the experi-
ment illustrated in figure 1C in ref. 1: standard deep network
architectures and stochastic gradient algorithms, run until they
perfectly fit a standard image classification training set, give
respectable prediction performance, even when significant levels
of label noise are introduced. The deep networks in the experi-
ments reported in ref. 1 achieved essentially zero cross-entropy
loss on the training data. In statistics and machine learning text-
books, an estimate that fits every training example perfectly is
often presented as an illustration of overfitting [“. . .interpolating
fits. . .[are] unlikely to predict future data well at all” (ref. 2, p.
37)]. Thus, to arrive at a scientific understanding of the success
of deep learning methods, it is a central challenge to understand
the performance of prediction rules that fit the training data
perfectly.

In this paper, we consider perhaps the simplest setting where
we might hope to witness this phenomenon: linear regression.
That is, we consider quadratic loss and linear prediction rules,
and we assume that the dimension of the parameter space is large

enough that a perfect fit is guaranteed. We consider data in an
infinite-dimensional space (a separable Hilbert space), but our
results apply to a finite-dimensional subspace as a special case.
There is an ideal value of the parameters, θ∗, corresponding to
the linear prediction rule that minimizes the expected quadratic
loss. We ask when it is possible to fit the data exactly and still
compete with the prediction accuracy of θ∗. Since we require
more parameters than the sample size in order to fit exactly, the
solution might be underdetermined, and therefore, there might
be many interpolating solutions. We consider the most natural:
choose the parameter vector θ̂ with the smallest norm among
all vectors that gives perfect predictions on the training sample.
(This corresponds to using the pseudoinverse to solve the normal
equations; see below.) We ask when it is possible to overfit in this
way—and embed all of the noise of the labels into the parameter
estimate θ̂—without harming prediction accuracy.

Our main result is a finite sample characterization of when
overfitting is benign in this setting. The linear regression prob-
lem depends on the optimal parameters θ∗ and the covariance
Σ of the covariates x . The properties of Σ turn out to be cru-
cial since the magnitude of the variance in different directions
determines both how the label noise gets distributed across the
parameter space and how errors in parameter estimation in dif-
ferent directions in parameter space affect prediction accuracy.
There is a classical decomposition of the excess prediction error
into two terms. The first is rather standard: provided that the
scale of the problem (that is, the sum of the eigenvalues of Σ) is
small compared with the sample size n , the contribution to θ̂ that
we can view as coming from θ∗ is not too distorted. The second
term is more interesting since it reflects the impact of the noise
in the labels on prediction accuracy. We show that this part is
small if and only if the effective rank of Σ in the subspace cor-
responding to low-variance directions is large compared with n .
This necessary and sufficient condition of a large effective rank
can be viewed as a property of significant overparameterization:
fitting the training data exactly but with near-optimal prediction
accuracy occurs if and only if there are many low-variance (and
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hence, unimportant) directions in parameter space where the
label noise can be hidden.

The details are more complicated. The characterization
depends in a specific way on two notions of effective rank, r
and R; the smaller one, r , determines a split of Σ into large and
small eigenvalues, and the excess prediction error depends on
the effective rank as measured by the larger notion R of the sub-
space corresponding to the smallest eigenvalues. For the excess
prediction error to be small, the smallest eigenvalues of Σ must
decay slowly.

Studying the patterns of eigenvalues that allow benign over-
fitting reveals an interesting role for large but finite dimensions:
in an infinite-dimensional setting, benign overfitting occurs only
for a narrow range of decay rates of the eigenvalues. On the
other hand, it occurs with any suitably slowly decaying eigenvalue
sequence in a finite-dimensional space with dimension that grows
faster than the sample size. Thus, for linear regression, data
that lie in a large but finite-dimensional space exhibit the benign
overfitting phenomenon with a much wider range of covariance
properties than data that lie in an infinite-dimensional space.

The phenomenon of interpolating prediction rules has been
an object of study by several authors over the last two years since
it emerged as an intriguing mystery at the Simons Institute pro-
gram on Foundations of Machine Learning in the spring of 2017.
Belkin et al. (3) described an experimental study demonstrat-
ing that this phenomenon of accurate prediction for functions
that interpolate noisy data also occurs for prediction rules cho-
sen from reproducing kernel Hilbert spaces and explained the
mismatch between this phenomenon and classical generalization
bounds. Belkin et al. (4) gave an example of an interpolating
decision rule—simplicial interpolation—with an asymptotic con-
sistency property as the input dimension gets large. That work
and subsequent work of Belkin et al. (5) studied kernel smooth-
ing methods based on singular kernels that both interpolate
and, with suitable bandwidth choice, give optimal rates for non-
parametric estimation [building on earlier consistency results
(6) for these unusual kernels]. Liang and Rakhlin (7) consid-
ered minimum norm interpolating kernel regression with kernels
defined as nonlinear functions of the Euclidean inner product
and showed that, with certain properties of the training sample
(expressed in terms of the empirical kernel matrix), these meth-
ods can have good prediction accuracy. Belkin et al. (8) studied
experimentally the excess risk as a function of the dimension of
a sequence of parameter spaces for linear and nonlinear classes.

Subsequent to our work, ref. 9 considered the properties of
the interpolating linear prediction rule with minimal expected
squared error. After this work was presented at the NAS Collo-
quium on the Science of Deep Learning (10), we became aware
of the concurrent work of Belkin et al. (11) and of Hastie et al.
(12). Belkin et al. (11) calculated the excess risk for certain linear
models (a regression problem with identity covariance and sparse
optimal parameters, both with and without noise, and a problem
with random Fourier features with no noise), and Hastie et al.
(12) considered linear regression in an asymptotic regime, where
sample size n and input dimension p go to infinity together with
asymptotic ratio p/n→ γ. They assumed that, as p gets large,
the empirical spectral distribution of Σ (the discrete measure
on its set of eigenvalues) converges to a fixed measure, and they
applied random matrix theory to explore the range of behaviors
of the asymptotics of the excess prediction error as γ, the noise
variance, and the eigenvalue distribution vary. They also studied
the asymptotics of a model involving random nonlinear features.
In contrast, we give upper and lower bounds on the excess predic-
tion error for arbitrary finite sample size, for arbitrary covariance
matrices, and for data of arbitrary dimension.

The next section introduces notation and definitions used
throughout the paper, including definitions of the problem of
linear regression and of various notions of effective rank of the

covariance operator. The following section gives the character-
ization of benign overfitting, illustrates why the effective rank
condition corresponds to significant overparameterization, and
presents several examples of patterns of eigenvalues that allow
benign overfitting, suggesting that slowly decaying covariance
eigenvalues in input spaces of growing but finite dimension are
the generic example of benign overfitting. Then we discuss the
connections between these results and the benign overfitting
phenomenon in deep neural networks and outline the proofs of
the results.

Definitions and Notation
We consider linear regression problems, where a linear function
of covariates x from a (potentially infinite-dimensional) Hilbert
space H is used to predict a real-valued response variable y .
We use vector notation, so that x>θ denotes the inner product
between x and θ and xz> denotes the tensor product of x , z ∈H.

Definition 1 (Linear Regression): A linear regression problem
in a separable Hilbert space H is defined by a random covariate
vector x ∈H and outcome y ∈R. We define

1) the covariance operator Σ =E[xx>] and
2) the optimal parameter vector θ∗ ∈H, satisfying

E(y − x>θ∗)2 = minθ E(y − x>θ)2.

We assume that

1) x and y are mean zero;
2) x =VΛ1/2z , where Σ =VΛV> is the spectral decomposi-

tion of Σ and z has components that are independent σ2
x

sub-Gaussian with σx a positive constant: that is, for all λ∈H,

E[exp(λ>z )]≤ exp(σ2
x‖λ‖2/2),

where ‖ · ‖ is the norm in the Hilbert space H;
3) the conditional noise variance is bounded below by some

constant σ2,

E
[
(y − x>θ∗)2

∣∣∣x]≥σ2;

4) y − x>θ∗ is σ2
y sub-Gaussian conditionally on x : that is, for all

λ∈R,

E[exp(λ(y − x>θ∗))|x ]≤ exp(σ2
yλ

2/2)

(note that this implies E[y |x ] = x>θ∗); and
5) almost surely, the projection of the data X on the space ortho-

gonal to any eigenvector of Σ spans a space of dimension n .

Given a training sample (x1, y1), . . . , (xn , yn) of n independent
pairs with the same distribution as (x , y), an estimator returns
a parameter estimate θ∈H. The excess risk of the estimator is
defined as

R(θ) :=Ex ,y

[(
y − x>θ

)
2−
(
y − x>θ∗

)
2
]
,

where Ex ,y denotes the conditional expectation given all random
quantities other than x , y (in this case, given the estimate θ).
Define the vectors y∈Rn with entries yi and ε∈Rn with entries
εi = yi − x>i θ

∗. We use infinite matrix notation: X denotes the
linear map from H to Rn corresponding to x1, . . . , xn ∈H so that
X θ∈Rn has i th component x>i θ. We use similar notation for
the linear map X> from Rn to H.

Notice that Assumptions 1 to 5 are satisfied when x and y are
jointly Gaussian with zero mean and rank(Σ)>n .

We shall be concerned with situations where an estimator θ
can fit the data perfectly: that is, X θ=y. Typically, this implies
that there are many such vectors. We consider the interpolating
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estimator with minimal norm in H. We use ‖ · ‖ to denote both
the Euclidean norm of a vector in Rn and the Hilbert space norm.

Definition 2 (Minimum Norm Estimator): Given data X ∈
Hn and y∈Rn , the minimum norm estimator θ̂ solves the
optimization problem

min
θ∈H

‖θ‖2

such that ‖X θ−y‖2 = min
β
‖Xβ−y‖2.

By the projection theorem, parameter vectors that solve the
least squares problem minβ ‖Xβ−y‖2 solve the normal equa-
tions, and therefore, we can equivalently write θ̂ as the minimum
norm solution to the normal equations

θ̂= arg min
θ

{
‖θ‖2 :X>X θ=X>y

}
=
(
X>X

)
†X>y

=X>
(
XX>

)
†y,

where
(
X>X

)† denotes the pseudoinverse of the bounded lin-
ear operator X>X (for infinite-dimensional H, the existence of
the pseudoinverse is guaranteed because X>X is bounded and
has a closed range) (13). When H has dimension p with p<n
and X has rank p, there is a unique solution to the normal equa-
tions. On the contrary, Assumption 5 in Definition 1 implies that
we can find many solutions θ∈H to the normal equations that
achieve X θ= y . The minimum norm solution is given by

θ̂=X>
(
XX>

)
−1y. [1]

Our main result gives tight bounds on the excess risk of this
minimum norm estimator in terms of certain notions of effec-
tive rank of the covariance that are defined in terms of its
eigenvalues.

We use µ1(Σ)≥µ2(Σ)≥ · · · to denote the eigenvalues of Σ
in descending order, and we denote the operator norm of Σ by
‖Σ‖. We use I to denote the identity operator on H and In to
denote the n ×n identity matrix.

Definition 3 (Effective Ranks): For the covariance operator Σ,
define λi =µi(Σ) for i = 1, 2, . . .. If

∑∞
i=1 λi <∞ and λk+1 > 0

for k ≥ 0, define

rk (Σ) =

∑
i>k λi

λk+1
, Rk (Σ) =

(∑
i>k λi

)
2∑

i>k λ
2
i

.

Main Results
The following theorem establishes nearly matching upper and
lower bounds for the risk of the minimum norm interpolating
estimator.

Theorem 1. For any σx , there are b, c, c1 > 1 for which the fol-
lowing holds. Consider a linear regression problem from Definition
1. Define

k∗= min {k ≥ 0 : rk (Σ)≥ bn},
where the minimum of the empty set is defined as ∞. Suppose
that δ < 1 with log(1/δ)<n/c. If k∗≥n/c1, then ER(θ̂)≥σ2/c.
Otherwise,

R(θ̂)≤ c

(
‖θ∗‖2 ‖Σ‖max

{√
r0(Σ)

n
,
r0(Σ)

n
,

√
log(1/δ)

n

})

+ c log(1/δ)σ2
y

(
k∗

n
+

n

Rk∗(Σ)

)

with probability at least 1− δ, and

ER(θ̂)≥ σ2

c

(
k∗

n
+

n

Rk∗(Σ)

)
.

Moreover, there are universal constants a1, a2,n0 such that, for all
n ≥n0, for all Σ, and for all t ≥ 0, there is a θ∗ with ‖θ∗‖= t

such that, for x ∼N (0, Σ) and y |x ∼N (x>θ∗, ‖θ∗‖2‖Σ‖) with
probability at least 1/4,

R(θ̂)≥ 1

a1
‖θ∗‖2 ‖Σ‖1

[
r0(Σ)

n log (1 + r0(Σ))
≥ a2

]
.

Effective Ranks and Overparameterization. In order to understand
the implications of Theorem 1, we now study relationships
between the two notions of effective rank, rk and Rk , and estab-
lish sufficient and necessary conditions for the sequence {λi} of
eigenvalues to lead to small excess risk.

The following lemma shows that the two notions of effective
rank are closely related. SI Appendix, section H has its proof and
other properties of rk and Rk .

Lemma 1. rk (Σ)≥ 1, r2
k (Σ) = rk (Σ2)Rk (Σ), and

rk (Σ2)≤ rk (Σ)≤Rk (Σ)≤ r2
k (Σ).

Notice that r0(Ip) =R0(Ip) = p. More generally, if all of the
nonzero eigenvalues of Σ are identical, then r0(Σ) =R0(Σ) =
rank(Σ). For Σ with finite rank, we can express both r0(Σ) and
R0(Σ) as a product of the rank and a notion of symmetry. In
particular, for rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =

1
p

∑p
i=1 λi

λ1
, S(Σ) =

(
1
p

∑p
i=1 λi

)2
1
p

∑p
i=1 λ

2
i

.

Both notions of symmetry s and S lie between 1/p (when λ2→
0) and 1 (when the λi are all equal).

Theorem 1 shows that, for the minimum norm estimator to
have near-optimal prediction accuracy, r0(Σ) should be small
compared with the sample size n (from the first term) and
rk∗(Σ) and Rk∗(Σ) should be large compared with n . Together,
these conditions imply that overparameterization is essential for
benign overfitting in this setting: the number of nonzero eigen-
values should be large compared with n , they should have a small
sum compared with n , and there should be many eigenvalues no
larger than λk∗ . If the number of these small eigenvalues is not
much larger than n , then they should be roughly equal, but they
can be more asymmetric if there are many more of them.

The following theorem shows that the kind of overparameter-
ization that is essential for benign overfitting requires Σ to have
a heavy tail. (The proof—and some other examples illustrating
the boundary of benign overfitting—are in SI Appendix, section
I.) In particular, if we fix Σ in an infinite-dimensional Hilbert
space and ask when the excess risk of the minimum norm esti-
mator approaches zero as n→∞, it imposes tight restrictions on
the eigenvalues of Σ. However, there are many other possibilities
for these asymptotics if Σ can change with n . Since rescaling X
affects the accuracy of the least norm interpolant in an obvious
way, we may assume without loss of generality that ‖Σ‖= 1. If
we restrict our attention to this case, then informally, Theorem 1
implies that, when the covariance operator for data with n exam-
ples is Σn , the least norm interpolant converges if r0(Σn )

n
→ 0,

k∗
n
n
→ 0, and n

Rk∗n
(Σn )
→ 0 and only if r0(Σn )

n log(1+r0(Σn ))
→ 0, k∗

n
n
→ 0,

and n
Rk∗n

(Σn )
→ 0, where k∗n = min {k ≥ 0 : rk (Σn)≥ bn} for the
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universal constant b in Theorem 1. This motivates the following
definition.

Definition 4: A sequence of covariance operators Σn with
‖Σn‖= 1 is benign if

lim
n→∞

r0(Σn)

n
= lim

n→∞

k∗n
n

= lim
n→∞

n

Rk∗
n

(Σn)
= 0.

We give some examples of benign and nonbenign settings.
Theorem 2.

1) If µk (Σ) = k−α ln−β((k + 1)e/2), then Σ is benign if and only
if α= 1 and β > 1.

2) If

µk (Σn) =

{
γk + εn if k ≤ pn ,

0 otherwise

and γk = Θ(exp(−k/τ)), then Σn with ‖Σn‖= 1 is benign if and
only if pn =ω(n) and ne−o(n) = εnpn = o(n). Furthermore, for
pn = Ω(n) and εnpn =ne−o(n),

R(θ̂)=O

(
εnpn + 1

n
+

ln(n/(εnpn))

n
+ max

{
1

n
,
n

pn

})
.

Compare the situations described by Theorem 2.1 and 2.2.
Theorem 2.1 shows that, for infinite-dimensional data with a
fixed covariance, benign overfitting occurs if and only if the
eigenvalues of the covariance operator decay just slowly enough
for their sum to remain finite. Theorem 2.2 shows that the sit-
uation is very different if the data have finite dimension and a
small amount of isotropic noise is added to the covariates. In
that case, even if the eigenvalues of the original covariance oper-
ator (before the addition of isotropic noise) decay very rapidly,
benign overfitting occurs if and only if both the dimension is
large compared with the sample size and the isotropic compo-
nent of the covariance is sufficiently small—but not exponentially
small—compared with the sample size.

These examples illustrate the tension between the slow
decay of eigenvalues that is needed for k/n +n/Rk to be
small and the summability of eigenvalues that is needed for
r0(Σ)/n to be small. There are two ways to resolve this
tension. First, in the infinite-dimensional setting, slow decay
of the eigenvalues suffices—decay just fast enough to ensure
summability—as shown by Theorem 2.1. (SI Appendix, section I
gives another example—Theorem S14.2—where the eigenvalue
decay is allowed to vary with n; in that case, Σn is benign iff the
decay rate gets close—but not too close—to 1/k as n increases.)
Second, the other way to resolve the tension is to consider a
finite-dimensional setting (which ensures that the eigenvalues
are summable), and in this case, arbitrarily slow decay is possi-
ble. Theorem 2.2 gives an example of this: eigenvalues that are
all at least as large as a small constant. SI Appendix, section I
gives other examples with a similar flavor, including a truncated
infinite series that decays sufficiently slowly that the sum does
not converge (SI Appendix, section I, Theorem S14.3). Theorem
2.1 shows that a very specific decay rate is required in infinite
dimensions, which suggests that this is an unusual phenomenon
in that case. The more generic scenario where benign overfit-
ting will occur is demonstrated by Theorem 2.2, with eigenvalues
that are either at least a constant or slowly decaying in a very
high—but finite-dimensional—space.

Proof
Throughout the proofs, we treat σx (the sub-Gaussian norm of
the covariates) as a constant. Therefore, we use the symbols
b, c, c1, c2, . . . to refer to constants that only depend on σx . Their

values are suitably large (and always at least one) but do not
depend on any parameters of the problems that we consider
other than σx . For universal constants that do not depend on
any parameters of the problem at all, we use the symbol a . Also,
whenever we sum over eigenvectors of Σ, the sum is restricted to
eigenvectors with nonzero eigenvalues.

Outline. The first step is a standard decomposition of the excess
risk into two pieces, a term that corresponds to the distortion
that is introduced by viewing θ∗ through the lens of the finite
sample and a term that corresponds to the distortion introduced
by the noise ε=y−X θ. The impact of both sources of error in θ̂
on the excess risk is modulated by the covariance Σ, which gives
different weight to different directions in parameter space.

Lemma 2. The excess risk of the minimum norm estimator sat-
isfies R(θ̂)≤ 2θ∗>Bθ∗+ cσ2 log(1/δ) tr(C ) with probability at
least 1− δ over ε, and EεR(θ̂)≥ θ∗>Bθ∗+σ2 tr(C ), where

B =
(
I −X>

(
XX>

)
−1X

)
Σ
(
I −X>

(
XX>

)
−1X

)
,

C =
(
XX>

)
−1XΣX>

(
XX>

)
−1.

The proof of this lemma is in SI Appendix, section A. SI
Appendix, sections J and K give bounds on the term θ∗>Bθ∗. The
heart of the proof is controlling tr(C ).

Before continuing with the proof, let us make a quick digres-
sion to note that Lemma 2 already begins to give an idea that
many low-variance directions are necessary for the least norm
interpolator to succeed. Let us consider the extreme case that
p =n and Σ = I . In this case, C =

(
XX>

)−1. For Gaussian data,
for instance, standard random matrix theory implies that, with
high probability, the eigenvalues of XX> will all be within a con-
stant factor of n , which implies that tr(C ) is bounded below
by a constant, and then, Lemma 2 implies that the least norm
interpolant’s excess risk is at least a constant.

To prove that tr(C ) can be controlled for suitable Σ, the
first step is to express it in terms of sums of outer products of
unit-covariance, independent, sub-Gaussian random vectors. We
show that, when there is a k∗ with k∗/n small and rk∗(Σ)/n
large, all of the smallest eigenvalues of these matrices are
suitably concentrated, and this implies that tr(C ) is bounded
above by

min
l≤k∗

(
l

n
+n

∑
i>l λ

2
i

(λk∗+1rk∗(Σ))2

)
.

(Later, we show that the minimizer is l = k∗.) Next, we show
that this expression is also a lower bound on tr(C ) provided that
there is such a k∗. Conversely, we show that, for any k for which
rk (Σ) is not large compared with n , tr(C ) is at least as big as a
constant times min(1, k/n). Combining shows that, when k∗/n
is small, tr(C ) is upper and lower bounded by constant factors
times

k∗

n
+

n

Rk∗(Σ)
.

Unit Variance Sub-Gaussians. Our assumptions allow the trace
of C to be expressed as a function of many independent
sub-Gaussian vectors.

Lemma 3. Consider a covariance operator Σ with λi =µi(Σ)
and λn > 0. Write its spectral decomposition Σ =

∑
j λj vj v

>
j ,

where the orthonormal vj ∈H are the eigenvectors corresponding
to the λj . For i with λi > 0, define zi =Xvi/

√
λi . Then,

tr (C )=
∑
i

[
λ2
i z
>
i

(∑
j

λj zj z
>
j

)
−2zi

]
,
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and these zi ∈Rn are independent σ2
x sub-Gaussian. Furthermore,

for any i with λi > 0, we have

λ2
i z
>
i

(∑
j

λj zj z
>
j

)−2

zi =
λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
,

where A−i =
∑

j 6=i λj zj z
>
j .

Proof : By Assumption 2 in Definition 1, the random variables
x>vi/

√
λi are independent σ2

x sub-Gaussian. We consider X in
the basis of eigenvectors of Σ, Xvi =

√
λizi , to see that

XX>=
∑
i

λiziz
>
i , XΣX>=

∑
i

λ2
i ziz

>
i ,

and therefore, we can write

tr (C ) = tr
((

XX>
)
−1XΣX>

(
XX>

)
−1
)

=
∑
i

[
λ2
i z
>
i

(∑
j

λj zj z
>
j

)
−2zi

]
.

For the second part, we use SI Appendix, section B, Lemma S3,
which is a consequence of the Sherman–Woodbury–Morrison
formula

λ2
i z
>
i

(∑
j

λj zj z
>
j

)−2

zi =λ2
i z
>
i

(
λiziz

>
i +A−i

)
−2zi

=
λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
,

by SI Appendix, section B, Lemma S3 for the case k = 1 and
Z =
√
λizi . Note that A−i is invertible by Assumption 5 in

Definition 1. �
The weighted sum of outer products of these sub-Gaussian

vectors plays a central role in the rest of the proof. Define

A=
∑
i

λiziz
>
i , A−i =

∑
j 6=i

λj zj z
>
j , Ak =

∑
i>k

λiziz
>
i ,

where the zi ∈Rn are independent vectors with independent σ2
x

sub-Gaussian coordinates with unit variance defined in Lemma
3. Note that the vector zi is independent of the matrix A−i ,
and therefore, in the last part of Lemma 3, all of the random
quadratic forms are independent of the points where those forms
are evaluated.

Concentration of A. The next step is to show that eigenvalues of
A, A−i , and Ak are concentrated. The proof of the following
inequality is in SI Appendix, section C. Recall that µ1(A) and
µn(A) denote the largest and the smallest eigenvalues of the
n ×n matrix A.

Lemma 4. There is a constant c such that, for any k ≥ 0 with
probability at least 1− 2e−n/c ,

1

c

∑
i>k

λi − cλk+1n ≤µn(Ak )≤µ1(Ak )≤ c

(∑
i>k

λi +λk+1n

)
.

The following lemma uses this result to give bounds on the
eigenvalues of Ak , which in turn, give bounds on some eigenval-
ues of A−i and A. For these upper and lower bounds to match
up to a constant factor, the sum of the eigenvalues of Ak should
dominate the term involving its leading eigenvalue, which is a
condition on the effective rank rk (Σ). The lemma shows that,

after rk (Σ) is sufficiently large, all of the eigenvalues of Ak are
identical up to a constant factor.

Lemma 5. There are constants b, c≥ 1 such that, for any k ≥ 0,
with probability at least 1− 2e−n/c ,

1) for all i ≥ 1,

µk+1(A−i)≤µk+1(A)≤µ1(Ak )≤ c

∑
j>k

λj +λk+1n

;

2) for all 1≤ i ≤ k ,

µn(A)≥µn(A−i)≥µn (Ak )≥ 1

c

∑
j>k

λj − cλk+1n;

and
3) if rk (Σ)≥ bn , then

1

c
λk+1rk (Σ)≤µn (Ak )≤µ1(Ak )≤ cλk+1rk (Σ).

Proof : By Lemma 4, we know that, with probability at least
1− 2e−n/c1 ,

1

c1

∑
j>k

λj − c1λk+1n ≤µn(Ak )

≤µ1(Ak )≤ c1

∑
j>k

λj +λk+1n

.
First, the matrix A−Ak has rank at most k (as a sum of k matri-
ces of rank 1). Thus, there is a linear space L of dimension
n − k such that, for all v ∈L , v>Av = v>Akv ≤µ1(Ak )‖v‖2
and therefore, µk+1(A)≤µ1(Ak ).

Second, by the Courant–Fischer–Weyl Theorem, for all i and
j , µj (A−i)≤µj (A) (SI Appendix, section G, Lemma S11). On
the other hand, for i ≤ k , Ak �A−i , and therefore, all of the
eigenvalues of A−i are lower bounded by µn(Ak ).

Finally, if rk (Σ)≥ bn ,∑
j>k

λj +λk+1n =λk+1rk (Σ) +λk+1n

≤
(

1 +
1

b

)
λk+1rk (Σ),

1

c1

∑
j>k

λj − c1λk+1n =
1

c1
λk+1rk (Σ)− c1λk+1n

≥
(

1

c1
− c1

b

)
λk+1rk (Σ).

Choosing b> c2
1 and c>max

{
c1 + 1/c1, (1/c1− c1/b)−1

}
gives the third claim of the lemma. �

Upper Bound on the Trace Term. Lemma 6. There are constants
b, c≥ 1 such that, if 0≤ k ≤n/c, rk (Σ)≥ bn , and l ≤ k , then with
probability at least 1− 7e−n/c ,

tr(C )≤ c

(
l

n
+n

∑
i>l λ

2
i(∑

i>k λi

)
2

)
.

The proof uses the following lemma and its corollary. Their
proofs are in SI Appendix, section C.

Lemma 7. Suppose that {λi}∞i is a nonincreasing sequence of
nonnegative numbers such that

∑∞
i=1 λi <∞ and that {ξi}∞i=1 are

independent centered σ-subexponential random variables. Then, for
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some universal constant a for any t > 0, with probability at least
1− 2e−t , ∣∣∣∣∣∑

i

λiξi

∣∣∣∣∣≤ aσmax

tλ1,

√
t
∑
i

λ2
i

.
Corollary 1. Suppose that z ∈Rn is a centered random vector

with independent σ2 sub-Gaussian coordinates with unit variances,
L is a random subspace of Rn of codimension k , and L is inde-
pendent of z . Then, for some universal constant a and any t > 0,
with probability at least 1− 3e−t ,

‖z‖2≤n + aσ2(t +
√
nt),

‖ΠL z‖2≥n − aσ2(k + t +
√
nt),

where ΠL is the orthogonal projection on L .
Proof of Lemma 6: Fix b to its value in Lemma 5. By Lemma 3,

tr(C ) =
∑
i

λ2
i z
>
i A−2zi

=

l∑
i=1

λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
+
∑
i>l

λ2
i z
>
i A−2zi . [2]

First, consider the sum up to l . If rk (Σ)≥ bn , Lemma
5 shows that, with probability at least 1− 2e−n/c1 for all
i ≤ k , µn(A−i)≥λk+1rk (Σ)/c1 and for all i , µk+1(A−i)≤
c1λk+1rk (Σ). The lower bounds on the µn(A−i) imply that, for
all z ∈Rn and 1≤ i ≤ l ,

z>A−2
−i z ≤

c2
1‖z‖2

(λk+1rk (Σ))2
,

and the upper bounds on the µk+1(A−i) give

z>A−1
−i z ≥ (ΠLi z )>A−1

−i ΠLi z ≥
‖ΠLi z‖2

c1λk+1rk (Σ)
,

where Li is the span of the n − k eigenvectors of A−i cor-
responding to its smallest n − k eigenvalues. Therefore, for
i ≤ l ,

λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
≤

z>i A−2
−i zi

(z>i A−1
−i zi)

2
≤ c4

1
‖zi‖2

‖ΠLi zi‖4
. [3]

Next, we apply Corollary 1 l times together with a union bound
to show that, with probability at least 1− 3e−t for all 1≤ i ≤ l ,

‖zi‖2≤n + aσ2
x (t + ln k +

√
n(t + ln k))≤ c2n, [4]

‖ΠLi zi‖
2≥n − aσ2

x (k + t + ln k +
√

n(t + ln k))≥n/c3, [5]

provided that t <n/c0 and c> c0 for some sufficiently large c0

(note that c2 and c3 only depend on c0, a , and σx , and we can
still take c large enough in the end without changing c2 and c3).
Combining Eqs. 3–5, with probability at least 1− 5e−n/c0 ,

l∑
i=1

λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
≤ c4

l

n
.

Second, consider the second sum in Eq. 2. Lemma 5 shows
that, on the same high-probability event that we considered
in bounding the first half of the sum, µn(A)≥λk+1rk (Σ)/c1.
Hence, ∑

i>l

λ2
i z
>
i A−2zi ≤

c2
1

∑
i>l λ

2
i ‖zi‖2

(λk+1rk (Σ))2
.

Notice that
∑

i>l λ
2
i ‖zi‖2 is a weighted sum of σ2

x -subexponential
random variables, with the weights given by theλ2

i in blocks of size
n . Lemma 7 implies that, with probability at least 1− 2e−t ,

∑
i>l

λ2
i ‖zi‖2≤n

∑
i>l

λ2
i + aσ2

x max

λ2
l+1t ,

√
tn
∑
i>l

λ4
i


≤n

∑
i>l

λ2
i + aσ2

x max

(
t
∑
i>l

λ2
i ,
√
tn
∑
i>l

λ2
i

)
≤ c5n

∑
i>l

λ2
i

because t <n/c0. Combining the above gives∑
i>l

λ2
i z
>
i A−2zi ≤ c6n

∑
i>l λ

2
i

(λk+1rk (Σ))2
.

Finally, putting both parts together and taking c>max{c0,
c4, c6} gives the lemma. �

Lower Bound on the Trace Term. We first give a bound on a sin-
gle term in the expression for tr(C ) in Lemma 3 that holds
regardless of rk (Σ). The proof is in SI Appendix, section D.

Lemma 8. There is a constant c such that, for any i ≥ 1 with
λi > 0 and any 0≤ k ≤n/c, with probability at least 1− 5e−n/c ,

λ2
i z
>
i A−2
−i zi

(1 +λiz>i A−1
−i zi)

2
≥ 1

cn

(
1 +

∑
j>k λj +nλk+1

nλi

)−2

.

We can extend these bounds to a lower bound on tr(C ) using
the following lemma. The proof is in SI Appendix, section E.

Lemma 9. Suppose that n ≤∞, {ηi}ni=1 is a sequence of non-
negative random variables, and that {ti}ni=1 is a sequence of
nonnegative real numbers (at least one of which is strictly positive)
such that, for some δ ∈ (0, 1) and any i ≤n , Pr(ηi > ti)≥ 1− δ.
Then,

Pr

(
n∑

i=1

ηi ≥
1

2

n∑
i=1

ti

)
≥ 1− 2δ.

These two lemmas imply the following lower bound.
Lemma 10. There are constants c such that, for any 0≤ k ≤n/c

and any b> 1 with probability at least 1− 10e−n/c ,

1) if rk (Σ)< bn , then tr(C )≥ k+1
cb2n

; and
2) if rk (Σ)≥ bn , then

tr(C )≥ 1

cb2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk (Σ))2

)
.

In particular, if all choices of k ≤n/c give rk (Σ)< bn , then
rn/c(Σ)< bn implies that, with probability at least 1− 10e−n/c ,
tr(C ) = Ωσx (1).

Proof : From Lemmas 3, 8, and 9, with probability at least 1−
10e−n/c1 ,

tr(C )≥ 1

c1n

∑
i

(
1 +

∑
j>k λj +nλk+1

nλi

)−2

≥ 1

c2n

∑
i

min

1,
n2λ2

i(∑
j>k λj

)2 ,
λ2
i

λ2
k+1


≥ 1

c2b2n

∑
i

min

{
1,

(
bn

rk (Σ)

)2
λ2
i

λ2
k+1

,
λ2
i

λ2
k+1

}
.
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Now, if rk (Σ)< bn , then the second term in the minimum is
always bigger than the third term, and in that case,

tr(C )≥ 1

c2b2n

∑
i

min

{
1,

λ2
i

λ2
k+1

}
≥ k + 1

c2b2n
.

On the other hand, if rk (λ)≥ bn ,

tr(C )≥ 1

c2b2

∑
i

min

{
1

n
,

b2nλ2
i

(λk+1rk (Σ))2

}

=
1

c2b2
min
l≤k

(
l

n
+

b2n
∑

i>l λ
2
i

(λk+1rk (Σ))2

)
,

where the equality follows from the fact that the λi are
nonincreasing. �

A Simple Choice of l. Recall that σx is a constant. If no k ≤n/c
has rk (Σ)≥ bn , then Lemmas 2 and 10 imply that the expected
excess risk is Ω(σ2), which proves the first paragraph of Theo-
rem 1 for large k∗. If some k ≤n/c does have rk (Σ)≥ bn , then
the upper and lower bounds of Lemmas 6 and 10 are constant
multiples of

min
l≤k

(
l

n
+n

∑
i>l λ

2
i

(λk+1rk (Σ))2

)
.

It might seem surprising that any suitable choice of k suffices
to give upper and lower bounds: what prevents one choice of k
from giving an upper bound that falls below the lower bound
that arises from another choice of k? However, the freedom
to choose k is somewhat illusory: Lemma 5 shows that, for any
qualifying value of k , the smallest eigenvalue of A is within a con-
stant factor of λk+1rk (Σ). Thus, any two choices of k satisfying
k ≤n/c and rk (Σ)≥ bn must have values of λk+1rk (Σ) within
constant factors. The smallest such k simplifies the bound on
tr(C ) as the following lemma shows. The proof is in SI Appendix,
section F.

Lemma 11. For any b≥ 1 and k∗ := min {k : rk (Σ)≥ bn}, if
k∗<∞, we have

min
l≤k∗

(
l

bn
+

bn
∑

i>l λ
2
i

(λk∗+1rk∗(Σ))2

)

=
k∗

bn
+

bn
∑

i>k∗ λ
2
i

(λk∗+1rk∗(Σ))2
=

k∗

bn
+

bn

Rk∗(Σ)
.

Finally, we can finish the proof of Theorem 1. Set b in Lemma
10 and Theorem 1 to the constant b from Lemma 6. Take c1 to
be the maximum of the constants c from Lemmas 6 and 10.

By Lemma 10, if k∗≥n/c1, then with high probability tr(C )≥
1/c2. However, by Lemma 10.2 and by Lemma 6, if k∗<n/c1,
then with high probability tr(C ) is within a constant factor of

minl≤k∗

(
l
n

+n
∑

i>l λ
2
i

(λk∗+1rk∗ (Σ))2

)
, which by Lemma 11, is within

a constant factor of k∗

n
+ n

Rk∗ (Σ)
. Taking c sufficiently large and

combining these results with Lemma 2 and with the upper bound
on the term θ∗>Bθ∗ in SI Appendix, section J completes the
proof of the first paragraph of Theorem 1.

The proof of the second paragraph is in SI Appendix,
section K.

Deep Neural Networks
How relevant are Theorems 1 and 2 to the phenomenon of
benign overfitting in deep neural networks? One connection

appears by considering regimes where deep neural networks
are well approximated by linear functions of their parameters.
This so-called neural tangent kernel (NTK) viewpoint has been
vigorously pursued recently in an attempt to understand the
optimization properties of deep learning methods. Very wide
neural networks, trained with gradient descent from a suit-
able random initialization, can be accurately approximated by
linear functions in an appropriate Hilbert space, and in this
case, gradient descent finds an interpolating solution quickly
(14–19). (Note that these papers do not consider prediction
accuracy, except when there is no noise; for example, ref. 14,
Assumption A1 implies that the network can compute a suit-
able real-valued response exactly, and the data-dependent bound
of ref. 19, Theorem 5.1 becomes vacuous when independent
noise is added to the yi .) The eigenvalues of the covariance
operator in this case can have a heavy tail under reasonable
assumptions on the data distribution (20, 21), and the dimen-
sion is very large but finite as required for benign overfitting.
However, the assumptions of Theorem 1 do not apply in this
case. In particular, the assumption that the random elements
of the Hilbert space are a linearly transformed vector with
independent components is not satisfied. Thus, our results are
not directly applicable in this—somewhat unrealistic—setting.
Note that the slow decay of the eigenvalues of the NTK is
in contrast to the case of the Gaussian and other smooth
kernels, where the eigenvalues decay nearly exponentially
quickly (22).

The phenomenon of benign overfitting was first observed in
deep neural networks. Theorems 1 and 2 are steps toward under-
standing this phenomenon by characterizing when it occurs in
the simple setting of linear regression. Those results suggest
that covariance eigenvalues that are constant or slowly decay-
ing in a high (but finite)-dimensional space might be important
in the deep network setting also. Some authors have suggested
viewing neural networks as finite-dimensional approximations to
infinite-dimensional objects (23–25), and there are generaliza-
tion bounds—although not for the overfitting regime—that are
applicable to infinite-width deep networks with parameter norm
constraints (26–30). However, the intuition from the linear set-
ting suggests that truncating to a finite-dimensional space might
be important for good statistical performance in the overfitting
regime. Confirming this conjecture by extending our results to
the setting of prediction in deep neural networks is an important
open problem.

Conclusions and Further Work
Our results characterize when the phenomenon of benign
overfitting occurs in high-dimensional linear regression with
Gaussian data and more generally. We give finite sample excess
risk bounds that reveal the covariance structure that ensures
that the minimum norm interpolating prediction rule has near-
optimal prediction accuracy. The characterization depends on
two notions of the effective rank of the data covariance opera-
tor. It shows that overparameterization (that is, the existence of
many low-variance and hence, unimportant directions in param-
eter space) is essential for benign overfitting and that data that
lie in a large but finite-dimensional space exhibit the benign
overfitting phenomenon with a much wider range of covari-
ance properties than data that lie in an infinite-dimensional
space.

There are several natural future directions. Our main theorem
requires the conditional expectation E[y |x ] to be a linear func-
tion of x , and it is important to understand whether the results
are also true in the misspecified setting, where this assumption
is not true. Our main result also assumes that the covariates
are distributed as a linear function of a vector of independent
random variables. We would like to understand the extent to
which this assumption can be relaxed since it rules out some
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important examples, such as infinite-dimensional reproducing
kernel Hilbert spaces with continuous kernels defined on finite-
dimensional spaces. We would also like to understand how our
results extend to other loss functions other than squared error
and what we can say about overfitting estimators beyond the min-
imum norm interpolating estimator. The most interesting future
direction is understanding how these ideas could apply to non-
linearly parameterized function classes, such as neural networks,
the methodology that uncovered the phenomenon of benign
overfitting.
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manuscript.
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