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ABSTRACT

Incommensurate charge order in hole-doped oxides is intertwined with exotic

phenomena such as colossal magnetoresistance, high-temperature superconduc-

tivity, and electronic nematicity. Here, we map at atomic resolution the nature

of incommensurate order in a manganite using scanning transmission electron

microscopy at room temperature and cryogenic temperature (∼ 93K). In diffrac-

tion, the ordering wavevector changes upon cooling, a behavior typically asso-

ciated with incommensurate order. However, using real space measurements,

we discover that the underlying ordered state is lattice-commensurate at both

temperatures. The cations undergo picometer-scale (∼6-11 pm) transverse dis-

placements, which suggests that charge-lattice coupling is strong and hence fa-

vors lattice-locked modulations. We further unearth phase inhomogeneity in

the periodic lattice displacements at room temperature, and emergent phase

coherence at 93K. Such local phase variations not only govern the long range

correlations of the charge-ordered state, but also results in apparent shifts in the

ordering wavevector. These atomically-resolved observations underscore the im-

portance of lattice coupling and provide a microscopic explanation for putative

”incommensurate” order in hole-doped oxides.
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INTRODUCTION

Charge-ordered phases permeate the phase diagrams of strongly correlated systems such

as cuprate high-temperature superconductors, colossal magnetoresitive manganites, and 2D

transition-metal dichalcogenides.1–8. Charge order is a modulation of the electron density

that breaks lattice translational symmetry and induces periodic lattice displacements via

electron-lattice coupling. Bulk measurements have unearthed complex interactions between

charge order and electronic phases including direct competition with superconductivity or

mediation of colossal magnetoresistance, which highlights the importance of charge order in

understanding and manipulating novel phases of matter2,6–9.

While the precise microscopic mechanism of charge ordering remains under intense

scrutiny, measurements of modulation wavevectors in various materials have establishd a

tendency towards incommensurate order1,3,5,10–14. The presence of incommensuration coin-

cides with the emergence of competing phases such as superconductivity and has motivated

interrogation of the role of Fermi surface instabilities10,15–18. Scattering experiments, for

instance, have measured changes in the positions of incommensurate wavevectors as a func-

tion of temperature, pressure or doping, which is thought to reflect changes in the nesting

of the Fermi surface. However, coupling to quenched impurities and attendant order pa-

rameter fluctuations profoundly alter correlation lengths and symmetry, and complicate

experimental interpretation of reciprocal space behavior14,19,20.

Bi1−xSrx−yCayMnO3 (BSCMO) is a model charge-ordered manganite with a high, tunable

transition temperature (Tc)
21. Dark-field transmission electron microscopy has previously

visualized striped superstructures in manganites, interpreting contrast as the ordering of

holes on alternating manganese sites (Mn3+-Mn4+)1,3,10. Other experiments based on trans-

port and electron diffraction advance that charge order corresponds to a uniform charge

density wave with small valence modulations22,23. The debate is partly motivated by the

need to reconcile incommensurate wavevectors with discrete charge ordering. Understanding

striped phases in manganites is further complicated by the ubiquity of quenched disorder and

nanoscale phase inhomogeneity. Optical studies on BSCMO, for instance, suggest that long-

range correlations gradually develop below Tc, an indication that charge order is disturbed

by temperature-dependent spatial inhomogeneity24. To achieve a microscopic understand-

ing of charge-ordered states, atomic-scale characterization of individual degrees of freedom
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is necessary.

Room temperature scanning transmission electron microscopy (STEM) enables measure-

ments of atomic column positions with picometer precision25 and has been used to unravel,

for instance, novel ferroelectric behavior in oxides26,27. Recently, we have revealed peri-

odic lattice displacements associated with charge ordering at room temperature in BSCMO

(Tc ∼ 300K) and visualized nanoscale inhomogeneity in the modulation field28. Here, we

demonstrate cryogenic STEM imaging with sub-Angstrom resolution (∼0.78Å) and sufficient

signal-to-noise ratio to visualize the charge-ordered state in BSCMO well below Tc. Earlier

cryogenic STEM studies have observed ordering phenomena29,30, however, stage instability,

limited resolution, and low signal-to-noise ratio have precluded mapping of picometer-scale

lattice behavior.

In BSCMO, we find that the lattice modulations are commensurate over nanometer scales

at both room temperature and cryogenic temperature. In contrast, area-averaged diffraction

measurements suggest that the modulation wavevector is incommensurate and that it varies

with temperature. By extracting the phase of the lattice modulations, we uncover nanoscale

phase variations which not only control long-range ordering, but also result in wavevector

shifts in reciprocal space. Upon cooling, the phase field becomes more homogeneous and

the wavevector converges to the underlying, commensurate value. Our observations sup-

port that strong lattice coupling favors commensurate order and that local inhomogeneity

fundamentally alters macroscopic measurements of ordering wavevectors. More generally,

cryogenic STEM paves the way for direct visualization of correlated lattice order with pi-

cometer precision over atomic and nanometer scales.

Results

Bi1−xSrx−yCayMnO3 (BSCMO) single crystals are grown using the flux method, using

Bi2O3, CaCO3, SrCO3, and Mn2O3, as reported previously28. We measure the composition

of BSCMO to be approximately x = 0.65 and y = 0.47 and find that a resistivity anomaly

associated with charge ordering occurs at Tc ∼ 300K (SI Appendix, Fig. S1). Figure 1A

shows a typical, room temperature (293K) electron diffraction pattern of BSCMO, which

we index in the Pnma space group. In addition to crystalline Bragg peaks, we observe

superlattice peaks at ±q indicating the presence of a periodic modulation at both 293K
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(Fig. 1B) and 93K (Fig. 1C). The projected intensity of the (-2+q,0,2) peak along a∗ at

293K (red) and 93K (blue) is shown in Fig. 1D. At each temperature, the intensity profile

is obtained by integrating between the tick marks in Figs. 1B and 1C, and is normalized

by the respective integrated intensity of the 2̄02 Bragg peak. We note a clear shift in the

superlattice peak position upon cooling, from q = 0.318 reciprocal lattice units (r.l.u) at

293K to q = 0.331 r.l.u. at 93K (SI Appendix, Fig. S7). By fitting multiple satellite

in the diffraction pattern, we obtain the average wavevector and its uncertainty at each

temperature. The average wavevector is q = 0.314±0.003 r.l.u at 293K and q = 0.332±0.001

r.l.u at 93K. The magnitude of the wavevector shift is δq = 0.018±0.003 r.l.u. Temperature-

dependent wavevector variations, as observed here, are typically considered an indication of

incommensurate order.

In addition to a shift in the wavevector, the superlattice peak also exhibits a clear increase

in intensity, I, and a decrease in the full-width-at-half maximum, σk, at low temperature.

Fitting a Lorentzian function and a linear background to the projected q peak, we find that

I(93K)/I(293K) ∼ 1.46 and σk(93K)/σk(293K) ∼ 0.57 (SI Appendix, Fig. S7). The weaker

2q peak, while almost undetectable at room temperature, is relatively sharp and well defined

at 93K (Fig. 1E). These observations indicate that charge order strength and correlations

increase well below Tc.

From previous real space measurements at room temperature, we uncovered periodic

lattice displacements (PLD) associated with charge ordering in BSCMO28. Periodic lattice

displacements may be described by the order parameter

∆(r) = Re{A(r)eiφ(r)eiq.r}

where A(r) is the displacement vector, q is the wavevector, and φ(r) is the phase. The

modulations give rise to complex-valued satellite peaks in the Fourier transform (FT) which

are given by S(k) ∼ ∑
{r}

exp[i(k± q).r] exp[iφ(r)] where {r} is the set of lattice positions

(SI Appendix, Structure Factor of Periodic Lattice Displacements). Phase information not

only encodes the particular realization of ∆(r), but also its disorder. Since diffraction

experiments probe the intensity (I(k) ∼ |S(k)|2), they are insensitive to phase information

and provide instead globally-averaged measurements of correlation lengths, intensities, and

wavevectors6. However, the microscopic picture of incommensurate modulations and their

temperature (or doping) dependence may be linked to phase information14.
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To overcome challenges associated with intensity-based techniques, we characterize ∆(r)

using phase-sensitive, real space STEM. Figure 2A shows a high-angle annular dark-field

(HAADF) STEM lattice image at 93K; Bi/Sr/Ca columns (green) appear bright, Mn

columns (red) appear faint, and O atoms are invisible. The contrast is due to the de-

pendence of the scattering cross-section in HAADF-STEM on the atomic number. The

temperature of the sample (∼93K) is directly read from a thermocouple near the tip of

the sample rod, but the true temperature may be slightly higher. To minimize stage drift

and noise, stacks of 40 fast-acquisition (0.5µs/pixel) images are collected, registered by

cross-correlation, and averaged. The data demonstrate STEM imaging near liquid-nitrogen

temperature (∼ 93K) with high resolution (∼ 0.78Å) and signal-to-noise ratio (SI Appendix,

Fig. S2), which may be combined with picometer precision mapping of atomic columns.

The FT (inset) of the lattice image exhibits sharp superlattice spots (arrows), allow-

ing mapping of lattice modulations associated with superlattice peaks28. We damp the

amplitude of the superlattice peaks to the background level and apply an inverse Fourier

transform. The result is a reference lattice image in which the targeted modulation has

been removed (SI Appendix, Fig. S3). By fitting atomic columns using two-dimensional

Gaussian functions in both the original lattice and the reference lattice, we may obtain lat-

tice shifts associated with the charge-ordered state. As previously discussed, the method

accurately yields the structure of the modulation except at atomically sharp discontinuities

in the modulation field28.

Figures 2B and 2D show a STEM image at 93K and the corresponding mapping of the

lattice response, respectively. The arrows correspond to displacements of atomic columns

in the original image relative to the generated reference lattice, and the color represents the

angle of the displacement vector relative to q, with blue (yellow) corresponding to 90◦(-

90◦). Thus, the low temperature ordered state in BSCMO involves transverse, displacive

modulations of both the Bi/Sr/Ca sites and the Mn sites, with amplitudes in the range of 6−
11 pm. For comparison, Figs. 2C and 2E show a HAADF image and the corresponding PLD

mapping at 293K. In these well-ordered regions, lattice displacements appear commensurate

with the lattice and exhibit 3a periodicity at both temperatures. In contrast, area-averaged

diffraction suggests an average 3.18a (3.01a) periodicity at 293K (93K), which exposes a

discrepancy between local and global measurements of the modulation wavevector.

Bridging the gap in length scales, we map PLDs over larger areas and show that they
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undergo spatial variations in their shape and strength (Fig. 3). In particular, we observe

intrinsic stripe defects including shear deformations, dislocations, and amplitude reduction.

A shear deformation is a bending of a wavefront, as shown in Figs. 3A and 3B. Both the 293K

map and the 93K map reveal such deformation, with the latter exhibiting a milder and more

extended instance. We also observe other forms of disorder in 293K data including stripe

dislocations where a wavefront terminates abruptly (Fig. 3C). Displacement magnitudes

reduce near defect sites, with dislocations showing a more pronounced reduction.

Analysis of the demodulated order parameter, A(r)iφ(r), unearths nanoscale phase inho-

mogeneity that coincides with the deformations and dislocations of stripes. Phase variations

encode deviations from perfect, long-range modulations; they can be extracted using the

phase lock-in technique applied previously on spectroscopic scanning tunneling microscopy

(STM) data to visualize density wave fluctuations in cuprates13,31 (SI Appendix, Extracting

Coarse-Grained Order Parameter Fields). Figure 4A displays a room temperature phase

configuration, φ(r), overlaid with π/4 constant phase contours (black lines). The φ(r)–map

reveals significant spatial inhomogeneity, with ±π phase changes, or more than 4 contours,

occurring within regions as small as 5nm. Even more dramatic variations occur near topo-

logical defects (dislocations) where the phase winds by ±2π around the defect site (circles).

In contrast, we observe in Fig. 4B a more uniform, slowly varying phase configuration at

93K with a dearth of ±2π phase change over tens of nanometers.

Phase variations are better visualized via the elastic strain defined by εc = 1
2
q⊥
q
·∇φ(r)32.

Strain is normalized such that a ±2π phase shift over one wavelength (λ=2π/q) corresponds

to ±1, and a positive (negative) phase strain represents a local compression (expansion) of

the wavefronts (SI Appendix, Fig. S5). In Figs. 4B and 4C, we show εc maps overlaid with

phase contours at 293K and 93K, respectively. We observe at room temperature a moderate

background strain, punctured by regions of large, localized phase gradients, notably near

dislocations (circle) and shear deformations (rectangle). The εc–map at 93K exhibits mild

variations and much smaller strain values throughout the full field of view, an indication of

emergent phase homogeneity well below Tc.

Gradients in the phase result in superlattice peak shifts in the FT amplitude, assuming

variations do not average to zero (SI Appendix, Phase Variations and Wavevector Shifts,

Figs. S5 and S6). The shift is given by δq = q− q0 = 〈∇φ(r)〉, where q0 is the lattice-

locked, commensurate wavevector and q0 = 1/3 r.l.u in our case. Therefore, the reduction in
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phase gradients at 93K, i.e. 〈∇φ(r)〉 ≈ 0, is consistent with q approaching q0 in diffraction

measurements (Fig. 1D). As a corollary, negative phase strain at room temperature results

in a reduction of the average q measured in diffraction. Previous work on incommensurate

order invokes models based on domain walls, competition with ferromagnetism, or Fermi

surface effects to explain the changes in wavevector3,10. Our data advance instead that the

modulations remain locally locked to the underlying lattice, with wavevector changes reflect-

ing deformations of the phase-field, and that incommensurate-commensurate transitions are

an indication of emergent phase homogeneity at low temperature. We reiterate that, due to

phase variations, intensity-based probes will detect wavevector shifts, which are consistent

with several distinct local structures. On the other hand, phase sensitive probes including

STEM can measure the underlying periodicity at the atomic scale.

Having revealed temperature-dependent phase disorder, we address the relative weights of

amplitude and phase variations by calculating their respective autocorrelations. In Fig. 5,

we observe that amplitude correlations quickly plateau to ∼ 0.9 at 293K and ∼ 0.8 at

93K over accessible length scales (∼ 10nm for reasonable statistics); their slow decay at

both temperatures suggests they do not influence the correlation length of stripes. Phase

correlations, on the other hand, decay rapidly at 293K, becoming completely uncorrelated

beyond ∼ 8nm. At 93K, they remain finite and relatively significant (∼ 0.5) beyond 10nm.

The strong temperature dependence of phase correlations suggests that the phase component

is the primary driver of long range order. The situation invites an analogy to disordered

superconductors where the loss of phase coherence can cause a superconductor-to-insulator

transition despite the persistence of a finite amplitude33.

Finally, local inspection of amplitude fields at 293K and 93K (SI Appendix, Fig. S4) re-

veals an interaction between phase variation and amplitude variation. From a mean field per-

spective, amplitude fluctuations should be suppressed because they cost finite energy. When

the phase varies slowly, the amplitude is expectedly robust and uniform. However, in regions

of large phase gradients, the amplitude weakens, particularly at dislocation sites where it col-

lapses completely (SI Appendix, Phase Variation and Amplitude Variation, Fig. S4). Phase

deformations increase the elastic energy density by an amount proportional to |∇φ(r)|2,
which may require amplitude suppression in regions of diverging phase gradients34,35. Our

observations are consistent with this picture, and attest to the importance of phase fluctu-

ations in shaping the strength and correlations of charge order.
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Discussion

Based on these results, we propose that experimental observations of coincident incom-

mensuration and emergent competing states are related to the local disordering of the phase

component; phase gradients account for (i) the reduction of the correlation length, (ii) ap-

parent changes in the average wavevector, and (iii) the local quenching of the amplitude

which may allow another order to materialize. This may explain the competition between

ferromagnetism and incommensurate charge order in manganites1,10, or even the granular

interplay between short range incommensurate charge density waves and superconductivity

in cuprates or transition metal dichalcogenides.

A successful microscopic theory for charge order, and the many exotic states it affects,

should account for all relevant degrees of freedom and for the possibility of inhomogeneity.

Using cryogenic STEM on a manganite, we have directly measured the lattice component

and found that the cations undergo transverse displacements relative to the modulation

wavevector. Models based solely on separation of charge or orbital ordering are therefore

insufficient. Atomic displacements change bond distances, bond angles, and hence exchange

interactions, and may be key to explaining how charge order impacts other electronic states.

We have also found that the underlying ground state is locally commensurate with the lattice

at both room and cryogenic temperatures despite an apparent incommensuration in recip-

rocal space, reinforcing both the importance of lattice locking and the fundamental effects

of nanoscale phase inhomogeneity on macroscopic behavior. We envision that mapping the

lattice component using cryogenic STEM in correlated materials will elucidate structural

ground states and reveal connections between atomic displacements and various symmetries

of electronic and orbital order.
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FIG. 1. Long range order and wavevector variation upon cooling from 293K to 93K. (A) Typical

electron diffraction pattern of Bi1−xSrx−yCayMnO3 at 293K. (B), (C) Section of the diffraction

pattern from 2̄02 to 202 at 293K and 93K, respectively. (D) Projected intensity of the superlattice

peak, q, near the 2̄02 Bragg peak along the a∗ direction. The intensity is integrated between the

tick marks in (B) and (C) and is normalized by the 2̄02 Bragg peak intensity. Upon cooling, there

is a change in the wavevector, from q= 0.318 reciprocal lattice units (r.l.u) at 293K to q=0.331

r.l.u at 93K, a behavior typically associated with incommensurate order. (E) Projected intensity

near the 2q peak along the a∗ direction. The intensity is integrated between the tick marks in (B)

and (C) and is normalized by the 2̄02 Bragg peak intensity.
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FIG. 2. Locally commensurate, picometer-scale periodic lattice displacements at room and cryo-

genic temperatures. (A) HAADF STEM image and its Fourier transform (inset) at 93K. Bi/Sr/Ca

columns (green) and Mn columns (red) are clearly resolved. The Fourier transform amplitude

exhibits superlattice peaks (orange arrows) indicating the presence of a modulated structure. (B),

(C) HAADF STEM images at 293K and 93K, respectively. (D), (E) Mapping of transverse, com-

mensurate periodic lattice displacements at 293K and 93K, respectively. Blue (yellow) arrows

correspond to cation displacements oriented 90◦(-90◦) relative to q. Area of arrows scales linearly

with the magnitude of displacements.
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FIG. 3. Local variations and disorder of stripes. (A), (B) Shear deformation of striped modulations

at 93K and 293K, respectively. A shear deformation appears as a bending of the wavefronts. The

black line traces the direction perpendicular to the wavevector and helps visualize the deformation

of the wavefront. (C) Stripe dislocation at 293K, in which one wavefront terminates abruptly.
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FIG. 4. Emergent phase coherence at low temperature. (A), (B) Maps of the coarse-grained phase,

φ(r), at 293K and 93K, respectively. Black lines represent constant π/4 phase contours. (C), (D)

Maps of the phase strain, εc, at 293K and 93K, respectively. Circles correspond to dislocations

and boxes correspond to shear deformations.
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FIG. 5. Autocorrelations of the phase component and the amplitude component at 293K (red)

and 93K (blue). Lines are guides for the eye. The slow decay of amplitude correlations at both

temperatures suggests that the amplitude is not the main driver of long range order. In contrast, the

strong temperature-dependent decay of phase correlations supports that phase variations govern

long range order.
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I. MATERIALS AND METHODS

Bi1−xSrx−yCayMnO3 (BSCMO) single crystals are grown using the flux method, using

Bi2O3, CaCO3, SrCO3, and Mn2O3, as reported previously1. Sample preparation for electron

microscopy and energy dispersive X-ray spectroscopy (EDX) are performed on a FEI Strata

400 Focused Ion Beam (FIB). From EDX, the composition is determined to be approximately

x = 0.65 and y = 0.47 (Fig. S1A), with negligible variations over the whole sample (size 0.34

× 0.28 mm). Temperature-dependent electrical resistivity measurements show a transition

at Tc ≈ 300K, which is associated with the onset of charge order (Fig. S1B).

A thin, electron transparent cross section of BSCMO is extracted using FIB lift out, with

estimated thickness in the imaging regions ranging from 10 to 30 nm. Based on electron

diffraction, the orientation of the sample is along the b direction (orthorhombic axis) of the

Pnma space group. At room temperature (293K), BSCMO exhibits satellite peaks, indicat-

ing the presence of charge ordering (Fig. 1 main text). We perform electron diffraction and

microscopy on an aberration-corrected FEI Titan Themis operating at 300kV. Diffraction

measurements across temperatures are performed in the same region of the sample using a

∼ 1µm selected area aperture. In HAADF-STEM, the convergence semi-angle is 30mrad

and the collection inner and outer angle are 68mrad and 340mrad, respectively. During

STEM imaging the sample experiences a ∼2 Tesla magnetic field due to its position inside

the objective lens, as determined from a Hall bar measurement.

II. CRYOGENIC SCANNING TRANSMISSION ELECTRON MICROSCOPY

For cryogenic experiments, we use a Gatan 636 double-tilt liquid-nitrogen holder. The

microscope is equipped with a cryogenically cooled box which encloses the sample during

low temperature imaging to reduce ice buildup. After the sample is inserted, we add liquid

nitrogen to the holder dewar and wait ∼2 hours for the holder to stabilize and for drift

to subside. The temperature is read from a thermocouple near the tip of the sample rod,

but the true sample temperature may be slightly different. Due to reduced stability at

cryogenic temperatures, stacks of 20 to 40 fast-acquisition (0.5µs/pixel dwell time) images

are collected, registered by cross-correlation, and averaged to minimize stage drift and noise.

Acquisition parameters are optimized for Fourier space sampling, field-of-view, pixel density,
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signal-to-noise ratio, and minimal image distortion. The data in Fig. 2 of the main text is

sampled at 17.6pm/pixel and the data in Figs. 3 and 4 is sampled at 38.5pm/pixel. While

the signal-to-noise ratio in one fast-acquisition image is low (Fig. S2A), the rigidly-registered

and averaged image in Figs. S2B and S2C show that atomic columns are well resolved and

that the signal-to-noise ratio is high. The information transfer estimated from the highest

frequency peak in the Fourier transform (FT) is ∼0.78Å (Fig. S2D).

III. PERIODIC LATTICE DISPLACEMENT MAPPING

The method for mapping periodic lattice displacements in STEM data is described in

great detail elsewhere1. Briefly, the FT amplitude shows satellite peaks decorating lattice

Bragg peaks. The superlattice peaks, which correspond to a modulation with wavevector q,

are sharp and decoupled in Fourier space (Fig. S3A). We identify all satellite peaks and damp

their amplitude to the background level while maintaining phase information (Fig. S3B).

Background levels are determined using two-dimensional Gaussian fits to satellite peaks.

By applying an inverse Fourier transform of the processed FT, we obtain a lattice image

where the q-modulation has been removed (Fig. S3B). We note that the amplitude damping

must encompass the satellite peak completely in order to capture all information about the

modulation and that, once fully captured, the mapping is insensitive to increasing mask size.

We may extract atomic column positions and measure displacements of atomic columns in

the original data (Fig. S3A) relative to the reference data (Fig. S3B), as shown in Fig. S3C.

In BSCMO, we find cation displacements which are transverse and with maximal amplitudes

on the order of 6− 8pm.

IV. EXTRACTING COARSE-GRAINED ORDER PARAMETER FIELDS

As described previously for scanning tunneling microscopy data2, we extract a coarse-

grained phase field, φ(r), associated with the q-modulation. We first Fourier filter regions

surrounding a superlattice peak, using a Gaussian filter with a width σ = L−1 where L

is a coarsening length-scale which we choose to be on the order of two wavelengths. The

resultant real space image has all periodicities removed, except for the one associated with

3



the q–modulation. The filtered image may be described by

Ĩ(r) ∼ sin(q · r + φ(r))

The filtered image, however, does not contain perfect modulations due to order parameter

(OP) inhomogeneity. To extract the phase field responsible for said inhomogeneity, we apply

the phase lock-in technique2:

• We generate two reference signals sin(q · r) and cos(q · r)

• We multiply the filtered image by the two reference signals

• We obtain X(r) and Y (r) where




X(r) = sin(q · r) sin(q · r + φ(r))

Y (r) = cos(q · r) sin(q · r + φ(r))




X(r) = 1

2
(cosφ(r)− cos(2q · r + φ(r)))

Y (r) = 1
2
(sinφ(r) + sin(2q · r + φ(r)))

• We low pass filter X(r) and Y (r) to remove of the second, high-frequency terms

obtaining 


X̃(r) ≈ cosφ(r)

Ỹ (r) ≈ sinφ(r)

• The coarse grained phase is given by

φ(r) = arctan[Ỹ (r)/X̃(r)]

V. PHASE VARIATION AND AMPLITUDE VARIATION

In Fig. 3 of the main text, we observe that the magnitude of ∆(r) weakens in regions of

shear deformations and dislocations. By separating and extracting the phase and amplitude

components, we reveal that large phase gradients are accompanied by amplitude reduction

in both room and cryogenic temperature data (Figs. S4C and S4D). In particular, near

shear deformations (rectangles) and dislocations (circles), the value of the square of the
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phase gradient increases (Figs. S4A and S4B), which indicates that these defects are driven

by phase variations, and the amplitude weakens, which indicates that there is a coupling

between the two components. When the phase varies slowly, the amplitude component

is strong and uniform. As shown in Fig. 5 in the main text, amplitude correlations decay

negligibly, indicating that they do not influence long range order. Nevertheless, their modest

temperature dependence may be attributed to their coupling to large phase gradients.

We propose a simple Ginzburg-Landau (GL) theory that captures the interplay be-

tween phase disorder and amplitude variation. Consider the order parameter given by

ψ(r) = A(r)eiφ(r), where, for simplicity, we neglected the vectorial nature of the amplitude

component. The GL energy density, f , is given by3? ?

f = a|ψ(r)|4 + b|ψ(r)|2 + c|∇ψ(r)|2 + fimp

The first two terms are the customary terms in a GL expansion. The a, b and c are phe-

nomenological constants with a > 0, c > 0, and b = (T − Tc)/Tc < 0 for T < Tc. The

third term represents the energy due to order parameter variations, and the fourth term

represents the energy due to coupling to impurities. We assume that an impurity at site

Ri fixes the value of the phase component to Θ(Ri). There may be other sources for phase

distortion including boundary conditions, applied fields, and inhomogeneous charge. The

GL functional becomes

f = aA4(r) + bA2(r)+c|∇A(r)|2 + cA2(r)|∇φ(r)|2−
∑

i

V0 cos
(
φ(Ri)−Θ(Ri)

)

where V0 controls the coupling strength to the impurity.

The amplitude is expected to vary negligibly due to the quadratic term in the GL

energy4? . In other words, the amplitude is associated with the condensation energy gain,

or gap, due to the formation of the ordered state. In contrast, phase variations only appear

in the gradient term and are more likely to occur. However, near regions of large phase

gradients, the energy density can diverge due to the |∇φ(r)|2 term, necessitating changes

in the amplitude3,5. At a dislocation site, the phase singularity forces amplitude collapse

altogether. Phase variations thus provide a mechanism for the local destruction of the

amplitude, which may permit a competing order to emerge.
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VI. STRUCTURE FACTOR OF PERIODIC LATTICE DISPLACEMENTS

A unidirectional modulation breaks the translational and rotational symmetry of the

underlying lattice. In reciprocal space, the presence of a modulation with wavevector q is

typically evidenced by superlattice peaks at ±q near lattice Bragg spots. The nature of the

modulation, whether it is a modulation in the atomic structure factor (charge order, cation

order) or a modulation of the atomic positions, affects the Fourier space pattern. A de-

tailed derivation of the structure factor, S(k), of modulated lattices is provided elsewhere1,6.

Further, the presence of phase disorder distorts the shape and amplitude of superlattice

peaks.

Here, we briefly derive S(k) for a lattice in which the atomic sites, {R}, undergo periodic

lattice displacements, ∆(r) = A(r) sin
(
q.r + φ(r)

)
, where q is the wavevector, A(r) is the

amplitude and φ(r) is the phase. Lattice positions are given by

R
′
= R + ∆(R)

R
′
= R + A(R) sin

(
q.R + φ(R)

)

The structure factor is

S(k) =
∑

{R′}

exp
[
ik.R

′
]

=
∑

{R}
exp

[
ik.
(
R + A(R) sin

(
q.R + φ(R)

))]

Using the identity exp[iz sin(θ)] =
+∞∑

α=−∞
Jα(z)exp[iαθ] where Jα are Bessel functions of the

first kind, we get

S(k) =
∑

{R},α
exp
[
ik.R

]
Jα(k.A)exp

[
α(q.R + φ(R))

]

=
∑

{R},α
exp
[
i(k + αq).R

]
Jα(k.A)exp

[
iαφ(R)

]

The first few terms (α = 0,±1,±2) dominate, yielding

S(k) ≈ J0(k.A)
∑

{R}
exp
[
ik.R

]
+J1(k.A)

∑

{R}
exp
[
i(k± q).R

]
exp
[
iφ(R)

]
+

J2(k.A)
∑

{R}
exp
[
i(k± 2q).R

]
exp
[
i2φ(R)

] (1)

The first term corresponds to the usual lattice Bragg peaks. The second term corresponds

to satellite peaks at ±q, which are further modulated by a J1(k.A) term and the phase
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disorder term eiφ(R). Higher order harmonics (α=2,3...) are also generated by periodic

lattice displacements, but their experimental observation may depend on the strength and

degree of long range ordering. For example, in Fig. 1 of the main text, we observe that the

second order harmonic peak is barely detectable at room temperature but is well defined at

low temperature. We also point out that the J1(k.A) dependence of satellite peak intensities

is indicative of periodic lattice displacements.

VII. PHASE VARIATIONS AND WAVEVECTOR SHIFTS

In diffraction measurements, the wavevector of a modulation is determined by fitting the

Fourier amplitude near the targeted superlattice peak using Lorentzian or Gaussian func-

tions. Phase variations appear through the area-averaged phase-phase correlation function

which affects the shape, width, and amplitude of the Fourier peak. Here, we argue that

the conventional definition of the superlattice peak position does not necessarily represent

the true periodicity of a modulation7; real space phase gradients are indistinguishable from

anisotropic peak shifts in diffraction patterns as well as the STEM FT amplitude.

In the following subsections, we derive the structure factor of modulated lattices in the

presence of phase gradients and then calculate the Fourier transforms of simulated, one

dimensional modulated lattices.

A. Derivation

Assuming phase variations are approximately linear over the scattering volume, we have

φ(r) = φ0 +∇φ(r) · r + ....

Plugging into the second term of (1), the satellite peaks are given by

S(k) ∼
∑

{R}
δ(r−R)exp

[
i(k± q).r

]
exp
[
i
(
φ0 +∇φ(r) · r

)]

∼
∑

{R}
δ(r−R)exp

[
i
(
k± q +∇φ(r)

)
· r
]
exp
[
iφ0

] (2)

The linear term causes an anisotropic shift of the wavevector with δq = ∇φ(r). If

gradients over the scattering volume average to zero, the net effect is a blurring of the

7



superlattice peak. Higher-order terms in the expansion of φ(r) also contribute to peak

broadening.

B. Illustration of the 1D case

Consider a one-dimensional displacive modulation given by ∆(x) = A sin
(
qx + φ(x)

)

where q = 1/3 (2π/a) is the wavevector, A is the displacement amplitude, and φ(x) is the

phase. A constant phase corresponds to an ideal sinusoidal modulation as shown in Fig. S5A.

We observe in our data, however, localized regions of significant phase change (Fig. S4, and

Fig. 4 in main text). A positive (negative) gradient in the phase compresses (expands)

wavefronts, which increases (decreases) the number of wavefronts, as shown in Figs. S5B

and S5C.

We now calculate the FT amplitude of simulated modulated lattices in the presence of

phase variations. We generate various phase profiles with smooth, local variations occurring,

without loss of generality, every 25 unit cells, and calculate the Fourier transform (FT)

amplitudes of the resulting lattices. The FT amplitudes are convolved with a Gaussian kernel

of width 0.01(2π/a) to simulate the effect of the resolution function. The black, dashed line in

Fig. S6A represents a constant phase profile. As expected, the Fourier transform amplitude

(black, dashed line) is peaked at the ordering wavevector q, as shown in Fig. S6C. The blue

(red) line corresponds to a phase profiles where all variations have positive (negative) phase

gradients (Figs. S6A and S6B). In Fig. S6C, the FT amplitude appears shifted away from

q, with the blue line moving to a higher q and the red line moving to a lower q. Since a

positive (negative) gradient decreases (increases) the wavelength, the wavevector increases

(decreases), in agreement with the calculated FT amplitudes. In the green phase profile,

gradients average to zero, yielding a FT amplitude that peaks at q (Fig. S6C).

The 1D simulation emphasizes that intensity-based probes do not directly reflect the un-

derlying wavevector of a modulation. The presence of local phase variations may shift mea-

sured Fourier peaks away from the underlying wavevector, supporting that order parameter

inhomogeneity alters macroscopic observations of charge order. However, real-space, phase

sensitive probes including STEM or scanning tunneling microscopy allow direct and local
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measurements of phase inhomogeneity and periodicity of ordered states7,8.
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FIG. S1. Composition and transport properties of BSCMO. (A) Using energy dispersive X-ray

spectroscopy on Bi1−xSrx−yCayMnO3, the sample composition is approximately x = 0.65 and y =

0.47 (B) Transport measurements as a function of temperature. In the inset, we see a change in the

slope of the resistivity curve near Tc ∼ 300K, which is associated with a charge ordering transition.

The transition is broad and gradual and is best visualized in the derivative of the logarithm of

the resistivity (black arrow). The resistivity curve has a slight thermal cycling dependence. The

arrows and colors indicate heating (red, green) or cooling (black,blue).
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FIG. S2. Rigid registration of cryogneic STEM data. (A) A single cryogenic HAADF-STEM

image acquired with a 0.5µs pixel dwell time. (B) A high signal-to-noise image obtained from

averaging 40 rigidly-registered fast-acquisition images. The Bi/Sr/Ca and Mn columns are clearly

resolved. Both (A) and (B) are small sections from the full frame image (orange box). (C) The full

frame, rigidly-registered HAADF image. Atomic-scale features are well resolved including intensity

variations due to cation doping on the A site. (D) The Fourier transform amplitude contains both

Bragg peaks and satellite peaks (inset, arrows). The information transfer limit estimated from the

Fourier transform is ∼ 0.78Å.
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FIG. S3. Mapping transverse periodic lattice displacements in BSCMO. (A) Cryogenic HAADF

STEM image (cropped). The Fourier transform amplitude exhibits Bragg peaks and satellite

peaks (see main text). The inset shows an example of a Bragg peak (red circle) accompanied by

satellite peaks (yellow circles). (B) Reference lattice image generated by damping all satellite peaks

corresponding to the modulation to the background level. The inset shows a section of the FT

with damped satellite peaks. (C) Mapping of displacements associated with satellite peaks. The

displacements are obtained by fitting 2D Gaussians to atomic columns in original HAADF image

and the reference image.

12



FIG. S4. Correspondence between large phase gradients and amplitude reduction. (A), (B) Square

of the phase gradient, |q⊥
q ·∇φ(r)|2 at 293K and 93K, respectively. (C), (D) Amplitude field, A(r),

at 293K and 93K, respectively. The circle corresponds to a dislocation (phase singularity) and the

rectangles correspond to shear deformations (phase gradients). We observe amplitude reduction in

regions of large phase gradients, suggesting a coupling between phase fluctuations and amplitude

fluctuations.
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FIG. S5. Expansion and compression of wavefronts due to phase gradients. (A)-(C) Phase profiles

(φ(x), dashed lines) and resultant sinusoidal modulations (∆(x) = A sin(qx + φ(x)), gray lines).

A constant phase (black) corresponds to an ideal sinusoidal modulation. A positive gradient in

the phase corresponds to a compression of the wavefront (blue, dashed line). A negative gradient

in the phase corresponds to an expansion of the wavefront (red, dashed line). Empty black cir-

cles represent the ideal atomic lattice and red circles correspond to the modulated lattice. The

wavelength of the modulation is λ = 3a.
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FIG. S6. Phase gradients result in wavevector shifts in reciprocal space. (A) 1D phase profiles,

φ(x), with local variations. The black, dashed line represents a constant phase. The red (blue) line

represents a step profile with negative (positive) gradients. The green line represents a step profile

with gradients averaging to zero. The wavelength of the modulation is λ = 3a. (B) Gradients

of aforementioned phase profiles. (C) Fourier transform amplitudes of a 1D lattice modulated by

∆(x) = sin(qx + φ(x)) with q = 1/3(2π/a). The color corresponds to phase profiles described

before. The dashed line, peaked at q, corresponds to a constant phase profile.
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FIG. S7. Lorentzian and linear background fit to the superlattice peak profile near the 2̄02

Bragg peak at 293K (left) and 93K (right). The Lorentzian function is given by f(k, I, q, σk) =

I
π

σk
(k−q)2+σ2

k
where I is the intensity (amplitude), q is the wavevector (center), and σk is the width.

The profile is obtained by integrating between the two ticks in Fig. 1 in the main text and the

intensity is normalized by the intensity of the Bragg peak. Upon cooling from 293K to 93K,

there is a clear increase in the superlattice peak intensity and a decrease in the full-width-at-half-

maximum (2σk). Note the difference in the scale of the intensity axis. We also observe a shift in

the superlattice peak position from q = 0.318 r.l.u at 293K to q = 0.331 r.l.u at 93K.
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FIG. S8. Unprocessed STEM data. (A), (B) Original, full field of view (∼ 20nm) HAADF-STEM

data at (A) 293K and (B) 93K corresponding to results in Fig. 2 in the main text. (A), (B)

Original, full field of view (∼ 40nm) HAADF-STEM data at (A) 293K and (B) 93K corresponding

to results in Fig. S4 and Figs. 3, 4, 5 in the main text. The data are unprocessed except for cross-

correlation and a global brightness adjustment. Note the varying intensities of atomic columns due

to cation doping.
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