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Water treatment systems frequently use strong oxidants or UV
light to degrade chemicals that pose human health risks. Un-
fortunately, these treatments can result in the unintended trans-
formation of organic contaminants into toxic products. We report
an unexpected reaction through which exposure of phenolic com-
pounds to hydroxyl radicals (•OH) or UV light results in the forma-
tion of toxic α,β-unsaturated enedials and oxoenals. We show that
these transformation products damage proteins by reacting with
lysine and cysteine moieties. We demonstrate that phenolic com-
pounds react with •OH produced by the increasingly popular UV/
hydrogen peroxide (H2O2) water treatment process or UV light to
form toxic enedials and oxoenals. In addition to raising concerns
about potential health risks of oxidative water treatment, our
findings suggest the potential for formation of these toxic com-
pounds in sunlit surface waters, atmospheric water, and living
cells. For the latter, our findings may be particularly relevant to
efforts to understand cellular damage caused by in vivo produc-
tion of reactive oxygen species. In particular, we demonstrate that
exposure of the amino acid tyrosine to •OH yields an electrophilic
enedial product that undergoes cross-linking reaction with both
lysine and cysteine residues.

reactive transformation products | water treatment | advanced oxidation
processes | chemoproteomics | exposome

By 2050, two-thirds of the world’s population will be living in
cities that are increasingly reliant on drinking water sources

affected by agricultural runoff and industrial and municipal
wastewater discharges (1, 2). These drinking water sources often
contain trace concentrations of phenolic compounds that are
widely used in dyes, surfactants, pharmaceuticals, and pesticides,
including bisphenol A, triclosan, and nonylphenol-ethoxylates (3,
4). As a result of concerns about adverse health effects from
chronic exposure to phenolic compounds, the Environmental
Protection Agency and other regulatory agencies require the
removal of certain phenolic compounds during water treatment.
One approach for treating phenol-containing water involves the
oxidation of these compounds with hydroxyl radicals (•OH).
•OH-based treatment technologies, such as the use of UV light
to photolyze hydrogen peroxide (i.e., the UV/H2O2 process), are
becoming increasingly common in drinking water treatment,
potable water reuse, and remediation of contaminated ground-
water at hazardous waste sites. In these processes, •OH trans-
form phenolic compounds and other organic contaminants
through a series of reactions that result in addition of oxygen-
containing functional groups to the compounds (5, 6). Although
the transformation products formed in these reactions are fre-
quently less toxic then the parent compounds and often can be
more easily removed in subsequent water treatment processes,
oxidation of phenols can also lead to the formation of toxic
transformation products such as p- and o-benzoquinone (7).
Exposure to quinones is a toxicological concern because their
electrophilic character leads to cellular damage through reac-
tions with nucleophilic groups in proteins and DNA (8).

Despite the growing recognition that toxic transformation
products may be formed during oxidative water treatment (9),
the potential health effects of this practice are uncertain. Be-
cause thousands of anthropogenic compounds may be present in
drinking water sources, assessment of the effects of every com-
pound that might be present is not feasible. Rather, novel ap-
proaches are needed to prioritize further investigations of
compounds that are inherently toxic or that might be trans-
formed to toxic transformation products during water treatment.
In toxicology, recognition of the importance of molecular in-

teractions of chemicals with biomolecules has led to the devel-
opment of the adverse outcome pathway concept (10). As a key
feature, molecular initiating events (e.g., the formation of co-
valent adducts by reaction of both endogenous and exogenous
electrophiles with proteins and DNA) have been recognized as
an important mechanism involved in a variety of adverse health
outcomes, including cancer and cardiovascular diseases (11, 12).
This has also led to the development of screening tools that allow
for the assessment of reactive candidate pharmaceuticals and
their metabolites by investigating the formation of covalent ad-
ducts formed when test compounds react with amino acids and
proteins (13, 14). To assess the potential for toxic products of
oxidative water treatment, we adapted this approach to iden-
tify reactive electrophiles that are formed during oxidative
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water treatment. To ensure the sensitive detection of oxidation
products of toxicological relevance, we targeted adducts pro-
duced when the oxidation products reacted with nucleophilic
moieties in biomolecules, including primary amine moieties in
N-α-acetyl-lysine (NAL) and thiol functional groups in glutathi-
one (GSH) and N-acetyl-cysteine (NAC).

Results and Discussion
To assess a representative treatment system, we oxidized phenol
with •OH produced by the UV/H2O2 process. After exposure, we
added NAL and detected the formation of an adduct, R-2-
(acetylamino)-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic
acid (m/z 255), which increased in concentration as the phenol
concentration decreased (Fig. 1A and SI Appendix, Fig. S1).
Similarly, addition of either GSH or an equimolar mixture of
NAC and NAL after oxidation of phenol in the UV/H2O2 pro-
cess yielded the adducts N-[4-carboxy-4-(3-mercapto-1H-pyrrol-
1-yl)-1-oxobutyl]-L-cysteinylglycine cyclic sulfide (m/z 356) and
N-acetyl-S-[1-[5-(acetylamino)-5-carboxypentyl]-1H-pyrrol-3-yl]-
L-cysteine adducts (m/z 400), respectively. These data indicate
that the oxidation of phenol by •OH results in the formation of
the α,β-unsaturated dialdehyde 2-butene-1,4-dial (15). The for-
mation of the same N-substituted pyrrolin-2-one and pyrrole
adducts have been observed previously during the CYP450-
mediated metabolism of furan, a compound that is commonly
found in heat-treated food, cigarette smoke, and exhaust gas
from car and diesel engines (Fig. 1B) (16, 17). 2-butene-1,4-dial
reacts with protein and DNA nucleophiles, exhibits a strong
positive response in the Ames assay, induces strand breaks and
cross-links in DNA, and has been related to the in vivo toxicity of
furan (16, 18).
Quantitative analysis of 2-butene-1,4-dial by LC/MS/MS in-

dicated that ∼2% of the phenol that was lost had been trans-
formed into the α,β-unsaturated dialdehyde (Fig. 1C). In a
separate experiment, we also demonstrated that 2-butene-1,4-dial
is formed, albeit at lower yields, during direct UV photolysis of
phenol by a medium pressure mercury lamp (Fig. 1C). Exposure
of phenol to light with wavelengths above 290 nm did not result in

the degradation of phenol or the formation of 2-butene-1,4-dial.
The formation of the transformation product was also observed
when a low-pressure mercury lamp was used as light source.
Decades of research have established a pathway for phenol

oxidation by •OH or UV light, consisting of initial hydroxylation
of the aromatic ring to form hydroquinone, benzoquinone, and
catechol, followed by subsequent ring hydroxylation and cleav-
age to produce short-chain organic acids, such as maleic acid,
formic acid, and oxalic acid (7). Direct cleavage of aromatic
rings without sequential hydroxylation has been postulated
(19), but our findings represent experimental evidence that
α,β-unsaturated aldehydes are formed as an initial product of
aqueous phase phenol oxidation by exposure to •OH or UV
light. The formation of α,β-unsaturated aldehydes, including 2-
butene-1,4-dial and 4-oxo-2-pentenal, from the reaction of •OH
with benzene and various methylated benzenes has been ob-
served in the gas phase (20–24). The initial step in the gas phase
reaction mechanism yields carbon-centered radicals, either by
H-abstraction or OH-addition, which subsequently react with
dioxygen to produce peroxides. These unstable intermediates
can undergo unimolecular ring-closure, yielding bicyclic alkoxy
radicals that then break down to produce enedials and oxoenals.
In this final step, the original six carbons of the aromatic ring are
converted into a four-carbon and a two-carbon compound. In the
aqueous phase, the formation of bicyclic alkoxy radicals after the
reaction of •OH with benzene and phenol in the aqueous phase
has been postulated (25, 26), but our results provide experi-
mental evidence for the occurrence of this process in water.
Toxicologists have found strong evidence that 2-butene-1,4-

dial produced by metabolism of furan causes toxicity and cell
death by binding to hepatic proteins (27). 2-butene-1,4-dial is a
highly reactive electrophile that can potentially react with cyste-
ines in proteins. To better understand the potential toxicity and
proteome-wide cysteine reactivity of 2-butene-1,4-dial, we used a
chemoproteomic platform termed activity-based protein profiling
(ABPP). ABPP uses reactivity-based probes to map proteome-
wide reactive, functional, and ligandable hotspots directly in
complex proteomes (28, 29). To initially determine whether

OH

OO

O

N

O

HO
O

HN

S

O

HN

O
OH

N

HN

O

O

OH
O

N NH

O

OHO

O
NH

S
O

HO

A

B

0 10 20 30
0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

time [min]

C
/C

0 Yield 
2-butene-1,4-dial  [%

]

0 10 20 30
0.0

0.5

1.0

0.0

5.0 106

1.0 107

1.5 107

C
/C

0

Phenol NAL adduct (m/z 255)
NAC+NAL adduct (m/z 400)GSH adduct (m/z 356)

Peak area [cps]

C

Fig. 1. Formation of 2-butene-1,4-dial during oxidation of phenol in the UV/H2O2 process. (A) Oxidation of phenol (0.1 mM) in borate buffer (50 mM at pH 8)
by UV/H2O2 and the reaction of 2-butene-1,4-dial with either N-α-acetyl-L-lysine (NAL), glutathione (GSH) or a mixture of NAL and NAC. A medium pressure
mercury lamp was used as radiation source. (B) Formation of 2-butene-1,4-dial by reaction of phenol with •OH and UV light or by bioactivation of furan by
cytochrome P450 (CYP450) in the human body (33) and the resulting adduct formation with NAL, GSH as well as NAC and NAL. (C) Oxidation of phenol by UV
light in the absence (solid triangles) and presence of H2O2 (0.1 mM; solid circles) and quantification of 2-butene-1,4-dial by LC/MS/MS using the standard
addition method (open circles and triangles; see SI Appendix).
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2-butene-1,4-dial had any cysteine reactivity with proteins in
mouse liver proteomes, we performed an in-gel ABPP analysis,
in which we compared its binding to proteins with that of a
cysteine-reactive iodoacetamide alkyne (IAyne) probe (30). We
found that 2-butene-1,4-dial exhibits broad cysteine reactivity in
a dose-responsive manner, showing more selective reactivity with
proteins at lower concentrations (Fig. 2A). To map the specific
ligandable cysteine hotspots targeted by 2-butene-1,4-dial, we used
a more advanced ABPP platform termed isotopic tandem or-
thogonal proteolysis-enabled ABPP (isoTOP-ABPP) (28). This
method uses a biotin-azide tag bearing an isotopically light (for
vehicle-treated) or heavy (for 1,4-butene-dial-treated) tag and a
tobacco etch virus (TEV) protease recognition sequence that is
bound to IAyne-labeled proteins by click chemistry. It thus allows
for quantitative proteomic analysis using light to heavy probe-
modified peptide ratios. We interpreted those peptides showing
>10 ratios as direct targets.
Among more than 600 probe-modified peptides identified, we

identified 37 targets of 2-butene-1,4-dial (Fig. 2B and Dataset
S1). The proteins bound by 2-butene-1,4-dial have diverse
functions and include targets involved in protein biosynthesis,

energy metabolism, and steroid biosynthesis. Specifically, two
contained cysteines that corresponded to an annotated catalytic
cysteine, C199 of Nit1 (nitrilase-like protein 1) and C150 of
GAPDH (glyceraldehyde 3-phosphate dehydrogenase), suggest-
ing that the function of these enzymes were impaired by 2-
butene-1,4-dial. Nit1 is a protein involved in regulation of apo-
ptosis, and thus inhibition of this protein may lead to accelerated
proliferation (31). GAPDH is a glycolytic enzyme, and its in-
hibition likely affects glycolytic metabolism and energetics (32).
Consistent with the reactivity with the catalytic C150 of GAPDH,
we show that 2-butene-1,4-dial inhibits GADPH function in a
substrate activity assay (Fig. 2C). Further validation of the
IsoTOP-ABPP-determined targets and studies of the in vivo
toxicology of 2-butene-1,4-dial could provide insight into the
endpoints of concern for human exposure to the products of
phenol oxidation in drinking water.
To assess the potential formation of other toxic α,β-unsaturated

aldehydes formed during oxidation of common phenol-containing
compounds, we simulated the treatment of a suite of methylated
phenols by the UV/H2O2 process. We relied on the formation of
unique pyrrolin-2-one and pyrrole reaction products of enedials

0 200 400 600
0

20

40

60

peptides

co
nt

ro
l (

lig
ht

) v
s 

tre
at

ed
 (h

ea
vy

) r
at

io Nit1 C199
Cryl1 C125

Ppfibp2 C544

Rps8 C71

Hmgcs2 C305
Hpgd C182

Gstp1 C48 Arhgef7 C539
Gckr C598

Csad C356
Tufm C222

Gpt2 C375

Thsd7b C81

Zfp229 C512
Nsdhl C75

Cct8 C244
Gapdh C150

Bdh1 C288Psme1 C22
Akr1c14 C217 Acaa2 C287

Hpgd C152Mrps31 C345

0 30
00

10
00

10
0

10 1 µM BDA
A B

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

time (minutes)

G
AP

D
H

 A
ct

iv
ity

Control

BDA

Con
tro

l
BDA

0

20

40

60

80

m
ic

ro
m

ol
/m

l/m
in

GAPDH activity

*

C

Fig. 2. ABPP analysis of in vitro cysteine reactivity in mouse liver from 2-butene-1,4-dial. (A) Mouse liver proteome was exposed to 2-butene-1,4-dial (BDA) at
initial concentrations ranging from 1 μM to 3 mM and subsequently labeled with IAyne probe (10 μM), followed by click-chemistry appendage of rhodamine-
azide for fluorescence imaging (gel-ABPP) to measure dose-dependent probe displacement. (B) IsoTOP-ABPP analysis of mouse liver proteome after exposure
10 μM 2-butene-1,4-dial. Mouse liver proteome was treated with 2-butene-1,4-dial, and labeled with IAyne (100 μM), followed by click-chemistry mediated
appendage of a biotin tag bearing a TEV protease cleavage sequence and an isotopically light or heavy valine. Proteomes were combined, avidin enriched,
tryptically digested, and modified peptides were isolated by TEV digestion followed by quantitative proteomic analysis. Peptides are arranged in increasing
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activity. *P < 0.05.

Prasse et al. PNAS | March 6, 2018 | vol. 115 | no. 10 | 2313

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715821115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715821115/-/DCSupplemental


and oxoenals in the presence of NAL or GSH, respectively (Fig.
3) (33). For m-, o-, and p-cresol, exposure to •OH produced by
the UV/H2O2 process led to the formation of 2-butene-1,4-dial
and methylated 2-butene-1,4-dial adducts (Table 1 and SI Ap-
pendix, Figs. S5–S7). The latter were detected in higher abun-
dances for both p- and m-cresol, whereas for o-cresol, 2-butene-
1,4-dial was the dominant aldehyde transformation product
(Table 1). Similarly, oxidation of dimethyl- and trimethylphenols
yielded NAL and GSH adducts consistent with the presence of
one, two, or three additional methyl groups relative to the
transformation product observed when phenol was oxidized
(SI Appendix, Fig. S10). Thus, our findings demonstrate that
oxidation of alkyl-substituted phenols by the UV/H2O2 process
generally results in the formation of α,β-unsaturated enedials
and oxoenals.

The ubiquitous presence of •OH in living organisms (34),
natural waters (35–37), fog (38), and the atmosphere (39) means
that our observations may have potential implications beyond
oxidative water treatment. Oxidative stress caused by reactive
oxygen species plays an important role in vivo and has been
implicated in various adverse health outcomes, including Par-
kinson’s and cardiovascular diseases (34). For example, the re-
action of •OH with the phenolic amino acid tyrosine produces
reactive intermediates that are capable of reacting with other
biomolecules, resulting in protein–protein and protein–DNA
cross-links (40). Furthermore, reactions of amino acids, such as
tyrosine, with •OH in sunlit surface waters has been linked to the
formation of humic-like substances, which play an important role
in surface water ecosystems, in particular for the geochemical
cycling of trace elements (41). In the troposphere, these reac-
tions also have been implicated in the formation of secondary
organic aerosols (42). The formation of reactive tyrosine trans-
formation products from exposure to •OH has thus far been ex-
clusively attributed to the formation of carbon-centered tyrosyl
radicals (43). However, our results reveal a previously unknown
reaction mechanism. By exposure of a solution of N-acetyl-tyrosine
to •OH, we demonstrated the production of cross-coupling pro-
ducts by a mechanism analogous to that observed for the
substituted phenols via formation of an enedial transformation
product (Fig. 4).
Previously published research indicates that dihydroxybenzenes

and organic acids account for a significant fraction of the trans-
formation products produced when phenols are exposed to •OH
or UV light (5, 6). Our results show that a previously unrecognized
group of toxic compounds, enedials and oxoenals, are also formed
in this process, albeit at a lower yield than the other products. The
toxicity of α,β-unsaturated carbonyl compounds, in particular
α,β-unsaturated aldehydes, is attributable to their high reactivity
via nucleophilic addition at both the carbonyl-carbon and the
β-carbon (44). As a result, α,β-unsaturated aldehydes are much
more toxic than their saturated analogs (18, 45).
In addition to phenol, a variety of natural and anthropogenic

phenolic compounds are present in the environment. In addition
to the presence of phenolic groups in many industrial chemicals,
methyl-phenols represent important moieties of aquatic natural
organic matter (46). In addition, phenolic compounds are
emitted by combustion processes and reach surface waters
mainly via wet and dry deposition (47–49). Use of •OH-based
and UV treatment technologies may therefore result in forma-
tion of many different types of α,β-unsaturated aldehydes that
are likely to react with biomolecules (44).
The fate of the dialdehydes in engineered treatment and

drinking water distribution systems depend on the water treat-
ment processes that follow the oxidative treatment process.
Losses by volatilization from open basins are likely to be small
because the dialdehydes are not particularly volatile (e.g., con-
centrations of a 2-butene-1,4-dial standard decreased by less
than 10% after 2 d in an open container stored at room tem-
perature). Because of the polar nature of the dialdehydes, re-
moval by sorption to activated carbon is also likely to be small
under conditions used in drinking water treatment plants. The
compounds also will not undergo photolysis to an appreciable ex-
tent after their formation (e.g., concentrations of 2-butene-1,4-dial
did not decrease after most of the phenol was removed in experi-
ments depicted in Fig. 1). Thus, transformation in subsequent stages
where water is exposed to microbes (e.g., during sand filtration or
biological activated carbon) or in the drinking water distribution
system is likely to be the most important sink for the enedials and
oxoenals. Additional research is needed to assess the occurrence
and rates of these removal processes.
In summary, we show that the formation of adducts between

amino acids and proteins can be used as a sensitive means of
identifying reactive transformation products that are formed

OH

R

OO
R1

R2 R3

Fig. 3. General reaction mechanism of the oxidation of methylated phenols
by UV/H2O2 yielding oxoenals and enedials. R1, R2, and R3 indicate the lo-
cations of either -H of -CH3 residues in the C4-dicarbonyl compounds formed
during oxidation and depend on the location of the methyl substituents in
the investigated phenols (Table 1).

Table 1. Products and relative yields from the oxidation of
methyl-substituted phenols

Phenol derivatives -R1 -R2 -R3 Rel. yield,* %

Phenol -H -H -H 1.0
p-Cresol -H -CH3 -H 7.1

-H -H -H 0.2
m-Cresol -H -CH3 -H 2.8
o-Cresol -H -H -H 0.7

-CH3 -H -H 0.6
-H -CH3 -H 0.4

2,6-Dimethyl-phenol -CH3 -H -H 1.4
-H -CH3 -H 0.2

2,3-Dimethyl-phenol -CH3 -CH3 -H 2.8
-CH3 -H -H 0.2
-H -CH3 -H 0.1

2,5-Dimethyl-phenol -H -CH3 -H 3.7
3,4-Dimethyl-phenol -H -CH3 -CH3 2.1

-CH3 -CH3 -H 1.7
-H -CH3 -H 0.8

3,4,5-Trimethyl-phenol -CH3 -CH3 -CH3 1.3
-CH3 -CH3 -H 0.6
-H -CH3 -H 0.3

2,4,6-Trimethyl-phenol -CH3 -H -CH3 0.9
-H -CH3 -H 0.1

Positions of substituents (R1, R2, R3) are labeled as shown in Fig. 3. Formed
enedials and oxoenals were identified based on their reaction with N-α-acetyl-
lysine and glutathione. Dominant products are highlighted in bold. Ex-
periments with individual phenols were carried out at an initial concen-
tration of 0.1 mM in the presence of H2O2 (0.1 mM) buffered at pH 8
(50 mM borate)
*Relative yields of dicarbonyls were estimated based on chromatographic
peak areas of NAL-adducts normalized to that of 2-butene-1,4-dial observed
in experiments with phenol.
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during oxidative water treatment. For the reaction of phenols
with •OH and UV light, this has led to the unexpected discovery
of oxoenal and enedial transformation products. Sensitive ana-
lytical approaches, similar to those described here, offer a
powerful approach for identifying reactive electrophiles. This
knowledge will allow drinking water treatment plant operators to
minimize the potential for human exposure to the compounds.
Further studies are necessary to assess the implications of long-
term exposure to reactive electrophiles in drinking water (i.e.,
the drinking water exposome), to assess their fate in drinking
water distribution systems and in the aquatic environment, and
to evaluate the potential for using pretreatment methods to
minimize their formation during oxidative water treatment.

Methods
UV-Photolysis Experiments and Investigation of Adduct Formation with Amino
Acids and GSH. Stock solutions of individual phenolic compounds were pre-
pared in ultrapure water (1 or 10 mM). For each sample point, a separate
quartz vial was used. Quartz vials (8 mL) were filled with a premixed solution
of individual phenols and H2O2 (initial concentration: 0.1 mM each) in borate
buffer (50 mM at pH 8). To investigate the relevance of •OH, we also con-
ducted experiments in the absence of H2O2 (UV only). All photolysis experi-
ments were performed in a merry-go-round photochemical reactor equipped
with a medium-pressure mercury lamp (400 W; Ace Glass). The lamp was
cooled by a quartz jacket connected to a water tap. At the end of the

experiments, 2 mL were taken from each quartz tube and transferred into
HPLC vials for determination of phenol removal using HPLC-UV. In addition,
1 mL was transferred into a separate HPLC vial, and 100 μL NAL, GSH, or an
equimolar mixture of NAC and NAL was added (final concentration:
0.3 mM). Samples were allowed to react in the dark for 24 h before analysis
by positive electrospray ionization (ESI+) LC/MS/MS. Further details on used
analytical techniques including HPLC-UV, LC/MS/MS, and high-resolution
Orbitrap MS can be found in the SI Appendix.

Chemoproteomics Analysis. Reaction of cis-butene-1,4-dial with cysteine res-
idues in mice liver proteome was investigated using gel-based chemo-
proteomics and isoTOP-ABPP analysis. After incubation of the proteome with
cis-butene-1,4-dial, the remaining free cysteine residues were labeled with
iodoacetamide alkyne (IAyne) before copper-catalyzed azide-alkyne cyclo-
addition “click chemistry” to append rhodamine-azide (gel-based chemo-
proteomics analysis) or isotopically light (control) or heavy (treated) TEV-
biotin and click chemistry followed by LC/MS/MS (isoTOP-ABPP analysis).
Additional details together with information on the used GADPH enzyme
activity assay are provided in the SI Appendix.
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